
Complex data structure terminal
interface

Master of Science Thesis

TOBIAS ENGVALL

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden, September 2013

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Complex data structure terminal interface

TOBIAS ENGVALL
© Tobias Engvall, September 2013.

Examiner: Sven-Arne Andreasson

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden September 2013

Abstract

Although somewhat outdated, green screen terminals are still a very common
sight in the industry sector.
This report describes a system, which handles request for accessing an advanced
data model, which is used for storing booking data related to the travel industry.
The developed system has been integrated into Amadeus’ existing systems with
good results.

3

Preface

This report describes the work and result conducted by the author on designing
and implementing a terminal interface for a new type of travel industry booking
data structure.

4

Contents

Acknowledgments 7

1 Introduction 8

1.1 Background . 8
1.2 Problem Description . 8
1.3 Amadeus . 9

2 Analysis 10

2.1 Background . 10
2.1.1 Passenger Name Records 10
2.1.2 The Shopping Basket . 11
2.1.3 Existing interfaces . 14
2.1.4 Passenger Name Record Displays 14

2.2 The Target User . 14
2.3 Time plan . 15

3 Design & Implementation 16

3.1 Methodology . 16
3.2 Information flow . 16

3.2.1 Entry Point . 17
3.2.2 The Context . 17
3.2.3 Parsing and pre-processing 18
3.2.4 Screen generation . 19
3.2.5 Navigation . 22
3.2.6 Scrolling & Clipping . 22

3.3 Tools used . 22
3.3.1 The C++ Programming Language 22
3.3.2 Boost::spirit . 23
3.3.3 Boost::regex . 23
3.3.4 Valgrind . 23

3.4 Architecture . 23
3.4.1 Open Transaction Framework 23
3.4.2 EDIFACT . 23
3.4.3 EBCDIC and the tn3270 Communication Protocol 24

3.5 Problems Encountered . 25
3.5.1 First version of the screens 25
3.5.2 Setting up a bank account in France 25

3.6 Testing . 25

5

6 CONTENTS

4 Results 26

4.1 Lookups . 26
4.1.1 Syntax . 26
4.1.2 Presentation . 26

4.2 Retrieve . 27
4.2.1 Syntax . 27
4.2.2 The Summary Screen . 27
4.2.3 The Customer Screen . 31
4.2.4 The Product Screen . 32
4.2.5 The Fare and Fee Screen 33
4.2.6 The Form of Payment Screen 34

5 Conclusion 35

5.1 Future work . 35
5.1.1 Update functionality . 35
5.1.2 PNR Bridge . 35

6 Appendix 37

6.1 Abbreviations . 37
6.2 Overview . 37

Acknowledgments

I would like to take this opportunity to thank everyone who has helped me with
my work over the last couple of months: Thanks to everyone in the SBR/SBC
team at Amadeus: Gilles, Luis, Olivier, Ivano and Valerie. Many thanks to my
supervisor Bruno, who has been an invaluable mainstay throughout the project.

I would also like to thank my dear friend Martin Andersson for helping me
accommodate to a life in France. Thanks also for teaching me how to appreci-
ate the, somewhat different, French way of doing things.

Tobias Engvall Chalmers, October 2013

7

Chapter 1

Introduction

1.1 Background

An increasingly more important travel industry trend is to be able to provide
so-called cross-channel functionality: It is a good thing, if a reservation made
on a website is accessible through many different channels.
One of the most used channels for accessing data related to the travel industry
– be it booking data, airplane inventories, availability, etc. – is through a termi-
nal interface called the ”cryptic channel”. Terminals connected to this cryptic
channel are commonly found at classical travel agencies or at airports.

Classical travel-industry bookings are usually contained in a standardized data
structure that is known as a Passenger Name Record (PNR).
Amadeus has a very mature and feature-rich system for accessing and manipu-
lating these kind of bookings. However, the PNR has some limitations: Since it
was originally designed for airplane bookings, the PNR is very centric to the air
travel industry. More functionality has then later been added on to it, in order
to support other products and services.

The Shopping Basket (SBK) is a new kind of data structure which offers more
features and better flexibility than the Passenger Name Records. Since it is
designed from the start to be a very flexible data structure, it can be used in
many different fields.

