
 

 

Metadex
A low-latency multimedia indexer for In-Vehicle Infotainment

JONATAN PÅLSSON

NICLAS TALL

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden, June 2013



The Author grants to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet. The Author warrants that he/she is the
author to the Work, and warrants that the Work does not contain text, pictures or other
material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this agreement.
If the Author has signed a copyright agreement with a third party regarding the Work,
the Author warrants hereby that he/she has obtained any necessary permission from
this third party to let Chalmers University of Technology and University of Gothenburg
store the Work electronically and make it accessible on the Internet.

Metadex
A low-latency multimedia indexer for In-Vehicle Infotainment

Jonatan P̊alsson,
Niclas Tall,

c© Jonatan P̊alsson, June 2013,
c© Niclas Tall, June 2013.

Examiner: Graham Kemp

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden June 2013





Abstract

Modern cars contain fully equipped multimedia (In-Vehicle Infotainment, IVI) systems,
which are capable of rendering video to several screens, audio playback to different loca-
tions, internet connectivity, third-party applications, indexing media of a user’s nomadic
devices and more. One of the problems the automotive industry faces today is mining
the users’ nomadic devices and making the contents available for playback in an ac-
ceptable time frame. Current mining software does not fulfill automotive requirements
concerning the time between detection of a nomadic device, metadata extraction and
subsequent serving of the metadata.

Linux is becoming a popular operating system for IVI platforms. The GENIVI
Alliance focuses on developing a standard Linux platform for the IVI industry, and this
platform is the target for the Metadex software developed in this thesis.

Since implementing an entirely new mining software would be out of the time frame
of this thesis, a survey of existing open source multimedia indexers which could be used
as a base for the new miner was conducted. The two candidates with the most appealing
features for multimedia indexing in an embedded environment were chosen for evaluation.
The candidates were Tracker and Nepomuk-KDE. A benchmark of these two candidates
was performed to give a motivation of which candidate the future implementation would
be based on.

The resulting software yielded a significant improvement in the time between de-
vice detection and metadata availability. The improvements were achieved by indexing
metadata in multiple stages where the granularity of the metadata was increased over
time.

The results confirm the possibility of achieving fast indexing of nomadic devices
which is responsive enough to be used in an automotive environment. We believe that
our choice of modifying existing open source software was a fundamental decision that
allowed us to implement and meet the set requirements in the time frame of this thesis.

Keywords: automotive, indexing, metadata, tracker, Metadex

i



ii



Acknowledgments

We would like to thank our thesis advisors Johan Thelin and Graham Kemp for the
support and advice given during the thesis. Furthermore we would also like to thank
Pelagicore for the opportunity to carry out this thesis.

Jonatan P̊alsson & Niclas Tall. Göteborg, Sweden 12/6/2013



iv



Contents

1 Introduction 1
1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5
2.1 Pelagicore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 GENIVI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Licenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 GNU General Public License Version 2 . . . . . . . . . . . . . . . . 7
2.3.2 GNU Lesser General Public License, version 2.1 . . . . . . . . . . . 8

2.4 Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.1 The NEPOMUK ontologies . . . . . . . . . . . . . . . . . . . . . . 9
2.4.2 The Tracker ontologies . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5.1 The Dublin Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.2 Advanced Systems Format . . . . . . . . . . . . . . . . . . . . . . 11
2.5.3 Ogg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.4 MPEG-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.5 Exif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.6 IIM and XMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.7 ID3v2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Storage and querying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 GLib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7.1 GObject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7.2 Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.8 D-Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

v



3 Previous work 22
3.1 Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Overview of applications . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 The TrackerMiner and TrackerMinerFS abstract classes . . . . . . 26
3.1.3 Performance tuning of TrackerMinerFS . . . . . . . . . . . . . . . 28

3.2 Nepomuk-KDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.1 Overview of applications . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Benchmarks 30
4.1 Benchmark descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Selection of test data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Automatic generation of a media library structure . . . . . . . . . . . . . 31
4.4 Structure of the benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5 Conclusion of the benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Implementation 36
5.1 Overview of the miner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Crawler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.1 Short-circuited file crawling . . . . . . . . . . . . . . . . . . . . . . 39
5.3 FileNotifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4 The Store module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4.1 Query monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.5 Introspection-based prototypes . . . . . . . . . . . . . . . . . . . . . . . . 41
5.6 The Metadex miner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.6.1 Mining in multiple stages . . . . . . . . . . . . . . . . . . . . . . . 42
5.6.2 The FileIndexer module . . . . . . . . . . . . . . . . . . . . . . . . 43
5.6.3 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Results 47
6.1 Measurements and interpretations . . . . . . . . . . . . . . . . . . . . . . 48

7 Conclusion and recommendations 55
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.2 Discussion of working method and project . . . . . . . . . . . . . . . . . . 55
7.3 Recommendations for future work . . . . . . . . . . . . . . . . . . . . . . 56

Bibliography 60

A Full size graphs from results chapter 61

vi



1
Introduction

M
odern cars feature fully equipped multimedia entertainment systems. The
head unit, and the Electric Control Units (ECU) computers of a car are used
to not only display GPS maps and car diagnostics, but also for entertainment
purposes, such as displaying video, playing music, downloading apps and to

browse the internet. A head unit designed for multimedia and entertainment is part of
what is called an In-Vehicle Infotainment (IVI) platform.

The IVI platform developed at Pelagicore is based on Linux, as standardized by the
GENIVI Alliance, and the multimedia indexer developed in this thesis will target this
Linux IVI platform.

The IVI platform must be capable of making multimedia accessible and searchable
to the user of the system. When the user decides to listen to, or watch a particular song
or film, the system must locate this media on any accessible storage and play it for the
user. In order to make the multimedia accessible, the media files must be analyzed, and
the metadata must be extracted and stored in such a way that it can be searched. The
process of building a database over metadata gathered from media files will be referred
to as indexing metadata and the process of file system traversal and metadata extraction
is referred to as mining. The existing indexing solutions currently available are too slow
to be used in an embedded setting. Particularly, the time needed to produce an initial
search result, or to determine whether a file is at all available or not, must be kept as
low as possible.

The problems this thesis addresses are to lower the time required to produce a first
result for the user, and also make the system more responsive where delays are unavoid-
able.

1



1.1 Purpose

There are several motivations to quickly index multimedia in cars. Media can not be
presented to the passengers of the car if it has not been indexed, and thus a slow indexing
process means a worse experience for the passengers than a fast indexing process. The
purpose of this thesis is to find heuristics of indexing metadata which satisfy the automo-
tive industry requirements. The currently available multimedia indexing systems were
designed with desktop computers in mind, and are not suitable for the less performant
embedded systems available in cars.

The main problem with the current solutions is the amount of time required for the
indexing process, and this is the focal point of this thesis.

A good user experience is of course important from a marketing standpoint, but it is
also important when considering safety. A system which behaves unexpectedly is more
likely to capture the attention of the driver, which in turn takes focus from the actual
driving, and may cause a safety hazard[1][2].

1.2 Goals

This thesis focuses on improving or replacing an existing metadata mining and service
system for multimedia files currently used at Pelagicore AB (see section 2.1 for an intro-
duction of this company).

The current system is based on a single metadata mining sweep, which analyzes each
file once, and provides a complete set of metadata gathered from this single sweep. As
a potential way of improving the performance of the mining system it is investigated
whether it is beneficial for mining speed to split the single sweep into multiple, incre-
mental sweeps. Each incremental sweep will provide additional metadata, and when all
incremental sweeps are combined, the output from the sweeps will equal the output from
the original single sweep.

Once metadata has been extracted, the purpose of the system is to provide metadata
information about the files it has processed. Information is requested from the system
by sending queries to it. The hypothesis is that by replacing the single sweep processing
with multiple sweeps, the time between when a query was received and when the system
can respond will be lowered, since the system will respond to queries as soon as the first
stage of mining for a file has completed. Removable flash media is the primary target for
indexing. Due to the structure of the most popular file systems for this type of media, it
should be possible to perform a first sweep of the most basic data very quickly[3]. As an
example, the FAT-family of file systems places information regarding file names, creation
and write times in the directory structure[4], which is placed in a known position on the
disk and is designed for fast access. By reading only the directory structure during the
first sweep, and not the contents of the actual files, performance should be improved
over the original single sweep implementation.

The metadata indexing software is used to produce information which is ultimately
displayed to users of the IVI system. A hypothesis is that the system appears respon-

2



sive by continuously updating the user with new progress information as it becomes
available[5]. By allowing querists to register queries with the multimedia indexing sys-
tem, querists can be ensured to receive updates as they become available, and display
this data as they see fit. This approach of registering queries can be contrasted with
the approach where the querist sends multiple queries to the indexing system, and the
querist itself decides when to stop requesting new data. By using the proposed subscrip-
tion model for handling updates, the saturation of the communications channel is likely
to be reduced and more timely updates of new query results are expected.

1.3 Method

There are existing systems which perform many of the tasks required by Metadex, and a
survey of these systems was performed in order to understand how the existing systems
perform these tasks, and which additional tasks may be relevant.

An estimation of the amount of work required for designing a new system was per-
formed, and the amount of work was found to be too high for the time frame of the
thesis.

It was investigated if an existing system could be adapted to conform to all the re-
quirements of Metadex. The systems which fulfill the functional requirements of Metadex
must also be checked for conformance with non-functional requirements such as licensing
and extensibility.

Suitable systems were tested and compared using a series of benchmarks. The most
suitable software was selected as a base for the Metadex software.

The technologies used in the selected base software, in addition to the technologies
required for adding the selected new features to Metadex, were researched by read-
ing technical and academical reports. A considerable amount of time was spent on
understanding the existing code of the base software, and how to properly add new
functionality to it.

Modifications and additions to the base software were carried out in a way conforming
to the software license of the base software, and in a manner allowing these additions to
be sent up stream back to the original project.

1.4 Delimitations

Implementing an entirely new multimedia indexer is an large project in itself. The struc-
ture of the stored data is an active field of research[6][7][8], implementing a data store,
and schemas based on this research would require an amount of work outside the time
frame of this thesis. In addition to the work related to persistence of data, components
such as miners, metadata property extractors, directory crawlers must also be developed.
Pelagicore is an open source company, and in order to make the software resulting from
this thesis as attractive as possible for Pelagicore, the base software candidates consid-
ered for Metadex needs appropriate open source licenses. The licenses appropriate for
software used in this thesis is discussed in section 2.3.

3



The choice of base software places restrictions on the programming languages used,
and also limit the choices of additional software and libraries to use. The target hardware
platform restricts the choice of programming languages and tools even further.

Metadex must run on the Linux platform used at Pelagicore, which means it must
make good use of the available libraries and software already present in the IVI platform.
The introduction of new dependencies must be kept at a minimum.

1.5 Structure

This thesis is divided into seven chapters. The first chapter gives a broad introduction to
the field of IVI and media indexing. Chapter two describes all the technologies used in
the thesis, and also gives some extra information regarding different metadata formats,
which is useful for implementing metadata extractors (but may be skipped for casual
reading).

The third chapter gives a description of the two mining software which were selected
as candidates for the basis of Metadex.

In the benchmarks chapter, chapter 4, the two candidates from chapter 3 are bench-
marked. In the fifth chapter the implementation of Metadex is described, and the mod-
ifications and additions to the software chosen in chapter 4 are described.

The sixth chapter shows the results of the thesis in the form of performance mea-
surements where Metadex is compared to the unmodified base software. Finally chapter
7 gives a conclusion, some remarks and directions for future work.

4



2
Background

I
n this chapter the reader will be given the prerequisite knowledge regarding the
technologies used and the organizations mentioned necessary to read the rest of this
thesis. The topics of the section will start with non-technical aspects of the project
and end with more technical topics. Pelagicore, the company supplying the topic

for this thesis, will be presented. A brief introduction to open source in the automotive
IVI industry is given with the introduction of the GENIVI Alliance. Different licensing
issues, and their causes are presented.

A quick introduction to specifying vocabularies is given in the section on ontologies,
different types of metadata, and the storage of metadata is presented.

The GLib utility library was used extensively in the software described in this thesis.
The library is described in this section to make it easier for the reader to understand
the structure of the software. Finally the technology used for communicating between
different software components is described.

2.1 Pelagicore

The following description is from Pelagicore’s website:

“Pelagicore AB is a Swedish company with offices in Gothenburg, Sweden and
Munich, Germany. We are a technology and product development company
that focuses on applying Open Source software in the automotive infotain-
ment industry.

Our team of technology and Open Source community experts enable a novel,
holistic approach to development with expertise that stretches from silicon
design, software as well as User Experience Development to OEM expert
advisory roles.

Pelagicore is a key contributor to the GENIVI alliance and several community

5



projects such as the Qt Project, Linux kernel and a number GNU/Linux
distributions. Based on these community projects we develop automotive
Infotainment platforms and key components to accelerate the implementation
of customer projects.” (About us, pelagicore.com)

2.2 GENIVI

The GENIVI Alliance was established to specify a common software platform for the
automotive infotainment industry. The alternative to a common platform is having
several proprietary platforms across different vendors. By having a unified platform, the
members of the GENIVI Alliance hope to lower development costs and development time
for new infotainment systems[9]. The following is a quote from the GENIVI Alliance,
detailing their goals:

“GENIVI R© is a non-profit industry alliance committed to driving the broad
adoption of an In-Vehicle Infotainment (IVI) open source development plat-
form.

The alliance aims to align requirements, deliver reference implementations,
offer certification programs, and foster a vibrant open source IVI community.

Our work will result in shortened development cycles, faster time-to market,
and reduced costs for companies developing IVI equipment and software.

GENIVI’s objective is to foster a vibrant open source IVI community by:

1. Delivering a reusable, open source platform consisting of Linux-based
core services, middleware, and open application layer interfaces

2. Engaging developers to deliver compliant applications

3. Sponsoring technical, marketing, and compliance programs.”

(GENIVI Alliance, genivi.org)

When using or modifying existing software, it is important to ensure the software
licenses of the software are compatible with the use cases of the software. GENIVI has
developed guidelines for deciding which licenses are compatible in common automotive
scenarios, such as linking proprietary binaries to open source libraries. Several open
source licenses have been analyzed and categorized.

The guidelines established by GENIVI are intended to be used when deciding if a
particular software is license compatible without having to comprehend the legal aspects
of the license in question. The use of an inappropriate license would prevent the software
from a potential inclusion in a GENIVI compatible platform.

2.3 Licenses

In this section the open source software licenses encountered during the project are
surveyed. The official stance of GENIVI on each of the licenses is given. A common

6



factor among the licenses described here is that they are all open source licenses. The
basic principle behind open source is the equal rights of all developers contributing
to the software project, and the way changes to the software are made available to
other developers[10]. The licenses discussed in this section are the GNU GPLv2 and
GNU LGPLv2.1, the implications of using these licenses will be discussed in the section
below. The GENIVI Alliance has established a compliance program1 to classify software
licenses, the recommendations of this program can be used by members of the GENIVI
Alliance. Software licenses are classified into four major groups, which are color coded
to indicate the suitability of each license:

• Yellow-light: These are the licenses which have not yet been reviewed by GENIVI.
Notionally, every license is considered yellow-light until reviewed and categorized
by GENIVI.

• Green-light: These are licenses which have been reviewed by GENIVI and have
been accepted as suitable licenses.

• Red-light: These are licenses which have been reviewed by GENIVI and have
been rejected as suitable licenses.

• Orange-light: These are licenses which have been reviewed by GENIVI and have
been accepted as suitable licenses in certain cases.

2.3.1 GNU General Public License Version 2

GNU General Public License Version 2, often abbreviated to GNU GPLv2 or just GPLv2,
is one of the most widely used free software licenses[11][12] originally written by Richard
Stallman[10].

