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Longitudinal Trajectory Estimation for Lane Change Assist
A comparison of Model predictive control and curve interpolation using smoothing
splines in convex optimization
Dandan Ge
Anders Hjelmström Sarvik
Department of Electrical Engineering
Chalmers University of Technology

Abstract
In this thesis, two algorithms to generate a longitudinal trajectory suitable for a
lane change during highway driving are developed and evaluated.

One of the algorithms uses the Model predictive control framework to minimize the
acceleration and deviation from the desired position while fulfilling physical and
design constraints. The other algorithm uses optimal interpolating B-splines to gen-
erate a velocity profile. Both methods work in a receding horizon context which
solves an optimization problem in each time instant.

It is shown in simulations that both algorithms successfully generate trajectories
suitable for a lane change.

Keywords: Advanced driver-assistance systems, lane change, trajectory planning,
Model predictive control, Optimal interpolating splines, B-spline functions.
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1
Introduction

Since the very first automobiles appeared, work has been done both to prevent acci-
dents and to reduce the injuries caused by a crash. In later years, safety systems have
gone from being purely mechanical to becoming more and more electrical and com-
puter controlled. The Advanced Driver Assistance Systems (ADAS) that are offered
in cars today include a number of features to make the ride safer and more enjoy-
able for the driver and passengers. ADAS is a collection of systems and subsystems
that is constantly being extended as more systems are being developed. Although
working as standalone systems, they are building blocks towards fully autonomous
vehicles (called Autonomous Drive, AD) [1]. Some of the systems which are available
today are Adaptive Cruise Control (ACC), introduced in 1999, Lane Keep Assist
(LKA) in 2001 and Collision Mitigation by Braking (CMbB) in 2003 [2]. Today, the
development is progressing quickly, both introducing more advanced systems and
making already existing systems more affordable. When these systems where first
introduced, they were only available in the most expensive car models, but today
you can get the benefits of ADAS in all price ranges. The technology has trickled
down to cheaper models when the cost of sensors and microcontrollers has decreased.

The driver assistance systems are not only for preventing or minimizing the risk of
accidents. They are also sold as comfort features, giving the driver a chance to relax
and making the drive more enjoyable. However, these comfort features can also lead
to a safer traffic environment. By taking care of some of the driver’s tasks, like
keeping the right speed and the vehicle in the correct lane, the driver’s stress level
and drowsiness can be reduced. With a lower stress level, the driver is less likely to
make errors and thus less likely to get involved in an accident [3].

A traditional cruise control is designed to keep a constant speed, regardless of in-
cline changes and other outside disturbances. The ACC systems available today are
an evolution of the traditional cruise control, with the addition to adjust the speed
depending on the traffic ahead. If the host vehicle, travelling at its user-defined
speed, catches up with a slower vehicle in the same lane, it is designed to slow down
in a comfortable way and keep a predefined distance to the vehicle in front. If the
preceding vehicle later exits the lane, the host vehicle accelerates back up to the
desired speed again.

As it is designed, the ACC only keeps track of one target vehicle at a time, the
vehicle in front of and in the same lane as the host vehicle. When either the target
or the host vehicle makes a lane change, the ACC drops the old target and searches
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1. Introduction

for a new one. Depending on when this target shift occurs, different behaviours can
be expected. A late target shift and a new slower target, can create a high differ-
ence in speed with a short distance between the vehicles, leading to the ACC either
braking hard or aborting functionality, leading to an emergency brake instead. For
a driver to change to a slower moving lane safely, most ACC systems require the
driver to turn off the ACC, manually slow down, make the lane change and then
turn on the ACC again. Otherwise the driver would enter the slower moving lane
without having slowed down at all.

This thesis compares two different methods to generate a longitudinal trajectory for
lane changes when moving into a lane with slower moving traffic. The trajectory
needs to fulfill requirements regarding comfort and safety distances to surrounding
vehicles. The first method uses a Model Predictive Control (MPC) framework which
aims to minimize the acceleration while still fulfilling certain constraints. MPC has
been used successfully in similar but not identical scenarios [4]. The second method
uses optimal vector smoothing splines with constraints to generate a curve that acts
as a velocity profile. This approach is usually used for complex path planning [5],
but is now reworked and applied to the problem at hand. The developed systems
will be referred to as a Lane change assistance system, LCA.

1.1 Aim
This project aims to develop and evaluate algorithms using two different methods
for generating a longitudinal control suitable for a lane change. In the specified sce-
nario, the host vehicle is travelling at higher speed than the traffic in the adjacent
lane. The aim is to adjust the speed in a safe and comfortable manner to match the
speed in the new lane.

The input to the algorithms will be the type of data that is available from a vehicle’s
on board sensors such as position, velocity and acceleration of both the host vehicle
and the surrounding vehicles. The output will be a longitudinal trajectory that
contains an acceleration or velocity profile which, if followed, will guide the host
vehicle to the correct speed. For an overview of the system, see Figure 1.1 were this
thesis handles the orange box, Trajectory planning algorithm.

Figure 1.1: System architecture
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1. Introduction

1.2 Problem formulation
The problem of this project is, as mentioned earlier, to develop and implement two
algorithms to estimate a longitudinal trajectory for highway lane changing. When
a lane change is initialized, the LCA system needs to calculate a longitudinal tra-
jectory based on the current speed and the speed of the vehicles in the new lane.

The following interim targets need to be fulfilled to reach the overall aim:
• Two trajectory planning algorithms will be developed
• The developed algorithms will be evaluated using simulations of 5 variations

of the same scenario
• A set of performance indicators will be used to compare the performance of

the two methods

1.3 Limitations and assumptions
A number of limitations and assumptions have been set to make this project feasible
within reasonable time. The following statements are true for all cases in this project.

• All sensor data are already processed by on-board computers of the host ve-
hicle, to get information about the host and surrounding vehicles. Available
signals include positions, velocities and accelerations

• A control system exists to perform the lane change with the generated trajec-
tory as reference

• The considered scenarios are on a highway with two lanes of traffic travelling
in the same direction

• The surrounding vehicles are assumed to travel at constant speed and in a
predictable manner

• The driver is responsible for any lateral motion, the thesis only deals with
longitudinal planning

• Only front on-board sensing system is available.

1.4 Methods
During this project, two different methods will be used to solve the trajectory gen-
eration problem. As mentioned before, one of the methods will be based on MPC,
and the other will be based on smoothing splines. Both methods formulate a convex
optimization problem but the cost functions are derived differently. The algorithms
will be tested on predefined scenarios in a simulation environment. They will be
evaluated based on measurements associated to comfort and how much the host
vehicle affects other road users. All development and evaluation will be done using
Matlab.

3



1. Introduction

1.5 Thesis outline
Chapter 1 - Introduction describes background, problem formulation, limitations
and assumptions, aim and method of this project.
Chapter 2 - Theory and method describes theories and methods shared between the
two methods.
Chapter 4 - Model predictive control is the main chapter for the method using MPC
for trajectory planning. All details regarding this model are explained here.
Chapter 3 - Curve interpolation using smoothing B-splines explains the theory and
implementation for using B-splines in the LCA trajectory generation.
Chapter 5 - Results explains how the results are evaluated, and the resulting evalu-
ation. Data are presented in plots and tables.
Chapter 6 - Discussion discusses and elaborates on drawbacks and advantages as
well as future improvements for the two methods.
Chapter 7 - Conclusion contains a short summary of the outcome of the thesis.

4



2
Theory and method

In this chapter, theory and methods shared between the MPC and B-spline method
are presented.

The concept of a trajectory as used in this thesis and the coordinate system used
are explained. For longitudinal simulations, a point-mass vehicle model is used in
both methods, and a single track model is used in MPC for lateral simulation of the
driver action, both of which are described in Section 2.3. The theory behind convex
optimization together with quadratic programming presented, as well as how soft
constraints can be implemented in optimization problems.

The objective for the generated trajectory is to estimate a safe and comfortable
way to get the host vehicle from the current position and velocity to a desired
position with a desired velocity. In other words, to go from following a car in the
current lane to following a slower car in the adjacent lane. The output trajectory,
a sequence of acceleration values, will be the input to the car’s ACC. This chapter
also describes the general scenario that the LCA system is designed for, how the
position constraints are calculated and the three different phases of the lane change.

2.1 Definition of trajectory
When planning the motion of an autonomous car, or for a driver assistance system,
the concepts of paths and trajectories are used. A path is defined as the track which
the controlled object is intended to follow. For example the center of the lane on a
highway. In this regard, a path is a pure geometric description of motion [6]. Path
planning is done both on a global and more local scale. For an autonomous car,
a global path can be the route from the user’s home to the office, while the local
path planning takes care of positioning the vehicle in the upcoming roundabout or
similar scenarios with a much shorter planning horizon.

A trajectory is meant to work as a reference input to the control system which
controls the object. The difference from the path is that the trajectory also contains a
timing law [6]. This specifies at what time the object should be in a certain position,
or at what velocity and acceleration it will be travelling with. The transitions
described by the trajectory need to fulfill the motion laws required by the object.
For a car there will be physical limits on, for example the acceleration, and it will
not be possible to travel sideways. A motion model can handle this by linking the

5



2. Theory and method

lateral and longitudinal motions, this is explained in Section 2.3.
The terms path and trajectory are often used analogously, but in this thesis the
distinction described above are adopted.