1.2 Problem Description

The above central SBK component is currently only accessible through struc-
tured interfaces. In this case: XML or EDIFACT. Only ”heavy” applications,
i.e. J2EE application servers, can use these interfaces to access the Shopping
Basket content. Support for the classic interfaces needs to be added.

My part in this project, and the topic of this thesis, was to design and im-
plement support for Shopping Baskets in what is known as the cryptic channel.
The cryptic channel is commonly defined as a terminal interface, which is usu-
ally accessed by using terminal emulators, which provides text interfaces to the

8

1.3. AMADEUS 9

underlying system.
The clients are usually dumb – all generation and presentation are done server-
side – and most of them cannot handle screen resolutions higher than 80x24
characters.

• In order to adapt to these display constraints, some very condensed screen
layouts needed to be designed and implemented for the Shopping Basket
content. The Shopping Basket has well over 2000 different attributes and
many different layers of relations between elements.
The goal is to define and implement a system, which is intuitive and easy
to navigate.

• The Shopping Basket repository resides in a complex architecture with
many nodes of load-balancing, different entry-points, routing to different
back-ends, etc. The service must be able to maintain a stateful connection
through this.

• The user must be able to locate interesting Shopping Baskets for further
navigation using the cryptic channel. One part of the project will be
to create a system, which given a list of search criteria displays a well
formatted screen, containing the matching Shopping Baskets. The screen
should be able to display a short summary of each Shopping Basket.

• A well thought out command system must be designed, the existing cryptic
commands have a reputation of being a bit too cryptic sometimes. My task
was to try to design a nice syntax for the retrieve and look-up commands.

• Given a resulting screen, be it look-up or retrieve, the system must be able
to further translate a navigational request into the corresponding follow-
up request. Some kind of logic for keeping a context between messages
must be put in place, in order to support stateful connections.

1.3 Amadeus

The initiator of this project is a company called Amadeus. Amadeus is a ”so-
lution provider to the travel industry in the management and distribution of
travel services”, which was founded in 1987 by Air France, Lufthansa, Iberia
and SAS. Amadeus is a large company, their systems handled 499 million travel
related bookings in 20061.

This project has been conducted at the main Amadeus development site in
Sophia Antipolis, France.

1Source: www.amadeus.com

Chapter 2

Analysis

2.1 Background

This chapter will present an in-depth background of the problem. In order to
understand the decisions made by the author in the design phase of the project,
a good understanding of both the historical as well as the functional background
of the problem is necessary.

The beginning of the report will be used to describe the functionality of the
terminal system used by the current travel industry data structure, which is
known as a Passenger Name Record. Afterwards, a more advanced data struc-
ture will be described, this data structure is known as the Shopping Basket, it’s
differences compared to the PNR, the motivation behind it, and why my work
on it is important.

2.1.1 Passenger Name Records

A Passenger Name Record (PNR) can be defined as a computerized travel in-
dustry data entity containing information related to a booking of some type. It
is standardized by the International Air Transport Association (IATA) and was
originally designed to allow the large reservation systems at the time to be able
to exchange data with each other.
The term PNR may also refer to the nine-digit alphanumeric sequence called
a Record Locator, which is used to uniquely reference a Passenger Name Record.

The Passenger Name Record can contain all sorts of travel-related information:

Figure 2.1: An example of a Passenger Name Record

10

2.1. BACKGROUND 11

The itinerary, the passengers, the products, ticketing and fare details, contact
information, frequent flyer information etc.
The PNR was originally designed for air bookings, which also is its primary area
of use. It is a flat data structure, which can be represented as a list of key-value
pairs.

In order for a proper Passenger Name Record booking to be stored in the system,
at least five parts of the record must be set:

• The name of the person making the booking.

• All passengers.

• Itinerary for at least one travel-sector.

• Ticketing information, either a ticket number if it has been issued or a
deadline for the issuing of a ticket.

• Contact details of the travel agent.

During the booking process, if all of the above restrictions are met, the travel
agent may choose to issue what is known as a End of Transaction (EOT). If
such a command is issued, the system will then assign a Record Locator to the
PNR, causing it to be stored in the underlying system.

Passenger Name Records are contained in what is known as Global Distribu-
tion Systems1 2 (short: GDS). There are a few Global Distribution Systems on
the market: Amadeus is currently one of the largest system, other large systems
are SABRE, Worldspan and Gallileo.

