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Abstract
Data, in this new hybrid era, is the driving force for many industries. The automo-
tive industry is no exception to this, and the industry has seen an increasing reliance
on data for its operations. The automotive sector, nowadays, offers more services
than just selling a vehicle. It now provides complete mobility solutions like con-
nected, shared, and autonomous electric vehicles with personalized options. Such
services are possible only with the use of high quality data. Manual data collection
from automobiles is an expensive and laborious task, due to which only a sparse
amount of high quality data is collected. Reduced data means that the operations
and analysis performed are also limited, which makes the company able to offer
less services to the customers. One solution to increase the data is to generate it
synthetically using deep neural networks.

Though there are many methods to generate data synthetically, most of them have
limitations on developing diverse data and preserving the temporal dynamics of the
original data. This thesis focuses on those issues and studies the possibility of de-
signing a neural network model to generate varied time-series data which has the
characteristics of the original data. In this thesis, a Generative Adversarial Network
(GAN) is implemented to synthetically generate time-series data.

A conventional method of building a machine learning model from scratch is followed
in this thesis, after weighing several factors. The relevant training data is collected
from the vehicle and then pre-processed to improve the quality of the data. Fol-
lowing this, an initial GAN model is developed that contains the generator and
discriminator structure. Then, an enhanced model with supervised learning mech-
anism called timeGAN model is developed for achieving more realistic synthetic
data. This model is then evaluated with suitable metrics, both in a qualitative and
quantitative manner. The thesis aims to resolve the issue of scarce data and thus,
paves the way for effective predictive maintenance of vehicles and better services to
the customers.

Keywords: Time-series, GAN, Deep learning, Generator, Discriminator, Temporal
dynamics, TimeGAN, Data distribution.
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1
Introduction

Scania CV AB, a world-leading provider of mobility solutions in the commercial ve-
hicle segment is known for its flexible modular product system offering tailor-made
solutions to its customers. The company is actively involved in research and devel-
opment providing high-quality connected solutions to its clients. Various research
activities in the company concentrate on anomaly detection applications to detect
the faults beforehand leading to successful predictive maintenance of the vehicle.
One key issue in detecting the faults effectively is the non-availability of a large
amount of data for analysis, which is addressed in this report. This issue is rectified
by synthetically generating the time-series data using Generative Adversarial Net-
works (GAN).

Knowing about the company, and the research activities carried out there are nec-
essary to get hold of the complexities in the thesis, and this chapter will explain the
background, the purpose, and the problems associated with the thesis.

1.1 Company Background
Scania CV AB is the leading manufacturer of heavy trucks, lorries, busses, and
diesel engines for marine and other industrial applications, having its headquarters
in Södertälje, Sweden. The company is a subsidiary of Traton Group - a hold-
ing company for the heavy commercial vehicle division of the Volkswagen group.
Scania has research centers in Sweden, Brazil, and India, with its production facili-
ties concentrated in various countries from Europe, Latin America, Africa, and Asia.

Scania’s commitment towards changing society into a fossil-free environment and
sustainable life can be seen from its introduction of a wide range of electric mobility
solutions. The company has set a goal to achieve its science-based target of reducing
50% of CO2 from its operations by 2025 when compared to 2015 [14] and aims
towards becoming a carbon-neutral company.

1.2 Thesis Background
The Air Pressure System (APS) is one of the vital modules in a heavy commer-
cial vehicle. The system maintains optimal pressure values in different sub-systems
and pumps the pressure to the sub-systems whenever there is a pressure drop. The
sensor sends analog pressure values of various components to Electronic Control

1



1. Introduction

Unit (ECU) periodically, and it is processed further for the functioning of the ve-
hicle. The readings obtained from the sensor contain multiple variables and it is
time-series readings of sensor values. The time-series data obtained is systematic
data that is multivariate and each of its variables’ range is defined. The data is de-
pendent on many external factors like speed, braking, and road conditions as well,
which make the data more complicated and not follow the seasonal trends. This
time-series data contains readings that depict whether the APS works normally or
it is in a fault state. Currently, the available data resources are unbalanced and
create a bias, containing more data with the normal functioning of the system and
less data with faulty systems. The balanced datasets are very important for further
proceeding with the predictive maintenance of the vehicle. To develop balance in
the datasets, more fault data is required, and collecting this data manually from the
vehicle requires hours of driving and the process is very expensive.

There are many methods available to increase the balance in the data set, and only
some methods prove to be efficient and provide promising results. This thesis pro-
poses a novel solution to increase the balance in the data by generating the data
artificially using deep neural networks. GAN is a part of broad spectra of machine
learning algorithms first proposed by Ian Goodfellow et al., in 2014 [13]. This paper
describes about two neural networks which are trained simultaneously and produce
generative models. One neural network, the generator, that can learn the distribu-
tion of training data and generate data x with inputs as prior noise variables and
another neural network, the discriminator, which outputs a scalar which represents
the likelihood that data x came from the generator rather than from original training
data. Thus the generator tries to cheat the discriminator by producing more and
more realistic data while the discriminator tries to identify the fake data as much as
possible. Thus the two networks train in an adversarial manner and generate data
with similar data distribution as training data.

1.2.1 Aim of the thesis
The primary aim of this project is to investigate different methods used to generate
fake time-series data and develop a reliable neural network that can generate realistic
and diverse data. The important questions that can be answered at the end of this
research work are mentioned below.

1.2.1.1 Research Questions

1. Which network models can generate synthetic data that has characteristics
similar to the original data distribution?

2. Whether the generated data is unique, and diverse, and can the model produce
long sequences of synthetic data with small quantity of training data ?

3. What are the suitable evaluation metrics available to estimate the performance
of the model?

2



1. Introduction

1.2.2 Scope of the thesis
One of the prevalent methods of increasing the data repository these days is by
employing methods to artificially generate ‘fake data’, especially where the datasets
are skewed, and contain large quantities of minority classes. Collecting time-series
data from the vehicles is a traditional task followed for many years in the automobile
companies, but they prove to be a time-consuming and expensive task. To overcome
these issues, this thesis aims to artificially synthesize data that closely resembles the
original data.

The primary aim is to build a generalized neural network model that can be used
to generate any kind of time-series data with minimal changes and thus the gener-
ated data can later be used to train anomaly detection problems used in different
projects in the company. The generated data should also be compared against the
distribution of the original data by suitable evaluation metrics.

1.2.3 Goals
1. The source of data must be studied thoroughly to understand the meaning of

the data. Various data representation methods are to be analyzed to get a
better realization of the importance of each data.

2. Finding proper evaluation metrics to assess the reliability of the model should
be decided as a part of the pre-study and proper justification has to be made
for choosing the metrics.

3. Data pre-processing should be done to make the data feasible for use in the
project. The goal is to preserve the properties of the present data by study-
ing different pre-processing techniques and extract useful information by the
means of visual representations of the data.

4. The creation of an unsophisticated data generation model is the next goal. The
model should focus on fulfilling the objectives and a suitable model should be
chosen with the help of research made during the literature study.

5. The next goal is to think of a better model with enhanced capabilities and
parameters which can overcome the limitations of the naive model presented
before.

6. The final goal is to present the generated data in a 2-dimensional view, compare
the correlations of different features of original and synthetic data and assess
the quality of generated data using suitable evaluation metrics. The final result
must satisfy the proposed objective from a technical point of view.

1.3 Related Work
In the field of synthetic time-series data generation, many approaches have been
proposed by different researchers over the period of time. Almost all the approaches
are based on three main generative modeling approaches. The first approach is auto-
regressive models put forward by Hugo Larochelle and Iain Murray in 2011 through
their neural auto-regressive distribution estimator [21]. This paper captures the

3



1. Introduction

distribution of the given data and later uses it for prediction and forecasting. But
the paper lacked the problem of capturing multidimensional data and the use of
unsupervised learning models for stochastic estimation of the future data.

The second approach is the Variational Auto Encoders (VAE) introduced by Kingma
et al., through the article Auto-Encoding Variational Bayes[20] in 2013, which works
with encoder, decoder, and a loss function. The VAE network estimates the obser-
vation in the latent space in a probabilistic manner. Thus the encoder is designed
in such a way as to estimate the probability distribution of the latent attribute
rather than estimating a single output of the latent attribute. The third approach
of generative modeling is the one this thesis is based upon and it is proposed by Ian
Goodfellow et al. in 2014 [13]. Different kind of GANs emerged since 2014 based
on different field of applications like deep convolutional GAN [28] that uses convo-
lutional layers in its model for a generation of images and videos, conditional GANs
[26] that gives a specific condition as input in addition to the noise, cyclic GANs [37]
which works with an image to image translation by learning features from source
variable and generating target variable, and recurrent GANs using Long Short Term
Memory (LSTM) architecture [6] for generating sequence-based inputs.