Software licensed under the GPL is called free software, where free indicates freedom,
and is not an indicator of price. This section discusses version 2 of the GPL, and it is
important to note that there are in fact three versions of the GPL.

Since the release of version 1 in 1989 the GPL has been revised twice, the first revision
became version 2 of the license, and was released in 1991. The second revision of the
license became version 3, and was written in 2007.

The GPLv2 restricts the ways in which software licensed under it may be copied, dis-
tributed and modified. The license is readily available2, and this text will not repeat the
entire license, but highlight the points specifically important for the software developed
in this thesis.

• There are no restrictions on executing an application licensed under the GPLv2.
This means that a system which is not GPLv2 licensed may execute a GPLv2
licensed application[13].

1see: http://www.genivi.org/genivi-compliance-program
2For version 2, see: http://www.gnu.org/licenses/gpl-2.0.html

7

http://www.gnu.org/licenses/gpl-2.0.html


• If a new software is derived from a GPLv2 licensed software, this new software
must also be licensed under the GPL. The creator of the new software must in
some way make the source code, and any build scripts etc. for the derived work
available[13].

This license is Green-lighted by GENIVI when applied to program code, which means
it can be used in GENIVI compatible software projects without further investigation

2.3.2 GNU Lesser General Public License, version 2.1

The GNU Lesser General Public License Version 2.1 (or LGPLv2.1 for short) is a less
strict version of GPLv2. The main difference between this license and GPLv2 is that
binaries linked to libraries licensed under LGPLv2.1 do not themselves have to be licensed
under LGPLv2.1.

If GPLv2 is used instead of LGPLv2.1, all software linked to the library using this
license must also be licensed under GPLv2. This act of linking a binary to a library is
not seen as executing the library software, which is permitted in GPLv2, but it is rather
seen as extending the software, which is not allowed unless the derived application has
the correct license.

With LGPLv2.1, it is allowed to link non-GPL binaries. The use of this license makes
sense when aiming to make the library in question useful for organizations or persons
who do not use open source[14].

2.4 Ontologies

The data gathered by Metadex is stored in accordance to a set of ontologies, defined by
the NEPOMUK project. In order to understand what this means, the term ontology
must first be defined. Ontologies are used in many different areas, such as for commu-
nicating unambiguously between different departments within a company (imagine the
Human Resources department and the Salary department using an ontology to establish
the meaning of the word hire) and for structuring data in a way which facilitates re-use.
The term is used both when discussing social interactions as well as what is more inter-
esting in this project, when exchanging and storing data in software[7]. In [8], Thomas
R. Gruber defines an ontology as the following:

“A specification of a representational vocabulary for a shared domain of dis-
course – definitions of classes, relations, functions, and other objects”

(Gruber, A Translation Approach to Portable Ontology Specifications)

By using ontologies for specifying the structure of the stored data, data can be shared
between different programs, and different components within a program while avoiding
ambiguity. The choice of ontologies to present in this section comes from section 3, where
the Nepomuk-KDE and Tracker are identified as the two most suitable existing indexing
software. Both of these software build on the NEPOMUK ontologies (which have given

8



name to the Nepomuk-KDE project, note however that the NEPOMUK and Nepomuk-
KDE projects are different projects). In this section the NEPOMUK ontologies are first
presented, since these form a common ground for both projects, and in section 2.4.2
the Tracker ontologies are described as additions and modifications to the NEPOMUK
ontologies.

2.4.1 The NEPOMUK ontologies

The NEPOMUK ontologies define the vocabulary and structure for storing data related
to the information regarding the users of a desktop computer. Examples of the things
described by these ontologies are E-Mails, Instant Messaging conversations, information
regarding the physical location of the user of the system, tags embedded in documents
and media files, etc.

The ontologies are designed with a general base, and extend to more and more
specialized use cases. In [6] the ontologies are depicted as a pyramid. A similar pyramid
over the parts relevant to this project is provided in figure 2.1. In this pyramid the top
represents the most general components of the ontologies, which is the representation of
the ontologies as processed by a machine. The topmost layer is RDF, and a discussion
on RDF follows in 2.6. For now, it suffices to say that RDF forms the most basic way
of representing data.

In NEPOMUK, the basic features of RDF are augmented by RDF Schemas (RDFS),
which allows expressing concepts such as subclassing. If the structure of the ontologies is
seen as a pyramid with RDF on top, RDFS follows directly below. NEPOMUK also adds
one last layer of augmentation below RDFS to represent named graphs and cardinality,
this is called the NEPOMUK Representational Language (NRL). In total, RDF, RDFS
and NRL form the layer used for representing the ontologies in the machine[6].

The NEPOMUK Annotation Ontology (NAO), NEPOMUK Information Element
Ontologies (NIE) and NEPOMUK Graph-Metadata Ontologies (NGM) together form
the next level of abstraction. Using only the representational layer there are no capabil-
ities to express high level concepts such as the title of a file, or the language in which a
document is written. The NAO, NIE and NGM ontologies add these basic capabilities
to NEPOMUK.

As an example of how the ontologies are used, when a music file is to be represented
in NEPOMUK, it will contain properties from several layers of the pyramid. The NEPO-
MUK MultiMedia Ontology (NMM), which is yet another level of abstraction away from
the representational layer, provides an artist property, which is set to the artist of the
music piece. NIE contains a mime-type property which is set to the actual file type of
the music file and NAO has a property for the modification date of the music file.

2.4.2 The Tracker ontologies

The Tracker ontologies are based on the NEPOMUK ontologies, and contain some ex-
tensions and fixes. Some of the changes introduced relate to new platforms, such as
properties regarding physical locations required by the MeeGo platform. Other changes

9



RDF

RDFS

NRL

NGM NIENAO

Figure 2.1: A pyramid depicting the relevant relationships inside the ontology structure
of NEPOMUK, heavily inspired by figure 13.2 of [6]. The generality of the layers decreases
from top to bottom. The complete layout of NEPOMUK contains more layers, which are
not relevant here, and have been left out for brevity.

relate to the incorporation of other metadata standards, an example of this is the addi-
tion of the Dublin Core (see section 2.5.1) Ontology.

The addition of this ontology means data can be categorized in a uniform way across
different resource libraries.

Tracker also adds properties for handling removable media, whether devices are cur-
rently connected, whether data can be written back to the resource in question (in con-
trast to only reading from the resource). These properties are placed in the TRACKER
ontology.

2.5 Metadata

The term metadata comes from the Greek term meta which means among [15], metadata
refers to data about data. The National Information Standards Organization (NISO)
describes three subcategories of metadata, with different purposes. Structural meta-
data, which, when describing digital objects details the design and the specification of
data structures and information data containers, as an example, structural metadata
regarding physical books could detail which pages are contained in a specific chapter.

Descriptive metadata facilitates discovery of the objects it describes, this data is
commonly used to locate objects in catalogs or via searching. Descriptive metadata
describing a musical recording could detail properties such as artist, title or genre of
the recording. This sort of metadata, together with the last sort, which is known as
administrative metadata is what Metadex focuses on. Administrative metadata describes
properties such as where a file is located in a file system, or which access rights are
required to access the file. Administrative metadata for a physical book in a library
could detail the shelf which holds the book, for example[16].

10



This section will present important standards for metadata, and discuss how they
differ.

2.5.1 The Dublin Core

Dublin Core is the name of a set of 15 core properties used to describe resources. The
properties were defined by the Dublin Core Metadata Initiative (DMCI), and are typi-
cally used by projects handling large amounts of data, such as the MusicBrainz online
music encyclopedia project, or by libraries3[17].

The specification of Dublin Core started in 1995 with an invitational workshop in
Dublin, Ohio[17]. In contrast to the following metadata formats in this section, Dublin
Core does not specify how this data should be represented, but only offers the set of
possible properties and their semantics.

The properties are frequently used as a base for other formats, which is extended
with more specialized properties as needed by the implementing software. Listing 2.4
shows how Dublin Core (the dc prefix) is used to represent information regarding a music
file, and in this example it is augmented by the NEPOMUK metadata properties.

2.5.2 Advanced Systems Format

The ASF container format was designed and is maintained by Microsoft Corporation.
The purpose of the format, which was originally called the Advanced Streaming For-
mat [18], is to provide efficient playback for streamed multimedia as well as local play-
back. The container format does not specify which codecs (software for coding and
decoding data streams) it should contain, but is known to wrap the Windows Media
Video (WMV) format as well as Windows Media Audio (WMA).

ASF is composed of a series of objects. Some of these objects contain information
which must be read before playback of the actual media can commence, such as stream
properties or file properties. In order for the format to support streaming media, it is
important that properties such as encryption information and bit rate are present before
the media is played, and therefore this type of information is placed first in the file or
stream.

The ASF format contains several objects with metadata information, distinctions
are made for metadata relating to a specific stream (as the ASF file can contain several
streams), information regarding branding of the data (such as banner images), stream
specific data, and metadata specific to a certain language[19]. The container can store
arbitrary key-value metadata pairs, and the specification gives advice on which object
to place specific key-value pairs in.

3A comprehensive list of projects using the Dublin Core can be found at: http://dublincore.org/
projects/

11

http://dublincore.org/projects/
http://dublincore.org/projects/


2.5.3 Ogg

The purpose of the Ogg container format is to create an open standard for carrying
encoded media such as audio and video. In contrast to other popular formats, there are
no licensing fees involved when using Ogg.

The Ogg Request For Comments (RFC) document, which forms the official specifica-
tion, does not specify support for metadata other than data detailing technical properties
of the streams the Ogg contains. There is no support for content metadata such as the
author of the contained streams. In order to specify the metadata to go with an Ogg
container, the metadata must be added via one of the data streams which the Ogg
contains[20].

The most popular formats to put in an Ogg container, which are also mentioned in
the RFC, are Vorbis and Theora. In order to describe how metadata is handled in Ogg
it is therefore more appropriate to describe metadata using these two formats.

The Vorbis and Theora specifications both describe comment headers, which in prac-
tice are used for storing metadata, the specifications advise against this however:

“The Vorbis text comment header is the second (of three) header packets that
begin a Vorbis bit stream. It is meant for short text comments, not arbi-
trary metadata; arbitrary metadata belongs in a separate logical bit stream
(usually an XML stream type) that provides greater structure and machine
parsability.

The comment field is meant to be used much like someone jotting a quick
note on the bottom of a CDR. It should be a little information to remember
the disc by and explain it to others; a short, to-the-point text note that
need not only be a couple words, but isn’t going to be more than a short
paragraph” (The Vorbis I specification[21])

The Theora specification contains a similar section[22]. There is an emerging format,
Ogg Skeleton, designed to provide a metadata bit stream to be used instead of the
comments section in Theora and Vorbis. As of this writing it is, as mentioned, common
to place metadata in the comments headers of the Vorbis and Theora streams, and it is
this data which is parsed by metadata parsers supporting Ogg with Vorbis or Theora.

2.5.4 MPEG-4

MPEG-4 is an open international standard which provides tools for delivering multime-
dia, these tools form a multimedia framework for audio, video, graphics with or without
interactive features. The standard also includes codecs for video and audio encoding and
decoding, namely the Advanced Video Coding (AVC) and the Advanced Audio Coding
(AAC) codecs. The MPEG-4 standard is divided into 30 parts, where part 3 describes
audio[23] codecs, part 12 describes the ISO Base Media File Format details about the
storage of timed media information[24], such as motion pictures and audio streams, and
part 14 describes the MP4 file format[25] - which is the container format described in
this section.

12



An MP4 container may include metadata by embedding the file structure defined by
MPEG-4 Part 12. The MPEG-4 Part 12 file structure was designed in an object-oriented
manner, where a file can be decomposed into constituent objects, and the structure of
the object can be inferred by its type, which yields fast processing. An MPEG-4 Part 12
file is composed of a series of objects, called boxes, which may be nested. The sequence
of boxes in the file shall contain at least one outermost wrapping box, and it is usually
located close to the beginning of the file or in the end of the file. The wrapping box
contains further, possibly nested, boxes describing properties such as MIME-type of
the metadata (such as XML metadata, binary metadata), and the actual meta data.
An example of such boxes is the ’xm’ and ’bxml’ boxes, which can contain metadata
described by XML.

2.5.5 Exif

The Exif format specification was first released in 1996, by Japan Electronic Industry
Development Association (JEIDA), and has since become a very popular format for
storing metadata in Digital Still Camera (DSC) files. The standard was developed with
the intent to ensure data compatibility and exchangability in DSC (and to a smaller
extent also audio) files[26].

The tags in the Exif specification are based on the tags from the Tagged Image File
Format (TIFF), The Exif tags are a superset of the TIFF tags. The original TIFF tags
include properties such as the size in pixels of the image, the software used to create
it and information regarding the copyright holder. Exif extends the TIFF tags with
information regarding the conditions in which the photography was taken, such as the
aperture, exposure time and ISO speed settings of the camera.

Listing 2.1 contains an example of the metadata stored in a JPEG file using Exif, as
presented by the MediaInfo tool4.

Exif data is designed to be embedded in the DSC file it describes. The Exif specifica-
tion describes how Exif data is embedded in JPEG and TIFF files. In order to maintain
compatibility with the original JPEG specfication, Exif places its data in the second
JPEG application segment, APP1 (there is also a 0:th segment). The JPEG specifica-
tion allows several 64kB application segments[27], and Exif can extend to multiple of
these segments in order to store all available tags. The APPn segments are located near
the beginning of the JPEG file.

TIFF uses a list of pointers (called tags) to identify data sections of the file. These
data sections may contains actual image data, or optionally application specific data. To
store Exif information in TIFF files, specific TIFF tags reserved for identifying Exif data
are used to indicate the offset to data sections of the file which contains the Exif data.
The list of tags is located near the beginning of the file, but the actual Exif information
is not necessarily located in the beginning of the file [28].

The actual Exif data stored in both JPEG and TIFF files has the same form. Each
Exif tag has a numeric identifier and a specified parameter length and type. ASCII pa-

4MediaInfo is available from: http://mediainfo.sourceforge.net

13

http://mediainfo.sourceforge.net


Listing 2.1: Example Exif data

1 File name : Helsingborg_fortress2.jpg

2 File size : 650392 Bytes

3 MIME type : image/jpeg

4 Image size : 2048 x 1536

5 Camera make : OLYMPUS OPTICAL CO.,LTD

6 Camera model : X200 ,D560Z ,C350Z

7 Image timestamp : 2005:07:20 15:38:21

8 Image number :

9 Exposure time : 1/800 s

10 Aperture : F3.8

11 Exposure bias : 0 EV

12 Flash : No, auto

13 Flash bias :

14 Focal length : 10.0 mm

15 Subject distance:

16 ISO speed : 64

17 Exposure mode : Auto

18 Metering mode : Multi -segment

19 Macro mode : Off

20 Image quality : Standard Quality (SQ)

21 Exif Resolution : 2048 x 1536

22 White balance : Auto

23 Thumbnail : image/jpeg , 5891 Bytes

24 Copyright :

25 Exif comment :

rameters are variable in length, but must instead be NULL-terminated. As an example,
Exif data detailing image width is identified with 0x0100, and immediately following is
a numeric value containing the width of the image in pixels[26].

2.5.6 IIM and XMP

In early 1990 International Press Telecommunications Council (IPTC) developed the
Information Interchange Model (IIM) data model for universal communication for dif-
ferent types of data including, text, photos, graphics and audio. The software company
Adobe later adopted a subset of the IIM properties for the Photoshop imaging software,
which became the first widely used program to place metadata in images[29].