2.1.2 The Shopping Basket

The Shopping Basket models a new way of storing travel-industry related infor-
mation. It is not designed to completely replace the Passenger Name Records,
at least not within the foreseeable future . Instead it may reference external
information, i.e. data from a Passenger Name Record, at any place in the data
structure.

Differences from a Passenger Name Record

The Shopping Basket data structure was designed to be a more flexible data
structure than what the PNR currently is. Contrary to the Passenger Name
Record, the Shopping Basket is not a flat data structure: It can store it’s infor-
mation grouped into what is known as records.
It also differs from the Passenger Name Record in that it can contain hetero-
geneous information without requiring itself to be split into multiple records,
which the PNR requires. However, the SBK is also designed to be able to act
as a standard PNR, if the situation requires it to.

1Ref: http://en.wikipedia.org/wiki/Computer Reservation System
2Another common name is Computer Reservations System (CRS)

12 CHAPTER 2. ANALYSIS

The SBK is a very generic data structure. Where the PNR only can refer-
ence airline products as well as airline related products such as rental cars and
hotels, the SBK offers the possibility to support more kinds of products.

• ”Support for all known products, and also all the others” is something
which is mentioned in the specification. This is a sentence, which sums
up the whole idea of the SBK quite nicely.

• Third party users of the system should be able to store generic informa-
tion in the SBK. E.g. a hotel business might want to be able to store data
specific to their billing system in a SBK.
This is made possible, by letting the third-party agents store their appli-
cation specific data in raw data blobs, which are available throughout the
data structure.

Records

As mentioned earlier, a nice feature of the the Shopping Basket is that it sup-
ports the ability to group its different entities into something, which are known
as records. As any other entity living in the SBK, records are standard, uniquely
identified, SBK elements. This also means, that a grouping of elements can be
the target of consuming relations, fares, fees, etc.

Since the records in a way can be seen as the graphical layout of the SBK,
they are very important and central to this project. Throughout the terminal
interface design, records play a central role in the navigation and visualizing of
a SBK and its elements.

The motivation behind using records is two-folded. First and foremost, it is
always a very useful thing to be able to group things up for better structure and
general tidiness. Some applications of over-usage of the PNR (see figure 2.1.2)
can be seen as a bad example of where limited grouping abilities is responsible
for redundant information and clutter. Another nice feature of records is that
they allow the SBK to fully model all steps of a booking process. This is some-
thing, which the PNR is unable to do.

A quite common use case scenario is, when a potential customer walks in to
a travel agency and indicates interest in booking a trip to a country, e.g. Thai-
land. At this moment, the travel agent does not know any specific information
about the trip, since the customer has not provided any information on possible
places in Thailand to visit. He has neither expressed any preferences, on which
airline he wants to fly with. At this point, the travel agent can create an empty
shopping basket and specify these very generic wished as a remark in the SBK.
He can then at a later point create a couple of possible travel packages, which
he represents as a list of SBK records of type ”offer”. The customer can then
later on decide on a package he likes, which the travel agent then converts into
a full reservation.

A Shopping Basket record can be of many different types, each type represents
a different booking related scenario. The most commonly used ones are:

2.1. BACKGROUND 13

Figure 2.2: PNR remarks containing structure data.

• Reservation records, which in a sense contains all the information needed
to create a booking. This is the PNR equivalent of the SBK.

• Offers – Represents a virtual booking.

• Requirements – Used if a record requires something else in order to be
valid.

• Views – Similar to views in databases, it might be useful to create a
grouping of elements for display use.

Relations

Contrary to the Passenger Name Record, the Shopping Basket also offers a way
to model different kinds of relations between elements. Relations can play a
quite central role in a booking scenario. E.g. a normal flight can be modeled as
a consuming relation between an air product an a customer. A fare can then
be attached as a faring relation to the consuming relation.

