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Compensation of Element Position Errors in Electrically Scanned Arrays

Limits of beamforming calibration in analog and digital antenna arrays with scan
dependant errors

JOSEF YDREBORG

Department of Electrical Engineering

Chalmers University of Technology

Abstract

The consequences of mechanical translational errors on the radiation pattern in sen-
sor and antenna arrays are investigated and discussed. A method for restoring the
radiation pattern to the ideal case has been tried and the limits of its capabilities
explored in different scenarios reflecting real antenna configurations. A proof of
concept has been established by manufacturing an intentionally erroneous antenna
array and applying investigated calibration methods. Conclusion is that the pos-
sibilities of compensating for mechanical errors is greatly enhanced with increased
digitalisation of the array antenna system. Analog systems may achieve compensa-
tion in a smaller solid angle, while digital systems can achieve compensation over
most of the half sphere of the array scanning area.

Keywords: antenna, array antenna, sensor array, signal processing, beamforming,
optimization, antenna measurements.
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1

Introduction

1.1 Background

During operation an antenna array should exhibit a desired radiation pattern with
sufficiently low sidelobes, realized through carefully chosen beamforming weights on
the elements. However, when manufacturing an antenna array, mechanical errors
are produced due to the manufacturing tolerances. These errors, in turn, have neg-
ative effects on the antenna radiation pattern produced by the array. Historically,
the possibillities of mitigating these undesirable effects have been limited due to
the analog nature of previous antenna arrays. However, with the rise of digitally
defined array antennas, signal processing methods become more viable due to faster
processing speeds and larger storage capabilities. As such, the tolerances can be
maintained with increased performance or they can be reduced to lower the manu-
facturing costs. This report investigates the effects of the errors that occur due to
mechanical tolerances and tries to mitigate them through signal processing methods.

1.2 Problem Description

Due to tolerances in the production of sensor arrays and wear due to usage, there
will be a number of mechanical errors. These include the following (illustrated in
Figure 1.1a):

o Translational errors
— Az, along the x-axis
— Ay, along the y-axis
— Az, along the z-axis
» Rotational errors
— Ay,, around the elements x-axis
— Ay, around the elements y-axis
— Ay, around the elements z-axis
o Structural distortion

This means that elements can be allocated away from the designed positions in three
dimentions and also rotated around any of its three axes. Structural distortion means
that the antenna shape is altered in the manufacturing or during use. An example
of a distortion is when the antenna is bent creating a correlated rotational error
across all elements.
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Figure 1.1: a) Possible mechanical errors in an array antenna
b) Example of a sensor array with 3x3 subarrays

In the case of smaller linear arrays it can be assumed that the elements have un-
correlated individual position errors, but when manufacturing larger arrays a more
modular approach can be expected. This means that most large arrays are made
up of subarrays that are manufactured separately and then assembled to form the
complete antenna. As a consequence the subarrays are subject to the same types
of errors as the elements. However, in this case the errors are correlated between
all the elements in a subarray. An example of subarrays is shown in Figure 1.1b.
The effects on the antenna performance due to mechanical errors are manifold. The
most important effect is that the radiation pattern is altered. Additionally, there
is a change of coupling between the elements. The main challenge with mitigating
effects from mechanical tolerances is that the phase errors produced are angle de-
pendent. This means that they cannot be adjusted with a simple phase shift at each
antenna element and a more sophisticated method must be found.

1.2.1 Restrictions

This report will focus on handling translational errors and only briefly discuss the
other types of errors. This is due to that the translational errors have a relatively
higher effect on the radiation pattern of the antenna [1]. However, the approach layed
out later in the report should be applicable to any mechanical errors. Additionally,
there is reason to assume that an element’s position error will affect the position of
the neighboring element, but this problem is neglected in this work for simplicity.
There is also the problem of coupling effects, but these are also neglected.
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1.3 Methodology

The report is organized in three main segments. These are; error characterisation,
error compensation, and trial antenna testing, as seen in Figure 1.2. The goal is for
these three segments to form a partial guideline for what is important to determine
before manufacturing an antenna array, given that the calibration method presented
is used. Additionally, the methods handled in this report will serve as a good
reference when a similar investigation with other parameters is attempted.

Error Characterisation

Error Compensation

This segment investigate
what the effects of
mechanical tolerances on
the radiation patterns are.
A model for calculating the
pattern is presented and
results from different types
of errors are illustrated.

Here, the method for
compensating for
previously investigated
tolerance effects is
presented and applied to
three different
configurations that appear
in real applications.

A small trial antenna is
manufactured and
subjected to the previously
presented compensation
method to ascertain the
feasibility of the method in
a realistic setting

Figure 1.2: Structure of the report in three parts; error
characterisation, error compensation, trial antenna testing.
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Theory

2.1 Error Characterisation

2.1.1 Array Antenna Theory

The report mostly uses uv-coordinates which can be described based on spherical
coordinates 6 and ¢ and with u? + v? + w? = 1 as a requirement, as shown in
Equation 2.1.

u = sin(f)cos(¢)
v = sin(0)sin(¢p) (2.1)
w=cos(f) =v1—u>—12

The model used for calculating the radiation pattern of the antenna array can be
expressed as [2][3][4]
N
G(u,v) = g(u,v) Y A,elPrelhlonutunvtanw) (2.2)
n=1
where k is the wave number in free space, (z,, Y, z,) are the cartesian coordinates
for element n, and A,e’® is the excitation of the n'* element where A, is the
amplitude and ®,, is the phase. This means that each element is modified by a
complex number prior to operation. The amplitude excitation of each element is
dictated by a weighting scheme chosen to create the desired beamforming. In our
case a Taylor taper is used and is discussed in section 2.1.2. This will create a pencil
beam at the scanning angle (ug,vo). The scanning phase of the ny, element is set as

¢, = k’(ﬂfnuo + ynUO)' (23)

In analog systems the excitations of phase and amplitude are the parameters that
can be modified to compensate for element position errors. When designing an array
it is important to know what element spacing is required to avoid grating lobes. If
we assume that the half power beamwidth (HPBW) of the grating lobes are /L we
can express the element spacing criteria as [3]

d< A
= 1+ Jeos(ao)| + (ML)

where «q is the maximum desired elevation scanning angle, and L is the length of
the array. Furthermore the directivity of the designed antenna can be described by

3]

(2.4)

D= egrtepoleillcos(QO)Dmax7 (25)

5



2. Theory

where ey, €por, and e;y is the grating lobe, polarisation, and illumination efficiencies.
Oy is the elevation scanning angle and D,,,, is the maximum possible directivity

described by [3]

A
A2
where A is the area of the array. It is worth noting that the directivity in Equa-
tion 2.5 is excluding the directivity of the antenna elements, assuming isotropic
elements. This can be rectified by multiplying the directivity of the element type
with the directivity of the array. Moving on from directivity the actual antenna will
have a gain expressed by [3]

Dinae = X A, (2.6)

G = ereqpsD, (2.7)

where e, and ey, are the mismatch factor and radiation efficiency.

2.1.2 Taylor Weighting Scheme

In order to achieve a certain SLL a Taylor line source is used to get the weighting
values for each antenna element. For a linear array the values can be calculated
through [5]

w(x) =F(0, A, n) + 2 ni: F(m, A, n) cos<2nzm>, (2.8)

m=1

where x is the position of the element in the intended dimension and L is the length of
the antenna in the same dimension. 7 is a correcting integer and is set for maximum
efficiency with a monotonic amplitude taper. The function F'(m, A,n) is defined as

[5]

_y [(n — )12 = 2.2
F(m, A, n) = (ﬁ—l—l—m)!(ﬁ—l—m)!};{l[l_m /7] (2.9)
where
2 = 20 (A + (n — 2)1/2 or n<n
» = Eo(2 o+ (0= 1/2)) fori<nz 210,
= 4n forn<n<oo

A = (1/m)cosh™'r, where r is the desired ratio between the main lobe and the SLL
and 0 = n/[A% + (n — 1/2)%]*/2. For more infomation on how these equations are
derived please see [5]. In order to find the suitable weight for an element in a uniform
planar array (UPA) the weight function of two dimensions is separable as g(z) - g(y)
for the x,y-positions of each element creating a Taylor sheet source.

2.1.3 Error Modeling / Statistics

All mechanical tolerances are assumed to follow a Gaussian probability distribution
function (PDF) with zero mean and can be expressed as [6]

1 T — p)?
Prorm(z | py0) = W@xp( - (202)>, (2.11)
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where p is the mean value and o is the standard deviation. Each position error gives
rise to a phase error that can be derived from Equation 2.2 and is expressed as

00 =k(dx-u+dy-v+dz-w), (2.12)

where dz, dy, and dz are the position errors in the x, y, and z dimension. Using
this information we can derive the total standard deviation of the phase error based
on the standard deviation of the mechanical errors of each axis. Provided that the
standard deviations follow 0% << 1 we can conclude that [1]

o3 = k*(02 - u? +cr 0?4 o2 w?), (2.13)

The challenge with the phase error is that it varies with direction as seen in the
changing variables (u,v,w) in Equation 2.12. This is called as ’direction dependant
phase errors’ and it makes the errors more difficult to compensate for. Even though
the tolerances follow Equation 2.11 the resulting gain variance for a certain viewing
angle, when subject to phase errors, does not. This quantity follows a so called
Ricean distribution [5] and is modelled as [7][§]

xXr ZUQ — ]/2 xrv
Pm'ce(x ‘ v, U) = O_Qexp( - W)IO (0_2>7 (214>

where o is the scale parameter, v is a noncentrality parameter, and I, is the Bessel
function of the first kind with order zero. The Ricean PDF can, for errors much
larger than the expected value, approximate a Rayleigh PDF [5]. This PDF is
described by [6]

x x?

Poy(zr|o) = Uzexp< — W), (2.15)
where ¢ is the scale parameter. As can be clearly seen, Equation 2.15 is Equa-
tion 2.14 with the noncentrality parameter v = 0. If the errors are much smaller
than the expected value, then Equation 2.14 approximates Equation 2.11 [5].
Finding the standard deviation can, for normal distributions, be done by calculating

the sample standard deviation from a number of samples according to [6][9]

s_\/z“%_x : (2.16)

where N is the number of samples, z; is the i** sample, and z is the average of
all the samples. The standard deviation for the amplitude of the radiation pattern
at different viewing angles can then be used to determine an upper bound with a
certain probability of being beneath this bound. For a specific PDF this probability
can be calculated by a cumulative distribution function (CDF). Given the Gaussian

PDF the CDF is described by [6]

Pepr(x \/ﬂ / 2, (2.17)

where x is the number of standard deviations above the mean. Using Equation 2.17
we can calculate the probability of being beneath the mean plus one, two, and three
standard deviations to be 0.8413, 0.9772, and 0.9987 respectively. However, these
probabilities are only for one viewing angle, or one point on the sphere. When
considering all sidelobes together, a deeper analysis is required. See [5] for more
details on this.
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2.2 Error Compensation

There are several methods for compensating for direction dependent phase errors
and here one of them will be presented. When you have a plane wave incoming with
some direction of arrrival (DOA) in the surrounding sphere you can model it as [10]

X(t) = amoa(0)s(t) + n(t), (2.18)

where x(t) is the received signal, s(t) is the actual signal, and n(t) is noise. a,,0q(6)
is the erroneous array response of the antenna with mechanical imperfections. It is
dictated by Equation 2.2 and will vary for each element depending on its position
and the DOA. We can write the erroneous array response as [10]

amoa(f) = Qa(0), (2.19)

where a(f) is the ideal array response and Q is a correction matrix. In other words,
the errouneous array response is assumed to be the ideal array response modified
by the correction matrix, Q. The correction matrix is an N x N matrix, where N
is the number of elements in your array. We know the ideal steering vector prior
to calibration and must find the correction matrix in order to calibrate the array.
If we want to choose Q in order to minimize the difference between the measured
radiation pattern of an antenna and the modified ideal array response we will get an
optimization problem of the following configuration called Global Calibration. [10]

Q =arg mC%n |’Amea5<ecal) - Amod(ecal>HF (220>

The matrices Aneas(Gear) and Ayes = QA(6O.4) are the array response of each
element arranged in columns for each of the calibration angles, 6., for the measured
antenna and the modified ideal array response respectively. 8., forms a grid in uv-
space or on the sphere surrounding the array. The resolution of the calibration grid
needs to be finer than half of the half power beamwidth (HPBW) of the antenna.
In other words, the calibration grid needs to be finer for larger arrays since they
have narrower beamwidths. The goal is to choose the arguments of Q so that the
Frobenious norm of the difference between the measured array response and the
modified ideal array response is as small as possible. In general, there is no perfect
solution where the Frobenius norm is zero, but if we treat the problem as a least
squares problem of the form £ A = B with the solution £ = B/A the solution to
Equation 2.20 should be

A

Q = Ameas(ecal)/Amod(ecal)- (221)

This only works if the whole uv-space is sampled. Otherwise the ranks of the array
response matrices will be severely deficient. If such is the case an optimization
algorithm could be deployed instead. If some directions are more important to
correct than others a weighting matrix could be added to Equation 2.20 to change the
results of the Frobenius norm. This is called Local Calibration and the optimization
problem is expressed as [10]

