
Optimization of Train Schedules
Applied to Automated Mining Transports
Master’s Thesis in Applied Mathematics

John Christoffer Dahlén
Anton Mårtensson

Department of Mathematical Sciences

Chalmers University of Technology
Gothenburg, Sweden, 2020
www.chalmers.se

www.chalmers.se

Master’s Thesis

Optimization of Train Schedules

Applied to Automated Mining Transports

John Christoffer Dahlén Anton Mårtensson

Department of Mathematical Sciences
Chalmers University of Technology

Gothenburg, Sweden 2020

Optimization of Train Schedules
Applied to Automated Mining Transports

Authors: John Christoffer Dahlén, Anton Mårtensson

Contact:
christoffer.dahlen@gmail.com
anton.v.martensson@gmail.com

© John Christoffer Dahlén, Anton Mårtensson, 2020.

Supervisor: Abel Salas, Bombardier Transportation AB, Sweden
Examiner: Ann-Brith Strömberg, Mathematical Sciences

Department of Mathematical Sciences
MVEX03
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone: +46 (0)31-772 10 00

Bombardier Transportation AB, Sweden
Rail Control Systems, Gothenburg
Telephone: +46 (0)10-852 00 00

Cover image by Clay Gilliland, Arizona, USA, 2015.

Typeset in LATEX
Printed by Chalmers Reproservice
Gothenburg, Sweden 2020

christoffer.dahlen@gmail.com
anton.v.martensson@gmail.com

Abstract
Logistics and transportation are extremely important to modern society. In this thesis
we investigate how to optimize the pathing and scheduling of trains, particularly targeting
automated mining transports, what we call Path Conflict Resolution (PCR). A restriction
imposed is that solutions to this problem must be deadlock-free, which implies that trains may
not be treated separately but must be scheduled together. We approach this problem using a
combination of Alternative Graphs, Mixed Integer Linear Programming (MILP), and Variable
Neighbourhood Search (VNS), building upon previous work on the scheduling of passenger
trains. Our model extends the previous work by including additional complications in the
scheduling, different objective functions, modelling of train lengths and moving blocks, and
improvements in the MILP problem generation. We successfully schedule trains on a large
realistic rail network within acceptable computation times. The strongest improvement is the
development of couplings in the alternative graph, which in our experiments leads to a tenfold
reduction in the number of binary variables.

Keywords: Trains, Routing, Scheduling, Mathematical Optimization,
Stochastic Optimization, Mixed Integer Linear Programming,
Variable Neighbourhood Search, Alternative Graphs

i

Contents

Preamble iv

1 Introduction 1

2 Problem Description 3
2.1 Literature Review . 4
2.2 Restrictions and Scope . 5

3 Theory 7
3.1 Mixed Integer Linear Programming (MILP) . 7
3.2 Alternative Graphs . 9

3.2.1 Fixed Arcs . 9
3.2.2 Alternative Arcs . 10
3.2.3 Alternative Graphs as an MILP Problem 10

3.3 Variable Neighbourhood Search . 12
3.3.1 Variable Neighbourhood Decent (VND) 15
3.3.2 Basic VNS . 16
3.3.3 General VNS . 17
3.3.4 FH-VNS . 18

4 Model Description 19
4.1 Network Model . 19

4.1.1 Conflicts . 20
4.1.2 Associated Properties . 21

4.2 Scheduling Model . 23
4.2.1 Alternative Graph Construction . 23
4.2.2 Train Length and Moving Block . 25
4.2.3 Choice Couplings . 28
4.2.4 Schedule graph . 30

4.3 MILP Model . 31

5 Solution Methodology 33
5.1 Path Search . 34
5.2 VNS . 35

5.2.1 Neighbourhood Generation . 35
5.2.2 Neighbourhood Heuristics . 39

5.3 Constructing Couplings . 41

6 Implementation and Tests 43

ii

7 Results 47

8 Discussion and Further Work 53
8.1 Performance . 53
8.2 Generality . 54
8.3 Applicability . 54

9 Conclusion 57

A Complications 59
A.1 Stop Rules . 59
A.2 Timed Lock . 61

B General Objective function 63

C Algorithms 65
C.1 Changes to VNS functions . 65
C.2 Path Searching . 69

D Operators and Symbols 71
D.1 Operators . 71
D.2 Symbols . 72

Bibliography 77

iii

Preamble

In this thesis there are many definitions in use. To help the reader a glossary of operators and
symbols can be found in Appendix D.

iv

Chapter 1

Introduction

The matter of logistics has been a subtle but important driver of technology and innovation
throughout human history; the question of how to best transport goods becomes increasingly
important as society scales up. With the advent of general purpose computing and the
information age, much of modern logistics has been turned into (mathematical) optimization
problems. Delivery routes, train schedules, work allocation, and more are now problems for
computers to solve. However, most of these problems are only partially or approximately solved
and there remains much ongoing research on how to construct better models, create faster and
more efficient solvers, and solve more problems.

Bombardier is a multinational manufacturer of many types of vehicles and related systems.
Its Rail Control Systems department—partly based in Gothenburg, where this project took
place—works to create and maintain control systems for many different automated railways all
over the world. More specifically, one of the main applications is automated mining transports:
transportation of various ores from loading to unloading stations, from mines to harbours. A
central part of these systems is the need to compute paths for the trains, from each train’s
current position to a desired destination (potentially with a requirement to pass through some
other points on the way).

This problem is made complex by the presence of many different trains on the same rail
network, which will create conflicts, deadlocks, and signal contention. It is also made complex
by various additional criteria that may be placed on paths, schedules, switches, and more.
Poor solutions to this problem are expensive since trains needing to brake or stand still can
involve significant loss of time and money, especially when the trains in question can be a few
kilometers long carrying many thousands of tons of ore.

1

Chapter 1. Introduction

2

Chapter 2

Problem Description

The problem we attempt to solve, which we call the Path Conflict Resolution (PCR) problem,
is to find the best paths for a set of trains from some initial locations to their respective
destinations such that no deadlocks occur. As the application in this case is logistics and ore
transport, the best path should be the one that maximizes profit.

The problem differs from other train or scheduling problems as: a) The trains in our case
do not follow regular or predetermined schedules, but are dispatched when ready and must be
scheduled in real time; b) The trains have very flexible paths between origin and destination as
they generally lack intermediate stops; c) The trains are so long that they may block multiple
rail segments, and cannot be simplified to points. Additionally, in normal train traffic a system
called fixed block is implemented where only a single train can be in a block at each point in
time (a block generally being a stretch of rail between two signals). However, in our problem
a system called moving block is desired. The goal of moving block is to reduce the time trains
are waiting by removing the fixed nature of the block system and instead use a safety distance
between the different trains, such that each train consititues essentially its own block (hence
the name).

What complicates the problem more than anything else is that we do not permit deadlocks.
This means that when solving the PCR problem it is almost never possible to consider any
train or path separately, meaning there is no obvious way to divide the problem into smaller
and simpler parts. Furthermore, to check if a set of paths are deadlock free we also need to
evaluate the behaviour of the trains on their respective paths.

3

Chapter 2. Problem Description 2.1. Literature Review

2.1 Literature Review
Scheduling in general is a well studied part of mathematical optimization. For train scheduling
in particular, published approaches have been found but many deal only with a single track
as opposed to a larger rail network [1], use models that are computationally expensive [1], or
approach problems that differ largely from our own [2].

The application of job-shop scheduling problems (JSP), as modelled by alternative graphs
(see Section 3.2 later) and applied to trains, has been collectively studied by A. Mascis, M. Samà,
A. D’Ariano, F. Corman, D. Pacciarelli, and M. Pranzo in various publications [3]–[7].

In [3], Mascis and Pacciarelli first study the JSP and formulate the alternative graph model,
establishing key properties of the model.

In [4], D’Ariano, Pacciarelli and Pranzo show how the alternative graph formulation, together
with a branch and bound algorithm, can be successfully used to reschedule trains in a small
“bottleneck area of the Dutch rail network”.

In [5], Corman, D’Ariano, Pacciarelli and Pranzo describe a tabu search algorithm for
local rerouting of trains in the ROMA (“Railway traffic Optimization by Means of Alternative
graphs”) implementation.

In [6], Samà, D’Ariano, Pacciarelli and Corman study fast lower and upper bounds to the
scheduling and routing problem by way of constraint relaxation and heuristic solutions.

In [7], Samà, D’Ariano, Corman and Pacciarelli describe a larger system and implementation
(named AGLIBRARY) using the established alternative graph formulation together with vari-
able neighbourhood search (VNS) to reschedule and reroute trains in response to perturbations.

4

Chapter 2. Problem Description 2.2. Restrictions and Scope

2.2 Restrictions and Scope
In order to be able to deal with this problem we also have to include some restrictions, such
that it should be possible to model. Here we assume the following restrictions and limitations.

• In reality there is (sometimes large) uncertainty regarding, for example, the exact position,
velocity, and length of a train. Our model and implementation will assume that the real
world state of a train and switches are as reported, taking into account pre-established
safety margins but not potential unknown errors.

• The complete real world system† separates scheduling and routing, where the latter refers
to sections of track reserved in front of a train during operation. We will only deal with
the former, i.e., the planning of train movement and not detailed mechanics related to
that movement.

• Physical train control (e.g. engine control and breaking) is managed by on-board systems,
either automatic or manual; this project will only deal with scheduling and ignore
acceleration and breaking curves.

• For real applications, it is likely desired to minimize the total cost in terms of money
rather than time, but we will only study the latter, i.e., time. Other monetary factors
are assumed to be expressed as time, delays, or adjustments thereof.

• In real world usage, calculations would be performed while the trains are moving,
necessitating (relatively) quick calculations as well as accommodations for the change
of system state. For this project we will disregard this complication.

• The schedules require some error margins. These will change for different velocities,
however a dynamic description of these margins is out of scope.

†In particular, the system currently in use at Bombardier.

5

Chapter 2. Problem Description 2.2. Restrictions and Scope

6

Chapter 3

Theory

To deal with the PCR problem we need three mathematical tools: Alternative Graphs, which
are used for scheduling to deal with the usage of resources; Mixed Integer Linear Programming
(MILP) which is used to find solutions to the Alternative Graphs and in turn the scheduling
subproblem; and the family of optimization algorithms known as Variable Neighbourhood Search
(VNS) which we will use for the path selection master problem.

In this chapter we will provide a brief introduction to each tool, providing a basis for how
the PCR problem is solved.

3.1 Mixed Integer Linear Programming (MILP)
Mixed Integer Linear Programming (MILP) is part of the more general field of Mathematical
Optimization (alternatively Mathematical Programming†). The goal in mathematical optimiza-
tion is to find the best variable values given some constraints on the variables.

There are many types of mathematical optimization problems. We will, however, mainly
investigate the MILP problems and the related Linear Programming (LP) problems. For a
mathematical optimization problem to be a MILP problem it can only contain linear constraints
and some variables take integer values and the rest being continuous.

A minimization MILP problem can be written in the form

minimize
x,t

z = cTt+ c̃Tx

subject to At+Bx ≤ a,
Ct+Dx = b,

t ≥ 0n,

xi ∈ Ui ⊆ Z, i ∈ {1, . . . ,m}

where we have o inequality constraints and p equality constraints. In this form we have that
A ∈ Ro×n, B ∈ Ro×m, C ∈ Rp×n, D ∈ Rp×m, a ∈ Ro, b ∈ Rp, c ∈ Rn, c̃ ∈ Rm. A common
restriction of a MILP problem is the Mixed Binary Linear Programming (MBLP) where all
Ui = {0, 1}, which is the form our problems will take.

†It is important not to confuse programming here with programming from computer science. Here it mainly
refers to planning. This is due to the fact that the convention of calling the field mathematical programming
was established before the widespread use of computers.

7

Chapter 3. Theory 3.1. Mixed Integer Linear Programming (MILP)

The related LP problem similarly only contains linear constraints, but all variables are also
continuous. This means that an LP problem can be written in the form

minimize
t

z = cTt

subject to At ≤ a,
Ct = b,
t ≥ 0n,

where A ∈ Ro×n, C ∈ Rp×n, a ∈ Ro, b ∈ Rp, c ∈ Rn.
The optimal solution to either problem is an objective value z∗ and the associated variable

values, such that there exist no other feasible variable values resulting in a lower objective value.
An LP problem is often easier to solve than a MILP problem. This is because in an LP

problem it is possible to show that an optimal solution can always be found in an extreme point
of the feasible set, i.e., of the set of all points that fulfill the constraints. This can then be used
in, for example, the Simplex method, see [8], to solve the problem efficiently.

A MILP problem is harder to solve since the above no longer holds; what would otherwise
have been an optimal solution might not adhere to the integrality constraints. However, due to
its form there are multiple ways of utilizing the LP problem to solve the MILP problem. One
method is to fix the values of all the integer variables which means that the remaining problem
is an LP problem. This problem is then either infeasible or provides an upper bound to the
MILP problem with an optimal solution z̄⋆ such that z̄⋆ ≥ z⋆.

Another method that is commonly used is continuous relaxation, which is done by replacing
the integral xi ∈ Ui constraints with corresponding continuous limits. This results in that the
relaxed MILP can be written as

minimize
x,t

z = cTt+ c̃Tx

subject to At+Bx ≤ a,
Ct+Dx = b,

t ≥ 0n,

xi ∈ [min(Ui),max(Ui)]. i ∈ {1, . . . ,m}

Here we know that the optimal MILP value z⋆ is greater than or equal to z⋆, i.e. z⋆ ≥ z⋆.
This is due to the relaxation theorem, see [8, p.157], but is obvious since the relaxed problem
contains all optimal solutions to the original problem.

8

Chapter 3. Theory 3.2. Alternative Graphs

3.2 Alternative Graphs
The problem of scheduling trains can be related to the so called job-shop scheduling problem
(JSP). The JSP is one of the archetypical scheduling problems and refers to the optimal
allocation of tasks (jobs are sequences of tasks) onto a limited amount of slots in which those
tasks may be performed. In our case the jobs are the trains and the tasks are the traversal of
rail sections (slots) in order to take each train from its origin to its destination.

For this reason we employ the method of “alternative graphs,” developed by Mascis &
Pacciarelli and based on preceding methods for JSP modeling [3]. An alternative graph is here
defined as a triplet GA = (N ,F ,A) of nodes N , “fixed arcs” F , and “alternative arcs” A. Each
node n ∈ N represents a resource (in our case a section of track), and associated with each
node is a time variable t that is the time when the resource starts being utilized (the time a
train enters the track). Arcs, on the other hand, represent constraints on these time variables.
The purpose of alternative graphs is to construct a graph that models the constraints of the
problem under study; assigning times that conform to these constraints means creating a valid
schedule for the problem.

