

Techno-Economic Analysis of CO₂ Capture Reference System Based on Phase-Change Solvent Absorption

Master's thesis in Sustainable Energy Systems

DIXIN WEI CHANG PENG

Department of Energy and Environment CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2017

Master's thesis 2017

Techno-Economic Analysis of CO₂ Capture Reference System Based on Phase-Change Solvent Absorption

DIXIN WEI CHANG PENG

Department of Energy and Environment Division of Energy Technology CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2017 Techno-Economic Analysis of CO_2 Capture Reference System Based on Phase-Change Solvent Absorption

DIXIN WEI CHANG PENG

© DIXIN WEI & CHANG PENG, 2017.

Supervisor: Stavros Papadokonstantakis Examiner: Stavros Papadokonstantakis, Department of Energy and Environment

Master's Thesis 2017 Department of Energy and Environment Division of Energy Technology Chalmers University of Technology SE-412 96 Gothenburg Telephone +46 31 772 1000

Typeset in LATEX Printed by [Chalmers Reproservice] Gothenburg, Sweden 2017 Techno-Economic Analysis of CO_2 Capture Reference System Based on Phase-Change Solvent Absorption

DIXIN WEI CHANG PENG Department of Energy and Environment Chalmers University of Technology

Abstract

The CO_2 emission into atmosphere over the past century is considered as the main reason for global warming phenomenon. The Paris Agreement target of 2 °C urged not only focus on this issue, but also effective measures for the transition period and long term. The solvent based post-combustion carbon capture, a conveniently applied process, can be costly mainly due to high reboiler heating for the solvent regeneration. If the cost can be reduced to an acceptable value for power plants, then PCC processes exhibit substantial potential in coal and natural gas fired plant emission reduction, which is a large share in global CO_2 emissions.

This study focuses on phase-change amines, that have reported good experimental results in phase separation, and thus reduce reboiler heating demand. It starts with checking and comparing a group of amines and selecting potential candidates. Further PCC process simulation in Aspen shows detailed results in performance of different configuration and amine type.

In general, two amines known as DIBA and HXA are seen as promising replacement, especially HXA. The results are compared with MEA reference case. With respect to reboiler duty, the two selected amines both showed more than 50% reduction. And in the best scenario, the reboiler heating demand is reduced to 0.91 GJ/ton CO_2 captured.

Keywords: Carbon capture, MEA, phase-changing solvent, amine, Aspen, decanter

Acknowledgements

Sincerely, we would like to thank our supervisor and examiner, Stavros Papadokonstantakis. His advice helped us throughout the whole project and inspired several meaningful studies. We would also thank Gulnara Shavalieva who helped us with sources related to our study.

We also appreciate the warm support from our friends and family, especially Yiyu from group 'Teletubbies'. Besides, great thanks to the nice and friendly environment in the department, as well as master thesis students altogether.

Dixin Wei & Chang Peng, Gothenburg, June 2017

Abbreviation

CCS	Carbon Capture and Storage					
CED	Cumulative energy demand					
\mathbf{CF}	carbamate formation					
\mathbf{CR}	carbamate reversion					
DEA	Diethanolamine					
DGA	Diglycolamine					
DIBA	Diisobutylamine					
EI99	Eco-indicator 99					
GWP	Global warming potential					
HX	Heat Exchanger					
HXA	Hexylamine					
keq	Reaction equilibrium constant					
MEA	Monoethanolamine					
MEDA	Methyl diethanolamine					
$\mathbf{M}\mathbf{W}$	molecule weight					
PCC	Post-combustion carbon capture					
RED	Relative energy difference					
VLLE	vpour liquid liquid equilibrium					

Contents

1	Intr	oduction	1
	1.1	Carbon Capture and Storage Background	1
	1.2	Solvent Based Post-Combustion Carbon Capture Process	3
	1.3	Aim of thesis project	4
2	The	eory	5
	2.1	Phase Change Solvent Absorption Flowsheet	5
	2.2	Amine Absorption Reaction Mechanism	6
	2.3	Liquid Liquid Equilibrium of phase-change amine	7
	2.4	Absorption and Stripping	8
3	Met	hods	9
-	3.1	Study of Phase-Change Solvents	9
	0.1	3.1.1 Property Method in Aspen Plus	9
		3.1.2 Aspen Component Specification	10
		3.1.3 Property Check and Modification	10
		3.1.4 Aspen Ternary Diagram Study	10
		3.1.5 Decanter Separation Study	15
	3.2	Define Reaction Equilibrium Constant	18
		3.2.1 Reaction Keq in MEA Flowsheet	18
		3.2.2 Reaction keq value of studied molecules	18
	3.3	Base configuration setting up	19
		3.3.1 Calculating methods for absorber and stripper	19
		3.3.2 Stream and column settings	20
		3.3.3 Close-loop mass balance and design specifications	21
		3.3.4 Flowsheet improvement - add condenser unit for recycling amine	22
	3.4	Other Configurations	23
		3.4.1 Double Stripper Configuration	23
		3.4.2 Configuration with Rearranged Heat Exchanger	24
	3.5	Degradation Estimation	24
	3.6	Economic and Environmental Analysis	25
	3.7	Assumption and Limitation	27
4	Res	ults	29
	4.1	Reboiler duty	29
		4.1.1 Base Case Configuration	29

		4.1.2	Add condenser for recycling amine								
		4.1.3	Double Stripper Configuration								
		4.1.4	Heat Exchanger Rearrange Configuration								
		4.1.5	Summary								
	4.2	Sensit	ivity Analysis								
		4.2.1	Uncertain thermodynamic estimation								
		4.2.2	Amine solution concentration								
	4.3	Econo	mic and Environment Analysis								
		4.3.1	Operating cost $\ldots \ldots 40$								
		4.3.2	Environmental Impact								
5	Con	clusio	n 45								
Α	App	oendix	1 I								
	A.1	keq va	lue and property estimation								
	A.2	Ternar	ry diagram of DMCA								
	1 2	Column. stream input setting in flowsheets									
	A.5	Corun	In. stream input setting in nowsheets								
	A.3 A.4	Econo	mic and environmental analysis parameter and results								
	A.3 A.4 A.5	Econo Sensit	mic and environmental analysis parameter and results								

List of Figures

2.1	MEA absorption flowsheet	5
2.2	Phase change solvent absorption flowsheet	6
3.1	VLLE ternary diagram DIBA	12
3.2	VLLE ternary diagram DPA	12
3.3	VLLE ternary diagram HXA	13
3.4	VLLE ternary diagram CHPA	13
3.5	VLLE ternary diagram 26-DMPD	14
3.6	VLLE ternary diagram EPD	14
3.7	Decanter modelling setting for amine study	15
3.8	Water mole fraction in rich phase - Decanter Temperature	17
3.9	Water mole fraction in rich phase - Inlet CO_2 flowrate	17
3.10	Base case configuration	20
3.11	Add condenser for amine recycling	22
3.12	Configuration of double strippers with different operating pressure	23
3.13	Configuration with Rearranged HX Placement	24
3.14	CED vs Price for studied amines	27
4.1	Reboiler duty in all scenarios, compared with MEA reference	33
4.2	Reacted substance ratio in absorber - keq for DIBA	35
4.3	Reacted substance ratio in absorber - keq for HXA	35
4.4	Reboiler duty - keq value, A varies from -235.025 to -227.5	36
4.5	Reboiler duty - keq value, A varies from -227.5 to -226.5	36
4.6	Reboiler duty - water split ratio in rich loading phase compared with	
	total water entering decanter	37
4.7	Reboiler duty - amine split ratio in rich loading phase compared with	
	total molecular CO_2 entering decanter $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	38
4.8	Reboiler duty - molecular CO_2 split ratio in rich loading phase com-	
	pared with total molecular CO_2 entering decanter $\ldots \ldots \ldots \ldots$	38
4.9	Reboiler duty - Amine aqueous solution weight based concentration,	
	from 30% to 44%	39
4.10	Operating cost of scenario 3,5,7 for two amines	40
4.11	CO_2 Capture cost penalty in unit electricity production	41
4.12	EI99 indicator estimation, points/ton CO_2 captured	42
4.13	Global warming potential estimation, $CO_2eq \text{ ton/ton captured } \dots$	43
4.14	Equivalent energy consumption	43

A.1	DMCA ternary mixture study diagram	IV
A.2	Reference MEA flowsheet	IV

List of Tables

3.1	6 Amines which showed VLLE ternary diagram phase envelope	11
3.2	Basic Flowrate and Column Setting in Decanter Modelling	16
3.3	Water and Amine Flowrate in Two Separated Phases	16
3.4	Values used for calculating the equilibrium constant in equation 3.3 .	18
3.5	Estimated RED (relative energy difference) values	18
3.6	Estimated reaction equilibrium constant values in equation 3.3	19
3.7	Amine degradation rate estimation based on MEA	25
3.8	reference price and environmental index for studied amines	26
3.9	Assumptions	28
4.1	Seven Studied Scenarios	29
4.2	Result list for Scenario 1 (equilibrium), 2 (ratebased), and MEA ref-	
	erence	30
4.3	Result lists for scenario 3	31
4.4	Result list for configuration with two strippers, scenario 4 and 5	32
4.5	Reboiler duty result for HX rearrange configuration, scenario 6 and 7	32
4.6	Amine emission lost amount of all scenarios	34
A.1	PLXANT parameter values	Ι
A.2	Parameters for Pure Components Gained by Aspen Plus	Π
A.3	Keq Value for reactions in Carbon Capture Process based on MEA.	
	$T{=}340~k~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots$	III
A.4	MEA reference flowsheet setting. stripper results	V
A.5	Component settings for absorber and stripper with equilibrium cal-	
	culate type	V
A.6	Components settings for stripper in double-stripper flowsheet (sce-	
	nario 4 and 5) \ldots	\mathbf{VI}
A.7	Column settings for Rate-based absorber & stripper in sifferent sce-	
	narios	VI
A.8	Other component settings $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	VII
A.9	HX setting of all scenarios $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	VII
A.10	Fluegas and leanin solution stream input setting	VII
A.11	Estimated degradation value of two amines. in all scenarios	VIII
A.12	Utility price used in economic analysis $\ldots \ldots \ldots \ldots \ldots \ldots$	VIII
A.13	Amine CED. GWP. EI99 value used in environmental analysis $\ . \ . \ .$	VIII
A.14	Utility CED. GWP. EI 99 value used in environmental analysis	IX
A.15	Economic analysis results of scenario 3.5.7	IX

A.16	GWP. EI99 results of scenario 3.5.7	IX
A.17	Equivalent energy consumption Results of scenario 3.5.7	IX
A.18	Solution concentration sentivity analysis data	Х
A.19	Result table of sensitivity analysis in decanter using DIBA with varied	
	temperature. unit for flow rate: kmol/h	Х
A.20	Result table of sensitivity analysis in decanter using HXA with varied	
	temperature (unit for flow rate: kmol/h)	XI
A.21	result table of sensitivity analysis in decanter using DIBA with varied	
	CO_2 mole flow rate (unit for flow rate: kmol/h) \ldots \ldots \ldots	XI
A.22	Result table of sensitivity analysis in decanter using HXA with varied	
	CO_2 mole flow rate(unit for flow rate: kmol/h)	XII
A.23	Keq sensitivity analysis results (reboiler energy in $GJ/ton CO_2$)	XIII
A.24	Decanter rich outflow mole fraction sensitivity analysis results (re-	
	boiler energy in $GJ/ton CO_2$)	XIV
A.25	DIBA and HXA stripper detailed performance results in all scenarios	XVI
A.26	Stream table for DIBA Scenario 1. basecase equilibrium	XVII
A.27	Stream table for DIBA Scenario 2. basecase ratebase	XVIII
A.28	Stream table for DIBA Scenario 3. basecase with amine recycling	XIX
A.29	Stream table for DIBA Scenario 4. double strippers	XX
A.30	Stream table for DIBA Scenario 5. double strippers with amine re-	
	cycling	XXI
A.31	Stream table for DIBA Scenario 6. heat exchanger rearrangement	XXII
A.32	Stream table for DIBA scenario 7. heat exchanger rearrangement	
	with amine recycling	XXIII
A.33	Stream table for HXA scenario 1. basecase equilibrium	XXIV
A.34	Stream table for HXA scenario 2. basecase ratebase	XXV
A.35	Stream table for HXA scenario 3. basecase with a mine recycling \ldots	XXVI
A.36	Stream Table for HXA scenario 4. double strippers	XXVII
A.37	Stream table for HXA scenario 5. double strippers and amine recycling	XXVIII
A.38	Stream table for HXA scenario 6. heat exchanger rearrangement Σ	XXIX
A.39	Stream Table for HXA scenario 7. heat exchanger rearrangement	
	with amine recycling	XXX

] Introduction

1.1 Carbon Capture and Storage Background

The Paris Agreement, published in December 2015, introduces the 2°C target which is widely accepted by countries and districts around the world [1]. The target shows the great resolution of human beings in mitigating global warming, and from another aspect reveals the importance of reducing greenhouse gase in current situation.

Ever since the industrial revolution, the carbon dioxide, known as the most common greenhouse gas emitted by all kinds of industries was increasing dramatically due to the growth in global fossil fuel consumption. This on-going growth in global fossil fuel consumption [2], and the long road to widely replace fossil fuels with clean technologies, will be contributing to the continuous growth in the total amount of CO_2 if no practical strategies are utilized. One possible option for us to control the CO_2 emission and realize our 2°C target is the carbon capture and storage, known as the CCS technology.

CCS is the well-understood way that is able to remove CO_2 from flue gas released for instance by power plants. Main parts of CCS are carbon capture, carbon transport and carbon storage. The CO_2 capture part is studied with most focus, since it is the dominating step that could significantly add additional operating cost to the emitting power plants.

Carbon Capture

Well-understood CO_2 capture methods at present are post-combustion carbon capture, oxy-fuel combustion process, pre-combustion capture, and inherent separation [3].

Post-combustion capture removes CO_2 from exhausted gas. It is a retrofitting method to control carbon emission for combustion process, and can be applied in most of the existing power plant[4]. For post-combustion capture, proper selection of solvent and arrangement of process structure can elevate the efficiency and reduce cost, that is the mainly study area of this project. However, post-combustion capture process usually work under low pressure condition (same as ambient pressure, or slightly higher than the ambient), that means energy is required for pressurizing CO_2 after the process. In oxy-fuel combustion process, air is replaced by oxygen as the oxidizing agent [5]. The exhausted gas of the oxy-fuel combustion process contains around 75% CO₂, while the rest is H₂O. CO₂ concentration can reach to over 99% after condensing [6]. Compared to postcombustion capture, using oxy-fuel saves some operating cost from CO₂ stripping and amine consumption, but extra cost caused by pure oxygen coming from intensive air separation needs to be account. Moreover, more sophisticated equipments using advanced material for storing oxy-fuel and withstanding reactions are needed, and the retrofitting of the emitting plant will also increase the capital cost.

Chemical-looping combustion (CLC) is a method of inherent separation that has similar principle with oxy-fuel combustion. Two interlinked reactors, air reactor and fuel reactor are occupied in a CLC system. Chosen metal oxide is oxidized by air in air reactor and then react with fossil fuel in fuel reactor. The Used metal oxide is recycled back to the air reactor [7] [8]. Similar to oxy-fuel combustion, the exhaust gas after fuel reactor contains only CO_2 and water which will be handled after condensing.

The idea of pre-combustion CCS is to use steam or oxygen to react with fuel, forming synthesis gas(syngas) which contains only CO and H₂. A water-gas shift reaction with extra steam is followed, to convert CO to CO_2 and produce a great amount of hydrogen at the mean time [9]. Pre-combustion CCS is mainly designed for NGCC and IGCC, the process however, needs high investment, and the running cost is also high compared to other CCS processes [6].

Carbon Transportation

 CO_2 separation and capture is the start of CCS process, the following step is carbon transportation. Pressurized CO_2 can be transported by onshore truck and train, offshore ship, and pipelines. Pipeline is currently a preferable option for most of the practical CCS projects[10] that produce large amount of captured CO_2 . The cost of pipeline transportation increases following the increasing of transporting distance, and in some cases, shipping can be a better CO_2 method. Thus, the decisive factor of selecting carbon transportation method is the geographic conditions.

An exception is CCS projects built for oil industry. As the oil reservoirs are natural CO_2 storing places, CO_2 produced at these projects can be injected directly to there, thus no carbon transportation is needed [11] [12].

Carbon Storage

 $\rm CO_2$ storage methods can be classified as ocean storage and geological storage, both of the methods being developed by oil and mining technologies. Carbon storage needs proper locations, but the capacity of carbon storage for spots is hard to know. $\rm CO_2$ can leak from the storing places unintentionally and threatening life of human beings and animals around the leaking spots. Therefore, cost of the carbon storage contains not only the short term cost for equipment and injections, but also the long term cost for monitoring as well.

Ocean storage injects the captured CO_2 directly into deep ocean, and the extremely high pressure at the storing location will compress the CO_2 to liquid with density higher than water. The cost of ocean storage is not fixed, because of the varied cost for CO_2 injections, the deeper the storing location is, the higher price will be.

The other way is to store CO_2 geologically at places like deep saline formations, oil and gas reservoirs and unminable coal beds. For oil and gas reservoirs, injecting CO_2 to reservoirs can at the same time provide a force to drive out fossil fuels, a considerable amount of energy can be saved in that way.