In 2001, Adobe introduced a new metadata technology known as Extensible Metadata
Platform (XMP) which was inspired by the subset of IIM properties used in Photoshop.
This new format is used to embed data into the file itself or to be placed in a separate file.
XMP standardized the definition, creation, and processing of metadata, by providing a
data model, a storage model and schemas. In the storage model, metadata consists
of a set of properties, where a property is always associated to an entity referred as
a resource and the property describes this resource. A resource may be a JPEG file
or a document file such as a PDF document. A property consists of an identifier and

14



a value, which makes a statement about the resource[30]. In order to represent the
metadata properties, XMP makes use of the Resource Description Framework (RDF)
standard, which is described in section 2.6. RDF is an XML based technology developed
by World-Wide Web Consortium (W3C). Listing 2.2 contains an example of an resource
(a PDF document) with two properties. To embed XMP into a file it must be wrapped
in an XMP Packet containing a header, serialized XMP, padding and ending trailer. The
packet is embedded differently depending on the file format. XMP gives official guidance
for embedding into the following formats: TIFF, JPEG, JPEG2000, GIF, PNG, HTML,
PDF, AI, SVG/XML, PSD, PostScript, EPS, and DNG. For JPEG the XMP Packet
shall be located in the designated APP1 segment, which is the same as for Exif, as was
discussed in section 2.5.5.

XMP also supports external storage of the metadata, in a so called sidecar file, which
may be necessary for unsupported file formats, access issues and etc. The sidecar files
must consist of well-formed XML.

Several standard metadata representations can be expressed in XMP, such as Dublin
Core, Exif, IPTC Core, and IPTC Extension.

Listing 2.2: Serialized XMP properties in the RDF format

1 <x:xmpmeta xmlns:x=’adobe:ns:meta/’>

2 <rdf:RDF xmlns:rdf="http :// www.w3.org /1999/02/22 -rdf -syntax -ns#">

3 <rdf:Description xmlns:dc="http :// purl.org/dc/elements /1.1/">

4 <dc:format >application/pdf </dc:format >

5 </rdf:Description >

6 <rdf:Description xmlns:xmp="http ://ns.adobe.com/xap /1.0/">

7 <xmp:CreateDate >2002 -08 -15 T17 :10:04Z</xmp:CreateDate >

8 </rdf:Description >

9 </rdf:RDF >

10 </x:xmpmeta >

2.5.7 ID3v2

A very common metadata format for MP3 files is the ID3v2 format. As the name
suggests, an ID3v1 format also exists, but has been superseded by version 2, and only
ID3v2 will be covered in this section.

The ID3v2 3.0 Informal standard[31] serves as the specification for ID3v2. ID3v2
metadata tags start with a four character ASCII identifier, followed by the size of the
actual data, and flags indicating whether the data is compressed, read only, encrypted
or has some other property[31]. A file may contain up to 256MB of ID3v2 metadata
(limited by the 28bit size field in the ID2v3 header), and the metadata is placed first in
the file it describes.

Since MP3 does not have built in support for non-audio data, it is important to ensure
the MP3 decoder does not attempt to play the metadata as if it was audio, since this
would most likely only produce noise. The decoder looks for a synchronization signal, a

15



special sequence of bits, in the data stream, and if one is found the data is determined
to be audio. The ID3v2 metadata should normally not contain this signal, but if it does,
this signal must be removed when writing the metadata to the MP3 file[31].

Listing 2.3 shows example of the ID3v2 metadata extracted from an MP3 file using
the id3v2 tool5.

Listing 2.3: Example of ID3 metadata

1 ID3v2

2 TALB (Album/Movie/Show title) : American Life

3 TIT2 (Title/songname/content description) : I’m So Stupid

4 TPE1 (Lead performer(s)/ Soloist(s)) : Madonna

5 TPUB (Publisher) : Maverick

6 TLEN (Length) : 9240

7 TYER (Year) : 2003

8 TDAT (Date) : 0421

9 TSSE (Software/Hardware and settings) : LAME v3.97

10 COMM (Comments) :

2.6 Storage and querying

The Resource Description Framework (RDF) is a language used to describe entities and
relationships as graphs, using URIs as identifiers and by setting properties for each entity
[32]. RDF is a W3C recommendation, and is maintained and specified by the W3C. RDF
can be represented using a language such as XML. While it is convenient for humans to
consume an RDF description in the form of a graph, it is more convenient for a machine
to use triples for representing data. Any RDF description can be expressed equivalently
as a graph and as a set of triples[32], which is very useful when having a machine store
the data.

The RDF language is very flexible and extensible, and is therefore a good way to
represent metadata, especially when different sorts of media require different properties.
By the design of the ontologies (see section 2.4) the different media types are clearly
separated, and this separation is used in the RDF representation as well.

In an abstract form, RDF triples often consist of the following fields: <subject>

<predicate> <object>.
In the example listing 2.4, the music file is described using elements from the Dublin

Core specification (see 2.5.1), as well as elements from the NEPOMUK ontologies (see
2.4.1). While this example is not optimal in regards to the data specified, it serves well
to show how different ontologies can be mixed to specify the properties of an element.

While RDF is a suitable format for storing the data, it is not possible to construct
a query for the data of a specific element or field using RDF. In order to create queries
for data stored in RDF the SPARQL Protocol and RDF Query Language (SPARQL)

5See http://id3v2.sourceforge.net/ for more information on the id3v2 tool

16

http://id3v2.sourceforge.net/


Listing 2.4: An example of an RDF description of a music recording

1 <?xml version="1.0"?>

2 <rdf:RDF xmlns:rdf="http :// www.w3.org /1999/02/22 -rdf -syntax -ns#"

3 xmlns:dc="http :// purl.org/dc/elements /1.1/"

4 xmlns:nfo="http ://www.semanticdesktop.org/

5 ontologies /2007/03/22/ nfo/">

6 <rdf:Description >

7 <dc:creator >House of Pain </dc:creator >

8 <dc:title >Jump Around </dc:title >

9 <dc:date >1992 -11 -01 </dc:date >

10 <dc:language >EN </dc:language >

11 <dc:publisher >XL Recordings </dc:publisher >

12 <nfo:channels >2</nfo:channels >

13 <nfo:fileUrl >file:///music/a64818c1b7830.mp3 </nfo:fileUrl >

14 </rdf:Description >

15 </rdf:RDF >

language is used. SPARQL is, just as RDF, a World-Wide Web Consortium recommen-
dation, and the W3C maintains and has specified SPARQL[33].

In listing 2.5 is an example of a SPARQL query, which will return the title and URL
of the file described in the RDF example above. The WHERE clause is matched with the
elements in the RDF database, and the fields specified in the SELECT clause are returned
to the querist.

Listing 2.5: SPARQL query to extract title and URL for a subset of files

1 SELECT ?title nfo:fileUrl (?x)

2 WHERE { ?x dc:title ?title

3 FILTER REGEX(?title , "^Jump") .

4 ?x dc:language "EN"

5 }

There are different ways to store the actual data represented by the RDF expressions.
A common method of storage, which will also be used in this project, is to convert the
RDF specification in to a suitable schema for a relational database. When executing
SPARQL queries on the data, the SPARQL queries are converted to SQL queries for the
SQL database, and the query is executed as an SQL query.

2.7 GLib

GLib was originally included in the GTK+ toolkit6, which is used to create graphical
applications for the GNOME 7 desktop system. GLib provided the data structures and

6See http://www.gtk.org/
7See http://www.gnome.org

17

http://www.gtk.org/
http://www.gnome.org


other features not relating to graphics in GTK+, and was eventually separated from the
rest of the graphical toolkit in order to be more attractive for non-graphical applications.

GLib in combination with the C language can be compared with the Standard Tem-
plate Language (STL) in combination with C++, or the Qt framework8, with which it
shares many similarities. GLib provides the C programmer with support for advanced
memory allocation, data structures such as lists, trees and tables, and using GObject
there is also support for object orientation[34].

This section can be used as a reference, and will be referred to when discussing
implementation details which make use of GLib specific features.

2.7.1 GObject

GObject provides mechanisms for memory allocation of classes, inheritance and linking
parent-child relationships between classes, as well as signaling. Working with GObject
is very similar to working in an object oriented language such as C++ or Java, with the
main difference being that the object orientation is not included in the syntax of the
language (in our case this is C).

Some examples of where GObject syntax is unfamiliar for C++ or Java program-
mers include constructors, member functions, class instantiation, and signaling between
objects.

Class instantiation

In C++ a class is instantiated, and space is allocated for it on the heap, using the new

keyword:

1 MyObject *myObject = new MyObject("Value for parameter 1");

Since there is no new keyword in C, class instantiation in GObject is performed by calling
a regular function instead. There are different ways to instantiate classes in GLib. The
standard way of instantiating does not allow the initialization of the object to fail. In
C++ you might throw an exception in the constructor of the class to indicate that
initialization failed, but there are no exceptions in GLib, so failure must be indicated
differently.

As can be seen in listing 2.6, the second method for instantiating the class allows the
programmer to handle errors which may occur. Also of interest is the difference in how
parameters are handled. In C++ parameters are passed to the constructor in a specific
order, and are fetched in the same order. GLib uses the notion of properties instead.
Properties are passed as key-value pairs (every two parameters to the instantiation func-
tion after the type are a pair). The properties are then installed in the constructor, and
the object is instantiated with the proper values.

8See http://qt.digia.com for more information on the Qt framework

18

http://qt.digia.com


Listing 2.6: Different ways to instantiate a GObject

1 // Standard instantiation:

2 MyObject *myObject = g_object_new(MY_OBJECT_TYPE ,

3 "parameter1", "Value for parameter 1",

4 ...);

5 // myObject is guaranteed not to be NULL

6

7 // Accounting for failure in initialization:

8 MyObject *myInitableObject = g_initable_new(MY_OBJECT_TYPE

9 "parameter1", "Value for parameter 1",

10 ...);

11 if (! myInitableObject ){

12 // Handle error

13 }

Constructors

In C++ the constructor bears the same name as the class it constructs. The constructor
also has a fixed set of parameters which the programmer can specify:

1 class MyClass {

2 MyClass(int x) { this ->x = x; }

3 }

GObject has several layers of constructors, the newly constructed object must itself
create a chain to the appropriate parent. Due to the way parameters are passed, it is
not possible to use the actual parameter values inside the constructors. The purpose of
the constructors is to initialize the object, and the parameter values are set after the
code in the constructors has executed.

Member functions

In C++ the programmer may use either the pointer operator (->) for accessing fields
of a heap allocated object, or the dot operator (.) for accessing fields of stack-allocated
objects:

1 MyObject *myObject = ...;

2 myObject ->myFunction ();

The same syntax would in theory be possible in GLib if classes were treated as structs,
but the more common syntax is to prefix the function name with the name of its class
and pass the instance of the class to it:

1 MyObject *myObject = ...;

2 MyObject_MyFunction(myObject );

19



2.7.2 Signals

Signals in GLib are a general purpose notification mechanism. A common use case of
signals is to have an object expose one, or several signals, identified by textual names.
By exposing these signals, the object indicates that these signals can be used by the
object to indicate the occurrence of certain events. Consider the following example,
loosely based on crawling in the Tracker software.

A file indexer, FileIndexer, object exposes a signal named FileFound, the
signal carries a string parameter by the name FileName. This signal is emitted
by the file indexer object each time it finds a new file in the file system. An
object interested in being notified when new files are found in the system,
such as a MetadataExtractor may register with the file indexer in order to
receive a notification when this signal is emitted. Signal emission is notified
in the MetadataExtractor by having FileIndexer run a callback method
on the extractor object during emission.

The callbacks registered with a specific signal are executed in a known order, and
new callbacks can be added anywhere in this order. Signals can also be blocked, and
unblocked in order to temporarily disable notification of the objects registered.

Signals are inherited in the GObject class hierarchy, which means that signals in-
troduced for a parent type are also available for derived types. Signals are created
using g_signal_new(..) located in Signals module. Objects register callbacks us-
ing g_signal_connect(..), providing a reference to the object emitting the signal,
and a string identifying the signal. To emit new events, the emitting object calls
g_signal_emit_by_name(..), providing the signal identifier. The code in listing 2.7
shows how an object obj may create and emit a signal. There is no feature in C++
equivalent to the signal handling of GLib, and thus no example is available for C++.

Listing 2.7: An object obj creating and emitting the signal signal_identifier

1 /* The following is typically placed in the initialization

2 * process of the object */

3 g_signal_new ("signal_identifier",

4 G_TYPE_FROM_CLASS (object_class),

5 G_SIGNAL_RUN_LAST ,

6 G_STRUCT_OFFSET (MetadexMinerClass , metadex_finished),

7 NULL , NULL ,

8 metadex_VOID__VOID ,

9 G_TYPE_NONE ,

10 0);

11

12 /* The following is executed once an expected event has

13 * occurred , and the signal should be emitted */

14 g_signal_emit_by_name (obj , "signal_identifier");

20



The code in listing 2.8 shows how an object register for events on the signal sig-
nal_identifier emitted by obj. The G_CALLBACK macro is simply a void pointer type
cast.

Listing 2.8: An object registers for events on the signal signal_identifier

1 /* signal_identifier_cb is a callback function defined in

2 * the same class as this code is executed */

3 g_signal_connect (obj , "signal_identifier",

4 G_CALLBACK (signal_identifier_cb),

5 NULL);

2.8 D-Bus

D-Bus is a system for inter-process communications (IPC), and is used to communicate
between different applications over a common communication bus. D-Bus can be likened
to communication over UNIX sockets (which is commonly used as a transport for D-
Bus), but has some additional features which will be outlined in this section. The
messages are represented in a binary format, and overall communication over D-Bus
is fast. The D-Bus specification is maintained by freedesktop9, which also provides
reference implementations, tutorials and documentation.

In contrast to UNIX sockets, communication over D-Bus is brokered by a daemon.
D-Bus supplies both a system wide daemon, communicating on the system bus and a
per-user-login-session daemon, communicating on the session bus. The system daemon
is used to communicate events regarding the actual system, such as when new hardware
has been added (removable media, USB sound cards, etc), changes to the print queue,
or other events relevant to all users of the system. The session bus is used for general
IPC needs for the applications of a single user, examples here include received instant
messages, or interactions the user performs in the user interface. Interested applications
can register to receive messages on both the system and session bus, and respond to the
messages in an appropriate way, for example when all media on a removable device have
been fully indexed, an on-screen display software may pop-up a message box.

For the purposes of this thesis there are a few different types of messages commonly
exchanged over D-Bus, basic messages with a single recipient, and broadcasted messages
which can be intercepted by any interested party. A basic message can be used to create
remote procedure call (RPC) functionality, both synchronous and asynchronous.

All messages sent over D-Bus must be correctly typed according to the D-Bus type
system, and communication endpoints have identifiers which are guaranteed to be unique,
both of these features are improvements when comparing D-Bus to UNIX sockets.

The D-Bus low-level API reference implementation has been heavily tested in the
real world over several years, and is now considered stable[35].

9http://freedesktop.org

21

http://freedesktop.org


3
Previous work

T
here exists a wide range of different media indexing software. The software
of interest for this thesis are capable of running on the Linux platform and
their licenses are compatible with industry policies and requirements. Below is
a list of the most interesting software, and a short description of each indexer.

Finally in this chapter, two indexers, Tracker and Nepomuk-KDE, are analyzed in detail,
since these two indexers are candidates to be used in the project.

• Strigi is a file indexer with Full Text Search (FTS) capabilities, provided by the
Lucene/CLucene search engine. Clients communicate with Strigi using D-Bus,
and the software is written using the Qt framework. Both of these properties make
this project interesting for us. Strigi builds an index over all files in the directories
specified, and allows searching within their contents. This indexer does not appear
to make all the connections between files which we need, such as which audio files
belong to a specific album. The FTS capabilities are fast, but this is not the most
important feature for Metadex.

