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Modelling and Path Tracking Control of an Autonomous Bicycle
CÉCILE SAVOYE
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Chalmers Mechatronics group is currently developing a self-driving bicycle. The
purpose of this new type of vehicle is to help in testing autonomous cars, where it
is meant to replace a human biker.

This Master’s thesis project focuses on the design and performances of the balancing
and path tracking control loops.

The description of the balancing control development methodology enables a me-
thodical investigation plan to improve its performances. The bicycle’s model is
corrected by improving the definition of the mass distribution. It results in a suc-
cessful balance of the bicycle during test drives.

The position estimation is computed by a Kalman filter combining the measure-
ments of velocity and position. The implementation of this filter in simulation
demonstrates the accuracy of the position estimation which leads to a robust con-
trol of trajectory.

Indicators and test cases are defined to measure the performance of the path track-
ing control in simulation. The purpose is to easily assess the severity of the test
cases and to compare the performances predicted in the simulation with the ones
which will be obtained during the test drives.

In conclusion, the contributions of this Master’s thesis on the model’s accuracy
investigation and position feedback loop allowed to improve the balancing of the
bicycle, and to implement a robust path tracking control. Performances of balancing
control have been assessed in test drives. As for path tracking control, performances
have been estimated in simulation and the test cases are ready for the real test
drives.

Keywords: simulation, model, control, balancing, path tracking, performances.
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1
Introduction

1.1 Technical Background

Studies about autonomous bicycles can be classified according to their various pur-
poses and methodologies.

Purpose
The purposes of these studies are either to aid children to ride a bicycle [2], to
discharge the rider of driving the bicycle (as in autonomous cars for example) [3]
or to develop a solution for autonomous car test drives, as the one conducted by
Chalmers University [1] and Mälardalen University [4].

In the context of autonomous vehicles, the design of safe systems is very complex.
A great part of this complexity is due to the many variables composing the traffic,
such as pedestrians, bicycles, cars, and their individual behaviour.

In order to ensure safe testing of this new kind of vehicle, the autonomous bicycle is
meant to replace the human biker. To do so, the design of this bicycle has to show
a similar behaviour to the one of an ordinary bicycle, to be able to balance itself
and to track a given path.

Methodology
The work of N. Tamaldin and al. on the design of self-balancing bicycles [5] and
the work of Kiattisin Kanjanawanishkul on controller design for autonomous bicy-
cles [6] classify balancing methodologies for autonomous bicycles in four categories:
Control Moment Gyroscope, Mass Balancing, Steering Control and Reaction Wheel.
Universities of Cornell [3] and Tsinghua [7] chose the Steering Control methodology
for their project and succeeded in balancing their bicycle and performing turns with
it. Therefore, Chalmers’ project is also based on this methodology and aims for a
positive result as well.

Concerning the physical modelling of the bicycle, the work of J. Åström and al. [2]
as well as the work of U. Erdinç [1] use a point of mass model. As explained in
Section 1.3, this master thesis investigates a more realistic modelling of the bicycle,
taking into account the distribution of mass.
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1. Introduction

1.2 Project Background
Chalmers Mechatronics group is currently developing an autonomous bicycle. This
autonomous bicycle project has been running since autumn 2017 and is part of the
collaboration between Chalmers University, Mälardalen University, Volvo Cars, As-
taZero and Cycleurope. As Mälardalen University is also building a self-driving
bicycle, this enables sharing problems and progress between both groups.

At Chalmers University, earlier contributions addressing the mechanical and elec-
tronic features were made by several students. The development and the implemen-
tation of the control algorithms on the autonomous bicycle are still in progress and
need some improvements. Details of the previous work can be found in [1].

1.3 Contributions of this Master’s Thesis
The bicycle’s geometrical parameters, the actuators and sensors enabling its au-
tomation, the simulation and test environments are introduced in Chapter 2.

The first contribution of this Master’s Thesis is the improvement of the balancing
of the bicycle, by setting up an investigation plan based on the balancing control
development methodology. The model of the bicycle is redefined so that it takes the
distribution of mass into account. This more realistic model, together with the ap-
propriate tuning of the Linear Quadratic Regulator and the correction of the code,
leads to a better balancing of the bicycle during test drives. This contribution is
presented in Chapter 3.

The second contribution is the design of a realistic path tracking control. Position
measurements are included and combined to velocity measurements in a Kalman
filter to obtain an accurate position estimation in the control feedback loop. The
impact of the model’s accuracy is also assessed for path tracking control. This con-
tribution is detailed in Chapter 4.

The third contribution is the development of a frame to assess the path tracking per-
formances. It includes the computation of indicators comparing the bicycle’s path
to the reference. On the other hand, it defines test cases based on which predicted
behaviour in simulation and test drive results can be compared. This contribution
is described in Chapter 5

2



2
Overview of the Autonomous

Bicycle

This Chapter gives an overview of the autonomous bicycle: the bicycle’s model,
the actuators and sensors integrated in the bicycle, the simulation environment
describing the control strategy and the test environment in which the test drives are
performed.

2.1 Bicycle

2.1.1 Geometrical Parameters
The bicycle is described by its geometrical parameters in order to create a represen-
tative model in simulation. In Figure 2.1, the roll angle ϕ is defined. It is monitored
to ensure the balancing of the bicycle.

 

φ 

gravity 
z 

y x 

Figure 2.1: Front view of the bicycle – definition of the roll angle. [1]

In Figure 2.2, the main geometrical parameters of the bicycle are represented:
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2. Overview of the Autonomous Bicycle

• hIMU : height of the Inertial Measurement Unit (IMU)

• h : height of the bicycle’s Centre of Mass (CM)

• d : horizontal distance from the centre of the rear wheel to the Inertial Mea-
surement Unit

• a : horizontal distance from the centre of the rear wheel to the Centre of Mass

• b : distance between the rear and front wheel points of contact on ground

• c : fork trail

• λ : fork angle

These parameters are used in the equations of the model, which are presented in
Section 3.1.

 

CM 

IMU 

λ 

c 

b 

d 

hIMU 

h 

a 

x 

z 

y 

Figure 2.2: Side view of the bicycle - Definition of the geometrical parameters. [1]

In Figure 2.3, the bicycle is shown in the global coordinates system which is used to
compute the trajectory and perform the path tracking control. Several angles are
also defined:

• δ : steering angle of the handlebar

• β : angle of the Centre of Mass velocity with respect to the longitudinal axis
of the bicycle

• ψ : yaw angle
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2. Overview of the Autonomous Bicycle

 

CM 

b 

a 

v 

δ 

Ψ 

β 

X 

Y 

x 

y 

Figure 2.3: Top view of the bicycle - Definition of the global coordinates system
and steering angle. [1]

2.1.2 Actuators and Sensors

Different actuators and sensors are implemented on the bicycle to control it and
to observe its response. Figure 2.4 shows all actuators and sensors as well as their
position on the bicycle. Figure 2.5 defines the inputs and outputs of the bicycle given
by the actuators and sensors. The links between both Figures are the following:

• The forward velocity actuator is the built-in motor of the electric bicycle. It
applies the reference velocity vref to the bicycle.

• The steering motor is responsible for the steering rate δ̇ref applied to the
handlebar.

• The encoder measures the steering angle δ.

• The IMU (Inertial Measurement Unit) is a combination of an accelerometer
and a gyroscope so it records the linear accelerations and angular rates in the
three directions. These measurements are used to obtain the roll rate ϕ̇ and
the roll angle ϕ estimations.

• The Hall effect sensor is combined with neodymium magnets to estimate the
bicycle’s velocity.