Q = arg mc,%n H (Ameas(ecal) - Amod(gcal))wl/2”F7 (222)
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where W is a diagonal matrix with the dimensions M x M where M is the number of
calibration angles. As such each calibration angle is multiplied with a weight lending
more significance to some angles than others. One important scenario is to find the
DOA of a signal using DOA estimation algorithms such as MUSIC. In this case it
is important that the directions close to the scanning angle are correctly calibrated.
This means that we could shape our weighting matrix to give more significance to
angles close to the scanning angle which would lead to the diagonal of the weighting
matrix being described by [10]

w; = exp(—hDJQ-), D; =10ca; — 0, (2.23)

where D; is the distance to the scanning angle for the j calibration angle and h
is a parameter determining the width of the weighting function. Using a weighting
matrix has the consequence that the matrices no longer have full rank when trying
to solve the problem through a least square method. However, if the weighting
function is sufficiently narrow the problem can be solved by only calculating the
diagonal values of the correction matrix Q. In other words, we treat the problem as
a set of N independent equations. The calculation needed to solve this problem is
[10]

j]\/il A:jwj (0)Aprcas.ij ;

}']:1 Ajw;(0) Ay ’

G:(0) = =1,..,N, (2.24)
where §;(0) is the i* diagonal argument of the correction matrix and (i,j) denotes
the indices of the matrices where N is the number of elements and M is the number
of calibration angles. Once the correction matrix is estimated the recieved signal
can be corrected as [10)]

Lo () = Q' (1), (2.25)

where @, (t) is the corrected signal. This correction can also be made by modifying
the beamfroming weights and can be calculated as [10]

v=(Q *al(by), (2.26)

where a(fp) are the beamforming weights for the array without mechanical errors.
The virtual array approach of Equation 2.25 and 2.26 is designed to produce an
optimal beampattern, but does not handle noise very well. If we want to maximize
the signal-to-noise ratio (SNR) we can modify the beamforming weights with [11]

v = Qal(by), (2.27)

but here the beampattern is not as good as for Equation 2.26. If both channel noise
and a poor beampattern are problems in a system a proper compromize between
optimizing beampattern and maximizing SNR must be found [11].
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Methods

3.1 Error Characterisation

When looking at previous literature the most significant degradation in the radiation
pattern is the sidelobe level (SLL) [1]. The purpose of this section is to find out
where and why the sidelobes are increased and how much they are increased for
different translational errors. Of course, sources for effects on SLL is not limited to
mechanical tolerances, and later in the report a discussion of how the findings can be
combined with other error sources are discussed. Examples of other errors affecting
the radiation pattern are internal phase and gain errors in the array (channel errors),
coupling between elements, radome effects, edge effects, and interference from other
radiation sources close to the array.

What distinguish the mechanical errors in the array elements and subarrays is di-
rection dependence. This means that we can remove error effects perfectly in one
direction, but since sidelobes are present throughout the whole space, the other
sidelobes will not be compensated for. Therefore, an optimal compromise between
manufacturing tolerances and compensation methods need to be found for each spe-
cific use case [1], which is why it is important to have a good picture of what the
effects or mechanical errors are.

From papers as early as [12] from 1958, we know that rotational errors are signifi-
cantly less impactful than translational errors. We also know that larger arrays with
more elements experience less negative effects from individual element errors. As
such, it is reasonable to assume that the greatest impact on performance in smaller
arrays come from the translational errors of individual elements and in larger arrays
from the translational errors in subarrays. For larger arrays, one can imagine that
the subarrays are the antenna elements of a smaller array with more complicated ra-
diation patterns. However, this assumption only works if individual elements errors
are sufficiently small.

3.1.1 Antenna Array Setup

All of the investigation is done through simulations in MATLAB and for this segment
a rectangular uniform planar array (UPA) is considered. The setup is summarized in
Table 3.1. The results should also be broadly applicable to other planar arrays such
as triangular or circular. In order to evaluate both correlated and uncorrelated errors
the 32x32 element array will be made up of 4x4 element subarrays. Additionally, to
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avoid grating lobes the nominal element spacing will be half of the wavelength in the
dimensions of the plane. A relatively strict sidelobe level (SLL) will be maintained
by applying a 40 dB Taylor taper. By this way, error effects will be amplified and
easier to measure. The weighting scheme is illustrated in Figure 3.1. All lengths will
be represented as the electrical length (in terms of the wavelength), but the main
frequency span of interest is X-band, since this is the area where tolerances start to
be more difficult to maintain. Lastly, the individual element radiation pattern is set
to represent a realistic pattern comparable to real antenna elements as

g(u,v) = Vcosd = w, (3.1)
for this particular case. A non-isotropic antenna element would also have a certain
directivity. However, in this case the important results are the normalized directive

gain of the antenna and not the maximum gain it can produce.

Table 3.1: Simulation setup for the antenna array.

Array type Rectangular Uniform Planar Array (UPA)
Array size 32x32 (1024) elements

Subarray Size 4x4 (16) elements

Element spacing x-axis A2

Element spacing y-axis A/2
Element radiation pattern | y/cos(#) (see Figure 3.2a)

Weighting scheme Taylor 40 dB (see Figure 3.1)

Frequency X-band
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Figure 3.1: 40 dB Taylor weighting scheme for (a) a 32 element ULA
(b) a 32x32 element UPA.
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Figure 3.2: Radiation patterns of a) simulated |/cos(#) element and b)
isolated trial antenna element (from HFSS simulation, see Figure 3.4a.)

3.1.2 Error Modeling Setup

The type of errors considered are translational errors in x, y, and z dimensions for
both individual elements and subarrays. Rotational errors are not considered in
this work since they are usually negligible compared to translational errors [12][1].
Additionally, it is assumed that the mechanical error of an element or subarray does
not affect the position of the neighboring element or subarray. My investigation will
focus on characterizing the effects caused by tolerances with a standard deviation of
one percent of the wavelength, which is roughly comparable with realistic tolerances
and will therefore constitute an appropriate reference [1]. All tolerances are assumed
to follow a Gaussian distribution with zero mean. The effects of each error type will
first be considered individually and then combinations of errors will be investigated.
Each type of error will be simulated with boresight scanning and a scanning angle
of (6,p) = (45,45). Converting to uv-coordinates using Equation 2.1 we get two
scanning angles (ug, vo) = (0,0) and (ug, vo) = (0.5,0.5).

3.1.3 Results Presentation

In order to get a comprehensive picture of the effects that translational errors have,
the results of the model simulations will be presented in two formats. Firstly, the
average radiation pattern based on 25 iterations of a 0.01\ mechanical standard
deviation on a configuration of possible error types is calculated and presented as
a contour plot. In this way we can see where the influence of that particular error
type is most significant and to what extent it is affecting the SLL. Secondly, there
will be cross sections through the main lobe of the significant sidelobes based on
500 iterations of the array with the same mechanical standard deviation. These will
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illustrate the first three resulting standard deviations of the radiation pattern for
each direction based on Equation 2.16. The assumption here is that the radiation
pattern errors have an approximate normal distribution for the chosen mechanical
standard deviation. The types of errors that will be presented are:

o Element errors

— Ax errors

— Ay errors

— Az errors

— (Azx, Ay, Az) errors
e Subarray errors

— Ax errors

— Ay errors

— Az errors

— (Azx, Ay, Az) errors
o (Az, Ay, Az) errors for both elements and subarrays

Lastly, an analysis of the PDF of the points of the radiation pattern due to different
sizes of mechanical standard deviations will be done in order to determine where
we can assume different probability distributions when calculating the chances of
exceeding a certain SLL.

14
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3.2 Error Compensation

In order to compensate for the errors presented in section 3.1, we need to find
a calibration scheme that can calibrate specific antennas to remove these errors.
However, due to the impossibility of compensating for all directions optimally, there
is a need for finding a solution as close as possible to the goal pattern which is the
desired pattern for the application. This is what is presented in section 2.2 and
for which the results will be based on. Furthermore, it is important to remember
that the types of errors vary widely between different antenna/sensor elements or
types. The type of element also affects what types of subarray configurations are
available or sensible. As such, there might be some mechanical tolerances that are
very difficult to minimize and others that are naturally very small. As we shall see
later there is a proof that reducing the number of different types of mechanical errors
makes it easier to compensate for the mechanical errors. Another very important
point is that arrays are in different levels of digitization. Some antennas employ
full digital beamforming, while others have a completely analog weighting of the
antenna elements. Then there are hybrid antennas where the subarrays are fully
digital, while the elements within each subarray are analog. The type of antenna
will limit to what extent the method in section 2.2 can be applied. Therefore, there
will be an investigation into what the effectiveness for different types are. The
template will be the same as the one presented in Table 3.1 and will investigate the
following scenarios (illustrated in Figure 3.3):

e Analog beamforming
— Only the complex excitation of each element is available. Therefore the
Q-matrix of section 2.2 can only use the diagonal arguments. This will
limit the possibilities of compensating to local calibration.
o Digital beamforming
— The array response can be processed after receiving the signal while us-
ing the full Q-matrix for compensation. As such, both local and global
calibration will be viable.
o Hybrid beamforming
— A two step process can be employed where the elements within each
subarray will be corrected in an analog fashion while the subarrays will
be treated as an array of digital antennas. Local calibration and a hybrid
global calibration is available

In order to investigate these scenarios the limits of each type of calibration must
be found. Therefore, the analysis will be based on how large mechanical errors can
occur before the SLL is degraded more than 2 dB from the 40 dB taper anywhere
in uv-space. This safety margin is set due to the variations in the calibration re-
sults that occur when calculating the least square of the optimization problem and
therefore the goal SLL is effectively -38 dB. Additionally, this criteria will be en-
forced within an viewing angle of 60 degrees around the scanning angle for global
calibration (Equation 2.20). This corresponds to a solid angle of @ = 7wsr and

\/(u —ug)? + (v —1v9)% < 0.866. For local calibration (Equation 2.22) the goal is
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Figure 3.3: Three array configurations capable of using a) Analog
beamfoming, b) Digital beamforming, ¢) Hybrid beamforming.

to calibrate the angles close to the scanning angle. As such the angle criteria here
will be set to within 12 degrees of the scanning angle which correspond to a solid
angle 2 = 0.137sr and \/(u —up)? + (v —1vp)? < 0.208. To simplify the process all
mechanical translation errors must be whole percentages of the wavelength regard-
less of the combination of error types. When calibrating an array using a hybrid
beamforming there can be several configurations between individual elements and
subarrays. In other words, a suitable combination of global and local calibration
must be chosen for a global beamforming goal. For a local beamforming goal it is
clear that fully analog beamforming is sufficient as discussed in section 2.2. The
possible combinations are

Global subarray calibration 4+ Global inter subarray calibration

Global subarray calibration + Local inter subarray calibration

Local subarray calibration + Global inter subarray calibration

» Local subarray calibration + Local inter subarray calibration
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Notice that the global beamforming in the subarrays will only have the diagonal
arguments of the correction matrix available and as such there is reason to believe
that local calibration for the subarrays might be superior when trying to achieve
global calibration for the entire antenna. Finally, the robustness of the method when
scanning the beam without changing the calibration matrix will be investigated.
The goal is to find the maximum deviation from the scanning angle from which the
correction matrix is calculated that will incur a degradation in SLL lower than 1, 2,
and 3 dB respectively. From the results the number of correction matrices required
for a certain scanning space can be calculated.
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3.3 Trial Antenna

A trial antenna is constructed for the purpose of testing the methods investigated in
prior sections of this report. A summary of the trial antenna parameters is seen in
Table 3.2. The test antenna is a 16 element uniform linear array (ULA) and is shown
in Figure 3.4. It is designed and simulated using the EM-simulation program Ansys
HFSS and, using the design, later manufactured. This enables tests of the method
on a smaller array, but the effects on larger antennas with subarrays will be left for
further research. There are deliberate errors in the design of the trial antenna and
these are based on one iteration of a ULA produced from MATLAB code based on
the theory laid out in section 2.1. The positions of each element compared with the
ideal position are presented in Table 3.3 and the element radiation pattern is shown
in Figure 3.2b. The manufactured antennas’ reflection coefficients are measured
with a vector network analyzer (VNA) and the radiation pattern is measured in a
compact antenna test range (CATR). The range used is the SAAB A15 CATR. See
Appendix B for pictures of the measurement setup. To establish a most optimal
calibration scenario as a reference, a calibration made based on the element radiation
pattern from HFSS without any coupling between the elements is performed. The
measured antenna is then calibrated and the results are compared with the optimal
calibration results.

Table 3.2: Trial antenna configuration.