3.2.1 Fixed Arcs
The arcs in GA are directed and weighted. An arc from node ni to node nj imposes the constraint
that the time difference tj−ti must be greater than or equal to that arc’s weight. They occur in
two forms, the simpler of which are fixed arcs which encode a static ordering constraint. These
are elements f ∈ F and have weights u. An arc f ij = (ni, nj) thus encodes the constraint

tj − ti ≥ uij. (3.1)

Given a graph with only fixed arcs, an optimal solution (i.e., the minimal times t) can be
easily calculated using makespans. Given two nodes, ni and nj, the makespan ℓ(ni, nj) is defined
as the longest path from ni to nj, or more rigorously as the maximum total weight out of all
paths from ni to nj. To assist us, we also introduce the virtual node n0, which is a special node
with a constant time t0 = 0, with fixed arcs from n0 to the initial node of each job. Using this
node, we can define the times ti for all other nodes ni as

ti = ℓ(n0, ni). (3.2)

Besides being a simple way to define an optimal solution, this is also useful in that makespans
may be computed in polynomial time by, for example, performing a shortest path search on
a corresponding graph with all weights negated. In our case a modified Dijkstra’s Algorithm
starting at n0 produces all time values ti in O(|N |2) time.

9

Chapter 3. Theory 3.2. Alternative Graphs

3.2.2 Alternative Arcs
Physical resources may be represented by several different nodes in GA, in particular when
different tasks require the same resources. There may also be cases where different physical
resources are in conflict, such that they may not be utilized simultaneously. It is in situations
like these that an ordering of the utilizations must be imposed using alternative arcs.

An alternative arc a ∈ A has the weight w. Each such arc exists in a pair a, a∗ ∈ A where
exactly one of the arcs must be chosen (hence the name “alternative”). The (a, a∗) pair thus
represents a binary choice between the two constraints that those arcs correspond to:

ajk = (nj, nk) , ali = (nl, ni) = a∗jk ⇒ tk − tj ≥ wj,k or ti − tl ≥ wl,i must hold. (3.3)

Note that the two arcs in a single pair do not have any implicit ordering and may be swapped
arbitrarily. In particular, (a∗)∗ = a.

In practice, the choice of arc represents the choice of which node utilization is scheduled
first, and the situation is illustrated in Figure 3.1. We will later on refer to the node at which
an alternative arc originates as the release node of the arc, and the node at which the arc
terminates as the blocked node; the time of the blocked node is restricted, by the alternative
arc, to be some minimum (possibly negative) time after the time associated with the release
node.

To solve the alternative graph problem described by GA exactly one arc of each pair is chosen
(and used as if it was a fixed arc) whilst the other arc is ignored. It is this set of binary choices
that turn the JSP from a polynomial problem into an NP-hard problem.

A property of this GA formulation is that if any positive cycle occurs then it is infeasible.
This can be easily be demonstrated by restating the constraints on the form tj ≥ ti + wij and
tj ≥ ti+uij, which means that by combining the constraints of the cycle we find that tj ≥ tj+d,
where d is the cycle weight which is defined as the sum of all constants wij and uij along the
cycle, which is only possible if d ≤ 0.

This means that if a positive cycle (d > 0) is generated when no alternative arcs have been
selected then the graph is always infeasible. However if a positive cycle occurs when certain
arcs have been selected, then that selection of arcs is infeasible.

3.2.3 Alternative Graphs as an MILP Problem
If we want to convert an alternative graph to a MILP problem then all the fixed arc constraints
(3.1) are added to the model and the alternative arcs are added using the Big M method to
handle the choice of arcs. To use the Big M method starting from the inequalities in (3.3) it is
possible to rewrite them on the form

tk − tj ≥ wj,k or ti − tl ≥ wl,i (3.4a)
⇒ tk − tj ≥ wj,k −Mxj,k,l,i and ti − tl ≥ wl,i −M(1− xj,k,l,i), (3.4b)

where we have added a binary variable xj,k,l,i and a large constant M . This means that when
xj,k,l,i = 0 the active constraint is tj − ti ≥ wij and when xj,k,l,i = 1 the active constraint is
tl− tk ≥ wkl. It is important for the value of M to be large, however, for computational reasons
it is often better to set it as small as possible.

As there is not a fixed way to specify how to define an objective value for the Alternative
graph it is just described as linearly dependent on variables represented by the alternative

10

Chapter 3. Theory 3.2. Alternative Graphs

graph. This means that it is possible to write the AG converted MILP problem as

minimize z =
n∑

i=1

citi +
∑

(j,k),(i,l)∈A

c̃j,k,l,ixj,k,l,i + c̃l,i,j,k(1− xj,k,l,i)

subject to

tj − ti ≥ uij ∀ (ni, nj) ∈ F , (fixed arcs)

tk − tj ≥ wjk −Mxj,k,l,i

ti − tl ≥ wli −M(1− xj,k,l,i)

xj,k,l,i ∈ {0, 1}

 ∀ a = (nj, nk) ∈ A,
a∗ = (nl, ni) ∈ A,

(alternative arcs)

t0 = 0,

ti ≥ 0 ∀ ni ∈ N .

However, if desired it is also possible to add further terms to the objective function by
adding objective variables leading to a more general MILP form of the Alternative graph. This
is explored in Appendix B.

na nb

nc nd

ua,b

uc,d

wb,c

wd,a

Resource
na utilized

first
⇒ na nb

nc nd

Resource
nc utilized

first
⇒

na nb

nc nd

Figure 3.1: The quintessential alternative graph. The node na is followed by nb, the node nc

is followed by nd, and this is represented by two fixed arcs. Nodes na and nc are in conflict,
and this is represented by an alternative arc pair. The choice of arc in the pair represents and
ordering decision between na and nc.

11

Chapter 3. Theory 3.3. Variable Neighbourhood Search

3.3 Variable Neighbourhood Search
Variable Neighbourhood search (VNS) is a family of algorithms aimed at solving combinatorial
and global optimization problems. These methods are often called metaheuristic since each
method is a framework for building heuristics. The main feature of this approach is the
construction of various neighbourhoods around points in the search space, and was created
by Mladenović in 1995 [9].

In this method we assume that we have a deterministic optimization problem

min {g(ξ)| ξ ∈ Ξ ⊆ S} , (3.5)

where g is the objective function (i.e. z = g(ξ)), ξ is a feasible solution†, Ξ is the set of all
feasible points, and S is the variable space.‡

We define an abstract neighbourhood N = N(ξ) ⊆ S as a set of solutions that depend
on the abstract neighbourhood structure N around some solution ξ. For example, the
classical neighbourhood for a point x ∈ Rn is all points within some radius r of x, i.e.,
Nx =

{
x′
∣∣ |x− x′| ≤ r

}
. However, N can involve more abstract structures and sets (in our

case the routing of trains, to be expanded on later).
The two central concepts within optimization are global minima ξg and local minima ξl

which may be described by

g(ξg) ≤ g(ξ) ∀ξ ∈ Ξ, (3.6a)
g(ξl) ≤ g(ξ) ∀ξ ∈ N(ξl) ∩ Ξ. (3.6b)

However, in practice it may be impractical to search enough of the solution space to guarantee
that the global minimum is found. To construct the VNS algorithms we rely on three axiomatic
facts regarding optima, as stated by Hansen et al. [9, p. 321]:

Fact 1 A local minimum with respect to one neighbourhood structure is not necessarily a local
minimum for another neighbourhood structure.

Fact 2 A global minimum is a local minimum with respect to all possible neighbourhood
structures.

Fact 3 For many problems local minima with respect to one or several neighbourhoods are
relatively close to each other.

Using these facts we can construct a collection of neighbourhood structures Nk, k = 1, . . . , K.
Each neighbourhood is then written as Nk = Nk(ξ). The goal of most VNS algorithms is to
find a solution ξ

⋆ such that

g(ξ
⋆

) ≤ g(ξ) , ∀ξ ∈

(
K∪
k=1

Nk(ξ
⋆

)

)
∩ Ξ (3.7)

where, due to Fact 2, we hope that ξ
⋆ is a global minimum, or a good approximation thereof.

For an efficient search, Mladenović recommends that the size of neighbourhoods Nk increase in
size with k, and this index is thus often referred to as the neighbourhood “size”. Additionally,

†A feasible solution is a point such that fulfills all constraints of the problem.
‡We use the symbols “ξ” and “Ξ” instead of the otherwise more usual “x” and “X”, since the latter symbols

are used for MILP.

12

Chapter 3. Theory 3.3. Variable Neighbourhood Search

it is convenient if different neighbourhoods around the same point are disjoint, but this is not
strictly required.

Finding a true global minimum can only be guaranteed when the union of neighbourhoods
effectively cover the solution space, defeating the purpose of VNS. In practice, both neigh-
bourhoods and the number K thereof are very small compared to the solution space, with
neighbourhoods chosen in some way that the final solution is good even if not globally optimal.

The VNS family of algorithms consists of multiple components, including four common
components that are described hereafter. The most common component is “neighbourhood
Change” which, as the name implies, handles how the neighbourhood is changed; see
Algorithm 1. Most VNS strategies iterate around this function in some fashion, such that
when k = K we know that the conditions stated in Equation (3.7) hold true.

The second component is “Shake”, which, given a solution ξ, returns a random ξ′ ∈ Nk,
see Algorithm 2. This is used to search across longer distances and to avoid sticking to local
minima, in a manner similar to other stochastic optimization methods.
Algorithm 1 Neighbourhood Change
Also known as the “move or not” function.

Function NeighbourhoodChange(ξ, ξ′, k)
Input: ξ: The current best feasible solution

ξ′: The comparing feasible solution
k: The index of the neighbourhood

If g(ξ′) < g(ξ) Then
ξ ← [ξ′
k ←[1

Else
k ←[k + 1

End If
Return ξ, k

End Function

Algorithm 2 Shake
A Shake function; a random pick from a neighbourhood.

Function Shake(N)
Input: N: A neighbourhood of feasible solutions
Return Random ξ ∈ N

End Function

The last two common components are the “Best Improvement” and “First Improvement”
searches. These are both local search strategies and each specific VNS algorithm generally uses
one or the other, though they can be interchanged. The best improvement strategy, seen in
Algorithm 3, picks out the best result out of a given neighbourhood N . The first improvement
strategy, seen in Algorithm 4, instead picks the first solution that is better than the given
solution, assuming some arbitrary ordering of the points in the neighbourhood N .

13

Chapter 3. Theory 3.3. Variable Neighbourhood Search

Algorithm 3 Best Improvement
Local search of a neighbourhood for the best improvement.

Function BestImprovement(ξ, N)
Input: ξ: The feasible solution to test against

N: A neighbourhood of feasible solutions

ξ′ ← [arg miny∈Ng(y)

If g(ξ′) < g(ξ) Then
Return ξ′ ▷Return found improvement

Else
Return ξ ▷Return ξ if no improvement was found

End If
End Function

Algorithm 4 First Improvement
Local search of a neighbourhood giving the first found improvement.

Function FirstImprovment(ξ, N)
Input: ξ: The feasible solution to test against

N: A neighbourhood of feasible solutions

For all ξ′ ∈ N Do
If g(ξ′) < g(ξ) Then

Return ξ′ ▷Return first improvement; leave function
End If

End For
Return ξ ▷Return ξ if no improvement was found

End Function

There are many different VNS algorithms, all sharing the property of using different
neighbourhoods to find a solution. We study four of the main variants: Variable neighbourhood
Decent (VND), Basic VNS, General VNS, and Fleszar-Hindi extension of basic VNS (FH-VNS).

There are many ways to construct VNS methods—a few key features may be used to
differentiate the algorithms. One feature is how often shakes are performed during the search.
Another feature is how each algorithm treats its local search. Finally one can roughly guess
how diverse the methods are. We roughly take this as how random the algorithm behaves in
the search space. See Table 3.1.

Due to the fact that VNS is a family of general algorithms, these usually have to be adapted
to the specific problem. In Hansen et al. [9, pp. 335–337], many details of how to construct a
VNS method is listed. Our main interest is in that it recommends to restrict the neighbourhood
to only investigate “promising” subsets. Furthermore it is recommended that if this is done
then the best improvement strategy should always be used.

Algorithm Shake Local Search Description

VND None Best Deterministic search of neighbour-
hoods.

Basic VNS Single Best/First Shake followed by descent.

General VNS Single VND from 1 to K Shake followed by VND.

FH-VNS Repeated Best/First Repeated Basic VNS, keeping best
result.

Table 3.1: Summary of the different VNS algorithms described in this report.

14

Chapter 3. Theory 3.3. Variable Neighbourhood Search

3.3.1 Variable Neighbourhood Decent (VND)
VND is the only method of the algorithms that is deterministic, as it does not use the shake
component to diversify the search space. The algorithm finds the best solution in the first
neighbourhood and, if it is better than the current, it restarts with the new best solution as
the starting point, otherwise it repeats with the next neighbourhood until all neighbourhoods
have been searched. A visualization of how a VND algorithm works can be seen in Figure 3.2.
Algorithm 5 Variable Neighbourhood Decent
A search done by selecting the best solution in the neighbourhood around the current solution. If an
improvement is found the neighbourhood is reset to k = 1 and relocated around that point; otherwise
the search continues in the next neighbourhood.

Assume: N: The neighbourhood structures
Function VND(ξ, kmax)

Input: ξ: The initial feasible solution
kmax: The maximum number of visited neighbourhoods

Output: ξ: The best found feasible solution

Repeat
k ←[1
ξ′′ ← [ξ
Repeat

N←[Nk(ξ) ▷Build the neighbourhood
ξ′ ← [BestImprovement(ξ, N)
(ξ, k)← [NeighbourhoodChange(ξ, ξ′, k)

Until k = kmax
Until g(ξ′′) = g(ξ)
Return ξ

End Function

Local minima
Found improvement
Global minimum

Neighborhoods

Figure 3.2: Illustration of the VND algorithm. It starts at some initial point and investigates
its neighbourhoods, represented by the circles around the points, from the smallest to the
largest until it finds a improvement. It then starts over, investigating the neighbourhoods of
the new point. This continues until no improvement has been found in any neighbourhood
around the current point.

15

Chapter 3. Theory 3.3. Variable Neighbourhood Search

3.3.2 Basic VNS
Basic VNS is a very simple VNS method that includes a local search. It performs a shake in the
neighbourhood Nk(ξ) to find ξ′. It then builds a new neighbourhood Nk(ξ

′), using the same
neighbourhood structure, around that point. It then finds the first (or best) improvement in
the new neighbourhood and uses this to find a new candidate.
Algorithm 6 Basic VNS
A search methodology which picks a random solution from the neighbourhood around the incumbent
solution, and then selects the first improvement found in a neighbourhood around that solution. This
is then compared against the incumbent solution to select how to continue, using the Neighbourhood
Change method.