More detailed information about the actuators and sensors implemented on the
bicycle can be found in [1] as well as their validation.
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2. Overview of the Autonomous Bicycle

IMU

Forward 
Velocity 
Motor

- Actuator

Hall 
Sensor

Encoder

.

Steering 
Motor

- Sensor
Legend:

Figure 2.4: Actuators and Sensors implemented on the bicycle.

Steering Motor

Encoder

IMU

Forward Velocity 
Motor

Hall Sensor

IMU

Figure 2.5: Bicycle’s system combining actuators and sensors - Inputs from actu-
ators, outputs from sensors.

2.2 Simulation Environment
In order to tune the bicycle controllers and assess their performances, a simulation
environment describing the autonomous bicycle system is implemented in Simulink.
Its structure is detailed in Figure 2.6.

Two reference blocks (in blue) are used as the inputs of the system, for velocity
and position. Velocity reference is independent of the control loops while position
reference is updated during path tracking simulations.
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2. Overview of the Autonomous Bicycle

Two controller blocks (in purple) are defined in the simulation environment, the
bicycle’s control being divided into: balancing control and path tracking control.
Balancing control uses a Linear Quadratic Regulator (LQR) while trajectory control
is performed by a cascade of PID controllers. These two control loops are reviewed
and improved in Chapters 3 and 4 respectively. Concerning the implementation of
the controllers, the details can be found in [1].
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Figure 2.6: Simulation environment of the bicycle - Definition of the control loops.
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2. Overview of the Autonomous Bicycle

Actuators and sensors described in Section 2.1.2 are modelled in the simulation
environment. Actuator blocks (in green) include the physical limitations of the mo-
tors (minimal and maximal velocity, dead band). Sensor readings (in orange) are
modelled by adding noise to the true values calculated in the physical bicycle model.

The physical bicycle model (in yellow) represents the dynamics of the autonomous
bicycle using the geometrical parameters defined in Section 2.1.1. It is used to deter-
mine the behaviour of the bicycle by calculating the states estimates and the actual
velocity. In reality, these values cannot be accessed. Only the outputs of the sensors
are available.

The global coordinates calculator block (in grey) transposes the measured velocity
and steering angle into the global coordinates system described in Figure 2.3. The
resulting parameters can then be used in the control loop for trajectory control.

Geometrical parameters, actuators limitations and settings of the simulations are
defined in a MATLAB file. It also enables the display of the results in different
plots and in a 3D animation (see Appendix A.1).

2.3 Test Environment
Tests performed on the bicycle were done both indoors and outdoors. A cycling
roller was used so that balancing control could be tested indoors. Nevertheless, test
drives were still done outdoors as the environments present substantial differences,
such as resistance on the wheels and space limitation.

The surfacing of the rolls is smoother compared to the ground on which the out-
doors tests are conducted. Therefore, the resistance acting on the wheels during
the test drives are different in the two cases. The initialisation of the test drives
is done by hand to help the forwards velocity motor to counteract ground resistance.

Indoors test environment is limited on two points compared to outdoors drive tests:
the steering angle amplitude and the lateral deviation. Both of these limitations are
due to the use of a roller and its geometry. There is no similar problem outdoors.

Comparing to simulation, there is a difference with the real-life test drives linked to
the ground resistance which is not taken into account for now.
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3
Adjustment of the Balancing of
the Bicycle: Improvement of the

Model

Instabilities of the balancing control are observed during test drives: the steering
angle presents increasing oscillations and the bicycle falls after a few seconds. There-
fore, the balancing control has to be improved.

In order to investigate the instabilities’ origins and to correct the balancing control
efficiently, a methodical plan is established based on the development methodology
of the balancing control (see Figure 3.1). First, a model is developed to represent
the autonomous bicycle and to describe its dynamics. Then, based on this model,
the controller is designed. Finally, the controller algorithm is implemented on the
real bicycle and tests can be performed.

Development of a 
realistic model

Design of the 
controller based on 

the model

Test: 
Balancing bicycle

In simulation In real-life

Implementation of 
the controller in the 

real bicycle

Figure 3.1: Balancing control development methodology.

From this methodology, the balancing instabilities encountered during the test drives
could be explained by three main causes (see Figure 3.2):

• The model developed in simulation to represent the bicycle is not realistic
enough for the controller to balance the real bicycle.

• The controller design is not robust enough to stabilise the real plant.
• The implementation on the bicycle contains errors.

This contribution details the investigation on the first cause: the physical model’s
accuracy. The second and third causes were handled by the other team members
and are not described here. However, for the sake of completeness, it should be
noted that the final results described in Section 3.2 incorporates the effects of the
three corrections.
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Non realistic model? Poor design of the controller?
Bad implementation 

on the bike?

Development of a 
realistic model

Design of the 
controller based on 

the model

Test result: 
Unbalanced 

bicycle

In simulation In real-life

Implementation of 
the controller in the 

real bicycle

Figure 3.2: Balancing control development methodology - Possible causes of in-
stability.

3.1 Improvement of the Physical Model
The physical model used to describe the autonomous bicycle in simulation defines
the system as a point of mass. In reality, the bicycle is made of various components
(frame, wheels, handlebar, . . . ). As a consequence, the moment of inertia of the
bicycle depends on all of these components’ mass and centre of mass position. A
realistic computation of the resulting moment of inertia is important as it constitutes
the first step in the definition of the system’s state space model, which itself also
influences the controller design (see Figure 3.3).

Development of a realistic model

In simulation

Design of the controller 
based on the system’s state 

space model

Design of the physical 
model representing the 

autonomous bicycle

Moment of Inertia 
Computation

System’s state 
space model

Figure 3.3: Balancing control – Development of a realistic model.

In order to keep a simple physical model and therefore a simple state space represen-
tation, the autonomous bicycle can be divided into two bodies: the bicycle and the
electronics box. This box contains the electronic boards, motor controllers, battery
and safety circuit that are needed for the automation of the bicycle. It is attached
to the bicycle’s frame above the rear wheel and weights approximately 12 kg.

The box representing approximately a quarter of the weight of the bicycle and its
position being offset compared to the bicycle centre of mass, the concern is that it
would make the "bicycle-box" system naturally less stable than the bicycle alone.
Therefore, it could represent an additional constraint to take into account in the
design of the balancing control. Proving this correlation is precisely the objective of
this Section.
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3. Adjustment of the Balancing of the Bicycle: Improvement of the Model

First, the influence of the physical model is illustrated by comparing different rep-
resentations of the bicycle’s model and their effect on the moment of inertia value:

• one point of mass model
• one volume model
• two volumes model

Then, the state space representation is computed for the two bodies model. Finally,
the simulation results for the point of mass model are compared to the two bodies
ones. The most accurate model, described by the two volumes, appears to present
bigger variation of the roll and steering angles for the same controller settings.

3.1.1 Comparison of the Models and their Influence on the
Computation of the Moment of Inertia

The objective of this Section is to improve the current model to make it more
representative of the reality and to be able to highlight the influence of the mass
distribution on the moment of inertia.

By describing the autonomous bicycle as a unique point of mass, the following
approximations are made:

• The system is closer to a body composed by numerous points of mass, rather
than a unique point of mass.

• The system involves numerous components. The bicycle and the electronics
box, by their mass and position, are the components that potentially influence
the moment of inertia the most, leading to the consideration of a two bodies
model.

3.1.1.1 Moment of Inertia Evaluation: from a Point of Mass Model to
a Volume Model

The first approximation which is studied is the volume model compared to the point
of mass.

The point of mass system is defined in Figure 3.4. It is shifted upwards by a length h
from the axis origin, representing the height of the bicycle’s centre of mass measured
from the ground.