1.2 Solvent Based Post-Combustion Carbon Capture Process

Post-combustion carbon capture (PCC) has high utilization and installation potential in CO_2 emission reduction process. One major reason is that PCC does not require main retrofitting changes on plant flowsheet or component design [13], especially in countries where abundant fossil fuel provide economic solution for large scale power production. Considering the typical large capacity sizes, PCC are highly possible to lead final emission reduction in short term. However, the integration with flue gas after-treatment process does require both technical and economic analysis. Various factors including appropriate heat source for the capture process, secure transport and storage facilities also limit the investment and implementation possibility.

In mature modern power plants, the flue gas is normally sent to after-treatment including particulate matter and desulfurization treatment. After this point the flue gas will be directed to CO_2 separation process, as in most PCC design cases.

There were already several solvent based industrial application of PCC in different scales. Prior to PCC, aqueous amine solution has been commonly used in natural gas sweetening field for decades [14]. Previous acquired experience of amine based absorption serve as cornerstones for the choice of appropriate absorbent molecules, as well as complete PCC process design. Among the abundant amine family, MonoEthanolAmine (MEA) has been preferred for high reactivity even at low CO_2 pressure [15], low cost, and relatively low thermal degradation [16].

MEA absorption demonstrates considerable 90% removal efficiency, while the main obstacle of promotion lies in high energy and cost requirement[3]. Heat required in the process mainly lies in solvent regeneration process, where steam is used to heat the solvent and strip CO_2 out of solution. From previous testing results, 30% weight based solution has reported an energy requirement of 3.7 GJ/ton CO_2 [17] to 4.3 GJ/ton CO_2 [18] under different plant testing and CO_2 loading conditions, resulting in cost of 40-100 /ton CO_2 captured [19].

Except for considering diverse PCC process designs, increasing solvent concentration and mixing amines, there has been focus on investigation of phase change amines which possibly reduce cost to large extent. Thus the range of studied solvents has expanded to various compounds, aiming at high absorption capacity and low energy consumption. The focus of this thesis will be a group of phase-changing amines [20] which present phase separation properties at varying temperature ranges.

In the previous commonly adopted absorption process, alkanolamines including MEA were preferred, because at that stage liquid-liquid separation was considered as a shortcoming [21]. The hydroxyl structure in MEA indeed prevents phase separation from water [15]. But as the research scope expands, phase changing solvents offers considerable energy reduction potential due to its liquid-liquid equilibrium characteristic. Researchers in IFP Energies nouvelles developed a DMXTM process, which undergoes phase separation after absorption [21]. Less flow rate entering the stripper and higher solvent cyclic capacity enables the stripper to work at reduced heat duty.

Moreover, another advantage lies in possibly diminished reboiler temperature, which provides opportunity of utilizing industrial excess heat. For example, the MEA process requires heat at 120-130 °. If this could be reduced, there is significant potential to integrate industrial excess heat. This and further process integration potential contributes to energy and cost optimization [22].

1.3 Aim of thesis project

Based on available experimental data from recent studies in phase-changing solvents for PCC, the main object of this thesis work is searching for appropriate amine absorbents that have phase-changing property and can be used in DMX^{TM} process or other similar process, to largely reduce reboiler energy demand for high carbon dioxide removal efficiency.

The thesis starts with study of amine candidates detailed in their performance in phase separation and desorption process. Modeling and simulation for the carbon capture process using Aspen Plus is then performed to compare the energy reduction achieved for the identified promising candidates. After that, sensitivity analysis is needed to see the reliability of the modeling result, and meanwhile understand limitations and the inaccuracy of process simulation. Different process configurations are studied to see their potential in reducing energy consumption to a greater extension.

2 Theory

In the following chapter, theory about amine-based absorption reaction mechanism, reaction equilibrium constant calculation, as well as VLLE background used in this work are discussed.

2.1 Phase Change Solvent Absorption Flowsheet

MEA Absorption

Figure 2.1: MEA absorption flowsheet

The MEA absorption flowsheet is shown in Figure 2.1. The process begins with reactions between flue gas and amine aqueous solution in the absorber at near ambient temperature, and subsequent heating of rich CO_2 loaded solution releases CO_2 in the stripper component. Heat exchanger utilizes the high temperature lean amine stream after stripping. Flow mixed with CO_2 and other vapor is condensed in the condenser after stripper, so CO_2 can reach a high purity. CO_2 after the condenser will be pressurized for transportation and further storage [3].

DMX^{TM} Process

Figure 2.2: Phase change solvent absorption flowsheet

Compared to the MEA process, the main improvement in DMX^{TM} process is the reduced flow to the stripper because of the liquid-liquid phase separation of solvent-water-CO₂ mixture in a decanter [21]. After reaction with flue gas, the rich CO₂ loading solution is separated into two liquid phases, where only the one with concentrated CO₂ is sent to the stripper, and the lean one is recycled back to the absorber. The vapor-liquid-liquid equilibrium (VLLE) property varies according to different molecule chosen, solution concentration etc, which affects the composition and flow rate of two phases.

2.2 Amine Absorption Reaction Mechanism

Amines suitable for phase-changing carbon capture should exhibit several important features: phase-separation performance, absorption capacity, and regenerability in stripper. The studied amines react with CO_2 according to different mechanisms, considering their chemical structures. Basically amines could be divided into three groups according to the number of hydrogen atoms replaced by function groups: primary, secondary and tertiary amines represent amines categories according to one to three substituents, respectively.

As in equation 2.1, first and secondary amine aqueous solution mainly attend carbamate formation (CF) [23][20], which is the core caption and typically not reaction rate limited. The absorption capacity is also affected by factors including amine solubility, insoluble salt formation and amine aqueous solution concentration.

For tertiary amines, the lack of free proton results in the formation of bicarbonate being the main capture equation (eq.2.2). Researchers also studied reactions including carbonic acid formation (eq.2.4). Yet formation of carbonic acid is relatively slow and negligible compared with overall reaction rate [23].

Thus in the study scope of thesis work, mainly CF reaction (2.1) is assumed for primary and secondary amines, while tertiary amine goes through bicarbonate formation (2.2).

$$RNH_3^+ + RNHCOO^- \Leftrightarrow CO_2 + 2RNH_2 \tag{2.1}$$

$$CO_2 + RNH_2 + H_2O \Leftrightarrow RNH_3^+ + HCO_3^- \tag{2.2}$$

$$CO_2 + RNHCOO^- + 2H_2O \Leftrightarrow RNH_3^+ + 2HCO_3^- \tag{2.3}$$

$$CO_2 + H_2O \Leftrightarrow H^+ + HCO_3^- \tag{2.4}$$

2.3 Liquid Liquid Equilibrium of phase-change amine

Total Gibbs energy and the fugacities are used as criteria when considering equilibria in a multicomponent systems. For a multicomponent system, when T and P is constant, equilibrium is reached when Gibbs energy is minimum [24] [25].

Fugacity is another alternative for chemical phase equilibrium calculation. Compared to Gibbs energy, it is a straightforward extension of its application to pure fluids. For a liquid-liquid equilibrium system, the equilibrium compositions can be given as 2.5. In the equation, the superscripts α and β are used to mark the different liquid phase. γ in equations stands for the activity coefficient, and x represents the mole fraction of i in one of the liquid phases [24].

$$\hat{f}_i^{\alpha} = \gamma_i^{\alpha} x_i^{\alpha} P_i^{sat} = \hat{f}_i^{\beta} \tag{2.5a}$$

$$\gamma_i^{\alpha} x_i^{\alpha} = \gamma_i^{\beta} x_i^{\beta} \tag{2.5b}$$

There is a possibility that three phases can coexist together, two liquid phase and one vapor phase. And the equation to describe this vapor-liquid-liquid equilibrium is given as 2.6.

$$\widehat{f}_i^{\alpha} = \gamma_i^{\alpha} x_i^{\alpha} P_i^{sat} = \widehat{f}_i^{\beta} = y_i P = \widehat{f}_i^V$$
(2.6a)

$$\gamma_i^{\alpha} x_i^{\alpha} P_i^{sat} = \gamma_i^{\beta} x_i^{\beta} P_i^{sat} = y_i P \tag{2.6b}$$

For vapor-liquid-liquid equilibrium, stable T and P are important factors. While for liquid-liquid equilibrium, only T affects.

2.4 Absorption and Stripping

Absorption and stripping are two important unit operations in solvent-based postcombustion CO_2 capture. Flue gas is firstly sent to a unit where one or some components are taken away by nonvolatile liquid added to the system. The process is called absorption, and the unit where the process taking place is the absorber. Absorption can be physical and chemical. Physical absorption is caused because components have higher solubility in solvents than in gas. In chemical absorption, this solubility is enhanced by chemical reactions taking place between the absorber compound and the solvent.

Chemical absorption can be reversible and irreversible. For solvent-based carbon capture, absorption is usually reversible, that is CO_2 can be released out in stripper, where the reverse reactions are favored because of different process operating condition [26].

3

Methods

This chapter explains methods adopted in study and comparison between potential amine candidates according to performance in reaction, separation and regeneration. Details in subsequent Aspen Plus flowsheet modeling including component settings, layouts variation, reaction definition etc. are discussed as well.

3.1 Study of Phase-Change Solvents

There are already studies and experimental results about some phase-change solvents, stating their potential and limitation in carbon capture process. So the study starts from selecting appropriate amines and compare them using Aspen Plus, which is a cornerstone for later flowsheet setting up.

3.1.1 Property Method in Aspen Plus

To start investigating available solvents in the study, the property methods are important to know. Collections of models and methods used to compute thermodynamics and transport properties in Aspen Plus are called property methods. According to the different equations used and the calculating sequences, property methods are classified into 10 groups in Aspen Plus V8.8¹. These groups are recommended to be used under different conditions. Good choices of property methods will benefit the system in later simulations [27].

From equations 2.1, 2.2, and 2.3, amines studied in this project reacts with carbon dioxide, and ions are formed in the reactions. Due to the existence of ions, ELEC-NRTL turns to be a preferred method since it accounts for electrolytic system. But when ELECNRTL is occupied in the system, problems occurs and Aspen can't correctly process the calculation. The main reason for this is that ELECNRTL doesn't play well with the phase separation in decanter. When this methods is using, the decanter will either not recognize molecules and report errors, or not able to perform the liquid-liquid separation and give out wrong result that have only one stream out from decanter.

¹ 10 groups in Aspen: IDEA, Refere correlations for specific components, Liquid fugacity and K-value correlations, Petroleum tuned equations of state, Equations of state for high pressure hydrocarbon application, Flexible and predictive equations of state, Liquid activity coefficients, Electrolyte activity coefficients and correlations, Solids processing, Steam tables

Since the phase separation in decanter is one of the main study aims for this thesis project, other methods are tried to see if they are suitable to be used. Among the studied methods, UNIFAC-LL turns out to be an available alternative. The method can be used to play with liquid-liquid equilibrium in decanter, and can help to plot ternary diagram in Aspen.

3.1.2 Aspen Component Specification

Before processing the modelling in flowsheet, components need to be specified in the system. Most of the commonly used components have already existed in data-bank in Aspen Plus V8.8. For electrolyte problems, Elec Wizard on Select Components sheet can be used to input ionic components and relative reactions into system.

Seldom used molecules and ions that are not yet exist in Aspen data-bank can be defined by user, i.e., by providing the molecular structure ². For properties of these user-defined components, there are two methods provided by Aspen to evaluate using their structures, one is to evaluate by NIST TDE, and the other is to estimate through the property estimation tool. Both of the methods however, can only provide rough estimation for components. It is thus very important to perform cross-checking (and fitting of the underlying property models) of the most important properties for the scope of the process modelling, if experimental data are available.

3.1.3 Property Check and Modification

For user-defined anions and cations, one noticeable problem is that the system still recognize them as molecules. So the molecule weight of these ions are modified to correct value.

$$lnp_i^{*,l} = C_{1i} + \frac{C_{2i}}{T + C_{3i}} + C_{4i}T + C_{5i}lnT + C_{6i}T^{7i} \quad \text{for}C_{8i} \leqslant T \leqslant C_{9i}$$
(3.1)

Another noticeable problem is incorrect vapour pressure estimation of ions in Aspen property estimation. Extended Antoine Equation (eq.3.1) is used in Aspen to calculate vapour pressure, and relevant C_1 to C_9 values are estimated by the property system. This is a crucial property for absorber and stripper simulation. The C_1 values of molecules are modified to ensure zero ion emission. Detailed C1 to C9 values are given in Appendix A.1.

3.1.4 Aspen Ternary Diagram Study

The mixture of certain amines with water in the presence of CO_2 exhibits two liquid phases under certain conditions. The main object is to figure out their liquid-liquid phase separation performance and working range. Aspen Plus 8.8 works as the property estimation tool.

 $^{^{2}}$ Ions defined and imported by users are recognized as molecular form in Aspen, properties as for molecule weight need to be modified manually to avoid errors in later simulation

Ternary diagram analysis is the preliminary tool for checking VLLE behaviour. If the amine aqueous solution shows phase separation possibility, the diagram describes the separation result for diverse working conditions through tie lines and phase envelope as in Figure 3.1 below. Only mixture compositions in the envelope are separated into water and lipophilic phase, while the two ends of tie line indicate composition of corresponding outflow.

The preferred result is relatively complete separation of carbon dioxide, while water could exist in both flows. Then only the heavy CO_2 loaded flow is sent to further desorption. So the criteria of filtering amine at this section is that they could show phase separation envelope in the ternary diagram.

According to Zhang, Qiao, Agar [20], certain amines have shown promising experimental results on absorption capacity, regenerability and reaction rate. Based on that, 7 amines are selected for our ternary mixture diagram study. 6 of them fulfil the criteria. These 6 amines are listed in Table 3.1 below, together with respective VLLE ternary diagrams (Figure 3.1 to Figure 3.6). While study on DMCA ³ shows that the working envelope is close to none, which is given in the Appendix Figure A.1.

Although from the diagrams, EPD and CHPA show better phase envelope range than others, this cannot conclude they are the best performing amines. The reasons can be that ternary diagram study does not consider chemistry, and the compositions of two separated phases are also important factors.

Name	Amine Group	CAS no.	Exist in Aspen
Diisobutylamine(DIBA)	Secondary	110-96-3	YES
Di-n-propylamine(DPA)	Secondary	142 - 84 - 7	YES
Hexylamine(HXA)	Primary	111 - 26 - 2	YES
Cycloheptylamine(CHPA)	Primary	5452 - 35 - 7	NO
N-Ethyl piperidine(EPD)	Tertiary	766-09-6	NO
2,6-Dimethyl piperidine (26-DMPD)	Tertiary	504-03-0	NO

 Table 3.1: 6 Amines which showed VLLE ternary diagram phase envelope

 $^{^{3}\}mathbf{DMCA}$: N,N-Dimethyl Cyclohexyl amine

Figure 3.1: VLLE ternary diagram DIBA

Figure 3.2: VLLE ternary diagram DPA

Figure 3.3: VLLE ternary diagram HXA

Figure 3.4: VLLE ternary diagram CHPA

Figure 3.5: VLLE ternary diagram 26-DMPD

Figure 3.6: VLLE ternary diagram EPD

3.1.5 Decanter Separation Study

Although ternary diagram is a primary property data checking tool, more detailed and accurate phase-separation modelling is indeed necessary. The decanter block in Aspen performs liquid-liquid separation according to molecule property estimation, so it is selected as the subsequent study method. As mentioned in previous chapter, UNIFAC-LL method is selected due to focus on liquid liquid equilibrium and separation.

There were trials and errors in this section. Global chemistry equation and ion definition are two most influencing factors during the modelling. The first obstacle is that, when defining chemistry in Aspen, all the relevant cations (RNH_3^+) and anions (RNHCOO^-) do not exist in Aspen database. When user defined ions are in the same chemical reactions with system defined ions (e.g., H^+ , HCO_3^-) the modelling problems appeared in Aspen. Thus the chemistry adopted is merely carbamate formation as equation 2.1 for primary and secondary amines. However, EPD and 2,6 DMPD are tertiary amines, and their chemistry is supposed to follow equation 2.2. So the user-defined ions are inevitably in same equation with system ions. The decanter is limited in estimating these two amines phase separation. The comparison mainly focuses on the other four molecules.

The other obstacle, it is discovered decanter block cannot perform phase separation calculation with chemistry definition in the decanter. So the results of the separation in the decanter are therefore serving only as first estimations and need to be refined with more accurate equilibrium data/models.

Figure 3.7: Decanter modelling setting for amine study

A mixer is used for modelling the absorption between CO_2 and amine solution, as in Figure 3.7. Consider the above mentioned decanter limitation, the flowsheet is divided into two sections, and decanter lies in the one with no chemistry. Working conditions and inlet flow settings shown in table 3.2 are used.

Table 3.3 demonstrates the compositions of two decanter outflows of four molecules. Detailed composition of two outflows are in Appendix A.19 to A.22. The amine

	Base Case	
Flow Rate		
CO_2	7.5	Kmol/hr
Amine	15	$\mathrm{Kmol}/\mathrm{hr}$
Water	50	Kmol/hr
Column		
Mixer Temp	20	С
Decanter Temp	40	\mathbf{C}
Pressure	2	bar

 Table 3.2: Basic Flowrate and Column Setting in Decanter Modelling

flowrate in table is the sum of amine molecule and ionic forms. Rich phase refers to rich CO_2 loaded phase. All molecules except for CHPA show preferred results. For molecule CHPA, almost all water exists in lean amine phase, and only 14% of rich phase composition is water. So this solvent was not considered because the concentration of water in the rich phase could be too low for dissolution purposes of the CO_2 -solvent system. The rest three molecules are recognized as potential candidates.