2.2 Vehicle coordinates and size
To model the motion of a vehicle, a coordinate system needs to be defined. Local
coordinates will be used, with origin fixed at the center of gravity of the host vehicle,
which is assumed to be in the geometric center. This is a Vehicle Fixed Coordinate
system, which implies that the surrounding vehicles’ positions and velocities are rel-
ative to the host vehicle. The axis are defined according to the ISO8855 standard
as is shown in Figure 2.1. The x-axis points in the vehicle’s forward direction and
the y-axis points to the right, perpendicular to the x-axis.

For an on-board sensor system such as radar and camera, it is hard to calculate
the size of surrounding vehicles without high uncertainties. For this thesis, all cars,
including the host vehicle, are assumed to be 4.75 m long and 2 m wide, this
corresponds well with an average car. The lateral and longitudinal distance to the
surrounding vehicles are measured to the center of their rear bumper.

Figure 2.1: The vehicle coordinate system is defined with the x-axis pointing along
the vehicle, and the y-axis perpendicular to the right.

2.3 Vehicle motion model
In order to plan a vehicle to follow a desired trajectory, an accurate mathematical
motion model for the vehicle dynamics of the host vehicle is very important. There
are several different vehicle modeling methods, such as single-track model, double-
track model and point mass model. A comparison and evaluation of different motion
models is available in [7] In this project, both point mass model and single-track
model are used for longitudinal and lateral dynamic simulation of the driver.
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2. Theory and method

2.3.1 Point-mass vehicle model
In the point mass model, the vehicle is considered to be a particle with finite mass
and zero dimension. The kinematic equations for the point mass model are as
follows:

a(k + 1) = a(k) + j(k)h (2.1a)

v(k + 1) = v(k) + a(k)h+ 1
2j(k)h2 (2.1b)

x(k + 1) = x(k) + v(k)h+ 1
2a(k)h2 + 1

6j(k)h3 (2.1c)

where j is the rate of acceleration, that is the derivative of acceleration with respect
to time, here j is the constant jerk. a denotes the acceleration, v denotes the velocity
and x denotes the position.

A state space representation for longitudinal and lateral motion can be generated
using the (2.1a)-(2.1c) equations:

 x(k + 1)
vx(k + 1)
ax(k + 1)

 =

1 h h2

2
0 1 h
0 0 1


 x(k)
vx(k)
ax(k)

+


h3

6
h2

2
h

 jx(k) (2.2a)

 y(k + 1)
vy(k + 1)
ay(k + 1)

 =

1 h h2

2
0 1 h
0 0 1


 y(k)
vy(k)
ay(k)

+


h3

6
h2

2
h

 jy(k) (2.2b)

where h is the sampling time. x and y represent longitudinal and lateral position,
vx and vy denote the longitudinal respective lateral velocity, ax and ay denotes the
longitudinal and lateral acceleration and jx and jy are longitudinal and lateral jerks.

2.3.2 Single-track vehicle model
The singel track model is a two degrees of freedom model for lateral dynamics which
contains the vehicle lateral position and the vehicle yaw angle φ. The vehicle lateral
position is measured along the lateral axis of the vehicle to the point O that is the
center of rotation of the vehicle. The vehicle yaw angle φ is measured with respect
to the x-axis. see Figure 2.2. The standard form of the model is introduced in [8]

7



2. Theory and method

Figure 2.2: Lateral vehicle dynamics

The model is described as follows:

m(ÿ + vxφ̇) = Fyrcosδ + Fxrsinδ + Fyf
cosδ + Fyrsinδ (2.3a)

Izφ̈ = lfFxf
cosδ + lfFxf

sinδ − lrFyrsinδ − lrFyrcosδ (2.3b)

where m is the vehicle mass. y is the lateral position. Fyf
and Fyr are the front and

rear lateral tire forces. Iz is the moment about the z-axis. vx denotes the longitu-
dinal velocity of the vehicle at the center gravitation. δ is the front wheel steering
angle. lf and lr are the distances of the front tire and the rear tire respectively from
the c.g of the vehicle.

Assume that the steering angle δ is small and neglecting the longitudinal force Fxf
,

the motion model can be simplified to:

m(ÿ + vxφ̇) = Fyr + Fyf
(2.4a)

Izφ̈ = lfFyf
− lrFyr (2.4b)

For small tire slip angles, the lateral tire forces can be approximated as a linear
function of tire slip angle. The front and rear tire forces and tire slip angles are
defined as follows:

Fyf
= Cf (δ −

ẏ + lf φ̇

vx
) (2.5a)

Fyr = Cr(
−ẏ + lrφ̇

vx
) (2.5b)

The state space form of the single-track motion model then becomes:
ẏ
ÿ

φ̇

φ̈

 =


0 1 0 0
0 −Cf +Cr

mvx
0 −vx − Cf lf−Crlr

mvx

0 0 0 1
0 −Cf lf−Crlr

Izvx
0 −Cf l

2
f +Crl2r
Izvx



y
ẏ
ϕ
ϕ̇

+


0
Cf

m

0
Cf lf
Iz

 δ (2.6)

Cf and Cr are the cornering stiffness of each front tire and rear tire respectively.
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2. Theory and method

2.4 Convex optimization and Quadratic Program
Formulation

The two methods used in this thesis both formulate the trajectory generation prob-
lem as a convex optimization problem. The standard form convex optimization
problem is formulated as

min
x∈Rn

f(x) (2.7a)

Ax = b, (2.7b)
s.t. gi(x) ≤ 0, i = 1, ...,m (2.7c)

where A ∈ Rp×n, b ∈ Rp, and f : Rn → R and gi : Rn → R are convex functions.

Given an objective function f(x) which is quadratic in terms of its variables, x, and
a set of constraints, it can be formulated as the standard quadratic programming
problem (QP):

min
x∈Rn

f(x) = 1
2x

TGx+ xT c (2.8a)

s.t. Ax = b (2.8b)
Cx ≤ d (2.8c)

where C ∈ Rm×n and d ∈ Rm. A QP problem can always be solved or shown to
be infeasible, but the number of computations depends strongly on the number of
decision variables and the characteristics of the objective function. If G is positive
semidefinite, (2.8a) is a convex QP, and strictly convex if G is positive definite. For
the convex problems, local optima are also global optima, which means the com-
putational process can be terminated when the first optima is found, knowing it is
a global optima. This means that the convex optimization problems can be solved
more efficiently than nonconvex problems.

There are several both commercial and free solvers applying different methods to
solve QP problem. Some examples are CPLEX, written in C but with API for several
languages [9], and Matlab’s quadprog [10], which will be used in this thesis.

2.5 Soft constraints and slack variables
If there exists a point x ∈ Rn such that,

gi(x) ≤ 0, i = 1, . . . ,m (2.9a)
Ax = b, (2.9b)

the optimization problem (2.7a) is said to be feasible, and infeasible otherwise. Fea-
sibility is thus a necessary (but not sufficient [11]) condition for the existence of a
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2. Theory and method

solution to the optimization problem.

For complicated optimization problems, it can be difficult to decide a priori if a
feasible point exists. This can be a severe problem in cases where the optimization
procedure has to deliver a result (as in e.g. LCA). In such cases, it would be useful
to tell the optimization procedure that it can violate some constraints (of less impor-
tance) if the problem would be infeasible otherwise. This is typically implemented
using so-called soft constraints.

By introducing the slack variables s ∈ Rm, we rewrite the constraints as,

gi(x) + si ≤ 0, i = 1, . . . ,m (2.10a)
Ax = b (2.10b)

Note that since the slack variables are unrestricted, the modified constraints (2.10)
are always feasible provided that A has full row rank (which usually is easy to verify
a priori). To enforce that the slack variables are as small as possible, and desirably
identical to zero when possible, they are heavily penalized in the objective function.
The resulting soft constrained problem becomes:

min
x∈Rn

f(x) + γ‖s‖2
p (2.11a)

s.t. gi(x) + si ≤ 0, i = 1, ...,m (2.11b)
Ax = b, (2.11c)

where γ > 0 is large and typically p = 1, 2.

2.6 The general scenario
All evaluation and testing will be done on variations to a general scenario, the varia-
tions will include different initial conditions on the host vehicle. The general scenario
takes place on a highway. The properties of a highway leads to the curvature being
small enough to be neglected, i.e. the road is straight, and the speed varies from 80
km/h and upwards. The host vehicle is travelling in the left of two unidirectional
lanes. In front of, and behind the host are two vehicles, travelling at the same speed
as the host’s initial speed and in the same lane. In the adjacent lane, to the right
of the host vehicle, are two other vehicles, both travelling at the same speed, which
is slower than the speed of the host vehicle. In Figure 2.3, the initial configuration
of the lane change scenario can be seen. The travelling direction is to the right,
vehicles s1 and s2 are travelling at the same initial velocity as the host vehicle (E)
and vehicles s3 and s4 are travelling at a slower speed. From here on, the notation
shown in Figure 2.3 will be used for the surrounding vehicles.