.

y

z

x

ℎ

Point of mass

𝑚

Figure 3.4: Definition of the system as a point of mass.
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The volume model in the other hand is defined by its geometrical parameters: b is
the height along the axis z, c is the width along the axis y and h is the height of its
Centre of Mass (see Figure 3.5).

.

y

z

x

ℎ

CoM𝑏

𝑐

𝑚

Figure 3.5: Definition of the system as a volume of mass.

To compute the moment of inertia around the axis x, the Parallel Axis Theorem is
used. It states that the moment of inertia around an axis is equal to the inertia at
the centre of mass added to the inertia contribution due to the distance between the
centre of mass and the considered axis (3.1) [8]:

Jxx = JCoM +mh2 (3.1)

Where Jxx is the moment of inertia around the axis x, JCoM is the moment of inertia
around the centre of mass, m is the mass of the body and h is the distance between
the body’s centre of mass and the axis x.

For a point of mass, the inertia around the centre of mass is null as all the mass is
already located in that point. Thus, the equation of the inertia around the x axis
can be re-written (3.2).

Jxx = mh2 (3.2)

By defining the system as a volume, the inertia at the centre of mass must be
considered, and the moment of inertia takes the volume’s geometry into account:

Jxx 1 volume = JCoM +mh2 = m

12 (c2 + b2) +mh2 (3.3)

The comparison of the moments of inertia of both models (3.2) and (3.3) reveals
that the point of mass approximation does not take into account a term linked to
the geometry of the considered volume. We can already consider that the volume
of mass model is more realistic.
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3.1.1.2 Moment of Inertia Evaluation: from a One Volume Model to a
Two Volumes Model

So far, the influences of two main components (the bicycle and the electronics box)
have not been taken into account separately. As this model describes the geometry
of the bicycle more accurately, we can expect that a two volumes model would bring
even more realistic results. The purpose of this Section is to evaluate its impact on
the moment of inertia computation.

𝒎𝟐

ℎ2

ℎ1

𝑐1

𝑏1

𝑏2

𝑐2

𝒎𝟏

Figure 3.6: Definition of the system as two volumes.

The system described with two volumes is shown in Figure 3.6. As in the previous
section, the inertia calculus is based on the expression of the Parallel Axis Theorem
(3.1) as there is an offset between the centres of mass and the axis around which
the moment of inertia is calculated. The equation of the inertia around x for this
model becomes:

Jxx 2 volumes = JCoM1 +m1 h1
2 + JCoM2 +m2 h2

2 (3.4)

Where JCoMi is the moment of inertia around the centre of mass of volume i, hi is
the distance between the volume i’s centre of mass and the axis x, mi is the mass
of the volume i.

The moment at the centre of mass for a volume is defined by its geometrical param-
eters as in the previous Section. Thus, (3.4) becomes:

Jxx 2 volumes = m1

12 (c1
2 + b1

2) +m1h1
2 + m2

12 (c2
2 + b2

2) +m2 h2
2 (3.5)

To verify the accuracy of the moment of inertia equation for a two volumes model,
the equivalence between single volume and two volumes models is checked in case
of a homogeneous mass distribution in Appendix A.2.

The expression of the moment of inertia becomes more complex. It now depends
on the geometry of two bodies. The description of the bicycle could get even more
accurate by considering more volumes but a compromise has to be reached between
model’s accuracy and computation’s complexity.
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3.1.1.3 Comparison of All Models based on a Numerical Example

To get an appreciation of the two volumes model change compared to the point
of mass and single volume models, a numerical example is simulated. To do so,
the mass, geometry and centre of mass positions of the bicycle and of the box are
estimated:

• The bicycle and box are weighted to obtain their mass.
• The position of the box’s centre of mass is estimated as the centre point of its

volume.
• The position of the bicycle’s centre of mass is computed following the method

described in [9].
The different values are defined in Figure 3.7.

For the point of mass and one volume models, the parameters are computed as
follows:

m = m1 +m2; b = b1 m1 + b2 m2

m1 +m2
; c = c1 m1 + c2 m2

m1 +m2
; h = h1 m1 + h2 m2

m1 +m2

𝒎𝟐 = 𝟏𝟐𝒌𝒈

ℎ2 = 0,95𝑚

ℎ1
= 0,51𝑚

𝑐1 = 0,04𝑚

𝑏1 = 1𝑚

𝑏2 = 0,2𝑚

𝑐2 = 0,4𝑚

𝒎𝟏

= 𝟑𝟓𝒌𝒈

y

z

x

..

y

z

x

ℎ

CoM𝑏

𝑐

𝑚

Figure 3.7: Comparison of the models - Numerical example.

The moments of inertia are computed for each model:

Jxx point of mass = mh2 = 17, 46 kg.m2 (3.6)

Jxx 1vol = m

12 (c2 + b2) +mh2 = 20, 01 kg.m2 (3.7)

Jxx 2vol = m1

12 (c1
2 + b1

2) +m1 h1
2 + m2

12 (c2
2 + b2

2) +m2 h2
2 = 21, 94 kg.m2 (3.8)

The difference between the values of the moments of inertia for each model is signif-
icant, specifically comparing the point of mass model and the two volumes model.
Relatively, the inertia of the two bodies model is approximately 15% higher than
the point of mass model.

As a conclusion, the two volumes physical model describes reality better and its
influence on the moment of inertia value has just been demonstrated.
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3.1.2 Two Volumes Model State Space Representation
As demonstrated in the previous Section, the definition of the physical model in-
fluences the value of the moment of inertia. Therefore, it also influences the state
space representation. By defining the state space representation for the two volumes
model, simulations can be run with a model closer to reality.

This section details the state space representation development for the two volumes
model, extrapolating from the one used for the point of mass model in [1].

The starting point is the angular momentum of the system, using the moments
of inertia:

Lx = Jxxwx + Jxy wy + Jxz wz (3.9)

With Lx is the angular momentum around the axis x, Jxi is the moments of inertia
around the axis x and wi is the angular velocities.

x

z

y

𝑎2 𝑎1

𝑙2

𝑏2

𝑏1

𝑙1

Figure 3.8: Side view of the bicycle and definition of the two volumes geometry.

The angular velocities are defined by (see definition of the angles in Chapter 2):

wx = ϕ̇ (3.10)

wy = 0 (3.11)

wz = ψ̇ = v tan δeff
b

(3.12)

From Figure 3.8, the Parallel Axis Theorem is used to express the moment of inertia
(3.13) and product of inertia (3.14):

Jxx = m1

12 (c1
2 + b1

2) +m1 h1
2 + m2

12 (c2
2 + b2

2) +m2 h2
2 (3.13)
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Jxz = Jxz CoM1 −m1 a1 h1 + Jxz CoM2 +m2 a2 h2

= −m1 a1 h1 +m2 a2 h2
(3.14)

Values of Jxz CoMi can be neglected as the product of inertia for cuboids are approx-
imately null.

To ease the computations and the reading, the following simplifications are made,
considering the steering angle δ value stays relatively small:

δeff = δ sin λ (3.15)

tan δ ≈ δ (3.16)
Where δeff is the effective steering angle. This angle must be defined as the front
wheel does not touch the ground vertically under the steering bar. Therefore, the
fork angle induces a difference between the steering angle on the handlebar and the
effective steering angle on the wheel.