When investigating more adversarial networks, the following research works were
analyzed for time-series data generation. Research in [2] explores the use of so-
phisticated classifier models that differentiates between real and fake data. The
paper investigates the traditional Recurrent Neural Network (RNN) architecture
which produces deterministic data and provides a solution of using mixture den-
sity networks with a gaussian mixture model to generate realistic data with a good
variance. However the papers fail to produce more stochastic realistic data due to
the absence of an adversarial training feedback loop from the discriminator to the
generator. A related article [15] proposes a method of using SeqGAN in a rein-
forcement learning setting and they are also trained with domain-specific objectives
in mind together with the discriminator rewards. The rewards are reduced for less
diverse and non-uniquely generated datasets thus avoiding the mode-collapse which
is a very common issue in handling GANs. The problem of the discriminator being
‘perfect’ is also addressed by the use of Wasserstein-1 distance as a loss function.
The experiments are run with different algorithms - seqGAN, naive reinforcement
learning, object reinforced GAN, and object reinforced Wasserstein GAN comparing
each with maximum likelihood estimation with different domain-specific objectives
in place. Experimental works in [8] move away from using the GAN models and in-
stead approaches the problem with the Dynamic Time Warping (DTW) technique.
The data is generated by averaging a set of time series and use that average as new
synthetic data. The averaging technique followed is the DTW barycentric averaging.
By this method, the paper avoids the consequence of averaging all the time-series
equally, and instead the averaging is made by assigning weighted averages to each
time-series data and thus an infinite number of synthetic data can be generated from
a relatively small number of available datasets.

4



2
Theory

This chapter provides an explanation of the technical content that is needed to ap-
prehend the thesis work in detail.

Section 2.1 gives an description of the data that is being handled in this thesis and
section 2.2 refreshes readers with the working of artificial neural networks.

2.1 Time-series Data
Time-series data consists of a sequence of data that is collected over a time inter-
val, thus recording the changes happened over that time interval. Independent and
Identically Distributed (IID) data which is used in most of the machine learning
applications collect information over a single point of time and this is the main dif-
ference between the IID and the time-series data. The time-series data can handle
data of multiple time instances such as milliseconds, seconds, hours, or even years.
A time-series data can contain either numbers or other characters as well, since the
data depends upon the source.

Time-series data can be categorized into multiple types based on different criteria.
Firstly, they can be divided according to the pattern they follow over a period of
time.

1. The trend
2. Seasonal time-series data
3. Irregular time-series data

Secondly, they can also be divided according to the number of features present in the
data. The data can be a combination of many dependent or independent features
collected at a certain point of time and accumulated at that instance of time. The
types are

1. Univariate Data
2. Multivariate Data

2.1.1 The Trend
This type of data either shows a long-term upward movement or a long-term down-
ward movement of signals without being impacted by seasonal changes or irregu-
larities in the noise pattern. The data analyzing part for this trend data becomes
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relatively easy. Figure 2.1 shows the sample image of a time series graph [16][5]
which shows a non-linear downward trend graph without any repetitions seasonally
and without any irregularities over the period of time.

Figure 2.1: A sample non-linear downward trend time series graph [16][5]

2.1.2 Seasonal time-series data
A seasonal effect in the time series data is observed whenever the data inherits
various seasonal factors like weekly, quarterly, or annual repetitions in its data. The
seasonal variations can be due to natural forces like different seasons, or weather
conditions or it can also be of a man-made convention like fashion or habits. Figure
2.2 shows a sample graph that is seasonally repetitive where a cyclic pattern is
observed.

Figure 2.2: A sample seasonal time-series graph with cyclic variations [34]

2.1.3 Irregular time-series Data
This type of time-series graph as shown in figure 2.3 does not follow any pattern
and shows a lot of noise in the data. The variables that are present in the data in
this thesis usually are this type of irregular data and it, therefore, becomes difficult
to understand their distribution and analyze them.

Figure 2.3: A sample irregular time-series graph without any definite patterns [23]
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2.1.4 Univariate and multivariate Data
Time-series data is also divided into two types based on the number of features it
contains. There can be more than one variable in the time-series data that can be
received at each time instance and this type of data is called multivariate data. If
only one variable is present in the data for each time instance, then it is called,
univariate time-series data. The data that this deals with, is the multivariate data
consisting of multiple columns of features.

2.2 Artificial Neural Networks
This section helps readers refresh the primary concept of what are artificial neural
networks and how do they work. Neural networks are greatly inspired by the func-
tioning of the neural system inside the animal’s brain. The neural network consists
of multiple neurons and edges connecting the neurons. These edges have weights
which denotes the strength of the edges between two neurons. The learning hap-
pens by increasing and decreasing weights over the whole training process. More on
artificial neural networks can be referred from this article [25] by Bernard Mehlig.

2.3 Feed Forward Neural Networks
Feed forward neural networks are the simplest form of neural networks in which a
machine learning task can be made possible. Figure 2.4 represents a simple neural
network model with one hidden layer and two output layers.

Figure 2.4: A simple feed forward neural network with one hidden Layer.

The objective of any feed forward neural network is to approximate the function f(x)
and perform any machine learning tasks such as classification, regression or predic-
tion. The training of a simple multi-layer perceptron with hidden layers involves
forward propagation and backward propagation. Considering an n-dimensional in-
put of ~x = {x1, . . . , xn}, and n- dimensional outputs of {y1, . . . , yn}, a forward
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propagation is iteratively performed to calculate each neurons in the next layer us-
ing equation y(l) = σ

(
W yl−1 + b

)
, where W is the weights and b is the bias of the

neurons present in the nodes of layer l. σ is the activation function used.

Cost function is calculated between the desired output y and the obtained output
y(out). With this cost function, the weights and the biases are updated during back
propagation to minimize the loss function. Thus the model is trained and can be
implemented in various machine learning applications.

2.4 Convolutional Neural Networks
The Convolutional Neural Networks (CNN) are a type of neural networks which are
specialized in handling grid like structures like images. They are built up of multiple
layers consisting of convolution, pooling and fully connected layers. There are dif-
ferent type of CNNs present. The most common type of CNN is 2 dimensional CNN
which can handle images. But there are also 1 dimensional CNNs available, where
the forward pass happens along single direction. Time-series data is a particular
kind of data where the kernel slides in one direction.

Figure 2.5: Simplified 1 dimensional CNN architecture [22]

Figure 2.5 explains the various layers present in the CNN architecture, where the in-
put time-series is sent into the convolution layer that performs dot product between
two matrices - one being the sliding kernel and the other matrix is the restricted
receptive field portion. Then the output from the convolution layer is passed into
the pooling layer, where the outputs at some positions are replaced by the summary
statistics of one of the nearby outputs [27], thus effectively reducing the spatial size
of the output. Later this output is flattened and sent to the multi-layer perceptron
layer and the final output is derived out of that dense layer.

Yi Zheng et al, through the research paper [36] modified the traditional CNN and
performed classification on multivariate time-series data. In the paper, multivari-
ate time-series data is divided into univariate features and then perform feature
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extraction on each of the univariate data. Later, all the extracted features from the
univariate data are concatenated and sent it to dense layers for classification. How-
ever, because of the absence of correlations exhibited between different univariate
features, this method cannot be followed completely in this thesis. Nevertheless, an
initial GAN model based on CNN is tried out to examine the possible result.

2.5 Recurrent Neural Networks
Unlike the traditional feed forward neural networks which perform well on simple
tabular data and data without time dependencies, the Recurrent Neural Network
(RNN) is a type of artificial neural network that performs well on sequential data like
time-series data, text data, and audio data. These RNNs are used in applications
in Natural Language Processing (NLP), machine translation, weather forecasting,
image captioning, and many more.

When compared with the simple neural networks, the output of the RNNs will allow
previous outputs as its inputs while being in the hidden layer. Figure 2.6 shows the
unfolded and folded architecture of a sample RNN [17]. This first half of the image
explains the rolled version of RNN which shows the weight Wxh between the input
x and the RNN Cell h. The weight between the output sequence y and the RNN
cell h is Why.

Figure 2.6: A folded and unfolded RNN architecture [10][9]

When the network is unfolded, a clear view of the sequential flow of data is viewed.
It can be seen that during each time step t, the RNN cell gets the input xt and
return yt which is an output term, and also ht which is an RNN term that is sent
as an input to the next neuron. Thus the sequential information is carried on to
the subsequent neurons. Equation (2.1) and (2.2) shows how the ht and the output
term yt are calculated.

ht = g1 (Whhht−1 +Wxhxt + bh) (2.1)
yt = g2 (Whyht + by) (2.2)

where Wxh, Whh, Why, bh, by are temporarily shared coefficients, and g1, g2 are
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activation functions.

One of the main characteristics why RNNs operate very well is, that the model
architecture need not be increased with the increase in the length of sequence inputs.
Additionally, they can also process input sizes of any lengths. Since the weights are
shared across time, the same weights get updated at the end, and there is a fewer
number of trainable parameters than anticipated. But the network contains a fair
amount of disadvantages as well. As the network becomes complicated, the training
becomes slow, and thus it becomes, inefficient in complicated tasks. There are many
types of RNNs.

2.5.1 Many-to-Many RNN
Figure 2.7 shows the many-to-many recurrent neural architecture, where inputs
are multiple sequences of information and output gives a fixed length of sequence
output. There are two types of many-to-many RNNs, depending on the thickness
of the input and output sequences.

Figure 2.7: Many-to-many RNN architecture [33]

2.5.1.1 Tx = Ty

This type of neural networks have an equal number of input (Tx) and output (Ty)
sequence lengths. This type of neural networks are used in CNN based GAN in the
generator part, where the input noise has exactly the same dimensions as the output
synthetic time-series data.