Array type Uniform Linear Array (ULA)
Array size 16 elements

Element spacing A/2 (for 10 GHz)

Element radiation pattern | see Figure 3.2b

Weighting scheme Taylor 30 dB

Frequency 9,9.25, 9.5, 9.75, 10 GHz
Standard deviation (04,04,0,) = (0.01X,0.00), 0.01))
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Table 3.3: Trial antenna element positions in cartesian
All units are in

coordinates with ideal positions as reference.

millimeters.
Index | Ideal X | Real X | Error X | Ideal Z | Real Z | Error Z
1 -112.42 | -112.09 | -0.33 0 0.43 0.43
2 -97.43 | -97.10 | -0.33 0 0.09 0.09
3 -82.44 | -82.70 | 0.26 0 0.06 0.06
4 -67.45 | -67.43 | -0.02 0 0.48 0.48
5 -52.46 | -52.83 | 0.37 0 -0.24 -0.24
6 -37.47 | -37.81 | 0.34 0 0.21 0.21
7 -22.48 | -22.49 | 0.01 0 0.25 0.25
8 -7.49 -7.04 -0.45 0 -0.07 -0.07
9 7.49 7.26 -0.23 0 0.06 0.06
10 22.48 22.60 -0.12 0 -0.35 -0.35
11 37.47 37.41 0.06 0 -0.34 -0.34
12 52.46 52.80 -0.34 0 0.03 0.03
13 67.45 67.13 0.32 0 0.22 0.22
14 82.44 82.45 -0.01 0 0.78 0.78
15 97.43 97.60 -0.17 0 -0.20 -0.20
16 112.42 | 112.75 | -0.33 0 0.06 0.06
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Figure 3.4: a) Trial antenna element design, b) Trial antenna array
design, ¢) Manufactured trial antenna.
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Results

4.1 Error Characterisation

Before presenting the results of the analysis a few parameters of the simulated
array must be established. Firstly, we must make sure that there are no grating
lobes. Using Equation 2.4 and setting the maximum scanning angle at 60 degrees
we calculate the requirement d < 0.64\ which is larger than half the wavelength
which was the nominal element spacing. As such there is no need to modify the
initially set element spacing. The HPBW of the simulated array is Ausgp = 0.078
based on the results of the MATLAB simulation and correspond to Afsyp = 4.47°.
The directivity of the simulated array at boresight scanning is D = 60.21 dB and
the maximum available directivity is D,,,, = 64.13 dB. This leaves a loss of 3.92
dB due to efficiencies. Since the grating lobe efficiency ey = 1 due to the nominal
A/2 element spacing and we assume a perfect polarisation efficiency, ey, = 1, the
only efficiency left is the illumination efficiency. This is not unity due to the applied
40 dB Taylor taper, and turns out to be e; = 0.4053. Moving on to the gain of
the system we similarly assume that the mismatch factor and radiation efficiency
is unity, since they bear little importance to the error characterisation analysis. As
such the directivity and gain is equal in this theoretical case. The parameters are
summarized in Table 4.1.

Table 4.1: Parameters of array based on array setup from Table 3.1

Max element spacing Az = 0.64)
Half Power Beamwidth AbOsyp = 4.47°
Directivity D =60.21 dB

Maximum possible directivity | D,,., = 64.13 dB

[Nlumination efficiency e = 0.4053

The optimal radiation pattern, subject to Table 3.1 and Table 4.1, can be seen in
Figure 4.1 and 4.2. There are two principal cross sections with sidelobes centering
at the scanning angle. These values are the most important for the characterisation.

4.1.1 Element Position Errors

Errors in x-position is characterised by an increasing variance with larger viewing
angle |u| as can be seen in both Figure 4.3a and 4.4. Examining Figure 4.3b, 4.4, 4.5
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and 4.6, we can conclude that the standard deviation does not change with scanning
angle. Additionally, the effects are mitigated somewhat due to the element patterns
effects at larger viewing angles. This type of error would be a bigger problem with
more isotropic antenna elements [1], but due to the more realistic element pattern,
the larger viewing angles have slightly lower amplitude than smaller viewing angles.
Y-position element errors exhibits the same errors as x-position errors, but with an
inversion of the u and v coordinates. Consequently, the errors increase with larger
|v| angle instead, since the radiation pattern in H-plane is more isotropic.

Figure 4.7, 4.8 and 4.9 illustrates that the effects of z errors are larger for small
viewing angles and decreases with larger viewing angles. These errors are also
symmetrical and will give the same results for both u and v axes. Due to the
realistic element radiation pattern, the effect on SLL is significantly larger than for
X,y-position errors.

Combining all element errors means that all scanning angles exhibit variance close
to the variance of the type of element error that dominates that viewing angle. For
angles close to the main lobe, the variance is similar to the the variance seen for
z-position element errors. For large viewing angles the variance is more like for
x,y-position errors. In conclusion, the SLL does not increase noticably when all
element errors are combined. The results for combined element errors can be seen
in Figure 4.10, 4.11, and 4.12.

4.1.2 Subarray Position Errors

Figure 4.13, 4.14, 4.15 and 4.16 shows that subarray errors introduce a periodicity
to the standard deviation of the radiation pattern. The nature of this periodicity
depends on the configuration of the subarray, or in other words, follow the radiation
pattern of the subarray. When looking at the boresight scanning in Figure 4.13a,
the peaks of the periodicity display the same amplitude as for an x-position element
error. However, if the scanning angle |u] is larger, as in Figure 4.13b, the peaks are
larger than for element errors, which is due to grating lobes created by the subarray
errors. Y-position subarray errors will exhibit the same errors as x-position errors,
but with an inversion of the u and v coordinates. This will not be true if the array
or the element beam pattern are not symmetric.

The z value error results can be seen in Figure 4.17, 4.18, and 4.19. The z-position
subarray errors results in a similar periodicity to x,y-position subarray errors. Fur-
thermore, the same effect as for z-positon element errors where the effect decreases
with larger viewing angles is also seen here. This type of error has the largest effect
on the SLL (except for very large scanning angles) with large side lobes close to the
main lobe.

Similar to the combined element errors, the combined subarray errors creates vari-
ance with the largest effects dominating for each viewing angle. The periodicity
stays the same, but the peaks are the maximum from the individual subarray x,y,z
error results as can be seen in Figure 4.20, 4.21, and 4.22.
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4.1.3 Combined Element and Subarray Errors

Including all types of errors does not make a significant difference in SLL compared
to the combined subarray errors. However, the variance of the lower points of the
periodic pattern are increased somewhat, since the effects of element errors are more
visible at these directions.

Normalized Gain [dB] Normalized Gain [dB]
=100 -90 -80 =70 =60 =50 -40 =30 =20 -100 -80 -80 =70 -60 -50 -40 -30 =20
S ¥ T I8

OSSN Emm——————T

0.8+
087
0.4

0.2

0.2
-0.4 ¢
0.6

0.8+

1 SR e __ eyt R SR R A . . | " .
-1 -08 -06 -04 -02 0 02 04 06 08 1 -1 08 06 -04 -02 0 02 04 068 08 1
u u
(a) (b)

Figure 4.1: Optimal radiation pattern for the array setup described in
Table 3.1 with (a) Boresight scanning (b) ug = 0.5,v9 = 0.5
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angle have the same pattern along u and v axes.
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with o = 0.01\ with (a) Boresight scanning (b) uy = 0.5,v9 = 0.5
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Figure 4.11: Radiation pattern along u-axis through main lobe for

element x,y,z-position errors with o

0.01\ with boresight scanning.

First, second and third standard deviation above optimal pattern shown.
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Figure 4.12:

Radiation pattern along u-axis through main lobe for el-
ement X,y,z-position errors with o = 0.01\ with ug = 0.5, vy = 0.5 scan-
ning. First, second and third standard deviation above optimal pattern
shown.
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Figure 4.13: Average radiation pattern for subarray x-position errors
with o = 0.01\ with (a) Boresight scanning (b) ug = 0.5,v9 = 0.5.
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Figure 4.14: Radiation pattern along u-axis through main lobe for
subarray x-position errors with ¢ = 0.01\ with boresight scanning. First,
second and third standard deviation above optimal pattern shown.
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Figure 4.15: Radiation pattern along u-axis through main lobe for sub-
array x-position errors with o = 0.01\ with uy = 0.5, v9 = 0.5 scanning.
First, second and third standard deviation above optimal pattern shown.
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Figure 4.16: Radiation pattern along v-axis through main lobe for sub-
array x-position errors with o = 0.01\ with uy = 0.5, vg = 0.5 scanning.
First, second and third standard deviation above optimal pattern shown.
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Figure 4.17: Average radiation pattern for subarray z-position errors
with o = 0.01\ with (a) Boresight scanning (b) ug = 0.5,v9 = 0.5
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Figure 4.18: Radiation pattern along u-axis through main lobe for
subarray z-position errors with ¢ = 0.01\ with boresight scanning. First,
second and third standard deviation above optimal pattern shown.
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Figure 4.19: Radiation pattern along u-axis through main lobe for sub-
array z-position errors with o = 0.01\ with vy = 0.5,v9 = 0.5 scanning.
First, second and third standard deviation above optimal pattern shown.
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Figure 4.21: Radiation pattern along u-axis through main lobe for
subarray x,y,z-position errors with o = 0.01\ with boresight scanning.
First, second and third standard deviation above optimal pattern shown.
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Figure 4.22: Radiation pattern along u-axis through main lobe for sub-
array x,y,z-position errors with ¢ = 0.01\ with ug = 0.5, vy = 0.5 scan-
ning. First, second and third standard deviation above optimal pattern
shown.
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Figure 4.23: Average radiation pattern for element and subarray x,y,z-
position errors with ¢ = 0.01\ with (a) Boresight scanning (b) uy =

0.
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Figure 4.24: Radiation pattern along u-axis through main lobe for el-
ement and subarray x,y,z-position errors with ¢ = 0.01\ with boresight

scanning. First, second and third standard deviation above optimal pat-
tern shown.
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Figure 4.25: Radiation pattern along u-axis through main lobe for
element and subarray x,y,z-position errors with ¢ = 0.01\ with ug =

0.5,v9 = 0.5 scanning. First, second and third standard deviation above
optimal pattern shown.
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4.1.4 Monte Carlo Tolerance Analysis

Investigating the gain distribution of 1000 iterations of element errors reveals the
behaviour shown in Figure 4.26, which displays results from the highest sidelobe
(ideal SLL=-40 dB) with boresight scanning at viewing angle u=0.168, v=0. It
shows a histogram of the data together with the probability distributions of Equa-
tion 2.11, 2.14, and 2.15 generated based on fitting the equations with the data
samples. Here we can see a confirmation that the radiation patterns gain does in-
deed follow a Ricean distribution that approximates a Normal distribution when the
errors are small and a Rayleigh distribution when the errors are large. In this case,
the standard deviations of the translation errors are 0.005X, 0.01\, and 0.02\ for all
investigated error types. ¢ = 0.01\ is the error investigated in this section and for
this case we start to see a clear distinction from a normal distribution. As such, the
distribution cannot be assumed gaussian above an average mechanical standard de-
viation of one percent of lambda for the current setup. Additionally, the assumption
made that the radiation pattern errors are normally distributed when calculating
standard deviations is not completely correct, when dealing with all types of er-
rors simultaneously. However, the assumption should be operable for fewer types of
erTors.
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Figure 4.26: PDFs and histograms of gain for 1000 iterations with a)
o = 0.005\ for all element and subarray errors, b) o = 0.01\ for all
element and subarray errors, ¢) o = 0.02) for all element and subarray

errors
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4.2 Error Compensation

It would be useful to analyse the results of calibration in a similar manner as in
section 4.1. Unfortunately, due to time constraints the result will be presented
through specific mechanical error instances. As such, these results are simply a
rule of thumb for calibrating an array with different types of mechanical errors. A
table of the maximum mechanical error possible for each calibration method and a
combination of translation errors is presented in Table 4.2.

Table 4.2: Maximum standard deviation before a maximum
degradation of 2 dB for each calibration type and error combination.
Both element and subarray errors have the same standard deviation on
their mechanical tolerances in each scenario.

Calibration type | x z XZ XyZ

Local Calibration 0.04X | 0.19) | 0.05X | 0.03X
Global Calibration | 0.09A | 0.12X | 0.05X | 0.04\
Hybrid Calibration | 0.02X\ | 0.07A | 0.02X | 0.02\

4.2.1 Local Calibration

Immediately with the first results we can see that local calibration is essentially
unable to compensate for errors in the xy-plane for boresight scanning, as can be
seen in Figure 4.27. Therefore, it would be optimal to reduce mechanical errors in
these dimensions when employing local calibration. However, it is worth to keep
in mind that the errors close to the main beam are small for boresight scanning
when only errors in the xy-plane are present. When scanning away from boresight,
the calibration capabillities of local calibration is increasing with a larger scanning
angle. Looking at Figure 4.28 we can see that in contrast to x- or y-position errors
the compensation capacity when dealing with z-position errors is very good. The
degradation in the local calibration area does not exceed 2 dB until the mechanical
tolerances of both the element and subarray positions exceed 19 percent of the
wavelength. We can also conclude that adding more dimensions to the translational
errors reduces the maximum standard deviation that can be calibrated as proven by
Figure 4.29 and 4.30.