Finally, the expression of (3.9) becomes:

Lx =
[m1

12 (c1
2 + b1

2) +m1h1
2 + m2

12 (c2
2 + b2

2) +m2h2
2
]
ϕ̇

−
[
m1a1h1 −m2a2h2

] v δ sin λ
b

(3.17)

The definition of the derivative of the system’s angular momentum described
in [1] is the second step:

dLx
dt

= (m1h1 +m2h2) g sinϕ+ (m1h1 +m2h2)
v2 tan δeff

b

− (m1a1 +m2a2)
c g δeff
b

(3.18)

With the different terms:
• Torque generated by gravity
• Torque due to centrifugal force
• Torque due to the geometry of the front fork. For c 6= 0, the centre of mass is

shifted when the fork is turned

To ease the computation and the reading, simplifications from (3.15), (3.16) as well
as (3.19) are applied.

sinϕ = ϕ (3.19)
By replacing these expressions in (3.18), the derivative of the system’s angular mo-
mentum becomes:
dLx
dt

= (m1h1 +m2h2) g ϕ+ (m1h1 +m2h2)
v2δ sin λ

b
− (m1a1 +m2a2)

c g δ sin λ
b

= (m1h1 +m2h2) g ϕ+ δ sin λ
b

[
v2 (m1h1 +m2h2)− c g(m1a1 +m2a2)

]
(3.20)
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The third step is the derivation of (3.17) which leads to the following expression:

dLx
dt

=
[m1

12 (c1
2 + b1

2) +m1 h1
2 + m2

12 (c2
2 + b2

2) +m2 h2
2
]
ϕ̈

−
[
m1 a1 h1 −m2 a2 h2

] sin λ
b

(v̇ δ + v δ̇) (3.21)

For readability reasons further in the document, the orange and purple expressions
are defined as follows:

A =
[m1

12 (c1
2 + b1

2) +m1 h1
2 + m2

12 (c2
2 + b2

2) +m2 h2
2
]

(3.22)

B =
[
m1 a1 h1 −m2 a2 h2

]
(3.23)

By definition, the expressions of the (3.20) and (3.21) are equal:

A ϕ̈−B sin λ
b

(v̇ δ + v δ̇) = (m1h1 +m2h2) g ϕ+ δ sin λ
b

[
v2 (m1h1 +m2h2)

− c g(m1a1 +m2a2)
]

(3.24)

A ϕ̈ = (m1h1 +m2h2) g ϕ+ δ sin λ
b

[
B v̇ + v2 (m1h1 +m2h2)− c g(m1a1 +m2a2)

]
+B

sin λ
b

v δ̇ (3.25)

For the same readability reasons, the light blue expression is defined as:

D =
[
B v̇ + v2 (m1h1 +m2h2)− c g(m1a1 +m2a2)

]
(3.26)

And considering v̇ ≈ 0, the state space form is given by:
ϕ̇δ̇
ϕ̈

 =

 0 0 1
0 0 0

(m1h1+m2h2)g
A

sinλD
bA 0


ϕδ
ϕ̇

+

 0
1

B sinλv
bA

 δ̇ (3.27)

For comparison, the state space representation for a point mass model is given by:
ϕ̇δ̇
ϕ̈

 =

0 0 1
0 0 0
g
h

sinλ (h v2−g a c)
bh2 0


ϕδ
ϕ̇

+

 0
1

a sinλv
bh

 δ̇ (3.28)

The 2 volumes model state space representation takes the mass distribution into
account (both masses, centres of mass position, geometries of the bodies), which
was not the case in the previous form.
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3.1.3 Simulation Results and Comparison of the Models
The two volumes model is implemented in Simulink in order to be tested and com-
pared to the point of mass model.

The balancing simulation results of both models are shown in Figures 3.9 (Point of
mass model) and 3.10 (Two volumes model), in the same conditions:

• Velocity of 3m/s
• Ideal initial conditions: ϕ0 = 2°, δ0 = 1°, ϕ̇0 = 0°/s
• Adjusted parameters of the balancing controller from controller settings inves-

tigation (see Figure 3.2): Q = diag([100 100 10]) and R = 42

Observations
Both Figures predict that the bicycle should remain stable for the whole duration
of the simulation. For the two volumes model, the oscillations of the roll and steer-
ing angles present higher amplitude and lower frequency than for the point of mass
model.

Conclusion
The amplitude and frequency differences observed between the roll and steering
angles of both models can be explained by the fact that the two volumes model con-
siders a higher momentum of inertia of the bicycle. This behaviour leads to longer
periods of time where the bicycle reaches the maximal roll rate values and a bigger
action on the steering angle in order to counteract this phenomenon.

The difference of behaviour of both models shows that the two volumes model is
preferred to describe the dynamics of the bicycle for balancing control as the point
of mass gives too optimistic results.

The LQR controller parameters being designed for a point of mass model and the
two volumes model representing the real plant more accurately, this means that
bigger oscillations will be observed when using these settings on the real bicycle.
Therefore, the model’s inaccuracy partially explains balancing instabilities of the
test drives.
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Figure 3.9: Balancing simulation of the point of mass model - Smaller amplitude
and higher frequency variations of the roll angle than for the two volumes model.
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Figure 3.10: Balancing simulation of the two volumes model - Higher amplitude
and lower frequency variations of the roll angle than for the point of mass model
showing the effect of the higher moment of inertia taken into account.
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3.2 Balancing Control: Test Drive Results
After implementing the correction of the model, the tuning of the controller setting
and the improvement of the implementation on the autonomous bicycle (following
the investigation plan of Figure 3.2), test drives are performed to assess the balanc-
ing capabilities of the bicycle. This section shows one of the results leading to a
successful balancing of the bicycle.

The conditions in which the test was performed are the following:
• Outdoors test environment
• Velocity = 3, 9m/s
• Initialisation by hand during the 5 first seconds. Then, the controller takes

over.
• Adjusted LQR settings: Q = diag([100, 100, 10]), R = 42

Observations
Figure 3.11 shows the steering and roll angles obtained during the test drive. Before
the second 5, the bicycle is balanced by hand while it is gaining speed. The steering
and roll angles are respectively 3° and -1° when then controller is activated.

Afterwards, the oscillations’ amplitude diminishes for both angles, illustrating the
balancing control action. When the roll angle gets more significant around the 16s
mark, the steering counteracts directly and the oscillations decrease once again. The
test drive was stopped manually as the test environment is limited in space.

Controller ON

Stabilising

Initialisation by hand

Stabilising

Figure 3.11: Balancing test drive results at 3, 9m/s - As the balancing control
is activated, the steering angle action stabilises the bicycle within 3 seconds as
highlighted in green for two examples.
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Conclusion
The measured steering and roll angles present higher variations than the simulations
but the bicycle remained balanced for the whole test duration. In conclusion, the
adjustments applied on the balancing control following the investigation plan led to
a successful balance control of the bicycle in real life test.
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4
Design of a Realistic Path

Tracking Control with Position
Measurement Feedback Loop

Path tracking is another important control implementation on the autonomous bi-
cycle. It is implemented in the simulation environment (not on the bicycle yet),
where the position of the bicycle is estimated by integrating the velocity (see Figure
2.6). The principal upgrade discussed in this Chapter is the addition of a position
measurement system combined to a filter, in order to improve the position estima-
tion.

First, the computation of position estimation is discussed : the integration of mea-
sure velocity leads to poor estimation results, getting worse over time. Then, a
direction position measurement system is added and the Kalman filter is chosen
on the basis of a simple example. After being tuned, the filter is integrated in the
autonomous bicycle simulation environment where the feedback loop and the path
tracking control are adapted appropriately. Finally, the implementation of the path
tracking on the bicycle is tested in simulation and the impact of the model’s accuracy
is investigated.

4.1 Computation of the Position Estimation
The position is estimated by integrating the velocity in simulation. The main prob-
lem about this method is that it cannot be implemented on the real bicycle without
issues. As the measurement of the velocity contains errors, their integration will
generate an increasing deviation of the position estimation in comparison to the
true position (see Figure 4.1).