• Beagle is a search tool designed primarily to index text files, such as emails,
Instant Messaging conversations and web pages. The project was developed in C#
using a C# port of the Lucene FTS engine[36]. The project is now unmaintained
and development appears to have ceased around 2008. Since Beagle was primarily
designed for indexing text, is now unmaintained and uses C# (which would require
us to ship the Mono platform1), we decided against using Beagle.

• Docfetcher is, like Beagle, aimed at indexing text documents. The software is
developed using Java, but it unlike Beagle still maintained. Java is not currently
available in the target system, and adding it with our system would mean a consid-
erable overhead. Because of these undesirable properties of Docfetcher, we decided
against it.

1See http://www.mono-project.com

22

http://www.mono-project.com


• Recoll is, like Beagle and Docfetcher, aimed at documents. This is the primary
reason for us not to use it.

• Terrier is a large scale information retrieval (IR) system, developed by University
of Glasgow with the purpose of being used as a test bed for new IR applications.
The system in itself is designed to be run in a distributed environment, and much
focus is placed on MapReduce2 systems, which is not applicable in our embedded
system.

• Nepomuk-KDE is the desktop search engine for the KDE desktop environment.
This project is capable of indexing multimedia data as well as text documents. The
multimedia indexing capabilities of Nepomuk-KDE are suitable for our project.
Other factors, such as the tight coupling with KDE libraries, and the overall inte-
gration in the KDE system means KDE would either need to be separated from
Nepomuk-KDE, or shipped with our final product.
Separating KDE from Nepomuk-KDE seems to be a very time consuming task, due
to the tight coupling with the KDE libraries and will not be attempted. Nepomuk-
KDE is one of two main candidates in our choice of media indexing software,
however, as benchmarks show later in this report, in chapter 4, Nepomuk-KDE
is outperformed by the Tracker system, which does not have the same coupling
problems to a large software platform.

• Finally, there is the Tracker software which is usually shipped as the desktop
search engine for the GNOME desktop. Tracker was designed with embedded
systems in mind, it has successfully been used in mobile platforms, such as MeeGo3.
The metadata miner is capable of handling multimedia data and text documents,
just like Nepomuk-KDE, Tracker uses a version of the NEPOMUK ontologies to
describe the relationships between different entities.
The choice of libraries and programming language makes the software portable
and suitable for our systems. A disadvantage of Tracker in its current state is that
it fully extracts metadata from each file before making it available for searching.
This makes the time to first search result high, and gives the impression of the
search being slow.

Tracker is the system currently in use at Pelagicore, and has previously been the
software recommended for multimedia indexing by the GENIVI organization.

3.1 Tracker

Tracker is the current system, which Metadex should replace. The Tracker D-Bus API
is currently used to communicate with Tracker and there is already code supporting
this in the platform developed by Pelagicore. The system has many of the features

2See http://research.google.com/archive/mapreduce.html
3See https://meego.com/

23

http://research.google.com/archive/mapreduce.html
https://meego.com/


desired in the final product, and was therefore chosen as the base of this project. In
this project the actual implementation consists of a modified version of Tracker where
current shortcomings are mitigated, and missing features have been added.

This section outlines the structure of the original Tracker software which this thesis
is based on. The Tracker software is described in increasingly fine grained detail, starting
with the runnable applications, to finally describe the different subsystems and modules
of the software on a source code level. Parts of the software which are not relevant to
Metadex have been left out for brevity where possible.

3.1.1 Overview of applications

Tracker is modular in its design. Seen from the operating system, Tracker is composed
of several different processes communicating over D-Bus (see section 2.8). The most
important processes, for this project are the following:

• tracker-control, which is used to send controls signals to the other Tracker
processes. This program can be used to send the SIGKILL or SIGTERM signals to
the Tracker processes, thereby terminating the processes. Stop and start signals
can be sent to miners over D-Bus, and the database can be managed (cleared for
instance). tracker-control is a runnable binary, and is typically invoked via the
shell, or by a process.

• tracker-miner-fs is the original miner process, this is completely replaced by
Metadex, which will be described later in this report. The tracker-miner-fs

process is responsible for coordinating crawling, extraction and database commu-
nication when mining metadata from files in the system. The process is typically
run as a long-lived daemon, which indexes new media as it becomes available to the
miner. The process is typically not interfaced with, except for starting, stopping
and pausing and can be run both by triggering it with a D-Bus request or via the
shell.

• tracker-extract is used as a common interface to the different metadata extrac-
tors which provide the miner processes with metadata. This process is typically
invoked via D-Bus, but can also be run from the shell for diagnostic purposes. A
typical use case is for the miner to send a D-Bus message to the tracker-extract

process with a URI for a media file, and receive a SPARQL fragment which can be
used when building a SPARQL query for inserting the metadata into the database.

• tracker-sparql is used to query, or change data in the Tracker database. This
command is mostly used for diagnostic purposes, as the store is normally queried
directly over D-Bus. This command is invoked on the shell.

• tracker-store is the front-end to the actual database software used in Tracker.
Currently this is the SQLite4 database. Tracker store accepts D-Bus commands

4See www.sqlite.org for a description of the SQLite project

24

www.sqlite.org


with SPARQL queries for querying and modifying the database. Since the queries
are expressed in SPARQL and not SQL which is the native language of SQLite, the
queries are first translated from SPARQL to SQL before being executed against
the database.

Each of the Tracker processes builds upon several core libraries. In order to more
easily discuss the modifications to the Tracker system, the following section will give a
high-level explanation of how the important library libtracker-miner, which is respon-
sible for indexing and mining, is designed architecturally. Much of the communication
inside Tracker is carried out using signals, see section 3.1 for a comprehensive graph over
the signals used in Tracker.

• IndexingTree is responsible for keeping track of the directories to be indexed.
Internally it builds a rose tree data structure, where each node can have arbi-
trary many children, this mimics how a file system is structured, where a di-
rectory can have arbitrarily many sub directories. IndexingTree defines three
signals; directory-added, directory-removed, and directory-updated which
signal changes of the indexing tree to the FileNotifier, which is registered as a
listener for these signals.

• Crawler is used to crawl directories instructed by FileNotifier via the tracker-
_crawler_start(..) function. Internally it keeps a double-ended queue on which
directories to crawl.

• Monitor is responsible for setting up new monitors for directories given through
tracker_monitor_add(..), typically called by the FileNotifier. The actual set
up of the monitor is done by the GLib module GFileMonitor, which is an abstrac-
tion layer above inotify5, kqueue6, FAM7, etc. The Monitor is registered to the
changed signal emitted by the GFileMonitor object, this signal is then handled,
and the appropriate signal is emitted for further handling by the FileNotifer.

• FileNotifier is responsible for handling events that occur in the indexing tree,
updates from the crawler, and creation/deletion/modifications to files in the file
system monitored by the Monitor. The FileNotifier is the module tying In-

dexingTree, Crawler and Monitor together by registering to their signals. For
example when Monitor detects that a directory has been created, it emits item-

created, FileNotifier receives the signal emitted by Monitor and instructs the
Crawler to crawl the directory supplied by the signal for more files.

• TrackerMiner is an abstract base class to help developing data miners for tracker-
store. Since it is an abstract class it only provides common functionality for

5For a good introduction to inotify, see the inotify man-page of the Linux Programmer’s Manual (man
7 inotify on most recent Linux systems)

6For a good introduction to kqueue, see the kqueue man-page of the OpenBSD Programmer’s Manual
(man 2 kqueue on most recent OpenBSD systems)

7See the FAM project page for more information: http://oss.sgi.com/projects/fam/

25

http://oss.sgi.com/projects/fam/


implementing miners, such as setting up D-Bus and GLib signals for controlling
miners.

• TrackerMinerFS is an abstract class for file system miners which collects data
from the file system. Since it inherits from TrackerMiner, it has access to its
parent properties. TrackerMinerFS abstracts away the crawling, monitoring and
the communication to the back-end database manager, leaving objects that inherit
this class to decide which directories and files should be processed and it is this
class the Metadex miner will inherit from.

The graph of figure 3.1 displays a high-level flow chart of the signals between the different
modules:

3.1.2 The TrackerMiner and TrackerMinerFS abstract classes

In order to gather files from the file system, the Tracker project provides an abstract base
class called TrackerMinerFS, which contains functionality such as crawling and creating
data structures containing the files which have been or will be mined.

The miners written for Tracker are based TrackerMiner abstract class. This class
provides the most basic features which any miner should have. Much of the internal
communication within Tracker happens over signals, and it is crucial that these signals
are well known and standardized, otherwise emitters and listeners will be using different
signals, and communication is impossible.

The TrackerMiner abstract class provides these standard signals, and also sets up
some basic D-Bus listening functionality, such as probing for status, starting and pausing
miners.

The TrackerMinerFS abstract base class is more complex and has more features
than the TrackerMiner class. This class builds on top of TrackerMiner, and provides
functionality for extracting data from file systems.

Via this class, implementors gain access to a file system crawler, an abstraction of
the file system, built on top of GFiles from GLib, an indexing tree of files to be indexed,
and more.

The typical use case of this class is to add the directories to be indexed to the indexing
tree somewhere early on in the implementing class, and then later on signal for the miner
to be started, which will trigger the file system crawling process.

The file notifier receives callback events from the crawler when a file or directory is
crawled. The file notifier checks whether the file or directory is indexable, and notifies
the crawler. Once the crawling has finished completely, the file notifier processes the data
structures gathered by the crawler. The notifier decides whether to pass control along
to the TrackerMinerFS class based on whether the file in question is already indexed,
and whether it has been modified since the last indexing.

The TrackerMinerFS class has registered callback functions with the file notifier,
and when a file is either created, moved, deleted or updated, one of these callbacks is
called, and control is transferred back to TrackerMinerFS.

26



Figure 3.1: A graph visualizing the signal flow, emitters, and receivers within libtracker-

miner. Inheritance is indicated using arrows, and signal flow is indicated using the diamonds
as arrow heads.

27



TrackerMinerFS eventually hands over control to the implementing class, which
contains specific instructions on how to mine and extract data from the file on which
the event was raised. There are two main examples of this in the Tracker project; the
Files miner and the Applications miner.

3.1.3 Performance tuning of TrackerMinerFS

TrackerMinerFS has three different properties which can be configured to greatly impact
performance. These properties were designed to be changed when implementing new
miners. Some of the properties are configurable in the original Tracker miners, while
others are not, and are simply set to static values. The sections below will describe
the different properties, how they are used in Metadex, and give a description of their
respective performance impacts.

processing-pool-ready-limit

This is a unsigned integer property that sets the maximum number of SPARQL queries
that can be kept in the SPARQL buffer before the buffer is flushed to the back-end
database. The buffer is flushed either when it is full, a timeout has occurred, or when
the miner does not have more work to do. The default value is 1, which means each
query is flushed to disk instantly. With the hardware used in this project, it is more
beneficial to raise this value significantly, in order to fill the write buffers of the operating
system and thereby reduce disk IO.

processing-pool-wait-limit

This is a unsigned integer property that sets how many files can be kept in the internal
task pool before processing of these files is forced.

throttle

This is a property ranging from 0.0 to 1.0, which tells the miner if it should index at
full speed or not, where zero is full speed and one is the slowest setting, which adds
a delay of one second to the processing of each file. The delay is achieved by adding
the processing function to the GLib main loop either with high priority or as a function
which is called periodically.

3.2 Nepomuk-KDE

Nepomuk-KDE is developed using technologies which align very well with the in-house
competence of Pelagicore, and this is the main motivation for considering it as a base
for Metadex. As previously hinted in this chapter (and better motivated in chapter 4),
Nepomuk-KDE was not used in this project, but it is still interesting to observe the
similarities in the architecture between Nepomuk-KDE and Tracker.

28



3.2.1 Overview of applications

Nepomuk-KDE is architecturally similar to Tracker (see section 3.1.1), it is designed in
a modular manner, where each process has a specific responsibility. For inter-process
communication D-Bus is used. The core processes are described below:

• nepomukserver is used to bootstrap the other Nepomuk-KDE processes, it is re-
sponsible for spawning different subsystems such as storage, file indexers and file
watchers. The name itself is, according to the Nepomuk-KDE developers a bit
misleading, and it should not be considered to be a server since none of the other
services connects to it, or try to communicate with it.

• nepomukservicestub is a wrapper process for Nepomuk-KDE services. It is used
by nepomukserver which spawns it with the appropriate service name as argument.
Nepomuk-KDE ships with three basic services:

– nepomukfileindexer which is responsible for scheduling and deciding which
files to be indexed on the system. It relies on nepomukindexer to extract
metadata from the files. nepomukindexer uses a series of libraries for ex-
tracting metadata from files, for instance, FFmpeg8 and taglib9 are used for
audio and video, Exiv2 10 is used for DSC files and poppler11 is used for PDF
files.

– nepomukfilewatch is responsible for listening for inotify signals from the
kernel about file movement, deletion, and creation. This is the same no-
tification system that is used in the Tracker FileNotifier module. Upon
receiving an inotify signal, nepomukfilewatch updates the database via
nepomukstorage and calls the file indexer for possible re-indexing.

– nepomukstorage is the process responsible for accepting requests to the database
over D-Bus. When a request is received by nepomukstorage it is passed to
Soprano12, which is a Qt framework for RDF data. Soprano is also used for
parsing SPARQL queries to the appropriate format for the database back
end, which in this project was the Virtuoso Universal Server from OpenLink
Software13.

8See http://www.ffmpeg.org/
9See http://taglib.github.io/

10See http://www.exiv2.org/
11See http://poppler.freedesktop.org/
12See the Soprano project page for more information: http://soprano.sourceforge.net/
13See http://virtuoso.openlinksw.com/

29

http://www.ffmpeg.org/
http://taglib.github.io/
http://www.exiv2.org/
http://poppler.freedesktop.org/
http://soprano.sourceforge.net/
http://virtuoso.openlinksw.com/


4
Benchmarks

I
n this chapter the design of the benchmarks, and the selection of benchmarking
criteria is outlined. The purpose of these benchmarks is to compare the Tracker
and Nepomuk-KDE metadata miners. The benchmarks are used to motivate the
choice of which of these two systems to base the Metadex software upon.

4.1 Benchmark descriptions

The main criteria of our benchmarks follow naturally from the final requirements of the
finished software developed from this thesis. Since a low mining time is crucial, the
time spent on mining by each application was measured, discarding time required for
tasks such as start up and initialization of databases. Both programs are typically kept
running as background processes in order to receive monitor events from the operating
system.

The system resource consumption levels must also be kept as low as possible. Both
Tracker and Nepomuk-KDE persist data similarly, and each produce a database of the
metadata of the indexed media. The database is stored as a file in a file system. The file
size of the database produced by each indexer was measured. Since the software will run
in a system with limited storage, the database must be kept as small as possible. The
graph in figure 4.3 shows the file size of the databases for varying number of indexed
multimedia files.

The benchmarks should not be seen as definitive, but rather as a simple model of the
scenarios in which the indexers would be used in our environment. Both Nepomuk-KDE
and Tracker were tested without modifications.

30



4.2 Selection of test data

The data used for the benchmarks was chosen to reflect the most common use cases
of the software. Since the software is used to index multimedia, a range of multimedia
items were gathered from the internet. Wikimedia Commons1 and Wikivoyage2 both
have a large amount of high quality (in terms of available metadata) photographs and
pictures which are free to use. These two sites were our main sources for pictures and
photographs.