The trajectory should guide the host vehicle to align longitudinally between the two
vehicles in the right lane, keeping the same velocity as they have. The two other
vehicles in the left lane should be affected as little as possible, but are assumed to
act to avoid any accidents.

10



2. Theory and method

2.6.1 The different phases
The LCA divides a lane change into three different phases.

• Phase 1: Phase 1 is initialized when the driver signals a lane change action,
for example by turning on the turn signal. The host vehicle, now in the left
lane is allowed to start slowing down for an upcoming gap between vehicles
s3 and s4. When it is safe to change lanes, the driver is notified by the LCA
system.

• Phase 2: The trajectory transits into Phase 2 when the driver starts the
actual lane change by rotating the steering wheel. If the lane change becomes
infeasible before the driver starts the lane change, the driver will be notified
of this. The driver thus has some time between the notification that a lane
change is safe, until the notification of it becoming infeasible, to start the lane
change.

• Phase 3: When the lane change is completed, the trajectory is in Phase 3.
The vehicle drives in the new lane doing small adjustments to the speed and
position to match the two other vehicles, s3 and s4.

Figure 2.3: Example of initial positions for the vehicles in the lane change scenario

2.7 Safety distance
For a safe behavior, the host vehicle must keep a safe distance to the surrounding
vehicles. This way a margin is created for unplanned behavior of the other vehicles
such as panic braking or swerves. With a safety distance to each vehicle, a less
stressful behavior can be achieved.

The safety distance that the host vehicle needs to keep in front of vehicle sj is defined
as

lf (sj) =
Lsj

+ LE

2 + δf + tfmax(vsj
− vE, 0) (2.12)

and measured in meters between the vehicles’ centers. Lsj
and LE are the length

of the two vehicles, δf is the minimum fixed offset between the vehicles, which will
be kept if they are travelling at the same speed. tf is the minimal time gap which
the host vehicle must maintain to sj with respect to sj’s front, assuming constant
velocities, vE and vsj

. The safety distance behind vehicle sj is defined in an analogous
way but the sign of the difference in velocity has been changed
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2. Theory and method

lr(sj) =
Lsj

+ LE

2 + δr + trmax(vE − vsj
, 0) (2.13)

2.8 Receding horizon optimization
With the receding horizon, the algorithms take the current sensor measurements into
account along with what can be predicted to happen within the prediction horizon
to optimize the trajectory. The trajectory is then fed to the vehicle’s control system
as a reference for one sample period. After the vehicle travelled the first segment
of the trajectory, the procedure is repeated but with updated sensor measurements
and the horizon shifted forward.

For trajectory generation, receding horizon has many advantages, the planning hori-
zon can be relatively short, reducing the computation time. Only following each
generated trajectory for a short period of time lets the algorithms compensate for
unpredictable behaviour. To generate a 60 second trajectory and then follow it
without updating it with regard to what has happened in the traffic would be very
dangerous.

One of the major ideas behind MPC is the concept of a receding prediction horizon.
However, the concept of a receding horizon can be used outside of control theory
and in this thesis both developed methods use a receding prediction horizon.
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3
Curve interpolation using

smoothing B-splines

This chapter explains how splines can be used for smooth curve interpolations, and
how this will be used to generate the desired trajectory. First the theory behind
splines is explained, followed by the approach taken to use splines as a method of
trajectory generation. For the LCA system, a specific type of spline, B-spline, will
be used, and for the sake of simplicity this method will be called the B-spline method
in this thesis.

3.1 Spline
A common method to design trajectories is to use one of several ways of curve in-
terpolation. This can be as simple as connecting straight lines to circle segments
and ellipsoids to get the desired trajectory, or more advanced methods like using
interpolating techniques between waypoints that have been placed along the desired
path. The goal with the interpolation is to create a feasible trajectory between the
waypoints with respect to continuity in both velocity and acceleration [16].

A spline is a special case of polynomial interpolation were a function is described
piecewise by different polynomials. The points where two adjacent polynomials are
connected are called knots, and the curve shifts from one polynomial to the next
without loss of continuity in the knot. Where a single polynomial interpolation
would need a higher degree to describe a complex curve, a spline could give simi-
lar result but with multiple lower degree polynomials, lowering the computational
complexity.

Depending on the functions or polynomials defining a spline, they have different
properties and are given different names such as T-splines, M-splines and B-splines.
B-splines will be used in this thesis.

3.1.1 B-spline
A B-spline, or basis spline, is an affine linear combination of basis functions [14],
Ni,k, and some control points, τi.

S(t) =
∑
i

τiNi,k(t) (3.1)
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3. Curve interpolation using smoothing B-splines

The basis functions of degree k decides the continuity properties of the spline and
are defined recursively. Let ti be a bi-infinite and strictly increasing sequence of
knots and the recursion formula for the basis functions Ni,k becomes

Ni,0(t) =

1 ti ≤ t < ti+1

0, otherwise
(3.2)

for all i, and

Ni,k(t) = t− ti
ti+k − ti

Ni,k−1(t) + ti+k+1 − t
ti+k+1 − ti+1

Ni+1,k−1(t) (3.3)

The basis functions can be seen in Figure 3.1 for different values of k. Regardless of
the degree k, they all have the property of unity,

∫∞
−∞Ni,k(t)dt = 1. From this defini-

tion we see that the basis function has the properties of being piecewise polynomial
of degree k and is positive in (ti, ti+k+1) and zero otherwise.
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Figure 3.1: Uniform basis functions of different degree, k = 0, ..., 3

When constructing the B-spline in (3.1), each polynomial has support from k + 1
control points at k + 1 knot locations.
Let the knots be distributed evenly and let α be a normalizing coefficient so that
ti+1 − ti = 1

α
for all i. We then have what is called a normalized uniform B-spline.

This simplifies the definition from (3.2) to be over a uniform interval of 1 for each
basis function and for this special case we can rewrite (3.1) to

S(t) =
∑
i

τiBk(α(t− ti)) (3.4)

with Bk consisting of the normalized uniform basis spline functions [15]

Bk(t) =


Nk−j,k(t− j) j ≤ t < j + 1

j = 0, 1, ..., k
0, t < 0 or t ≥ k + 1

(3.5)

and Ni,k is defined recursively as before (3.2).
For a finite knot sequence, with k+m knots, and the same number of control points,
τi, the uniform B-spline function is written as
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3. Curve interpolation using smoothing B-splines

S(t) =
m−1∑
i=−k

τiBk(α(t− ti)) (3.6)

Figure 3.2 shows the building blocks of a cubic B-spline. As can be seen in the
figure, at each instance t, k + 1 basis functions are non-zero, the sum of these are
1. This leads to every control point in (3.6) having positive support from k + 1
basis functions. As t goes from one knot to the next, the basis functions acts as
a parametric curve, shifting the weight between the control points. Note that the
B-spline is not defined at the end knots. The curve can be forced to start and end
at a control point and with the same tangent as its control polygon by setting the
k first and last knots to the same value, t1 = ... = tk and tm+1 = ... = tm+k.
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Figure 3.2: Example of a uniform b-spline, decomposed in its different parts,
control points, corresponding basis functions and the spline itself

For later reference, the function B3(t) and its derivatives are shown in Table 3.1

B3(t) B′3(t) B′′3 (t) B′′′3 (t)
0 ≤ t < 1 1

6t
3 1

2t
2 t 1

1 ≤ t < 2 1
6(−t3 + 12t2 − 12t+ 4) 1

2(−3t2 + 8t− 4) -3t+4 -3
2 ≤ t < 3 1

6(t3 − 24t2 + 60t+ 20) 1
2(3t2 − 16t+ 20) 3t-8 3

3 ≤ t < 4 1
6(4− t)3 −1

2(4− t)2 -t+4 -1
t < 0, t ≥ 4 0 0 0 0

Table 3.1: Function B3(t) and its derivatives
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3. Curve interpolation using smoothing B-splines

3.2 Trajectory planning using B-splines
The idea behind using B-splines for the trajectory planning is to formulate an op-
timization problem, and place the control points to the splines in an optimal way.
Constraints will be introduced on the control points to control the position, the
amplitude of the velocity, acceleration and jerk. The trajectory will be designed by
placing the control points in the longitudinal direction and time, and the considered
derivatives of the trajectory will be velocity, acceleration and jerk. Cubic B-splines
are used for the smoothing between the control points which yields a C2 continuity,
the acceleration will hence be piecewise linear and the jerk piecewise constant.

3.2.1 Constructing a trajectory
Given a set of control points, τi over a time interval [t0, tm] we construct a trajectory
describing the position

x(t) =
m−1∑
i=−k

τiBk(α(t− ti)) (3.7)

The trajectory is made up of normalized uniform B-splines, with normalization
coefficient α and m+k control points as described in Section 3.1.1. The knots ti are
placed with a uniform distance of α from [t−k, tm−1]. Cubic splines are used, which
sets k = 3.