Figure 4.1 illustrates this issue on the basis of a simple one dimension example.
The velocity is set to 3m/s for the 10 first seconds. Then, it is decreased back to
0. The true position is plotted in green and the position estimation obtained by
integrating the measured velocity is shown in blue. The measured velocity is biased
of 0.05m/s, representing the possible errors of the measurement. As explained in
the introduction of this Section, the integration of the measurement errors generates
the deviation of this position estimation with time.
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To avoid this problem, a direct position measurement system should be added on
the autonomous bicycle. However, the error generated on the position estimation of
this type of measurement system is usually significant (see Figure 4.1).

In conclusion, integration of velocity is accurate in high frequencies but not in low
frequencies and direct position measurement is accurate in low frequencies but not
in high frequencies. Therefore, a filter has to be implemented.
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Direct position measurement
Position estimation from integration of velocity
True position

Figure 4.1: Comparison of the position estimations with regards to the true po-
sition - Velocity integration curve shows increasing error - Direct position measure-
ment curve shows high frequency noise.

4.2 Processing of the Sensor’s Signals

As discussed in the previous Section, a filter has to be implemented as integration of
the velocity is not reliable and direct position measurements are usually quite noisy.

In order to choose the adequate filter, a set of three filters is tested on the basis of
the simple example described in the previous Section:

• Low Pass filter
• Complementary filter
• Kalman filter
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4.2.1 Low pass filter
This first filter simulated is the low pass filter. It is applied to the direct position
measurement to obtain a smoother estimation of the position by attenuating high
frequencies of the measurements.

The simulation results are shown on Figure 4.2. True position is plotted in light green
(following the same path as in Figure 4.1), direct position measurement is plotted
in red and low pass filter estimation is plotted in blue. The position estimation is
clearly delayed compared to the true position and direct measurement.
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Figure 4.2: Position estimation from filtered position measurement (low pass fil-
ter cut-off frequency fc = 0, 16Hz) - Significant delay of the position estimation
compared to the true position.

For the autonomous bicycle application, the position can change fast. In order to
track the trajectory properly, the controller has to get an accurate estimation in real
time. Therefore, a low pass filter is not suitable for path tracking control on the
autonomous bicycle.

4.2.2 Complementary filter
In order to combine the direct position measurement, and the integrated velocity
measurement, the complementary filter is presented here as an easy solution. A gain
is defined to set the influence of the estimations on the output signal of the filter
[10]:

x̂ = C x̂posmeas + (1− C) x̂intmeas vel (4.1)
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Where x̂ is the filtered position estimation, C is the complementary filter parameter
(0.5 < C < 1), x̂posmeas is the direct position measurement and x̂intmeas vel is the
integration of measured velocity.

The gain used in this simulation is set to 0.6, meaning that the filter gives more
importance to the position measurement than to the velocity integration.
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Figure 4.3: Position estimation from complementary filter, combining measured
velocity integration and position measurement for C=0.6 - Important noise and
deviation with time of the estimation compared to the true position.

The simulation results for this filter implementation can be observed on Figure
4.3. Disadvantages discussed previously can still be observed on the complementary
filter response: noisy position measurement and deviation of the integrated velocity
estimation. Modifying the gain only reduces one disadvantage while increasing the
other. Therefore, this filter is not suitable for the path tracking of the bicycle and
another filter should be investigated.

4.2.3 Kalman filter
When the states of a system can only be estimated by an observer, the states of a
system can only be determined indirectly, or their direct measurement is affected
by an important noise, the recommended choice is the Kalman filter [11]. This
filter presents a more complex theoretical background. Therefore, the first Section
summarises the essential equations defining the principle of the Kalman filter as
presented in [12]. Then, it is implemented on the simple example used until now.
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4.2.3.1 Kalman Filter Theory

The general state space representation of a system has the following expression:

xk+1 = Axk +B uk + wk (4.2)
yk = C xk +Duk + zk (4.3)

Where xk is the system’s state vector at time k, uk is the system’s input vector
at time k, wk is the process noise at time k, A is the state matrix, B is the input
matrix, yk is the output vector at time k, zk is the measurement noise at time k, C
is the output matrix and D is the feed-through matrix.

For the example developed in this Section, the state space representation defined by
(4.2) and (4.3) becomes: [

sk+1
vk+1

]
=
[
1 Ts
0 1

] [
sk
vk

]
+
[
wsk
wvk

]
(4.4)

[
ysk
yvk

]
=
[
1 0
0 1

] [
sk
vk

]
+
[
zsk
zvk

]
(4.5)

Where sk is the position state at the time k, vk is the velocity state at the time k,
wxk is the process noise on the state x at time k, zxk is the measurement noise on the
state x at time k and Ts is the sample time.

The Kalman filter uses the model to predict the a priori estimates of the states,
ŝ−
k+1 and v̂−

k+1: [
ŝ−
k+1
v̂−
k+1

]
=
[
1 Ts
0 1

] [
ŝ+
k

v̂+
k

]
(4.6)

P−
k = AP+

k−1A
T +Q (4.7)

Where P−
k is the a priori estimate noise covariance and Q is the process noise co-

variance.

Then, it updates the states’ estimation by combining the measurements to the a
priori estimations. As a result, the a posteriori estimates ŝ+

k and v̂+
k are obtained:

[
ŝ+
k

v̂+
k

]
=
[
ŝ−
k

v̂−
k

]
+
[
Ks
k

Kv
k

]( [
ysk
yvk

]
−
[
1 0
0 1

] [
ŝ−
k

v̂−
k

])

=
([

1
1

]
−
[
1 0
0 1

] [
Ks
k

Kv
k

]) [
ŝ−
k

v̂−
k

]
+
[
Ks
k

Kv
k

] [
ysk
yvk

] (4.8)

P+
k = (I −Kk C)P−

k (4.9)
Kk = P−

k C
T (C P−

k C
T +R)−1 (4.10)

Where x̂+
k is the update estimation of the state x at the time k, x̂−

k is the predicted
estimation of the state x at the time k, Kx

k is the Kalman’s gain for the state x at
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time k, P+
k is the a posteriori estimate noise covariance and R is the measurement

noise covariance.

The Kalman’s gains Kx
k are calculated in order to find the optimal a posteriori es-

timates with the minimum covariance. In the simulation environment, a Kalman
filter block can be used: it determines the optimal gains and computes the position
estimation obtained by (4.8). As shown in (4.10), the process and measurement
noise covariances (Q and R respectively) are needed to determine Kalman’s gain.
Thus, both covariances have to be defined.

The measurement noise covariance R is directly linked to the accuracy of the
measurement instruments. In our case, the velocity is measured by a Hall sensor
which the standard deviation is evaluated at ±0.056m/s in [1]. Therefore, the
covariance can be obtained as follows:

Rvelocity = E[z2 z
T
2 ] = σ2

velocity = (0, 056)2 = 0, 0031 (4.11)

As there is no position measurement system on the bicycle for now, this example
considers using a Global Positioning System (GPS) at first and the simulation results
will indicate if a more precise instrument is needed. In [13], the average error of
GPS is approximated at 0, 715m (in 95% of the cases for the month of May 2016).
Thus, this is the supposed accuracy used for the direct measurement system:

Rposition = E[z1 z
T
1 ] = σ2

position = (0, 715)2 = 0, 51 (4.12)

(4.11) and (4.12) are combined:

R =
[
0, 51 0

0 0, 0031

]
(4.13)

For the process noise covariance Q, it can be tuned in order to make the filter
output match the wanted results [14]. After several iterations, the following matrix
is obtained:

Q =
[
0, 0001 0

0 0, 1

]
(4.14)

4.2.3.2 Comparison of Position Estimation Results with Integrated Ve-
locity and Direct Position Measurement Estimations

The system’s state space representation and the noise covariance matrices being
determined, the filter is implemented in Simulink. As in (4.4), there is no input to
the system as shown in Figure 4.4.