Assume: kmax: The maximum number of investigated neighbourhoods
N: The neighbourhood structures
Tmax: The maximal allowed runtime

Function BVNS(ξ)
Input: ξ: The initial feasible solution
Output: ξ: The best found feasible solution

Repeat
k ←[1
Repeat

ξ′ ← [Shake(Nk(ξ))
ξ′′ ← [FirstImprovement(ξ′, Nk(ξ

′)) ▷Could be BestImprovement
(ξ, k)← [NeighbourhoodChange(ξ, ξ′′, k)

Until k = kmax
T ← [CPUTIME

Until T > Tmax
Return ξ

End Function

16

Chapter 3. Theory 3.3. Variable Neighbourhood Search

3.3.3 General VNS
General VNS uses both shakes and VND in order to find a solution. The idea is to generate a
random point from the current neighbourhood and use it to start a VND search to generate a
test candidate. This test candidate is then used to change the neighbourhood.
Algorithm 7 General VNS
A search methodology that finds a random point from which a VND search is performed. The result
from the VND search is then used for comparison with the current solution, the best solution kept,
and the process repeated.

Assume: kmax: The maximum number of investigated neighbourhoods
k′max: The maximum number of investigated neighbourhoods for the VND
N: The neighbourhood structures
Tmax: Maximal allowed runtime

Function GVNS(ξ)
Input: ξ: The initial feasible solution
Output: ξ: The best found feasible solution

Repeat
k ←[1
Repeat

ξ′ ← [Shake(Nk(ξ))
ξ′′ ← [VND(ξ′, N, k′max)
(ξ, k)← [NeighbourhoodChange(ξ, ξ′, k)

Until k = kmax
T ← [CPUTIME()

Until T > Tmax
Return ξ

End Function

17

Chapter 3. Theory 3.3. Variable Neighbourhood Search

3.3.4 FH-VNS
The Fleszar–Hindi extension of basic VNS is interesting in that the neighbourhood size is held
constant while a number of Basic VNS steps is done. The results from these steps are then
used to change the neighbourhood.
Algorithm 8 FH-VNS
A search methodology where the current solution is saved, in ξs, and the neighbourhood size is held
constant for k search attempts. This inner search is performed analogously to Basic VNS, except that
the neighbourhood size is here constant. The best result from these k attempts is then compared to
the saved solution, and the neighbourhood may then change.

Assume: kmax: The maximum number of investigated neighbourhoods
N: The neighbourhood structures for different k
Tmax: Maximal allowed runtime

Function FHVNS(ξ)
Input: ξ: The initial feasible solution
Output: ξ: The best found feasible solution

Repeat
k ←[1
Repeat

ξs ←[ξ
For l = 1 to k Do

ξ′ ← [Shake(Nk(ξ))
ξ′′ ← [FirstImprovement(ξ′, Nk(ξ

′)) ▷Could be BestImprovement
ξ ← [KeepBest(ξ, ξ′′)

End For
(ξ, k)← [NeighbourhoodChange(ξs, ξ, k)

Until k = kmax
T ← [CPUTIME

Until T > Tmax
Return ξ

End Function

18

Chapter 4

Model Description

In this chapter we present the three stages by which we model PCR problems. Initially, a
Network Model describes the layout of the tracks and how the trains might travel. Given
a network and a set of paths, we then construct an alternative graph and Schedule Model
describing how the trains may travel. Finally, the alternative graph is converted into an MILP
problem, the solution of which describes how trains should travel. Put another way, this is
analogous to a reduction from a variable space of arbitrary train movement, to a solution space
where movement is subject to various constraints, and finally to a specific (and ideally optimal)
solution describing the desired train movement.

It should be noted that the individual problems and solutions discussed in this chapter
primarily refer not to the the PCR problem in its entirety, but sub-problems where each train
has a single path to take. Repeated exploration of these sub-problems with various different
paths is driven by VNS as discussed in the previous chapter.†

4.1 Network Model
In order to describe how trains travel across a rail network, we must first properly describe this
rail network. For this purpose we introduce a graph model that represents the physical rail.

mi mj mk

ml

c = {mj,mk,ml}

eij = (mi,mj)

c′ = {mi}

Figure 4.1: An4q illustration of a
subset of a network model, with four
nodes, three edges, and two conflicts.

An instance of the network model is defined as the
triplet GN = (M, E , C) of nodes M, directed edges E ,
and conflicts C. A node m ∈ M represents a section
of track, in a specific direction of travel (two-way
track sections thus correspond to two nodes), while
an edge eij ∈ E represents a valid transition from
node mi to mj. Conflicts c ∈ C describe how nodes
interact with regards to occupancy and are described
further in Subsection 4.1.1. See Figure 4.1 for a small
illustration, and Figure 4.2 for a larger example.

Our problem deals with a set of trains T = {τ 1, τ 2, . . .},
each of which has an associated origin and destination
location(s)‡, as well as potential waypoints and other requirements imposed on a train and its

†It is possible to combine several of these smaller problems into a larger “complete” MILP problem, but
such a problem quickly becomes difficult to manage and considered out of scope for this thesis.

‡Each train must have at least one destination but may have several, in which case paths may terminate at
any one of them.

19

Chapter 4. Model Description 4.1. Network Model

path. For ease of readability we will use α and β to indicate two different, arbitrary trains
instead of τ i and τ j or similar.

A path p is a sequence of nodes, where each node follows from its preceding node according
to a valid transition in E , described as

p = (mp
1,m

p
2, . . . ,m

p
e) , mp

i ∈M,
(
mp

(i−1),m
p
i

)
∈ E . (4.1)

where we use mp
e to denote the last node in the path. It is important to note that the value of

e is dependent on the path p, and e is therefor sometimes clarified by writing it as ep.
The paths relevant to us are those associated with each train α ∈ T , which we denote as Pα.

This is the set of all valid paths pα for train α (see Chapter 2 and the introduction of Chapter 5).
We are also particularly interested in sets P containing exactly one element from each of the
aforementioned sets, i.e., a selection of paths such that each train α ∈ T is associated with
exactly one element pα ∈ P .

For a node mpα

i where both the path pα and the train α is important the shorthand mαp
i is

instead used for ease of reading. Similarly, an end node mpα

ep may be referred to as mαp
e .

4.1.1 Conflicts
While the nodes M and edges E are sufficient for a single train, some nodes may overlap in
the physical world in non-trivial ways such that we cannot safely model multiple trains (see
Figure 4.2). For this reason we need to define the family of conflicts C. Each conflict c ∈ C is a
set of nodes which overlap in the sense that multiple trains may not safely occupy any subset
of c concurrently.

For convenience, all nodes are required to be part of a conflict, i.e., ∀mi ∃ c ∈ C : mi ∈ c,
though for some nodes (sections of one-way track) this may just be a trivial conflict containing
only the node itself (c = {mi}). This implies that all nodes conflict with themselves, which
is desired as we might otherwise construct situations where two trains would occupy the same
space.

Given a path p that passes through a conflict c, i.e, ∃ i : mp
i ∈ c, we refer to each

maximal contiguous subsequence of such nodes in p as a conflict interval on p with regard
to c. Specifically, it is an interval [i, j] defined on p such that

mp
k ∈ c ∀ k ∈ [i, j] ∧

(
mp

i−1 /∈ c ∨ i = 1
)
∧

(
mp

j+1 /∈ c ∨ j = e
)

(4.2)

A path may have multiple conflict intervals for a single conflict, if and when the path passes
through the same conflict on multiple occasions. This fact is the main reason that this specific
definition is important, and is required later on in Subsection 4.2.1.

20

Chapter 4. Model Description 4.1. Network Model

4.1.2 Associated Properties
There are a number of relevant properties associated with the physical train network, that must
also be described in the network model. In particular: the length of the track corresponding
to the nodes, the maximum velocity permitted on that track, and the corresponding minimum
traversal time for each node. For generic nodes mj these properties are simply written as
lj, vmax

j , and tmin
j , respectively. However, we will generally be more interested in what these

properties are for specific trains on specific paths, or even for entire paths or parts thereof.
The common case is that some train α travels on some path p, and the time it takes the

train to traverse a node mαp
i is defined as

tαp,min
i =

lpi
vαp,max
i

, where vαp,max
i = min(vα,max, vp,max

i), (4.3)

i.e., the train travels across a given physical distance at a velocity determined by its own
maximum speed and the track’s maximum allowed speed, whichever is lowest.

We can easily extend this to intervals on paths by implying a summation across the given
interval, giving lengths

lp[i,j] =
∑
i≤k≤j

lpk and lp]i,j[=
∑
i<k<j

lpk, (4.4)

and minimum times
tαp,min
[i,j] =

∑
i≤k≤j

tαp,min
k . (4.5)

Furthermore we can also add a time penalty tpenalty
ij for each edge eij such that for any path

that passes by this edge an additional cost is added. This penalty is relevant for choosing paths
in both Section 5.1 and Section 5.2. In most cases this is zero. However, for edges to that
should be avoided it can be strictly positive.†

†In our case we have the penalty set to zero for all edges.

21

Chapter 4. Model Description 4.1. Network Model

1

1′

2

2′

3

3′

4

4′

5

5′

6

6′

7

7′

8

8′

9

9′

Figure 4.2: A larger network model instance, illustrating correspondence between the physical rail
(top), a simplified illustration (middle), and the network graph (bottom).
The physical rail shown in the figure is a pair of parallel tracks (top, shaded), connected by a crossover
which connects the upper and lower tracks. The dividing lines between track segments are drawn in
dashed red, and their positioning is the result of the physical extents of the two switches that create
the crossover. Of particular interest is the fact that the two switches actually overlap in the middle
of the crossover, such that any obstacle on that segment will obstruct both switches.
The simplified illustration (middle) explicitly shows these non-trivial conflicts by connecting the track
segments with two sets of red lines.
In the corresponding network graph (bottom), all conflicts are illustrated by red boxes around the
relevant nodes, and the two switches correspond to the two larger such boxes.

22

Chapter 4. Model Description 4.2. Scheduling Model

4.2 Scheduling Model
Once a specific path has been selected for each train, there remains the problem of scheduling
the trains so that they take their respective paths without colliding or causing deadlocks. For
this purpose we use the method of alternative graphs (see also Section 3.2). In addition to the
graph that is constructed here it is also possible to add additional arcs representing different
types of constraints, which can be found in Appendix A.

4.2.1 Alternative Graph Construction
Given a set of selected paths P from the network model GN , we now wish to construct an
alternative graph GA that describes the scheduling of these paths. Each path p ∈ P defined in
GN will correspond to a distinct path p′ ∈ P ′ in GA (which we write as p′ ∼ p), such that

p′ = (np′

1 , n
p′

2 , . . . , n
p′

e , n
p′

e+1) (4.6a)

q′ ̸= p′ ⇒ nq′

j ̸= np′

i ∀ i, j (4.6b)

where np′

e+1 is a virtual node for each path, that only exists in GA and do not have a corresponding
node in GN . All nodes in all paths p′ are unique. Furthermore, the scheduling times t associated
with the nodes N can then also be written as tp

′

i . The first time tp
′

1 for each path is a special
case in that it is given a constant value tαp

′

1 = tα,enter which is the time the train α enters the
network, meaning the time it starts being modelled and obstructs other trains.

In addition to these nodes generated by the paths, we also need to include a virtual node
n0 with constant time t0 = 0, as mentioned in Section 3.2. The start of every path will have
a fixed arc from n0 to nαp′

1 with weight u = tα,enter. This virtual node, and these arcs from it,
do not change the problem being modelled or its solutions. It does, however, allow us to define
the solution times using makespans (cf. Equation (3.2)) according to

tp
′

i = ℓ(n0, n
p′

i). (4.7)

The relationship between the scheduling nodes N and the physical nodes M can be described
as

∀np′

i ∈ p′ \ {np′

e+1} ∃!mj : n
p′

i ∼ mj and that mj ≡ mp
i ∼ np′

i (4.8a)
∄mj ∼ n0 ∄mj ∼ np′

e+1 (4.8b)
meaning that all real nodes in N have corresponding nodes in M, while the virtual nodes do
not. An important detail is that this is a many-to-one correspondence, i.e., every real node
n ∈ N corresponds to exactly one m ∈ M : n ∼ m but there may be any number of other
nodes n′ ̸= n : n′ ∼ m.

We also want to relate the nodes n in the alternative graph to the conflict zones c. This is
done by defining a conflict zone c′ in the alternative graph such that

np′

i ∈ c′ iff ∃!mp
i ∼ np′

i and mp
i ∈ c (4.9)

implying that the virtual nodes are not in any conflict zone.
For convenience and readability we may now drop the apostrophe for both p′ and c′, because

of two reasons. First, p and p′ are the same abstract path and every real node np′

i has a

23

Chapter 4. Model Description 4.2. Scheduling Model

corresponding mp
i node. The second reason is that c′ and c are the same abstract conflict but

described in two different ways.
We will now describe how both the “normal” fixed and alternative arcs in both F and A

are generated. There may be more arcs of either type, but these are regarded as complications
and are to some extent addressed separately in Appendix A, Complications.

Fixed arcs due to paths

Each path p describes a chain of nodes n, going from the path’s start node np
1 to the virtual

end node np
e+1, with real nodes in order in-between. This order is imposed by fixed arcs f from

each node to its succeeding node:

fp
i = fp,p

i,i+1 = (np
i , n

p
i+1)

⇒ tpi+1 − tpi ≥ up
i

1 ≤ i ≤ ep,∀p ∈ P (4.10)

The weights u of these nodes generally describe the minimum time it takes the train α on
path p to traverse node np

i , with the primary exceptions† being the first arc fp
1 and the last arc

fp
e, according to

uαp
i = tαp,min

i , (4.11a)

uαp
1 = tαp,min

1 + tα,wait, (4.11b)

uαp
e = tαp,min

e + tα,dwell, (4.11c)

where tα,wait is an additional delay from when train α enters the network until it may start
moving, and tα,dwell is a delay from the time tαpe when the train enters its destination node until
it leaves the network‡.

Alternative arcs for train conflicts

While the nodes and fixed arcs described so far are fully sufficient to describe and schedule
trains in the absence of conflicts, we generally expect to have a number of conflicts c through
which two or more trains pass. These conflicts are modelled using alternative arcs a and a∗ for
every pair α, β of trains passing through each conflict.

A choice between alternative arcs a and a∗, related to a conflict c, is a choice between
which train goes first through that conflict. Specific arcs may be identified using notation like
apqjk = (np

j , n
q
k), i.e., an arc from node j of path p to node k of path q. The conjugate can be

written as (apqjk)
∗ = aqpli = (nq

l , n
p
i). As mentioned in Subsection 3.2.2 the nodes np

j and nq
l are

called release nodes while np
i and nq

k are the blocked nodes. The question now is how the pairs
a, a∗ are generated from the conflicts C.

Given a conflict c ∈ C, every conflict interval I (see Subsection 4.1.1) for conflict c must
interact with every other conflict interval J for c, where I and J correspond to different trains.
Each such pair I, J of conflict intervals will result in one alternative arc pair a, a∗, and requires
us to find the correct release nodes and blocked nodes that will allow us to impose the desired
constraint (that trains must not collide and must obey desired safety margins).

†See Initial Nodes in Subsection 4.2.2 for further modifications.
‡The opposite of “entering the network,” meaning that it is then removed from the model and no longer

obstructs other trains.