However, in this limited period of study, it is possible for us to select two amies considering the modelling time required. Another reason is that the estimated solubility data reference that is used in later steps is available temporarily for these two amines, not for HXA. Based on the various amine type, we choose DIBA (secondary) and HXA (primary) in further flowsheet modelling for wider comparison.

	Lean Amine Phase			Rich Amine Phase			Fraction in Rich Phase	
Kmol/hr	Water	Amine	Total Flow	Water	Amine	Total Flow	Water	Amine
DIBA	40.445	0.006	40.451	9.555	14.994	24.549	0.389	0.611
HXA	38.470	0.069	38.539	11.530	14.931	26.461	0.436	0.564
CHPA	47.508	0.014	47.522	2.492	14.986	17.478	0.143	0.857
DPA	37.826	0.052	37.877	12.174	14.948	27.123	0.449	0.551

Table 3.3: Water and Amine Flowrate in Two Separated Phases

Besides, the decanter temperature and inlet CO_2 amount values are varied to study their effect on water mole fraction in amine rich phase. Elevated decanter temperature has similar influence on all four molecules, and the result is not highly sensitive (Figure 3.8). Temperature increase of 40 °C only leads to less than 2% difference in mole fraction.

Figure 3.8: Water mole fraction in rich phase - Decanter Temperature

Figure 3.9: Water mole fraction in rich phase - Inlet CO_2 flowrate

The CO₂ flowrate, however, affect the separation to larger extent (Figure 3.9). This is related to the calculation of CO₂ loading, n_{CO2}/n_{amine} , which is indicative of the absorption. This is considered in the subsequent flowsheet modeling and decanter parameter setting.

3.2 Define Reaction Equilibrium Constant

Solution chemistry is needed in calculations to solve electrolyte problems. Reaction equilibrium constant - Keq is specified. However, available keq value of studied amine is not available due to limited study or experiment, so they are estimated according to available MEA value.

3.2.1 Reaction Keq in MEA Flowsheet

MEA chemistry is generated from the Elec Wizard in Aspen, the process that MEA react with water and CO_2 to form carbamate is described in three equations 3.2 shown below, and their keq value can be read from Aspen. They are listed in Appendix table A.3.

$$CO_2 + 2H_2O \Leftrightarrow H_3O^+ + HCO_3^-$$
 (3.2a)

$$MEA^+ + H_2O \Leftrightarrow MEA + H_3O^+$$
 (3.2b)

$$MEACOO^{-} + H_2O \Leftrightarrow MEA + HCO_3^{-}$$
 (3.2c)

If we add these three equations together, we'll get equation shown as 3.3 which is used in this study (see also section 3.1.5).

$$MEACOO^{-} + MEA^{+} \Leftrightarrow 2MEA + CO_{2}$$
 (3.3)

The equilibrium constants of 3.3 is the product of three constants from 3.2, and the A-E values are summed. This calculation theory is given in Appendix A1. Then the MEA keq value used in equation 3.3 are shown in table below.

Table 3.4: Value	es used for	calculating	the equilibrium	constant in	n equation	3.3
------------------	-------------	-------------	-----------------	-------------	------------	-----

$ln(K_{eq}) = A + B/T + C * ln(T) + D * T + E * ((P - P_{ref})/P_{ref})$							
А	В	С	D	Е	keq		
-235.025	2538.213	36.782	-0.003	0	4.25e-8		

3.2.2 Reaction keq value of studied molecules

 Table 3.5:
 Estimated RED (relative energy difference) values

MEA	DIBA	HXA
3.77	1.49	0.74

The MEA Keq value is only regarded as a reference for DIBA and HXA because of the different properties of amine structure, solubility etc. results show that DIBA and HXA have extremely good absorption and quite bad stripping when using MEA keq values. To get a more realistic CO_2 capture performance for these two molecules, their relative energy difference values (RED) 3.5 are compared to that of MEA.

 Amine
 A
 B
 C
 D
 E
 Keq

 HXA
 -227.3
 2549.61
 36.8916
 -0.003
 0
 9.4131e-5

36.8916

-0.003

0

1.8955e-4

 Table 3.6:
 Estimated reaction equilibrium constant values in equation 3.3

However the relationship between keq and relative energy difference (RED) is not linear, and it's only one of the crucial parameters that affect the reaction. It used here only to indicate the direction to adjust keq values. Chosen Keq values for HXA and DIBA are listed in table 3.6.

3.3 Base configuration setting up

2549.61

-228

DIBA

In this part, the structure of flowsheet and setting of integrated columns in base configuration are discussed. A reference MEA Aspen flowsheet is used for comparison, and its flowsheeting details, parameter setting and stripper performance is given in Appendix A.2 and A.4.

The base flowsheet is shown in Figure 3.10. The absorption process occurs in the absorber unit between inlet fluegas and lean solution, and then CO_2 loaded solution enters heat exchanger for elevating temperature. The decanter works to separate rich loading into water and lipophilic phases, so flow with of high concentration in water is avoided from further processing in the stripper. Then the stripper and two condensers are used to separate CO_2 from amine as well as water. The stripper also regenerates the amine and recycles it back to absorber. Since there are losses of amine in two columns, the makeup amine solution flow is mixed with regenerated amine before cooling. Besides, the separated water flow from decanter can be recycled and used for mixing with amine lean solution to make the whole process a close loop.

3.3.1 Calculating methods for absorber and stripper

For the absorber and stripper used in the flowsheet, Aspen Plus provides some unit operation models for either shortcut or rigorous calculation. Shortcut models are used for determining values as for reflux ratio and number of stages in distillation columns with one feed and two product streams. While the rigorous models is used for rigorous design and rating calculation in different kinds of columns, more inputs

Figure 3.10: Base case configuration

are needed to process calculation[27]. In this study, RadFrac model is selected for both absorber and stripper. RadFrac is a rigorous model for all types of multistage vapor-liquid fraction operations which include absorption and stripping, and it's suitable for multi-phase system [28].

There are two alternatives for the calculating methods in Radfrac columns, one is equilibrium-based method while the other is rate-based. In the project, equilibriumbased method is used first to process the simulation and get initial values. Then the method is changed to rate-based, and the diameter gained from the previous simulation is used as a first estimation for the rate-based calculation.

3.3.2 Stream and column settings

The fluegas containing CO_2 enters the absorber in the bottom stage, while the *Leanin* stream loaded amine solution enters at top stage. The treated fluegas leaves column from top, while the amine solution loaded with CO_2 exits the bottom. Neither condenser nor reboiler is required in absorber, and the total stage is set to 12. Top stage pressure is set to the same as the entering stream, 1.06 bar, and the total pressure drop in the column is 0.6 bar. The detailed settings for different scenarios are listed in appendix table A.5 and A.7.

The stripper uses a reboiler to heat the rich loaded solution. After sufficient regeneration , the recycled lean amine solution leaves from the bottom of the stripper while CO_2 is emitted from top. Both condenser and reboiler are required in the stipper to ensure the effective separation between liquid and vapour phase. The reboiler heating causes substantial amount of water vapour exiting from the top, so two external condensers are added for flash procedure. They are working at 76 °C and 25°C separately. Separated water is recycled back to stripper as a reflux flow, entering the first stage.

The internal kettle reboiler is defined with reflux ratio, an initial value of 3 is tentatively defined, while later it is adjusted according to the overall flowsheet close loop requirement. Detailed input parameters stages, reflux ratio, pressure, column diameters of all scenarios are listed in table A.5, A.6, and A.7.

In order to conveniently compare the amine performance with MEA, the fluegas flowrate and composition is set as the same value as in MEA basic flowsheet: 18.4 % wt CO₂, 70.2 % wt nitrogen, 7.1% wt water, and 4.3 % wt oxygen with the total mole flowrate at 213.67 kmol/hr. Fluegas temperature is set to 48 °C.

All the crucial column and stream input parameters are listed in Appendix A.8, A.9 and A.10.

3.3.3 Close-loop mass balance and design specifications

The recycled lean flow from stripper eventually enters the absorber after mixing with makeup flow. This changes the flowsheet from open loop to close loop, so major molecule amount (apparent component) need to reach convergence at *Lean-in* and *Lean-out* flows, i.e. water, amine and CO_2 flowrate. Three corresponding design specifications ensure the close loop mass balance.

The amine and CO_2 amount at *Lean-out* flow is affected by the reaction in absorber and stripper, as well as inlet amine solution composition. When the reaction keq value is fixed, stripper settings are main influencing factors that affect the bottom product composition. Thus one design specification is used for CO_2 apparent component convergence. The stripper reflux ratio is mainly adjusted within 1-10, since it highly affects the stripping product.

In this shortcut flowsheet, there are only amine losses through absorber and stripper vapour outflow. Amine makeup is specified according to mass balance. In practical operation, amines are added in the form of aqueous solution in *Makeup* stream, rather than pure amine. This supplementary water amount is also considered in water mass balance.

The water loss is composed of absorber, stripper vaporization and condenser waste water. According to the simulation results, the water contained in the fluegas is absorbed into the *Rich* stream in the absorber. So there is still extra water in the *Lean-out* stream even if the *Makeup* water is adjusted to zero. To ensure overall water mass balance, waste water removal in the system is required. So a waste water separator block is added on decanter lean stream. Similar to amine mass balance, the makeup water flowrate is defined by design specification.

Apart from mass balance, another design specification is added to reach the same removal efficiency as MEA, 90 % (CO₂ amount in stream CO_2 /in stream Fluegas). Lean-in solution flowrate is varied, because the absorbed and stripped CO₂ amount is highly sensitive to amine amount. While other parameters including CO₂ loading, keq value also affect the removal and regeneration reaction in the two columns, so they are studied in subsequent process as a sensitivity analysis on capturing and stripping performance.

3.3.4 Flowsheet improvement - add condenser unit for recycling amine

Figure 3.11: Add condenser for amine recycling

From the base case configuration, it is discovered that there is potential in reducing amine emission loss from the two columns, which is around 220 kg/ton CO_2 for DIBA, and 100 kg/ton CO_2 for HXA. In this configuration, solvent emitted from absorber and condenser are recycled to mitigate the environmental effects and reduce the operating costs (Figure 3.11). The gas out from the absorber is sent to a condenser, where the solvent and water are cooled, separated from the treated gas and sent to the mixer before the absorber. Moreover, the outlet stream of the stripper condenser, containing solvent, is sent to the same mixer instead of being released. The flowsheet can reduces more 79-99% of the solvent loss. Thus in other configurations, this procedure is also utilized as a improvement scenario.
3.4 Other Configurations

Some researches have studied the optimization of flowsheet for the solvent-based post combustion CO_2 capture to give out better performance of components and save operation cost. Two other configurations are studied, one by adopting double strippers, and the other is to rearrange heat exchanger placement [29, 30, 31].

3.4.1 Double Stripper Configuration

Figure 3.12: Configuration of double strippers with different operating pressure

Configuration with two strippers operating under different pressure are tried first, in Figure 3.12. The rich amine stream is split into two streams by a splitter in a certain ratio. Streams are sent to two strippers, and the top pressure of strippers are set to 160 and 295 kpa respectively, both with pressure drop of 6 kpa. Streams split from the separator are feed to the top stage of strippers and flow from the high pressure stripper outlet is sent to the mid stage of low pressure stripper since it has lower CO_2 loading.

Split ratio at the splitter has direct impact on the reboiler heat duty in strippers. For DIBA case, 25% of the separated flow is sent to the low pressure stripper while the rest of flow is sent to the other stripper. And for HXA this value is 20%. Not only the split ratio, but the solvent properties also have influence on the required heat duty of strippers. So for each amine, the split ratio and operating pressure can be optimized to obtain lower energy demand. But we should note that the double strippers used will increase the capital cost, considering their relatively high pressure.

The double stripper column input settings different from the base configuration are listed in Appendix A.6.

3.4.2 Configuration with Rearranged Heat Exchanger

Figure 3.13: Configuration with Rearranged HX Placement

The other configuration is about the heat exchanger and decanter placement. In the base configuration, heat exchanger only elevate the rich stream temperature by 20° C due to small hot and cold stream flowrate ratio. If the heat exchanger is placed after the decanter, only the CO₂ rich loaded phase enters the heat exchanger, and the water phase is avoided from unnecessary heating. According to the decanter performance, water phase account for around 50% total mass flowrate, that means half of the heating demand can potentially be saved. Substantial cold stream temperature increase is expected. This configuration gives advantage in the stripper inlet stream temperature, which affects the reboiler duty. The revised flowsheet is in Figure 3.13. Relevant revised heat exhanger input parameters are listed in Appendix A.9.

3.5 Degradation Estimation

The solvent loss in the system consists of these major parts: emissions from the absorber and stripper, thermal and oxidative degradation. The evaporation loss could be estimated from Aspen in two column vapour off flows, and a makeup flow of amine solution is added for compensation.

The degradation estimation is not performed in Aspen because of lack of degradation data in the form of in the form of reactions and kinetics. Although there are studies about MEA degradation in the CO_2 absorption process, the relevant data about new phase change amines are limited.

In this section, the degradation estimation is based on experimental and simulation results from MEA. According to Goff and Rochelle [32], under normal operation conditions, MEA oxidative degradation is assumed to be 0.29 - 0.73 kg/ton CO₂ captured. Badr [33] concluded amine degradation rate estimation of four amines compared to MEA, as in table A.11. According to similar amine structure and type, the estimation for DIBA and HXA take the value of 8 and 3.5 times of MEA, which gives the value of 4.08 and 1.785 kg/ton CO₂ captured respectively.

Amine	Degradation ratio a	Amine type	Source
DEA	0.71	Secondary	Freeman[34]
DGA	2.75	Primary	Freeman[34]
MDEA/Piperazine	12	Tertiary	Closmann[35]
Piperazine	5.5	Secondary	Freeman [34]
^{<i>a</i>} The ratio between			

Table 3.7: Amine degradation rate estimation based on MEA

Thermal degradation is simplified to be 10% of total degradation according to MEA thermal degradation value. Davis [36] reported a value of 0.019 kg/ton CO_2 captured. Except for direct degradation, the degradation products accumulate in the system, which requires a purge stream to remove them. The regeneration unit is assumed to be 95% efficiency, so another 5% loss is considered in this procedure. These values are used in analysing the total solvent makeup cost. The estimated values of thermal, oxidative degradation, and loss from purge are given in Appendix Table A.11.

3.6 Economic and Environmental Analysis

$Operating \ cost$

The operating cost consists of low pressure steam cost, cost for the process water, electricity and solvent make-up. Low pressure steam is used in the reboiler for the stripping process. Amine cost include emission makeup and degradation cost. Process water is the makeup water in system. Electricity cost is from pumps and compressors installed in the system.

For solvent make-up cost, amine prices affect the results. Prices for common amine like MEA and DIBA can be gained directly from global chemical products transaction network as 'Alibaba' and 'Molbase', or supplier as Sigma-Aldrich. But for amine that is rarely used in industries, or is not yet available on market, their prices should be estimated. Also note that fluctuations of prices for the same amine are inevitable, thus the average reference price on these supplier platforms are utilized for more objective comparison.

Environmental Effect

When considering the potential of utilizing studied amines in industrial process, the environmental impact is a crucial factor, especially when the original aim of absorption process is to reduce global warming potential. Three factors are studied, CED, GWP and EI99 points.

CED is the cumulative energy demand of a product, which represents the total energy amount during the process of extraction, manufacturing and disposal [37]. The value contains energy acquired from fossil fuel as well as energy gained from renewable energy during the life cycle of a product, and the unit used here for CED is MJ/kg.

Cumulative energy demand (CED) and reference prices for several studied amines are listed on table 3.8 [38]. Since CED represents the total energy demanded during the process of producing amines, the higher CED is likely to refer to a higher price. A scatter figure of studied amines with horizontal axial of CED, and vertical axial of prices is plotted to investigate the link between these two values. The relationship between these two values, if established, could be used in predicting price of candidates available for phase-changing PCC process.

Table 3.8: reference price and environmental index for studied ami	nes
--	-----

	MEA	DIBA	HXA	DEA	MDEA	DGA	ΡZ
CED MJ/kg-eq	88.8	150.33	94.21	96.6	100.7	117.1	98.8
price €/ton	1393	1800	1426	1175	1727	5278	5136

From figure 3.14, most of the studied amines locate close to the trending line, while DGA and PZ are away from the line. It reveals that for commonly used amines in industries, price have tighter link to the CED value, but CED is not the only factor linked to price. To predict price of amines accurately, factors such as scarcity of amine, scale of production, difficulty of transport and reservation should also be involved. So in our cost analysis, the DIBA and HXA price from reference website is directly used, as values in Table 3.8.

GWP stands for the the global warming potential, which is another important value used in LCA. It represents the cumulative radiative forcing value caused by green house gas emission for a given period of time, evaluated by the amount of CO_2 that could cause the equivalent impact [3]. The unit of GWP is kg $CO_2 - eq$.

EI99 is the eco-indicator 99, it is a method of weighting environmental effect. It is a comprehensive indicator integrated with various environmental effects in life cycle assessment. Higher EI 99 points expresses greater impact on environment.

Figure 3.14: CED vs Price for studied amines

Background data for the assessment are provided in the Appendix. Utility price in A.12, amine and utility CED, EI99, GWP in A.13 and A.14.