4.2.2 Global Calibration

The global calibration available when a fully digitalized array is used is significantly
more powerful when the goal is to compensate for mechanical errors in a large portion
of uv-space. Most significantly we can see that calibrating xy-plane errors is possible
and yields much better results than local calibration, as shown in Figure 4.31, 4.33,
and 4.34. Calibrating the z-position errors however is slightly more difficult, as seen
in Figure 4.32. Additionally, the previously observed difficulty with calibrating many
dimensions of error at the same time is also present when using global calibration in
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Figure 4.27: Limit of local calibration before a maximum 2 dB degra-
dation in SLL for x-position element and subarray errors at o = 0.04\

a fully digital array. Worth noting is that the global calibration produces very large
sidelobe for relatively low standard deviations on the mechanical errors at viewing
angles wher # < 60°, which is visible in all of Figures 4.31 to 4.34. If the goal is
to eliminate sidelobes completely from the half space the calibration will be less
effective. Additionally, these sidelobes persist when scanning away from boresight.

4.2.3 Hybrid Calibration

It is clear from simulation results that the best calibration combination when aiming
for global calibration is to use global calibration for both within subarrays and be-
tween subarrays. When calculating the correction matrix for the subarrays only the
diagonal arguments can be used, but the compensation achieved is such that the ra-
diation pattern of each subarray is symmetric around € = 0 if not optimally close to
the ideal radiation pattern. Thist way the global calibration between the subarrays
uses ‘elements’ that have roughly the same radiation pattern as the ideal subarrays.
As expected the compensation capacity of the hybrid approach is noticibly less than
the fully digital beamforming approach when trying to achieve a global calibration.
The local calibration capacity is of course the same as for all other configurations
where each elemnent can be individually excited by an amplitude and phase. Look-
ing at Figure 4.35 we can see a similar difficulty as for the local calibration when
trying to compensate for errors in the xy-plane. Additionally the same improved
results with z-position errors is seen in Figure 4.36. When we look at combinations
of xz-errors and xyz-errors as seen in Figure 4.37 and 4.38 the conclusion is that the
errors in the xy-plane is the limiting factor since the z-errors are almost completely
compensated for.
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Figure 4.28: Limit of local calibration before a maximum 2 dB degra-
dation in SLL for z-position element and subarray errors at o = 0.19A

4.2.4 Correction Matrix Robustness

Once a correction matrix has been calculated it is important to know to what extent
the scanning angle can be changed without needing to calculate a new correction
matrix, as discussed in section 3.2. An investigation on what level of degradation
occurs based on the number of degrees scanned away from boresight when all trans-
lational errors ar set to one percent of the wavelength and is presented in Table 4.3.
If we assume that the array will not be scanned beyond 60 degrees another table
of the number of correction matrices required for maintaining a maximum degra-
dation lower than 1, 2, and 3 dB can be made and is shown in Table 4.4. This is
based on how many hexagons are needed to cover the square surrounding the circle
in uv-space where § = 60°. See Figure 4.39. Each hexagon has a distance from
the centre to the corners the same as the maximum scanning angles from Table 4.3
in uv coordinates. The hexagons can then simply be replaced by circles with the
afformentioned radius to cover the area in an efficient manner. As such this will
constitute an upper bound on the number of required Q-matrices. It can be seen
that the global calibration offer better compensation of mechanical errors, but the
local calibration is far more robust when it comes to how densely the correction
matrices must be applied. However, this comparison is somewhat unfair, since the
goals for how large space the two types try to compensate for are different. The
hybrid calibration seems to be the most robust and this might be because the array
is treated as a smaller array of subarrays which would lend some more robustness
to the calibration since correction matrices for smaller arrays are more robust.
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Figure 4.29: Limit of local calibration before a maximum 2 dB degra-
dation in SLL for (x,z)-position element and subarray errors at o = 0.05\
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Figure 4.30: Limit of local calibration before a maximum 2 dB degrada-
tion in SLL for (x,y,z)-position element and subarray errors at o = 0.03\
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Figure 4.31: Limit of global calibration before a maximum 2 dB degra-
dation in SLL for x-position element and subarray errors at o = 0.09\
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Figure 4.32: Limit of global calibration before a maximum 2 dB degra-
dation in SLL for z-position element and subarray errors at o = 0.12\
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Figure 4.33: Limit of global calibrationbefore a maximum 2 dB degra-
dation in SLL for (x,z)-position element and subarray errors at ¢ = 0.05\
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Figure 4.34: Limit of global calibration before a maximum 2 dB
degradation in SLL for (x,y,z)-position element and subarray errors at
o = 0.04\
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Figure 4.35: Limit of hybrid calibration before a maximum 2 dB degra-
dation in SLL for x-position element and subarray errors at o = 0.02\
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Figure 4.36: Limit of hybrid calibration before a maximum 2 dB degra-
dation in SLL for z-position element and subarray errors at o = 0.07\
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Table 4.3: Scanning deviation in degrees where degradation is 1, 2,
and 3 dB for each calibration type.

Calibration type | 1dB | 2 dB | 3 dB
Local Cal. 6° 12° 18°
Hybrid Cal. 12° 19° 27°
Global Cal. 3° 5° 7°

Table 4.4: Required number of correction matrices for maintaining a
degradation lower than 1, 2, or 3 dB for each calibration type.

Calibration type | 1dB | 2 dB | 3 dB
Local Cal. 132 42 25
Hybrid Cal. 42 25 16
Global Cal. 504 195 110

Figure 4.39: Method of packing hexagons to calculate the approximate
number of correction matrices required to cover the scanning area.
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4.3 Test Antenna

4.3.1 Reflection Coefficients

The test antenna embedded element reflection coefficients (Sp101 — Si616) measured
with a vector network analyzer (VNA) are shown in Figure 4.40. We can see that the
reflection coefficients have very good values from 8-9.5 GHz, but is worse than -10dB
from around 9.5-10.5 GHz. This can be compared with the isolated element reflection
coefficients of the HEF'SS antenna element design and the embedded element and
element scan reflection coefficients of the HFSS array design shown in Figure 4.41.
We can conclude that the curve fits the simulation, but with a shift towards lower
frequencies in the manufactured array antenna compared to the HFSS design. The
best performance regarding reflection parameters should be around 9.5 GHz when
using all elements simultaneously.

-20 - W i 50909
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=251 \ | ! 513137
|

-30

8 8.5 9 9.5 10 10.5 11 11.5 12
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Figure 4.40: Embedded element reflection coefficients for each elements
of the test antenna.

4.3.2 Radiation Pattern

The directive gain of each element can be seen in Figure 4.42 for ¢ = 0°, which is
the plane of the array (xz-plane), and ¢ = 90°, which is the plane perpendicular
to the array (yz-plane). We can observe that the elements affect each other signif-
icantly due to coupling in the plane of the array while the pattern is more similar
to the individual element in the perpendicular plane. The elements closer to the
edge of the array is exhibiting less ideal patterns and are responsible for the gain
dips close to £50 degrees in Figure 4.42a, while the centre elements have a better
performance. As such, applying the taylor taper when using the array is good for
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Figure 4.41: Isolated element reflections (single) and embedded ele-
ment (passive) and element scan (active) reflection coefficients for each
elements of the trial array antenna from HFSS design.

reducing the influence of the edge elements in addition to reducing the SLL. The
measured radiation pattern of the array is shown in Figure 4.43a. As expected the
pattern in the xz-plane is non-ideal due to the position errors of the element and the
coupling between them while the pattern in the yz-plane is very close to the optimal
pattern. Applying a 30 dB Taylor taper to the array will yield the pattern shown in
Figure 4.43b where the discrepancy between the desired SLL and the resulting one
is around 5 dB at 10 Ghz. Clearly, some calibration effort is required.

4.3.3 Calibration of Test Antenna

Using the element radiation pattern in Figure 3.2b and element positions in Table 3.3
we can apply the global and local calibration of section 4.2 to calibrate the theoretical
test antenna array. This version of the test antenna does not have any coupling
between neighboring antennas and no losses due to mismatch, although the radiation
efficiency of the element is included, and therefore constitutes the best possible
results for the calibration. The optimal array pattern based on the HFSS element
pattern might also be a useful goal pattern when calibrating the measured antenna.
The results can be seen in Figure 4.44. Both the global an local calibration achieves
the goal of the calibration with the global calibration maintaining a 30 dB SLL in
the entire uv-space and the local calibration maintaining the same SLL a distance
up to 0.5 from the scanned main beam. Only a very minor degradation can be seen
for both methods, which can be corrected by applying a slightly stricter excitation
taper. Moving on to the calibration of the measured antenna, the results are mixed.
The results applied to 9, 9.25, 9.5, 9.75, and 10 GHz and can be seen in Figure 4.45,
4.46, 4.47, 448, and 4.49 where the ’weighted pattern’ is the pattern when the
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elements are weighted with standard 30 dB Taylor weights. Unfortunately, the
element pattern from the HFSS simulation proves to be insufficient in making a
successful goal pattern for the calibration. Therefore, the goal pattern used is based
on one of the centre elements radiation patterns duplicated sixteen times to form
an approximately optimal array radiation pattern with -30 dB SLL. As can be seen
in the results there is a step in the main lobe when using this method. This is
due to the way the measurement of the radiation pattern is made with a delay in
collecting the measurement data as the antenna is scanned across different angles.
For 9.5 and 9.75 GHz a stronger taper is required for a successful calibration, but
for the other frequencies the normal 30 dB taper is enough. Local calibration works
well for all frequencies except 9 GHz and global calibration is achieved in the three
first frequencies but fail for 9.75 and 10 GHz. These failures could possibly be
mitigated by tweaking the goal pattern somewhat or if that fails, a less simplistic
way of forming the goal pattern might yield better results. Results for non boresight
scanning are similar in nature.
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Figure 4.42: Trial antenna elements radiation pattern at 10 GHz for a)
¢ = 0°and b) ¢ = 90°
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Figure 4.43: Trial antenna array radiation pattern at 10 GHz for ¢ = 0°
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Figure 4.44: Trial antenna theoretical radiation pattern and
calibration at v=0. Based on simulated radiation pattern of trial
antenna element in HFSS.
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Figure 4.45: Measured trial antenna calibration for 9 GHz.



4. Results
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Figure 4.46: Measured trial antenna calibration for 9.25 GHz.
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Figure 4.47: Measured trial antenna calibration for 9.5 GHz.
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Figure 4.48: Measured trial antenna calibration for 9.75 GHz.
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Figure 4.49: Measured trial antenna calibration for 10 GHz.
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Conclusion

It is clear that the suggested model is a robust method for reducing the SLL and
assuring that the desired radiation pattern is fullfilled, given that the mechanical
errors are reasonably small. This report only presented the effectiveness when ap-
plied to errors caused by translational mechanical tolerances, but there is evidence
that the method should work well for any type of mechanical error. Further study
needs to be done into what configuration of manufacturing tolerances and error
compensation is advisable in these cases.

Despite the largest sources of errors coming from translational errors in the z di-
mension, these errors are by far the easiest to calibrate. It is more concerning if
there are large translational errors in the xy-plane if the presented method is used.
Furthermore, reducing the number of types of errors is crucial for each type of cali-
bration and preferably only having a significant z-error left when manufacturing the
array antenna. As expected, the fully digital array represent the largest possibility
for compensating for mechanical errors. However, there are situations when local
calibration might be permissible, given that there is a choice between the two. The
method applied to a real manufactured and measured array antenna had mixed re-
sults due to the simple derivation of the goal pattern used. If a more successfull
attempt is to be made the goal pattern needs to have more accurate models behind
it.

A comparison of the results from this method needs to be done with the often used
method at SAAB AB, where the phases of each element is aligned when subject to
an incident plane wave. Technically, the local calibration with an infinitely narrow
weighting should give the same results, but a more rigourus comparison should be
made to see if this assumption holds.

In addition to radiation pattern errors caused by mechanical errors there are many
other sources for these errors. For a real life active antenna array to be feasably
calibrated these other sources must be taken into account. The approach made in
this report is determine the amplitude and phase of the far field of each antenna
element and then apply signal processing methods to modify them in a manner as
to minimize the error between the resulting radiation pattern and the goal pattern.
This method is seemingly compatible with these other sources. Simply, combine this
method with whatever other methods for handling the other error sources is used
and compute the far field function for each of the elements. Then apply the same
compensation method used in this report with the new element radiation patterns.
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5. Conclusion

Examples of phenomena that will affect the radiation patterns of the elements other
than mechanical errors are coupling, edge effects, nearby radiation sources, radomes,
and internal channel errors.