Many different kinds of relations exists, among them we find:

• Possession - This relation indicates that an entity owns another entity.
RecordA = POSSESSES => CustomerB

• Consumption - Models a consuming relation, e.g. a flight.
CustomerA = CONSUMES => FlightB

• Extension - This is used to express a situation, when you want to extend
an entity with something else.
SpecialServiceRequestA = EXTENDS => (CustomerA = CON =>
FlightB)

14 CHAPTER 2. ANALYSIS

2.1.3 Existing interfaces

At the time of the project start, the only way of accessing SBK:s was through
structured XML-messages. A look-up request was sent as a dedicated XML
lookup message, the lookup-results were calculated, and the response is sent
back as an XML response message.

2.1.4 Passenger Name Record Displays

The Amadeus terminal booking system is very large and complex. Travel agents
are able to access information about almost anything related to the booking
industry through the terminal. Different subsystems exists for:

• Flight bookings.

• Rail related products.

• Rental car bookings.

• Hotel related information and bookings.

• Ticketing

and many more.

A flight booking through the classing Passenger Name Record interface is initi-
ated when a travel agent performs the cryptic commands to add something to
a PNR. The classic start command is to add a passenger:

NM1ENGVALL/TOBIAS MR

This commands adds one passenger. The NM stands for name and the digit
expresses how many passengers will be added. The passenger’s name and title
follows.

The terminal system is based on the old IBM 3270 series of terminals. They
commonly support screen sizes of 80x24 characters.
Although the old 3270 terminals may seem like very crude and outdated com-
munication devices, they do have their advantages. One of the advantages of
the cryptic terminal displays is, that they are blazingly fast to use. At least
after you get past the initial difficulties of understanding how the commands
are used and how to interpret the cryptic screens. Although the learning curve
may be quite high, many users of 3270 systems regard them as superior to new,
modern systems based on a graphical user interface.

However, some of the functionality in the cryptic channel has a gotten a reputa-
tion of being a bit too cryptic. The goal of my design is to be as self-explanatory
as humanly possible, without lacking details or functionality.

2.2 The Target User

The targeted user for this project is travel agency professionals, airport em-
ployees, and other people related to the travel industry. What they all have in

2.3. TIME PLAN 15

Figure 2.3: High level time plan

common, is that they have received proper training and they are well educated
on the underlying systems, how they are used, and the meaning of the displayed
attributes. This allowed me to focus more on designing a system, which is fast
to use.

2.3 Time plan

An initial time plan was developed at the start of the project. Since the na-
ture of the design naturally divides the problem into two parts, with the second
part being more complex than the first part, my plan ended up with using the
design and implementation of the first part, the look-up service, as a bit of a
”hello world”-application in order to get familiar with the underlying applica-
tion server and the internal libraries.

Chapter 3

Design & Implementation

3.1 Methodology

This project has been developed using an iterational development model: An
initial implementation of a minimal service has then been further extended to
include the features of the original specification.

A weekly status meeting has functioned as a way of tracking the progress of
the work. It has also been used to define the upcoming tasks. Meetings has
also been conducted with people from the product definition department at
Amadeus. Their comments have been invaluable in the design phase of the
project.

3.2 Information flow

In this chapter, I’m going to describe the information flow of the system in
detail. The goal of the chapter is to provide a clear, detailed view of how a
message is received and how the corresponding cryptic screen is generated.

The cryptic terminal system is built up by 7 subsystems:

1. The service entry point, which receives messages and orchestrates the un-
derlying logic.

2. The message interface, which encodes/decodes messages.

3. The parser, which classifies the request.

4. The context, which stores data between messages of the same session.

5. The screen manager, which handles scrolling and clipping.

6. The cryptic look-up service, which performs a lookup and generates the
look-up results screen.

7. The cryptic retrieve service, which handles the displaying of SBK entities.

16

3.2. INFORMATION FLOW 17

Figure 3.1: Cryptic terminal system overview

3.2.1 Entry Point

A terminal session begins with an EDIFACT request message, which is sent
from a terminal to the SBK back-end through a service integrator (see: ??).
The entry point then decodes the incoming request using the incoming message’s
corresponding message interface.
It then retrieves session data which is held in a context. This data, along with
the incoming message, is then fed onwards to the cryptic screen generators.
After the response has been generated, the entry point sends the response back
to the terminal and the generated screen is displayed to the user.

3.2.2 The Context

The cryptic service is a stateful service, which means that it is able to keep
a memory with useful information between the messages in a session. Since
the service can be spread out on many different back-ends, a separate context
server is used to store the information. The memory, which I call the context,
is created, when the first message of a session is received. On sub-sequential
messages, the entry point retrieves the previous context from the context server
before starting the message handling.