Figure 4.5 shows the simulation results for the simple example where the estimations
can be compared to the true position:

• Integration of measured velocity (in blue)
• Direct position measurement (in red)
• Kalman filter (in black)
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Figure 4.4: Kalman filter - Simple example implementation in Simulink.

The filtered signal is close to the true position for the whole duration of the sim-
ulation. There is no deviation observed for the first 10 seconds. Afterwards, the
filtered position estimation presents a small offset.
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Figure 4.5: Kalman filter position estimation compared to measured velocity inte-
gration and direct position measurement - Kalman filter is much closer to the true
position than the integrated velocity and does not show high frequency noise like
direct position measurement.

As each estimation methodology generates different errors with regards to the true
path, Figure 4.6 compares the absolute error between the estimations and the true
position. First, the most significant error is the one generated by the direct posi-
tion measurement. Then, the deviation of the estimation from the integration of
measured velocity becomes more important, reaching 2, 5m after 47 seconds of sim-
ulation. With the Kalman filter, the error compared to the true position remains
under 0.5m.
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The comparison between the position estimations shows the positive effect of using
the Kalman filter.
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Figure 4.6: Absolute error between estimations and true position - Kalman filter
estimation shows the lowest error in average.

4.3 Implementation of the Kalman Filter in the
Feedback loop

In this Section, the position measurement system is implemented in the bicycle’s
simulation environment implying some changes on the position feedback loop de-
sign (see Figure 4.7).

In order to implement the position measurement and Kalman filter in the feedback
loop, the simplified system developed in Section 4.2.3.1 is slightly modified. In
the autonomous bicycle’s simulation environment, the position and the velocity are
given in two different directions x and y. Therefore, the model represented by (4.4)
and (4.5) becomes: 

sxk+1
syk+1
vxk+1
vyk+1

 =


1 0 Ts 0
0 1 0 Ts
0 0 1 0
0 0 0 1



sxk
syk
vxk
vyk

+


wsxk
wsyk
wvxk
wvyk

 (4.15)


ysxk
ysyk
yvxk
yvyk

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



sxk
syk
vxk
vyk

+


zsxk
zsyk
zvxk
zvyk

 (4.16)
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Where sxk and syk are the positions in directions x and y respectively and, vxk and vyk
are the velocities in directions x and y respectively.
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Figure 4.7: Modified simulation environment – Implementation of a Position Mea-
surement System and a Kalman Filter in the path tracking loop.
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The expressions of the a priori and a posteriori estimations involve more terms but
the principle remains the same as in the previous Section.

4.3.1 Validation of the Kalman Filter in the Feedback loop:
Simulation Results

The trajectory controller input in the simulation environment (Figure 2.6) is mod-
ified, the feedback loop being upgraded with the position measurement and the
Kalman filter (Figure 4.7). A first closed loop simulation is performed on a straight
path. The new implementation in the simulation environment is then assessed on
a circle path and illustrates the Kalman filter’s accuracy with regards to the actual
path compared to the other estimations.

The improved feedback loop considers velocity and position measurements with their
associated noise covariance. Both measurements are combined in a Kalman filter to
estimate the bicycle’s position.

Conditions
• Velocity: v = 3m/s
• Ideal initial conditions: ϕ0 = 0°, δ0 = 0°, ϕ̇0 = 0°/s
• Point of mass model
• LQR settings based on the point of mass model: Q = diag([100, 100, 10]),
R = 42

Observations
Figures 4.8 and 4.9 show the simulated bicycle path compared to the reference path:

• Reference path tracked by the bicycle (in blue).
• Variation of direct position measurement due to its noise (in green).
• Deviation with time of the measured velocity integration (in purple).
• Kalman filter estimation based on which the trajectory is controlled (in black).
• Actual position of the bicycle (in red).

The estimation from the Kalman filter is close to the actual path. The direct posi-
tion measurement shows a noisy estimation while the variations of the actual path,
the Kalman estimation and the velocity integration are similar. Yet, the position
estimation from the velocity integration deviates from the actual position towards
the end of the path.

To make the comparison easier, Figure 4.10 illustrates the errors generated on the
actual path by considering the integration of velocity and the Kalman filter estima-
tions. As the position is described in two directions, these errors are computed as
Euclidean distance which is defined as follows:

poserror =
√

(xest − xbicycle)2 + (yest − ybicycle)2 (4.17)

Where poserror is the position error, xest and yest are the coordinates of the estimated
position and, xbicycle and ybicycle are the actual coordinates of the bicycle.
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Figure 4.8: Simulation of straight path tracking - Kalman path estimation is the
closest to the actual bicycle path, while the noise of the direct position measurement
and the deviation of the integrated velocity are highlighted.
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Figure 4.9: Simulation of straight path tracking zoomed in - Kalman path estima-
tion is the closest to the actual bicycle path, while the noise of the direct position
measurement and the deviation of the integrated velocity are highlighted.
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Kalman estimation and integrated velocity both present relatively small errors in
the first 35 seconds. Then the deviation of the velocity integration is noticeable
and increases until the end of the simulation. Overall, the Kalman filter estimation
generates an error of less than 0.25m compared to the actual position.
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Figure 4.10: Comparison of the Euclidean distance error for straight path tracking
- Error of the Kalman filter estimation is lower than 0.25m for the whole duration
of the simulation. The integrated velocity estimation error is forever increasing and
is lower than for the Kalman filter estimation in the first 40 seconds.

Figures 4.11 and 4.12 show the sames results for a circular path. The Kalman filter
shows again an excellent performance, the estimation error remaining under 0.3m.

Conclusion
With a measured velocity and a GPS based position measurement, simulation re-
sults show excellent results of the Kalman Filter estimation of the bicycle’s position.
This allows the trajectory controller to track a reference path with an accuracy in
the range of less than 0.3m.
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Figure 4.11: Simulation of circle path tracking - Based on the Kalman filter esti-
mation, the bicycle is able to track the reference path closely.
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Figure 4.12: Simulation of circle path tracking zoomed in - Based on the Kalman
filter estimation, the bicycle is able to track the reference path closely.
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Figure 4.13: Comparison of the Euclidean distance error for circle path tracking
- Kalman filter estimation error is lower than for integrated velocity for the whole
duration of the simulation and stays under 0.3m.

4.4 Impact of the Model on the Path Tracking
Capabilities

In Section 3.1, a more realistic model was studied and generated significant changes
in the results of the balancing simulation. This section studies the impact of using
the two volumes model in path tracking simulations.

The simulation conditions are the following:
• Velocity: v = 3m/s
• Ideal initial conditions: ϕ0 = 0°, δ0 = 0°, ϕ̇0 = 0°
• Parameters of the LQR for balancing control:

– Q = diag([100 100 10]) and R = 42 for the point of mass model
– Q = diag([70 50 10]) and R = 42 for the two volumes model

Remark: the LQR is based on the point of mass model. The parameters are
different so that the two volumes model can balance properly for the whole
duration of the simulation.

Observations
Both models balance and track the reference path successfully with different ac-
curacy. Figure 4.14 shows small deviations of the bicycle of less than 0.2m on a
straight path when simulating the point of mass model. For the two volumes model,

36



4. Design of a Realistic Path Tracking Control with Position Measurement
Feedback Loop

Figure 4.15 illustrates much bigger variations of approximately 0.8m.