For video files, movie trailers were used to build a database of videos with high
quality metadata. These trailers are smaller in file size than the typical size of a full
feature film, but the metadata should represent the actual film very well. Due to the
typical file size of a full feature film, the amount of trailers gathered is much lower than
the number of pictures gathered, in order to more correctly reflect a typical use case (it
is probably not common to have 20000 films on a nomadic device in a car, while this
number of photos is not improbable). The Internet Archive3 also supplies a high number
of video files with varying metadata qualities, these files were used to represent items
which may not contain perfect metadata.

Finally, for music, the idea is much the same as for video. A large quantity of music
licensed under the Creative Commons4 license was gathered from various online sources,
and was used to model a typical music database.

The gathered data is used as a source for the generation of a realistic multimedia
library, such as a removable USB mass storage device described in section 4.3.

4.3 Automatic generation of a media library structure

In order to simulate a real multimedia library, which can have an arbitrary directory
structure, and contain an arbitrary selection of files, a media library is generated prior
to the beginning of the benchmark. In each data point, additional files are added, which
means the data from the previous point is always included in subsequent points.

The multimedia library generator selects files from the collection of gathered mul-
timedia files, and generates a arbitrary directory structure to place these files in. An
example of a generated media library tree can be found in figure 4.1.

The most important properties of the randomly generated file and directory struc-
ture are that the number of files increases from low numbers to high numbers as the
benchmarks progress, and also that the file types included in the directories are mixed.
By increasing the number of files after a set amount of benchmark iterations, the perfor-
mance properties of each multimedia indexer can be measured for all media collection
sizes.

1See http://commons.wikimedia.org
2See http://www.wikivoyage.org/
3See http://archive.org
4See http://creativecommons.org

31

http://commons.wikimedia.org
http://www.wikivoyage.org/
http://archive.org
http://creativecommons.org


Media type Number of files Total file size

Music 3078 35753 Mb

MP3 2507 28140 Mb

Ogg 560 7580 Mb

WMA 11 33 Mb

Video 452 24250 Mb

MP4 370 18850 Mb

Ogv 82 5400 Mb

Pictures 22927 13180 Mb

JPEG 16847 9460 Mb

PNG 4051 390 Mb

SVG 1619 600 Mb

GIF 410 30 Mb

Totals 25914 71 Gb
Table 4.1: Summary of the types of media used when benchmarking Metadex

data/

|-- gzgqnwxxzc

| ’-- zuzqxr

| |-- kpx

| | |-- Alexandria_2123021.jpg

| | |-- AlexBiblDistance.wmv

| | |-- Orologio.jpeg

| | ’-- Rabat_tour_Hassan.jpg

| |-- PeitlerkofelgeologBruch.jpg

| |-- Thron.jpg

| ’-- TihnaGebelUnknTombOutside.mov

’-- xcbnyw

’-- cyy

|-- LocationMauritania.png

|-- Nafplio_große_Moschee.gif

’-- Nz_Abel_Tasman_NP_Adele_Island.mp3

Figure 4.1: A typical generated directory structure for a media library

32



4.4 Structure of the benchmarks

Different methods are used for measuring the mining time required by Tracker and
Nepomuk-KDE. For Tracker, the textual output of the miner process is enough to pro-
duce accurate statistics, while there is no such output from the Nepomuk-KDE process.
The control and monitoring of Nepomuk-KDE is performed using D-Bus commands.
The directories to index by Nepomuk-KDE are set using the indexFile function of org-
.kde.nepomuk.services.nepomukfileindexer. The D-Bus signals indexingStarted

and indexingStopped are monitored for activity in order to decide the time required
for indexing.

For each of the different media library sizes, the actual benchmarking procedures are
run five times. The purpose of running the same tests multiple times is to reduce the
influence of potential outliers and unfavorable scheduling by the operating system. The
arithmetic mean of gathered run times is computed from data stored by the benchmarks
run previously.

In order to ensure that prior computations do not influence future benchmarks the
operating system caches for directory entries, inodes and page caches are cleared using
the echo 3 > /proc/sys/vm/drop_caches command. Prior to running drop_caches,
two calls to sync are also made, in order to flush the file system buffers. Before starting
the media indexers, each respective database is cleared, and this incurs additional over-
head when starting the media indexers during benchmarking, which is why this delay
is not included in the actual time calculations. In actual deployment of the software
system the databases should not require resetting.

Since the benchmarks are meant to give a rough guide in which system we should
base the rest of the project on, and not to be a definitive performance guide, we have
run these benchmarks on standard PC hardware, and not on the actual target platforms.
The main purpose of these benchmarks is to compare Tracker and Nepomuk-KDE, and
not to focus on the run times in seconds, emphasis should be placed on the differences
between the curves in the graphs, as well as the rates of increase in the graphs.

Nepomuk-KDE frequently stopped processing files during the running of these bench-
marks, and thus had to be monitored for inactivity and subsequently terminated by an
external program. This made the Nepomuk-KDE benchmarks difficult to run, and it
is possible that the numbers for Nepomuk-KDE would have been more favorable if the
process had functioned as intended. In addition to stopping sporadically, Nepomuk-KDE
also took a long time to process large numbers of files, and the benchmarks had to be
terminated when Nepomuk-KDE took more than 20 minutes for a single benchmark it-
eration. The time limit of 20 minutes was set rather arbitrarily, a time limit was needed
in order be able to continue with the next benchmark iteration since it was not possible
to decide if Nepomuk was still processing or had stalled.

33



 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

R
u

n
n

in
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files processed (Mixed)

Nepomuk full
Tracker orginal

Figure 4.2: The running times of Nepomuk-KDE and Tracker. Tracker is clearly faster
than Nepomuk-KDE, and also has a lower rate of increase in running time as the number
of files increases. After 5000 files Nepomuk-KDE takes more than 20 minutes to complete,
and is terminated.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

D
a

ta
b

a
se

 s
iz

e
 in

 k
ilo

b
yt

e
s

Number of files processed (Mixed)

Nepomuk full
Tracker original

Figure 4.3: The size of the databases generated by Nepomuk and Tracker respectively.
After 5000 files Nepomuk-KDE takes more than 20 minutes to complete, and is terminated.

34



4.5 Conclusion of the benchmarks

The benchmarks show that the Tracker system is faster and more efficient than the
Nepomuk-KDE system. In terms of indexing time the Tracker system outperforms
Nepomuk by several hundred seconds, as can be seen in figure 4.2. Also seen in 4.3,
Nepomuk-KDE consumes an unpredictable and large amount of disk space for storing
its database. In addition to consuming much more time than Tracker when indexing and
mining, and using more disk space, the Nepomuk-KDE indexer failed to complete during
several runs. While it is possible to terminate or restart the process using an external
software, there are no performance benefits in using Nepomuk-KDE over Tracker and
thus there are no reasons to use Nepomuk-KDE besides it being developed in the familiar
Qt framework, which is not sufficient reason to choose Nepomuk-KDE over Tracker.

The dependencies of the Nepomuk-KDE system on the KDE libraries pose too much
overhead to be included in the final product, and the removal of these dependencies seems
time consuming. The lack of dependencies in the Tracker system makes it favorable in
comparison to Nepomuk-KDE.

Based on the outcomes of the evaluation of the two candidate software packages,
Tracker appears to be the most suitable software for our purposes, and the final product
was therefore based on Tracker.

35



5
Implementation

T
his chapter describes the implementation of Metadex. The intention of this
chapter is to document the modifications and additions made to the Tracker
system, and the motivations behind these modifications and additions. In order
to give the reader a self-contained description of the changes made to various

modules, a background to the modified Tracker module is also given in this chapter.
The first sections of this chapter outline the changes made to various Tracker com-

ponents, such as the Crawler and the Store. Later sections describe new, or heavily
modified components, such as the Metadex miner and components used for configuring
Metadex.

5.1 Overview of the miner

The diagram shown in figure 5.1 is used to show how the different modules of the miner
interact. The three squares of the figure each denote both a logical module and an actual
separate file in the code base, the disk graphic represents a collection of modules neces-
sary for interacting with the disk, the specifics of these are however not very interesting.
The miner core graphic also represents a collection of modules considered the core of
the mining system (whereas the other modules in the figure could actually be used for
other purposes as well).

The numbers by the arrows in the graph indicate the order of the control flow within
the system. The miner core, which in Tracker is the TrackerMinerFiles object, and in
Metadex is the MetadexMiner object, is used to start the rest of the modules. During
initialization, the IndexingTree is populated with the directories to be indexed (¬), as
well as a parameter indicating whether indexing is to be recursive, and any file patterns
to omit.

The FileNotifier is notified of the changes to the IndexingTree (­), and triggers
activation of the Crawler (®) for each of the directories in the IndexingTree (¯), and

36



Figure 5.1: A simplified diagram over the different components of a miner

the Crawler fetches information from the file system (°). When a directory has been
fully crawled, the FileNotifier is alerted (±), and eventually triggers the processing
of the crawled files in the miner core module (²). Finally, changes to files on the disk
can directly trigger events in the FileNotifier, which are also sent to the miner core
for processing (³).

The sequence diagram in figure 5.2 shows in greater detail the flow of signals / method
calls when executing the Metadex binary file, until it receives the metadex-finish sig-
nal, when fully mining a single file from the file system. It also includes the initialization
of the Configuration-, Removable media-, and the FileIndexer object, which does
not have anything in common with just mining a file, but is necessary for the additional
features of Metadex. This graph could help the reader to understand the dependen-
cies between objects and the communication flow between the different objects and the
external processes. The following sections describe the different modules mentioned in
greater detail.

5.2 Crawler

The crawler is responsible for finding all files in the directories specified by the Indexing-
Tree module. The directories specified by the IndexingTree are called root directories,
since these directories specify the topmost directory where all child directories and files
should be indexed. The crawling takes place by simply iterating through the directory
structure breadth first. Once a file, or directory, has been found, several signals may be
emitted. The following list of signals is for the unmodified crawler, and in the following
section the modifications made to it will be presented.

• check-directory is used to ask the FileNotifier whether a specific directory
should be crawled or not. The FileNotifier makes this decision by checking

37



Figure 5.2: Metadex sequence diagram over the mining of a single file, in the non-
daemonized mode. Solid arrows indicate function calls, dashed arrows indicate function
return values. Unlabeled arrows should be seen as continuations of the arrow leading in
from the left.

if the directory is a child of a directory specified for recursive indexing in the
IndexingTree, and various filtering settings in the IndexingTree. If the response
to this signal is True, the directory will be crawled. This is called once per directory
during the crawling process.

• check-file works in the same way as the check-directory signal, but is used
to decide whether a file should be indexed. This is called once per file during the
crawling process. If the file for which this signal is emitted does not match the
allowed-file-patterns option the file will be omitted.

• directory-crawled is used to notify the FileNotifier that a root directory has
been crawled and is ready for further processing. This is emitted once per root
directory.

In the original implementation of the Crawler, a root directory is picked from the
IndexingTree, each file and directory contained in the root directory is crawled until all
files in the current root directory have been visited. Before picking a new root directory,
control is passed over to the FileNotifier module, which in turn registers the status

38



of the recently crawled files (more on this in section 5.3). When the FileNotifier has
finished registering the files, it triggers the crawling of a new root directory in the Crawler
until there are no more roots to process. In 5.1 the arrows 2-6 show the communication
between the FileNotifier, Crawler, IndexingTree and the Disk.

5.2.1 Short-circuited file crawling

It is sometimes useful to be able to present arbitrary media to a user, such as when a
new device is discovered and the user should be notified that the media on the device is
available. When no specific search query is given to the system, and any media metadata
will suffice as a response it is thus more important to respond quickly than accurately.

In order to quickly respond to these unspecific queries, Metadex can be configured
to quickly insert the first n files crawled regardless of their content. This quick insertion
is called short-circuiting in Metadex. The number of files to be short-circuited can be
configured by the user of the system.

If short-circuiting is enabled, the crawler will record the number of files crawled, and
when n files have been crawled, crawling will stop and the directory-crawled signal
is emitted to the FileNotifier. In Metadex, the directory-crawled signal has been
modified to accommodate a status of the short-circuiting, i.e whether it is currently
active or not. The directory-crawled signal is normally only emitted once per root
directory in the unmodified Tracker crawler, but in Metadex this signal may thus be
emitted several times per directory. When the files gathered during the short-circuit
have been processed by the miner, the crawler is started again and continues crawling
where it left off.

The Crawler object is initialized by the FileNotifier constructor in the original
Tracker implementation. In order to pass the new attributes for short-circuiting to the
Crawler, the constructor of the Crawler was modified. Due to the design of constructors
in GObject (see section 2.7.1), the parameter values for the Crawler cannot be passed
to it via the constructor of FileNotifier, but has to be set using a special initialization
function, called manually when creating the FileNotifier.

5.3 FileNotifier

The FileNotifier is used to keep track of events occurring to files before these events
have been processed by the miner, this module can be seen as an advanced processing
queue for the miner.

When the crawling process has finished (regardless of short-circuiting), the File-

Notifier processes each file in order to determine to which of the internal queues the
file should be added for further processing. There are three possible internal queues
in the FileNotifier; the queue for deleted files, created files and updated files. The
FileNotifier uses the stored modification times, and compares these to the current
modification times in order to decide which queue the file should be put in. Later when
files are processed by the miner, the miner has direct access to queues created by the

39



FileNotifier.
In Metadex, the parameters for the Crawler must be passed through the File-

Notifier, since the Crawler is initialized via the FileNotifier. The FileNotifier

can use the value intended for the Crawler in order to decide when the system is running
in a short-circuited mode, but it is impossible for the FileNotifier to use this value to
decide the current internal state of the Crawler. The Crawler can be in two states when
short-circuiting is enabled; either short-circuiting has previously been completed, or it
has not been completed and will be completed after the current run.

When crawling has been short-circuited, only the n first files will be sent to the File-
Notifier, and thus the other files, not yet crawled, will appear to be deleted since their
modification times are present in the store, but not detected by the crawler (assuming
this is not the very first run of the crawler). In order to mitigate this, the File-

Notifier must be notified when a run of the crawler has been short-circuited, and this
information is passed along from the Crawler to the FileNotifier using a modification
to the directory-crawled signal.

5.4 The Store module

The Store module is used to communicate with the database, which in this project
is SQLite. Queries are sent to the Store in SPARQL format, and must be translated
from SPARQL to SQL before being processed by the database. The translation from
SPARQL to SQL is performed by the libtracker-sparql library. The Store module
is largely unchanged, with the exception of the added capability to monitor changes in
query results, described in section 5.4.1.

5.4.1 Query monitoring

Due to the design of Metadex, where the user is notified of query hits as quickly as
possible, and the query result is designed for speed and not accuracy in the first stage
of indexing, it is important to receive notifications when further metadata has been
analyzed. Metadex allows users to monitor queries for this reason, a monitored query
looks the same as a regular search query (and is handled in a similar way by the system),
but is run several times and the querist is notified of changes in the query results.

Metadex allows users to specify a SPARQL query and an interval in milliseconds
at which to run the query against the database. When presented with a monitoring
request, Metadex responds with a query identification number which will be used to tag
D-Bus broadcast signals with new results. When a new result to a query is found, a
D-Bus signal is sent, and any interested party can subscribe to these signals and react
appropriately when the signals are received. The same identification number is used to
unsubscribe from, and cancel the signal.

40



5.5 Introspection-based prototypes

A main reason to base the project on the existing Tracker software was to shorten
the time required for implementing the required features. In order to further shorten
development time, the first prototypes of Metadex were implemented using GObject
introspection, in Python and Vala. If the prototypes were successful, the entire project
would be based on these introspection technologies.

Most of the re-usable parts of the Tracker software are implemented as GObject C
libraries, and the purpose of GObject introspection is to enable applications written in
languages other than C to use GObject (see section 2.7.1) C libraries. The PyGObject1

library allows Python programs to use GObject libraries, by reading the metadata gen-
erated from the C source files of the GObject library. PyGObject dynamically creates
wrapping code around the native GObject code and allows Python to call functions,
inherit classes, etc. as if the entire code base was written in Python.