2.5.1.2 Tx != Ty

This type of neural networks have an unequal number of input(Tx) and output (Ty)
sequence lengths. These many-to-many neural networks are used in the timeGAN
model in this thesis because of the mapping between the feature and latent space.
The generator and embedding function receive the input in feature space, and output
in the latent space. The recovery function in other hand gets the input from latent
space and output the data in feature space.
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2.5.2 Many-to-one RNN
Figure 2.8 shows the many-to-many recurrent neural architecture [24], where inputs
contain multiple feature dimensions but the output is just single dimensional. This
type of neural networks are used in this thesis in the discriminator part of the CNN
based GAN and timeGAN which gives the classifications as a binary value at the
output.

Figure 2.8: Many-to-one RNN architecture [33]

2.5.3 Long Short Term Memory
The traditional RNNs suffer from two key problems which are vanishing and explod-
ing gradients. The RNNs generally have activation functions in each of its layers,
and thus the gradients of the loss function of these RNNs approach zero during
the course of training, and then the model no longer understands the long-term
dependencies of the sequential data. This short-term memory problem is called the
vanishing gradient issue, and the Long Short Term Memory (LSTM) is a special
kind of RNN Network that is capable of handling this problem.

Figure 2.9: A detailed view of one LSTM repeating module [32]

The first research studies about LSTM took place in the year 1997 by Sepp Hochre-
iter et al., through his article neural computation [18]. An LSTM network has a
different repeating module from a traditional RNN network which makes it possible
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to remember the long-term dependencies of the data. A normal RNN has a simple
repeating module architecture consisting of usually, a single activation layer while
the LSTM has around four different neural network layers in its repeating module.
These layers can also interact with each other. Figure 2.9 gives an overview of the
type of layers present in the LSTM network [32], and figure 2.10 gives the notations
for understanding the various components present in the repeating module.

Figure 2.10: The notations for the LSTM module present in figure 2.9 [32]

The first layer from left in figure 2.9 is the forget layer which takes in ht−1 and xt

as input and gives a value between 0 and 1 as output implying the model to forget
everything or keep everything respectively. The formula for this forget gate is given
by equation (2.3), where Wf and bf are weights and biases of the forget gate, and
[.,.] is a concatenation.

ft = σ (Wf · [ht−1, xt] + bf ) (2.3)
The second and third layer from the left in figure 2.9 is used to update the current
cell state Ct. The sigmoid layer which is called the ‘input gate layer’ will choose
which values to update, and the tanh layer will create a vector containing new
values and then these two processes are combined and the cell state is updated. The
updating and the addition equations are given in (2.4) and (2.5) respectively.

it = σ (Wi · [ht−1, xt] + bi) (2.4)
C̃t = tanh (WC · [ht−1, xt] + bC) (2.5)

Here Wi and bi are the weights and biases of the input function while WC and bC
are the weights and biases of the update layer and C̃t is the new candidate vector.
The three equations (2.3), (2.4), (2.5) interact using the point-wise multiplicative
and addition operations thereby forgetting unnecessary information in the old state
and adding the required information to remember in the current state thus creating
an overall formula (2.6).

Ct = ft ∗ Ct−1 + it ∗ C̃t (2.6)
The next layer shown in figure 2.9 will be the output layer Ot where a sigmoid
function is used on the new candidate layer C̃t to show which information the model
is going to let out through output, and then later multiplied by cell state Ct put
through tanh function as shown in equation (2.7) and (2.8).

ot = σ (Wo [ht−1, xt] + bo) (2.7)
ht = ot ∗ tanh (Ct) (2.8)

This LSTM Network is used in this thesis inside generator and discriminator Model
which is briefly explained in the upcoming section 2.6.1
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2.6 Generative Modeling

Generative modeling is a branch of deep learning techniques that can capture and
learn the trends and patterns followed in the data, and starts generating similar
data. Using the knowledge from the original distribution of the data, the generative
models must be able to recreate new outputs which could replicate the properties
of the original data as well as producing unique data each time thereby making the
data diverse.

Generally speaking, there are two ways of generative modeling algorithm namely,

1. Variational Auto Encoders (VAE)
2. Generative Adversarial Networks (GAN)

Both VAE and GAN can be termed generative modeling methods because both
models can be used to generate synthetic data. Generally, a model is called as a
generative model when the latent input component has probability distribution con-
nected with it.

VAE consists of two components called encoder and decoder which are used to
produce synthetic data. The encoder gets the original data as input into the encoder
and collapses that data into smaller dimensions and creates a latent representation
out of it. Later this representation is passed through the decoder to reconstruct
and decode the original data that is sent into the encoder. The training dynamics
in the VAE are considered to be a bit weird because of the reason, it picks out the
probability masses from the latent distribution sometimes where it does not makes
sense. This could impact the performance of the VAE sometimes, and this is one of
the reasons to choose GAN for the synthetic generation of time-series data.

2.6.1 Generative Adversarial Networks
The Generative Adversarial Networks (GAN) can be termed as unsupervised learn-
ing models that use supervised loss as a part of its training. This network contains
two blocks in it. One is the generator which is trained to generate new samples, and
the second is the discriminator that classifies the input sample as either real or fake.

In detail, the generator G(.) in figure 2.11 is typically a kind of neural network that
is based on a transformation function. The input for this generator is a random
noise z with density taken from pz and once the generator is trained, should output
a random sample xg = G(z) that follows the distribution of the original sample.

The discriminator D(.) as shown in figure 2.11 on the other hand is based upon
a different neural architecture and it acts as a discriminative function. It gets the
original sample (xt with density pt) or the generated sample (xg with density pg) as
input and outputs the probability D(x) of this sample to be a ‘real’ one.
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Figure 2.11: A simple architecture of GAN model [12]

2.6.1.1 Theoretical Loss Functions of GAN

Rocca has written an article [29] describing the theoretical loss functions present in
GAN models. Consider that equal amounts of real and generated data are sent for
classification into the discriminator, then the expected absolute error E caused by
the discriminator is given by equation:

E(G,D) = 1
2Ex∼pt [1−D(x)] + 1

2Ez∼pz [D(G(z))]

= 1
2
(
Ex∼pt [1−D(x)] + Ex∼pg [D(x)]

) (2.9)

This absolute error must be minimized in case of the discriminator since the dis-
criminator must classify between the samples as ‘real’ and ‘fake’ whereas the main
goal of the generator is to cheat the discriminator into producing realistic looking
samples, and thus the generator will try to maximize this error as shown in equation:

max
G

(
min
D

E(G,D)
)

(2.10)

The best discriminator is the network which can successfully minimize the absolute
error for any generator of probability density pg with equation:

Ex∼pt [1−D(x)] + Ex∼pg [D(x)] =
∫
R
(1−D(x))pt(x) +D(x)pg(x)dx (2.11)

To minimize this integral function, the function inside this integral can be minimized
for every x value. It then gives the best discriminator that can be designed for any
generator. Similarly, the best generator has to be defined for the given discriminator
which tends to maximize the following integral equation:∫

R
(1−D∗G(x)) pt(x) +D∗G(x)pg(x)dx =

∫
R

min (pt(x), pg(x)) dx (2.12)

In this way, the generator tries to fool the discriminator. The generator network
is trained in such a way that it looks to maximize the classification error, and the
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discriminator tries to find out fake samples as much as possible and minimizes the
classification error. Thus, the GAN can be explained as a min-max game between
two neural networks. This adversarial setting between the network is the base for
this thesis and the synthetic time series data are successfully generated using this
concept.

2.6.2 TimeGAN
TimeGAN is a modified version of the normal GAN which is suitable for time-series
data generation, and also consists of some extra blocks along with the traditional
generator and the discriminator.

The timeGAN is proposed by Jinsung Yoon et al., through the research article
[35], discusses about the model that can preserve the correlations and temporal
dynamics of the original distribution when generating data. In this paper, the
flexibility offered by the unsupervised model is combined with the control provided
by the supervised learning, and so the network model will stick to the training data
dynamics during sampling. The timeGAN architecture consists of two extra blocks
namely Embedding and Recovery functions that give a supervised paradigm to the
conventional adversarial setting of GAN.

Figure 2.12: TimeGAN Network Block Diagram [35]

2.6.2.1 Embedding and Recovery Functions

The embedding function acts as an encoder and it converts the real data into its
latent representation and then the reconstruction function, converts the latent rep-
resentation present in the latent space back into reconstructed data. Through this
conversion between latent and feature spaces, the embedding and the recovery func-
tions allow the adversarial network to understand the characteristics of the original
data.
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The latent space is represented by H for the corresponding feature space X , where
the X denote the features of the original data. Equation e : ∏tX →

∏
tH shows how

features are converted into latent spaces and e represents the embedding function
and it is implemented through an LSTM network. The ht in equation (2.13) rep-
resents the latent code that is obtained from the feature space xt and the previous
input ht−1.

ht = e (ht−1,xt) (2.13)

Similarly equation r : ∏tH →
∏
tX brings the latent codes back into the correspond-

ing feature representations, and the r here is the reconstruction function, which is
implemented through an LSTM model. Equation (2.14) shows the conversion from
latent codes into features through reconstructions.

x̃t = r (ht) (2.14)

2.6.2.2 Generator and Discriminator

The generated output from the generator goes into the latent space rather than
producing the output directly into the feature space. This can be shown from
g : ∏tZ →

∏
tH, where Z is defined in a Gaussian vector space, from which the

random input is drawn from. In the equation (2.15), zt denotes the random noise
vector, while the ĥt refers to the generated output in the latent space.