3.7 Assumption and Limitation

Crucial assumptions are made for the modelling. The most influencial and sensitive assumptions are reaction equilibrium value estimation, decanter VLLE, input of user-defined molecules and all the amine ions. All the assumptions are summarized in table 3.9.

The chemistry definition for each studied amine specifies all the reactions, which could affect the performance of absorption and stripping to large extent. In our flowsheet the main assumptions are reaction in the form of equation 2.1 and equilibrium constant value. The solubility relevant RED values of DIBA, HXA and MEA indicate the relative absorption capability. However the assumed keq value lacks real data for validation. The choice of appropriate keq value lies in certain range. This assumption is the most influential factor, so a sensitivity study on the keq value is done.

Another major assumption is about VLLE in the decanter block. The phase separation are estimated by Aspen according to property estimation. However, this could differ from the actual phase separation data. It is also assumed to be no reaction in the decanter block.

User-defined molecules and ions property estimation also affect the modelling accuracy. Property estimation are performed based on structure. Aspen recognizes user-defined ions as molecules, which limits the ion estimation accuracy.

Assumption	Direct Impact
Keq value (Tab.3.6)	Absorption and stripping reaction
Phase separation in decanter	Phase composition of outflows
Simplified chemistry $(eq.2.1)$	Carbonic acid reaction neglected
No chemistry in decanter	Phase composition of outflows
Input user-defined ions and molecules	Lack of property estimation accuracy

Table 3.9: Assumptions

4

Results

The three different configurations, base case, double stripper, and HX rearrangement, are studied and compared. And they result in 7 scenarios for each amine solvent, with different flowsheet or calculation modes. Description for these scenarios are listed in Table 4.1. The MEA flowsheet in Aspen is used as reference case for comparison.

Scenario	Flowsheet setting	Columns
1	Base case configuration	Equilibrium
2	Base case configuration	Ratebased
3	Base case configuration, add amine recycling	Ratebased
4	Double stripper configuration	Ratebased
5	Double stripper configuration, add amine recycling	Ratebased
6	HX improvement configuration	Ratebased
7	HX improvement configuration, add amine recycling	Ratebased

 Table 4.1: Seven Studied Scenarios

4.1 Reboiler duty

The reboiler heating demand in all scenarios is discussed in this section, as it is the main part to look at when comparing different scenarios to MEA case. A summary graph of all values and amine emission loss amount is given out in Figure 4.1 at the end of this section. Detailed stripper performance results including reflux ratio, temperature for all scenarios are all given in Appendix Table A.25. Other stream data and important results are in Appendix Table A.26 to A.39.

4.1.1 Base Case Configuration

The reboiler energy demand and reboiler temperature of the base case for Diisobutylamine (DIBA) and Hexylamine (HXA) is shown in Table 4.2. Both equilibrium and rate-base are used in the study. The total mass flow of CO_2 in flue gas is fixed, and since all scenarios have the same capture efficiency as 90%, the flow rate of captured CO_2 is constant as 23.28 kg/hr. Heat duty and temperature in reboiler are two important results used for comparison, they are listed in the table 4.2.

Table 4.2: Result list for Scenario 1 (equilibrium), 2 (ratebased), and MEA reference

	DIB	A	HX	MEA		
	equilibrium	rate-base	equilibrium	rate-base	rate-base	
Reboiler duty $(GJ/ton CO_2 cap)$	1.57	1.79	1.23	1.20	3.49	
Reboiler temperature (°C)	112	112	111	109	123	
Fresh solution concentration: 46 wt% DIBA, 40 wt% HXA						

The result shows that reboiler duties required in DIBA and HXA cases are significantly lower than the MEA reference case, which is 3.49 GJ/ton CO_2 . When comparing the two candidate amines, HXA has better performance with respect to reboiler duty, while similar reboiler temperatures are required for both cases. Compare to the MEA temperature, there is possibly some reduction, but not enough to take these cases attractive to low-grade heat.

As mentioned in chapter 3, rate-base method provides more realistic result, to the deviation of results gained by these two methods can be reasonable. For HXA, equilibrium and rate-base methods have very close result in reboiler duty, the difference is 2%, but for DIBA, this difference is 14.3%. That means the calculation methods have greater effect on DIBA, but it is not the only decisive factor in this comparison, because the design specification also adjusts the reflux ratio differently, which could influence the reboiler duty. Considering this difference, especially for DIBA, the ratebased calculation is adopted in all other scenarios for accuracy.

4.1.2 Add condenser for recycling amine

The base case flowsheet showed expected reboiler duty reduction performance. But from the results gained by Aspen, the amine loss from column emissions in scenario 2 still account for 231kg/hr (2.1% of circulating amine) and 86 kg/hr (1.0%). The high supplier price of both amines makes the base case even less competitive than MEA case. So a condenser after the absorber, and amine recycling after the stripper are added on scenario 2 to reduce the solvent emission. It shows good amine recycle efficiency for both amines. The makeup amine amount due to emission loss and reboiler duty are listed in table 4.3, as well as percentage change compared with scenario 2.

Reboiler duty is affected due to these reasons :

- One design specification adjusts the stripper reflux ratio for close loop mass balance. So after recycling amine, the reflux ratio is adjusted according to new amine mass balance between *Leanout* and *Leanin*. In the stripper, this leads to the adjustment of boilup ratio, and thus the reboiler duty.
- The *Leanin* flowrate that enters absorber is adjusted by another design specification as well to ensure 90% CO₂ removal efficiency. As a result, the rich loading stream flowrate entering stripper changes, which in another aspect affect the reboiler duty.

	Reboiler Duty	change a	Amine Emission Makeup	change
Unit	$GJ/ton CO_2$	%	kg/hr	%
DIBA	1.49	- 16.83	3.51	-98.35
HXA	1.20	-0.49	15.57	-79.51
^a Compa	re with scenario 2			

 Table 4.3: Result lists for scenario 3

For DIBA the improvement on emission loss is obvious, since in the base case it vaporize more. Recycled DIBA amount also lead to more reduction on the reboiler duty, and boilup ratio is decreased from 0.40 to 0.32. HXA showed the same trend. This recycling procedure is also adopted in the other two configurations to improve the amine utilization, and lower the amine makeup.

4.1.3 Double Stripper Configuration

Splitting fraction of stream that goes to the low pressure stripper is set to 25% and 20% for DIBA and HXA respectively, meaning that a bigger part of the rich solvent is sent to the high pressure stripper.

The reboiler duty results are shown in table 4.4. The result shows that this configuration saves 25% and 1% reboiler duty for DIBA and HXA respectively. When the amine recycling part is integrated to double strippers flowsheet, the energy consumption for DIBA increased, mainly because high pressure stripper boilup ratio is adjusted by design specification, from 0.40 to 0.51. For HXA, the energy is 1.18 $GJ/t CO_2$, the trend is reverse, possibly due to lower split ratio and thus different adjustment in the high pressure stripper. And boilup ratio in HP stripper decreased from 0.25 to 0.24.

The results reveal that flowsheet with double strippers can save reboiler duty in some situation, but this system must be carefully investigated or optimized with respect to the splitting ratio and stripper pressures for each solvent. Note that the additional stripper will increase the capital cost as well as the complexity of the

Reboiler Duty(GJ/ton)	LP stripper	HP stripper	total
DIBA Scenario 4	0.09	1.24	1.34
HXA Scenario 4	0.03	1.16	1.19
DIBA Scenario 5	0.11	1.45	1.56
	-	-	
HXA Scenario 5	0.03	1.15	1.18
	0.00		

Table 4.4: Result list for configuration with two strippers, scenario 4 and 5

system. To accept the longer pay-back period or to gain profits from the reduced reboiler duty should be further investigated into more details.

4.1.4 Heat Exchanger Rearrange Configuration

When placing the heat exchanger after decanter, the temperature of stripper inlet stream is enhanced. For DIBA it's 92°C, and HXA 97 °C. This change of configuration leads to different results for the two amines. HXA shows substantial reboiler duty reduction, and is more sensitive to temperature than DIBA.

Table 4.5: Reboiler duty result for HX rearrange configuration, scenario 6 and 7

	Reboiler duty $(GJ/ton CO_2)$	Amine Emission makeup(kg/hr)
DIBA S6	1.71	427.18
HXA S6	0.91	146.14
DIBA S7	2.85	4.71
HXA S7	0.94	7.68

The results of two scenarios with and without amine recycle condenser are listed in Table 4.5. This reboiler duty in model is affected by reflux ratio, *Leanin* flowrate and other factors including amine solubility. As mentioned before, the estimated reaction keq is assumed according to RED values, which is higher for DIBA. When checking the stripper, if the inlet temperature is increased, DIBA indeed exhibits worse regeneration ability, so to reach the 90% removal efficiency, the *Leanin* flowrate is elevated due to design specification. And thus higher volume into the stripper requires higher reboiler heating demand.

In DIBA scenario 6, the amine loss obviously increases in the stripper, and total loss is 4% of circulating amine. While HXA in scenario 6 only lose 1%. So the amine recyling in scenario 7 again lead to different adjustment on stripper boilup ratio, to ensure new amine mass balance. The heat exchanger temperature setting could be optimized to improve the performance in this configuration.

4.1.5 Summary

The result of all scenarios compared to MEA is shown in figure 4.1. Though several factors including amine amount, reboiler temperature also contribute to the performance in different scenario, the energy requirement is shown as the main studying target for this project.

Figure 4.1: Reboiler duty in all scenarios, compared with MEA reference

Apparently, all HXA scenarios are more competitive than DIBA scenarios. In scenario 6 and 7, HXA shows duty even lower than 1 GJ/ton CO_2 captured. HXA scenario 6, the one with the lowest energy demand, reaches to 74% reduction in energy demand compared to the 3.49 GJ/ton CO_2 captured in MEA reference case. This indicates the importance of the heat excannger and decanter placement in the process design.

For DIBA, expect for scenario 7, all the others have energy requirement lower than 2 GJ/ton CO₂. The best scenario is number 4, which has double strippers without amine recycling. The energy requirement for it is 1.34 GJ/ton CO_2 , which diminishes 62% compared with MEA.

From the aspect of energy requirement, all the scenarios studied except for HXA scenario 7 could be seen as promising. However, as the previous result of amine emission shows, amine make-up amount varies significantly between scenarios. Table 4.6 lists amine emission loss values. Compare with amine recycling in the system, these loss are within 1 -2%. But consider the price of amine which is around 1000 \$/ton amine [38], this could greatly affect the operation feasibility. Consider this

aspect, preferred scenarios are 3, 5, and 7. By rough estimation, others scenarios need solvent make-up cost above 100 /ton CO₂ cap, which is not expected.

kg amine/ton CO_2 cap	S1	S2	S3	S4	S5	S6	S7
DIBA	119.14	226.11	3.42	195.23	4.65	416.91	4.59
HXA	73.21	84.91	15.20	111.61	40.98	142.63	7.49

 Table 4.6:
 Amine emission lost amount of all scenarios

4.2 Sensitivity Analysis

Several crucial parameters affecting and dominating the performance are studied, and they are chosen because either they have direct link to the modelling results, or their values are estimated with significant uncertainty. The sensitivity study is based on still the same CO_2 absorption rate, 90%, and scenario 2 flowsheet.

4.2.1 Uncertain thermodynamic estimation

Reaction equilibrium constant

The reaction equilibrium constant assumptions in our study requires further investigation on their influence With respect to their influence on model. The A value in equation A.10 is the dominating parameter, thus it is varied while B and C are kept unchanged. The supporting detailed data is given in Appendix Table A.23.

Firstly, the effect on absorber is studied. Although the exact keq value is not available, the CO_2 absorption for these two amines is reported to show good performance according to Zhang,2012 [20]. Besides, from RED value given in 3.5, the two amines have lower solubility than MEA. So Keq is varied from the same value as MEA (4.25e-8) up to 5.13e-3, since the forward reaction in equation 2.1 is stripping. At these two endpoints the reaction efficiency is already far from reasonable value inside absorber.

Figure 4.2 and 4.3 show almost identical performance of the two amines in absorber. It proves the significant effect of Keq value. Keq value changes the absorption ratio directly, it has greater impact on simulation than the calculation type set in absorber column.

Furthermore, the effect on stripper duty, i.e. the energy requirement per ton CO_2 captured is calculated for comparison, when keq is varied between 4.25e-8 and 1.27e-5. Since equation A.10 is expressed in logarithmic format, and the keq value increase in exponential scale with linear A value change, the figure is divided into Figure 4.4 and 4.5 for clear appearance.

Reacted CO2 and DIBA ratio in absorber - Keq

Figure 4.2: Reacted substance ratio in absorber - keq for DIBA

Figure 4.3: Reacted substance ratio in absorber - keq for HXA

Keq value has crucial influence on the process model, while for both amines there is still a range where reboiler duty is relatively stable. Further validation from possible experiment or study results can be used to improve the model accuracy.

Reboiler Energy - Reaction Equilibrium Constant

Figure 4.4: Reboiler duty - keq value, A varies from -235.025 to -227.5

Reboiler Energy - Reaction Equilibrium Constant

Figure 4.5: Reboiler duty - keq value, A varies from -227.5 to -226.5

$Decanter \ block$

The decanter block performs phase separation according to VLLE estimation by As-

pen, which is limited by available database resource, calculation equation in chosen method, and user-defined ions as well. So a sensitivity study on the composition of two outflows is shown in this section. A separator block is used to replace decanter, and the separation fraction is input manually. The water, CO_2 and amine split fraction in rich phase is varied separately. The supporting detailed data is given in Appendix Table A.18.

The first varying factor is ratio of water in rich loading phase compared with total water entering decanter. When using the decanter, less than 10% of water goes into rich phase. Thus this value is varied within 0.01 to 0.45. The original decanter calculated value is 0.06 for DIBA, and 0.08 of HXA. As in figure 4.6, DIBA is more sensitive on water separation, while HXA reboiler duty is less fluctuating at the range close to 0.08.

Figure 4.6: Reboiler duty - water split ratio in rich loading phase compared with total water entering decanter

The second parameter, the split fraction of amine (molecular and ionic) in rich phase is related to reboiler dutyand the results are in Figure 4.7. When the amine concentration is lower, flow sent to decanter increases to ensure the 90% CO_2 removal, leading to higher energy consumed in stripper.

When the ratio for DIBA is decreased from the decanter estimated value 0.999, the influence on energy requirement is notable, and the duty already doubles at ratio

Reboiler Energy - Rich phase amine frac.

Figure 4.7: Reboiler duty - amine split ratio in rich loading phase compared with total molecular CO_2 entering decanter

0.85. While for HXA, reboiler duty variation within the range from 0.96 to 0.75 is less than 4%, and is rising trend accelerates when ratio is lower than 0.7.

Figure 4.8: Reboiler duty - molecular CO_2 split ratio in rich loading phase compared with total molecular CO_2 entering decanter

The third factor, the molecular CO_2 ratio in two phases is also studied, however this is expected to be less influential since the amount of molecular CO_2 is very small, and decanter inlet stream is mostly composed by water (close to 50% mass fraction). The results are shown in Figure 4.8. HXA also shows more steady reboiler performance than DIBA.

These results indicate that the decanter estimation can be considered as more reliable for HXA. Especially for the amine and CO_2 in separated phases, variation close to the estimated value causes performance variation within 5%. DIBA is sensitive to decanter estimation, and the amine split ratio in two phases is the most crucial value to ensure robust and solid simulation.

4.2.2Amine solution concentration

Figure 4.9: Reboiler duty - Amine aqueous solution weight based concentration, from 30% to 44%

The amine aqueous solution utilized in all scenarios is 44% wt DIBA solution, and 38% wt HXA solution. In MEA Aspen reference case 30% wt is used. This also affects the heating demand and the amine cost. So a study on different solution concentration is performed, focusing on the influence on reboiler duty. The solution concentration has multiple effect on the performance. One is that concentration affect the absorption and regeneration reaction, as well as amine amount in the stripper inlet, which is adjusted by design specification. Besides, different solubility of the two amines also affects the stripper.

From figure 4.9, the trend of DIBA and HXA within 30% to 40% wt range seems similar (drop first, and then increase). On one side, higher concentration could indicate the total *Leanin* stream flowrate decrease, to capture same amount CO_2 . On the other side, the concentration is affecting the reversible chemistry in both absorber and stripper, and the stripper reflux ratio is adjusted to meet the mass balance. In general, there is a suitable range that reboiler duty is relatively low, which is different for two amines.

The fluctuation for HXA is obvious, when concentration is down to 32%, too much solution needed to capture CO2 that the desorption becomes highly energy intensive and convergence becomes difficult. So in the figure these values of HXA are not included. Another fact to notice is that, except for reboiler duty, to capture same amount of Co₂, the amine amount recycling in the system is also affected, since the flowrate and mass fraction is also changing. This is a trade-off to optimize the concentration utilized. Detailed supporting data is given in Appendix A.18.

4.3 Economic and Environment Analysis

4.3.1 Operating cost

The 3 scenarios which add condenser for recycling amine have shown much significant cost reduction, while the rest with high amine emission lost cause higher operation cost than MEA reference case. MEA reference also has the amine recycling in a condenser. So the three recommended scenarios are compared with respect to mainly steam and amine cost. Amine cost includes the emission makeup and degradation cost. Steam cost refers to the reboiler required low pressure steam. The results are shown in Figure 4.10. Process water, electricity cost is close to negligible due to low amount. The supporting data for operation cost and electricity penalty is given in Appendix Table A.15.