The calculations done in the report has been excluding the influence of noise in the
channel and this is something that must be investigate if one wishes to calibrate
a real antenna array successfully, especially if it is an active electronically scanned
array that have many internal sources of noise. In general, there is much potential
in using a fully digital beamforming to compensate for mechanical errors and other
error sources, but more research must be done for each source to ensure success.
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MATLAB code

A.1 Error Characterisation Code

%% Uniform Planar Array Model — by Josef Ydreborg

To Constants . ...

fo = 10e9; % Central frequency used

c0 = 299792458; % Speed of light in vacuum

lam0 = c0/f0; % Wavelength of central frequency
kO = (2x%pi)/lam0; % Wavenumber of central frequency

%% Array Information

M= 32; % Number of elements along x—axis

N = 32; % Number of elements along y—axis

m= —M-1)/2:1:(M-1)/2; % Element indexes along x—axis
n=—(N-1)/2:1:(N-1)/2; % Element indexes along y—axis

Msub = 4; % Number of elements along subarray x—axis
Nsub = 4; % Number of elements along subarray y—axis
dx = lam0/2; % Desired element spacing along x—axis

Lx = Mxdx; % Length of array along x—axis

x = mkdx; % Element positions along x—axis

dy = lam0/2; % Desired element spacing along y—axis

Ly = Nxdy; % Length of array along y—axis

y = nxdy; % Element positions along y—axis
[Xopt,Yopt] = meshgrid(x,y); % Optimal element positions in x,y—axis
Zopt = zeros (size (Xopt)); % Optimal element positions in z—axis

%% Phase Information

res = 250; % resolution of angles = (2xres+1)"2
u= —1:1/res:1; % angles used in theta—dimension

v = —1:1/res:1; % angles used in phi—dimension

[Ui, Vi] = meshgrid(u,v); % 2D mesh of U,V angles

uv_ filt = double ((Ui."24Vi."2) <= 1);

uv_ filt (uv_filt = 0) = nan;

U = Ui.xuv_filt; % converts entries to NaN where U24+V"2 < 1 is not
V = Vi.xuv_ filt; % fullfilled

W = real(sqrt(ones(size (U))-U"2-V.72));

b SEEETIME o ot it e e e e

thetaO0 = 0; % steering angle in theta—dimension

phi0 = 0; % steering angle in phi—dimension

u0 = sin(theta0)*cos (phi0); % steering angles converted to u—space
v0 = sin(theta0)*sin (phi0); % steering angles converted to v—space

betaX = —k0xu0;
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A. MATLAB code

betaY = —k0xv0;

% Limit simulation angles to principal side lobes ........................

[uOval ,u0ind] = min(abs(U-u0) ,[],2); % Finding colummn index where the
u0ind = u0ind (round(length (u0ind)/2)); % principal side lobes are located

abs (U—v0) ,[],2); % Finding row index where the
length (v0ind) /2)); % principal side lobes are located

[vOval ,v0ind] = min
v0ind = vO0ind (round

o~ —~

U = [U(uOind ,:);U(:,v0ind) ’]; % This Restricts U, V and W coordinates to
V = [V(u0ind ,:);V(:,v0ind) ’]; % only the principal side lobe axes.
W = [W(u0ind ,:) ;W(:,v0ind) ’];

% Other Coordinate SysStEmS . ... ...t e

TH = asin(sqrt (U.724V.72)); % angles in spherical coord. theta
PH = atan(U./V); % angles in spherical coord. phi
EL = asin(sin(PH).xsin (TH)); % angles in elevation coord.

AZ = atan(cos(PH).xtan(TH)); % angles in azimuth coord.

9% Tapering (R.J.Mailloux, Phase Array Antenna Handbook, p.121-128)

R = —40; % desired sidelobe level [dB]
r 107(—-R/20); % desired sidelobe ratio [linear |

A = (1/pi)*acosh(r);
ns = 11;
dn = 1:1:ns—1;
sigma = ns/(A™2+(ns—1/2)72)7(1/2);
zn = sigmax*(A"24+(dn—1/2).72).7(1/2);
p = ones(1,ns—1);
for i=1:1:ns—1
p=p .*x (1-dn.”2./2zn(i).72);
end
Fm = ((factorial(ns—1)"2)./(factorial (ns—14dn).* factorial (ns—1—dn))) .*p;

wx = ones (1,M);

wy = ones(1,N);

sx = zeros (1,M);

sy = zeros (1,N);

for i=1:1:ns—1
sx = sx + Fm(i).*cos((2xpi*i*x)/Lx);
sy = sy + Fm(i).xcos((2*pixixy)/Ly);

end
WX = WX + 2%8X; % tapering values for x—axis
wy = wy + 2xsy; % tapering values for y—axis

[IX,IY] = meshgrid (wx,wy);
I = IX.xIY; % tapering values in xy—plane

%% Antenna element pattern

EP = sqrt (W) ; % Pattern of individual element sqrt(cos(theta))
EPdB = 10xlogl10 (EP) ; % Converting directivity to dB

%% Optimal Array Factor

beta = XoptxbetaX + YoptxbetaY; % phases of element excitations
exc = I.xexp(lixbeta); % matrix of element excitations (amp,phase)
AF = zeros(size (U)); % initiating array factor

% Calculates array factor for each element and summing them
for 1i=1:1:M«N
AF = AF + exc(i)*exp(1i*xk0=(Xopt(i)*U+Yopt(i)*V+Zopt(i)+W));
end
Gopt = EP.xAF;

Gopt_dB = 20xlogl10 (abs(Gopt)); % converts AF to dB
Gopt_norm = abs (Gopt)./max(max(abs(Gopt))); % normalizes AF
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A. MATLAB code

Gopt_normdB = 20%1og10 (Gopt_norm) ; % normalized AF to dB
% Removing ’inf’ values in dB scale. Needed to plot as contour.
Gopt_dB(Gopt_dB==-inf) = min(min(Gopt_dB(Gopt_dB>—inf)))—100;
Gopt_normdB (Gopt_normdB=—inf) = ...

min (min (Gopt_normdB (Gopt_normdB>—inf))) —100;

%% Error Loop

iter = 1000; % number of simulations of erronous array patterns
% Greg = zeros(length(u),length(v),iter); % register for erronious patterns
Greg = zeros(2,length(u),iter); % register for simulating only principal

% side lobes
mu = 0; % mean value of position errors
sigx = 300e—6; % standard deviation of elements in x—axis [m]
sigy = 300e—6; % standard deviation of elements in y—axis [m]
sigz = 300e—6; % standard deviation of elements in z—axis [m]
subx = 300e—6; % standard deviation of subarrays in x—axis [m]
suby = 300e—6; % standard deviation of subarrays in y—axis [m]
subz = 300e—6; % standard deviation of subarrays in z—axis [m]
beta = XoptxbetaX + YoptxbetaY; % phases of element excitations
exc = I.xexp(lixbeta); % matrix of element excitations (amp,phase)

for k=1l:iter
% Generating Position Errors
X = Xopt; Y = Yopt; Z = Zopt;

for pattern k

subX = normrnd (mu, subx ,N/Nsub ,M/Msub) ;

subY = normrnd (mu, suby ,N/Nsub ,M/Msub) ;

subZ = normrnd (mu, subz ,N/Nsub ,M/Msub) ;

subX = kron (subX, ones (Nsub,Msub)); % x—axis errors of subarrays
subY = kron(subY,ones(Nsub,Msub)); % y—axis errors of subarrays
subZ = kron(subZ,ones(Nsub,Msub)); % z—axis errors of subarrays
sigX = normrnd (mu, sigx ,N,M) ; % x—axis errors of elements
sigY = normrnd (mu, sigy ,N,M) ; % y—axis errors of elements
sigZ = normrnd (mu, sigz ,N,M) ; % z—axis errors of elements
X =X + sigX + subX; % erroneous x—position of each element

Y =Y + sigY + subyY; % erroneous y—position of each element

Z =7 + sigZ + subZ; % erroneous z—position of each element

% Calculates and sums the array factor for each element

AF = zeros(size (U)); % initiating array factor

for 1i=1:1:M«N
AF = AF + exc(i)*exp(1i*xk0(X(i)*U+Y(1)*«VH+Z(1i)+W));
end
G = EP.xAF; % Applying antenna element pattern to array factor
Greg(:,:,k) = G; % Assigning pattern k
end
9% Calculations
Gavg = mean(abs(Greg) ,3); % Average o the erronous simulations
Gsum = sum((abs(Greg)—repmat (Gavg,1,1,iter))."2,3);
Gsig = sqrt (Gsum/(iter —1)); % The standard deviation of each set of
% samples for each viewinfg angle
Grel = Gsig./max(max(abs(Gopt))); % Normalized standard deviation
Gsl = abs(Gopt) + abs(Gsig); % mu + sigma
Gs2 = abs(Gopt) + 2xabs(Gsig); % mu + 2xsigma
Gs3 = abs(Gopt) + 3xabs(Gsig); % mu + 3xsigma
% Converting all sets into normalized and dB versions and removing ’inf’

% values to make plotting easier:

Gavg dB = 20xlogl0 (abs(Gavg));
Gavg_norm = abs(Gavg) ./max(max(abs(Gavg)));
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A. MATLAB code

Gavg_normdB = 20xlogl10 (Gavg_norm) ;
Gavg dB(Gavg dB==-inf) = min(min(Gavg dB(Gavg dB>—inf)))—100;
Gavg normdB(Gavg normdB=—=-inf) = .

min (min (Gavg_normdB (Gavg_norrndB>— inf)))—100;

Gsig_dB = 20xlogl10 (abs(Gsig));
Gsig_norm = abs(Gsig)./max(max(abs(Gsig)));
Gsig_normdB = 20xlog10 (Gsig_norm) ;

Gsl_dB = 20xlogl0 (abs(Gsl));
Gsl _norm = abs(Gsl)./max(max(abs(Gsl)));
Gsl_normdB = 20%log10(Gsl_norm) ;

Gs2_dB = 20xlogl0(abs(Gs2));
Gs2_norm = abs(Gs2)./max(max(abs(Gs2)));
Gs2_normdB = 20xlogl0(Gs2_norm) ;

Gs3_dB = 20xlogl0(abs(Gs3));
Gs3_norm = abs(Gs3)./max(max(abs(Gs3)));
Gs3_normdB = 20%1og10 (Gs3_norm) ;

Grel _dB = 20%logl0 (abs(Grel));
Grel norm = abs(Grel)./max(max(abs(Grel)));
Grel_normdB = 20x1logl10 (Grel norm);
Grel dB(Grel dB=—inf) = min(min(Grel dB(Grel dB>—inf)))—100;
Grel _normdB (Grel _normdB=—=-inf) = .
min (min (Grel _normdB (Grel _ normdB>—1nf) )) —100;

A.2 Error Compensation Code

A.2.1 Analog/Digital Array

9% Hybrid analog/digital Planar Array Calibration Model
% by Josef Ydreborg
%% Constants

tic

fO = 10e9; % Central frequency

c0 = 299792458; % Speed of light in vacuum

lam0 = c0/f0; % Wavelength of central frequency

= (2%pi)/lam0; % Wavenumber of central frequency

%% Ideal Array Information . ... ... ... ... ...
% Sensor Array is in the x—y plane and the direction of propagation is
% z—axis. As long as the number of elements in the array and subarrays
% are powers of two, the code should work well. Subarray size of one

% element works but keep in mind that calibrations based on subarrays

% are invalid in this case.

M= 275; % Number of elements along x—axis
N = 275; % Number of elements along y—axis
m= —M-1)/2:1:(M-1)/2; % Element indeces along x—axis
n=—(N-1)/2:1:(N-1)/2; % Element indeces along y—axis
NumSubX = 273; % Number of Subarrays along x—axis



35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

104

A. MATLAB code

NumSubY = 273; %

NumSub = NumSubX#*NumSubY ;

Number of Subarrays along y—axis

Msub = M/NumSubX; % Number of elements in subarray along x—axis
Nsub = N/NumSubY; % Number of elements in subarray along y—axis
dx = lam0/2; % Ideal element spacing along x—axis
dy = lam0/2; % Ideal element spacing along y—axis
Lx = Mxdx; % Length of array along x—axis
Ly = Nxdy; % Length of array along y—axis
x = mkdx; % Ideal element positions along x—axis
y = nxdy; % Ideal element positions along y—axis
z = zeros (size(x));
[X0,Y0] = meshgrid(x,y);
Z0 = zeros (size (X0));
T Position ETTOTS ...
X = XO0;
Y = YO0;
Z = Z70;
mu = 0; % mean value of position errors
sigx = 0.01xlamO0; % standard deviation of elements in x—axis
sigy = 0.01xlamO; % standard deviation of elements in y—axis
sigz = 0.01%lamO; % standard deviation of elements in z—axis
subx = 0.01xlam0; % standard deviation of subarrays in x—axis
suby = 0.01%lamO; % standard deviation of subarrays in y—axis
subz = 0.01%xlamO; % standard deviation of subarrays in z—axis
subX = normrnd (mu, subx ,N/Nsub ,M/Msub) ;
subY = normrnd (mu, suby ,N/Nsub ,M/Msub) ;
subZ = normrnd (mu, subz ,N/Nsub ,M/Msub) ;
subX = kron (subX, ones (Nsub,Msub)); % x—axis errors of subarrays
subY = kron (subY,ones(Nsub,Msub)); % y—axis errors of subarrays
subZ = kron(subZ,ones(Nsub,Msub)); % z—axis errors of subarrays
sigX = normrnd (mu, sigx ,N,M) ; % x—axis errors of elements
sigY = normrnd (mu, sigy ,N,M) ; % y—axis errors of elements
sigZ = normrnd (mu, sigz ,N,M) ; % z—axis errors of elements
X =X + sigX + subX; % erroneous x—position of each element
Y =Y + sigY + subY; % erroneous y—position of each element
Z =7 + sigZ + subZ; % erroneous z—position of each element
9% Weighting Scheme .. ... ...
% This code uses a taylor taper weighting scheme.
R = —40; % desired sidelobe level [dB]
r = 107(—R/20); % desired sidelobe ratio [linear ]
A = (1/pi)*acosh(r);
nbar = ceil (2¥A72+0.5); % SLL=-30dB; 4<nbar<7 for monotonic taper
% SLL=-40dB; 7<nbar<1l for monotonic taper

dn = 1:1:nbar—1;
sigma = nbar/(A™2+(nbar—1/2)72)7(1/2);
zn = sigmax*(A"24+(dn—1/2).72).7(1/2);
p = ones(1,nbar—1);
for i=1:1:nbar—1

p=p .x (1-dn."2./2zn(i)."72);
end
Fm = ((factorial (nbar—1)"2)./(factorial (nbar—14dn).=*

factorial (nbar—1—dn))) .*p;
wx = ones(1,M); sx = zeros(1,M);
wy = ones(1,N); sy = zeros(1,N);
for i=1:1:nbar—1

sx = sx + Fm(i).*cos((2xpi*i*x)/Lx);



A. MATLAB code

sy = sy + Fm(i).*cos((2xpi*ixy)/Ly);
end
WX = WX + 2%SX;
Wy = Wy + 2xsy;
[IX,IY] = meshgrid (wx,wy);
I = IX.xIY; % tapering values in xy—plane

%% Vectorizing positions and tapering . ............ it
% Puts all element positions in vectors with subarray positions lumped
% together.