ĥt = g
(
ĥt−1, zt

)
(2.15)

Similarly, the discriminator also picks up its input from the latent space, and outputs
a classification of whether the data is real or fake. The equation is given by d :∏
tH → [0, 1] × ∏

t[0, 1], where the input is latent representation that produces
classification ỹ1:T = d (h1:T ) where h̃1:T represents the latent representation from
either the embedding function or the generator, and ỹ1:T represents the classifications
for real or synthetic data.
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Methodology

In this chapter, various synthetic data generation methodologies are discussed. Also,
the steps followed during the project period is shown in figure 3.1, starting from the
literature pre-study to the evaluation of the final results.

Figure 3.1: The overall work flow of the thesis Project

3.1 Literature Review
A detailed literature study is done before starting the thesis, on possible solutions
to accomplish the project. Many online resources such as Scopus, Google scholar,
and Chalmers open repository are utilized during the literature study. Various
research articles and their codes are studied in-depth, and their use-cases and limi-
tations are considered while developing this project. Data visualization techniques
for multivariate time-series data, benchmark model development, enhanced model
development, qualitative and quantitative evaluation methods are finalized during
this period. The literature pre-study made is shown in section 1.3.

3.2 Data set

Figure 3.2: A sample dataframe of the time-series data used in this thesis
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The air compressor fills different pressure systems present in the vehicle, whenever
needed in a certain priority, and are monitored and controlled by the Air Pressure
System (APS). This APS system receives sensor readings indicating the pressure
maintained in different circuits in each time step. And the APS controls the air
compressor status based on the threshold values of the pressure systems. The sensor
readings received are in the form of a Control Area Network (CAN) message, and
these readings consist of time-dependent multivariate data. Figure 3.2 shows the
sample dataframe used in this project. The values (sensor readings) in figure 3.2
are not the original values but are the normalised values. The features are named
differently so that the sensitivity of the data is preserved.

3.3 Data Visualisation
Data visualisation is a crucial step before proceeding with the actual machine learn-
ing problem. Visualising the data gives insights into the distribution of different
features present in the data. Data can be visualised in many ways based upon
the type of data available, and these representations can be a map, a graph or a
plot. Long term trends can be analysed, and the outliers in the data can easily be
identified using the data visualisation techniques.

3.3.1 Graphs using Plotly
Different features in the data are plotted as pulse graphs using a library called plotly
in python. The pulse graphs differentiate various features using unique colours and
plot each feature across the time in x axis. The y axis denotes the distribution
range of each attribute. Users can select a particular feature in the data and only
concentrate on one specific feature for analysis in the real-time graphical dashboard.

Figure 3.3: Unnormalized time-series data features plotted using plotly

Figure 3.3 shows how different time-series data features can be plotted and visually
analysed using the legend.
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3.3.2 3D Plot using Principal Component Analysis
One way of finding the correlation between different features is by performing Prin-
cipal Component Analysis (PCA) on the available data, and then later present the
data in a 2-dimensional or 3-dimensional Scatter plot. This type of visualisation
is done to analyse the prominent features present in the data, and later compare
the distributions of original and synthetic data. The PCA in this thesis is executed
for the sole purpose of visual evaluation only and not for later use in the machine
learning task.

Since the data contains eight features, it becomes difficult to view the data in
8-dimensional space. To simplify this problem, the dimensions are reduced, and
brought down to 3 so that the data points in each time frame can be viewed in
a 3D Plot. Figure 3.4 shows the PCA 3-dimensional plot,that shows the 3 most
prominent features of healthy and faulty data. The separation of these two groups
of data are assumed to be a characteristic executed by feature 7 in the training data
where there are frequent fluctuations in faulty data and less fluctuations in healthy
data.

Figure 3.4: 3-dimensional graph plotted using PCA for training data.

While performing dimensionality reduction, it is possible to lose some information.
To assess the percentage of original data maintained, a metric called cumulative
explained variance ratio is calculated. The number of principal components in this
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thesis is three (since reducing the data to 3-dimensions). Firstly, the ratio of the
variance exhibited by each principal component to the total variance is calculated.
Later, the ratio of each principal component is added cumulatively, and thus the
metric is computed.

The cumulative explained variance varies between 0 and 1, with zero being no infor-
mation is preserved and one meaning all the information is maintained. When the
PCA is performed on the training data for visual insights, the cumulative explained
variance ratio is 0.988, which means 98.8 percentage of the original data is preserved
during dimensionality reduction.

3.4 Data Pre-processing
Data pre-processing is an important step in the machine learning process. Data pre-
processing is a combination of multiple tasks that are performed to clean the data,
remove missing values from the data, encoding and modifying the data according
to the use case. These processes are performed because the raw data obtained from
the sensors usually are inconsistent, incomplete, and might have some errors.

3.4.1 Data Loading
There are many data files available in Scania repository with different driving times
which can be used as the training data. For example, one data file contains time-
series data worth 30 minutes, while another data file contains 20 minutes of driving
data. All these data are input as dataframes, and later, some columns are removed
as mentioned in section 3.4.2, and then appended in the form of dataframes inside
a list. This list contains multiple time-series data sets in the form of dataframes.

3.4.2 Column Dropping
The data sets available for this project are in the Comma Separated Value (CSV)
format, with the first column of the data-set being the ‘serial number’ and the
second column being the ‘Time’ in seconds for each data point. These two columns
are dropped using the ‘drop’ function because these features are inappropriate for
the time-series data generation process and they affect the quick convergence during
the training.

3.4.3 Conditional Shifting
Conditional shifting is a method used to replace a data point if it is wrong or if
the data point is missing. Each feature in the dataframe is bound to a specific
distribution range, and the whole data should not contain any ‘NaN’ values. To
remove such inappropriate and missing values, each data point (each row) of the
feature is checked. If a wrong data point is found, it is replaced with the next
closest appropriate value in that particular feature.
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3.4.4 Normalization
Normalization is the process of organizing the data set to make it look similar across
all the fields. Normalization process usually improve the quality of the data. In order
to bring such characteristics into the training data, the normalization is done across
each feature in the data set. The mathematical formula for the normalization is
given by the equation (3.1).

XNormalized = (X −Xmin)/ (Xmax −Xmin) (3.1)

Here the Xmin is the data point with the least value and Xmax is the data point
with the highest value of each particular feature across the whole dataset. Figure
3.5 shows the data after normalization process, where all the features of the data lie
in range of (0,1).

Figure 3.5: Normalized training time-series data plotted using plotly.

3.5 Standard GAN model
Now, as the data is loaded and pre-processed, the next step is to create a standard
benchmark model to generate the time-series data. The standard GAN architecture
followed is explained in section 2.6.1. The initial GAN model is tried out with
CNN based GAN network where the generator and the discriminator part consists
of convolutional layers and some fully connected layers in it.

3.5.1 CNN based GAN
Convolutional 1-dimensional layers are used in the CNN based GANs, in both the
generator and the discriminators [4]. Section 3.5.1.1 and 3.5.1.2 depicts in detail
about the CNN architecture for the generator and the discriminator blocks. The
pictorial representation of the networks is given in the appendix section A.1.
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3.5.1.1 Generator architecture

The generator of the CNN based GAN contains multiple layers. The model consists
of input layer to begin with. Later, the the input goes into series of convolutional
layers with leaky relu as its activation function. Zero padding is followed on the first
convolutional layer, and a padding value of two is followed on other convolutional
layers. Later the output from the convolutional layers are flattened and sent into
fully connected dense layer of node size = s × n, where s is the output sequence
length of the generated sequence required by the end user, and n is the number of
features present in the data. The input size of the generator is a random Gaussian
noise vector with a lesser dimension than that of the generated data.

3.5.1.2 Discriminator architecture

The discriminator receives two types of inputs into its CNN architecture. The
first input will be the generated data from the generator produced from random
Gaussian noise vector, and the second input is the original normalized training
data. After going through the convolutional layers, these inputs sequentially passes
through dense layers, in which the final dense layer consists of only a single node
with sigmoid activation function. This layer performs a classification task and gives
out a validation score whether the data received is real or generated data. This
loops back to update the weights and biases of generator and discriminator.

3.5.1.3 Experiments

CNN based GAN training parameters
Optimizer Adam
Learning rate 0.0005
Number of epochs 15000
LeakyRelu parameter α 0.2
Conv1D layer hidden units 64
kernel size 1 and 5

Table 3.1: Table showing various settings used in the CNN based GAN model

Different settings are tried out in the CNN based GAN with dimension size 32, 64,
and 128 in the convolutional layers, kernel sizes of 1, 5, and 10, number of convo-
lution layers, and also different padding sizes. The RMSProp optimizer is tested
along with the Adam optimizer. Different learning rates - 0.001, 0.005, 0.0001 and
0.0005 are tested and different activation functions between each convolution layers
are also tested. The generated time-series data for all these settings are visually
compared with the original data. The results are restricted to visual comparisons
and further evaluations are not made for the CNN based GAN since the CNN lay-
ers lack correlation among different features. The best results are obtained for the
settings shown in table 3.1. The results for those settings are shown in section 4.1.
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3.5.2 CNN based GAN algorithm
The GAN model is capable of generating realistic and diverse synthetic time-series
data by training both generator and discriminator in a sequential order for epochs
e and update their gradients. The whole process of the working of the GAN is
explained in the algorithm 1 [3].