Vala works in a similar way as Python in this respect. Vala uses vapi (files specifying
the interfaces to libraries) files in order to correctly interface with the GObject libraries.
The vapi files can, just like the metadata files used by PyGObject, be generated at
compile time. While the Python code is run by the Python interpreter, the Vala code
is compiled to C, and the expressions regarding GObject are expanded into proper C,
much like if the code had been written in C and GObject, by hand.

The Python and Vala prototypes were implemented in parallel. Since the intro-
spection technologies are so similar in both approaches, the actual interfacing with the
Tracker libraries was expected to work in the same way in both prototypes, and the
available functionality from the Tracker libraries was also expected to be identical for
both prototypes.

The reason for creating two prototypes with the same features was to see which
implementation would yield higher performance when speed was measured. Python is
an interpreted language, and was believed to run slower than the Vala counter part,
which essentially is a GObject C program with different syntax.

Basic interfacing with the Tracker libraries worked fairly well in both the Python
and Vala prototypes, and surprisingly they appeared to perform equally well in terms of
speed, however several problems made both approaches unusable for further implemen-
tation:

• Not all features of GObject are implemented in PyGObject. The main issue en-
countered here was the inability to connect to some signals emitted by the Tracker
libraries

• The vapi files used in Vala to interface with the Tracker libraries are not auto-
matically generated, which means they would need to first be updated to correctly
reflect the current state of Tracker, and then be updated for each change made to
Tracker in the future.

1see: https://live.gnome.org/PyGObject

41

https://live.gnome.org/PyGObject


• Modifications to the libraries became necessary early on in the development of
these prototypes, which meant a C code base and also a Python/Vala code base
would need to be maintained, rather than just C or just Python/Vala.

The reasons stated above motivated the development of a new prototype using GOb-
ject and C, in order to mitigate the issues with introspection. The rest of this chapter
will describe features implemented in the C/GObject prototype (simply referred to as
’Metadex’), as well as modifications made to the Tracker libraries.

5.6 The Metadex miner

There are several responsibilities for the Metadex miner. The miner is, besides the Store,
the main application run by the user of the system, and is communicated with over D-
Bus. The Metadex miner binary replaces the tracker-miner-fs binary supplied by
Tracker.

The miner bootstrapping process is responsible for initializing the different modules
of Metadex. The bootstrapping process starts by sanitizing the program arguments,
initializing the configuration object with the arguments, setting up the logging environ-
ment, and starting the mining process.

The miner process is entirely event driven. Once the mining process has been
started it waits for events generated by the FileNotifier, which in turn triggers the
process_file function of the miner, described in section 5.6.1.

5.6.1 Mining in multiple stages

One of the hypotheses of this project is that the time required to produce a first result
to a search query is lowered if the metadata is mined in multiple stages, where the
first stages provide less detailed metadata than the later stages. There is no support
in Tracker to extract metadata in this way, and therefore several subsystems in Tracker
were modified to support this.

The different stages of Metadex can be seen as different miners, since the Metadex
program can be instructed to run only one of them. The stages are however kept in the
same module, which allows either of the stages to be executed at any time during the
running of Metadex, without needing to spawn a new miner process.

The ability to switch stages during Mining, i.e. processing a file fully using the
second mining stage even if the Metadex system was configured to only run in the first
stage, is useful when receiving queries via the FileIndexer module (see section 5.6.2).
process_file, being the entry point in to the miner from the FileNotifier, is used as
a divider, deciding which action to take for each file.

There are three distinctly different classes of GFile objects processed by process-

_file; directories, files to be processed in the first stage, and files to be processed in the
second stage of mining.

42



Metadata properties of the first stage

The first stage of mining extracts metadata properties which are quickly accessible.
Whether a property is quickly accessible is obviously a subjective matter, and a balance
between the usefulness of the metadata and the time required to access the metadata
must be found. While the time needed for the actual extraction of the properties must
be low, the number of properties (regardless of accessibility) must also be kept as low as
possible since query creation and insertion also takes time.

For the first stage of extraction only attributes provided by the GLib GIO library
are used. These attributes are fetched in to Tracker via GFileInfo objects, which are
basically caches for the getxargs and lstat system calls, when Tracker is run on Linux.
The reason behind restricting the first stage to the aforementioned properties is that the
information retrieved by these system calls should be faster to extract than metadata
which requires the file to actually be read. In table 5.1 each property extracted in the
first stage of mining can be seen.

The properties mined are used to build a SPARQL query that inserts the mined data
into the database.

Metadata properties of the second stage

The second stage of mining adds more properties to the already existing properties added
in the first stage. The actual set of properties depends on the type of the file being mined.
The insertion query of the second stage, containing the metadata, is partially generated
by the extractor process and is received via a response from a D-Bus call to this process.
There are many possible attributes, and they will not be listed here. It should be noted
that the second stage of mining is drastically slower than the first stage. The slowdown
comes from the following:

• much more data is inserted, an MP3 file may have up to 42 extra properties after
analysis in the second stage of mining;

• the extraction service used during the second stage of mining is invoked over D-Bus,
while the first stage of mining only uses local function calls;

• for some file types external processes are executed by the extractor service, such
as MPlayer, Xine or GStreamer, and this further adds to the mining time;

• for some file types there are extractor libraries available (and hence no new process
needs to be started as in the previous point) - while this is faster than using an
external process it still takes extra time compared to the first stage of indexing.

5.6.2 The FileIndexer module

Normally the Crawler process adds all files to the internal processing queues. It is
sometimes useful to add files to the processing queues even though they have not gone

43



Attribute Purpose

Full URL nie:url Full URL to the file, this is known since
the file was reached by the crawler when
traversing the directory structure, and
does not need to be retrieved using any
extra calls. The URL is formatted to con-
form to the standards used in Tracker.

File name nfo:fileName The actual name of the file, does not in-
clude the path. As above, this is known
from crawling

MIME type nie:mimeType This is guessed from the file extension of
the file, which makes it much faster than
using the register of known MIME types
typically available from the operating sys-
tem

Title nie:title This property has different meanings de-
pending on the type of media being mined,
however, in this stage, this is always set to
the same value as nfo:fileName.

File size nfo:fileSize The size of the file on disk, this informa-
tion is retrieved from the cached lstat

value of a GFileInfo object

Last modified nfo:fileLastModified The time of last modification, also re-
trieved lstat from the cached lstat value
of a GFileInfo object

Last accessed nfo:fileLastAccessed The time of last access, also retrieved
lstat from the cached lstat value of a
GFileInfo object

Table 5.1: Table over attributes mined during the first mining stage

44



through the crawling process, in Metadex a use case for this feature is requesting meta-
data for files through the user interface of a client application, such as the media player
of the IVI platform. Communication with this module takes place over D-Bus, and any
application can request a file for processing.

In the original implementation of the FileIndexer, the files were simply enqueued,
and any ongoing crawling or mining would precede the processing of the files added by
FileIndexer. In Metadex, files added by the FileIndexer are always processed first,
the current indexing stage is disregarded, and a complete metadata extraction is always
made.

The Metadex miner keeps a hash table of all files added via the FileIndexer module,
since this module itself is not aware of the different stages of mining. When a file is added
via the FileIndexer, Metadex stops what it is currently doing, adds this file to the front
of the processing queues and pushes it to the miner, which checks the hash table to decide
if this file should be treated specially.

The hash table lookup is used by the dividing functionality in process_file men-
tioned in section 5.6.1. process_file is sent a GFile object, and the URI of this object
is compared to the keys of the hash table, if there is a match in the hash table, the file
of this URI should be processed fully regardless of the current stage of Metadex.

5.6.3 Configuration

Tracker uses a configuration module as a proxy between the configuration system of the
operating system (typically dconf and gsettings in Linux) and the internal properties
of Tracker. The configuration object can be used to, for instance, change the list of
directories to be indexed during run time, and have Tracker react to these changes as
they occur in the operating system.

In Metadex, it is not important to change configuration properties during run time,
since these properties will be set when the application is executed. Typically the users
of Metadex will have limited configuration abilities, and the settings are decided during
the construction of the software platform.

Metadex instead optionally reads configuration options from gsettings, but never
writes these options back to gsettings. This means the configuration object can be
used to make non-persistent choices, only valid for one run, and can be passed around
to the different subsystems in Metadex without care for the persistent system settings.

Below is a list of the available configuration settings, these settings are changed
using the dconf system, and reside in the org.freedesktop.tracker.miner.metadex

namespace, and can also be set on the command line as parameters to Metadex.

• allowed-file-patterns is used to specify a list of glob patterns (a glob pattern
is a simplified regular expression) which each file will be compared to, in order
to decide whether the current file should be indexed or not. The inclusion of
a wildcard pattern (’*’) disables this feature and discards all patterns, thereby
accepting all files for indexing.

45



• index-recursive-directories is used to specify a list of directories to crawl
recursively. The directories specified here are put in the IndexingTree, and hold
the files to be indexed. The command line parameter for this option is called
directories.

• index-single-directories is used in the same way as the option above, however
child directories are not crawled. The command line parameter for this option is
called single-directories.

• log-to-file indicates whether the output sent to stdout or stderr should also
be sent to a log file, typically storied in /.local/share/tracker/. The command
line parameter for this option is also called log-to-file.

• processing-pool-ready-limit specifies the number of items kept in the internal
buffer for SPARQL queries before the buffer is emptied and the items are written to
persistent storage. This is discussed in section 3.1.3. The command line parameter
for this option is also called processing-pool-ready-limit.

• processing-pool-wait-limit specifies the maximal number of files kept in the
internal processing queues created by the FileNotifier before processing of these
files is forced. This is discussed in section 3.1.3. The command line parameter for
this option is also called processing-pool-wait-limit.

• short-circuit-files specifies the number of files to be processed in a short-
circuited run before proceeding to process the remaining files, see section 5.2.1.
The command line parameter for this option is also called short-circuit-files.

• throttle specifies the indexing speed. This is discussed in section 3.1.3. The
command line parameter for this option is also called throttle.

• verbosity specifies the log verbosity for both file logging and logging to the con-
sole. The command line parameter for this option is also called verbosity.

46



6
Results

This chapter provides the numeric results gathered from Metadex, and where applicable,
also measurements gathered from the Tracker software it improves upon. Different media
types potentially incur different indexing times, and thus the measurements have been
performed on both the different media types separately, and finally all media types
combined, which is called ”mixed” media.

The data files used to produce these results are the same files used in the bench-
marking section, and a discussion of these files can be found in section 4.2. Similarly,
the directory structure holding the files is generated using the procedure described in
the benchmarking section 4.3.

The tests were executed on a dual core work station, and thus the run times measured
in seconds do not represent the actual run times of a (current) embedded system. The
tests were run on the work station since they would take too long to run on a typical
embedded system, due to the number of iterations for each test. The data of main
interest from the graphs is thus the difference between the plotted data, and the slopes
of the graphs, and not the measurements in seconds. It should be noted that the next
generation of IVI systems are likely to feature dual core processors and several gigabytes
of RAM, and these future systems are the main targets of Metadex.

Since Metadex is designed to run in a Linux environment, the Linux work station cho-
sen to produce these test results should give a good idea of the performance of Metadex
in a real IVI system. In order to reduce the influence of external factors in the system,
unnecessary software was stopped before executing the tests. The operating system
caches for inodes and dentries were flushed, as well as the cache for page entries. The
work station was also periodically manually inspected using the htop1 system monitor,
in order to spot unfavorable resource allocation.

1See: http://htop.sourceforge.net/

47

http://htop.sourceforge.net/


6.1 Measurements and interpretations

The first graphs, seen in section 6.1, show the difference in speed between the two short-
circuit modes (discussed in section 5.2.1). It can be seen that the short-circuited first
stage has a stable and predictable run time. This stage does not rely on an external
extractor program, and retrieves all information from the file system (rather than the
actual file) and is thus mostly affected by IO latency and delays. The second stage
short-circuited shows more fluctuations. There are several possible causes for these
fluctuations; there can be problematic or broken files with corrupt metadata, causing
problems for the metadata extractor process, the extractor process can be scheduled
unfavorably by the operating system, or the communication between the miner and the
extractor (the D-Bus connection) can be delayed for some reason.

This graph clearly shows differences in performance and predictability with the dif-
ferent extractor libraries used in Metadex (and in Tracker). The audio and video parsing
libraries used in figures A and B both produce predictable results in comparison to the
image extractor seen in C. These results clearly show that the image extractor libraries
need further work. In the final figure, D, the same trends can be seen as in the figure of
the image benchmark. The fluctuations in D are most likely due to the fluctuations in
the image processing.

Since the runs are short-circuited, the running time of the miners does not noticeably
increase as the number of files increases. The graphs of section 6.1 show the time required
to produce the metadata for the short-circuited files only, and not the mining time for
all files.

The next figure, figure 6.2, can be seen as a zoomed out version of the previous
graph. In this version, all mining modes have been included. It can be seen that
the short-circuited runs are, as expected, much faster than the full runs (albeit do not
produce metadata for nearly as many files). Also seen in this figure is the difference in
running time between the first and second stages. This difference is likely due to the
same causes as for the first figure, where there is both a larger amount of work to be
carried out in the second stage of mining, and there are also more external factors which
can slow the second stage down.

In these graphs it can be seen that the same trends regarding the differences in
reliability between the image, audio and video (figures A, B and C) extractors are
still present in this larger scale run. The fluctuations in running time for images are
not as striking, and this may indicate that a subset of malformed image files cause
comparatively long extraction times. When reviewing the code for the image extractors,
special attention should thus be given to the error handling procedures to see if there
are potential speed improvements here.

It should be noted that the graphs of figure 6.2 do not depict the time required to
produce search results. The reason for including both the short-circuited runs and the
non-short-circuited runs are to give a perspective of how much faster the short circuited
runs are than the full runs.

The graphs of 6.3 show the time required to decide whether a previously inserted

48



Figure 6.1: Metadex stage 1 and 2, short-circuited

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0  500  1000  1500  2000  2500  3000

R
u

n
n

in
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files, 50 selected (audio)

A

Stage 1 short-circuit 50
Stage 2 short-circuit 50

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 100  150  200  250  300  350  400  450  500

R
u

n
n

in
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files, 50 selected (videos)

B

Stage 1 short-circuit 50
Stage 2 short-circuit 50

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

R
u

n
n

in
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files, 50 selected (images)

C

Stage 1 short-circuit 50
Stage 2 short-circuit 50

 1

 2

 3

 4

 5

 6

 7

 0  500  1000  1500  2000  2500  3000

R
u

n
n

in
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files, 50 selected (mixed)

D

Stage 1 short-circuit 50
Stage 2 short-circuit 50

The time required for processing different kinds of media in the stage 1 and
stage 2 short-circuit modes with Metadex

Figure 6.2: Metadex, all modes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  500  1000  1500  2000  2500  3000

R
u

n
n

in
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files processed (audio)

A

Stage 1
Stage 1 short-circuit 50

Stage 2
Stage 2 short-circuit 50

 0

 2

 4

 6

 8

 10

 12

 100  150  200  250  300  350  400  450  500

R
u

n
n

in
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files processed (videos)

B

Stage 1
Stage 1 short-circuit 50

Stage 2
Stage 2 short-circuit 50

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

R
u

n
n

in
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files processed (images)

C

Stage 1
Stage 1 short-circuit 50

Stage 2
Stage 2 short-circuit 50

 0

 20

 40

 60

 80

 100

 120

 140

 0  500  1000  1500  2000  2500  3000

R
u

n
n

in
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files processed (mixed)

D

Stage 1
Stage 1 short-circuit 50

Stage 2
Stage 2 short-circuit 50

The time required for processing different kinds of media, with all available
Metadex configurations.