24

Chapter 4. Model Description 4.2. Scheduling Model

Defining the arcs using the conflicts require that for each interval we know which node the
train has to enter for the train to have left the interval. To do this the release node is specified
with the help of the release function φαp(i) which, for a specific train and path, takes an index
i of a node in p and returns the index φαp(i) > i identifying the relevant release node†.

Assuming that I = [i, j] for train α on path p, and J = [k, l] for train β on path q, the
desired arcs are given by

a ≡ aαp,βqφ(j),k =
(
nαp
φ(j), n

βq
k

)
(4.12a)

and
a∗ ≡ aβq,αpφ(l),i =

(
nβq
φ(l), n

αp
i

)
. (4.12b)

The choice of constraints imposed by these alternative arcs, by combining implications (3.3)
and the relations (4.12), is

tβqk − tαpφ(j) ≥ wαp,βq
φ(j),k or tαpi − tβqφ(l) ≥ wβq,αp

φ(l),i . (4.13)

This means that the blocked nodes are the beginnings of the intervals, so that the front
of the succeeding (blocked) train is blocked from entering the conflict until the back of the
preceding train has left the conflict. Exactly when this occurs is determined by the choice of
release nodes, using the release function φ, together with the arc weights w and w∗.

Furthermore, it is possible to include additional alternative arcs (or fixed arcs) to represent
other complications. They are explored theoretically in Appendix A but not included in the
model.

4.2.2 Train Length and Moving Block
The simplest way to define the release node function is as the next node np

i+1 along the path
p, i.e., φ(i) = i + 1. This would mean that each conflict interval is considered empty once
the train occupying it has entered the node after said conflict interval. This would work and
behave correctly as long as trains are modelled as having no length (“point trains”). However,
this no longer works when train the length is accounted for since the back of the train may
then overlap with a succeeding train, as illustrated in Figure 4.3a.

In order to resolve this we need to define the release node such that the back of the preceding
train has left the conflict when the front of the same train enters the release node, illustrated
in Figure 4.3b. This is done by defining the release node as

φαp(i) = min
{
j : j > i ∧ lp]i,j[≥ lα

}
(4.14a)

where lα is the length of train α. Using this gives the result seen in Figure 4.3b. In cases where
the above equation has no possible value (implying the release node would be after the end of
the path), we instead use the virtual node after the path as the release node:

φp(i) = ep + 1 if ∄ j > i : lp]i,j[≥ lα (4.14b)

So far, no explicit values for the weights w have been stated, but the illustrations in (a)
and (b) of Figure 4.2 correspond to the simplest definition w = 0. While this leads to a safe
behaviour,‡ the back of the preceding train is likely to have left the conflict area some time

†Since φαp(i) is often used as an index, such as nαp
φαp(l) where α and p are duplicated, we write it as nαp

φ(l)

implying nαp
φαp(l).

‡In the sense that collisions between trains are prevented.

25

Chapter 4. Model Description 4.2. Scheduling Model

before the front of the same train reaches the release node, and this time is thus potentially
wasted.

To compensate for this we change the weight so that it is defined as

wαp,βq
φ(j),k = w0 − tmin

φ(j)−1

lp]j,φ(j)[− lα

lpφ(j)−1

(4.15)

where w0 is some base value representing a safety margin, which we here assume to be zero for
simplicity. This results of this new definition is illustrated in Figure 4.3c.

Moving block

The previous section deal with so called fixed block behaviour, where trains are allowed to enter
a block only when all other trains have left. However, as illustrated in Figure 4.3d, this will
lead to excessive delays between trains in cases where these blocks are long. We therefore wish
to move on to moving blocks, where each train can be said to be a block on its own and other
trains may enter the same piece of track provided that some safety margins are met.

Three criteria must be met for moving block to be used; otherwise the fixed block equation
above is used instead. Firstly, the physical length of the conflict must be longer than the
distance margin LS for moving block to make a difference. Secondly, the time it takes the
first train to travel through the conflict must be longer than the time margin T S, for the same
reason. Finally, the two trains involved must be traveling across the same physical track and
in the same direction; otherwise none of this makes sense.

The new arc weight w is computed in a few steps as follows:

1. Compute the distance d that the first train can travel during the time margin T S.

2. Let the effective distance margin be d′ = max{d, LS}. This ensures that both the time
and distance margins are met.

3. Compute the distance the train needs to “back up” from the release node in order for the
back of the train to meet the effective margin; d′′ = lp]i,φ(j)[− lα − d′.

4. Let −w be the time it takes the train to travel this distance d′′ ending at the release node.

The result of this new weight calculation is illustrated in Figure 4.3e.

Initial Nodes

An additional detail arises due to train length, where the initial positions of trains require
special treatment to make sure that all nodes that each train initially occupies are labeled as
such. This is accomplished by having the train path p start from the back of the train α, with
zero-weight fixed arcs (instead of the regular fixed path arcs) from nαp

1 until the node nαp
i , which

represents the initial front of the train.

26

Chapter 4. Model Description 4.2. Scheduling Model

Figure 4.3: Illustrative examples of train length and moving block situations, motivating why
Equation (4.15) has been written as it has. Each subfigure below involves two trains (the blue train A
to the right, and the green train B to the left) travelling towards the right of the page along a straight
rail. The rail is divided into several blocks, separated by short vertical marks in the figures. In all
cases, the conflict interval being considered is the single block after the first vertical mark. The point
in time being illustrated is when train B is allowed to enter the conflict interval, and the place train A
is at when this happens.

(a) Naive solution from alternative graph theory, where the conflict interval is considered empty when
the front of train A has left the interval and entered the subsequent node (the release node, i.e.,
φ(i) = i+ 1 in this subfigure). This results in a collision.

(b) As (a) but with the release node defined using Equation (4.14a), so that train A is just about to
enter the release node and has completely cleared the conflict interval.

(c) As (b) but the weight of the alternative arc (which constrains the delay between the trains) has
been changed to use the relation (4.15).

(d) As (c) but where the conflict interval is a very long track. This conflict area is handled correctly
in that collision is forbidden, but also forces a long delay between trains which is undesired.

(e) As (d) but with the arc weight adjusted according to moving block, such that train B may now
enter the same fixed block as train A after some safety margins have been met.

27

Chapter 4. Model Description 4.2. Scheduling Model

4.2.3 Choice Couplings
It is important to note that any interesting (read computationally difficult) problem will result
in many alternative arcs. There is no good way to reduce the number of arcs, since they
represent the constraints required for a valid solution. However, it is possible to decrease the
number of choices that must be made.

This is possible in cases where we can show that only a subset of alternative arc selections
are feasible. Specifically, we look for cases where we can prove that selecting an arc a of one
alternative arc pair forces the selection of some arc a′ of another pair, and vice versa. We say
that the arcs are coupled, and notate this as a a′. A example of such a scenario can be seen
in Figure 4.4.

The coupling operator is trivially transitive and induces sets K such that for all arcs a ∈ K,
a′ ∈ K ⇒ a a′. We call these sets couplings, and the aforementioned property means that
either all arcs in a set are selected or none of them are. Additionally, since alternative arcs
come in pairs, so too must the couplings, i.e., a ∈ K ⇔ a∗ ∈ K∗.

For simplicity we require that all alternative arcs are included in exactly one coupling, or
equivalently that the set K of all couplings is an exact cover of the alternative arcs A. The
choices required are thus between pairs of couplings (K,K∗) instead of arcs (a, a∗), which can
drastically reduce the size of the search space (which will be proportional to 2|K|/2 rather than
2|A|/2).

If we construct all K ∈ K such that ∀ a ∈ K, a′ ∈ K ′ ⇔ a a′ then we call the set K
”perfectly” coupled. A perfect coupling means that there are no arcs a ∈ K and a′ ∈ K ′ such
that a a′, also meaning that the couplings represent the minimum amount of binary choices
that is still equivalent to the original problem. Note, however, that our definition does not
assume a perfect coupling as this may be difficult to achieve in practice.

The introduction of couplings is especially practical when applied to train scheduling. Since
trains travel on rails they cannot simply overtake each other and change order. Alternative arc
pairs in our case primarily represent the order in which two trains pass some area, and one can
thus intuit that two trains travelling one after the other correspond to a coupling of related
arcs.

28

Chapter 4. Model Description 4.2. Scheduling Model

na nb nc

nd ne nf

na nb nc

nd ne nf

na nb nc

nd ne nf

(a) Positive Cycles

na nb nc

nd ne nf

na nb nc

nd ne nf

(b) Feasible choices of arcs

Figure 4.4: A subset of an alternative graph, showing six nodes on two paths, with two
alternative arc pairs. Assume all arcs have positive weights. Two pairs imply four potential
choices of arcs: two result in positive cycles and are thus infeasible, shown in (a); and two do
not and are thus feasible, shown in (b). The two pairs here are thus coupled and there is in fact
only a single binary choice instead of two.

29

Chapter 4. Model Description 4.2. Scheduling Model

4.2.4 Schedule graph
When the Alternative Graph GA has been constructed we may attempt to solve it. When
solving such a graph we generate a schedule graph GS = (N ,S) which consists of nodes N , and
a schedule S. A schedule in this case is a set of arcs from GA, containing all fixed arcs F and
some number (possibly zero) of selected arcs from A. A complete schedule or schedule graph is
one in which one alternative arc from every pair in A has been selected, which implies that all
imposed constraints are fulfilled as desired as long as no positive cycles exist.

Objective Function

If we want to solve an alternative graph and generate a complete schedule we have to decide
how to evaluate the result, which is equivalent to constructing an objective function. To do this
we set an objective function according to the problem description, that is that trains should be
able to be prioritized and arrive as fast as possible.

As this definition is rather vague we decide to define the objective function as the arrival
times tαpe for each train on its respective p times its priority CP , i.e.,

z =
∑
α∈T

CP
α tαpe . (4.16)

meaning that our basic objective function is a weighted sum of the arrival times for the trains
α on their respective paths p.

We have previously talked about using makespans ℓ to define and compute the time values t
(see (3.2) and (4.7)), where the makespan between two nodes is defined as the maximum total
weight of all paths from the first node to the second. However, we have neglected the fact
that this assumes a specific selection of alternative arcs, i.e., the makespan is only well defined
on some schedule S.† The makespan between two arbitrary nodes ni and nj is thus properly
written as ℓS(ni, nj).

It is also important to note that if we evaluate all the times using tp
′

i = ℓ(n0, n
p′

i) given the
schedule S we get the earliest times that a train can enter an area. However, it is also possible
to find the latest time a train can enter an area; this can be done by fixing the arrival times
and working backwards.

†Conversely, GS and S are referred to as “schedules” because they involve specific well defined time values.

30

Chapter 4. Model Description 4.3. MILP Model

4.3 MILP Model
If we reformulate all the requirements that have been stated, without including the coupling
reduction, using the method in Subsection 3.2.3 we arrive at the model to

minimize z =
∑
α∈T

CP
α tαpe + C,

subject to

tpi+1 − tpi ≥ up
i ∀ i ∈ {1, . . . , ep}, ∀p ∈ P , (fixed arcs)

tβqk − tαpj ≥ wαp,βq
j,k −Mxαp,βq

j,k,l,i

tαpi − tβql ≥ wβq,αp
l,i −M(1− xαp,βq

j,k,l,i)

xαp,βq
j,k,l,i ∈ {0, 1}


∀ (nαp

j , nβq
k), (nβq

l , nαp
i) ∈ A :

(nαp
j , nβq

k) = (nβq
l , nαp

i)∗,
(alternative arcs)

tp1 = tα,enter ∀ p ∈ P ,

tpi ≥ 0 ∀ i ∈ {1, . . . , ep + 1},∀ p ∈ P .

If we then add in the coupling reduction the model is then

minimize z =
∑
α∈T

CP
α tαpe + C,

subject to

tpi+1 − tpi ≥ up
i ∀ i ∈ {1, . . . , ep},∀p ∈ P , (fixed arcs)

tβqk − tαpj ≥ wαp,βq
j,k −MxK

tαpi − tβql ≥ wβq,αp
l,i −M(1− xK)

xK ∈ {0, 1}


∀ K,K∗ ∈ K
∀ (nαp

j , nβq
k) ∈ K, (nβq

l , nαp
i) ∈ K∗ :

(nαp
j , nβq

k) = (nβq
l , nαp

i)∗,

(alternative arcs)

tp1 = tα,enter ∀ p ∈ P ,

tpi ≥ 0 ∀ i ∈ {1, . . . , ep + 1},∀p ∈ P .

Note that we do not include t0 since it is simply a constant, and only has fixed arcs to
tp1 ∀p ∈ P which we have defined as constants. However, the corresponding node n0 is still
important when dealing with the model as a graph.

Furthermore we have also introduced a constant C which represents all additions to the cost
from outside the MILP problem. For example, a contribution to this are the time penalties
tpenalty
ij that may occur when paths P pass the corresponding edges eij.

31

Chapter 4. Model Description 4.3. MILP Model

32

Chapter 5

Solution Methodology

Path Search

VNS

Scheduling

MILP

SolutionHeuristic

Inital Candidate ξ̂
All paths Pα ∀α ∈ T

Candidate ξ̂ Schedule with z

Scheduling
problem Solution

Figure 5.1: Illustration of how the different
parts of the solution methodology interact.

To solve the PCR problem, the overall prob-
lem is divided into two core problems: one
which we will refer to as the Path Selection
problem where a path must be selected for
each train, and a problem referred to as the
Scheduling problem where, given the paths
P , we find a schedule for the trains. A more
complete description of the methodology is
illustrated in Figure 5.1.

The first step is the Path Search, where
the goal is to find a reasonable set Pα of
possible paths for each train α ∈ T using
the network model from Section 4.1. Fur-
thermore we must also pick an initial ξ from
these paths. Section 3.3 dealt with ξ as a
generic, unspecified object but from hereon a
candidate ξ refers to a selection of paths such
that each train has exactly one path†. In our
case, the initial candidate used is simple the
shortest path for each train individually. If this candidate is infeasible, we randomly select
some new paths until we find a feasible solution, or give up entirely if none is found after some
number of attempts‡.

The second step is the VNS, based on the theory in Section 3.3, which is the solution
mechanism for the Path Selection problem. It investigates the different combinations of paths
by building neighbourhoods around the current solution, and drives the evaluation of candidate
solutions where some trains take new paths.

The third step is Scheduling, where a proposed selection of paths ξ from the VNS is used
to construct the alternative graph GA according to Section 4.2. This includes finding couplings
in order to reduce the number of choices, thereby reducing the size of the MILP problem the
graph represents.

†The notation ξ used mainly as a convenient shorthand and to keep the notation from Section 3.3. It is not
defined or used more rigorously than this.

‡Anecdotally, we have found this to be very rare and, in cases where no initial solution was found, to indicate
that the relevant PCR problem lacks any solution.

33

Chapter 5. Solution Methodology 5.1. Path Search

The last step (per candidate solution) is to solve the MILP problem constructed by the
Scheduling layer. This is done by a MILP solver, and results are then passed back up to the
Scheduling and VNS systems, guiding the progression of the VNS algorithm.