3.2.2 Defining a cost function
The trajectory constructed in (3.7) depends on the control points τi. To be able
to place the control points, we need an objective for the trajectory. We introduce
a reference, f(t), which will be the desired final position. The reference for the
end position is simply centered (longitudinally) between the two vehicles, s3 and s4
including the safety distance to each. There will later also be final conditions added
for the velocity and acceleration. But the final position is not the only objective
we have for the trajectory, for comfort’s sake, we also want to penalize unnecessary
high accelerations. With a(t) = p′′(t) being the trajectory acceleration, we can now
define a cost function were the squared acceleration and deviation from the reference
position are penalized

J(τ) = λ
∫ tm

t0
||a(t)||2dt+

∫ tm

t0
||x(t)− f(t)||2dt (3.8)

Here λ > 0 is a weighting parameter and τ = [τ−k, τ−k+1, ..., τm−1]T is the control
point vector. Evaluating the first integral term in (3.8) we can rewrite it as a matrix
multiplication
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3. Curve interpolation using smoothing B-splines

∫ tm

t0
||a(t)||2dt =

∫ tm

t0

m−1∑
i=−k

τi
d2

dt2
Bk(α(t− ti))

2

dt

=
m−1∑
i=−k

m−1∑
j=−k

τiτj

∫ tm

t0

(
d2

dt2
Bk(α(t− ti))

)(
d2

dt2
Bk(α(t− tj))

)
dt

= τTQτ (3.9)

Q is a [(k+m)×(k+m)] matrix with elements qi,j for i, j = −k, ...,m−1. Taking the
inner derivative into account and introducing a new integration variable, t̂ = α(t−t0)
the following expression for qi,j is derived

t̂ =α(t− t0)
dt̂ =αdt

qi,j =
∫ tm

t0

(
d2

dt2
Bk(α(t− ti))

)(
d2

dt2
Bk(α(t− tj))

)
dt

=α4
∫ tm

t0
(B′′k(α(t− ti))) (B′′k(α(t− tj))) dt

=α3
∫ m

0

(
B′′k(t̂− i)

) (
B′′k(t̂− j)

)
dt̂ (3.10)

we see from (3.10) that Q will be a symmetric matrix since qi,j = qj,i. With help
from Table 3.1 we can now establish the Q matrix for cubic B-splines with m control
points to be

Q = α3

6



2 −3 0 1
−3 8 −6 0 1
0 −6 14 −9 0 1
1 0 −9 16 −9 0 1

. . . . . . . . . . . . . . . . . . . . .
1 0 −9 16 −9 0 1

1 0 −9 14 −6 0
1 0 −6 8 −3

1 0 −3 2


(3.11)

it consists of a [k× k] matrix in the upper left corner which is mirrored in the lower
right corner. In between are a band matrix of size [m−k×m−k], the rest, portrayed
as empty cells, are 0.

The second integral term in (3.8) is expanded to separate terms dependent on τ , τ 2

and those not dependent on τ at all.

17



3. Curve interpolation using smoothing B-splines

∫ tm

t0
||x(t)− f(t)||2dt =

=
∫ tm

t0

m−1∑
i=−k

τiBk(α(t− ti))
2

− 2
m−1∑
i=−k

τiBk(α(t− ti))
 f(t) + f 2(t)dt

=
∫ tm

t0

m−1∑
i=−k

τiBk(α(t− ti))
2

dt− 2
∫ tm

t0

m−1∑
i=−k

τiBk(α(t− ti))
 f(t)dt+

∫ tm

t0
f 2(t)dt

= τTQ0τ − 2gT τ +
∫ tm

t0
f 2(t)dt (3.12)

Now the elements of Q0 can be calculated using the same method as used in (3.10)
for Q but with Bk(t) instead of B′′k(t). For explicit values of Q0 see Appendix A.
The last term is independent from τ and thus not of interest in regard of the cost
function in (3.8). In the second term, g is a vector with each element defined as

gi =
∫ tm

t0
Bk(α(t− ti))f(t)dt (3.13)

Since f(t) varies with time, gi can not be calculated in advance, but needs to be
calculated in every iteration.

3.2.3 QP-formulation
Both Q and Q0 are the same fixed matrices for any problem portrayed as described
above. They are also, and will always be, symmetric and positive definite, so it
makes sense to reformulate the cost function (3.8) to a QP-problem as described in
Section 2.4. Constraints are also added, which will be described in the next section.
With G = λQ+Q0 the new cost function and the optimization problem which gives
the optimal vector of control points τ becomes

min
τ∈R

J(τ) = τTGτ − 2gT τ (3.14a)

s.t. Aeqτ = beq Boundary conditions (3.14b)
Aineqτ ≤ bineq Upper and lower bounds (3.14c)

3.2.3.1 Constraints

With the cost function defined, the next step is to formulate the constraints. Equal-
ity constraints will be used to impose desired initial and final conditions, while
inequality constraints will set upper and lower boundaries on τ to control position,
velocity, acceleration and jerk.

Since we know the time when both our initial and final conditions need to be active,
we can simply use the corresponding knot index in (3.7) to the desired values. For
the initial position it would look like this
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p(t0) =
m−1∑
i=−k

τiBk(α(t0 − ti)) = pinitial (3.15)

and the border conditions for the corresponding derivatives are formulated analo-
gously but with the derivatives of the function Bk(t) instead, depicted in Table 3.1.
Most of the terms in the sum in (3.15) will be zero due to the nature of Bk(t), and
each equality constraint will consist of a combination of up to 4 control points.

The inequality constraints are formulated in a similar fashion to the equality con-
straint. The difference being the possibility to set both an upper and a lower con-
straint, and that they should be valid for more than a fixed time instance. An
example of an upper limit to the acceleration is shown below

a(t) =
m−1∑
i=−k

τiB
′′
k(α(t− ti)) ≤ amax, for tm < t < t0 (3.16)

All the constraints are set at the knots, this is not a problem for the boundary
conditions, but for the inequalities that spans over several knots, the B-spline might
violate the constraints in between the knots. The inequality constraints for the po-
sition will be determined by the safety distances as described in Section 2.7, and the
rest will be tuning parameters.

The constraints in (3.14b) and (3.14c) can now be completed by formulating (3.15)
and (3.16) as vector multiplications and stacking the constraints in two matrices on
the form Aeqτ = beq, Aineqτ ≤ bineq.

3.2.4 Changing the constraints
To hinder the traffic behind the host vehicle as little as possible, two levels of accel-
eration constraints will be used. The goal is to slow down gently when approaching
a suitable gap for a lane change. When the driver gets closer and starts the lateral
motion, he will transition from Phase 1 to Phase 2 and the limits on the deceleration
will be lifted, making it possible to reach the desired speed. The majority of the
deceleration is thus moved to the new lane and the the risk of being hit from behind
in the original lane is decreased.

However, even before the driver starts turning the wheel, the trajectory planning
algorithm needs to know if it’s feasible to reach the desired speed within the desired
distance. For this reason the latest possible time instance where the lane change
is feasible without crossing any safety distances is calculated. If the driver turns
the wheel i.e. starts the lateral motion, at or before this time, the lane change is
feasible. If this time instance is passed without any interaction from the driver, the
lane change will become infeasible and an escape trajectory will be generated instead.

The latest possible brake point is calculated based on the current relative velocity,
vrel = vE − vdesired, and the safety distance to the car which the host vehicle aims
to move in behind, lr. With the more aggressive deceleration limit, ahigh and the
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jerk limit jlim the time needed to reach the desired velocity can be calculated. The
acceleration from the current velocity consists of three parts. t1, the time from
applying the brakes until the vehicle reaches the acceleration constraint. t1 = ahigh

jlim
.

t3, the time it takes to release the brakes, which is equal to t1. Between t1 and t3
the vehicle accelerates at the acceleration constraint

t2 =
ahigh

2 t1 − vrel + ahigh

2 t3
ahigh

(3.17)

During the deceleration time t1 + t2 + t3, the travelled distance in relation to the
leading car will be

dbrake = t1

(
vrel + ahigh t1

4

)
+t2

(
vrel + ahigh t1

2 + ahigh t2
2

)
+t3

(
vrel + 3 ahigh t1

4 + ahigh t2

)
(3.18)

Thus, at the current speed, the latest point that the car needs to start decelerating
is dbrake before the safety distance to the car in front. The time it takes to travel this
distance, assuming constant speed, is easily calculated, tbrake = lr(Sj)−dbrake

vrel
. This

time is then matched to the closest lower control point which will act as the switch
between the two different acceleration constraints. In (3.16), one constraint can be
set for ti ≤ tbrake and another for ti > tbrake.

3.2.5 Knot interval and receding planning horizon
The trajectory is defined by a number of equidistant control points, τi, over a time
interval [t0, tm]. The number of control points and the length of the time interval
thus decides the distance between the points. In a receding horizon system the knots
will be shifted forward in every iteration. If the sensor data is ideal and the shift
between every iteration is a multiple of tm−t0

m
, perfect tracking will occur. With a

shift of exactly tm−t0
m

, t0 will be shifted to where t1 were and so on, only tm will be
placed on a completely new position.