49



Figure 6.3: Re-indexing, Metadex and Tracker

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  500  1000  1500  2000  2500  3000

R
e

in
d

e
xi

n
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files processed (audio)

A

Metadex
Tracker

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 100  150  200  250  300  350  400  450  500

R
e

in
d

e
xi

n
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files processed (videos)

B

Metadex
Tracker

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

R
e

in
d

e
xi

n
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files processed (images)

C

Metadex
Tracker

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  500  1000  1500  2000  2500  3000

R
e

in
d

e
xi

n
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files processed (mixed)

D

Metadex
Tracker

The time required for re-indexing different kinds of media in Metadex and
Tracker

storage device has already been mined. No files were changed between mining and the
re-indexing, the graphs show only the time required to decide that no files were changed.

The graphs show that Metadex is both consistently slower than Tracker, and also
has a steeper slope. Both Tracker and Metadex share the same procedures for crawling,
where Metadex has some logic added for handling short-circuited runs. It is important
to keep the re-indexing times low, so this result should be improved upon, possibly by
changing the logic added to Metadex regarding the short-circuited runs.

The graphs also show a higher consistency and predictability in the re-indexing times
of Metadex than the corresponding times of Tracker. It is unclear why Tracker has some
sudden increases in re-indexing time.

In figure C, several fluctuations in the re-indexing times for Tracker can be observed.
These fluctuations are not present in the rest of the graphs, which may indicate that the
fluctuations come from unfavorable scheduling by the operating system.

The graphs seen in figure6.4 display the running times for the non-short-circuited
modes of Metadex, compared to a full mining of Tracker. These graphs can be used to
establish the time required to process all files in the different stages, and when used in
conjunction with, for instance 6.1, or 6.8, this gives a good impression of both the time
required to retrieve first results, and subsequent arbitrary query results.

The graphs of figure 6.3, particularly B, show that the second stage of Metadex has
a slightly longer running time than Tracker. This is likely due to the extra logic added
in order to accommodate for the multiple stages of mining. This added overhead is

50



Figure 6.4: Runtimes, Tracker, Metadex stage 1 and stage 2, short-circuited

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  500  1000  1500  2000  2500  3000

R
u

n
n

in
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files processed (audio)

A

Metadex stage 1
Metadex stage 2

Tracker full indexing

 0

 2

 4

 6

 8

 10

 12

 100  150  200  250  300  350  400  450  500

R
u

n
n

in
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files processed (videos)

B

Metadex stage 1
Metadex stage 2

Tracker full indexing

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

R
u

n
n

in
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files processed (images)

C

Metadex stage 1
Metadex stage 2

Tracker full indexing

 0

 20

 40

 60

 80

 100

 120

 140

 0  500  1000  1500  2000  2500  3000

R
u

n
n

in
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files processed (mixed)

D

Metadex stage 1
Metadex stage 2

Tracker full indexing

The time required for processing files using the two stages available in
Metadex compared to the one stage available in Tracker

acceptable due to the low running time required by the first stage of mining.
The graphs in figure 6.5 show stage 1 of Metadex executed with short-circuiting

enabled and Tracker which running a complete metadata extraction. These graphs give
a perspective of the difference between the fastest possible configurations of Metadex,
compared with a standard Tracker run. Since the running time of Tracker gets relatively
large compared to stage 1 of Metadex and the short-circuited version of the first stage
of Metadex, when the number of files increases, it looks as if the Metadex lines are
constantly zero, however they are indeed greater than zero as can be seen in 6.1.

It should be noted again that Tracker produces all metadata available, and that in
these graphs, Metadex only produces the most elementary metadata, and this is the
reason for the drastically lower indexing time of Metadex in figure 6.5. The use case
plotted in these graphs could be when deciding if a file is present in the system at all. In
this scenario, Metadex will be able to decide the availability of a file much quicker than
Tracker, due to only extracting the most basic metadata properties.

In figure 6.6 the running time in seconds for a varying number of directories has been
plotted. Directory depth ranges from one sub directory to ten sub directories deep. The
number of files was also kept constant, while the number of total directories was varied.

The hypothesis in this test was that the time consumed when running the different
stages of Metadex and the Tracker miner would roughly be equal, as can be seen in the
graph, this turned out to be false.

The slightly longer running time of Metadex stage 2 when compared to Tracker is

51



Figure 6.5: Metadex stage 1, stage 1 short-circuited, and Tracker

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  500  1000  1500  2000  2500  3000

R
u

n
n

in
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files processed (audio)

A

Metadex stage 1
Metadex stage 1 short-circuit 50

Tracker

 0

 2

 4

 6

 8

 10

 12

 100  150  200  250  300  350  400  450  500

R
u

n
n

in
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files processed (videos)

B

Metadex stage 1
Metadex stage 1 short-circuit 50

Tracker

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

R
u

n
n

in
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files processed (images)

C

Metadex stage 1
Metadex stage 1 short-circuit 50

Tracker

 0

 20

 40

 60

 80

 100

 120

 140

 0  500  1000  1500  2000  2500  3000

R
u

n
n

in
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files processed (mixed)

D

Metadex stage 1
Metadex stage 1 short-circuit 50

Tracker

The best performance settings of Metadex (stage 1 mining, and short-circuited
stage 1 mining) compared to the normal case of Tracker (full mining)

likely due to the modifications made to the crawler as was observed in figure 6.3.
Metadex stage 1 is much faster than both stage 2 and Tracker, this likely indicates

that the extractors handle directory traversal inefficiently.
The graphs depicting the database sizes for Metadex and Tracker, seen in figure

6.7 are mostly intuitive. Both Tracker and Metadex stage 2 run in parallel and the
first stage of Metadex constantly produces a smaller database than both Tracker and
Metadex stage 2. It is however unexpected that Metadex stage 2 produces a smaller
database than Tracker. This difference in size could be due to Metadex mining less data
from each file, and thus yields less information when querying the database for a file.

The information available from both Metadex stage 2 and Tracker appears to be
equal upon inspection, and thus it seems unlikely that Metadex stage 2 produces less
information regarding each file, and more likely that Metadex stage 2 discards some
other data which Tracker contains, not related to the mining of multimedia.

The time to first result, displayed in figure 6.8 shows the elapsed time between
initiating a query against the store and receiving a response. Metadex features query
monitoring capabilities, as discussed in 5.4.1, Tracker does not however, and for this
reason the monitoring was not used when producing these graphs.

To produce these graphs, the tracker-sparql tool was used together with a SPARQL
query which matches any file, of any type. The query tool is run every 100 milliseconds
until the first hits are returned by the store. Since the tool is run periodically until a hit
is returned, the database is hit more times than necessary, which means these readings

52



Figure 6.6: Runtimes, varying number of directories

 0

 20

 40

 60

 80

 100

 120

 140

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000  11000

R
un

ni
ng

 ti
m

e 
in

 s
ec

on
ds

Number of directories

Metadex stage 1
Metadex stage 2

Tracker

This graph shows how Metadex and Tracker are effected by large directory
structures, while keeping the number of files fixed at 1000

Figure 6.7: Database sizes

 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000
 11000
 12000
 13000

 0  500  1000  1500  2000  2500  3000

D
a

ta
b

a
se

 s
iz

e
 in

 k
b

Number of files processed (audio)

A

Metadex stage 1
Metadex stage 2

Tracker full indexing

 2600

 2800

 3000

 3200

 3400

 3600

 3800

 4000

 4200

 4400

 4600

 100  150  200  250  300  350  400  450  500

D
a

ta
b

a
se

 s
iz

e
 in

 k
b

Number of files processed (videos)

B

Metadex stage 1
Metadex stage 2

Tracker full indexing

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

D
a

ta
b

a
se

 s
iz

e
 in

 k
b

Number of files processed (images)

C

Metadex stage 1
Metadex stage 2

Tracker full indexing

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0  500  1000  1500  2000  2500  3000

D
a

ta
b

a
se

 s
iz

e
 in

 k
b

Number of files processed (mixed)

D

Metadex stage 1
Metadex stage 2

Tracker full indexing

Comparison of the size of the database files of Tracker and the various stages
of Metadex

53



Figure 6.8: Time to first result, Metadex and Tracker

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0  500  1000  1500  2000  2500  3000

T
im

e
 u

n
til

 f
ir

st
 r

e
su

lt 
in

 s
e

co
n

d
s

Number of files processed (audio)

A

Metadex stage 1
Metadex stage 2

Tracker full indexing

 3

 4

 5

 6

 7

 8

 9

 100  150  200  250  300  350  400  450  500

T
im

e
 u

n
til

 f
ir

st
 r

e
su

lt 
in

 s
e

co
n

d
s

Number of files processed (videos)

B

Metadex stage 1
Metadex stage 2

Tracker full indexing

 2

 4

 6

 8

 10

 12

 14

 16

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

T
im

e
 u

n
til

 f
ir

st
 r

e
su

lt 
in

 s
e

co
n

d
s

Number of files processed (images)

C

Metadex stage 1
Metadex stage 2

Tracker full indexing

 2

 4

 6

 8

 10

 12

 14

 0  500  1000  1500  2000  2500  3000

T
im

e
 u

n
til

 f
ir

st
 r

e
su

lt 
in

 s
e

co
n

d
s

Number of files processed (mixed)

D

Metadex stage 1
Metadex stage 2

Tracker full indexing

Time required to produce a first result by the Tracker and Metadex systems.

are not completely accurate, but the inaccuracies are the same for both Tracker and
Metadex. It should also be noted that the 100 millisecond delay between the queries
sent to the database means approximately 100 milliseconds may be added to the result
measurement in the worst case.

Metadex is able to respond to queries for arbitrary files because of its short-circuiting
capabilities. By comparing the graph of figure 6.8 to the previous graphs which have
shown the running time of the short-circuited stage 1 Metadex miner (for instance 6.1),
the time consumed by the actual querist and time time required by the database to locate
the correct element can be approximated. The time required for Metadex to extract and
insert the data for 50 arbitrary files (as seen in 6.1) is much lower than the time required
to obtain a first result by a client, as depicted by these graphs, which could indicate that
a large amount of time is spent in the querying client, and in the database server looking
up the query results. As a side note, the first result times were considerably lowered,
and the curves were smoother, when the operating system caches for pages, dentries and
inodes were not cleared prior to each run.

Producing an early first result is one of the key goals for this project. The very first
results are intended to be retrieved by running the first stage miner, and subsequently
retrieving more information as gathered by the stage 2 miner, thus it is important to
keep the time required to produce a first result low especially for the first stage of mining.

The relative stability of the stage 1 curve comes from the fact that the extractor
process is not invoked, as mentioned previously. The close resemblance of the second
stage of mining and Tracker can also be seen in that these curves almost run in parallel.

54



7
Conclusion and recommendations

This chapter describes the conclusions made from the results of this thesis. The viability
of the chosen methods to speed up metadata extraction will be decided, and the methods
used to accomplish the goals of the thesis will be discussed and evaluated.

Several areas containing potential future work, both in this particular project, and
the field as a whole, have been identified. The identified future work is presented, and
interested readers can use this section to identify natural continuations of this thesis.

7.1 Conclusion

The hypothesis that multiple stages of mining yields a shorter time required to mine
metadata was correct. By first mining easily accessible metadata, and then advancing
on to more detailed metadata the system appears more responsive than previously.

The short-circuiting feature introduced in this thesis ensures fast access to arbitrary
first results, which are desirable when, for example a USB device has just been inserted
in to an IVI system.

The Tracker mining software appears to be a good base to build an IVI multimedia
mining software upon. Tracker was relatively easy to modify, and is designed with
extensibility in mind.

7.2 Discussion of working method and project

We believe choosing an existing software to modify, rather than creating an entirely new
software, was a good choice. The time required to understand the Tracker software was
underestimated, but we believe the end result is much better than it would have been if
the entire software was developed from scratch.

Much time was spent on comparing the Nepomuk-KDE project and the Tracker
project. Nepomuk-KDE appears to use much more attractive technologies due to in-

55



house expertise at Pelagicore, such as Qt and C++, rather than Tracker’s C and GLib.
By benchmarking and testing both Nepomuk-KDE and Tracker, we saw that Nepomuk-
KDE was unusable for our purposes. We believe the time spent on benchmarking saved
us a lot of time in the long run.

Tracker has been under development since 2005, has a complex structure, and is
divided into many modules, which took a long time to understand. In hindsight, we
believe we made the correct choice in basing our software on Tracker rather than trying
to replicate many of its features, which would not have fitted in the time frame for this
thesis.

Pelagicore as a company is profiled as an open source company, and does a lot of
work with open source software and components, therefore we also think it is more in
the spirit of the company to use and extend an existing software, rather than developing
an entirely new solution.

7.3 Recommendations for future work

This project converted SPARQL expressions to SQL expressions and used the resulting
expressions with a relational database. Other kinds of databases, such as triple stores
or graph stores may be more efficient for storing this kind of data, and it would be
interesting to see any difference in performance when comparing the relational database
used in this project with other kinds of databases.

A global state indicating properties such as the current indexing stage would make
it easier to decide on stage-specific actions in Metadex. It would be interesting to see
any possible performance gains when the entire system is aware of the current mode
of operation, such as when the system is short-circuited, running in the first stage of
mining, or doing a complete metadata extraction.

It should be investigated why Metadex is slower than the original Tracker implemen-
tation when re-indexing previously seen media, and new methods for quickly recognizing
previously indexed media should be researched. The current implementation relies fully
on comparing the modification times of the files in the directory being indexed with an
old stored modification time. The stored modification time could be stored in a way
such that it is more quickly accessible, or a different method could be used all together,
such as a very fast hash of the entire device.

The image extractors are much more unreliable than the extractors for audio or
video in terms of predictability and stability. The image extractors use an unpredictable
amount of time when compared to the other extractors, for the same number of files. It
should be possible to achieve similar stability when extracting metadata from images as
when extracting metadata from audio and video.

More stages of mining should be added, such as stages which connect to the internet
in order to find more metadata. Online databases such as MusicBrainz1, Gracenote2

1see: http://www.musicbrainz.org
2see: http://www.gracenote.com/

56

http://www.musicbrainz.org
http://www.gracenote.com/


and IMDB3 can be used to provide information such as the cast of a movie, or the lyrics
of a song.

3see: http://www.imdb.com

57

http://www.imdb.com


Bibliography

[1] M. A. R. Megan Bayly, Kristie L. Young, Sources of distraction inside the vehicle
and their effects on driving performance, in: Driver Distraction: Theory, Effects,
and Mitigation, Taylor & Francis, 2008, pp. 192–210.

[2] M. A. Perez, Safety implications of infotainment system use in naturalistic driving,
Work 41 (Supplement 1 / 2012) (2012) 5815–5818.

[3] W. A. Bhat, S. M. K. Quadri, A quick review of on-disk layout of some popular disk
file systems, Global Journal of Computer Science and Technology XI (VI Version
I).

[4] Microsoft Corporation, Microsoft Extensible Firmware Initiative FAT32 File System
Specification, version 1.03 Edition (December 2000).

[5] B. A. Myers, The importance of percent-done progress indicators for computer-
human interfaces, in: CHI ’85: Proceedings of the SIGCHI conference on Human
factors in computing systems, ACM, New York, NY, USA, 1985, pp. 11–17.
URL http://dx.doi.org/10.1145/317456.317459

[6] A. Bernardi, G. Grimnes, T. Groza, S. Scerri, The NEPOMUK Semantic Desktop,
in: P. Warren, J. Davies, E. Simperl (Eds.), Context and Semantics for Knowledge
Management, Springer Berlin Heidelberg, 2011, pp. 255–273.
URL http://dx.doi.org/10.1007/978-3-642-19510-5_13

[7] M. Uschold, M. Gruninger, M. Uschold, M. Gruninger, Ontologies: Principles,
methods and applications, Knowledge Engineering Review 11 (1996) 93–136.