Figure 4.10: Operating cost of scenario 3,5,7 for two amines

Scenario 7 with HXA is the optimum case in all studied candidates, with the cost of $22.48 \notin$ /ton CO₂ captured. DIBA shows best result in the scenario 3, which is the base case.

In general, DIBA amine makeup cost accounts for lower percentage in total cost than HXA. Although more than 99% of total amine is already recycled, the high price of two amines make this part not unimportant. The amine emission lost can possibly be reduced with well-designed component like scrubber and condenser in industry application. So there is indeed potential to reduce solvent cost.

Figure 4.11: CO_2 Capture cost penalty in unit electricity production

A further investigation is to relate these values to the power plant production, to indicate the amount of cost required compared with electricity revenue. The fluegas (wet) adopted in our case is composed of 12 % volume CO_2 , and CO_2 flowrate is 1138 kg/hr. Assume the modeled plant is normal gas fired power plant [39] based on fluegas composition. According to IEA carbon capture report [40], an estimated average CO_2 emission from natural gas plant is 348 kg /MWh. The fluegas contained CO_2 flowrate in our model is 1138 kg/hr. Thus this gives estimation of the power plant size, 3.27 MW.

The cost for capturing CO₂ per unit electricity production is available. According to the global average electricity supplier price by IEA [41], 55 \notin /MWh is chosen as a reference revenue. Thus cost penalty is calculated and shown in Figure 4.11. Except for scenario 5 using HXA, all other cases need a penalty within 10-30%, which is a acceptable value for either consumer or government funding.

4.3.2 Environmental Impact

EI99 environment indicator factor result is shown in figure 4.12. The detailed results for GWP and EI99 are given in Appendix Table A.16. The calculation is based on estimated values for solvent, low pressure steam, electricity and process water. Different sources, production plant, and electricity type also affect the accuracy, so results are only compared between studied amines. DIBA is estimated to have larger environment impact per unit in production, so the overall indicator values are higher.

Figure 4.12: EI99 indicator estimation, points/ton CO_2 captured

GWP is expressed in form of CO_2 emission caused by capture process. Even in the best case for DIBA, scenario 1, an offset of 18% occurs. HXA has advantage in scenario 7, with 12% offset value.

The energy consumption of steam, amine makeup, electricity and process water are all transferred to equivalent energy consumption, using CED values. Then they can be summed and compare with MEA reference. For MEA reference, degradation is estimated and other consumption is read from Aspen. The final result is shown in Figure 4.14. The best scenario, HXA 7 reduces more than half of consumption. However this wider comparison relies on several estimated values, so it is a rough trend analysis. The supporting data of CED is given in Appendix A.17.

Figure 4.13: Global warming potential estimation, CO_2eq ton/ton captured

Figure 4.14: Equivalent energy consumption

4. Results

Conclusion

The major focus of this thesis study is to search for amine solvent, that could reach lower absorption energy demand, compared with MEA, as well as setting up suitable flowsheet layouts. It starts with study and comparison of phase change solvents. Based on previous literature and experimental data, some candidates with reported good performance and experimental results are screened, with the help of Aspen ternay diagram and decanter block simulation. Although DIBA and HXA are two amines that we finally choose, other amines from different research still exhibit good study potential.

Besides, the limitation in this stage is mainly the input of molecules and ions into Aspen. Aspen lack proper recognition of user-defined ions, which is considered as a crucial problem affect the modelling results. A potential improvement is to modify ion property estimation, from either experimental or equation calculation. However this requires reliable experimental data.

The chemistry adopted in this study is in simplified form, considering the convenience of study, and limitation of Aspen chemistry calculation, which is also a sensitive factor.

Setting up flowsheet in Aspen gives detailed stream and column results in the absorption process. In order to compare with MEA flowsheet, the initial base case flowhsheet follows similar column sizing, and fluegas input. Both HXA and DIBA showed good reboiler energy reduction under the same CO_2 capture efficiency. To further reduce the amine emission loss, improvement on recycling amine is done. Other two configurations about HX and stripper improvement are also tried. There could also be other layouts with different absorber or stripper setting. Within totally 7 scenarios, 3, 5, and 7 all demonstrate acceptable results, the best one is HXA scenario 7.

The energy consumption results showed that - for HXA all the scenarios require less heating energy than DIBA, and the improvement on HX placement after decanter suits it best. While for DIBA the double stripper flowsheet shows better performance. For both amines, the base case configuration already reaches the energy demand of lower than 2 GJ/ton CO_2 captured, more than 50% reduction of MEA reference case.

Although the results fulfill the target we aim at, it is limited by assumptions and

parameter estimation. The reaction equilibrium constant, keq, which is estimated according to amine solubility, is a dominating factor. The sensitivity study shows this influence. Other sensitivity on amine solution, and the decanter performance also showed their limit on results. In general HXA is less sensitive to these parameters.

Considering the environmental and economic impact, HXA in scenario 7 showed least cost offset and environment impact.

To sum up, two chosen amines, especially HXA, shows good phase separation, absorption and regeneration performance. They both lower the energy demand compared with MEA, and the offset of electricity revenue is also reduced to 10 - 20 %. For power plant suppliers, this is a potential value if they install the CCS facility, and distribute extra cost to consumers, government support etc.

Future work in this topic can be continued in different directions.

- For the study itself, improved modeling based on more experimental data will give out more realistic results, as well as diverse process designs and validation of keq estimation.
- A larger scale of amines can be studied to find more candidates available for the process, including the DPA molecule that is excluded from the study.
- In the double stripper configuration, the splitting ratio of high and low pressure stripper, as well as working pressure could be optimized according to different amines, minimized the reboiler duty.

Bibliography

- [1] United Nations. Paris agreement, 2015.
- [2] BP. Bp statistic review of world energy 2016, 2016.
- [3] Ellina Levina, Simon Bennett, and Sean McCoy. *Technology Roadmap: Carbon capture and storage*. OECD/IEA, 2013.
- [4] José D Figueroa, Timothy Fout, Sean Plasynski, Howard McIlvried, and Rameshwar D Srivastava. Advances in co2 capture technology—the us department of energy's carbon sequestration program. *International journal of* greenhouse gas control, 2(1):9–20, 2008.
- [5] BJP Buhre, LKr Elliott, CD Sheng, RP Gupta, and TF Wall. Oxy-fuel combustion technology for coal-fired power generation. *Progress in energy and combustion science*, 31(4):283–307, 2005.
- [6] Mohamed Kanniche, René Gros-Bonnivard, Philippe Jaud, Jose Valle-Marcos, Jean-Marc Amann, and Chakib Bouallou. Pre-combustion, post-combustion and oxy-combustion in thermal power plant for co 2 capture. *Applied Thermal Engineering*, 30(1):53–62, 2010.
- [7] Bernhard Kronberger, Anders Lyngfelt, Gerhard Löffler, and Hermann Hofbauer. Design and fluid dynamic analysis of a bench-scale combustion system with co2 separation- chemical-looping combustion. *Industrial & Engineering Chemistry Research*, 44(3):546–556, 2005.
- [8] Anders Lyngfelt, Bo Leckner, and Tobias Mattisson. A fluidized-bed combustion process with inherent co 2 separation; application of chemical-looping combustion. *Chemical Engineering Science*, 56(10):3101–3113, 2001.
- [9] Jansen Daniel, Gazzani Matteo, Manzolini Giampaolo, van Dijk Eric, and Carbo Michiel. Pre-combustion co₂ capture. *Greenhouse Gas Control*, 40:167– 187, 2015.
- [10] Global CCS institue. Large scale ccs projects. website.
- [11] Paulo Otávio Gomes, Bill Kilsdonk, Jon Minken, Tim Grow, and Roberto Barragan. The outer high of the santos basin, southern sao paulo plateau, brazil: pre-salt exploration outbreak, paleogeographic setting, and evolution of the syn-rift structures. American Association of Petroleum Geologists Search and Discovery Article, 10193, 2009.
- [12] Philip Ringrose, Mansour Atbi, David Mason, Marianne Espinassous, Øyvind Myhrer, Martin Iding, Allan Mathieson, and Iain Wright. Plume development around well kb-502 at the in salah co2 storage site. *First break*, 27(1), 2009.
- [13] Paul Feron. Absorption-Based Post-Combustion Capture of Carbon Dioxide. Woodhead Publishing, 2016.

- [14] Robert N Maddox, Gilbert J Mains, and Mahmud A Rahman. Reactions of carbon dioxide and hydrogen sulfide with some alkanolamines. *Industrial & engineering chemistry research*, 26(1):27–31, 1987.
- [15] Marco Aleixo, Monique Prigent, Alexendre Gibert, Fabien Porcheron, Ilham Mokbel, Jacques Jose, and Marc Jacquin. Physical and chemical properties of dmxtm solvents. *Energy Procedia*, 4:148–155, 2011.
- [16] IEA GHG. Post combustion carbon capture from coal fired plants-solvent scrubbing. International Energy Agency Greenhouse Gas R&D Programme, 2007.
- [17] Jacob N Knudsen, Jørgen N Jensen, Poul-Jacob Vilhelmsen, and Ole Biede. Experience with co2 capture from coal flue gas in pilot-scale: Testing of different amine solvents. *Energy Proceedia*, 1(1):783–790, 2009.
- [18] Prachi Singh, WPM Van Swaaij, and DWF Wim Brilman. Energy efficient solvents for co 2 absorption from flue gas: vapor liquid equilibrium and pilot plant study. *Energy procedia*, 37:2021–2046, 2013.
- [19] Tim C Merkel, Haiqing Lin, Xiaotong Wei, and Richard Baker. Power plant post-combustion carbon dioxide capture: an opportunity for membranes. *Jour*nal of membrane science, 359(1):126–139, 2010.
- [20] Jiafei Zhang, Yu Qiao, and David W Agar. Improvement of lipophilic-aminebased thermomorphic biphasic solvent for energy-efficient carbon capture. *Energy Procedia*, 23:92–101, 2012.
- [21] Ludovic Raynal, Pascal Alix, Pierre-Antoine Bouillon, Adrien Gomez, Marie le Febvre de Nailly, Marc Jacquin, Jean Kittel, Angella di Lella, Pascal Mougin, and Jean Trapy. The dmx TM process: An original solution for lowering the cost of post-combustion carbon capture. *Energy Procedia*, 4:779–786, 2011.
- [22] Hallvard F Svendsen, Erik T Hessen, and Thor Mejdell. Carbon dioxide capture by absorption, challenges and possibilities. *Chemical Engineering Journal*, 171(3):718–724, 2011.
- [23] PMM Blauwhoff, GF Versteeg, and WPM Van Swaaij. A study on the reaction between co2 and alkanolamines in aqueous solutions. *Chemical Engineering Science*, 38(9):1411–1429, 1983.
- [24] J Richard Elliott and Carl T Lira. Introductory chemical engineering thermodynamics. Prentice Hall PTR Upper Saddle River, NJ, 1999.
- [25] Walter Greiner, Ludwig Neise, and Horst Stöcker. Thermodynamics and statistical mechanics. Springer Science & Business Media, 2012.
- [26] Phillip C Wankat. Separation process engineering (third edition). Prentice hall, 2011.
- [27] Aspen Tech. Aspen plus v8.8 help list.
- [28] Aspen Tech. Aspen plus unit operation models reference manual.
- [29] P Seferlis and AN Hrymak. Optimization of distillation units using collocation models. AIChE journal, 40(5):813–825, 1994.
- [30] Theodoros Damartzis, Athanasios I Papadopoulos, and Panos Seferlis. Optimum synthesis of solvent-based post-combustion co2 capture flowsheets through a generalized modeling framework. *Clean Technologies and Environmental Policy*, 16(7):1363–1380, 2014.

- [31] Babatunde A Oyenekan and Gary T Rochelle. Alternative stripper configurations for co2 capture by aqueous amines. AIChE Journal, 53(12):3144–3154, 2007.
- [32] George S Goff and Gary T Rochelle. Monoethanolamine degradation: O2 mass transfer effects under co2 capture conditions. *Industrial & Engineering Chemistry Research*, 43(20):6400–6408, 2004.
- [33] Sara Badr. Sustainability Assessment of Amine-based Post Combustion CO2 Capture. PhD thesis, Zürich, 2016.
- [34] Stephanie Anne Freeman. Thermal degradation and oxidation of aqueous piperazine for carbon dioxide capture. PhD thesis, 2011.
- [35] FB Closmann. Oxidation and thermal degradation of methyldiethanolamine/piperazine in CO 2 capture. The University of Texas at Austin. PhD thesis, Ph. D. Dissertation, 2011.
- [36] Jason Daniel Davis. Thermal degradation of aqueous amines used for carbon dioxide capture. 2009.
- [37] Mark AJ Huijbregts, Stefanie Hellweg, Rolf Frischknecht, Harrie WM Hendriks, Konrad Hungerbuhler, and A Jan Hendriks. Cumulative energy demand as predictor for the environmental burden of commodity production. *Environmental science & technology*, 44(6):2189–2196, 2010.
- [38] MOLBASE. reference price on molbase.com.
- [39] Xiaochun Xu, Chunshan Song, Ronald Wincek, John M Andresen, Bruce G Miller, and Alan W Scaroni. Separation of co2 from power plant flue gas using a novel co2 'molecular basket'adsorbent. *Fuel Chem. Div. Prepr*, 48(1):162–163, 2003.
- [40] IEA Greenhouse Gas RD Programme. Co₂ capture at gas-fired power plants study report, 2011.
- [41] Fatih Birol et al. World energy outlook 2015. Paris: International Energy Agency, 2015.

Appendix 1

A.1 keq value and property estimation

Aspen use relevant property estimation equations for components. The most important parameters are vapour pressure. heat capacity. viscosity. boiling temperature. liquid density. The corresponding equations that Aspen use are as follows. The Extended Antoine equation 3.1 is used for vapour pressure estimation. Equation A.2 is the ideal gas heat capacity equation. and equation A.3 is the DIPPR liquid viscosity equation. Liquid density is estimated from equation A.4. All the C_i values for each component are estimated and listed in the parameter sheet.

$$lnp_i^{*.l} = C_{1i} + \frac{C_{2i}}{T + C_{3i}} + C_{4i}T + C_{5i}lnT + C_{6i}T^{7i} \quad \text{for}C_{8i} \leqslant T \leqslant C_{9i}$$
(A.1)

$$C_p^{*,lg} = C_{1i} + C_{2i} \frac{C_{3i}/T}{\sinh(C_{3i}/T)} + C_{4i} \frac{C_{5i}/T}{\cosh(C_{gi}/T)} \quad \text{for} C_{6i} \leqslant T \leqslant C_{7i}$$
(A.2)

$$ln_{\eta i}^{*l} = C_{1i} + \frac{C_{2i}}{T} + C_{3i}lnT + C_{4i}T^{C_{5i}} \quad \text{for } C_{6i} \leqslant T \leqslant C_{7i}$$
(A.3)

$$\rho_i^{*.l} = C_{1i} / C_{2i}^{1 + (1 - T/C_{3i})^{C_{4i}}} \quad \text{for} C_{6i} \leqslant T \leqslant C_{7i} \tag{A.4}$$

PLXANT parameter values used in equation 3.1								
Components	DIBA+	DIBACOO-	HXA+	HXACOO-				
Temperature units	\mathbf{C}	С	С	С				
Property units	bar	bar	bar	bar				
1	52	90	37	90				
2	-8167.67158	-13830.6751	-7800.18	-14639.2				
3	0	0	0	0				
4	0	0	0	0				
5	-7.46874067	-11.6356924	-7.29982	-12.6784				
6	7.42E-18	2.87E-18	8.80E-18	3.23E-18				
7	6	6	6	6				
8	158.58	289.24	136.06	282.09				
9	334.466636	477.237609	315.9922	470.7186				

Table A.1: PLXANT parameter values

Ι

Parameters	Units	DIBA	DIBA+	DIBACOO-	HXA	HXA+	HXACOO-
API		58.5894			54.0425		
CHARGE		0	0	0	0	0	0
DCPLS	CAL/MOL-K				20.8073469		
DGAQFM	CAL/MOL	0	0	0	0	0	0
DGAQHG	CAL/MOL	0	0	0	14860	0	0
DGFORM	CAL/MOL	21066.2081	24121.0471	-50900.449	15608.5793	15785.33	-58865.96
DGSFRM	CAL/MOL	0	0	0	0	0	0
DHAQFM	CAL/MOL	0	0	0	0	0	0
DHAQHG	CAL/MOL	0	0	0	-46320	0	0
DHFORM	CAL/MOL	-42801.1847	-41893.5703	-124770.71	-31838.158	-30911.4	-115747.1
DHSFRM	CAL/MOL	0	0	0	0	0	0
DHVLB	CAL/MOL	9010.05541	9432.56205	14207.012	8887.55135	9237.187	14931.59
DLWC		1	1	1	1	1	1
DVBLNC		1	1	1	1	1	1
FREEZEPT	\mathbf{C}	-70			-21.3		
HCOM	CAL/MOL	-1248447.5	0	0	-954905.895	0	0
HCTYPE	,	0	0	0	0	0	0
HFUS	CAL/MOL	3343.84255			5063.53301		
IONTYP		0	0	0	0	0	0
MUP	DEBYE	0.761473298			1.58890222		
MW		129.2456	130.2535	172.2475	101.19184	102.1998	144.1937
OMEGA		0.485362	0.48782927	0.815771347	0.45767	0.474466	0.9001211
OMEGHG	CAL/MOL	0	0	0	-57170	0	0
PC	BAR	25.7	26.11069	25.5333861	31.8	33.14365	31.279872
RGYR	METER	4.74E-10	4.61E-10	5.04E-10	4.07E-10	3.98E-10	4.47E-10
RHOM	GM/CC	0	0	0	0	0	0
RKTZRA		0.26938	0.24533068	0.214366511	0.25992	0.246692	0.2065708
S25HG	CAL/MOL-K	0	0	0	60.2	0	0
S025C	CAL/MOL-K	0	0	0	0	0	0
S025E	CAL/MOL-K	0	0	0	265.201801	0	0
\mathbf{SG}		0.744387			0.762628		
TB	\mathbf{C}	139.1	158.58	289.24	132.7	136.06	282.09
TC	\mathbf{C}	306.85	334.466636	477.237609	310.85	315.9922	470.71859
TPT	\mathbf{C}	-70			-21.3		
TREFHS	\mathbf{C}	25	25	25	25	25	25
VB	CC/MOL	201.16	177.075606	185.690189	151.337	134.4842	140.71092
VC	CC/MOL	524	506.5	569.5	418	400.5	486.5
VCRKT	CC/MOL	524	506.5	569.5	418	400.5	486.5
VLSTD	CC/MOL	174.062	147.501628	137.083834	133.021	114.9078	103.72518
\mathbf{ZC}	•	0.279	0.261782665	0.23307153	0.274	0.270991	0.2460505
ZWITTER		0	0	0	0	0	0