There are some general details that have to be mentioned here. First, paths selected by
the VNS algorithm do not always result in a feasible Scheduling and MILP problem. For that
reason we also use the notation ξ̂ ∈ S, which we refer to as a candidate and may or may not
be a valid solution ξ.

Second, it is often not practical to solve the Scheduling problem optimally. Thus we employ
two different objective values for each candidate: a “quick” solve ĝ(ξ̂), and a “full” solve g(ξ̂).
The intention is that the quick solve is a “heuristic” solution that is faster to evaluate, and can
indicate which candidates are worth sinking more time into with a full solve.

5.1 Path Search
We employ two generalized path searching algorithms.† We have not included the easily
described but practically intractable method of complete enumeration, i.e., finding all paths.
As mentioned earlier, the algorithms are applied to each train α ∈ T in order to find useful
sets of paths Pα.

The first method is what we call a Penalized Dijkstra algorithm. It works by finding a path
using the classic Dijkstra’s algorithm, adding it to the result set, and then increasing the cost
of all edges along that path. This is then repeated until the desired number of paths have been
found, giving a set of increasingly circuitous paths. The second method is the Loop Erased
Random Walk, a known algorithm for generating uniformly distributed random paths through
a graph. Both algorithms are shown in more detail in Appendix C.

If waypoints are desired, they may be handled by searching from the origin to the first
waypoint, then from the first waypoint to the next, etc., and finally from the last waypoint
to a destination. The final collection of paths is then the set product of the paths from each
individual search.

†Generalized in the sense that we desire not a single “best” path but a diverse collection of potential paths.

34

Chapter 5. Solution Methodology 5.2. VNS

5.2 VNS
To apply the VNS algorithms to the Pathing problem we have to adapt the algorithms. The
main step of applying any VNS algorithm to a problem is to decide how the neighbourhood
N should be generated. In our case we also need to decide when we should use g(ξ̂) (or
ĝ(ξ̂)). Due to these decisions there are minor changes to all the VNS algorithms, which can
be found in Section C.1. Of note is that we will always use BestImprovement rather
than FirstImprovement, since this expected to perform better together with restricted
neighbourhoods (see below).

5.2.1 Neighbourhood Generation
Since evaluating g or ĝ takes a lot of computing time we want to limit the amount of candidates
that are tested. To achieve this we use restricted neighbourhoods—i.e., smaller neighbourhoods
than the complete overarching neighbourhood which has been constructed—which only contain
candidates that we are currently interested in. Our approach here is based on the work of M.
Samà et al. in [7].

We define our overarching neighbourhood as the r Trains Rerouted† neighbourhood
NrTR(ξ, r), which is defined as the set of all possible candidates when r = 1, . . . , rmax trains have
been rerouted, and where rmax < |T | is the maximum number of reroutes that are investigated.
A single reroute from ξ to ξ′ is defined as the replacement of a path pα → qα where pα ∈ ξ and
qα ∈ ξ′.

To construct a restricted neighbourhood NRN(ξ, r,Hh) ⊆ NrTR(ξ, r), with maximum L
candidates, we use heuristic measures Hh ∈H to evaluate whether or not we should reroute a
train, Hh(ξ, α). As we can have multiple heuristics we index them as h = 1, . . . , hmax = |H|.
To relate both h and r to the normal neighbourhood index k we define it so that an increment
in k corresponds to an increment in r until r = rmax where it rolls back to r = 1 and h is
incremented once instead until r = rmax and h = hmax. This means that

k = 1, . . . , rmax, . . . , 2rmax, , rmaxhmax, (5.1a)

r = r(k) = 1 + ((k − 1) mod rmax), h = h(k) = ⌈k/rmax⌉ . (5.1b)

Restricted Neighbourhood construction

There are multiple ways to construct a restricted neighbourhood NRN(ξ, r,Hh). Here we do it
by starting from a candidate ξ and generating ξ′ ∈ NRN new candidates using Algorithm 9,
adapted from [7].

We start by sorting the paths Pα, storing them in possiblePaths, for each train α in ascending
order with respect to how much they overlap

∥pα ∩ qα∥L :=
∑

mi∈pα∩qα
li (5.2)

This means that the path that differs the most from the current path qα is the first in the list
and so on.

For each train α ∈ T we also evaluate the TrainScores using the heuristic Hh(k). With this
we construct a table scoreTable with L columns and |T | rows, where the rows are indexed

†Reroute here means taking a different path.

35

Chapter 5. Solution Methodology 5.2. VNS

Calls Index of
replaced path

0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 0 2 0
5 0 2 1
6 1 0 0
... ...

11 1 2 1
|Pα| 2 3 2
α 0 1 2

Score 0.9 0.6 0.1

Table 5.1: An example over how
repeated calls to NextCandidate be-
haves as counting, where we want to
reroute 3 trains. Here the indices of
the possiblePaths are shown against
the count that NextCandidate has been
called. Note how |Pα| behaves as a
mixed base.

using α. Each element in this table is set to the TrainScores divided by the row number. Then
by using this we find the r(k) ·L maximum values in scoreTable and count how many occur per
train by storing them in counts. The counts now informs us how many times reroutes of each
train can be used when constructing new candidates. This information is used to construct the
L new candidates with r reroutes from the initial feasible candidate ξ.

To construct a candidate we select the r highest scored trains from TrainScores, with Count
larger than 0, for rerouting, which we store in SelectedTrains. We then decrement Count for
the selected trains to indicate that it has been used in a candidate.

Now given that we have selected the trains for rerouting we have to form a new unique
candidate. Due to how we form selectedTrains it is possible to get the same train combination
for several consecutive iterations, though not any other combination that has previously
occurred. Therefore, to ensure uniqueness, the FirstCandidate function is used to create the
initial candidate for a combination of selectedTrains, and NextCandidate is used to change
the candidate whenever the train selection repeats.

The FirstCandidate simply reroutes each train α in selectedTrains and replaces current
paths with the first path stored in possiblePaths[α]. The NextCandidate behaves as counting
with a mixed base, it takes the last solution ξ′ and replaces (increments) the path for the
lowest train score (the rightmost digit) with its next path in possiblePaths. If we have reached
the end of possiblePaths for any train we instead roll over, by setting the path to the first in
possiblePaths, and replacing the path of the train with the next lower train score. An example
of this can be seen in Table 5.1.

Summarized in a somewhat more intuitive fashion, the approach described uses a heuristic
to quantify how important it is that each train is rerouted. Trains that receive high scores are
more likely to be rerouted, will be rerouted in more of the candidates, and are more likely to
receive their first choice of path. That the paths are ordered by how different they are from the
currently selected means that higher scoring trains are thus more likely to receive a significantly
different path.

36

Chapter 5. Solution Methodology 5.2. VNS

Algorithm 9 Build Restricted neighbourhood
A method to build a restricted neighbourhood N for T trains given a number of paths P with L
number of elements using the specific neighbourhood r(k) and the heuristic h(k). This algorithm is
adapted from [7].

1: Assume: T : Trains
2: Pα ∀α ∈ T :
3: Hh ∈H: The set of train Heuristics to be used
4: L: Desired number of solutions
5: r(k), h(k): Mappings from k to specific neighbourhood and heuristic

6: Function BuildRestNeigh(ξ, k)
7: Input: ξ: The feasible candidate
8: k: Neighbourhood index
9: Output: N: A Restricted Neighbourhood of size L according to H

10: H ←[Hh(k) ▷The relevant heuristic for the given value of k
11: For α in T Do
12: possiblePaths[α] ← [Pα

13: Sort possiblePaths[α] in ascending order by ∥pα ∩ qα∥L where qα is the path for α in ξ
14: s← [H(ξ, α) ▷The score for train α according to the current heuristic
15: trainScores[α] ← [s
16: scoreTable[α, :] ←[(s/1, s/2, . . . , s/L)
17: End For
18: Identify the r(k) · L maximum entries in scoreTable
19: For α in T Do
20: counts[α] ← [number of these entries occuring in row scoreTable[α, :]
21: End For
22: For l = 1, . . . , L Do
23: selectedTrains ←[The set of r(k) trains α with the highest trainScores[α] and counts[α]> 0
24: Decrement counts[α] for all α in selectedTrains
25: If l = 1 or selectedTrains changed from previous iteration Then
26: ξ′ ← [FirstCandidate(ξ, selectedTrains, possiblePaths)
27: Else
28: ξ′ ← [NextCandidate(ξ′, selectedTrains, trainScores, possiblePaths)
29: End If
30: Add ξ′ to N unless ξ′ is null
31: End For
32: Return N
33: End Function

37

Chapter 5. Solution Methodology 5.2. VNS

Algorithm 10 First and Next Candidate
Two help function used to build the restircted neighbourood, see Algorithm 9.

Function FirstCandidate(ξ, selectedTrains, possiblePaths)
Input: ξ: The feasible candidate

selectedTrains: The set of trains to be rerouted
possiblePaths: The collections of possible rerouting paths for each train

Output: ξ′: The initial candidate based on ξ

ξ′ ← ξ
For α in selectedTrains Do

Change ξ′ so that train α takes the first path in possiblePaths[α]
End For
Return ξ′

End Function

Function NextCandidate(ξ, selectedTrains, trainScores, possiblePaths)
Input: ξ: The candidate to transform into the next candidate

selectedTrains: The set of trains to be rerouted
trainScores: The collection of scores for each train
possiblePaths: The collections of possible rerouting paths for each train

Output: ξ′: The modified candidate

If ξ = null Then
Return null

End If
ξ′ ← ξ
For α in selectedTrains, ordered by increasing trainScore[α] Do

Change ξ′ such that train α takes the next path in possiblePaths[α] compared to the current one in ξ
If there is no such path Then

Change ξ′ to use the first path in possiblePaths[α]
Else

Return ξ′

End If
End For
Return null

End Function

38

Chapter 5. Solution Methodology 5.2. VNS

5.2.2 Neighbourhood Heuristics
In order to find the TrainScore in Algorithm 9 we have to evaluate H(ξ, α) to find the scores
s(α)∀α ∈ T . An assumption used by the heuristics is that for each ξ a graph GS exists. If it
does not, GS has to be created and solved using either g or ĝ. The heuristics may use different or
modified schedules, with the same nodes N , for comparison to the current S ∈ GS. A common
schedule to compare to is the free net schedule S0 where ∄a ∈ S0, i.e. no alternative arcs are
selected.

As these are heuristics it means that these can be constructed arbitrarily. Furthermore it
is often hard to know which heuristic is good without testing. Here we deal with six different
heuristics that we have constructed: Train Cost (TC), Adjusted Train Cost (ATC), Cascading
Cost (CC), Waiting Train (WT), Free-Net Waiting Train (FNWT), and Random.

Train Cost (TC)

For TC to calculate the score the “partial objective function” zαpartial is used to denote all
contributions that the train α has on z:

s(α) = zαpartial. (5.3)

Adjusted Train Cost (ATC)

Where TC above computes the total contribution from train α, the Adjusted Train Cost removes
from this a reasonable lower bound so as to measure the solution’s excess cost for the train.
The lower bound is defined as the zαpartial value in the free net:

s(α) = zαpartial −
{
zαpartial

∣∣S0

}
. (5.4)

Cascading Cost (CC)

The cascading cost is a measure of how much cascading effect the train has on the objective
solution. To do this we find the difference between the objective function for the schedule and
the schedule with all alternative arcs connecting to that train removed. This means that the
train score is defined as

s(α) = z −
{
z
∣∣S with all aα,β, aβ,α removed ∀β ∈ T

}
. (5.5)

Waiting Train (WT)

Another heuristic is to find the total waiting time for the trains. This is simply done by

s(α) = CP
α

e∑
i=1

tαpi − tαpi−1 − uαp
i−1. (5.6)

Free-Net Waiting Train (FNWT)

FNWT measures the first order delays of the train. To do this we define a waiting node as a
node np

i such that tpi > tpi−1 + up
i−1. At each waiting node we measure the first order delay i.e.

39

Chapter 5. Solution Methodology 5.2. VNS

between S0 and the schedule with arcs only connecting with the waiting node with the train
priority included:

s(α) = CP
α

∑
waiting nodes: nαp

i

ℓSi(n0, n
αp
i)− ℓS0(n0, n

αp
i); (5.7a)

S i = S0 ∪
{
aβq,αpj,i ∈ S

∣∣∣ tαpi = tβqj + wβq,αp
j,i

}
. (5.7b)

Random

The random heuristic is a neutral heuristic that the others may be compared with. It is simply
defined, somewhat arbitrarily, using a random number from a uniform distribution as

s(α) = CP
α · Uniform(1, 2). (5.8)

40

Chapter 5. Solution Methodology 5.3. Constructing Couplings

5.3 Constructing Couplings
As stated in Subsection 4.2.3, to find a coupling between arc pairs it has to be proven that they
cannot be chosen independently. Finding all of these relationships naively is time consuming,
but we can exploit some of our problem structure to find an interesting subset very quickly.

Specifically, our alternative graphs almost exclusively contain strings of nodes connected by
fixed arcs, representing the train paths, and arc pairs that each connect two paths. Given
any alternative arc a = (np

i , n
q
j) ∈ K from a node on path p to a node on path q, we can

easily search along path q for other arcs a′ = (nq
k, n

p
l) ∈ K ′ that connect back to p, and thus

might together create a cycle. Due to our problem structure we know that the arc conjugates
a∗ = (nq

i′ , n
p
j′) ∈ K⋆ and a′⋆ = (np

k′ , n
q
l′) ∈ K ′⋆ might similarly create a cycle in the opposite

direction.
Then, we check if the selection of a and a′ or a∗ and a′⋆ both result in positive cycles, i.e.,

wαp,βq
ij + ℓS0(nq

j , n
q
k) + wβq,αp

kl + ℓS0(np
l , n

p
i) > 0 (5.9a)

and
wβq,αp

i′j′ + ℓS0(np
j′ , n

p
k′) + wαp,βq

k′l′ + ℓS0(nq
l′ , n

q
i′) > 0. (5.9b)

Note that the makespans here operate on the so called free net schedule S0 (see previous
subsection). If these inequalities hold† then we know that a a′⋆ and a⋆ a′ since we have
just demonstrated that the alternative is infeasible (cf. Figure 4.4). We can thus combine the
couplings and create K ′′ = K ∪K ′⋆ and K ′′⋆ = K∗ ∪K ′, replacing the four “older” couplings.

†If any of the makespans ℓ are undefined (e.g., if j > k) then there can be no cycle, and the inequality is
considered false.

41

Chapter 5. Solution Methodology 5.3. Constructing Couplings

42

Chapter 6

Implementation and Tests

The theory, model, and methodology described so far were implemented as a proof-of-concept
C++ library at Bombardier RCS during 2019. The implementation is capable of reading
descriptions of rail networks, trains, complications, etc., and using these to solve the given
PCR problem.