X0v = zeros (1,M«N);
YOv = zeros (1 ,M«N);
Z0v = zeros (1 ,MxN);
Xv = zeros (1 ,Mx«N);
Yv = zeros (1 ,Mx«N);
Zv = zeros (1 ,Mx«N);
Iv = zeros (1 ,MxN);
count = 0;

for i=1:NumSubX
for j=1:NumSubY

temp = XO0((i—1)*Msub+1:(i—1)«Msub+Msub, (j—1)*Nsub+1:(j—1)*Nsub+Nsub);
temp = temp (:); XOv(count*Msub«Nsub+1:(count+1)*xMsubxNsub) = temp;

temp = YO((i—1)*«Msub+1:(i—1)+«Msub+Msub, (j—1)*Nsub+1:(j—1)*Nsub+Nsub);
temp = temp (:); YOv(count*MsubxNsub+1:(count+1)*«MsubxNsub) = temp;

temp = Z0((i—1)*Msub+1:(i—1)*Msub+Msub, (j—1)*Nsub+1:(j—1)*Nsub+Nsub);
temp = temp (:); ZOv(count*Msub*Nsub+1:(count+1)*MsubxNsub) = temp;

temp = X((i—1)*Msub+1:(i—1)*Msub+Msub, (j—1)*Nsub+1:(j—1)*Nsub+Nsub);
temp = temp (:); Xv(count*Msub*Nsub+1:(count+1)*MsubxNsub) = temp;

temp = Y((i—1)*Msub+1:(i—1)*Msub+Msub, (j—1)*Nsub+1:(j—1)*Nsub+Nsub) ;
temp = temp (:); Yv(count*MsubxNsub+1:(count+1)*MsubxNsub) = temp;

temp = Z((i—1)*Msub+1:(i—1)*Msub+Msub, (j—1)*Nsub+1:(j —1)*Nsub+Nsub) ;
temp = temp(:); Zv(count*Msub*Nsub+1:(count+1)*MsubxNsub) = temp;

temp = I((i—1)*Msub+1:(i—1)*Msub+Msub, (j—1)*Nsub+1:(j—1)*Nsub+Nsub);
temp = temp(:); Iv(count*Msub*Nsub+1:(count+1)*MsubxNsub) = temp;

count = count + 1;

end

9% Section 2: Angle Information

% This piece of code defines what angles will be used for displaying the
% data and which angles are used for calibration. Additionally , the
% scanning angle is defined.

%% Visualisation angles . ... ... ... ..

resp = 250; % resolution of angles = (2xres+1)72
u= —1:1/resp:1; % angles used in u—space
v = —1:1/resp:1; % angles used in v—space

VI
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A. MATLAB code

[Ui, Vi] = meshgrid(u,v); % 2D mesh of U,V angles
uv_ filt = double ((Ui."2+Vi."2) <= 1);
uv_ filt (uv_filt = 0) = nan; % filter for removing illegal angles

% converts entries to NaN where U 24+V™2 < 1 is not fullfilled
U = Ui.xuv_filt;

V = Vi.xuv_ filt;

W = abs(sqrt(ones(size (U))-U."2-V.72));

% vectorize non—NaN entries
nanind = find (~isnan (U));
Uv = U(nanind) ;

Vv = V(nanind);

Wv = W(nanind) ;

9% Calibration angles . ... ... ...

resc = 100; % resolution of angles = (2*res+1)"2
uc = —1:1/resc:1; % angles used in u—space

ve = —1:1/resc:1; % angles used in v—space

[Ui,Vi] = meshgrid(uc,ve); % 2D mesh of U,V angles

uv_ filt = double ((Ui."24Vi."2) <= 1);

uv_filt (uv_filt = 0) = nan; % filter for removing illegal angles

% converts entries to NaN where U24+V"2 < 1 is not fullfilled
Uc = Ui.xuv_ filt;

Ve = Vi.xuv_ filt;

We = real(sqrt (ones(size (Uc))-Uc."2-Vec.72));

% vectorize non—NaN entries
nanindc = find (~isnan (Uc));
Ucv = Uc(nanindc);
Vev = Ve(nanindce);
Wev = We(nanindce) ;

9% Scanning angle ... ... ...

thetaO = (0/180)*pi; % scanning angle in theta—dimension
phi0 = (0/180)x*pi; % scanning angle in phi—dimension

u0 = sin(theta0)=*cos(phil); % scanning angles converted to u—space
v0 = sin(theta0)*sin (phi0); % scanning angles converted to v—space

betaX = —k0xu0;
betaY = —k0xv0;

9% Section 3: Gain Calculation

%% Subarray Gaill .. ...t
% Here the radiation pattern of each element is calculated, This is

% then sorted into subarrays. From the subsequent matrices the total

% radiation pattern can be exracted before or after a certain

% calibration is implemented on the subarray elements or the entire

% array itself.

EPv = sqrt (Wv); % Amplitude pattern for vectorized visualisation angles
EPcv = sqrt (Wev) ;% Amplitude pattern for vectorized calibration angles
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A. MATLAB code

excv = Iv.xexp(1lix(X0vkbetaX+Y0vsbetaY)); % Ideal element excitation

vsize = [NumSub, numel (Uv) ,MsubxNsub]; % size of visualisation matrices
cvsize = [NumSub,numel (Ucv) ,MsubxNsub|; % size of calibration matrices
Gopt_subv = zeros(vsize); % optimal array pattern for visualisation
Gopt_subcv = zeros(cvsize); % optimal array pattern for calibration
Gerr_subv = zeros(vsize); % erronous array pattern for visualisation
Gerr_subcv = zeros(cvsize); % erronous array pattern for calibration

for i=1:NumSub
for j=1:Msub*Nsub

k = (i—1)*Msub*Nsub+j ;

Gopt_subv(i,:,j) = EPv.x(excv (k) * ...
exp (1i*k0x(X0v(k)*Uv+Y0v (k) *Vv+Z0v (k) «Wv) ) ) ;

Gopt_subev(i,:,j) = EPcv.x(excv(k) * ...
exp (1ixk0*(X0v(k)*Ucv+YO0v (k) *Vev+Z0v (k) *Wev) ) ) ;

Gerr_subv(i,:,j) = EPv.x(excv(k) * ...
exp (11i%k0x*(Xv(k)*Uv+Yv(k)*Vv+Zv (k) *Wv) ) ) ;

Gerr_subcev(i,:,j) = EPcv.*x(excv(k) = ...
exp (11ixk0*(Xv(k)*Ucv+Yv(k)*Vev+Zv (k) *«Wev) ) ) ;

end
end

% Optimal pattern for full array

GOPT = zeros (size (U))+nan;

GOPT(nanind) = sum(sum(Gopt_subv,3) ,1);
GOPT_dB = 20xlog10 (abs(GOPT) ) ;

GOPT_normdB = GOPT_dB — max(max(GOPT _dB) ) ;

% Erronous pattern for full array

GERR = zeros (size (U))+nan;

GERR(nanind) = sum(sum(Gerr_subv,3) ,1);
GERR_dB = 20%log10 (abs(GERR) ) ;

GERR_normdB = GERR_dB — max(max(GERR dB) ) ;

% Patterns if subarrays are treated like an array of antennas.
% Here, the subarrays are not calibrated at all.

Gerr_v = sum(Gerr_subv,3);

Gerr__cv = sum(Gerr_subcv,3);

Gopt_v = sum(Gopt_subv,3) ;

Gopt_cv = sum(Gopt_subcv,3) ;

% indeces for main lobe in final pattern
[row, col] = find (GOPT = max(max(GOPT) ) ) ;

9% Section 4: Subarray Calibration

%

% Here, the individual subarrays are calibrated. It is assumed that only
% excitation changes of the elements are possible. Therefore, only
% diagonal entries are allowed in the calibration matrices.
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A. MATLAB code

%% Subarray Correction — Global Calibration .............................

qglo = ones (NumSub, MsubxNsub) ;
Gglo_subv = zeros(vsize);
Gglo_subcv = zeros(cvsize);

for i=1:NumSub
for j=1:Msub*xNsub
qglo(i,j) = (Gopt_subev(i,:,j)*Gerr_subev(i,:,j)’)’ /
(Gopt_subev(i,:,j)*Gopt_subev(i,:,j)’);

end

temp = repmat (conj(qglo(i,:)) ,numel(Uv) ,1);

Gglo_subv(i,:,:) = reshape(temp,[1l,size(temp)]).*xGerr_subv(i,:,:);
temp = repmat (conj(qglo(i,:)) ,numel(Ucv) ,1);

Gglo_subcv(i,:,:) = reshape(temp,[1l,size(temp)]).*xGerr_subcv(i,:,:);
end

%% Subarray Correction — Local Calibration ............ .. .. ... ...........

h = 50;

D = sqrt (abs(Ucv—u0)."24+abs(Vev—v0).72);
weight = exp(—hxD.”2);

weight = weight ’;

qloc = ones (NumSub, Msub*Nsub) ;

Gloc_subv = zeros(vsize);

Gloc_subcv = zeros(cvsize);

for i=1:NumSub

for j=1:MsubxNsub

qloc (i, j)=sum(conj(Gopt_subev(i,:,j)).*weight.xGerr_subcv(i,:,j))./
sum(conj (Gopt_subev(i,:,j)).*weight.xGopt_subcv(i,:,j));

end

temp = repmat (conj(qloc(i,:)),numel(Uv) ,1);

Gloc_subv(i,:,:) = reshape(temp,[l,size(temp)]).*Gerr_subv(i,:,:);
temp = repmat (conj(qloc(i,:)) ,numel(Ucv) ,1);

Gloc_subev(i,:,:) = reshape(temp,[1l,size(temp)]) .+ Gerr_subcv(i,:,:);
end

9% Global + Nothing Array Gain . .... ... .. e

Ggn_v = sum(Gglo_subv,3);
Ggn_cv = sum(Gglo_subcv,3) ;

GGN = zeros (size (U))*nan;

GGN(nanind) = sum(Ggn_v,1);

GGN_dB = 20x*1og10 (abs(GGN) ) ;

GGN_normdB = GGN_dB — max (max(GGN_dB) ) ;

%% Local + Nothing Array Gain . ...... ...

Gln_v = sum(Gloc_subv,3);
Gln_cv = sum(Gloc_subcv,3) ;

GLN = zeros(size (U))s*nan;

GLN(nanind) = sum(Gln_v,1);

GLN_dB = 20x%log10 (abs(GLN));

GLN_normdB = GLN_dB — max(max(GLN_dB)) ;

9% Subarray patterns cOmpPariSON . ... ... ...t

Gopt_sub = zeros ([size (U) ,NumSub]) ;
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A. MATLAB code

Gopt_sub_dB = zeros ([size (U) ,NumSub]) ;
Gopt_sub_normdB = zeros ([size (U) ,NumSub]) ;

Gerr_sub = zeros ([size (U) ,NumSub]) ;
Gerr_sub_dB = zeros ([size (U) ,NumSub]) ;
Gerr_sub_normdB = zeros ([size (U) ,NumSub]) ;

Gglo_sub = zeros ([size (U) ,NumSub]) ;
Gglo_sub_dB = zeros ([size (U) ,NumSub]) ;
Gglo_sub_normdB = zeros ([size (U) ,NumSub]) ;

Gloc_sub = zeros ([size (U) ,NumSub]) ;
Gloc_sub_dB = zeros ([size (U) ,NumSub]) ;
Gloc_sub_normdB = zeros ([size (U) ,NumSub]) ;

for i=1:NumSub

temp = zeros (size (U))*nan;

temp (nanind) = Gopt_v(i,:,:);

Gopt_sub (:,:,i) = temp;

Gopt_sub_dB(:,:,i) = 20xlogl0 (abs(Gopt_sub(:,:,i)));

Gopt_sub_normdB (: ,:,i)=Gopt_sub_dB(:,:,i)—max(max(Gopt_sub_dB(:,:,1i)));
temp = zeros (size (U))*nan;

temp (nanind) = Gerr_v(i,:,:);

Gerr_sub (:,:,1i) = temp;

Gerr_sub_dB (:,:,1) = 20xlogl0 (abs(Gerr_sub (:,:,1)));
Gerr_sub_normdB (:,:,i)=Gerr_sub_dB(:,:,i)—max(max(Gerr_sub dB(:,:,1i)));

temp = zeros (size (U))*nan;

temp (nanind) = Ggn_v(i,:,:);

Gglo_sub(:,:,i) = temp;

Gglo_sub_dB(:,:,1) = 20xlogl0 (abs(Gglo_sub(:,:,1)));
Gglo_sub_normdB (:,:,1i)=Gglo_sub_dB(:,:,i)—max(max(Gglo_sub_dB(:,:,i)));
temp = zeros (size (U))*nan;

temp (nanind) = Gln_v(i,:,:);

Gloc_sub (:,:,1i) = temp;

Gloc_sub_dB (:,:,1) = 20xlogl0 (abs(Gloc_sub (:,:,1)));
Gloc_sub_normdB (:,:,1i)=Gloc_sub_dB(:,:,i)—max(max(Gloc_sub_dB(:,:,i)));
end

9% Section 5: Inter Subarray Calibration
%

%

%

%

%

%

%

%

%

% Here, the radiation patterns after the calibration between subarrays
% has been applied are calculated. For this section we are assuming that
% full digitalization between subarrays is available. Therefore, the

% calibration matrices are allowed to use all entries.