Table A.2: Parameters for Pure Components Gained by Aspen Plus

Calculate Reaction Equilibrium Constant

For a chemical equation shown as A.5, A and B are reactant chemical species, while C and D are the product species. $\alpha, \beta, \gamma, \delta$ are the stoichiometric coefficients of the relative reactants and products.

$$\alpha A + \beta B \Leftrightarrow \gamma C + \delta D \tag{A.5}$$

When the reaction reaches equilibrium under a certain condition, the rate of reactants consuming is equal to the rate of products forming, so the concentration of both reactants and products will stay stable. The equilibrium constant of the reaction can be expressed as A.6. [A], [B], [C], [D] are the activities for the respective species.

$$K_{eq} = \frac{[C]^{\gamma} * [D]^{\delta}}{[A]^{\alpha} * [B]^{\beta}}$$
(A.6)

Equation A.5 will sometimes be shown as below.

$$\alpha A \Leftrightarrow \gamma C \tag{A.7a}$$

$$\beta B \Leftrightarrow \delta D$$
 (A.7b)

Then equilibrium constants for these two equations are expressed as A.8.

$$K_{eq1} = \frac{[C]^{\gamma}}{[A]^{\alpha}} \tag{A.8a}$$

$$K_{eq2} = \frac{[[D]^{\delta}}{[B]^{\beta}} \tag{A.8b}$$

Therefore, the equilibrium constant of A.6 is able to be calculated out using A.9 if K_{eq1} and K_{eq2} in A.8 are given.

$$K_{eq} = K_{eq1} * K_{eq2} \tag{A.9}$$

In Aspen Plus V8.8, when defining the chemical reactions, some values are needed to calculate the equilibrium constants K_{eq} . Equation that used in Aspen calculation is shown as A.10. A-E are values to be defined to determine K_{eq} .

$$ln(K_{eq}) = A + B/T + C * ln(T) + D * T + E * ((P - P_{ref})/P_{ref})$$
(A.10)

If we combine A.6 and A.10, we'll get,

$$ln(K_{eq}) = ln(K_{eq1} * K_{eq2}) = ln(K_{eq1}) + ln(K_{eq2})$$
(A.11)

Therefore, in a reaction written in form of separated equations, if A-E values of these equations are known, the corresponding A-E values of the combined equation can be calculated by simply adding them respectively.

Table A.3: Keq Value for reactions in Carbon Capture Process based on MEA. T=340 k

Equation	А	В	С	D	Е	keq
3.2a	231.4654	-12092.1	-36.7816	0	0	9.26051E-09
$3.2\mathrm{b}$	-3.03833	-7008.36	0	-0.00313	0	-1.0658626
3.2c	-0.52135	-2545.53	0	0		0.000332722
3.3	-235.025	2538.213	36.7816	-0.00313		-1.06586068

A.2 Ternary diagram of DMCA

Figure A.1: DMCA ternary mixture study diagram

A.3 Column. stream input setting in flowsheets

Figure A.2: Reference MEA flowsheet

	Column setting							
	Parameter	value	unit		Parameter	value	unit	
	No. Stages	17			No. Stages	13		
	top stage pressure	1.06	bar		top stage pressure	2	bar	
Absorber	pressure drop	0.06	bar	Stripper	pressure drop	0.06	\mathbf{bar}	
	Fluegas feed stage	17			Fluegas feed stage	1		
	leanMEA feed stage	1			leanMEA feed stage	1		
		HX and	Input St	ream Setti	ng			
Lean-in MEA	Total flow rate	18214.3	$\rm kg/hr$	Makeup	water	204.1	$\rm kg/hr$	
	mass frac MEA	0.28		$\mathbf{H}\mathbf{X}$	hot side temp. Change	56	с	
	mass frac H2O	0.66						
	mass frac CO ₂	0.05						
			Stripper 1	\mathbf{esult}				
	Temperature	104.4	\mathbf{C}		Temperature	123.4	С	
Top	Distillate rate	51.8	$\rm kmol/hr$		Heat duty	993.7	kW	
Tob	Reflux rate	753.5	$\rm kmol/hr$	Reboiler	Bottoms rate	733.0	$\rm kmol/hr$	
	Reflux ratio	14.5			Boilup rate	85.5	$\rm kmol/hr$	
					Boilup ratio	0.1		

ble A.4: MEA reference flowsheet setting. stripper results

Table A.5: Component settings for absorber and stripper with equilibrium calculate type

Absorber with Equilibrium Type			Stripper with Equilibrium Type				
Condenser	none		Condenser	none			
Absorber	none		number of stages	15			
number of stages	12		Reboiler	kettle			
Fluegas feed stage	12	on-stage	Reflux ratio	3.7	Input value ^{a}		
Lean-in feed stage	1	above-stage	Reflux feed stage	1	above-stage		
outlet stage for rich amine	12	lqiuid	Derich feed stage	1	above-stage		
outlet stage for gas-off	1	phase	outlet stage for liquid	15	liquid		
Top stage pressure	1.06	bar	outlet stage for vapour	1	vapor		
pressure drop	0.06	bar / column	Top stage pressure	2	bar		
			pressure drop	0.06	bar / column		
		^a Reflux ratio is control	led by d	esign specification			

High Pressure Stripper						
Reflux ratio	3.3	initial				
Feed Stream Stage	1	above-stage				
outlet stage for liquid	15	liquid				
outlet stage for vapor	1	vapor				
Top stage pressure	295	kPa				
pressure drop	0.06	bar/column				
Low pressure Stripper						
Reflux ratio	3.7	initial				
Feed liquid stage	8	above-stage				
Feed of stream from HP stripper stage	1	above-stage				
Feed stream Reflux	1	above-stage				
outlet stage for liquid	15	liquid				
outlet stage for vapor	1	vapor				
Top stage pressure	160	kPa				
pressure drop	0.06	bar/column				
General settings:Number of Stages:15	6. Rebo	oiler: kettle				

Table A.6: Components settings for stripper in double-stripper flowsheet (scenario 4 and 5)

 Table A.7: Column settings for Rate-based absorber & stripper in sifferent scenarios

Amino	Flowshoot	AB diameter	ST Diameter	LP stripper
Amme	Flowsheet	(m)	/HP stripper	(If available)
	Base case	0.9295	0.54	
	base case with SR	0.9295	0.7	
	2 strippers	0.9295	0.5	0.4
DIDA	2 strippers & SR	0.9295	0.5	0.4
	HX after DC	0.9295	0.54	
	HX after DC & SR $$	0.9295	0.65	
	Base case	0.9267	0.65	
	base case with SR	0.9267	0.65	
	2 strippers	0.9267	0.6	0.49
ПЛА	2 strippers & SR	0.9267	0.6	0.49
	HX after DC	0.9267	0.65	
	HX after DC & SR $$	0.9267	0.65	
General :	Tray type: Sieve		Tray spacing:	0.6096m

Component	Parameter	value	unit/comment				
HX ^a	Hot side temp. Change	-64	С				
Condenser	temperature	76	С				
	pressure	2	bar				
Coolcomp condenser	temperature	25	С				
-	pressure	2	bar				
Cooler	temperature	35	С				
Waste water separator	split fraction	0.98					
a This HX input is only for basecase. different scenarios see tableA.9							

 Table A.8: Other component settings

 Table A.9: HX setting of all scenarios

Heat Exc.	Heat Exchanger Hot side temperature Change Value						
Scenario	DIBA	HXA	Unit				
1	-64	-64	С				
2	-64	-64	с				
3	-64	-64	С				
4	-70	-60	с				
5	-60	-60	С				
6	-60	-60	с				
7	-60	-60	С				

 Table A.10:
 Fluegas and leanin solution stream input setting

Stream	Parameter	value	unit/comment
	total flow rate	83516.7	l/min
	Mole-Frac water	11.25	
	Mole-Frac CO2	11.94	
Fluegas	Mole-Frac O2	3.81	
	Mole-Frac N2	71.62	
	Temp.	48	с
	pressure	1.12	bar
	total flow rate ^{a}	22950.8208	kg/hr
	Mole-Frac water	670	
Loopin aming solution	Mole-Frac CO2	14	
Leann annne solution	Mole-Frac O2	78	
	Temp.	35	с
	pressure	1.06	bar
^a Input value. Leanin flo	owrate is controlled	l by design sp	pecification

A.4 Economic and environmental analysis parameter and results

			DIBA	HXA		
Degradation	oxidative	kg/hr	4.181	1.829		
Degradation	thermal	kg/hr	0.465	0.203		
	Scenario 1		1.060	1.105		
Loss in purge	2		1.047	1.067		
	3		1.136	1.057		
	4	kg/hr	0.523	1.355		
stream -	5		0.498	1.355		
	6		1.065	1.078		
	7		0.957	1.047		
^{<i>a</i>} Purge loss varies in each scenario. since it's related to stripper bottom						
stream flowrate and amine concentration						

 Table A.11: Estimated degradation value of two amines. in all scenarios

Table A.12:	Utility	price	used	in	economic	analysis
	•/	1				•/

Name	Description	FU	Price			
Steam	market for steam. in chemical industry	$1 \mathrm{kg}$	0.016 €			
Process Water	market for water. completely softened	1 kg	0.00046 €			
Electricity	market group for electricity. high voltage	$1 \ \mathrm{kWh}$	0.0977 €			
Source : Ecoinvent 3.3. all price are global average. at the point of substitution						

Table A.13: Amine CED. GWP. EI99 value used in environmental analysis

	NR-CED (MJeq/kg)	GWP(100a) kg-CO2-eq/kg	EI99(H.A) points/kg
DIBA	150.33	5.005	0.8537
HXA	94.21	3.48	0.2821
	NR-CED (MJeq)	GWP(100a) kg-CO2-eq	EI99(H.A) points
-----------------	------------------------	----------------------------	----------------------
Steam	2.756	0.18	0.0113
Process Water	0.00027729392	0.000025472	0.0000023168
Electricity	9.967	0.733	0.055
Source : Ecoinv	vent 3.3. all value ar	e global average. at the p	oint of substitution

Table A.14: Utility CED. GWP. EI 99 value used in environmental analysis

 Table A.15: Economic analysis results of scenario 3.5.7

	unit	DIBA-3	DIBA-5	DIBA-7	HXA-3	HXA-5	HXA-7
Steam cost	€/ton	11.4607	11.9860	21.9213	9.2020	9.0646	7.1959
Solvent cost	€/ton	16.5090	17.6078	18.3271	26.2916	62.7690	15.1530
Electricity Cost	€/ton	0.1235	0.1731	0.1060	0.1214	0.2566	0.1212
Process water cost	€/ton	0.0858	0.0194	0.0692	0.1056	0.0158	0.0148
total capture cost	€/ton	28.1790	29.7862	40.4236	35.7205	72.1059	22.4848
aost / MWh alocah	£/mwh	8 825655	0 220046	12 66067	11 18767	22 58257	7 049941
	67 IIIWII	0.020000	9.329040	12.00007	11.10/07	41 06102	12 20407
elec. penalty	70	10.04004	10.9019	23.01941	20.34123	41.00103	12.80407
^{<i>a</i>} Reference electric	ity price 5	5€/MWh					
^b NG plant CO_2 em	ission 0.3	48 ton/MW	h				

Table A.16: GWP. EI99 results of scenario 3.5.7

	Unit	DIBA-3	DIBA-5	DIBA-7	HXA-3	HXA-5	HXA-7
GWP	CO2eq/ton CO2	179.1425	188.619	305.264	170.9698	258.3277	120.8553
EI99	points/ton CO2 $$	15.91018	16.82431	24.14792	11.71334	18.8212	8.117627
net CO2 absorption	$\mathrm{ton/hr}$	0.841081	0.831371	0.711852	0.849455	0.759945	0.900804

Table A.17: Equivalent energy consumption Results of scenario 3.5.7

	Equivalent	Energy Co	nsumption	(GJeq./ton))	
DIBA-3	DIBA-5	DIBA-7	HXA-3	HXA-5	HXA-7	MEA
1.36	1.45	1.51	1.72	4.10	0.99	0.10
1.97	2.06	3.78	1.59	1.56	1.24	4.62
1.26E-02	1.77 E-02	1.08E-02	1.24E-02	2.62E-02	1.24E-02	8.50E-03
5.17E-05	1.17E-05	4.17E-05	6.36E-05	9.51E-06	8.91E-06	5.52E-05
3.35	3.54	5.30	3.31	5.68	2.24	4.73
	DIBA-3 1.36 1.97 1.26E-02 5.17E-05 3.35	Equivalent DIBA-3 DIBA-5 1.36 1.45 1.97 2.06 1.26E-02 1.77E-02 5.17E-05 1.17E-05 3.35 3.54	Equivalent Energy CoDIBA-3DIBA-5DIBA-71.361.451.511.972.063.781.26E-021.77E-021.08E-025.17E-051.17E-054.17E-053.353.545.30	Equivalent Energy ConsumptionDIBA-3DIBA-5DIBA-7HXA-31.361.451.511.721.972.063.781.591.26E-021.77E-021.08E-021.24E-025.17E-051.17E-054.17E-056.36E-053.353.545.303.31	Equivalent Energy Consumption (GJeq./ton)DIBA-3DIBA-5DIBA-7HXA-3HXA-51.361.451.511.724.101.972.063.781.591.561.26E-021.77E-021.08E-021.24E-022.62E-025.17E-051.17E-054.17E-056.36E-059.51E-063.353.545.303.315.68	Equivalent Energy Consumption (GJeq./ton)DIBA-3DIBA-5DIBA-7HXA-3HXA-5HXA-71.361.451.511.724.100.991.972.063.781.591.561.241.26E-021.77E-021.08E-021.24E-022.62E-021.24E-025.17E-051.17E-054.17E-056.36E-059.51E-068.91E-063.353.545.303.315.682.24

A.5 Sensitivity Analysis results

DIBA	Mass Frac	0.303	0.353	0.383	0.403	0.423	0.443
Reboiler energy	GJ/ton CO2	1.484	1.380	1.476	1.569	1.676	1.793
Circulate DIBA a	$\rm Kg/s$	3.942	3.309	3.093	2.984	2.896	2.823
HXA	Mass Frac	0.340	0.360	0.384	0.400	0.420	0.440
Reboiler energy	GJ/ton CO2	1.470	1.313	1.203	1.152	1.110	1.148
Circulate HXA	$\rm Kg/s$	3.428	3.108	2.869	2.744	2.623	2.658
^a Amount of amine	e circulating in	the syst	tem				

Table A.18:Solution concentration sentivity analysis data

Table A.19: Result table of sensitivity analysis in decanter using DIBA with varied temperature. unit for flow rate: kmol/h $\,$

Temperature		20	40	57	60
	Water	10.12562	9.555131	9.191053	9.13627
	$\rm CO_2$	8.15E-06	3.46E-06	8.09E-06	8.08E-06
Dhaga I	DIBA	1.86E-05	7.95E-06	1.86E-05	1.86E-05
r nase 1	DIBA+	7.494419	7.494414	7.494274	7.494243
	DIBA-	7.499848	7.499761	7.499638	7.499615
	Total flow	25.11991	24.54932	24.18499	24.13015
	Water	39.87439	40.44486	40.80895	40.86373
	CO_2	1.17E-06	5.13E-07	1.23E-06	1.23E-06
Dhago II	DIBA	1.38E-08	5.92E-09	1.42E-08	1.43E-08
1 hase 11	DIBA+	0.00557	0.005585	0.005716	0.005748
	DIBA-	0.000141	0.000238	0.000352	0.000375
	Total flow	39.8801	40.45069	40.81502	40.86985
Dhago I	Water Frac	0.403091	0.389222	0.380031	0.378625
r nase 1	DIBA Frac	0.596908	0.610778	0.619968	0.621375
Dhaga II	Water Frac	0.999857	0.999856	0.999851	0.99985
r nase 11	DIBA Frac	0.000143	0.000144	0.000149	0.00015
	r=w1/w2	0.403149	0.389278	0.380088	0.378681
Flow rate to dec	anter are consta	ant: CO_2 7.5	kmol/h.Wate	er 50 kmol/h.	DIBA 15 kmol/h.