MILP problems generated during execution are converted and handed over to external
solvers. During our implementation and research work the solver used was primarily Gurobi
(version 9.0.0, under an academic license), but we also integrated with Coin-OR Branch and
Cut (CBC, an open source solver), as well as two versions of our own solver using Benders’
decomposition (with Gurobi solving the intermediate problems).†

The implementation aims to never compute the same problem twice, and will cache graphs,
problems and results. However, due to memory constraints some results must be evicted and
might therefore need to be solve anew. In practice though, this was observed to be very rare
as only the worst results were evicted, and VNS is unlikely to visit the same bad candidate
repeatedly.

Features that were deemed interesting but non-essential were implemented and verified to
work as expected, but not extensively researched or included in the results. This includes various
extra penalties and costs mentioned in previous chapters, and the contents of Appendix A and
Appendix B.

The implementation of train length and moving block was considered extremely important
with regards to practical applications, but uninteresting with regards to the model and results.
Both features were therefore verified and tested, but not included in the next chapter. See
Chapter 8 however.

Tests and experiments were run on a close approximation of a large real world network,‡
illustrated in Figure 6.1. In the experiments run to produce results for Chapter 7, a set
of trains were started on random tracks in the top left section of the illustration, and an
equivalent number of randomized trains going the other way (meaning that runs with, for
example, 16 trains included eight trains going from loading to unloading, and eight trains going
from unloading to loading). The trains received random lengths between 0.5 km and 1.5 km
(comparable to the mean track section length), random maximum speeds between 60 km/h
and 100 km/h (in practice limited to maximum 80 km/h by the network), and random starting

†Also investigated were integrations with the MOSEK and XPRESS solvers, but these were never
implemented due to time constaints in the project. The CPLEX solver was also looked at but, unlike the
others, documentation, academic licenses, and binaries were not readily available.

‡The owner of which has approved of its use and illustration here, but does not wish to be named.

43

Chapter 6. Implementation and Tests

times between t = 0 and t = 10 hours (compare with the ≈15 hour travel time). For repeated
runs the trains were re-randomized.

The baseline, default, scenario was with eight trains, running the General-VNS algorithm,
using the Cascading Costs (CC) heuristic, and using Gurobi to solve MILP problems with a
five minute time limit. Other scenarios were then created by changing some parameter of this
baseline case in order to compare the results.

44

Fi
gu

re
6.

1:
Lo

gi
ca

l(
no

t
to

sc
al

e)
sc

he
m

at
ic

of
th

e
te

st
ne

tw
or

k.
T

he
to

p
se

ct
io

n
is

an
un

lo
ad

in
g

an
d

st
ag

in
g

re
gi

on
w

hi
le

th
e

bo
tt

om
se

ct
io

n
is

a
lo

ad
in

g
re

gi
on

.T
he

m
id

dl
e

se
ct

io
n

is
a

lo
ng

“m
ai

nl
in

e”
re

gi
on

th
at

co
nn

ec
ts

th
e

tw
o

(t
op

rig
ht

co
nn

ec
ts

to
m

id
dl

e
le

ft,
m

id
dl

e
rig

ht
co

nn
ec

ts
to

bo
tt

om
le

ft)
.

T
he

ne
tw

or
k

co
nt

ai
ns

11
64

ju
nc

tio
ns

,1
32

0
tr

ac
k

se
ct

io
ns

,a
nd
≈

11
80

km
of

ra
il

in
to

ta
l.

T
he

ne
tw

or
k

is
ve

ry
cl

os
e

to
an

ex
ist

in
g

ne
tw

or
k

bu
t

so
m

e
ap

pr
ox

im
at

io
ns

ar
e

m
ad

e
sin

ce
th

is
ve

rs
io

n
is

bu
ilt

on
so

m
ew

ha
t

in
co

m
pl

et
e

da
ta

.
In

pa
rt

ic
ul

ar
,a

ll
sp

ee
d

lim
its

ar
e

80
km

/h
an

d
fo

ul
in

g
di

st
an

ce
s

at
ju

nc
tio

ns
ar

e
m

uc
h

sh
or

te
r

th
an

th
ey

wo
ul

d
be

in
re

al
ity

.

Chapter 6. Implementation and Tests

46

Chapter 7

Results

The results presented in this chapter where obtained using our implementation, with MILP
problems solved by Gurobi 9.0.0. The system used was a Windows 10 laptop with 16 GB
memory, a i7-8850H processor at 2.60GHz with six Cores. The code was compiled using
MSVC 19.22.27905 for x86 in a Release configuration.

Example timelines of single runs with 8, 10, 16, 20, and 30 trains are shown in
Figure 7.1, illustrating how the VNS search progresses. The approximate MILP problem
sizes generated in these runs are shown in Table 7.1. The number of continuous variables is
approximately proportional to the number of trains, while the number of inequality constraints
is approximately quadratic, and the number of binary variables is between quadratic and cubic.

The performance of the MILP solver for different numbers of trains is shown in Figure 7.2,
illustrated as the proportion of solve runs that reach a 5% or 0.5% gap over time. The gap for a
given objective value z is, in this case, defined compared to the eventually found optimal value
z∗ per problem, i.e., (z − z∗)/z∗. With up to 10 trains, the problems are solved to optimality
within seconds. With 16 trains the solver still generates good solutions within seconds, and
while finding an optimal solution takes longer time it still does so within the five minute
time limit. Even for 20 trains good solutions are found quickly, but reaching optimality takes
considerably longer and only ≈ 60% of our solve attempts reach the 0.5% gap threshold (in the
remaining cases, the best upper bound is used as a close approximation of z∗ when computing
the gap). For 30 trains the time to find any solution starts to become an issue, and not enough
30 train runs could be completed in time to produce any relevant results.

Our method of generating couplings was extensively tested and Figure 7.3 shows the impact
it has on the number of variables. Specifically, we found that couplings reduced the number of
binary variables by a factor of ten. Runtimes and results were however not compared as the
MILP solvers almost always failed to find any feasible solution when couplings were not used
(except for instances that were too small to be of interest).

The six different neighbourhood heuristics laid forth in Subsection 5.2.2 were compared,
using the final gap at the end of each VND run as a metric for how well each heuristic
“guided” the VND to better neighbourhoods. The gap values were compared using pairwise
permutation tests, and the results are shown in Table 7.2. Interestingly, only the CC heuristic
was significantly better than random values. The TC and ATC heuristics were both comparable
with random values, and FNWT and WT were both significantly worse.

The four different VNS algorithms included here were compared by repeatedly running the
same scenario using each algorithm in turn. For this comparison ten trains were used instead of
eight in order to strike a better balance between resolution and computation time. The mean
objective values over time per algorithm is shown in Figure 7.4. The spread of individual runs

47

Chapter 7. Results

is too large to give significant results, though FH-VNS has consistently tended towards being
(very) marginally better over time.

Finally, we ran some comparisons between the Gurobi and CBC solvers by giving them
identical MILP problems as generated by our implementation. For problem instances where
both solvers solved to optimality we found Gurobi to be ≈15–20 times faster. However, with
even moderately large problems (>10 trains) CBC often failed to find a solution, and time
constraints precluded a more extensive comparison.

48

Chapter 7. Results

Ob
jec

tiv
e

va
lu

e

0 50 100 150 200 250 300
124

126

128

130

132

134 8 trains

0 50 100 150 200 250 300

155

160

165 10 trains

0 50 100 150 200 250 300

234

236

238

240

242 16 trains

0 50 100 150 200 250 300

356

358

360

362 20 trains

0 50 100 150 200 250 300

560

580

600

620
30 trains

Time (min)

Figure 7.1: Example runs for different numbers of trains. The black lines show the progress of
the General-VNS runs, and each blue line represents a single VND run invoked by General-VNS.

49

Chapter 7. Results

Trains 4 8 10 16 20 30
Continuous variables, t 800 1 600 2 100 3 400 4 200 6 500
Binary variables, x 50 230 380 1 200 1 800 4 300
Inequality constraints 1 800 6 900 11 000 29 000 46 000 100 000

Table 7.1: Approximate sizes of the MILP problems generated when scheduling various
numbers of trains. The exact counts vary, but the trend is that a doubling of the trains
leads to a doubling of the continuous variables (linear as expected), a sixfold increase in binary
variables, and a four-fold increase in inequality constraints.

Heuristic CC Random TC ATC FNWT WT
Mean gap (%) 1.03% 1.31% 1.37% 1.39% 1.51% 1.63%
N 1114 1059 1120 1172 1089 867
P-value vs. CC <.0001 <.0001 <.0001 <.0001 <.0001

Random 0.13 0.06 <.0001 <.0001
TC 0.68 <.01 <.0001
ATC <.01 <.0001
FNWT 0.03

Table 7.2: Comparison of train heuristics for VNS neighbourhood construction. Data was
collected from six different runs, each using a different heuristic, on the same 8 trains scenario
(cf. the top panel of Figure 7.1). The best found solution was assumed optimal, and the
gap at the end of each individual VND run was computed. Pairwise tests between heuristics
were estimated by Monte Carlo permutation tests (50 000 samples). Results show that our
CC heuristic performs best by a significant margin; the Random, TC, and ATC heuristics are
about equally efficent; and the FNWT and WT heuristics perform significantly worse.

50

Chapter 7. Results

8 Trains 10 Trains

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Time [s]

0

20

40

60

80

100

%
 o

f M
IL

P
ru

ns

0 1 2 3 4
Time [s]

0

20

40

60

80

100

%
 o

f M
IL

P
ru

ns

16 Trains 20 Trains

0 50 100 150 200
Time [s]

0

20

40

60

80

100

%
 o

f M
IL

P
ru

ns

0 50 100 150 200 250 300
Time [s]

0

20

40

60

80

100

%
 o

f M
IL

P
ru

ns

Figure 7.2: MILP progress over time for different numbers of trains. The plots are based
on all the “full” solve attempts of MILP problems during four different VNS runs (same runs
as in Figure 7.1, excluding the 30 trains run). The solid lines indicate the proportion of solve
attempts which have reached a 5% gap at any point in time, while the dashed lines indicate
the proportion of attempts which have reached a 0.5% gap (see text for definition).
For problem instances with 8 or 10 trains optimal solutions where quickly found and verfied.
For instances with 16 trains “good” solutions are quickly reached, but it takes considerably
longer time to reach and prove optimality. For instances with 20 trains good solutions are still
found quite quickly but it takes even longer time to lower the gap, and only ≈ 60% reach the
0.5% gap before the runtime limit.

51

Chapter 7. Results

N
um

be
r

of
co

up
lin

gs
,|
K
|

Number of alternative arcs, |A|

Figure 7.3: Reduction of choices using couplings. Plotted are the number of alternative
arcs versus the number of couplings for all MILP problems constructed during the runs from
Figure 7.1 (as well as a four train run). The blue line is a linear fit, with slope ≈ 9.9. This
means that our MILP instances contain ten times fewer binary variables than if couplings were
not implemented.

0 2 4 6 8 10
Time (min)

172

173

174

Ob
je

ct
iv

e
va

lu
e

VND
Basic VNS
General VNS
FH-VNS

Figure 7.4: Comparison of objective values between the four different VNS algorithms versus
computing time. The lines show the mean objective value for 20 runs per algorithm (50 for
VND). All runs for all algorithms use the same 10 train scenario and employ the CC heuristic.
The spread between individual runs is relatively large so none of the methods can be said to
be significantly different, but we have repeatedly observed the same trend of FH-VNS being
marginally better over time. It is important to note here that the vertical axis does not begin
at zero, and the differences between algorithms is very small.

52

Chapter 8

Discussion and Further Work

Our proof-of-concept implementation and the results produced by it, presented in the previous
chapter, show that the model and methodology described in this thesis succeed in scheduling a
decent number of trains in a large network within acceptable computing time. What is meant
by “a decent number”, “large” and “acceptable time” is, however, subject to debate. In our case,
the upper limit of ≈ 30 trains is comparable to the expected number of concurrently running
trains on the real world equivalent of our test network. The network that our experiments
were run on can be objectively stated to be one of the largest industrial rail networks in the
world. National passenger and cargo networks may be larger, but the scheduling of such traffic
is different in nature due to different and varying goals and constraints. For this work and
thesis, “acceptable time” has generally meant 5–15 minutes to solve a single MILP problem
instance, and 3–4 hours for a full run.

8.1 Performance
To be useful in practice, the implementation need not only find solutions but do so quickly and
efficiently. Our results were achieved running on a general purpose laptop and not a computer
designed for these kinds of workloads. Additionally, while the Gurobi solver does some of the
work in parallel, our implementation is wholly single threaded. However, the neighbourhood
search of the VNS algorithms is close to embarrassingly parallel and an implementation utilizing
this should be able to massively reduce the wall clock time taken.

The MILP problems generated here are quite small compared to what may be encountered
in, for example, the field of large scale optimization. On the other hand, our problems contain
a large proportion of highly interacting binary variables, and are thus inherently difficult to
deal with. Our implementation of couplings, in order to reduce the number of binary variables
the MILP solver has to consider, has proved critical in enabling the solvers to find solutions at
all, let alone quickly. Since our approach to generating the couplings is somewhat simplistic,
we expect that further work may improve it and thus further reduce the number of binary
variables.

To us, the problem structure appears to lend itself to Benders’ decomposition. This was
attempted twice. However, in our case we found that Gurobi’s own logic far outperformed our
own implementations, but further work would be needed to properly develop, test, and evaluate
Benders’ decomposition methods for these problems.

One method currently used in some train control systems is to divide the network into
different smaller regions that function independently, preferably with very limited interaction,
and to negotiate transfers between regions. This would mean that every individual scheduling

53

Chapter 8. Discussion and Further Work 8.2. Generality

problem is smaller and involve fewer trains, but trains entering the region cannot be fully
taken into account and optimized for. The optimum found in each region thus only applies
to that region, unless additional work is put in to coordinate regions in an additional layer of
optimization.

Another way to improve performance is to not schedule all trains at the same time. We
consider our test setup to be a sort of worst-case scenario, where all trains need to be completely
scheduled simultaneously. In practice one might expect some amount of steady state operation,
where most trains already have a path and schedule they are currently travelling. In such
cases, trains close to their destinations are easier to schedule, and are in fact unlikely to need
rescheduling at all. In general, it is possible to consider some trains as “fixed” and only schedule
the remainder. These fixed trains would generate constraints to other trains, but no binary
choice variables which casue the main performance drain.

8.2 Generality
Of the different neighbourhood heuristics presented and investigated, only the CC heuristic
proved to be better than random chance. However, we do not believe this should be assumed
to apply to all other scenarios and networks as well. Though, due to time constraints, other
networks (and, in particular, other classes of network structures) were not investigated, we
expect that the behaviour of the heuristics depend on the specific network structure and scenario
involved.

Similarly, while we in our case found very little difference between different VNS algorithms,
it is unclear whether or not this is the case in general. There also exists many more variants of
VNS algorithms and adjustments that may be made.

8.3 Applicability
For purposes of applying a model to a real world problem, it is important to investigate if and
to what extent the model matches the real world. For this thesis this was never practically
doable, since we cannot simply borrow a rail network and run tests, and producing a suitably
realistic simulation would be a completely different thesis.