Algorithm 1: CNN based GAN algorithm
1 Input: γ = learning rate, e = epochs, n = number of features present in the

data. mb = batch size, ngen = the number of iterations of generator per
discriminator iteration.

2 Initialize: θd= initial discriminator parameters, θg= initial generator
parameters.

3 for t= 0,....,e do
4 The sequence lengths of data changes during each epoch in random.
5 Sample (z1,1:Tn) , . . . ,

(
znmb,1:Tnmb

) i.i.d.∼ pz

6 Sample (x1,1:Tn) , . . . ,
(
xnmb,1:Tnmb

) i.i.d.∼ D
7 Train and Update the gradients of the discriminator by ascending its

gradient descent.
8 ∇θd

= 1
mb

∑mb
i=1

[
log d

(
x(i)

)
+ log

(
1− d

(
g
(
z(i)

)))]
9 θd = θd − γ∇θd

10 for y = 0,....,ngen do
11 Train and Update the generator by descending its gradient.
12 ∇θg = 1

mb

∑mb
i=1 log

(
1− d

(
g
(
z(i)

)))
;

13 θg = θg − γ∇θg

14 end
15 end

In this algorithms, it can be seen that the generator and the discriminator are
not trained simultaneously, but they are instead trained sequentially, and that the
generator is trained twice more than the discriminator. The generator is trained
more than discriminator to compensate for the number of training batches trained
by the discriminator. Since, the discriminator trains with the equal number of fake
data and real data, but generator trains only with the random noise, the generator
is trained two times more than discriminator. Algorithm 1 explains the flow of
the standard GAN where many parameters are declared initially and the hyper
parameter settings tried are tuned constantly to achieve better results.

3.5.3 CNN based GAN network training
Let us take a look at the outer most for loop in algorithm 1. This loop denotes the
total number of epochs for which the GAN is trained. For the GAN to have the
diversity in the generation of new data, and also to learn the complete characteristic
distribution of the training data, each epoch is run on training data of different
sequence lengths. For example, on first epoch, the model is trained on time-series
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data of length 1 minute, and in next epoch, the model is trained on five minutes
time-series data, and so on. However, because of the fixed architectural design of
CNN, the dimensions in CNN layers could not be varied for each epoch. So, the
training data was split into same sequence lengths for all the epochs and the GAN
is trained. The number of data samples extracted from the training data sets during
each epoch for training are 60.

The discriminator is trained on both original data as well as the synthetic data
generated by the generator. After the discriminator’s gradients are updated, the
generator is trained to produce realistic sequences and fake the discriminator. Dur-
ing the training of generator, only the generator’s gradients are updated and the
discriminator’s learnable parameters remain unchanged.

3.6 Enhanced GAN model

After the results of CNN based GAN model is analysed and visually evaluated, a
more enhanced complex GAN model is developed. This model leveraged the ad-
vantages of auto-regressive models and adversarial networks to build a new model
called timeGAN [35]. The four blocks that form the timeGAN are explained in sec-
tions 2.6.2.1 and 2.6.2.2. The timeGAN pseudo code is explained by the algorithm 2.

This enhanced GAN model is inspired from the research article on timeGAN[35], but
differs from data pre-processing, random sliding window method, and also in hyper-
parameter settings. There are also changes in the architecture of different blocks in
the model, and also in the evaluation techniques to assess the quality of generated
data. The algorithm for this enhanced GAN model is inspired from https://www.
vanderschaar-lab.com/papers/NIPS2019_TGAN_Supplementary.pdf

3.6.1 Architecture of the timeGAN network

The architectures of different blocks of the timeGAN almost resemble the same. Ex-
cept the input dimensions and the output dimensions, the number of layers present
in the embedding function, recovery function, generator and discriminator are same.
The blocks are made up of three LSTM layers with return sequences being True.
The three LSTM layers are followed by a Dense layer with sigmoid activation func-
tion.

The dimensions of the dense layer differs with respect to the blocks. The generator
and embedding function has the dimensions in dense layer equal to the number
of features in the latent space, while the dense layer of the recovery function has
dimensions equal to number of features in feature space. The discriminator dense
layer dimension is just 1, indicating that the block acts as a classification layer. The
detailed representation of each block are depicted in the appendix section A.2.
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3.6.2 TimeGAN algorithm

Algorithm 2: TimeGAN Algorithm []
1 Input: λ = 1, η = 10, mb = batch size, γ = learning rate, e = epochs, D
2 Initialize: θe, θr, θg, θd
3 for t= 0,....,e do
4 (1) Map between feature space and latent space
5 Sample (x1,1:Tn) , . . . ,

(
xnmb,1:Tnmb

) i.i.d.∼ D
6 for n = 1, . . . , nmb, t = 1, . . . , Tn do
7 hn,t = e (hn,t−1,xn,t)
8 x̃n,t = r (hn,t)
9 end

10 (2) Generate Synthetic Latent Codes
11 Sample (z1,1:Tn) , . . . ,

(
znmb,1:Tnmb

) i.i.d.∼ pz

12 for n = 1, . . . , nmb, t = 1, . . . , Tn do
13 ĥn,t = g

(
ĥn,t−1, zn,t

)
14 end
15 (3) Distinguish between Real and Synthetic Codes
16 for n = 1, . . . , nmb, t = 1, . . . , Tn do
17 yn,t = d (hn,t)
18 ŷn,t = d

(
ĥn,t

)
19 end
20 (4) Compute Reconstruction

(
L̂R
)
, Unsupervised

(
L̂U
)
, and

Supervised
(
L̂S
)
Losses

21 L̂R = 1
nmb

∑nmb
n=1

[∑
t ‖xn,t − x̃n,t‖2

]
22 L̂U = 1

nmb

∑nmb
n=1 [∑t log yn,t] +∑

t log (1− ŷn,t)
23 L̂S = 1

nmb

∑nmb
n=1

[∑
t ‖hn,t − g (hn,t−1, zn,t)‖2

]
24 (5) Update θe, θr, θg, θd via Stochastic Gradient Descent (SGD)
25 θe = θe − γ∇θe −

[
λL̂S + L̂R

]
26 θr = θr − γ∇θr −

[
λL̂S + L̂R

]
27 θg = θg − γ∇θg −

[
ηL̂S + L̂U

]
28 θd = θd + γ∇θd

− L̂U
29 end
30 (6) Synthetic Data Generation (6-1) Sample

(z1,1:Tn) , . . . ,
(
znmb,1:Tnmb

) i.i.d.∼ pZ

31 (6-2) Generate artificial latent codes
32 for n = 1, . . . , nmb, t = 1, . . . , Tn do
33 ĥn,t = g

(
ĥn,t−1, zn,t

)
34 end
35 (6-3) Converting to the feature space
36 for n = 1, . . . , nmb, t = 1, . . . , Tn do
37 x̃n,t = r (hn,t)
38 end
39 Output: D̂ = {x̂1:Tn}

N
n=1
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3. Methodology

In this algorithm λ is a hyperparameter which balances the losses generated by the
embedding and the recovery functions, while η is a hyperparameter that balances
the losses produced by generator and the discriminator, D is the training data, pz
is the random vector distribution and D̂ is the generated data. θe, θr, θg and θd
are initial parameters for embedding function, recovery function, generator and dis-
criminator respectively.

3.6.3 Randomized Sliding Window Technique

Listing 3.1: Python Code for extracting the data samples on each epoch
#One Sequence l en g t h i s chosen be f o r e each epoch
seq_length = 30

temp_data=[ ]
for j in data :

#20 s t a r t i n g po in t s are randomly genera ted f o r each o f
the t h r e e data f i l e s

r= [ random . randrange (1 , len ( j )−seq_length , 1) for i in
range (20) ]

for k in r :
_x = j [ k : k + seq_length ]
temp_data . append (_x)

train_data = np . array ( temp_data )

The python script 3.1 explains how the training data is split and sent into different
mini-batches containing number of samples for training. The random sliding window
technique uses a specified sequence length during each epoch. With this input, the
starting point of each data sequence is chosen in random from a long time-series
training data file and a sequence of specified length is cut down and stored as a
single training sample. Similarly 60 data samples are extracted randomly from the
three-training data files available.

3.6.4 TimeGAN training
The joint training on how to encode, generate and decode is shown in this section
[35]. The embedding and recovery functions should enable complete reversible map-
ping between latent space and feature space, and convert the latent representations
h1:T into precise representations x̃1:T in feature space. The reconstructed loss LR is
calculated by equation (3.2).