Temp	erature	20	40	57	60
	Water	38.10711	38.47034	38.69248	38.72481
	co2	9.66E-08	9.84E-08	9.98E-08	1E-07
Dhaga I	HXA	1.18E-08	1.2E-08	1.23E-08	1.24E-08
1 hase 1	HXA+	0.065922	0.067293	0.069008	0.069352
	HXA-	0.001198	0.001807	0.002458	0.002586
	total flow	38.17423	38.53944	38.76395	38.79675
	Water	11.89289	11.52966	11.30752	11.2752
	co2	5.74E-07	5.72 E- 07	5.71E-07	5.71E-07
Dhaga II	HXA	1.33E-06	1.33E-06	1.33E-06	1.33E-06
I hase h	HXA+	7.434078	7.432705	7.430992	7.430644
	HXA-	7.498802	7.498191	7.497542	7.497409
	total flow	26.82577	26.46056	26.23605	26.20325
Phage I	water Frac	0.998242	0.998207	0.998156	0.998146
1 hase 1	HXA Frac	0.443338	0.43573	0.430992	0.430298
Dhaga II	water Frac	0.556662	0.56427	0.569008	0.569702
r nase m	HXA Frac	0.001758	0.001793	0.001844	0.001854
	r=w1/w2	2.251648	2.290884	2.315952	2.319663
Flow rate t	o decanter are	constant: CO	$_2$ 7.5 kmol/h	. Water 50 kmol/h	. HXA 15 kmol/h

Table A.20: Result table of sensitivity analysis in decanter using HXA with varied temperature (unit for flow rate: kmol/h)

Table A.21: result table of sensitivity analysis in decanter using DIBA with varied CO_2 mole flow rate (unit for flow rate: kmol/h)

CO2 Mol	e Flow Rate	3.75	7.5	11.25	15
	Water	9.203323	9.555131	10.29391	11.0854
	CO_2	0	3.46E-06	3.26979	6.549804
Dhaga I	DIBA	7.494573	7.95E-06	2.54E-10	5.69E-11
r nase 1	DIBA+	3.747286	7.494414	7.493942	7.493446
	DIBA-	3.74987	7.499761	7.499705	7.499647
	total flow	24.19505	24.54932	28.55735	32.6283
	Water	40.79667	40.44486	39.70609	38.91459
	CO_2	0	5.13E-07	0.48021	0.950199
Dhago II	DIBA	0.005429	5.92E-09	2.05E-13	4.98E-14
I hase h	DIBA+	0.002715	0.005585	0.006057	0.006558
	DIBA-	0.000131	0.000238	0.000293	0.000357
	total flow	40.80495	40.45069	40.19265	39.8717
Dhaga I	water Frac	0.38038	0.389222	0.360464	0.339748
1 hase 1	DIBA Frac	0.999797	0.999856	0.987894	0.975995
Dhaga II	water Frac	0.61962	0.610778	0.525036	0.459512
I hase h	DIBA Frac	0.000203	0.000144	0.000158	0.000173
	r=w1/w2	0.380458	0.389278	0.364882	0.348104
Decanter te	emperature:40 $^\circ$	C. Water 50	kmol/h. DIB	A 15 kmol/h	

CO2 Mole	e Flow Rate	3.75	7.5	11.25	15
	Water	36.27445	38.47034	37.40221	36.26301
	$\rm CO_2$	0	9.84E-08	0.53884	1.051447
Dhaga I	HXA	0.072867	1.2E-08	6.49E-13	4.71E-13
Phase 1	HXA+	0.036433	0.067293	0.070016	0.072625
	HXA-	0.000866	0.001807	0.002201	0.002632
	total flow	36.38462	38.53944	38.01327	37.38971
	Water	13.72555	11.52966	12.59778	13.73699
	$\rm CO_2$	0	5.72E-07	3.211162	6.448552
Dhaga II	HXA	7.427131	1.33E-06	6.88E-11	4.82E-11
r nase 11	HXA+	3.713565	7.432705	7.429987	7.427373
	HXA-	3.749133	7.498191	7.497803	7.497366
	total flow	28.61538	26.46056	30.73673	35.11029
Dhaga I	water Frac	0.479656	0.998207	0.983925	0.969866
r nase 1	HXA Frac	0.996972	0.43573	0.409861	0.391253
Dhaga II	water Frac	0.520344	0.56427	0.485666	0.425082
Phase II	HXA Frac	0.003028	0.001793	0.0019	0.002013
	r=w1/w2	0.481113	2.290884	2.400632	2.478875
Decanter te	emperature:40 ^c	C. Water 50	kmol/h. HX	A 15 kmol/h	

 Table A.22: Result table of sensitivity analysis in decanter using HXA with varied CO2 mole flow rate(unit for flow rate: kmol/h)

	-228.7 4.674E-05 3.48	-227.7 1.271E-04 1.45 1.45 -224.5 3.117E-03 1.30	-227.7 1.271E-04 1.20 -226 6.955E-04 2.46
	-228.6 5.166E -05 3.09	-227.8 1.150E-04 1.55 -225 1.891E-03 1.07	-227.8 1.150E-04 1.22 -226.5 4.219E-04 1.18
$(1 \text{ ton } \mathrm{CO}_2)$	-228.5 5.709 \pm 05 2.78	-227.9 1.040E-04 1.66 -225.5 1.147E-03 0.96	-227.9 1.040E-04 1.24 -226.6 3.817E-04 1.45
energy in GJ	-228.4 6.310E-05 2.53	$\begin{array}{c} -230\\ 1.274\text{E-}05\\ 10.24\\ -226\\ 6.955\text{E-}04\\ 0.93\end{array}$	-228 9.413E-05 1.26 -226.7 3.454E-04 1.33
s (reboiler e	-228.3 6.973E-05 2.30	$\begin{array}{c} -229.5\\ 2.100\text{E-}05\\ 9.38\\ -226.5\\ 4.219\text{E-}04\\ 0.95\end{array}$	-228.5 5.709E-05 1.50 -227 -227 2.559E-04 1.25 1.25 5.01
alysis result	-228.2 7.707E-05 2.11	$\begin{array}{r} -229\\ 3.463 \text{E-}05\\ 4.49\\ -227\\ 2.559 \text{E-}04\\ 1.05\end{array}$	-229 3.463E-05 1.99 -227.3 1.896E-04 1.20 -224.5 3.117E-03 4.54
sensitivity ar	-228.1 8.517E-05 1.94	-228.9 3.827E-05 4.16 -227.5 1.552E-04 1.29	-229.5 2.100E-05 2.91 2.91 1.552E-04 1.19 1.19 1.19 1.891E-03 3.52 3.52
A.23: Keq s	-228 9.413E-05 1.79	-228.8 4.230E-05 3.81 -227.6 1.404E-04 1.37	-230 -230 1.274E-05 4.53 -227.6 1.404E-04 1.20 -225.5 1.147E-03 2.67 2.67
Table .	A Keq Reboiler GJ/Ton CO2	A Keq Reboiler GJ/Ton CO2 A Keq Reboiler GJ/Ton CO2	A Keq Reboiler GJ/Ton CO2 A Keq Reboiler GJ/Ton CO2 Keq Reboiler GJ/Ton CO2
		DIBA	НХА

XIII

ole fraction :	n in decanter ami	0.010 1.305 0.910 ne-phase	0.050 1.210 0.050 1.210 1.210 0.810 1.230 1.230	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.150 0.150 1.301 0.150 1.301 1.301 1.301 1.220	0.184 1.835 0.184 1.345 1.345 1.345 1.345	•	$\begin{array}{c} 0.379\\ \hline 1.879\\ \hline 0.250\\ 1.426\\ 0.250\\ 1.426\\ 0.411\\ 1.230\\ 1.230\\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	uer $GJ/ton CO2$	0.010 1.305 0.910 1.220	$\begin{array}{r} 0.050\\ 1.210\\ 0.050\\ 1.210\\ 1.210\\ 0.810\\ 1.230\end{array}$	$\begin{array}{c} 1.753 \\ \hline 0.100 \\ 1.254 \\ 1.254 \\ 1.254 \\ 1.254 \\ 1.215 \end{array}$	0.150 0.150 1.301 0.150 1.301 1.301 1.301 1.301 1.220			$\begin{array}{cccccccccccccccccccccccccccccccccccc$.184 0.250 0.284 .184 0.250 0.284 .345 1.426 1.462 .345 1.426 1.462 .345 1.426 1.462 .345 1.426 1.462 .345 1.426 1.462 .345 1.426 1.462 .251 0.411 0.311 .225 1.230 1.237	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
CO2 Reboile	2 Mole frac.	0.010 1.305	$\begin{array}{c} 0.050 \\ 1.210 \\ 0.050 \\ 1.210 \end{array}$	$ \begin{array}{r} 1.753 \\ 0.100 \\ 1.254 \\ 1.254 \end{array} $	0.150 0.150 0.150 1.301 1.301			835 1.879 835 1.879 184 0.250 345 1.426 345 1.426 345 1.426	0.529 0.579 0.529 835 1.879 1.924 184 0.250 0.284 345 1.426 1.462 345 1.426 0.284 345 1.426 1.462	0.529 0.579 0.529 0.579 835 1.879 1.924 2.073 184 0.250 0.284 0.350 345 1.426 1.462 1.521 345 1.426 1.462 1.521 345 1.426 1.462 1.521
A Amine Reboile	ne Mole frac. ller GJ/ton CO2		$0.050 \\ 1.210$	1.753 0.100 1.254	0.079 1.795 0.150 1.301		.835 .345	.029 0.379 .835 1.879 .184 0.250 .345 1.426	.029 0.579 0.529 .835 1.879 1.924 .184 0.250 0.284 .345 1.426 1.462	.029 0.379 0.329 0.379 .835 1.879 1.924 2.073 .184 0.250 0.284 0.350 .345 1.426 1.462 1.521
WATEF Reboile	ER Mole frac. ller GJ/ton CO2	0.010 1.305		1.753	1.795		.835	835 1.879	835 1.879 1.924	835 1.879 1.924 2.073
CO2 ^c Reboile	2 ^e Mole frac. ller GJ/ton CO2	$\begin{array}{c} 0.929 \\ 1.605 \end{array}$	$0.829 \\ 1.676$	0.729	0 A 70	\supset	.629	057 0 063	200 0 170 0 100	000 0 570 0 500 0 970
A Amine ^b Reboile	ne ^b Mole frac. iler GJ/ton CO2	1.000 1.795	$0.970 \\ 1.973$	$0.950 \\ 2.123$	$0.930 \\ 2.299$	2 0	.910.507	.910 0.890 .507 2.757	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
WATEF Reboile	ER Mole frac. ller GJ/ton CO2	$0.119 \\ 2.034$	$0.169 \\ 2.105$	$\begin{array}{c} 0.219 \\ 2.126 \end{array}$	$0.269 \\ 2.132$	20	.319.139	.319 0.369 .139 2.151	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$.319 0.369 $0.419.139$ 2.151 2.185
WATEF Reboile	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$0.069 \\ 1.795$	$0.019 \\ 1.088$	$0.029 \\ 1.206$	$0.039 \\ 1.331$	1 0	.049 .565	.049 0.059 .565 1.695	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

XIV

A.6 Important stream result and stripper performance tables in all scenarios

			Top st	age				Reboiler		
	Scenario	Temperature	Distillate rate	Reflux rate	Reflux ratio	Temperature	Heat duty	Bottoms rate	Boilup rate	Boilup ratio
		C	$\rm kmol/hr$	$\rm kmol/hr$		Q	kW	$\rm kmol/hr$	kmol/hr	
	1	88.80	43.92	158.65	3.61	112.39	446.98	120.04	41.96	0.35
	2	85.33	49.03	161.47	3.29	112.30	510.45	118.78	48.35	0.41
	ట	77.57	38.65	160.43	4.15	111.61	424.52	128.94	41.28	0.32
	$4 \mathrm{HP}^{a}$	86.97	30.86	110.76	3.59	125.26	354.17	83.77	33.85	0.40
DIBA	4LP	82.72	11.58	42.85	3.70	106.30	26.53	115.88	2.32	0.02
	5HP	93.52	36.49	108.04	2.96	128.82	413.13	74.81	38.32	0.51
	5LP	84.67	12.90	47.73	3.70	106.74	30.85	110.44	2.63	0.02
	6	96.42	70.97	168.03	2.37	111.49	486.64	124.20	46.25	0.37
	-7	98.61	100.77	185.82	1.84	112.44	812.00	112.04	73.90	0.66
	1	57.11	26.80	194.06	7.24	110.62	349.32	179.68	35.64	0.20
	2	57.18	27.17	182.67	6.72	110.74	342.53	172.83	35.65	0.21
	ట	57.63	27.27	181.21	6.65	110.94	340.86	171.13	35.33	0.21
	4HP	54.02	19.61	149.34	7.61	119.34	330.51	141.84	35.53	0.25
HXA	4LP	77.34	10.52	38.93	3.70	104.65	8.86	171.12	0.90	0.01
	5HP	54.36	19.72	148.03	7.51	119.65	327.73	140.43	35.06	0.25
	5LP	77.60	10.43	38.58	3.70	104.83	8.04	169.46	0.81	0.00
	6	95.06	48.70	192.76	3.96	110.75	259.63	173.65	26.99	0.16
	7	95.29	49.25	188.83	3.83	111.30	266.55	168.98	27.39	0.16
^a High	pressure a	nd lower pressu	re stripper							

Table
A.25:
DIBA
and
HXA
stripper
detailed
performance
results
in
all
scenarios

Cable A.26: Stream table for DIBA Scenario 1.	basecase equilibrium
Cable A.26: Stream table for DIBA Scenario	Ϊ.
Cable A.26: Stream table for DIBA	Scenario
Cable A.26: Stream table for DIB	A
Cable A.26: Stream table for	DIB
Cable A.26: Stream table	for
Cable A.26: Stream	table
Table A.26:	Stream
	able A.26:

	me	$Lean_4$	$Lean_in$	Make_up	${ m Gas_off}$	${\rm De_rich}$	CO2_out
	WATER	12188.09	12188.09	24.19784	112.8841	865.7346	8.328564
	CO2	0.4414977	0.4441511	0	86.35185	74.87363	1024.656
Mass Flow	DIBA	6527.985	6527.985	122.0751	38.2727	952.6795	0.2301716
m kg/hr	02	5.27732	0	0	254.4255	4.327968	4.303412
	N2	30.34817	0	0	4288.473	27.40613	27.34972
	DIBA+	1839.844	1840.039	0	0.000208207	4618.114	0.0000172473
	DIBA-	2433.283	2433.272	0	0.0000380244	6120.466	0.0000027389
Total Flow k_{i}	g/hr	756.5602	755.3134	2.287705	169.5614	129.2293	24.85733
Temperatur	e C	35	35	35	25.80515	57.64858	25
Pressure b	ar	1.06	1.06	1.06	1.06	2	2
Liquid Fract	ion	1	1	1	0	1	0
mole fraction	C02	0.0183409	0.0183727	0	I	0.0131649	ı
(valid for liquid)	DIBA	0.1021929	0.1023622	0.4128682	I	0.0570387	I
CO2 Loadi	ng	0.1794742	0.1794872	0	1	0.2308067	I

0.0183727		- 0.1023622 0.3545512 -
1 1	1 1	1 1 0
1.06	1.06 1.06	1.06 1.06 1.06
30 57	35 35	35 35 29.86919
2950.82 29	2950.82 290.4679	2950.82 290.4679 4858.439
29.143	29.143 0 0.	29.143 0 0.0000436022
36.917	36.917 0 0	36.917 0 0.000207537
0	0 0	0 0 4283.949
0	0 0	0 0 253.6366
6.909 23	6.909 231.6791	6.909 231.6791 101.5911
33974	33974 0	33974 0 74.07071
67.41 58	67.41 58.78884	67.41 58.78884 145.191
un_in Ma	un_in Make_up	un_in Make_up Gas_off

Table
A.27:
Stream
table
for
DIBA
Scenario
2
basecase
ratebase

clir
recy
amine
with
basecase
с.
enario
$\overset{\mathrm{o}}{\mathrm{s}}$
DIBA
for
table
Stream
A.28:
Table

Stream Na	tme	Lean_4	Lean_in	Make_up	Gas_off	De_rich	CO2_out
	WATER	15406.89	15406.89	188.5099	28.69629	928.4031	8.133701
	C02	0.9723916	0.972594	0	113.8477	84.45044	1024.634
Mass Flow	DIBA	6274.715	6274.715	3.446684	3.123152	1013.518	0.3120842
m kg/hr	02	0.2226934	0	0	251.8704	4.870645	4.8451
	N2	1.229089	0	0	4273.575	30.78151	30.72324
	DIBA+	2324.769	2324.765	0	0.0000550907	4913.291	0.000021588
	DIBA-	3074.28	3074.274	0	0.00000721278	6514.446	0.00000400181
Total Flow k	¢g/hr	27083.08	27081.61	191.9566	4671.113	13489.76	1068.648
Temperatu	re C	35	35	35	IJ	54.57054	25
Pressure k	oar	1.06	1.06	1.06	1.06	2	2
Liquid Frac	tion	1	1	1	0	1	0
mole fraction	CO2	0.0186657	0.0186666	0	I	0.0138963	I
(valid for liquid)	DIBA	0.0879953	0.088	0.00254207	I	0.0567887	I
CO2 Load	ing	0.2121214	0.2121212	0	I	0.2447017	1