3.2.6 Length of planning horizon
Since the B-spline method optimizes the trajectory for the full lane change in each
time instant, the full lane change needs to fit within the planning horizon. The
higher the velocity difference between the host and the desired velocity, the longer
the planning horizon needs to be. In this thesis, a fixed planning horizon will be
used, chosen so that velocity differences over 50 km/h is possible.
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4
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This chapter presents the trajectory planning algorithm using MPC, convex opti-
mization and QP. It begins with an introduction part of MPC, and then follows with
the actual path planning formulation, this section ends up with an implementation
details part that provides the mathematic formulation of the QP problem.

4.1 Background
In this section, we provide a brief description of MPC. For a full introduction see
e.g. [18].

MPC is an optimization-based control technique which has received an increasing
interest since its discovery in the 1970s. Its popularity is largely stemming from
the natural way in which constraints can be incorporated in the control law. This
means that the controlled system can be operated close to its physical limitations
which often is economically beneficial [18].

However, the benefits come at the expense of solving an optimization problem at
every sampling instant. This can be a drawback, because solving an optimization
problem can be demanding if short sampling times are required and only embedded
hardware is available. As a remedy, a significant research effort has been devoted
into the development of tailormade algorithms to solve the underlying optimization
problems [19].

Let us now provide a description of the main idea behind MPC. To that end, we
consider a linear discrete time system,

x(k + 1) = Ax(k) +Bu(k), (4.1)

where x(k) ∈ Rnx and u(k) ∈ Rnu represent the state and control variables at the
time instant k. Moreover, we assume that the state vector is known at each sampling
instant, i.e. x(0) = x0. This can be achieved either by direct measurements or by
state estimates.

Let us now note that after receiving x0, the state trajectory can be predicted over
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a horizon N as:

x(1) = Ax0 +Bu(0) (4.2a)
x(2) = Ax(1) +Bu(1) (4.2b)
... (4.2c)

x(N) = Ax(N − 1) +Bu(N − 1) (4.2d)

for some sequence of control inputs {u(0) · · ·u(N − 1)}.

Since the control inputs can be manipulated, it is natural to choose them in or-
der to optimize the state trajectory. Here, we measure optimality by a quadratic
performance criteria,

J(x,u) =
N−1∑
i=1

(1
2(x(i)− xr(i))TQ(x(i)− xr(i)) + 1

2(u(i)− ur(i))TR(u(i)− ur(i))
)

+1
2(x(N)− xr(N))TP (x(N)− xr(N))

(4.3)
where Q ∈ Snx

++, P ∈ Snx
++ and R ∈ Snu

++, here S++ betyder Symmetric and positiv
definit. xr and ur denote the reference for the states and controls.

Now, by combining (4.2) and (4.3), with the physical limitations of the system, the
following optimization problem can be formed:

min
x,u

J(x,u) (4.4a)

s.t. x(k + 1) = Ax(k) +Bu(k), k = 1, . . . , N − 1 (4.4b)
x(k) ∈ Xk, k = 1, . . . , N (4.4c)
u(k) ∈ Uk, k = 0, . . . , N − 1 (4.4d)
x(0) = x0 (4.4e)

Note that for affine constraints (4.4c) and (4.4d), (4.4) is a highly structured Quadratic
Program (QP). This structure is heavily exploited in solvers for MPC [20].

In MPC, the problem (4.4) is solved at every sampling instant. The first control
input u(0) is then applied to the plant. A new problem is then solved at the suc-
ceeding sampling instant, and feedback is thus incorporated in the scheme. Stability
and recursive feasibility of MPC controllers have been extensively studied in the lit-
erature, and can generally be guaranteed by enforcing some technical assumptions
on the terminal cost P on the terminal set XN [20].
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4.2 MPC-based longitudinal trajectory planning
In this section, we provide a description of the MPC-based longitudinal trajectory
planner for the lane change assist.

4.2.1 MPC implementation idea
As was described in Section 2.6.1, the lane change maneuver is divided into three
phases. Although the MPC problem formulation in each phase is slightly different
from the other phases, it takes the following form regardless of the phase:

min
u

Cost (4.5a)

s.t. V ehicle dynamics (4.5b)
Physical and design constraints (4.5c)
Collision avoidance constraints (4.5d)

where the vehicle dynamics in (4.5b) is a forward simulation of the point mass model
(2.2a), and the physical and design constraints (4.5c) ensure that the physical limita-
tions and the traffic rules are respected. The difference between the MPC problems
lies in the cost (4.5a) and in the collision avoidance constraint (4.5d).

The MPC problem formulations in the phases are detailed in Section 4.2.3, and the
implementation details are summarized in Section 4.2.4.

4.2.2 Physical and design constraints
Regardless of phase, the MPC problem should respect the traffic rules and the phys-
ical limitations of the vehicle. In this subsection, we provide a description of the
constraints that are enforcing this.

Due to power and brake limitations of the vehicle, the longitudinal acceleration is
bounded. Since the longitudinal acceleration is a control variable in (4.5a), this is
trivially modelled as:

ax ≤ ax(k) ≤ ax, ∀k (4.6)
for some lower bound ax < 0 and upper bound ax > 0. Moreover, to increase the
comfort for the passengers in the vehicle, the longitudinal jerk is also restricted as:

j
x
≤ jx(k) ≤ jx, ∀k (4.7)

for a lower bound j
x
< 0 and upper bound jx > 0. Note that (4.6) and (4.7) take

the form of so-called box-constraints which can be handled very efficiently in many
MPC solvers [21].

Compliance with the (longitudinal) traffic rules is enforced by limiting the longitu-
dinal velocity,

vx ≤ vx(k) ≤ vx, ∀k (4.8)
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for some lower bound vx and upper bound vx.

Finally, to ensure feasibility, the so-called soft constraints were introduced to accel-
erations and jerks in all phases.

ax(k) + s(k) ≤ 0, ∀k (4.9)

jx(k) + c(k) ≤ 0, ∀k (4.10)
where the slack variables s = [s(1) . . . s(N)]T and c = [c(1) . . . c(N)]T are heavily
penalized in the objective function.

The cost function is thus formulated as

J(x,u) =
N−1∑
i=1

(1
2(x(i)− xr(i))TQ(x(i)− xr(i)) + 1

2(u(i)− ur(i))TR(u(i)− ur(i))

+γ(‖s(i)‖2
2 + ‖c(i)‖2

2)
)

+ 1
2(x(N)− xr(N))TP (x(N)− xr(N))

(4.11)
where Q ∈ Snx

++, P ∈ Snx
++ and R ∈ Snu

++, xr and ur denote the reference for the
states and controls, and γ is the penalty for the slack variables s and c. The resulting
optimization problem can thus be formulated as follows

min
u

(4.11) (4.12a)

s.t. (4.4b), (4.4c), (4.4d), (4.4e), (4.6), (4.7), (4.8), (4.9), (4.10), (4.5d) (4.12b)

4.2.3 Cost function and collision avoidance constraints
In this subsection, we provide a description of the cost function and the collision
avoidance constraints in the different phases.

4.2.3.1 Phase 1

In this phase, the speed and position of the vehicle are adjusted to track the empty
slot in the adjacent lane. Collision avoidance constraints are incorporated to avoid
collisions with vehicles in the host lane.

The cost function is selected as (4.11). The reference states xr is calculated as
follows and the reference control ur is 0.

xr(i) = xs3(0) + max(misalignment, ρ) + vs4t(i) (4.13)

Misalignment is a fixed safety design distance that the host vehicle should keep. ρ
is the relative distance between the host vehicle and vehicle s4.

ρ = τ(vx − vs4) (4.14)

τ is the time to collision(TTC). The final cost reference states xr(N) is the same as
xr(i).
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The collision avoidance constraints are selected as,

x(k) ≤ p̄s2(k), ∀k (4.15)

where the upper bound is given by:

p̄s2(k) = xs2(k)− lr(s2) (4.16)

where lr(s2) is the safety distance behind the vehicle s2, calculated according to
equation (2.13).

A designed transition from Phase 1 to Phase 2 is performed when the host vehicle
is placed in between s4 and s3, i.e.,

xs3 + lf (s3) ≤ x(k) ≤ xs4 − lr(s4) (4.17)

and the following conditions are fulfilled, that is when the host vehicle has passed
5 meters of s3 and velocity differences between the host vehicle and s4 within 40
km/h, these are also design parameters.

x(k)− xs3 − lf (s3) ≥ 5 (4.18)
v(k)− vs4 ≤ 40/3.6 (4.19)

where lf (s3) is the safety distance distance in front of the vehicle s3, i.e. when the
reference is tracked close enough and the safety constraints are fulfilled.

4.2.3.2 Phase 2

This is the actual lane change phase, that is lateral motion is introduced for the lane
change purpose. But since we are designing a longitudinal path planning algorithm,
lateral control is not relevant here. The algorithm in this phase has the same cost
function as the previous phase, with the same reference states and controls, but in
this phase only the final speed states matter, so the position reference state is 0.