Conclusion
This simulation demonstrates the key influence of the moment of inertia on the
behaviour of the bicycle. Comparing both models, the point of mass is clearly opti-
mistic. This confirms the need for a better model (e.g. the two volumes model) in
order to predict the behaviour of the bicycle more realistically.

In consequence, to get a closer tracking of the reference path, the LQR should be
re-designed based on the two volumes model. The trajectory controllers might have
to be tuned to improve the tracking performance of the bicycle.
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Figure 4.14: Impact of the model on path tracking capabilities - Point of mass
model - The deviation of the bicycle path is in a range of 0.2m from the reference
path.
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Figure 4.15: Impact of the model on path tracking capabilities - Two volumes
model - The deviation of the bicycle path is in a range of 1m from the reference
path compared to 0.2m with the point of mass model. This illustrates the influence
of the higher moment of inertia of this more realistic model.
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5
Assessment of the Bicycle Path

Tracking Performance

In order to assess the path tracking performances of the autonomous bicycle, this
Chapter develops path tracking indicators and test cases.

Path tracking indicators are defined to compare performances between several tests
(to assess their severity), or between simulations and test drives (to evaluate the
accuracy of the simulation’s predictions).

Test cases are designed in order to test the bicycle path tracking capabilities in dif-
ferent situations, from basic (straight path) to more elaborated tracks (successive
changes of direction).

First, the path tracking indicators are defined. Then, several test cases are presented
and compared, showing the increasing difficulty of execution and variation of the
path tracking indicators.

5.1 Path Tracking Performance Indicators
Path Tracking Performance Indicators constitute a useful instrument to measure the
capability of the bicycle to follow a reference path. They are used for the following
purposes :

• For a given reference path, evaluate and compare the effects of different control
settings on the path tracking performance of the bicycle. This allows proper
tuning by simulation before running test drives.

• For a given bicycle configuration and controllers setting, evaluate (by simu-
lation) or measure (during test drives) its capability to follow several typical
trajectories. It identifies among those which ones are the most difficult to track.

Three different types of indicators have been defined:
• Maximal deviation (in meters) between real path and reference

Xmaxind = max(xbicycle) (5.1)

Y maxind = max(ybicycle) (5.2)
Where xbicycle is the position of the bicycle in the x direction, ybicycle is the
position of the bicycle in the y direction.
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• Average absolute deviation of the real path compared to the reference

Xpath errorind =
∑n
i=0 |xref i − xbicycle i|

n
(5.3)

Y path errorind =
∑n
i=0 |yref i − ybicycle i|

n
(5.4)

Where n is the maximum number of sample time and i is the number of the
time step.

• Euclidean distance similar to (4.17)

EuclDistind =

∑n
i=0

(√
(xref i − xbicycle i)2 + (yref i − ybicycle i)2

)
n

(5.5)

Then, another indicator assesses the velocity tracking efficiency:

vind =
∑n
i=0 |vref i − vbicycle i|

n
(5.6)

Where vind is the indicator of velocity, vref is the reference velocity and vbicycle is the
velocity of the bicycle.

5.2 Test Cases
The purpose of developing test cases is to assess the tracking capabilities of the
bicycle on more complex paths and determine its limitations. After implementing
the trajectory controller on the bicycle as described in Chapter 4, it will be possible
to perform the test cases and the performance indicators will be computed in order
to be compared to the simulation results of the same case.

An important difference between simulation and reality should be kept in mind:
initialisation of the bicycle during test drives is done by hand. Therefore, the initial
roll angle can vary within a few degrees range. Depending on this value, the bicycle
will behave differently. The same problem occurs for the steering angle but usually
in a smaller range.

In order to obtain the most accurate results with regards to the reality, the simula-
tions showed in this Section are performed in the following conditions:

• Velocity: v = 3m/s
• Initial conditions: ϕ0 = 2°, δ0 = 0, 5°, ϕ̇0 = 0°/s
• Radius of the curves: r = 15m
• Point of mass model
• LQR adapted to the point of mass model: Q = diag([100, 100, 10]), R = 42
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In the results of this Section, the simulations stop at different times, not because
the bicycle fell but because the path was only defined until that point. All of the
simulated paths illustrated in this Section were successful in balancing the bicycle.
Only the performances of the path tracking are discussed.

5.2.1 Straight path

The straight path assesses the ability of the bicycle to track a simple path as a first
test.

The bicycle path is shown in Figure 5.1. The first oscillation is very significant
due to the non-zero initial conditions. At any moment, the bicycle drives within a
[−0.15; +0.15]m range around the reference for a path more than 200m long.

In Figure 5.2, the states estimations of the bicycle can be observed. Apart for
the higher initial oscillation, the roll and steering angles both oscillate between
[−1.5; +1.5] ° and [−3; +4.5] ° respectively. The oscillations do not increase at any
moment, demonstrating a good combination of balancing and path tracking con-
trollers.

In order to compare the test cases severity and to compare the simulation results to
the future test drives, the performance indicators are regrouped into the Table 5.1.
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Figure 5.1: Test Case 1 - Straight path tracking simulation - High deviation at
the beginning of the path due to the non-zero initial values of the roll and steering
angles. Afterwards, the bicycle tracks the reference within a [−0.15; +0.15]m range.
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Figure 5.2: Test Case 1 -Straight path tracking simulated states - Initial variation
of the states due to non-zero initial conditions.

Performance Indicator Value
Xmaxind 0.09 m
Y maxind 0.17 m

Xpath errorind 0.03 m
Y path errorind 0.05 m
EuclDistind 0.06 m

vind 0.34 m/s

Table 5.1: Test Case 1 - Straight path tracking performance indicators - Typically,
this table of indicators should be compared with other simulation results (e.g. with
different settings) and test drives computations.

5.2.2 Change of Direction of 45°
This test case evaluates the ability of the bicycle to perform a change of direction.
An important variation of the roll and steering angles are expected while performing
the turn. Afterwards, the bicycle should be able to balance itself.

More specifically, the path defined for this second test case presents a 45° turn and
the transition is smoothed out with a curve of 15m radius (see Figure 5.3). Devia-
tions between the bicycle path and the reference are observed during, and just after
the turn. Then, the bicycle recovers and gets back on track. On the straight parts,
the bicycle follows the reference closely.
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The red box in Figure 5.4 highlights the states variation generated during the turn.
The steering decreases in the negative values, meaning the bicycle is turning to the
right (see Section 2.1.1 for the definition of the angles sign). This variation influ-
ences the roll angle which increases. The angles amplitudes reach 9,3° and -10,6°
for roll and steering angles respectively. As the bicycle is overshooting to the right
of the path, the steering angle increases and becomes positive in order to get back
on track. The following oscillations stabilise the bicycle around the straight part.
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Figure 5.3: Test Case 2 - Change of Direction of 45° path tracking simulation -
Deviation of the bicycle path around the curved section.

Figure 5.4: Test Case 2 - Change of Direction of 45° path tracking simulated states
- Highlight on the change of direction.
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As previously, the performance indicators are computed (see Table 5.2). Compared
to the performance indicators of the first test case (see Table 5.1), all the indicators
values are higher. Significant oscillations were observed due to the turning sequence
leading to the increase of path related indicators. The velocity indicator remains
fairly similar.

Performance Indicator Value
Xmaxind 0.91 m
Y maxind 0.63 m

Xpath errorind 0.16 m
Y path errorind 0.20 m
EuclDistind 0.30 m

vind 0.35 m/s

Table 5.2: Test Case 2 - Change of Direction of 45° path tracking performance indi-
cators - Typically, this table of indicators should be compared with other simulation
results (e.g. with different settings) and test drives computations.