I	0.2747928	ı	0	0.1794872	0.1794743	Loading	CO2 I
1	0.051792	I	0.2278162	0.1023622	0.1021801	uid) DIBA	(valid for liqu
I	0.014232	I	0	0.0183727	0.0183387	on CO2	mole fractic
0	1	0	1	1	1	Fraction	Liquid
2	2	1.06	1.06	1.06	1.06	ure bar	Pressu
25	57.29882	29.71577	35	35	35	rature C	Tempe
1066.914	12529.33	4859.321	294.5488	22834.08	22872.03	low kg/hr	Total Fl
0.00000348313	6099.28	0.0000435171	0	2416.787	2416.804	DIBA-	
0.0000198784	4602.061	0.000208821	0	1827.574	1827.382	DIBA+	
29.20466	29.28344	4284.438	0	0	32.46285	N2	
4.604642	4.639111	253.7206	0	0	5.663198	02	m kg/hr
0.2790562	856.6082	97.40254	200.0391	6483.761	6483.761	v DIBA	Mass Flow
1024.631	80.15326	79.71686	0	0.4411421	0.4383088	CO2	
8.195169	857.3042	144.0429	94.50969	12105.52	12105.52	WATER	
$CO2_out$	De _rich	Gas_off	Make_up	$Lean_{in}$	$Lean_4$	n Name	Stream

 Table A.29:
 Stream table for DIBA Scenario 4.
 double strippers

recyc
amine
with
opers
strij
double
<u>ю</u> .
lario
Scei
DIBA
for
table
Stream
A.30:
Table $_{I}$

Table .	A.30: Stre	am table for	DIBA Scen	ario 5. doub	le strippers wit	h amine rec	ycling
Stream Na.	me	$Lean_4$	Lean_in	Make_up	Gas_off	De_rich	CO2_out
	WATER	11634.92	11634.92	41.97766	27.83568	823.8526	8.723725
	CO2	0.4212273	0.4239929	0	112.3905	76.53726	1024.637
Mass Flow	DIBA	6231.707	6231.707	4.761103	4.469278	853.5231	0.1589583
kg/hr	02	5.431851	0	0	254.1619	4.365711	4.326948
	N2	31.07622	0	0	4287.009	27.60117	27.51152
	DIBA+	1756.136	1756.527	0	0.0000705529	4418.675	0.0000131497
	DIBA-	2322.835	2322.836	0.00E + 00	0.0000113525	5856.213	0.00000171143
Total Flow k	tg/hr	21982.53	21946.42	46.73877	4685.866	12060.77	1065.358
Temperatur	e C	35	35	35	5	58.12181	25
Pressure b	ar	1.06	1.06	1.06	1.06	2	2
Liquid Frac	tion	1	1	1	0	1	0
mole fraction	CO2	0.0183367	0.0183727	0	I	0.0141254	ı
(valid for liquid)	DIBA	0.1021769	0.1023622	0.0155633	I	0.0536386	I
CO2 Loadi	ing	0.1794607	0.1794872	0	I	0.2633443	I

I	0.2928948	ı	0	0.1794872	0.1794741	CO2 Loading
1	0.0482942	I	0.4071897	0.1023622	0.102178	(valid for liquid) DIBA
I	0.0141451	ı	0	0.0183727	0.0183383	mole fraction CO2
0	Ц	0	1	1	1	Liquid Fraction
2	2	1.06	1.06	1.06	1.06	Pressure bar
25	32.46131	31.3037	35	35	35	Temperature C
1071.288	13058.81	4867.547	513.8662	23764.61	23804.56	Total Flow kg/hr
0.00000074215	6349.153	0.0000445134	0	2515.275	2515.291	DIBA-
0.00000878442	4790.435	0.000196394	0	1902.05	1901.847	DIBA+
31.61501	31.73463	4280.255	0	0	34.15959	N2
4.98688	5.038205	252.9985	0	0	5.979753	m kg/hr O2
0.0859634	849.3252	142.3384	427.1791	6747.984	6747.984	Mass Flow DIBA
1024.626	84.707	35.48127	0	0.4591194	0.4561363	CO2
9.973854	948.4201	156.4736	86.68706	12598.84	12598.84	WATER
$CO2_out$	De_rich	Gas_off	Make_up	Lean_in	$Lean_4$	Stream Name
at	earrangemei	ıeat exchanger r	Scenario 6. ł	e for DIBA \$	Stream table	Table A.31:

le A.31: Stream table for DIBA Scenario 6. heat exchanger rearrangem	ab
A.31: Stream table for DIBA Scenario 6. heat exchanger rearrangem	le
: Stream table for DIBA Scenario 6. heat exchanger rearrangem	A.31
Stream table for DIBA Scenario 6. heat exchanger rearrangem	•••
1 table for DIBA Scenario 6. heat exchanger rearrangem	Stream
for DIBA Scenario 6. heat exchanger rearrangem	ı table
DIBA Scenario 6. heat exchanger rearrangem	for
Scenario 6. heat exchanger rearrangem	DIBA
0 6. heat exchanger rearrangem	Scenario
heat exchanger rearrangem	6.
exchanger rearrangem	heat
er rearrangem	exchang
rearrangem	er
_	rearrangem

recycling
amine
with
hanger rearrangement
t exc
hea
Ч.
scenario
DIBA
or
table f
Stream
A .32:
Table I

ich CO2_out	498 9.903817	998 1024.594	954 0.0847713	027 4.372339	216 27.88744	0.00000000000000000000000000000000000	227 0.00000699298	1.41 1066.842	563 25	2	0		983 -	611 -
$\mathrm{De}_{-}\mathrm{r}$	875.0°	77.16	853.33	4.434	28.03	4420.0	5858.5	12116	34.63	2	1	0.0135	0.0523	0.2655
${ m Gas_off}$	27.84175	112.1004	4.460798	254.1581	4286.987	0.0000703913	0.0000113067	4685.548	IJ	1.06	0	ı	I	
Make_up	151.8476	0	4.709178	0	0	0	0	156.5568	35	1.06	1	0	0.00430417	0
${\rm Lean_in}$	11637.82	0.4240985	6233.26	0	0	1756.965	2323.414	21951.88	35	1.06	1	0.0183727	0.1023622	0.1794872
$Lean_4$	11637.82	0.4213665	6233.26	5.339058	30.43053	1756.48	2323.427	21987.18	35	1.06	1	0.0183364	0.1021788	0.1794546
ume	WATER	CO2	DIBA	02	N2	DIBA+	DIBA-	kg/hr	re C	oar	tion	CO2	DIBA	ing
Stream N_{δ}			Mass Flow	m kg/hr				Total Flow 1	Temperatu	Pressure	Liquid Frac	mole fraction	(valid for liquid)	CO2 Load

	0.067006		0	0.1794872	0.1793059	CO2 Loading	
	0.1353486		0.1897408	0.1023622	0.1021653	r liquid) HXA	(valid for
	0.00906917		0	0.0183727	0.0183188	raction CO2	mole fr
0	Ц	0	1	1	1	iquid Fraction	L
2	2	1.06	1.06	1.06	1.06	Pressure bar	
25	57.50322	31.80858	35	35	35	lemperature C	T
1062.751	13602.98	4865.961	132.0361	27846.85	27886.21	otal Flow kg/hr	To
0.000000130434	5704.271	0.000000190736	0.00E + 00	2714.343	2714.433	HXACOO-	
0.00000000023813	3892.335	0.0000000017285	0.00E+00	1923.838	1920.888	HXA+	
1.48419	2503.706	68.12329	75.00968	6870.604	6870.604	HXA	
25.41996	25.42829	4284.714	0	0	35.97008	/hr N2	$\mathrm{kg}/$
4.068454	4.072376	253.6537	0	0	6.284099	Flow O2	Mass
1024.636	72.96271	110.8833	0	5.270659	5.243232	CO2	
7.141831	1400.202	148.586	57.02641	16332.79	16332.79	WATER	
$CO2_out$	$\mathrm{De}\mathrm{-rich}$	Gas_off	Make_up	Lean_in	$Lean_4$	Stream Name	70

CO2_out	7.173263	1024.623	4.119093	25.71863	1.230225	0.00000000024537	0.0000000869306	1062.864	25	2	0			
$\mathrm{De}_{-}\mathrm{rich}$	1347.298	77.02648	4.124081	25.72932	2301.064	3817.552	5595.418	13168.21	57.18755	2	1	0.00991721	0.1288493	0.0769675
Gas_off	161.4297	109.856	253.5152	4283.946	77.87113	0.0000000017395	0.000000200849	4886.618	33.19484	1.06	0			
Make_up	65.46505	0	0	0	86.99693	0	0	152.462	35	1.06		0	0.1913222	0
$Lean_in$	15792.32	5.096246	0	0	6643.247	1860.176	2624.522	26925.36	35	1.06	1	0.0183727	0.1023622	0.1794872
Lean_{-4}	15792.32	5.068691	6.369144	36.42792	6643.247	1857.272	2624.609	26965.31	35	1.06	1	0.018317	0.1021574	0.1793025
ame	WATER	CO2	02	N2	HXA	HXA+	HXACOO-	kg/hr	re C	bar	ction	CO2	HXA	ling
Stream N ^a			Mass Flow	m kg/hr				Total Flow 1	Temperatu	Pressure	Liquid Frac	mole fraction	(valid for liquid)	CO2 Load

 Table A.34: Stream table for HXA scenario 2. basecase ratebase

A. Appendix 1

	CUJ 6UJ	(valid for liquid)	mole fraction	Liquid Fracti	Pressure ba	Temperature	Total Flow kg	Η			kg/hr	Mass Flow			Stream Nan	
50	R	HXA	CO2	ion	ιr	Õ	5/hr	IXACOO-	HXA+	HXA	N2	O2	CO2	WATER	ле	Table A.
0.1794071	0 170/071	0.1023587	0.018372	Ц	1.06	35	26678.63	2600.379	1843.064	6582.132	0.8301716	0.1421239	5.0489	15647.04	$Lean_4$	35: Stream
0.1194012	0 170/079	0.1023622	0.0183727	Ц	1.06	35	26677.66	2600.377	1843.063	6582.132	0	0	5.049363	15647.04	Lean_in	table for HX
	Ο	0.0117777	0	1	1.06	35	247.8298	0.00E + 00	0	15.54971	0	0	0	232.2801	Make_up	A scenario 5
				0	1.06	10	4693.226	0.0000000399828	0.0000000006244	7.839584	4283.916	253.5111	110.591	37.36797	${ m Gas_off}$	3. basecase with am
0.0703300	0 0762300	0.1294573	0.00990747	1	2	57.32386	13048.06	5537.361	3777.968	2291.405	25.4015	4.070384	76.26796	1335.585	De _rich	ine recycling
				0	2	25	1062.448	0.0000000807193	0.00000000024376	1.181239	25.39035	4.065186	1024.634	7.176775	$CO2_out$	

	e	
	A.35:	
	Stream	
	table	
	for	
	HXA	
	scenario	
	లు	
	basecase	
	with	
	amine	
c	recvcl	
	Ħ.	

CO2_out	7.447043	1024.625	4.157553	25.9837	0.5289539	0.00000000018161	0.0000000216965	1062.742	25	2	0			
De_rich	1360.133	77.56557	4.170472	26.01207	2308.237	3849.797	5642.652	13268.57	55.39695	2	1	0.00990523	0.1281975	0.0772653
Gas_off	162.7891	100.6005	253.4015	4283.288	80.97133	0.00000000017174	0.00000020227	4881.05	33.37859	1.06	0			
Make_up	259.375	0	0	0	114.3559	0	0	373.7309	35	1.06	1	0	0.0727794	0
$Lean_in$	15909.6	5.134092	0	0	6692.581	1873.99	2644.012	27125.31	35	1.06	1	0.0183727	0.1023622	0.1794872
$Lean_4$	15909.6	5.102542	6.369503	36.42071	6692.581	1869.577	2644.115	27163.76	35	1.06	1	0.0183032	0.1021326	0.1792108
ame	WATER	CO2	02	N2	HXA	HXA+	HXACOO-	kg/hr	re C	bar	ction	CO2	HXA	ling
Stream Na			Mass Flow	m kg/hr				Total Flow 1	Temperatu	Pressure	Liquid Frac	mole fraction	(valid for liquid)	CO2 Load

Table A.36: Stream Table for HXA scenario 4. double strippers

	0.0769047		0	0.1794872	0.1792116	CO2 Loading	
	0.1288507		0.1801479	0.1023622	0.1021301	or liquid) HXA	(valid for
	0.00990923		0	0.0183727	0.0183029	fraction CO2	mole fr
0	<u></u> -	0	1	1	1	Liquid Fraction	L
2	2	1.06	1.06	1.06	1.06	Pressure bar	
25	55.50835	СЛ	35	35	35	Temperature C	L
1062.393	13145.37	4712.33	75.78036	26870.35	26909.21	otal Flow kg/hr	Tc
0.000000013499	5582.522	3.0849E-17	$0.00E{+}00$	2619.16	2619.273	HXACOO-	
0.00000000015761	3808.807	9.96E-22	0.00E+00	1856.375	1852.018	HXA+	
0.3886353	2299.15	38.4829	41.86257	6629.674	6629.674	HXA	
25.63827	25.66936	4283.387	0	0	36.71045	/hr N2	kg/
4.100238	4.114283	253.4152	0	0	6.428649	s Flow O2	Mass
1024.651	76.89966	112.3341	0	5.085834	5.054283	CO2	
7.614913	1348.21	24.71087	33.9178	15760.05	15760.05	WATER	
$CO2_out$	$\mathrm{De}\mathrm{_rich}$	${ m Gas_off}$	Make_up	Lean_in	$Lean_4$	Stream Name	-
ycling	nd amine rec	ole strippers a	nario 5. doul	or HXA scei	ream table f	Table A.37: St	

	ນ໌
	σ
	E
	⊳
	ಲು
	-1
	••
	S
	È
	æ
	à
	Ħ
	Ξ.
	5
	5
	Ě
	0
	fc
	ř
	—
	Щ
	\sim
	\geq
	S
	S.
	B
	2
	È.
	5
	сл
	ρ
	2
	E
	5
	Φ
	S
	t
F	<u>با</u> :
F	2
	Ř
	Ĕ
	Ω
	හ
	p
	പ
	හ
	Ĕ
	:⊟
	Ц
	Φ
	Ľ
	ē
¢	ž
	o.
	E
	-

	CO2_out	7.696647	1024.591	4.22564	26.42383	0.3503442	0.0000000001503	0.0000000114864	1063.288	25	2	0			
rrangement	De_rich	1418.49	78.31057	4.246038	26.4691	2315.802	3883.465	5692.506	13419.29	35.68416	2	1	0.00977916	0.1257727	0.0777526
. heat exchanger rea	Gas_off	164.3877	91.07953	253.28	4282.585	84.58222	0.0000000016926	0.000000203939	4875.915	33.58955	1.06	0			
A scenario 6	Make_up	145.9203	0	0	0	146.1404	0	0	292.0607	35	1.06	1	0	0.1513193	0
able for HX	Lean_in	16031.9	5.173558	0	0	6744.028	1888.395	2664.337	27333.83	35	1.06	1	0.0183727	0.1023622	0.1794872
38: Stream t	Lean_4	16031.9	5.145528	6.480153	37.0366	6744.028	1885.437	2664.429	27374.45	35	1.06	1	0.0183169	0.102157	0.1793018
Table A.:	nme	WATER	CO2	O2	N2	HXA	HXA+	HXACOO-	kg/hr	re C	bar	ction	CO2	HXA	ling
	Stream $N_{\hat{t}}$			Mass Flow	m kg/hr				Total Flow	Temperatu	Pressure	Liquid Frae	mole fraction	(valid for liquid)	CO2 Loac

rearrang
exchanger
heat
6.
scenario
HXA
for
table :
Stream
A.38:
ē

CO2 Loadin	(valid for liquid)	mole fraction	Liquid Fractic	Pressure baı	Temperature	Total Flow kg	Η			m kg/hr	Mass Flow			Stream Nam	Table A.:
00	HXA	CO2	on	ſ	C	/hr	XACOO-	HXA+	HXA	N2	02	CO2	WATER	le	39: Stream
0.179211	0.10213	0.0183028	<u> </u>	1.06	35	26652.72	2594.3	1834.359	6566.49	36.35417	6.365145	5.00608	15609.85	$Lean_4$	1 Table for I
0.1794872	0.1023622	0.0183727	1	1.06	35	26614.25	2594.197	1838.682	6566.487	0	0	5.037361	15609.85	Lean_in	HXA scenari
0	0.0433519	0	<u>н</u>	1.06	35	37.8692	0	0	7.683548	0	0	0	30.18565	Make_up	o 7. heat exc
			0	1.06	Ċ	4680.739	0.0000000266773	0.00000000046812	4.412848	4283.948	253.5155	112.4161	26.44642	Gas_off	changer rearrangemen
0.0766742	0.1275553	0.00978021	1	2	36.0981	13070.2	5523.413	3768.245	2289.279	25.496	4.086444	76.34004	1383.342	De_{rich}	t with amine
			0	2	25	1062.151	0.0000000118053	0.00000000015135	0.3561168	25.45261	4.066901	1024.604	7.670696	$CO2_out$	• recycling