To avoid collisions with vehicles in the adjacent lane, the collision avoidance con-
straints are extended as:

x(k) ≤ p̄s4(k), ∀k (4.20a)
x(k) ≤ p̄s2(k), ∀k (4.20b)

where

p̄s4(k) = xs4(k)− lr(s4) (4.21a)
p̄s2(k) = xs2(k)− lr(s2) (4.21b)

A transition from Phase 2 to Phase 3 is performed when a successful lane change
has been performed. This means that the host vehicle is placed laterally in the new
lane and between the surrounding vehicles s4 and s3, i.e.,

xs3 + lf (s3) ≤ x(k) ≤ xs4 − lr(s4) (4.22)
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4.2.3.3 Phase 3

At this point, the lane change maneuver has been performed, the purpose here is to
adjust the final speed to the actual speed and keep a safe distance with surrounding
vehicles in this lane within a series of constraints, i.e position, velocity, acceleration
and jerk and the same cost function with the same reference states, controls and
final states as the previous phase.

In this phase, the collision avoidance that we need to consider is the front vehicle in
this new lane, that is:

x(k) ≤ p̄s4(k), ∀k, (4.23)

where
p̄s4(k) = xs4(k)− lr(s4) (4.24)

4.2.4 MPC implementation details
The sets Xk and Uk in equations (4.4c) and (4.4d) are convex, therefor the MPC
problem can be equivalently rewritten as a standard QP problem

min
z

1
2z

THMz + fT z (4.25a)

s.t. Aeqz = beq (4.25b)
Ainz ≤ bin (4.25c)

With statesX =
[
x vx

]T
, u = ax and z =

[
XT (1) · · · XT (N) u(0) · · · u(N − 1)

]T
.

The matrix HM is symmetric and positive semi-definite and the QP problem (4.25a)
is convex.

The control horizon and the prediction horizon are N = 80 and the final cost penalty
is Pf = Q. The hessian matrix and equality constraints for the optimization problem
are:

HM = 2



Q 0 · · · 0
0 . . .

Q
. . . ...

... Pf
R

. . . 0
0 · · · 0 R


︸ ︷︷ ︸

Dimension of matrice (3·N×3·N)

, f =



−2Xr(1)
...

−2Xr(N)
−2ur(0)

...
−2ur(N − 1)


︸ ︷︷ ︸

Dimension of matrice (3·N×1)

(4.26a)

4.2.4.1 Constraints

Rewrite the equations (4.4b), (4.4c), (4.4d), (4.4e) to the form as equation (4.25b)
gives the following equality constraints:
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
I −B
−A . . . . . .

. . . . . . . . .
−A I −B


︸ ︷︷ ︸

Aeq Dimension of matrice (2·N×3·N)



X(1)

...

X(N)
u(0)
...

u(N − 1)


︸ ︷︷ ︸
z (3·N×1)

=



AX(0)
0

...

0


︸ ︷︷ ︸
beq (2·N×1)

(4.27)

I is a 2× 2 identity matrix, if there are two states in the dynamic.

Inequality constraints from equations (4.6), (4.7), (4.8), (4.9), (4.10) and collision
avoidance constraints in each phase can be formulated in form as (4.25c), that is
soft constraints on acceleration and jerk, longitudinal speed constraints and safety
critical zone constraints. Safety critical zone constraints are different in different
phases, in Phase 1, the host vehicle needs to take the leading vehicle s2 into con-
sideration, in phase two with respect to both s2 and s4 and the last phase with
respect to s4. Since we have assumed the host vehicle is not fully automated and
the vehicles behind will never get too close to the host vehicle. The detail matrices
are formulated in the same way as (4.27) and implemented in the algorithm, here
we will not illustrate it.
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5
Results

This chapter presents the results of the two trajectory generation methods. In the
first section below the evaluation method is described as well as how the performance
of each method is measured and compared. In Section 5.2 the results for each method
are presented.

5.1 Evaluation method
As mentioned in Section 2.6, the algorithms will be evaluated in 5 different but
similar scenarios. The difference between them will be the initial velocity of the
host vehicle and the positions and velocities of the vehicles in the host lane. For
the vehicles in the adjacent lane the initial position and velocities will be the same
for all 5 scenarios. In the host lane, the vehicles are assumed to be travelling at the
same speed as the host vehicle with a time gap of 3 seconds both to the car in front,
s1, and to the car behind the host, s2. The two vehicles in the adjacent lane, s3
and s4 are travelling at 80 km/h with a distance of 70 meters between them, this
corresponds to a time gap of 3.15 seconds at their velocity. The initial velocity of
the host vehicle and the vehicles in the host lane will range from 90− 130 km/h in
increments of 10 km/h. In Figure 2.3, an overview of the scenario is shown and full
details of the initial positions and velocities are shown in Appendix B.

The algorithms are designed to work for all kinds of variations on the general sce-
nario as described in Section 2.6 and are not tuned specifically for the test cases
below. This means that for example acceleration and jerk limits will be the same
for all scenarios, just like the individual tuning parameters associated to the two
methods. All parameters that are constant and not method specific for all scenarios
are presented in Table 5.1.

The 5 different scenarios will all be run in a simulation where the host driver starts
the lateral lane change when he has passed the safety distance in front of vehicle s3
with 5 meters. This is assuming that the lane change is still feasible at that point.
This gives a trajectory for a successful lane change where acceleration and jerk levels
can be analyzed. To measure how long each method deems a lane change feasible
without the lateral motion being started, the same scenarios are run but without
driver interaction.
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Parameter Phase 1 Phase 2 Phase 3 Explanation
v̄ (km/h) v0 v0 v0 Maximum velocity
v (km/h) 72 72 72 Minimum velocity
ā (m/s2) 0.1 0.1 0.1 Maximum acceleration
a (m/s2) −0.3 −2 −2 Minimum acceleration
j̄ (m/s3) 2 2 2 Maximum jerk
j (m/s3) −2 −2 −2 Minimum jerk

Phase 1-3

tsample (s) 0.2 Sampling time
tsimulation (s) 60 Simulation time

Table 5.1: Physical constraints in the different phases.

5.1.1 Performance indicators
From the simulations described above, a number of performance indicators are ex-
tracted. Since the LCA system is a comfort feature, good performance is very
objective, but there are measurements associated to comfort, such as jerk and ac-
celeration that can be measured. Comfort features are also required not to interfere
with traffic safety or rules, this will be measured as the interference with the traffic
in the original lane, particularly the vehicle behind the host. Although computation
time is an important factor for algorithms which will run in real time on embedded
hardware, it would be irrelevant to compare the two method’s run-time before any
run-time optimization has been carried out. The following performance indicators
will be considered in the result:

• jRMS - root mean square (RMS) value of the jerk
• aRMS - RMS value of the acceleration
• tinterrupt - time gap to the following vehicle at the point where a lane change

becomes infeasible
• tfeasible - the time window in a simulation from a lane change becomes feasible

to it being infeasible when there is no lateral input from the driver

The two RMS values are direct measurements of how comfortably the lane change
can be realized, the higher the jerk, the more uncomfortable, the same goes for
acceleration. The lowest value the RMS can take will be the mean acceleration or
jerk necessary to reach the desired velocity.

As the host vehicle slows down to prepare for a lane change, the following vehicle
will get closer. The distance between the two vehicles at the point where a lane
change becomes infeasible will act as a measurement on how much the LCA system
impacts the following traffic. In the real world, the driver behind would most likely
slow down if necessary, but tinterrupt is the time gap to the car behind if it keeps a
constant velocity. At the start of the simulation, the vehicle is 3 seconds behind, it
is desired to keep tinterrupt as high as possible (but not above 3 seconds).
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An important aspect of the LCA system is to let the driver know when it’s no longer
feasible to do a lane change. It is desired to keep the lane change feasible as long as
possible, but this will on the other hand interfere more with the following vehicles.
tfeasible can’t be evaluated without also looking at tinterrupt, but together they will
give a comprehensive look on how successful the algorithm is for the specific scenario.

With these performance indicators, it will be possible to compare the results of the
two methods and determine which is the better one. Note that the two RMS values
are from a simulation when the driver completes the lane change while tfeasible and
tinterrupt are measurements from a simulation without any lane change.

5.2 Performance evaluation
The performance and simulation results will be presented separately for the two
methods. For each method two of the scenarios will be presented in more detail,
while the performance indicators of the remaining three scenarios will be presented
in tables.

The two chosen scenarios are Scenario 2 and 3. Scenario 2 i a normal scenario where
the host vehicle travel at a typical highway speed, 110 km/h, see Table B.3 for
further details. Scenario 3 is a more extreme scenario where the host vehicle travels
at 130 km/h (Appendix B Table B.5) and higher jerk and acceleration are required
to find a feasible solution.

5.2.1 Performance of B-spline interpolation
When using smoothing splines as in an algorithm for the LCA system, the tuning
is mainly done using the weighting between acceleration and tracking performance
in the optimization problem. But the number of control points, the length of the
planning horizon and the sample time will also affect the behaviour. Specific pa-
rameters for the B-spline trajectory algorithm are presented in Table 5.2, they are
the same during the whole simulation.