%% Global + Global Calibration . ....... ... .. ... e
Qgg = Ggn_v/Gopt_v;

GGG = zeros(size (U))xnan;
GGG(nanind) = sum(Qgg\Ggn_v,1);
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A. MATLAB code

GGG_dB = 20%1og10 (abs (GGG) ) ;
GGG_normdB = GGG_dB — max(max(GGG_dB) ) ;

%% Local 4+ Global Calibration .............. ... .. ... .

Qlg

GLG = zeros(size (U))*nan;

GLG(nanind) = sum(Qlg\Gln_v,1);

GLG_dB = 20x%logl0 (abs(GLG));

GLG_normdB = GLG_dB — max(max(GLG_dB)) ;

Gln_v/Gopt_v;

%% Local + Local Calibration ............. .. . .. ... .

h = 50;

D = sqrt(abs(Ucv—u0)."2+abs(Vev—v0).72);
weight = exp(—hxD."2);

weight = weight ’;

qll = ones(1,NumSub);

for i=1:NumSub
qll (i) = sum(conj(Gopt_cv(i,:)).*weight.«Gln_cv(i,:)) ./

sum(conj (Gopt_cv(i,:)).xweight.xGopt_cv(i,:));

end
QIll = diag(qll);

GLL = zeros(size (U))xnan;

GLL(nanind) = sum(QI11\Gln_v,1);

GLL_dB = 20%logl0 (abs(GLL));

GLL_normdB = GLL dB — max(max(GLL dB));

%% Global + Local Calibration ............... .. .. .. ...

h = 50;

D sqrt (abs(Ucv—u0).724abs(Vev—v0).72);
weight = exp(—hxD.”2);

weight = weight ’;

qgl = ones(1,NumSub) ;

for i=1:NumSub
qgl(i) = sum(conj(Gopt_cv(i,:)).*weight.*xGgn cv(i,:)) ./

sum(conj (Gopt_cv(i,:)).*weight.xGopt_cv(i,:));

end
Qgl = diag(qgl);

GGL = zeros(size (U))*nan;

GGL(nanind) = sum(Qgl\Ggn_v,1);

GGL_dB = 20x*log10 (abs(GGL)) ;

GGL_normdB = GGL_dB — max(max(GGL_dB) ) ;

%% Nothing + Global Calibration ............ ... ... .. ...,

Qng = Gerr_v/Gopt_v;

GNG = zeros(size (U))*nan;

GNG(nanind) = sum(Qng\Gerr_v,1);
GNG_dB = 20%1ogl10 (abs (GNG)) ;

GNG_normdB = GNG_dB — max(max(GNG_dB) ) ;

%% Nothing + Local Calibration .......... ... ... .. ...,

h 50;

D = sqrt (abs(Ucv—u0)."24+abs(Vev—v0).72);
weight = exp(—hxD.”2);

weight = weight ’;

qnl = ones (1,NumSub) ;

for i=1:NumSub
qnl(i) = sum(conj(Gopt_cv(i,:)).*xweight.xGerr_cv(i,:)) ./
sum(conj (Gopt_cv(i,:)).*weight.xGopt_cv (i,
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A. MATLAB code

end
Qnl = diag(qgnl);

GNL = zeros(size (U))s*nan;

GNL(nanind) = sum(Qnl\Gerr_v,1);

GNL_dB = 20x*logl10 (abs(GNL));

GNL_normdB = GNL_dB — max(max(GNL_dB));

A.2.2 Hybrid Array

9% Hybrid analog/digital Planar Array Calibration Model
% by Josef Ydreborg
%% Constants

tic

fO = 10e9; % Central frequency

c0 = 299792458; % Speed of light in vacuum

lam0 = c0/f0; % Wavelength of central frequency
kO = (2*pi)/lam0; % Wavenumber of central frequency

9% Section 1: Array Information

9% TIdeal Array Information . ..... ... .. ...
% Sensor Array is in the x—y plane and the direction of propagation is
% z—axis. As long as the number of elements in the array and subarrays
% are powers of two, the code should work well. Subarray size of one

% element works but keep in mind that calibrations based on subarrays

% are invalid in this case.

M= 275; % Number of elements along x—axis
N = 275; % Number of elements along y—axis
m= —(M-1)/2:1:(M-1)/2; % Element indeces along x—axis
n=—(N-1)/2:1:(N-1)/2; % Element indeces along y—axis
NumSubX = 273; % Number of Subarrays along x—axis
NumSubY = 273; % Number of Subarrays along y—axis

NumSub = NumSubX*NumSubY;

Msub = M/NumSubX; % Number of elements in subarray along x—axis
Nsub = N/NumSubY; % Number of elements in subarray along y—axis
dx = lam0/2; % Ideal element spacing along x—axis

dy = lam0/2; % Ideal element spacing along y—axis

Lx = Mxdx; % Length of array along x—axis

Ly = Nxdy; % Length of array along y—axis

X = mxkxdx; % Ideal element positions along x—axis
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A. MATLAB code

y =

7 =

nxdy ;
zeros (size (x));

% Ideal

[X0,Y0] = meshgrid(x,y);

element positions

along y—axis

Z0 = zeros(size (X0));
TP Position ETrTors ... ...
X = X0;
Y = YO0;
Z = Z70;
mu = 0; % mean value of position errors
sigx = 0.01xlam0; % standard deviation of elements in x—axis
sigy = 0.01xlam0; % standard deviation of elements in y—axis
sigz = 0.01xlamO; % standard deviation of elements in z—axis
subx = 0.01xlam0; % standard deviation of subarrays in x—axis
suby = 0.01xlamO; % standard deviation of subarrays in y—axis
subz = 0.01xlamO0; % standard deviation of subarrays in z—axis
subX = normrnd (mu, subx ,N/Nsub ,M/Msub) ;
subY = normrnd (mu, suby ,N/Nsub ,M/Msub) ;
subZ = normrnd (mu, subz ,N/Nsub ,M/Msub) ;
subX = kron (subX, ones (Nsub,Msub)); % x—axis errors of subarrays
subY = kron (subY, ones(Nsub,Msub)); % y—axis errors of subarrays
subZ = kron(subZ,ones(Nsub,Msub)); % z—axis errors of subarrays
sigX = normrnd (mu, sigx ,N,M) ; % x—axis errors of elements
sigY = normrnd (mu, sigy ,N,M) ; % y—axis errors of elements
sigZ = normrnd (mu, sigz ,N,M); % z—axis errors of elements
X =X + sigX + subX; % erroneous x—position of each element
Y =Y + sigY + subyY,; % erroneous y—position of each element
Z =7 + sigZ + subZ; % erroneous z—position of each element
9% Weighting Scheme ... ... ..
% This code uses a taylor taper weighting scheme.
R = —40; % desired sidelobe level [dB]
r = 107(—-R/20); % desired sidelobe ratio [linear |
A = (1/pi)*acosh(r);
nbar = ceil (2¥A72+0.5); % SLL=-30dB; 4<nbar<7 for monotonic taper
% SLL=-40dB; 7<nbar<1l for monotonic taper

dn = 1:1:nbar—1;
sigma = nbar /(A"2+(nbar—1/2)72)7(1/2);
zn = sigmax*(A"24+(dn—1/2).72).7(1/2);
p = ones(1,nbar—1);
for i=1:1:nbar—1

p=p .*x (1-dn.”2./zn(i).72);
end
Fm = ((factorial (nbar—1)"2)./(factorial (nbar—1+4dn) .x*

factorial (nbar—1—dn))).*p;
wx = ones(1,M); sx = zeros(1,M);
wy = ones(1,N); sy = zeros(1,N);
for i=1:1:nbar—1

sx = sx + Fm(i).xcos((2*pi*ixx)/Lx);

sy = sy + Fm(i).*cos((2xpi*i*y)/Ly);
end
WX = WX + 2x8X;
wy = wy + 2xsy;
[IX,IY] = meshgrid (wx,wy) ;
I = IX.xIY; % tapering values in xy—plane
9% Vectorizing positions and tapering ........... . ... ... .
% Puts all element positions in vectors with subarray positions lumped

% together .

X0v = zeros (1,M«N);
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A. MATLAB code

YOv = zeros (1,M«N);
Z0v = zeros (1 M«N);

Xv = zeros (1 ,Mx«N);
Yv = zeros (1 ,Mx«N);
Zv = zeros (1 ,M«N);
Iv = zeros (1 ,MxN);
count = 0;

for i=1:NumSubX
for j=1:NumSubY

temp = XO0((i—1)*Msub+1:(i—1)*«Msubt+Msub, (j—1)*Nsub+1:(j—1)*Nsub+Nsub) ;
temp = temp (:); XOv(count*Msub*Nsub+1:(count+1)*MsubxNsub) = temp;

temp = YO((i—1)*Msub+1:(i—1)«Msub+Msub, (j—1)*Nsub+1:(j—1)*Nsub+Nsub);
temp = temp (:); YOv(count*Msub«Nsub+1:(count+1)*xMsubxNsub) = temp;

temp = Z0((i—1)*Msub+1:(i—1)+«Msub+Msub, (j—1)*Nsub+1:(j—1)*Nsub+Nsub);
temp = temp (:); ZOv(count*Msub*Nsub+1:(count+1)*MsubxNsub) = temp;

temp = X((i—1)*Msub+1:(i—1)*Msub+Msub, (j—1)*Nsub+1:(j—1)*Nsub+Nsub);
temp = temp (:); Xv(count*Msub*Nsub+1:(count+1)*MsubxNsub) = temp;

temp = Y((i—1)*Msub+1:(i—1)*Msub+Msub, (j—1)*Nsub+1:(j—1)*Nsub+Nsub) ;
temp = temp (:); Yv(count*Msub*Nsub+1:(count+1)*xMsubxNsub) = temp;

temp = Z((i—1)*Msub+1:(i—1)*Msub+Msub, (j—1)*Nsub+1:(j—1)*Nsub+Nsub) ;
temp = temp (:); Zv(count*MsubxNsub+1:(count+1)*MsubxNsub) = temp;

temp = I((i—1)*Msub+1:(i—1)*Msub+Msub, (j—1)*Nsub+1:(j—1)*Nsub+Nsub);
temp = temp(:); Iv(count*Msub*Nsub+1:(count+1)*MsubxNsub) = temp;

count = count + 1;

Section 2:

% This piece of code defines what angles will be used for displaying the
% data and which angles are used for calibration. Additionally , the
% scanning angle is defined.

%% Visualisation angles . ... ... ...

resp = 250; % resolution of angles = (2%xres+1)72
u= —1:1/resp:1; % angles used in u—space

v = —1:1/resp:1; % angles used in v—space

[Ui,Vi] = meshgrid(u,v); % 2D mesh of U,V angles

uv_ filt = double ((Ui."24Vi."2) <= 1);

uv_filt (uv_filt = 0) = nan; % filter for removing illegal angles

% converts entries to NaN where U 24+V™2 < 1 is not fullfilled
U = Ui.xuv_ filt;

V = Vi.xuv_ filt;

W = abs(sqrt(ones(size (U))-U."2-V.72));

% vectorize non—NaN entries
nanind = find (~isnan (U));
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Uv = U(nanind) ;
Vv = V(nanind);
Wv = W(nanind) ;

9% Calibration angles .. ... ...
resc = 100; % resolution of angles = (2*xres+1)72
uc = —1:1/resc:1; % angles used in u—space

ve = —1:1/resc:1; % angles used in v—space

[Ui,Vi] = meshgrid(uc,vc); % 2D mesh of U,V angles

uv_ filt = double ((Ui.724+Vi.72) <= 1);

uv_ filt (uv_filt = 0) = nan; % filter for removing illegal angles

% converts entries to NaN where U 24+V"2 < 1 is not fullfilled
Uc = Ui.xuv_ filt;

Ve = Vi.xuv_ filt;

We = real(sqrt (ones(size (Uc))-Uc."2—-Ve.72));

% vectorize non—NaN entries
nanindc = find (~isnan (Uc));
Ucv = Uc(nanindc);

Vev = Ve(naninde);

Wev = We(nanindce)

9% Scanning angle ... ...
theta0 = (0/180)x*pi; % scanning angle in theta—dimension

phi0 = (0/180)x*pi; % scanning angle in phi—dimension

u0 = sin(theta0)*cos (phi0); % scanning angles converted to u—space

v0 = sin(theta0)*sin (phi0); % scanning angles converted to v—space

betaX = —k0xu0;
betaY = —k0xv0;

9% Section 3: Gain Calculation

%% Subarray Gaill ... ..o e
% Here the radiation pattern of each element is calculated , This is

% then sorted into subarrays. From the subsequent matrices the total

% radiation pattern can be exracted before or after a certain

% calibration is implemented on the subarray elements or the entire

% array itself.