As mentioned in Chapter 6, train length and moving block were both considered critical
features. The reason they are not included in Chapter 7 is that they, in the end, do not
significantly affect the results. Train length does affect how trains interact at junctions, as
desired, but the effect on the objective value in our experiments is minimal. Moving block,
similarly, changes how trains interact in the desired manner, but again has little effect on the
total objective value.

One reason that train length and moving block have little effect on the object value, is that
the model does not include acceleration and braking times and distances. There are some ways
that this may be improved. For example, for any given train and path, the acceleration at
the beginning and braking at the end may be estimated and used to impose upper bounds on
the speed for those particular sections, since they are static and do not depend on any choice
variable. Additionally, it should be possible to discretize the speed of each train on each track
and impose constraints on how trains transition between speeds across tracks. On the other
hand, this would involve a lot more work and create many more variables in the corresponding
MILP problems, though column generation [10] may be suitable to deal with that aspect.

54

Chapter 8. Discussion and Further Work 8.3. Applicability

Even if the model and MILP instances are not adapted to include acceleration and braking,
there are various approaches to consider. We expect that acceptable results could be achieved by
estimating acceleration and braking curves and adjusting the schedule thereafter. In particular,
one of the critical features is that deadlocks are avoided and for that purpose only the arc choices
need to be taken into account, i.e., the ordering of trains at any given point. As long as the
train orderings are maintained the schedule may be freely† adjusted without compromising the
no-deadlock constraint.

Finally, real world networks can contain a lot of extra rules regarding scheduling and routing.
At least some of these have been explored in Appendix A. These “complications” can be
added to specific locations or trains in order to control the solutions and adhere to real world
requirements. More work is needed to investigate how these affect feasibility, performance, and
results in practice.

†Within common sense limits.

55

Chapter 8. Discussion and Further Work 8.3. Applicability

56

Chapter 9

Conclusion

We have developed a working model, solution methodology, and implementation for solving
the PCR problem. Furthermore, we have demonstrated that good results may be achieved in
reasonable time. Importantly compared to previous work is that our model and implementation
still work when the train length is considered and when applying a moving block adjustment.
This means that a method has been found such that it is possible to find the good solutions
both in cases where some track segments are much shorter or much longer than the trains
themselves.

Most significantly we have shown that for an alternative graph it is possible to significantly
improve performance by finding couplings, exploiting that the problem structure means that
many choices are related. In our work we specifically exploit the fact that two trains cannot
change the order in which they are traveling on a continuous track.

Furthermore, the performance of the MILP solver is critical to the overall performance of the
optimization, and we find that the commercial solver Gurobi far outperforms the open source
CBC solver.

57

Chapter 9. Conclusion

58

Appendix A

Complications

Additional complications, rules, and penalties may be modelled during scheduling as long as
they can be represented in the alternative graph. We here present two types of complications
that may be useful in the context of train scheduling.

A.1 Stop Rules
Stop rules here refer to additional rules that may be imposed on trains, specifying where and
how the trains may or may not stop. We divide these into four types: No Stop and Forced
Stop, so called fixed rules; as well as Penalized Stop and Restricted Stop, so called alternative
rules.

No-stop

The first fixed rule is No Stop (NS), defined as a section of track in which the train may
not stop. For a given node np

i followed by np
i+1, the regular fixed arc imposes the condition

tpi+1 − tpi ≥ tαp,min
i , i.e., a minimum time required to traverse np

i . The No Stop rule adds a
condition tpi+1 − tpi ≤ tαp,max

i , which instead enforces a maximum time the train is allowed to
spend in the node. If this time is made to correspond to some positive minimum speed this is
equivalent to forbidding a stop. In the graph, this condition is represented as a negated and
reversed fixed arc between the nodes, as illustrated here:

np
i np

i+1

up
i = tαp,min

i

up,NS
i = −tαp,max

i

tpi+1 − tpi ≥ up
i ∧ tpi+1 − tpi ≥ up,NS

i (A.1a)
⇔ tαp,min

i ≤ tpi+1 − tpi ≤ tαp,max
i (A.1b)

Forced-Stop

Opposite to the No Stop rule is the Forced Stop (FS). This is done simply by increasing the
weight of the fixed arc between node np

i and its successor. Instead of up
i = tαp,min

i we use a
weight up,FS

i equal to the minimum traversal time, plus the time required to break, stop, and
accelerate the train, plus any desired stop duration.

59

Appendix A. Complications A.1. Stop Rules

Penalized Stop

The first alternative rule is the Penalized Stop (PS), where a train may stop at a given node
np
i but will incur a penalty to the objective function if it does. This is done by adding an

alternative arc with weight equal to the No Stop rule, paired with an arc that is trivially
fulfilled, an example of which is illustrated here:

np
i np

i+1

up
i

−∞

up,NS
i = −tαp,max

i

tpi+1 − tpi ≥ up
i (A.2)

tpi+1 − tpi ≤ tαp,max
i ∨ tpi+1 − tpi ≥ −∞ (A.3)

´
In the MILP formulation the trivial arc may be discarded, leaving

tpi+1 − tpi ≥ up,NS
i −Mxp,S

i , (A.4)

where xp,S
i is a binary choice variable which is one if the No Stop option is not followed. A

non-negative term including this choice variable is added to the objective function to penalize
that case.

Restricted stop

A Restricted Stop (RS) is similar to a Penalized Stop as above but where instead of a trivially
fulfilled arc (i.e., the −∞ arc), we use a Forced Stop arc instead:

np
i np

i+1

up
i

up,FS
i

up,NS
i

In this case the MILP formulation must include the constraints of both the alternative arcs

tpi+1 − tpi ≥ up,NS
i −Mxp,S

i (A.5a)
tpi+1 − tpi ≥ up,FS

i −M(1− xp,S
i) (A.5b)

with the choice variable xp,S
i specifying which constraint applies, and with a penalty term as

with Penalized Stop.

60

Appendix A. Complications A.2. Timed Lock

A.2 Timed Lock
A regular occurrence in rail networks are temporary restrictions on certain areas (e.g., for
maintenance) such that a train may not enter during a time period [tlock

i , tunlock
i]. We call this

a Timed Lock and can enforce this by creating an arc pair between the zero node n0 and the
relevant node np

i :

np
i

n0

tunlock
i

−tlock
i

tpi ≤ tlock
i +Mxlock

i (A.6)
tpi ≥ tunlock

i −M(1− xlock
i). (A.7)

The arc pair, and the choice variable xlock
i , thus represents the alternatives of trains entering

before the lock begins or after the lock ends.

61

Appendix A. Complications A.2. Timed Lock

62

Appendix B

General Objective function

If we start from the MILP Alternative graph problem

minimize z =
n∑

i=1

citi +
∑

(j,k),(i,l)∈A

c̃j,k,l,i xj,k,l,i + c̃l,i,j,k (1− xj,k,l,i)

subject to

tj − ti ≥ uij ∀ (i, j) ∈ F , (fixed arcs)

tk − tj ≥ wjk −Mxj,k,l,i

ti − tl ≥ wli −M(1− xj,k,l,i)

xj,k,l,i ∈ {0, 1}

 ∀ (j, k), (i, l) ∈ A : (j, k) = (i, l)∗, (alternative arcs)

t0 = 0,

ti ≥ 0 ∀ i > 0,

then it is possible to add abstract objective variables γr, r ∈ {1, . . . , R} to the objective
function. It is important when adding these that they don’t affect the feasibility of the problem
and that it does not lead to the objective value becoming unbounded. To do this we add∑R

r=1 ĉrγr to the objective function, where ĉr > 0, and introduce a bounding constraint γr ≥ 0.
As each γr has to relate to the rest of the variables in the Alternative graph we also introduce
E number of constraints

γr ≥
n∑

i=1

he,r
i ti +

∑
(j,k),(i,l)∈A

h̃e,r
j,k,l,i xj,k,l,i + h̃e,r

l,i,j,k (1− xj,k,l,i) ∀e ∈ {0, . . . , Er} (B.1)

where he,r, h̃e,r are constants for the eth constraint on γr. Here it is important that each γr
constraint does not have any other γr terms. This means that the introduction of γr does not
affect the feasibility of the problem.

63

Appendix B. General Objective function

The resulting problem can then be stated in the form

minimize z =
n∑

i=1

citi +
∑

a,a∗∈A
a=(j,k)
a∗=(i,l)

c̃j,k,l,i xj,k,l,i + c̃l,i,j,k (1− xj,k,l,i) +
R∑

r=1

ĉrγr

subject to

tj − ti ≥ uij ∀ (i, j) ∈ F ,

tk − tj ≥ wjk −Mxj,k,l,i

ti − tl ≥ wli −M(1− xj,k,l,i)

xj,k,l,i ∈ {0, 1}

 ∀ (j, k), (i, l) ∈ A : (j, k) = (i, l)∗,

γr ≥
n∑

i=1

he,r
i ti

+
∑

(j,k),(i,l)∈A:
(j,k)=(i,l)∗

h̃e,r
j,k,l,i xj,k,l,i + h̃e,r

l,i,j,k (1− xj,k,l,i)

∀e ∈ {1, . . . , Er}
∀r ∈ {1, . . . , R},

γr ≥ 0 ∀r ∈ {1, . . . R},

t0 = 0

ti ≥ 0 ∀ i > 0.

It is important, in regards to the solution methodology, that changes to the objective function
probably means that heuristics found in Subsection 5.2.2 are not representative to the problem
anymore. Furthermore it is also important to note that if this new variable is not minimized
(or stays constant, i.e. he,r

i = 0) then the makespan might not give the correct times in respect
to the objective function.

A practical example of what could be added is a delay term γ to the objective function with
the constraints γ ≥ tj− ti−uij ∀(i, j) ∈ F . For this example when taking the makespan it also
minimizes the γ and most of the heuristics still have meaning if γ is included in the heuristics.

64

Appendix C

Algorithms

C.1 Changes to VNS functions
The following algorithms are a modification of the algorithms in 3.3 so that they can be used
in 5.2.
Algorithm 11 Best Improvement
Within a neighbourhood N find the best improvement ξ′ ∈ N compared to ξ such that ĝ(ξ′) ≤ ĝ(ξ).
If none is found return ξ.

1: Assume: ĝ: objective function, where z = ĝ(•)
2: Require: ĝ(unsolvable) =∞:

3: Function BestImprovement(ξ, N)
4: Input: N: The neighbourhood to be evaluated
5: Output: ξ: The new solution

6: For ξ′ in N Do
7: If ĝ(ξ′) < ĝ(ξ) Then
8: ξ ← [ξ′
9: End If

10: End For
11: Return S
12: End Function

65

Appendix C. Algorithms C.1. Changes to VNS functions

Algorithm 12 Shaking
Given a solution ξ generate a random solution ξ′ from the NrTR(ξ, r) neighbourhood with r(k) random
trains rerouted.

1: Assume: T : Trains
2: Pα: Found by path search
3: r(k):

4: Function Shake(ξ, k)
5: Input: ξ: The current candidate
6: k: The neighbourhood to be rerouted
7: Output: ξ: The new candidate

8: A← [∅
9: For i = 0, . . . , r(k) Do

10: α← [random train α ∈ T \A
11: Add α to A ▷So that a train is not rerouted twice
12: p← [random p ∈ Pα

13: Reroute train α with route p in ξ
14: End For
15: Return ξ
16: End Function

Algorithm 13 VND (Variable Neighbourhood Decent)
The modified verison of the VND algorithm, see Algorithm 5, for the PCR problem. It has been
modified to use the restricted neighbourhood, see Algorithm 9, to investigate the search space.

1: Assume: Tmax: The maximum computation time
2: Require: rmax, hmax: Corresponding to kmax

3: Function VND(ξ, kmax)
4: Input: ξ: The initial candidate
5: kmax: The maximum reroutes per heuristic
6: Output: ξ: The current best solution

7: Repeat
8: k ← [1; ξ′′ ← [ξ
9: Repeat

10: N← [BuildRestNeigh(ξ, k) ▷This is NRN(ξ, r,Hh)
11: ξ′ ← [BestImprovement(ξ, N)
12: (ξ, k)←[NeighbourhoodChange(ξ, ξ′′, k)
13: Until k = kmax
14: T ←[CPUTime()
15: Until T > Tmax
16: Return ξ
17: End Function

66

Appendix C. Algorithms C.1. Changes to VNS functions

Algorithm 14 General VNS
The modified version of the General VNS algorithm, see Algorithm 7, for the PCR problem. It has
been modified to handle the possibility that ξ′ isn’t necessarily a feasible candidate. It also changed
to use the modified the shake, Algorithm 12, and modified VND, algorithm 13.

Assume: kmax: The maximum amount of investiaged neighbourhoods
k′max: The maximum amount of investiaged neighbourhoods for the VND
N: The neighbourhood structures
Tmax: Maximal runtime

Require: rmax, hmax: corresponding to kmax
r′max, h′

max: corresponding to k′max

Function GVNS(ξ)
Input: ξ: The initial feasible solution
Output: ξ: The best found feasible solution

Repeat
k ←[1
Repeat

ξ′ ← [Shake(ξ, k) ▷This is Shake(NrTR(k, r)) for r(k)
If ξ′ is infeasible Then Continue
ξ′′ ← [VND(ξ′, k′max)
(ξ, k)← [NeighbourhoodChange(ξ, ξ′, k)

Until k = kmax
T ← [CPUTIME()

Until T > Tmax
Return ξ

End Function

Algorithm 15 Basic VNS
The modified version of the Basic VNS algorithm, see Algorithm 6, for the PCR problem. It has been
changed to use the restricted neighbourhood, Algorithm 9, and the modified shake, Algorithm 12, to
investigate the search space. It also takes in consideration that ξ′ isn’t necessarily a feasible candidate.

1: Assume: kmax: The maximum amount of investigate neighbourhoods
2: N: The neighbourhood structures
3: Tmax: The maximal runtime
4: Require: rmax, hmax: Corresponding to kmax

5: Function BVNS(ξ)
6: Input: ξ: The initial feasible solution
7: Output: ξ: The best found feasible solution

8: Repeat
9: k ← [1

10: Repeat
11: ξ′ ← [Shake(ξ, k) ▷This is Shake(NrTR(k, r))
12: If ξ′ is infeasible Then Continue
13: N← [BuildRestNeigh(ξ′, k) ▷This is NRN(ξ

′, r,Hh)
14: ξ′′ ← [BestImprovement(ξ′, N) ▷Changed from FirstImprovement
15: (ξ, k)←[NeighbourhoodChange(ξ, ξ′, k)
16: Until k = kmax
17: T ←[CPUTIME
18: Until T > Tmax
19: Return ξ
20: End Function

67

Appendix C. Algorithms C.1. Changes to VNS functions

Algorithm 16 FH VNS
The modified version of the FH VNS algorithm, see Algorithm 8, for the PCR problem. It has been
changed to use the restricted neighbourhood, Algorithm 9, and the modified shake, Algorithm 12, to
investigate the search space. It also takes in consideration that ξ′ isn’t necessarily a feasible candidate.