5.2.3 U-turn
The capability of performing a u-turn can be interesting during test drives. It is also
a way of challenging the bicycle controllers for a longer turn than in the second test
case. Thus, important variations of the roll and steering angles should be observed
for a longer period of time. The bicycle should be able to stabilise after the turn.
The difficulty of balancing and tracking is increased.

As for the second test case, the turn presents the biggest deviations of the bicycle
path with regard to the reference at the beginning and at the end of the turn (see
Figure 5.5). For the other sections of the path, the trajectory tracking seems robust
but still presents small variations.

Figure 5.6 shows the system’s states and input. At the 10s mark, the angles vari-
ation presents the same shape as for the Test Case 2. Comparing to Figure 5.4,
the variations of roll and steering angles of the turning sequence are repeated five
times in this third test case (see the red box in Figure 5.6) as the turn is much longer.

The overshooting of the bicycle trajectory compared to the reference path are high-
lighted in green on Figure 5.6. It corresponds to the beginning and the end of the
curve in Figure 5.5. The amplitude of the angles are higher at these two moments.

Table 5.3 summarises the different performance indicators of this path. All the indi-
cators linked to the path tracking abilities are better or equivalent to the indicators
of the second test case. The x direction indicators are influenced by the straight
parts being tracked towards positive and then negative values.
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Figure 5.5: Test Case 3 - U-turn path tracking simulation - Highest deviation of
the bicycle path observed at the path transitions.

Figure 5.6: Test Case 3 - U-turn path tracking simulated states - Red box shows
the control actions during the turning sequence - Green boxes highlight the path
transitions (at the beginning and at the exit of the turn).
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Performance Indicator Value
Xmaxind 0.31 m
Y maxind 0.64 m

Xpath errorind 0.12 m
Y path errorind 0.23 m
EuclDistind 0.28 m

vind 0.35 m/s

Table 5.3: Test Case 3 - U-turn path tracking performance indicators - Typically,
this table of indicators should be compared with other simulation results (e.g. with
different settings) and test drives computations.

5.2.4 Double change of direction
This last test case assesses the ability to sequence two curves of opposite directions.
The expected results should be similar to the ones computed for the Test Case 2 as
this reference path is a combination of two 45° direction changes (see Figure 5.7).
The transition between the two curves should be characterised by a change of sign
for the roll and steering angles.

As in Test Cases 2 and 3, the bicycle path presents bigger errors with regards to the
reference at the beginning and at the end of the curved section (see Figure 5.7).
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Figure 5.7: Test Case 4 - Double change of direction path tracking simulation -
Highest deviation of the bicycle path observed at the path transitions.
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As predicted, at the transition between both turns, the roll and steering angles
present an inversion of the signs (see the red box Figure 5.8). The turns performed
on each side led to similar variations of the angles with opposite signs. The ampli-
tudes of the variations reach [-10;+10]° for the roll and [-11;+12.6]° for the steering.

The performance indicators shown in Table 5.4 indicate bigger errors with regards
to the reference compared to the indicators of test case 2 for the x direction. This
can be explained by the accumulation of the error for each turn. Overall, the other
indicators are similar or worse than the ones of test case 2.

Figure 5.8: Test Case 4 - Double change of direction path tracking simulated states
- Red box highlights the bigger control actions during the double change of direction
sequence.

Performance Indicator Value
Xmaxind 0.91 m
Y maxind 0.70 m

Xpath errorind 0.43 m
Y path errorind 0.14 m
EuclDistind 0.49 m

vind 0.29 m/s

Table 5.4: Test Case 4 - Double change of direction path tracking performance indi-
cators - Typically, this table of indicators should be compared with other simulation
results (e.g. with different settings) and test drives computations.

In conclusion, all the test cases were simulated in similar conditions as in reality by
using non-zero initial conditions. They were all successful in keeping the balance of
the bicycle and tracking several paths, from the most basic straight line to a more
difficult sequence of turns.
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6
Conclusion

In the frame of this Master’s Thesis report:
• The high impact of the two volumes model has been demonstrated in balancing

and path tracking simulations.
• The balancing control of the bicycle has been corrected in a systematic way

leading the bicycle to successfully balance during the test drives.
• The path tracking control, including a direct position measurement and a

Kalman filter, has been successfully simulated and presents promising perfor-
mances.

• The test cases and path tracking performance indicators have been defined
and simulated to assess the path tracking capabilities of the bicycle.

On the other hand, several opportunities for future work have been identified:
• Adapt the controllers on the basis of the two volumes model.
• Implement the path tracking feedback loop developed in this thesis.
• Assess the path tracking performances of the bicycle using the indicators and

test cases defined in this thesis.

From a user perspective, the following topics could be addressed:
• Improve user friendliness: start and stop sequences, trajectory programming,

user manual.
• Reshape the bicycle to keep radar signature equivalent to that of an ordinary

bicycle.

On a more personal level, I am very pleased to have been given the chance of joining
this very rewarding project, combining both theoretical and practical aspects. All
the work performed, together with the rich relationships with my supervisor and all
the team members, were for me a great opportunity to learn and to improve my
skills. I really enjoyed living this experience in such a great team and I feel proud
to have contributed to this challenging project.
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A
Appendices

A.1 Implementation of a 3D Animation for Sim-
ulation Test Visualisation

This Appendix describes the implementation of a 3D animation of the simulation
results in order to visualise the behaviour of the bicycle.

The simulation is an important tool to assess the performances of controllers. In
our case, two controllers have been implemented: one for balancing and another
for path tracking. By running the simulation, the states can be observed, and the
controllers can be tuned accordingly. Therefore, the most natural way to visualise
the states results is by using a 3D animation of the bicycle.

Figure A.1: Display of the 3D simulation test visualisation - Path drawn simulta-
neously to the bicycle’s movements.

The goal of the implementation is to merge the 3D model designed by the students
Michael Marne and Ivar Wikenstedt with the MATLAB/Simulink project of the
autonomous bicycle.
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After simulation, the bicycle animation display presents the 3D model moving ac-
cording to the varying states of roll, roll rate and steering angle. In the same window,
the path is drawn simultaneously (see Figure A.1).

The speed of the animation can be tuned in the MATLAB code by setting the
number of points that are simulated and represented in the display at the same
time.

A.2 Verification of the Equivalence Between the
Volumes’ Models in case of a Homogeneous
Mass Distribution

This appendix describes the verification of the moment of inertia computation of
the two volumes model. To do so, the expressions of the moment of inertia are
compared for a single volume model and an homogeneous mass distribution of the
two volumes model.The equivalent models used in the verification are described in
FigureA.2.
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Figure A.2: Equivalent models for one and two volume’ models in case of homo-
geneous mass distribution.

For the single volume model, the moment of inertia is:

Jxx 1vol verif = m

12 (c2 + (2h)2) +mh2

= mc2

12 + 4mh2

12 +mh2

= m

12 (c2 + 16h2)

(A.1)
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For the two volumes model, the moment of inertia becomes:

Jxx 2vol verif = m/2
12 (c2 + h2) + m

2

(
h

2

)2
+ m/2

12 (c2 + h2) + m

2

(3h
2

)2

= m

12 c
2 + m

8 h2 + m

12 h
2 + 9m8 h2

= m

12 (c2 + 16h2)

(A.2)

Comparing the expressions of the Equations A.1 and A.2, the resulting moments of
inertia are equal, meaning that the models are equivalent for a homogeneous mass
distribution. Thus, the two volumes model is well defined.

In the opposite case, if the mass is not homogeneously distributed (as it is the case
for the autonomous bicycle), the two volumes model is able to translate the influence
of the mass distribution in the moment of inertia computation.
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