LR = Ex1:T∼p

[∑
t

‖xt − x̃t‖2

]
(3.2)
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During training, the generator produces output for two different types of inputs. In
open-loop mode, the generator behaves in an auto-regressive fashion by using its
synthetic embeddings ĥ1:t−1 produced during the previous time steps, and generates
next vector ĥt. This adversarial behaviour where the generator looks to maximise
and the discriminator looks to minimize the likelihood of precise classifications ŷt
for both the outputs h1:t from the embedding function, and ĥ1:t from the generator.
This loss is called unsupervised loss and it is shown by equation (3.3).

LU = Ex1:T∼p

[∑
t

log yt
]

+ Ex1:T∼p̂

[∑
t

log (1− ŷt)
]

(3.3)

To capture the distributions of the original data additionally to just the discrimi-
nator’s adversarial feedback , another loss called supervised loss is introduced. The
loss is computed by training the generator in a closed-loop system, where the gen-
erator calculates the next step input by comparing the latent representations of
original data received by the generator from the embedding function p (Ht | H1:t−1)
and the output produced by the generator p̂ (Ht | H1:t−1) during its previous step
input. Then maximum likelihood is obtained from this comparison and supervised
loss is computed by equation (3.4)

LS = Ex1:T∼p

[∑
t

‖ht − g (ht−1, zt)‖2

]
(3.4)

Therefore , in total, at any time step in training process, the discrepancy between
the synthetic next step latent vector produced by the generator and the actual next
step latent vector produced by the embedding functions are evaluated, and thus
the losses are computed thereby giving an advantage of adversarial learning with
auto-regressive learning. The unsupervised loss LU focuses more on the generator
to produce realistic time-series sequences, while the supervised loss LS focuses that
it gives similar step-wise transformations.

To improve the variances during the generation of synthetic time-series data, an
additional loss factor is added to the generator which is known as moment loss (gm).
The moment loss calculates the difference in the mean and variances of the original
and the generated data, and this difference is added to the generator loss during
training.

3.6.5 Experiments

The experiments are tried for different LSTM dimensions, number of LSTM layers,
activation layers, learning rates, number of epochs, ans sequence lengths of train-
ing data each epoch. The settings set during the generation of realistic synthetic
time-series data are shown in table 3.2. The generated time-series data and the
quantitative results are displayed in section 4.2.
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TimeGAN training parameters
Optimizer Adam
Learning rate 0.0005
Number of epochs 30000
Number of nodes in all blocks 32
Activation function in LSTM layers Tanh
Activation function in Dense layers Sigmoid
Loss function Binary Cross Entropy Loss
λ 1
η 10

Table 3.2: Table showing various settings used in the timeGAN model

3.7 Evaluation methods
There are various evaluation methods available to assess the quality of the synthetic
time-series data. The generated data must be compared with original time-series
data to check whether the machine learning model has learnt the data distributions
of the original data correctly. These evaluation techniques should also compute
the percentage of deviation of synthetic data from the real data. This section ex-
plains various metrics that are used in this thesis to evaluate the performance of the
standard GAN and enhanced GAN models.

3.7.1 Visual evaluation
Visual evaluation is one of the easiest and the most convenient evaluation techniques
used for the evaluation of time-series data.

Plotly: The original and the generated data are plotted in the time-series graph,
and the distribution range of the two data are compared. The graphs are usually
plotted using plotly which is 2-dimensional time-series graph where each feature can
be separately viewed and compared.

PCA Evaluation: The original and the synthetic data undergo dimensionality
reduction, and are plotted in 3-d space. When plotted, the original and synthetic
data are differentiated by unique colouring scheme, and thus it is easy to compare
the generated results. Also PCA is performed without dimensionality reduction,
and features are separated in pairs. These paired features are plotted in 2-d space
with different colour schemes for synthetic and original data.

3.7.2 Quantitative evaluation
Even though visual evaluation is an easy way of evaluating the synthetic data, a
validity score is required to exactly measure the closeness of synthetic data distribu-
tion to the real data distribution. Such a validity score can be obtained by various
quantitative methods.
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3.7.2.1 Regression score

An external ad-hoc RNN sequence prediction model is used here to evaluate the gen-
erated time-series data. This sequence prediction model predicts time-series data
one-step ahead, by giving the previous n steps as input, where n varies according to
the user’s input. This regression model is first trained on real data set and tested
on real data set. This type of training and testing on real data set is called TRTR [7].

TRTS Method: The TRTR method does not directly test the goodness of syn-
thetic data but it acts as a comparison metric for the model trained on real data
and tested on synthetic data (TRTS). TRTS technique is usually used to evaluate
the capability of the model to generate realistic data.

TSTR Method: Train on synthetic and test on real (TSTR) on the other hand is
a similar evaluation technique like TRTS, but instead the roles of the original and
generated data are reversed in training and testing. The TSTR method is used to
check if there is a diversity in the synthetic data and if the artificially generated
data covers corner cases on the original data distribution. So here, the sequence
prediction model is developed and it is trained on synthetic data and tested on
the real data. Unlike the TRTS technique, the TSTR can suffer from the mode-
collapse problem. If the trained GAN model is suffering from mode-collapse issue,
then the generated synthetic data might not capture the diversity or the original
data’s distribution. So, it is important to check whether the GAN model suffers
from mode-collapse, before proceeding with the TSTR method.

In conclusion, TRTS and TSTR methods are compared with TRTR based on met-
rics like Mean Absolute Error (MAE) and Mean Square Log Error (MSLE).

MAE: MAE is the measure of average magnitude of error between the actual pre-
diction and the obtained prediction. MAE is generally used to measure the accuracy
in continuous data. MAE calculates the absolute differences, and so the MAE score
always lies between 0 and∞ [19]. The formula for MAE is shown in equation (3.5).

MAE = 1
n

n∑
j=1
|yj − ŷj| (3.5)

MSLE: MSLE is similar to the traditional Root Mean Squared Error (RMSE) with
the main difference in taking logarithms for both actual and predicted values. MSLE
evaluates the model better than RMSE in case of presence of outliers and it also
does not explode suddenly for small changes in prediction values like RMSE [30].
the formula for MSLE is shown in equation (3.6).

√√√√ 1
n

n∑
j=1

(log (yj + 1)− log (ŷj + 1))2 (3.6)
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In the equations (3.5) and (3.6), yj is the actual value, ŷj is the predicted value, and
n is the total number of prediction. Both MAE and MSLE are negatively inclined
scores, meaning lower the better.

3.7.2.2 Mahalanobis score

An external Gaussian Mixture Model (GMM) developed for anomaly detection [1] is
used in this thesis to evaluate the original and the synthetic data. At first, the data
is pre-processed using Gaussian filter and mean filter in a moving window fashion
with time periods of 60 and 120 seconds. Then, the model is built and trained with
these pre-processed data where each data set is considered as a cluster. Then, the
mahalanobis score [31] that gives the distance between two different distributions is
calculated. This distance is calculated for all the data sets with one data set as a
reference cluster.

A graph is plotted with this mahalanobis score for all the clusters present, and a
horizontal line is drawn between the clusters to separate them if they have different
distributions. The TRTR, TSTR, and TRTS techniques are used here to calculate
the mahalanobis score for original and fake data.

TRTR Method: During this method, the original data containing normal and
faulty data are used for training the GMM model. These data are then plotted as
clusters with one of the normal data as the reference cluster. This way, a horizontal
line is plotted separating the original normal and faulty data. This method is not
used directly for evaluation but instead used for comparing the scores from TSTR
and TRTS methods.

TRTS Method: During this TRTS method, the already trained GMM model in
TRTR method is used for testing the generated fault data. The synthetic fault data
is plotted as a cluster in the graph along with the original data and see whether
the synthetic data falls in the same distribution as the original fault data. Also the
mean and standard deviation of the synthetic data generated for different sequence
lengths is compared with the original fault data using a scatter plot.

TSTR Method: During the TSTRmethod, the generated data by timeGANmodel
is used for training the GMM model. And one of the fake data is used as a reference
cluster. Later the trained GMM model is tested with original normal data to see if
the distribution of the normal data differs from the fault data and a graph is plotted
with the original normal data and synthetic fault data.
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4
Results

This section consists of results and the corresponding discussions in the same order
as described in chapter 3.

4.1 CNN based GAN

Figure 4.1: Original and generated time-series data for 2 minutes time duration
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The GAN designed initially to generate synthetic data, contains CNN architectures
in both generator and discriminator. The synthetic and the original time-series data
are shown in figure 4.1. Figure 4.1 implies that the GAN based on CNN was able to
learn the dynamics of the original data, but the result generated is very noisy and
contains many fluctuations. Each feature of the generated data is independent, and
so, the GAN did not capture the dependency between the features.

A notable drawback in using this GAN is the inability to generate synthetic data
of variable sequence lengths. For example, if the model is trained on 5 minutes of
original data, then the GAN can produce synthetic data of only 5 minutes. This is
due to the fact, that the CNN dimensions are fixed during the network initialization,
and they cannot be changed according to the variable sequence lengths during each
epoch. Another downside, is that this model was unable to produce realistic looking
data when using random sliding window technique, and because of this. When the
random sliding window technique is not utilized in the GAN, then the model is
unable to learn the complete distribution of the training data and thus produce
poor results.