For all scenarios except Scenario 5, a lane change is feasible. For the two lowest ini-
tial velocities, in Scenario 1 and 2, the difference in velocity compared to the desired
velocity is very low. This allows the vehicle to slow down to the desired velocity
even without entering Phase 2 and releasing the acceleration constraints. This is
portrayed in Table 5.3 as tfeasible =∞, since the vehicle will place itself next to the
gap and stay there. For the higher initial velocities, the vehicle will eventually pass
the gap, and a lane change will become infeasible.
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Parameter Value Explanation
k 3 B-spline degree
m 150 Number of control points
λ 500 Penalty on acceleration compared

to tracking performance
thorizon (s) 30 Planning horizon

Table 5.2: Parameters for simulation with B-spline method

Scenario 1 2 3 4 5
jRMS 0.0210 0.0717 0.1770 0.2519 −
aRMS 0.0980 0.1783 0.3040 0.4678 −
tinterrupt 0 0 1.8776 2.5755 2.8088
tfeasible ∞ ∞ 8.1900 2.6100 0

Table 5.3: Performance measures for the 5 scenarios with B-spline interpolation

5.2.1.1 Scenario 3

With an initial velocity of 110 km/h, the algorithm adjusts the velocity to let the
driver complete a safe lane change. As can be seen in Figure 5.1, the position of the
host is well within the safety distances once the lane change is initiated. The velocity
drops to 0.57 m/s below the desired velocity for a while to position the vehicle at
the desired position and then slowly accelerates. Initially the host vehicle travels at
the same velocity for 5 seconds, after which it decelerates at the maximum allowed
deceleration until the lateral motion is initiated. At t = 13.02 seconds, the vehicle is
travelling at 28.23 m/s and the the deceleration increase with the maximum amount
of jerk to a deceleration peak at −1.15 m/s2.

The simulation result for Scenario 3 without the driver completing the lane change
is shown in Figure 5.2. In this simulation, the first 13 seconds are identical to
the one described above, the difference comes after the lane change in the previous
simulation is initiated. In Figure 5.2 it can be seen that the vehicle keeps decelerating
as much as allowed until t = 20.40 seconds when the large speed difference and the
proximity to the safety distance make a lane change infeasible. At this moment, the
driver is notified that a lane change is no longer possible and an escape trajectory
is generated. The escape trajectory is not shown in the figure, but it is designed to
let the vehicle accelerate up to its initial velocity.

5.2.1.2 Scenario 2

If a lane change is completed at a lower initial velocity, such as the 100 km/h in
Scenario 2, the result is still successful as can be seen in Figure 5.3. Compared to
Scenario 3, the initial deceleration starts much later, both in regard of time and
distance. At 100 km/h, the algorithm decides it is sufficient to start braking after
12.4 seconds and 69 meters, 7.4 seconds and 27 meters later than at 110 km/h. The
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Figure 5.1: Plots Scenario 3 with lane change
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Figure 5.2: Plots Scenario 3 when no lane change occurs
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lower difference in velocity between the host and the desired velocity also leads to
a much lower acceleration and jerk. The acceleration peaks at −0.49 m/s2 and the
jerk at −0.95 m/s3. Still a few seconds of positive acceleration is needed to reach the
desired position and velocity, but the acceleration is so small that it should barely
be noticeable.
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Figure 5.3: Plots Scenario 2 with lane change

The main difference at lower initial velocity is when no lane change occurs. As
explained earlier, the low velocity difference leads to the host vehicle reaching the
desired velocity even without releasing the acceleration constraints.
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Figure 5.4: Plots Scenario 2 when no lane change occurs

5.2.2 Performance of MPC with hard constraints
The tuning parameters in the MPC algorithm are mainly the weighting matrices Q
and R in the three scenarios, the horizon N and the transition condition between
the scenarios. The tuning of the weighting matrices is summarized in Table 5.4.

Phase 1 Phase 2 Phase 3
States weights (x,v,a) Q diag(100,1000,10) diag(0,1,1) diag(0,100,1)
Control input weights R 10000 1 100000
Final cost weights P diag(100,1000,10) diag(0,1,1) diag(0,100,1)
Acceleration slack penalty r 1e9 1e9 1e9
Jerk slack penalty q 1e9 1e9 1e9
Prediction horizon(samples) N 80 80 80

Table 5.4: Tuning of MPC controller with hard constraints.

For all scenarios except Scenario 5, the MPC algorithm is able to perform a success-
ful lane change. The performance of the algorithm with respect to the performance
indicators is summarized in Table 5.5. However, it should be noted that the algo-
rithm has been tuned for an overall (subjectively) good performance and not for
performing well with respect to the indicators.
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Scenario 1 2 3 4 5
jRMS 0.4596 0.5320 0.6481 0.7302 −
aRMS 0.1596 0.2246 0.3384 0.4533 −
tinterrupt ∞ ∞ 1.607 1.150 −
tfeasible ∞ ∞ 14.8000 6.8000 −

Table 5.5: Performance measures for the 5 scenarios with MPC

5.2.2.1 Scenario 2 and 3

In Figure 5.5 and 5.6, successful lane change manuevers are shown for Scenario 2
and Scenario 3 respectively. Observe that the behavior is very similar for the two
scenarios and that the velocity is monotonously decreasing during the lane changes.

We also note that most of the constraints are inactive during the lane changes, ex-
cept of the jerk limits during short time periods and the lower acceleration limit in
Phase 1. The constraints are active during slightly longer time periods in Scenario
3. This is aligned with our intuition, since the velocity difference between the lanes
is larger, and therefore also the required acceleration.
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Figure 5.5: Overview of Scenario 2. Phase 2 and Phase 3 are entered at 19.4 s and
28.0 s respectively.
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Figure 5.6: Overview of Scenario 3. Phase 2 and Phase 3 are entered at 14.2 s and
22.6 s respectively.

5.2.3 Comparison of differences between soft and hard con-
straints in the MPC algorithm

As mentioned above, the MPC algorithm is able to perform a successful lane change
in all scenarios except Scenario 5 under the hard constrained conditions. In Scenario
5, the host vehicle travels with a initial speed at 130 km/h, the algorithm can not
successfully find a trajectory for lane change that is infeasible at this speed. But
with a relatively soft penalty for acceleration and jerk, the simulation can actually
go through to avoid infeasibility for this application. The result is shown in Figure
5.7 with acceleration slack penalty r = 106 and jerk slack penalty q = 106 in Phase
1.
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Figure 5.7: Plots Scenario 5 with soft constraints. Phase 2 and Phase 3 are entered
at 9.2 s and 17.2 s respectively.
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6
Discussion

This chapter discusses the two developed trajectory generating algorithms, as well as
their resulting trajectories. It also elaborates on the disadvantages and advantages
found for each method during the development and evaluation. Suggestions to
improvements and future work will be stated as well.

6.1 Similarities and differences
It has been shown that for the given scenarios, both the MPC and the B-spline
method succeed in generating longitudinal trajectories suitable for a lane change.
In theory it will be possible to implement any of the two algorithms in a vehicle after
some more work. Functions such as target selection and the HMI interface needs
to be sorted out first. Since both methods depend heavily on the QP-solver used,
the choice of solver will have a major impact on the computation times. The solver
used in this thesis is not suitable for a car implementation since it is only available
in Matlab.

The resulting trajectories from test simulations are similar but not identical. Part
of the differences depends on the tuning for each individual method. But more in-
teresting are the fundamental differences between the two methods.

One fundamental difference is in the way the two methods divides the scenario into
different phases. Even though they go through the same phase, the MPC-method
handles one phase at a time, while the B-spline method considers the full scenario in
each time instant. The benefit of optimizing the trajectory for one phase at a time
is the ability to use shorter planning horizons without increased risk of infeasibility.
A shorter planning horizon with the same sampling time leads to fewer decision
variables and thus a shorter computation time. The downside is only knowing if
the current phase is feasible, not the following. The B-spline method optimizes for
a trajectory for the full scenario, as long as it is feasible within its longer planning
horizon. Thus it won’t start to slow down for a lane change that was never feasible
from the start. This is a major benefit and a necessity for the driver to trust the
system.

Comparing the performance indicators, it is clear that the B-spline method performs
better in all scenarios in regard of comfort. The RMS values for both jerk and accel-
eration are significantly lower than for the MPC method. Looking at the indicator
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of how much the vehicle behind the host vehicle is interrupted, tinterrupt, the B-spline
method performs slightly better, while the MPC method performs much better in
regard of for how long the lane change is feasible, according to tfeasible.

6.2 Regarding the B-spline method
The B-spline method is loosely based on earlier proven work for path planning [5]
and has been reworked to be suitable for local longitudinal trajectory planning.
Some of the key changes made are:

• Trajectory in one dimension
Whereas [5] used smoothing splines to plan a 2 dimensional path from start to
finish, this thesis uses it to produce a one dimensional trajectory. This means
the constraints can be rewritten in a way that allows them to be changed
between different time intervals in the planning horizon.

• Receding horizon possibility
Since the problem stated in this thesis is regarding trajectory planning, it was
necessary to be able to repeat the optimization of the trajectory at fixed time
intervals as explained in 2.8. With the help of equality constraints, the initial
conditions could be forced to match the current state and with the sampling
time set to a multiple of the knot interval, optimal tracking was possible.