[8] T. R. Gruber, A translation approach to portable ontology specifications, Knowl.
Acquis. 5 (2) (1993) 199–220.
URL http://dx.doi.org/10.1006/knac.1993.1008

[9] G. Smethurst, Changing the In-Vehicle infotainment landscape, Tech. rep., GENIVI
Alliance (2010).

58

http://dx.doi.org/10.1145/317456.317459
http://dx.doi.org/10.1007/978-3-642-19510-5_13
http://dx.doi.org/10.1006/knac.1993.1008


[10] B. Perens, et al., The open source definition, Open sources: voices from the open
source revolution (1999) 171–85.

[11] J. Lovejoy, Understanding the three most common open source licenses, Tech. rep.,
OpenLogic (2012).

[12] P. Vescuso, A. Dalrymple, Gplv3 licenses quadruple in 2009, but gpl projects drop
by five percent from 2008 levels, Tech. rep., Black Duck Software (2009).

[13] Gnu general public license, version 2, http://www.gnu.org/licenses/old-

licenses/gpl-2.0.html (June 1991).

[14] Gnu lesser general public license, version 2.1, http://www.gnu.org/licenses/old-
licenses/lgpl-2.1.html (February 1999).

[15] Merriam-Webster.com, ”meta” (2013).
URL http://www.merriam-webster.com/dictionary/meta-?show=1&t=

1366198122

[16] NISO Press, Understanding Metadata, National Information Standards Organiza-
tion Press, 2004.
URL http://www.niso.org/publications/press/UnderstandingMetadata.pdf

[17] Dublin Core, Dublin Core Metadata Element Set, Version 1.1: Reference Descrip-
tion, Dublin Core Metadata Initiative, 2012.
URL http://dublincore.org/documents/2012/06/14/dces/

[18] E. Fleischman, Advanced streaming format (asf) specification, Tech. rep., Microsoft
Corporation (January 1998).
URL http://tools.ietf.org/html/draft-fleischman-asf-00

[19] Advanced systems format (asf) specification, Tech. rep., Microsoft Corporation
(January 2012).

[20] The ogg encapsulation format, Tech. rep., The Internet Society (May 2003).
URL http://www.ietf.org/rfc/rfc3533.txt

[21] Vorbis i specification, Tech. rep., Xiph.org Foundation (February 2012).
URL http://www.xiph.org/vorbis/doc/Vorbis_I_spec.html

[22] Theora specification, Tech. rep., Xiph.org Foundation (March 2011).
URL http://www.theora.org/doc/Theora.pdf

[23] Information technology — coding of audio-visual objects — part 3: Audio, Tech.
rep. (December 2005).

[24] Information technology — coding of audio-visual objects — part 12: Iso base media
file format, Tech. rep. (Oktober 2008).

59

http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
http://www.merriam-webster.com/dictionary/meta-?show=1&t=1366198122
http://www.merriam-webster.com/dictionary/meta-?show=1&t=1366198122
http://www.niso.org/publications/press/UnderstandingMetadata.pdf
http://dublincore.org/documents/2012/06/14/dces/
http://tools.ietf.org/html/draft-fleischman-asf-00
http://www.ietf.org/rfc/rfc3533.txt
http://www.xiph.org/vorbis/doc/Vorbis_I_spec.html
http://www.theora.org/doc/Theora.pdf


[25] Information technology — coding of audio-visual objects — part 14: Mp4 file for-
mat, Tech. rep. (November 2003).

[26] JEITA, Digital Still Camera Image File Format Standard (Exchangeable image file
format for Digital Still Cameras: Exif) Version 2.1, JEITA, 1998.

[27] I. T. Union, Information technology - digital compression and coding of continuous-
tone still images - requirements and guidelines, Tech. rep., CCITT (1993).
URL http://www.w3.org/Graphics/JPEG/itu-t81.pdf

[28] Adobe Systems Incorporated, TIFF Specification, Tech. rep. (1992).
URL http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf

[29] Michael Steidl, Photo Metadata White Paper 2007, Tech. rep. (2007).
URL http://www.iptc.org/std/photometadata/0.0/documentation/IPTC-

PhotoMetadataWhitePaper2007_11.pdf

[30] Adobe Systems Incorporated, XMP Adding Intelligence to Media, Tech. rep.
(2005).
URL http://partners.adobe.com/public/developer/en/xmp/sdk/

XMPspecification.pdf

[31] M. Nilsson, Id3v2.3.0 informal standard, Tech. rep. (February 1999).
URL http://id3.org/d3v2.3.0

[32] F. Manola, E. Miller (Eds.), RDF Primer, W3C Recommendation, World Wide
Web Consortium, 2004.
URL http://www.w3.org/TR/rdf-primer/

[33] S. Harris, A. Seaborne (Eds.), SPARQL 1.1 Query Language, W3C Recommenda-
tion, World Wide Web Consortium, 2013.
URL http://www.w3.org/TR/2013/REC-sparql11-query-20130321/

[34] GNOME Team, GLib Reference Manual, 2013.
URL https://developer.gnome.org/glib/2.36/

[35] H. Pennington, A. Carlsson, A. Larsson, S. Herzberg, S. McVittie, D. Zeuthen
(Eds.), D-Bus Specification, freedesktop.org, 2013.
URL http://dbus.freedesktop.org/doc/dbus-specification.html

[36] Beagle-team, Beagle, page is now offline, only available through archiving services
(2008).
URL http://web.archive.org/web/20080708182518/http://www.beagle-

project.org/Development

60

http://www.w3.org/Graphics/JPEG/itu-t81.pdf
http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf
http://www.iptc.org/std/photometadata/0.0/documentation/IPTC-PhotoMetadataWhitePaper2007_11.pdf
http://www.iptc.org/std/photometadata/0.0/documentation/IPTC-PhotoMetadataWhitePaper2007_11.pdf
http://partners.adobe.com/public/developer/en/xmp/sdk/XMPspecification.pdf
http://partners.adobe.com/public/developer/en/xmp/sdk/XMPspecification.pdf
http://id3.org/d3v2.3.0
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://developer.gnome.org/glib/2.36/
http://dbus.freedesktop.org/doc/dbus-specification.html
http://web.archive.org/web/20080708182518/http://www.beagle-project.org/Development
http://web.archive.org/web/20080708182518/http://www.beagle-project.org/Development


A
Full size graphs from results

chapter

61



 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0  500  1000  1500  2000  2500  3000

R
u

n
n

in
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files, 50 selected (audio)

A

Stage 1 short-circuit 50
Stage 2 short-circuit 50

Figure A.1: Metadex stage 1 and 2

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 100  150  200  250  300  350  400  450  500

R
u

n
n

in
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files, 50 selected (videos)

B

Stage 1 short-circuit 50
Stage 2 short-circuit 50

Figure A.2: Metadex stage 1 and 2

62



 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

R
u

n
n

in
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files, 50 selected (images)

C

Stage 1 short-circuit 50
Stage 2 short-circuit 50

Figure A.3: Metadex stage 1 and 2

 1

 2

 3

 4

 5

 6

 7

 0  500  1000  1500  2000  2500  3000

R
u

n
n

in
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files, 50 selected (mixed)

D

Stage 1 short-circuit 50
Stage 2 short-circuit 50

Figure A.4: Metadex stage 1 and 2

63



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  500  1000  1500  2000  2500  3000

R
u

n
n

in
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files processed (audio)

A

Stage 1
Stage 1 short-circuit 50

Stage 2
Stage 2 short-circuit 50

Figure A.5: Metadex, all modes

 0

 2

 4

 6

 8

 10

 12

 100  150  200  250  300  350  400  450  500

R
u

n
n

in
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files processed (videos)

B

Stage 1
Stage 1 short-circuit 50

Stage 2
Stage 2 short-circuit 50

Figure A.6: Metadex, all modes

64



 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

R
u

n
n

in
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files processed (images)

C

Stage 1
Stage 1 short-circuit 50

Stage 2
Stage 2 short-circuit 50

Figure A.7: Metadex, all modes

 0

 20

 40

 60

 80

 100

 120

 140

 0  500  1000  1500  2000  2500  3000

R
u

n
n

in
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files processed (mixed)

D

Stage 1
Stage 1 short-circuit 50

Stage 2
Stage 2 short-circuit 50

Figure A.8: Metadex, all modes

65



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  500  1000  1500  2000  2500  3000

R
e

in
d

e
xi

n
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files processed (audio)

A

Metadex
Tracker

Figure A.9: Re-indexing, Metadex and Tracker

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 100  150  200  250  300  350  400  450  500

R
e

in
d

e
xi

n
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files processed (videos)

B

Metadex
Tracker

Figure A.10: Re-indexing, Metadex and Tracker

66



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

R
e

in
d

e
xi

n
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files processed (images)

C

Metadex
Tracker

Figure A.11: Re-indexing, Metadex and Tracker

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  500  1000  1500  2000  2500  3000

R
e

in
d

e
xi

n
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files processed (mixed)

D

Metadex
Tracker

Figure A.12: Re-indexing, Metadex and Tracker

67



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  500  1000  1500  2000  2500  3000

R
u

n
n

in
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files processed (audio)

A

Metadex stage 1
Metadex stage 2

Tracker full indexing

Figure A.13: Runtimes, Tracker, Metadex stage 1 and stage 1 short-circuit

 0

 2

 4

 6

 8

 10

 12

 100  150  200  250  300  350  400  450  500

R
u

n
n

in
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files processed (videos)

B

Metadex stage 1
Metadex stage 2

Tracker full indexing

Figure A.14: Runtimes, Tracker, Metadex stage 1 and stage 1 short-circuit

68



 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

R
u

n
n

in
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files processed (images)

C

Metadex stage 1
Metadex stage 2

Tracker full indexing

Figure A.15: Runtimes, Tracker, Metadex stage 1 and stage 1 short-circuit

 0

 20

 40

 60

 80

 100

 120

 140

 0  500  1000  1500  2000  2500  3000

R
u

n
n

in
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files processed (mixed)

D

Metadex stage 1
Metadex stage 2

Tracker full indexing

Figure A.16: Runtimes, Tracker, Metadex stage 1 and stage 1 short-circuit

69



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  500  1000  1500  2000  2500  3000

R
u

n
n

in
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files processed (audio)

A

Metadex stage 1
Metadex stage 1 short-circuit 50

Tracker

Figure A.17: Metadex stage 1, stage 1 short-circuited, and Tracker

 0

 2

 4

 6

 8

 10

 12

 100  150  200  250  300  350  400  450  500

R
u

n
n

in
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files processed (videos)

B

Metadex stage 1
Metadex stage 1 short-circuit 50

Tracker

Figure A.18: Metadex stage 1, stage 1 short-circuited, and Tracker

70



 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

R
u

n
n

in
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files processed (images)

C

Metadex stage 1
Metadex stage 1 short-circuit 50

Tracker

Figure A.19: Metadex stage 1, stage 1 short-circuited, and Tracker

 0

 20

 40

 60

 80

 100

 120

 140

 0  500  1000  1500  2000  2500  3000

R
u

n
n

in
g

 t
im

e
 in

 s
e

co
n

d
s

Number of files processed (mixed)

D

Metadex stage 1
Metadex stage 1 short-circuit 50

Tracker

Figure A.20: Metadex stage 1, stage 1 short-circuited, and Tracker

71



 0

 20

 40

 60

 80

 100

 120

 140

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000  11000

R
un

ni
ng

 ti
m

e 
in

 s
ec

on
ds

Number of directories

Metadex stage 1
Metadex stage 2

Tracker

Figure A.21: Runtimes, varying directory structure depth

 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000
 11000
 12000
 13000

 0  500  1000  1500  2000  2500  3000

D
a

ta
b

a
se

 s
iz

e
 in

 k
b

Number of files processed (audio)

A

Metadex stage 1
Metadex stage 2

Tracker full indexing

Figure A.22: Database sizes

72



 2600

 2800

 3000

 3200

 3400

 3600

 3800

 4000

 4200

 4400

 4600

 100  150  200  250  300  350  400  450  500

D
a

ta
b

a
se

 s
iz

e
 in

 k
b

Number of files processed (videos)

B

Metadex stage 1
Metadex stage 2

Tracker full indexing

Figure A.23: Database sizes

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

D
a

ta
b

a
se

 s
iz

e
 in

 k
b

Number of files processed (images)

C

Metadex stage 1
Metadex stage 2

Tracker full indexing

Figure A.24: Database sizes

73



 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0  500  1000  1500  2000  2500  3000

D
a

ta
b

a
se

 s
iz

e
 in

 k
b

Number of files processed (mixed)

D

Metadex stage 1
Metadex stage 2

Tracker full indexing

Figure A.25: Database sizes

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0  500  1000  1500  2000  2500  3000

T
im

e
 u

n
til

 f
ir

st
 r

e
su

lt 
in

 s
e

co
n

d
s

Number of files processed (audio)

A

Metadex stage 1
Metadex stage 2

Tracker full indexing

Figure A.26: Time to first result, Metadex and Tracker

74



 3

 4

 5

 6

 7

 8

 9

 100  150  200  250  300  350  400  450  500

T
im

e
 u

n
til

 f
ir

st
 r

e
su

lt 
in

 s
e

co
n

d
s

Number of files processed (videos)

B

Metadex stage 1
Metadex stage 2

Tracker full indexing

Figure A.27: Time to first result, Metadex and Tracker

 2

 4

 6

 8

 10

 12

 14

 16

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

T
im

e
 u

n
til

 f
ir

st
 r

e
su

lt 
in

 s
e

co
n

d
s

Number of files processed (images)

C

Metadex stage 1
Metadex stage 2

Tracker full indexing

Figure A.28: Time to first result, Metadex and Tracker

75



 2

 4

 6

 8

 10

 12

 14

 0  500  1000  1500  2000  2500  3000

T
im

e
 u

n
til

 f
ir

st
 r

e
su

lt 
in

 s
e

co
n

d
s

Number of files processed (mixed)

D

Metadex stage 1
Metadex stage 2

Tracker full indexing

Figure A.29: Time to first result, Metadex and Tracker

76


	Introduction
	Purpose
	Goals
	Method
	Delimitations
	Structure

	Background
	Pelagicore
	GENIVI
	Licenses
	GNU General Public License Version 2
	GNU Lesser General Public License, version 2.1

	Ontologies
	The NEPOMUK ontologies
	The Tracker ontologies

	Metadata
	The Dublin Core
	Advanced Systems Format
	Ogg
	MPEG-4
	Exif
	IIM and XMP
	ID3v2

	Storage and querying
	GLib
	GObject
	Signals

	D-Bus

	Previous work
	Tracker
	Overview of applications
	The TrackerMiner and TrackerMinerFS abstract classes
	Performance tuning of TrackerMinerFS

	Nepomuk-KDE
	Overview of applications


	Benchmarks
	Benchmark descriptions
	Selection of test data
	Automatic generation of a media library structure
	Structure of the benchmarks
	Conclusion of the benchmarks

	Implementation
	Overview of the miner
	Crawler
	Short-circuited file crawling

	FileNotifier
	The Store module
	Query monitoring

	Introspection-based prototypes
	The Metadex miner
	Mining in multiple stages
	The FileIndexer module
	Configuration


	Results
	Measurements and interpretations

	Conclusion and recommendations
	Conclusion
	Discussion of working method and project
	Recommendations for future work

	  Bibliography
	Full size graphs from results chapter