4.2 TimeGAN
The timeGAN model overcomes the disadvantages of traditional GAN model based
on CNNs and learns the temporal dynamics and characteristics of the original data.
The original data is normalized and then sent into the timeGAN for training. The
timeGAN model combines the benefits of supervised learning objectives with unsu-
pervised learning models to obtain better accuracy. The timeGAN model in this
thesis is trained and evaluated with two settings.

• timeGAN trained with original data split into 30 second sequence samples.
• timeGAN trained with original data split into 60 second sequence samples.

4.2.1 Pre-training Loss

Figure 4.2: Auto-encoder network diagram
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Figure 4.2 shows how the embedding and recovery function perform during the pre-
training mode as an auto-encoder. As mentioned in section 2.6.2, the auto-encoder
part (Embedding and recovery functions) is pre-trained with the original normalized
data. The pre-training was made for 200 epochs and the embedding and recovery
function has already trained well, mapping the time-series data between latent space
and feature space. The pre-training results are almost the same for both the settings,
and thus the loss graph for only one settings is shown in figure 4.3.

Figure 4.3: Auto-encoder pre-training loss

Figure 4.3 shows how the auto-encoder loss decreases from 0.30 to almost 0 dur-
ing pre-training of the timeGAN model. This shows that the model learns the
supervised objectives during the pre-training process of timeGAN well. After the
pre-training, the model undergoes joint training which is described in section 3.6.4.
The parameters with which the model is trained is given in table 3.2.

4.2.2 Joint training losses

The complete joint training process is explained in section 3.6.4. Figure 4.4 con-
sists of the generator and discriminator losses exhibited by models trained in two
different settings. Both sub figures in the figure 4.4 indicates that the generator
and discriminator loss reduces exponentially over 30000 epochs. Initially, the losses
were fluctuating till 5000 epochs, but later the model starts learning the original
data characteristics, and then converges. When looking at the sub figure (a), the
model converges when it reaches 30000 epochs. But in sub figure(b), it can be seen
that the generator and discriminator losses still did not converge completely, and
the generator is still in the process of learning the characteristics of original data.
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Figure 4.4: Graph showing generator and discriminator losses for 2 settings

Figure 4.5 shows the different generator losses the model contains, and also the sum
of all the generator losses for the model during two settings. The blue line in the
figure shows the total generator loss, and the operands that are subjected to the
summation are generator moment loss, generator supervised and unsupervised loss.
The generator unsupervised loss is obtained as the result of adversarial training
between the generator and the discriminator. The generator supervised loss helps
generator to learn from the embeddings of the original data through embedding
function. The generator moment loss is obtained through computing the mean and
variance between the generated synthetic data and the original data. As it is shown
in figure 4.5, the generator learns constantly to produce more realistic data and tries
fake the discriminator during classification.
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Figure 4.5: Graph showing generator losses for 2 settings

4.2.3 Visual results

4.2.3.1 Plotly graphs showing synthetic and original time-series data

The original and the generated data shown in the upcoming figures 4.6 and 4.7 are
normalized to preserve the sensitivity of the data. From the figures 4.6 and 4.7, it
can also be observed that each of the generated time-series data is unique and di-
verse, and produces realistic looking data. The detailed representation of each of the
original and generated data’s features for both the settings are shown in appendix
A.3.

Setting 1: timeGAN trained with data split into 30 second samples
Figure 4.6 shows the original and the generated synthetic time-series data for the
time period of 600 seconds (10 minutes). This data is obtained as a result of the
timeGAN model trained with original data sequence length of 30 seconds.The legend
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shows the different features present in the data.

Figure 4.6: Original and synthetic data trained with 30 second sequence length

36



4. Results

Setting 2: timeGAN trained with data split into 60 second samples

Figure 4.7: Original and synthetic data trained with 60 second sequence length

Similarly, figure 4.7 represents the original data and the generated synthetic data
trained using 60 seconds sequence lengths (sequence lengths indicate each sample in
a batch of 60 samples) of original time-series data.
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4.2.3.2 PCA plot showing distributions of original and generated data

The PCA is performed for the synthetic and original time-series data. Both original
and synthetic data has same principal components as a result of PCA. The dimen-
sions are not reduced during the PCA evaluation. The features are plotted in pairs,
and the features 1 to 8 are ordered in terms of their importance. The PCA graphs
are plotted for 2 settings, exactly like the previous section.

Setting 1: timeGAN trained with data split into 30 second samples

Figure 4.8: Distribution of original and fake data features for the model trained
with (30 samples)

Figure 4.8 shows the distribution of the original and generated data with their fea-
tures plotted in pairs. This PCA plot is plotted for the model trained with original
data of 30 seconds sequence length. The subplot in the top left corner explains, that
the most of the generated fake data follows the distribution of the original data,
while the second subplot in the top right also shows that the fake data is exactly
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distributed in the same fashion as the original data. The graph between feature 5
and 6 shows that the fake data is scattered more than the original data, but the
change is very small in the order of 0.01 which can be seen in the x and y axis of
the graph.

Setting 2: timeGAN trained with data split into 60 second samples

Figure 4.9: Distribution of original and fake data features for the model trained
with (60 samples)

Figure 4.9 shows the PCA performed for the timeGAN model trained with 60 second
sequence samples. This correlation graph between different features based on their
order of importance convey many useful information. The graph between features 1
and 2, is more scattered here than the same graph for model trained with 30 seconds
sequence lengths. This shows that the model needs to be trained for more epochs.
But an important thing to note from the correlation between feature 1 and 2 is that

39



4. Results

the fake data here captures the distribution better than its counterpart in setting 1.
Same is the case for other graphs and their counterparts as well. This shows that if
the model is trained for more epochs, better results can be obtained.

Conclusion from the visual evaluation: The timeGAN is trained for many
different settings to identify the best performing model, and the model particularly
performed well on two settings with which the visual evaluation is carried on so
far. As it can be seen from the PCA evaluation, and Plotly representation, both
the settings performed equally well, and it is hard for the viewer to easily recognize
the correct settings. To give a clearer understanding on this, next section gives the
quantitative evaluation for the model trained with the two settings.

4.2.4 Quantitative Evaluation of timeGAN

4.2.4.1 Regression score for forecasting using RNN

An external RNN model to forecast and predict the next step of the sequence given
the previous sequence is developed as explained in section 3.7.2.1. The network is
tested for two metrics - MAE and MSLE with three techniques. The testing done
for two settings are shown in next section.

Setting 1: timeGAN trained with data split into 30 second samples

The scores for different evaluation methods

Type MAE MSLE

TRTR 0.004111 0.000516
TSTR 0.007655 0.000596
TRTS 0.005961 0.000721

Table 4.1: Table showing regression scores for setting 1

Percentage of difference between TRTR vs TRTS and TSTR

Type MAE MSLE

TRTR vs TSTR 86.21 % 15.5 %
TRTR vs TRTS 45 % 39.73 %

Table 4.2: Table showing percentage difference for different evaluation techniques

Table 4.1 shows the evaluation scores for MAE, and MSLE for three techniques
which are trained on tested using the timeGAN model on setting 1. The error val-
ues of TRTS and TSTR techniques are relatively close to the reference TRTR value
in case of both the MAE and MSLE. However table 4.2 shows a clear percentage of
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difference in scores between TRTR vs TRTS, and TRTR vs TSTR.

Setting 2: timeGAN trained with data split into 60 second samples

The scores for different evaluation methods

Type MAE MSLE

TRTR 0.006526 0.000789
TSTR 0.006732 0.000834
TRTS 0.008306 0.000848

Table 4.3: Table showing regression scores for setting 2

Percentage of difference between TRTR vs TRTS and TSTR

Type MAE MSLE

TRTR vs TSTR 3.16 % 5.7 %
TRTR vs TRTS 27.28 % 7.48 %

Table 4.4: Table showing percentage difference for different evaluation techniques

Table 4.3 shows the evaluation scores for MAE, and MSLE for three techniques
which are trained on tested using the timeGAN model on setting 2. The error val-
ues of TRTS and TSTR techniques are relatively close to the reference TRTR value
in case of both the MAE and MSLE. However table 4.2 shows a clear percentage of
difference in scores between TRTR vs TRTS, and TRTR vs TSTR.

Conclusion for regression scores: When comparing the tables 4.2 and 4.4,
it can be clearly seen that the percentage difference is lesser in setting 2 than the
setting 1 for both MAE ans MSLE values. This quantitative score thus proves that
the timeGAN model trained with original data split into 60 second samples generate
more realistic looking and diverse time-series data close to the original distribution.
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4.2.4.2 Mahalanobis score for anomaly detection using GMM

The mahalanobis score is calculated for TRTR, TRTS, and TSTR techniques as
described in section 3.7.2.2. This score is calculated for both the settings, and are
explained in the upcoming sections.

Setting 1: timeGAN trained with data split into 30 second samples

Figure 4.10: Two graphs showing TRTS technique for GMM model

TRTS: Figure 4.10 shows two graphs, where in the left graph, the model trained
with original normal and fault data are plotted as clusters and a horizontal line
is drawn at the mahalanobis score of 0.201 to separate the normal and fault data.
Whereas in the right graph, when tested the same GMM model with synthetic fault
data, the same horizontal line at 0.205 score is able to separate the synthetic fault
data and the original normal data. This shows that the timeGAN model has pro-
duced realistic fault data similar to the original fault data distribution.