• Variable constraints
With acceleration constraints that are not constant for the full planning hori-
zon, the point where the constraints need to be lifted for a feasible lane change
can be calculated. The B-spline method optimizes the trajectory for the full
scenario in each iteration instead of having one optimization problem for each
phase as in the MPC-based method. This has the benefit of already from the
first iteration knowing if a lane change will be feasible or not, and the risk of
the driver starting to change lanes when it’s infeasible is reduced.

6.2.1 Improved stability with soft constraints
Using the B-spline method to generate a trajectory proved to work well for most
of the given lane change scenarios with the exception being Scenario 5 where the
difference in velocity between the host vehicle and the desired final velocity was too
large. It is natural that a lane change will become infeasible once the initial velocity
becomes too high. A car can typically brake at accelerations as high as 10 m/s2, but
as a feature that is designed to be comfortable and safe, the acceleration constraints
were set much lower. Just as shown on the MPC method in 5.2.3, soft constraints
can also be used on the B-spline method. Since the physical limitations of a vehicle’s
braking force is much higher than the constraint at −2 m/s2, there is room for for
soft constraints. Soft constraints should be used to make the method more robust
against measurement noise, not to force the QP-solver to find a feasible trajectory
when the velocity difference is unreasonably high.
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6.2.2 Control points, planning horizon and computation time
One drawback of optimizing the trajectory for the full lane change in every iteration
is the long planning horizon required. For optimal tracking the sampling time needs
to be a multiple of the knot interval as stated in 3.2.5. The knot interval depends
on the number of control knots and the length of the planning horizon. If a high
sampling frequency is desired, it requires a lot of control points which leads to
a larger QP-problem and longer computation times. For the simulations in this
thesis the sampling time was chosen to get a reasonable ratio between sampling and
computation time.

6.2.3 Is a reference position necessary?
The cost function in the B-spline method penalizes deviation from the desired posi-
tion, which is centered between the two vehicles in the target lane. It can be argued
that it is unnecessary to have a desired position as long as the position constraints
are fulfilled. Since the position constraints takes the safety distance to each car
into account, every position that is within these constraints should be an acceptable
position. Removing the reference position from the cost function will give an end
position that is always as close to the preceding car as is allowed to minimize the
acceleration. Removing the reference position will eliminate the overshoot seen in
5.2.1, where the host vehicle slows down more than desired to reach the reference
position, and then accelerates again to reach the desired speed.

6.2.4 Improve performance at low ∆v
In Scenario 1 and 2, where the difference between the initial velocity and the desired
velocity is low, we get a somewhat unwanted behavior. As shown in Figure 5.4, the
host vehicle reaches the desired velocity without entering Phase 2. This forces the
vehicle behind the host to also slow down to the same velocity and disturbing the
traffic more than desired. Given the size of the gap in the target lane and the low
velocity, it is possible to complete the lane change without any braking in Phase 1
and thus without interfering with the traffic in the original lane. Trying to solve
this by tuning will worsen the performance in the higher velocity scenarios. There
is a trade off between braking early and late, where braking early improves the
performance in high velocities but worsen the performance in low velocities, braking
late have the opposite effect. This could possibly be solved by an adaptive tuning
which changes the tuning as the speed decreases. Another alternative is to set a
lower limit on the velocity in Phase 1, which takes the length of the gap and the
desired velocity into account. This limit could be designed so that the host vehicle
never reaches the desired velocity in Phase 1 but still starts to decelerate early when
the initial velocity is high.
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6.3 Regarding the MPC method

6.3.1 About the motion model
As mentioned before, different motion models give different simulation accuracy
and simplicity. In the MPC algorithm, a point mass model was used in longitudinal
estimation to simplify the mathematical formulation but with the drawback of less
accuracy as a motion model for a vehicle. Thus good future work can be, for
example, to try to implement the algorithm with a single-tracke model or a double
track model.

6.3.2 About the tuning parameters
The robustness of the algorithm depends highly on the tuning. To achieve a good
performance, the MPC algorithm needs a velocity depended tuning, but Aptiv pre-
ferred a velocity independed tuning in this work, thus the performance is restricted
with this hard constraint. So a direction of future work can be to investigate a
velocity depended tuning method such as gain scheduling.

6.3.3 About augmented system
During the algorithm implementation, it was noticed that the algorithm between
phases has no memory, i.e when it comes into Phase 2 and Phase 3, there will be a
sudden jump of the acceleration in the beginning of these phases, so the constraints
are only active within phases but not in between them. To solve this problem, an
augmented system was formulated instead, the results were shown in the previous
section.

6.3.4 About the feasibility
One of the most fundamental problems in MPC is the lack of guaranteed feasibility.
Thus to be able to step up this driver assist system to a fully autonomous vehicle,
one future work that would be interesting is to explore a stability method that guar-
antees the safety on the road. Recursive feasibility can be interesting to investigate
in this case, assume x ∈ χN is a feasible state, it means that there is a solution to
the optimization problem for that x. The question is, after applied the computed
control action, will the next state x+ also belong to the feasible set χN? If it is so,
the control action would be defined also at the next sampling instant. This is known
as recursive feasibility. And another alternative is to calculate invariant set to solve
this problem.

Back to this thesis, to divide the whole optimization problem into three phases can
easily solve the non-convexity problem and also significantly reduce the simulation
time since it does not need to predict the whole optimization problem but only
within phases. But for some initial states, it maybe impossible to solve the MPC
problem while respecting constraints on states and/or outputs. The problem can
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thus be infeasible. In practice, infeasibility may occur by too strict performance
requirements, a large disturbance, model uncertainty or by an unstable system. It
is always necessary to have a backup controller in this case. The MPC controller
appears that can not guarantee feasibility for Phase 2 while in Phase 1 with hard
constraints for acceleration and jerk in this algorithm. To ensure feasibility in Phase
2, we can either calculate the time invariant set, that is for some initial state that
belongs to the set, it will be guaranteed to stay in the set for ever, or we need
so-called "soft constraints". Soft constraints can be implemented in several ways,
the easiest and most commonly used is to introduce slack variables that are severely
punished in the cost function. This method has been successfully implemented for
the MPC algorithm, as seen in Section 5.2.3.

6.3.5 About the computational efficiency
Many factors may affect the algorithm computational efficiency, such as the sampling
time, the size of the control and prediction horizon, the representations and ordering
of the variables, a different optimization solver or even a different computer. We have
not put much efforts on this part and we used Matlab quadprog as our simulation
solver. To realize this algorithm, a better solver is needed.

43



6. Discussion

44



7
Conclusion

This project concludes that a longitudinal trajectory suitable for a lane change ma-
neuver can be generated successfully using either B-spline interpolation or the Model
predictive control framework. With continuous work, both of the presented methods
are possible to implement in a vehicle for more evaluation and tuning.

The requirements for the function to be safe and follow current traffic regulations are
fulfilled by using constraints on position and velocity. The more objective require-
ment of comfort and usability are quantified by a number of performance indicators
taking the jerk, acceleration and time gap to other road users into account. Accord-
ing to these indicators, the B-spline method performed best in regard of comfort
while the Model predictive control method performed best regard of usability.
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B
Data for simulations

Vehicle x0 (m) y0 (m) v0 (km/h) a0 (m/s2)
Host 0 0 90 0

Vehicle 1 −75 0 90 0
Vehicle 2 75 0 90 0
Vehicle 3 80 3.75 80 0
Vehicle 4 150 3.75 80 0

Table B.1: Initial position and velocities of the vehicle in Scenario 1

Vehicle x0 (m) y0 (m) v0 (km/h) a0 (m/s2)
Host 0 0 100 0

Vehicle 1 −83.33 0 100 0
Vehicle 2 83.33 0 100 0
Vehicle 3 80 3.75 80 0
Vehicle 4 150 3.75 80 0

Table B.2: Initial position and velocities of the vehicle in Scenario 2

Vehicle x0 (m) y0 (m) v0 (km/h) a0 (m/s2)
Host 0 0 110 0

Vehicle 1 −91.67 0 110 0
Vehicle 2 91.67 0 110 0
Vehicle 3 80 3.75 80 0
Vehicle 4 150 3.75 80 0

Table B.3: Initial position and velocities of the vehicle in Scenario 3

Vehicle x0 (m) y0 (m) v0 (km/h) a0 (m/s2)
Host 0 0 120 0

Vehicle 1 −100 0 120 0
Vehicle 2 100 0 120 0
Vehicle 3 80 3.75 80 0
Vehicle 4 150 3.75 80 0

Table B.4: Initial position and velocities of the vehicle in Scenario 4
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B. Data for simulations

Vehicle x0 (m) y0 (m) v0 (km/h) a0 (m/s2)
Host 0 0 130 0

Vehicle 1 −108.33 0 130 0
Vehicle 2 108.33 0 130 0
Vehicle 3 80 3.75 80 0
Vehicle 4 150 3.75 80 0

Table B.5: Initial position and velocities of the vehicle in Scenario 5
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