EPv = sqrt (Wv); % Amplitude pattern for vectorized visualisation angles
EPcv = sqrt (Wev) ;% Amplitude pattern for vectorized calibration angles

excv = Iv.kxexp(li*(XOvxbetaX+YOvikbetaY)); % Ideal element excitation

vsize = [NumSub, numel (Uv) ,Msub*Nsub]; % size of visualisation matrices
cvsize = [NumSub,numel (Ucv) ,Msub*Nsub]; % size of calibration matrices

Gopt_subv = zeros(vsize); % optimal array pattern for visualisation
Gopt_subcv = zeros(cvsize); % optimal array pattern for calibration

Gerr_subv = zeros(vsize); % erronous array pattern for visualisation
Gerr_subcv = zeros(cvsize); % erronous array pattern for calibration
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A. MATLAB code

for i=1:NumSub
for j=1:Msub*Nsub

k = (i—1)*Msub*Nsub+j ;

Gopt_subv(i,:,j) = EPv.x(excv (k) * ...
exp (11xk0*(XO0v(k)*Uv+YOv (k) *Vv+Z0v (k) *Wv) ) ) ;

Gopt_subev(i,:,j) = EPcv.*x(excv(k) = ...
exp (1i*k0*(X0v(k)*Ucv+Y0v (k) *Vev+Z0v (k) *Wev) ) ) ;

Gerr_subv(i,:,j) = EPv.*x(excv(k) * ...
exp (11i*k0x*(Xv(k)*Uv+Yv(k)*Vv+Zv (k) *Wv) ) ) ;

Gerr_subcv(i,:,j) = EPcv.*x(excv (k) = ...
exp (1i*k0x*(Xv(k)*Ucv+Yv(k)*Vev+Zv (k) «Wev) ) ) ;

end
end

% Optimal pattern for full array

GOPT = zeros (size (U))xnan;

GOPT(nanind) = sum(sum(Gopt_subv,3) ,1);
GOPT_dB = 20xlog10 (abs(GOPT) ) ;

GOPT_normdB = GOPT_dB — max(max(GOPT _dB) ) ;

% Erronous pattern for full array

GERR = zeros (size (U))*nan;

GERR(nanind) = sum(sum(Gerr_subv,3) ,1);
GERR dB = 20%logl0 (abs(GERR) ) ;

GERR_normdB = GERR_dB — max(max(GERR _dB) ) ;

% Patterns if subarrays are treated like an array of antennas.
% Here, the subarrays are not calibrated at all.

Gerr_v = sum(Gerr_subv,3);

Gerr_cv = sum(Gerr_subcv,3);

Gopt_v = sum(Gopt_subv,3);

Gopt_cv = sum(Gopt_subcv,3) ;

% indeces for main lobe in final pattern

[row, col] = find (GOPT = max(max(GOPT) ) ) ;

9% Section 4: Subarray Calibration

% Here, the individual subarrays are calibrated. It is assumed that only
% excitation changes of the elements are possible. Therefore, only
% diagonal entries are allowed in the calibration matrices.

%% Subarray Correction — Global Calibration ............. ... . ............

qglo = ones (NumSub, MsubxNsub) ;
Gglo_subv = zeros(vsize);
Gglo_subcv = zeros(cvsize);

for i=1:NumSub

for j=1:Msub*Nsub
qglo(i,j) = (Gopt_subev(i,:,j)*Gerr_subev(i,:,j)’)’ /
(Gopt_subev(i,:,j)*xGopt_subcv(i,:,j)’)

k)
end
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A. MATLAB code

temp = repmat (conj(qglo(i,:)),numel(Uv),1);

Gglo_subv(i,:,:) = reshape(temp,[1l,size(temp)]).*xGerr_subv(i,:,:);

temp = repmat (conj(qglo(i,:)),numel(Ucv) ,1);

Gglo_subev(i,:,:) = reshape(temp,[l,size(temp)]) .+ Gerr_subcv(i,:,:);

end

%% Subarray Correction — Local Calibration ........... ... ... ... ... ...
h = 50;

D = sqrt (abs(Ucv—u0)."24+abs(Vcv—v0).72);
weight = exp(—hxD.”2);

weight = weight ’;

qloc = ones (NumSub, MsubxNsub) ;

Gloc_subv = zeros(vsize);

Gloc_subcv = zeros(cvsize);

for i=1:NumSub

for j=1:Msub*xNsub

qloc (i, j)=sum(conj(Gopt_subcv(i,:,j)).*weight.*Gerr_subcv(i,:,j))./
sum ( conj (Gopt_subev(i,:,j)).xweight .+ Gopt_subev(i,:,j));

end

temp = repmat (conj(qloc(i,:)),numel(Uv),1);

Gloc_subv(i,:,:) = reshape(temp,[l,size(temp)]).*Gerr subv(i,:,:);
temp = repmat (conj(qloc(i,:)),numel(Ucv) ,1);

Gloc_subev(i,:,:) = reshape(temp,[1l,size(temp)]).*Gerr_subcv(i,:,:);
end

%% Global + Nothing Array Gain . ... ... ... e

Ggn_v = sum(Gglo_subv,3);
Ggn_cv = sum(Gglo_subcv,3) ;

GGN = zeros(size (U))*nan;

GGN(nanind) = sum(Ggn_v,1);

GGN_dB = 20x*1log10 (abs(GGN)) ;

GGN_normdB = GGN_dB — max (max(GGN_dB) ) ;

9% Local + Nothing Array Gain . ....... ... i

Gln_v = sum(Gloc_subv,3);
Gln_cv = sum(Gloc_subcv,3) ;

GLN = zeros(size (U))s*nan;

GLN(nanind) = sum(Gln_v,1);

GLN_dB = 20%logl0 (abs(GLN));

GLN_normdB = GLN_dB — max(max(GLN_dB)) ;

%% Subarray patterns COMPATISON . ...ttt ittt e e e et e
Gopt_sub = zeros ([size (U) ,NumSub]) ;

Gopt_sub_dB = zeros ([size (U) ,NumSub]) ;

Gopt_sub_normdB = zeros ([size (U) ,NumSub]) ;

Gerr_sub = zeros ([size (U) ,NumSub]) ;

Gerr_sub_dB = zeros ([size (U) ,NumSub]) ;

Gerr_sub_normdB = zeros ([size (U) ,NumSub]) ;

Gglo_sub = zeros ([size (U) ,NumSub]) ;

Gglo_sub_dB = zeros ([size (U) ,NumSub]) ;

Gglo_sub_normdB = zeros ([size (U) ,NumSub]) ;

Gloc_sub = zeros ([size (U) ,NumSub]) ;
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A. MATLAB code

Gloc_sub_dB = zeros ([size (U) ,NumSub]) ;
Gloc_sub_normdB = zeros ([size (U) ,NumSub]) ;

for i=1:NumSub

temp = zeros (size (U))x*nan;

temp (nanind) = Gopt_v(i,:,:);

Gopt_sub (:,:,i) = temp;

Gopt_sub_dB(:,:,i) = 20xlogl0 (abs(Gopt_sub(:,:,i)));

Gopt_sub_normdB (: ,:,i)=Gopt_sub_dB(:,:,i)—max(max(Gopt_sub_dB(:,:,1i)));
temp = zeros (size (U))*nan;

temp (nanind) = Gerr_v(i,:,:);

Gerr_sub (:,:,1i) = temp;

Gerr_sub_dB(:,:,1) = 20x%logl0 (abs(Gerr_sub (:,:,1)));

Gerr_sub_normdB (: ,:,i)=Gerr_sub_dB(:,:,i)—max(max(Gerr_sub_dB(:,:,1i)));
temp = zeros (size (U))s*nan;

temp (nanind) = Ggn_v(i,:,:);

Gglo_sub(:,:,i) = temp;

Gglo_sub_dB(:,:,1) = 20xlogl0 (abs(Gglo_sub(:,:,1)));

Gglo_sub_normdB (: ,:,1i)=Gglo_sub_dB(:,:,i)—max(max(Gglo_sub_dB(:,:,1i)));
temp = zeros (size (U))s*nan;

temp (nanind) = Gln_v(i,:,:);

Gloc_sub (:,:,1i) = temp;

Gloc_sub_dB(:,:,1) = 20%logl0 (abs(Gloc_sub (:,:,1)));

Gloc_sub_normdB (: ,:,i)=Gloc_sub_dB(:,:,i)—max(max(Gloc_sub_dB (:,:,i)));
end

9% Section 5: Inter Subarray Calibration

% Here, the radiation patterns after the calibration between subarrays
% has been applied are calculated. For this section we are assuming that
% full digitalization between subarrays is available. Therefore, the

% calibration matrices are allowed to use all entries.

%% Global + Global Calibration . ...... .. ... ... .. i

Qgg = Ggn_v/Gopt_v;

GGG = zeros (size (U))xnan;

GGG(nanind) = sum(Qgg\Ggn_v,1);

GGG_dB = 20xlogl0 (abs(GGG) ) ;

GGG_normdB = GGG_dB — max(max(GGG_dB) ) ;

%% Local + Global Calibration . ..... ... ... . ... . i
Qlg = Gln_v/Gopt_v;

GLG = zeros(size (U))s*nan;

GLG(nanind) = sum(Qlg\Gln_v,1);

GLG_dB = 20%logl0 (abs(GLG));
GLG_normdB = GLG dB — max(max(GLG_dB));
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A. MATLAB code

%% Local 4+ Local Calibration .....................

h = 50;

D = sqrt(abs(Ucv—u0)."2+abs(Vecv—v0).72);

weight = exp(—h*D."2);
weight = weight ’;
qll = ones(1,NumSub) ;

for i=1:NumSub

qll (i) = sum(conj(Gopt_cv(i,:)).*weight.*Gln_cv(i,:)
sum(conj (Gopt_cv(i,:)).xweight.*Gopt_cv(

end

Qll

diag(qll);

GLL = zeros(size (U))xnan;
GLL(nanind) = sum(QIlI1\Gln_v,1);
GLL_dB = 20%logl0(abs(GLL));

GLL_normdB = GLL dB — max(max(GLL dB));

%% Global + Local Calibration ....................

h = 50;

D = sqrt (abs(Ucv—u0)."24abs(Vev—v0).72);

weight = exp(—hxD."2);
weight = weight ’;
qgl = omnes(1,NumSub) ;

for i=1:NumSub

qgl (i) = sum(conj(Gopt_cv(i,:)).xweight.*xGgn_cv(i,:)) ./ ...
sum(conj (Gopt_cv(i,:)).xweight.xGopt_cv(i,:));

end
Qgl = diag(qgl);

GGL = zeros(size (U))s*nan;
GGL(nanind) = sum(Qgl\Ggn_v,1);
GGL_dB = 20x%log10 (abs(GGL)) ;

GGL_normdB = GGL_dB — max(max(GGL_dB)) ;

%% Nothing + Global Calibration ..................

Qng

GNG = zeros(size (U))*nan;
GNG(nanind) = sum(Qng\Gerr_v,1);
GNG_dB = 20%1logl0 (abs (GNG));

Gerr_v/Gopt_v;

GNG_normdB = GNG_dB — max (max (GNG._dB) ) ;

%% Nothing + Local Calibration ...................

h = 50;

D = sqrt(abs(Ucv—u0)."24+abs(Vev—v0).72);

weight = exp(—hxD.”2);
weight = weight ’;
qnl = ones (1,NumSub) ;

for i=1:NumSub

qnl(i) = sum(conj(Gopt_cv(i,:)).*weight.xGerr_cv(i,:)
sum(conj (Gopt_cv(i,:)).*weight.xGopt_cv (i

end
Qnl = diag(qnl);

GNL = zeros (size (U))#*nan;
GNL(nanind) = sum(Qnl\Gerr_v,1);
GNL_dB = 20x*log10 (abs(GNL)) ;

GNL_normdB = GNL_dB — max(max(GNL_dB) ) ;
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A. MATLAB code
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B

CATR Measurement Setup

Figure B.1: Frontside of CATR measurement setup.
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B. CATR Measurement Setup

Figure B.2: Backside of CATR measurement setup.
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B. CATR Measurement Setup

Figure B.3: Overview of CATR measurement setup.
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