Boxplot: For further inference, figure 4.11 shows the box plot containing many
synthetic fault data and the original fault data. Over 100 synthetic data sequences
are generated on different sequence lengths, and the box plot is plotted. The mean
mahalanobis score of the synthetic fault data is around 0.3254, while the mean score
for the original synthetic data was 0.2975 which shows a difference of around 0.0279.
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Figure 4.11: Box pot showing mahalanobis scores of original and synthetic data

TSTR: Figure 4.12 shows two graphs where, the GMM model is trained with
different synthetic data and and a horizontal line is plotted in reference to one of
the synthetic cluster to show that any distribution above that horizontal line is a
different distribution. In the right figure, it can be seen that original normal data
and original fault are tested with this GMMmodel and they clearly are differentiated
using the same horizontal line from the left figure of score 0.14. From this it can be
concluded that the synthetic fault data lies in the distribution curve of the original
fault data.

Figure 4.12: Two graphs showing TSTR technique for GMM model
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Setting 2: timeGAN trained with data split into 60 second samples

Figure 4.13: Two graphs showing TRTS technique for GMM model

TRTS: Figure 4.13 shows two graphs plotted for TRTS method. In the left graph,
the model trained with original normal and fault data are plotted as clusters and a
horizontal line is drawn at the mahalanobis score of 0.201 to separate the normal
and fault data. Whereas in the right graph, when tested the same GMM model
with synthetic fault data, the same horizontal line at 0.205 score is able to separate
the synthetic fault data and the original normal data. When comparing the second
subplot in figure 4.13 with the second subplot in figure 4.10, it can be seen clearly
that the distribution of the synthetic fault data in figure 4.13 resembles more closely
to the distribution of the original fault data.

Boxplot: For further inference, figure 4.14 shows the box plot containing many
synthetic fault data and the original fault data. Over 100 synthetic data sequences
are generated on different sequence lengths, and the box plot is plotted. The mean
mahalanobis score of the synthetic fault data is around 0.3092, while the mean score
for the original synthetic data was 0.2975 which shows a difference of around 0.0117.
This difference is less when compared to the difference present in the setting 1, which
shows that the timeGAN model trained with setting 2 produces more diverse and
realistic looking data than setting 1.
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Figure 4.14: Box pot showing mahalanobis scores of original and synthetic data

TSTR: Figure 4.15 shows two graphs where, the GMM model is trained with dif-
ferent synthetic data and and a horizontal line is plotted in reference to one of the
synthetic cluster to show that any distribution above that horizontal line is a dif-
ferent distribution. In the right figure, it can be seen that original normal data and
original fault are tested with this GMM model and they clearly are differentiated
using the same horizontal line from the left figure of score 0.14. From this it can be
concluded that the synthetic fault data lies in the distribution curve of the original
fault data.

Figure 4.15: Two graphs showing TSTR technique for GMM model
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4. Results

Conclusion for mahalanobis score: The GMM model is developed for anomaly
detection and it is evaluated with TRTS, and TSTR techniques for timeGAN model
trained with both settings. As the difference in the mean mahalanobis scores be-
tween original and synthetic fault data for 2 settings clearly imply, the timeGAN
model trained with data split into 60 seconds produce more realistic time-series data
than the timeGAN model trained with data split into 30 second samples.
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5
Conclusion

The automotive industries are increasingly in need of a large amount of data for
improving their services to customers in various aspects. The time-series data play
a crucial role in many of Scania’s research activities. Collecting this time-series data
from the sensors in the vehicle whenever required becomes a time-consuming and
expensive process. This thesis focuses on the generation of synthetic time-series data
by using less amount of training data. The proposed machine learning model in this
thesis can be modified with changes in data pr-processing, and hyper-parameter set-
tings to produce any kind of multivariate time-series data. This makes the timeGAN
model more robust.

In this thesis, we studied and explored various machine learning models for the
generation of synthetic data. We began our project in the literature review phase,
where we reviewed different methods to pre-process the data [11], develop the model
[35][13][21][28], and identified suitable quantitative evaluation metrics [31][1]. We
looked into many similar research articles, and projects and got insight from those
resources. At the end of the literature study, we came up with the idea of trying
out two techniques.

Initially, the properties of various features present in the data, how each feature is
dependent on each other, and the boundary conditions of each feature are studied.
Later, data cleaning and pre-processing on the available training data is conducted.
This pre-processed data is used as the training data to develop a GAN model based
on CNN architecture. The synthetic time-series data generated using the CNN based
GANs were present in the same boundary range as the original data, but the data
was noisy and consisted of lots of outlier points.

Since the CNN layers did not capture the dependencies across different features,
we switched our focus to working with LSTM based GANs. The LSTM models
consume more computational power and time to train because of their complex
structure. The GANs built using LSTMs require training for thousands of epochs
to get an acceptable result. Considering these factors, we added the auto-encoder
part (embedding and recovery functions) with the traditional GAN part (generator
and discriminator) and incorporated supervised learning into the unsupervised ma-
chine learning model. In this way, timeGAN was developed, and trained for around
30000 epochs for different settings.

Out of different settings, the timeGAN model trained with the two most prominent
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5. Conclusion

settings is selected, and compared. The generated synthetic data by the timeGAN
network is shown in section 4.2. Visual evaluation is made by comparing the original
and synthetic data using plotly, and PCA. Quantitative evaluation for the synthetic
time-series data is done by calculating the regression, and Mahalanobis scores with
TRTR, TSTR and TRTS methods. These visual and quantitative results prove that
the timeGAN model with a particular setting can generate realistic looking time-
series data similar to the original data.

The synthetic data generated using the timeGAN model produce some points away
from the original data distribution. To be able to overcome this issue, the model
requires more optimization and tuning in future work. Due to the time constraint,
the GMM model designed for anomaly detection application is specific for this par-
ticular time-series data, and it must be tweaked to be used as an evaluation method
to assess all kinds of synthetic time-series data. More rigorous evaluation metrics
are required to assess the quality of the synthetic data so that it can be utilised in
real-time services provided to the customers.

The thesis concludes by saying that this research work will push Scania one more
step towards becoming a customer-centric company by providing better services and
drive the automotive industry with its AI-focused innovative products.
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Appendix 1

A.1 CNN Based GAN Network summary

A.1.1 Generator architecture

Figure A.1: CNN based GAN generator summary

I



A. Appendix 1

A.1.2 Discriminator architecture

Figure A.2: CNN based GAN discriminator summary
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A.2 TimeGAN Network summary

A.2.1 Generator architecture

Figure A.3: TimeGAN generator summary

A.2.2 Discriminator architecture

Figure A.4: TimeGAN discriminator summary
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A.2.3 Embedding function architecture

Figure A.5: TimeGAN embedding function summary

A.2.4 Recovery function architecture

Figure A.6: TimeGAN recovery function summary
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A.3 Visual representation
This section contains the feature-wise visual comparison of the original and synthetic
data for the most prominent setting which is timeGAN trained with original data
split into 60 second sequence samples (setting 2).

A.3.1 Feature 1

Figure A.7: Original and synthetic data’s Feature 1 plotted in graph

A.3.2 Feature 2

Figure A.8: Original and synthetic data’s Feature 2 plotted in graph
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A.3.3 Feature 3

Figure A.9: Original and synthetic data’s Feature 3 plotted in graph

A.3.4 Feature 4

Figure A.10: Original and synthetic data’s Feature 4 plotted in graph
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A.3.5 Feature 5

Figure A.11: Original and synthetic data’s Feature 5 plotted in graph

A.3.6 Feature 6

Figure A.12: Original and synthetic data’s Feature 6 plotted in graph
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A.3.7 Feature 7

Figure A.13: Original and synthetic data’s Feature 7 plotted in graph

A.3.8 Feature 8

Figure A.14: Original and synthetic data’s Feature 8 plotted in graph
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A. Appendix 1

A.4 Contribution of thesis students
My partner Sofia Nord from KTH University and I have made equal contribution
for this thesis. We have split our work equally, and our individual contribution is
shown below.

A.4.1 Deepak’s contributions:
• PCA Visualization
• Data pre-processing – combined all data files, column dropping
• Build Discriminator (CNN based GAN)
• Model training (CNN based GAN)
• Training Function(enabled training from several data files)
• Enabled variable sequence length data generation

TimeGAN part:
• Developed build recovery function
• Developed train discriminator function
• Developed get samples function
• Developed train supervisor function
• Developed train embedding function
• Developed train function
• Developed results function
• Generated graphs for reports
• PCA Evaluation
• Developed Mahalanobis Score from external reference(Evaluation Method)

A.4.2 Sofia’s contributions:
• Data pre-processing - Normalization
• class TimeGAN/GAN shell
• Build Generator (CNN based GAN)
• Model training (CNN based GAN)
• Training Function(enabled training several batches)
• Loss Plot

TimeGAN part:
• TimeGAN init update function
• Developed build embedder function
• Developed train generator function
• Developed train autoencoder function
• Developed train function
• Converted .ipynb files to .py files
• Developed train function
• Developed Regression Score from external reference (Evaluation method)
• Generated graphs for reports
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