Assume: kmax: The maximum amount of investiaged neighbourhoods
N: The neighbourhood structures for different k
Tmax: Maximal runtime

Function FHVNS(ξ)
Input: ξ: The initial feasible solution
Output: ξ: The best found feasible solution

Repeat
k ←[1
Repeat

ξs ←[ξ
For l = 1 to k Do

ξ′ ← [Shake(ξ, k) ▷This is Shake(NrTR(k, r))
If ξ′ is infeasible Then Continue
N←[BuildRestNeigh(ξ′, k) ▷This is NRN(ξ, r,Hh)
ξ′′ ← [BestImprovement(ξ′, N) ▷Changed from FirstImprovement
ξ ← [KeepBest(ξ, ξ′′) ▷Returns best ξ, ξ′′ according to ĝ(ξ), ĝ(ξ′′)

End For
(ξ, k)← [NeighbourhoodChange(ξs, ξ, k) ▷Allways

Until k = kmax
T ← [CPUTIME

Until T > Tmax
Return ξ

End Function

68

Appendix C. Algorithms C.2. Path Searching

C.2 Path Searching

Algorithm 17 Dijkstra’s Algorithm
Dijkstra’s Algorithm on our network graph GN . Finds the shortest path, accounting for penalties,
from mfrom to some node mto ∈Mto.

Assume: GN : Network graph, with nodes M and edges E

Function Dijkstra(mfrom, Mto)
Input: mfrom: Node to search from, also known as the source

Mto: Set of destination nodes, also known as targets
Output: p: Path from mfrom to some node mto ∈Mto

Q← [M
costs[m] ← [∞, for all m ∈M
links[m] ← [null for all m ∈M
costs[mfrom] ← [0
While |Q| > 0 Do

mi ←[node in Q with minimum costs[mi]
Remove mi from Q
If mi ∈Mto Then

mto ← [mi

Break
End If
For each edge eij ∈ E from mi to a neighbour mj Do

cost ← [costs[mi] +tα,min
i + tpenalty

i,j

If cost < costs[mj] Then
costs[mj] ← [cost
links[mj] ← [mi

End If
End For

End While
p← [path containing only mto
m←[mto
While m ̸= mfrom Do

m←[links[m]
Prepend m to p

End While
Return p

End Function

69

Appendix C. Algorithms C.2. Path Searching

Algorithm 18 Penalizing Dijkstra Path Search
A algorithm to find a number of paths using Dijkstra such that newly paths attempt to avoid traveling
similar paths by changing the penalty. This is done by locally increasing the penalty in the Dijkstra
algorithm by the time per node for all edges each time a previous path has passes that edge.

Function PenalizingDijkstra(mfrom, Mto, numDesired)
Input: mfrom: Node to search from, also known as the source

Mto: Set of destination nodes, also known as targets
numDesired: Number of paths that are desired

Output: paths: Collection of possible paths from mfrom to nodes in Mto

paths ←[empty set of paths
Loop numDesired times

path ← [Dijkstra(mfrom, Mto)
Add path to paths
v := path.time() / path.numberOfNodes()
For each edge eij taken in path Do

Increase tpenalty
i,j by v for remaining invocations of Dijsktra

End For
End Loop
Return paths

End Function

Algorithm 19 Loop Erased Random Walk
Find a number of random paths from start to end.

Function LoopErasedRandomWalk(mfrom, Mto, numDesired)
Input: mfrom: Node to search from, also known as the source

Mto: Set of destination nodes, also known as targets
numDesired: Number of paths that are desired

Output: paths: Collection of possible paths from mfrom to nodes in Mto

paths ←[empty set of paths
Loop numDesired times

n← [mfrom
Repeat

n′ ← [random neighbour accessible from n
links[n] ←[n′

n← [n′

Until n ∈Mto

n← [mfrom
path ← [path containing only n
Repeat

n← [links[n]
Append n to path

Until n ∈Mto
Add path to paths

End Loop
Return paths

End Function

70

Appendix D

Operators and Symbols

This appendix is here to clarify what the operators and symbols used in the thesis mean, and
is intended to be a convenient reference.

D.1 Operators
a ∈ B denotes that a is an element of the set B.

a /∈ B denotes that a is not an element of the set B.

a←[b assignment, the value b is assigned to a.

∀,∃,∃! are quantifiers meaning “for all”, “exists”, and “exists exactly one”, respectively.

|A| denotes cardinality of A, i.e., the number of elements in the set A.

∥p∥L denotes the measure equal to the total length of a path p.

MT denotes the matrix transpose of the matrix M .

a ∼ b denotes that a similar to b. It is mainly used to show that two paths or nodes
represent the physical thing, where one of then belongs to the Alternative Model
and the other to the Network model.

a a′ denotes that arcs a and a′ have to be chosen the same way; see Subsection 4.2.3.

71

Appendix D. Operators and Symbols D.2. Symbols

D.2 Symbols

Section 3.1 – Mixed Integer Linear Programming (MILP)
z is the objective variable of an optimization problem. It is equal to the objective

function.

Section 3.2 – Alternative Graphs
GA is an alternative graph, where GA = (N ,F ,A), representing a pacing or scheduling

problem.
N is the set of nodes in the alternative graph GA.
F is a set of fixed arcs in GA.
A is a set of alternative arcs in GA.
n is a node n ∈ N .
t is a time, associated with a node n in GA.

Subsection 3.2.1 – Fixed Arcs
f is a fixed arc, where f ∈ F .
u is the weight of a fixed arc.
ℓ(·, ·) denotes a makespan in GA. The makespan is the longest path between two nodes

ni and nj in GA.
n0 is a virtual node in GA that always has time t0 = 0.

Subsection 3.2.2 – Alternative Arcs
a is an alternative arc a ∈ A.
a∗ is the alternative arc that is paired with a, and (a∗)∗ = a. a∗ is also known as the

”conjugate” of a.
w is the weight of an alternative arc.

Section 3.3 – Variable Neighbourhood Search
N(·) is an abstract neighbourhood.
N is a specific neighbourhood.
ξ is a feasible solution.
S is a value in the solution space.
Ξ is the set of feasible points is S.
g(·) is the objective function such that z = g(ξ).
ξg is a global minimum to g.
ξl is a local minimum to g.
ξ
⋆ is an approximation of the global minimum ξg.

72

Appendix D. Operators and Symbols D.2. Symbols

k is the index of the neighbourhood.
kmax is the maximum number of neighbourhoods.
T is the current elapsed real time.
Tmax is the maximum elapsed real time permitted.

Section 4.1 – Network Model
GN is a network graph, where GN = (M, E , C), which describes the layout of the

physical rail.
M is the set of nodes in the network graph GN .
E is the set of (directed) edges in the network graph GN .
C is the set of conflicts in the network graph GN . See Subsection 4.1.1.
m is a node in M.
mi is a specific node in M.
e is an edge in E .
c is a conflict c ∈ C. See Subsection 4.1.1.
T is the set of trains.
τ1, τ2, . . . The train in T .
α, β refer to two different, arbitary trains in T .
Pα is the set of all valid paths for train α. As an implementation detail, the Pα sets

that the implementation works with will generally be subsets of the true Pα, since
computation of all valid paths may be expensive.

P is a set of paths for all trains in T such that there is a complete bijection between
T and P .

p, q refer to paths.
pα refers to path p taken by train α, in cases where train properties are relevant. By

convention, train α will usually take path p and train β will usually take path q.

Subsection 4.2.1 – Alternative Graph Construction
P ′ is a set of paths in the alternative graph GA and corresponds to P in GN .
p′ is a path in the alternative graph GA and corresponds to path p in GN , and is thus

often written without the apostrophe.
np′

e+1 is a virtual node after the end of every path in GA.

tα,enter is the constant initial time tαp
′

1 for each train when it enters the network and begins
being modelled and obstructs other trains.

fp
i is the fixed arc f ∈ F from the i-th node of p to its successor.

tα,wait is a wait time for train α from when the train enters the network until it may start
moving.

tα,dwell is a dwell time for train α from when the train reaches its destination until it leaves
the network.

73

Appendix D. Operators and Symbols D.2. Symbols

I, J are conflict intervals on some specific paths, given a particular conflict.
φ is an operator/function that gives the “release node” of a given node on a path.

Subsection 4.2.2 – Train Length and Moving Block
lα is the length of train α ∈ T

Subsection 4.2.3 – Choice Couplings
K is a coupling, which is a set of arcs a ∈ K such that for all arcs a, a′ ∈ K ⇒ a a′.

See Appendix D.1 and Subsection 4.2.3 for the definition of .
K is the set of all couplings K.

Subsection 4.2.4 – Schedule graph
GS is a schedule graph, which is an alternative graph where some number of alternative

arcs have been selected.
N is the nodes of GS, the same nodes as in GA.
S is the schedule of a scheduling graph GS.
CP , CP

α is the priority for a path (train α).
ℓS(ni, nj) is the makespan between nodes N i and N j in the graph GS identified by the

schedule S.

Chapter 5 – Solution Methodology
ĝ(ξ) is a approximate solution of g(ξ).
ξ̂ is a candidate solution (or simply candidate) to g, not necessarily feasible.

Section 5.2 – VNS
NrTR(ξ̂, r) is the complete r reroute neighbourhood. It is the neighbourhood where r number

of trains have been rerouted from a given candidate ξ̂.
r is the number of trains to be rerouted, where r ≤ rmax.
rmax is the maximum number of trains to be rerouted during the VNS algorithm. It is

constrained by rmax ≤ |T |
NRN is the restricted neighbourhood to be investigated. It is defined as a subset of

NrTR(ξ, r).
L is the number of desired candidates in the restricted neighbourhood, such that

|NrTR(ξ, r)| ≤ L.
H is an abstract heuristic measure, where H ∈ H, used to evaluate the score of a

train s(α) during the construction of NRN.
H is the set of abstract heuristic measures.
h is the index of the heuristic measure to be used.
hmax is the number of heuristics to be used, where h ≤ hmax = |H|.

74

Appendix D. Operators and Symbols D.2. Symbols

s(α) is the score for a train given a heuristics H.

75

Appendix D. Operators and Symbols D.2. Symbols

76

Bibliography

[1] P. Tormos, A. Lova, F. Barber, L. Ingolotti, M. Abril, and M. A. Salido, “A genetic
algorithm for railway scheduling problems,” in Metaheuristics for Scheduling in
Industrial and Manufacturing Applications, F. Xhafa and A. Abraham, Eds., Springer,
2008, pp. 255–276. doi: 10.1007/978-3-540-78985-7_10.

[2] L. Cadarso and Á. Marín, “Improving robustness of rolling stock circulations in rapid
transit networks,” Computers & Operations Research, vol. 51, pp. 146–159, 2014. doi:
10.1016/j.cor.2014.05.007.

[3] A. Mascis and D. Pacciarelli, “Job-shop scheduling with blocking and no-wait
constraints,” European J. of Operational Research, vol. 143, pp. 489–517, 2002. doi:
10.1016/S0377-2217(01)00338-1.

[4] A. D’Ariano, D. Pacciarelli, and M. Pranzo, “A branch and bound algorithm for
scheduling trains in a railway network,” European J. of Operational Research, vol. 183,
pp. 643–657, 2007. doi: 10.1016/j.ejor.2006.10.034.

[5] F. Corman, A. D’Ariano, D. Pacciarelli, and M. Pranzo, “A tabu search algorithm for
rerouting trains during rail operations,” Transportation Research Part B, vol. 44,
pp. 175–192, 2010. doi: 10.1016/j.trb.2009.05.004.

[6] M. Samà, A. D’Ariano, D. Pacciarelli, and F. Corman, “Lower and upper bound
algorithms for the real-time train scheduling and routing problem in a railway network,”
Elsevier, 2016. doi: 10.1016/j.ifacol.2016.07.036.

[7] M. Samà, A. D’Ariano, F. Corman, and D. Pacciarelli, “A variable neighbourhood
search for fast train scheduling and routing during disturbed railway traffic situations,”
Computers & Operations Research, vol. 78, pp. 480–499, 2017. doi:
10.1016/j.cor.2016.02.008.

[8] N. Andréasson, A. Evgrafov, M. Patriksson, Z. Nedělková, K. Sou, and M. Önnheim, An
Introduction to Continuous Optimization — Foundations and Fundamental Algorithms.
Nov. 2016, isbn: 978-91-44-11529-0.

[9] P. Hansen, N. Mladenović, and J. A. Moreno Pérez, “Variable neighbourhood search:
Methods and applications,” 4OR, vol. 6, pp. 319–360, 2008. doi:
10.1007/s10288-008-0089-1.

[10] J. Desrosiers and M. Lübbecke, “A primer in column generation,” in. Mar. 2006,
pp. 1–32. doi: 10.1007/0-387-25486-2_1.

[11] G. Şahin, R. Ahuja, and C. Cunha, “Integer programming based approaches for the
train dispatching problem,” Sabanci University, Istanbul, Turkey, 2008, Technical
Report.

[12] J. Lundgren, M. Rönnqvist, and P. Värbrand, Optimization. Lund, Sweden:
Studentliteratur, 2010, isbn: 978-91-44-05308-0.

77

https://doi.org/10.1007/978-3-540-78985-7_10
https://doi.org/10.1016/j.cor.2014.05.007
https://doi.org/10.1016/S0377-2217(01)00338-1
https://doi.org/10.1016/j.ejor.2006.10.034
https://doi.org/10.1016/j.trb.2009.05.004
https://doi.org/10.1016/j.ifacol.2016.07.036
https://doi.org/10.1016/j.cor.2016.02.008
https://doi.org/10.1007/s10288-008-0089-1
https://doi.org/10.1007/0-387-25486-2_1

Department of Mathematical Sciences
Chalmers University of Technology
Gothenburg, Sweden, 2020
www.chalmers.se

www.chalmers.se

	Preamble
	Introduction
	Problem Description
	Literature Review
	Restrictions and Scope

	Theory
	Mixed Integer Linear Programming (MILP)
	Alternative Graphs
	Fixed Arcs
	Alternative Arcs
	Alternative Graphs as an MILP Problem

	Variable Neighbourhood Search
	Variable Neighbourhood Decent (VND)
	Basic VNS
	General VNS
	FH-VNS

	Model Description
	Network Model
	Conflicts
	Associated Properties

	Scheduling Model
	Alternative Graph Construction
	Train Length and Moving Block
	Choice Couplings
	Schedule graph

	MILP Model

	Solution Methodology
	Path Search
	VNS
	Neighbourhood Generation
	Neighbourhood Heuristics

	Constructing Couplings

	Implementation and Tests
	Results
	Discussion and Further Work
	Performance
	Generality
	Applicability

	Conclusion
	Complications
	Stop Rules
	Timed Lock

	General Objective function
	Algorithms
	Changes to VNS functions
	Path Searching

	Operators and Symbols
	Operators
	Symbols

	Bibliography