A session is defined as a series of messages, sent between the terminal and
the service. Whenever the user presses enter on his/hers terminal, a message
is sent to the service. A simple timeout mechanism prevents the context from
being flooded with old connections.

In order to support the desired functionality, three parts needed to be stored
between messages were identified:

1. The system stores a history – or command stack – of previously entered
commands to the service. Navigational commands used for scrolling like
MD or MD are not stored in the context, it only deals with full cryptic
commands.

18 CHAPTER 3. DESIGN & IMPLEMENTATION

2. In order to support the above mentioned scrolling functionality, the system
stores the previous position of the screen in the context.

3. The main purpose of the context is to enable support for follow-up re-
quests. This is solved by storing a mapping between local ids and full
cryptic requests.

Example: DK/1 is translated into a full cryptic retrieve request:
DKSBKID1234/T1005CUS

The Message Interface

The message interface is responsible for retrieving and filling data from and into
the messages, which are used by the service.

The service is able to receive input from two different kinds of EDIFACT mes-
sages (see section 3.4.2). The two messages offers the same functionality, but
through different channels:

• The Hybrid Screen Format Request/Response EDIFACT messages (short:
HSFREQ / HSFRES) is a set of quite simple messages. The incoming
cryptic request is stored as plain ASCII in the message. The response
message also uses the same simple formatting.

• The Terminal 3270 Request/Response messages (short: TRMREQ / TRM-
RES) are very similar to the HSFREQ/S set of messages. The main dif-
ference is that the message data is stored as a 3270 stream the EBCDIC
encoding.

The messages also contains information about the message origin. Such as
requesting office, requesting agent, preferred language, and preferred currency.
They also contain information about the requesting terminal: Screen width and
height.

3.2.3 Parsing and pre-processing

After the request has been decoded by the message interface and the context of
the previous context has been fetched from the context server, the parser is run
on the cryptic request.
Since the same entry point is used for all kinds of cryptic request, the parser
must be able to distinguish between and classify different kinds of requests. This
also means, that my grammar must be non-ambiguous.

In the scope of this project, support for four different kinds of requests were
included:

• Look-up requests: Given a list of search criteria, query the database and
find the matching SBK:s.

• Full retrieve requests: A full request which specifies a displayable entity
in the SBK.

3.2. INFORMATION FLOW 19

• Navigational requests: My service also handles scrolling and clipping of
screens. The user may issue commands to move up and down in a screen.

• Follow-up requests: This is when the request references another full re-
quest which is stored in the context.
E.g. dk/1 translates into dk/SBKID1234/T1005CUS.

The current version of the parser is implemented using boost’s regular expression
library. Although an initial version was developed using a LL parser 1, which
was deducted from a EBNF 2 grammar, the faster, more simple approach using
the regex version, was eventually decided upon.

3.2.4 Screen generation

After the initial phase of decoding and pre-processing, the cryptic service calls
one of the underlying screen generators. At the moment, two types of generators
exists: One which handles everything related to look-ups and one which handles
the displaying of any entity or calculated summary information related to a SBK.

1See http://en.wikipedia.org/wiki/LL parser for more information.
2See http://en.wikipedia.org/wiki/Extended Backus-Naur form.

20 CHAPTER 3. DESIGN & IMPLEMENTATION

The screen generators are structured as follows:

• Look-ups

– Look-up Screen

• Retrieve

– Summary Screen

– Record Screen

– Product Screen

– Customer Screen

– Fare&Fee Screen

– Forms of Payment Screen

– Document Screen

– Remark Screen

The look-up generator takes a SBK look-up result as input. Each retrieve gen-
erator takes an entire SBK or an element residing in a SBK as inputs.
Full cryptic displays – which are allowed to be longer than 24 lines – are gener-
ated and returned.

The Look-up Screen Generator

The look-up subsystem is a quite small and simple system. It can be split up
into two major parts:

• A wrapper which calls the underlying SBK lookup logic.

• The screen generator which generates a cryptic screen given a look-up
result.

The look-up logic receives the parse results along with the current context from
the cryptic command class. It builds a list of search criteria from the parse
results, which it then uses to call the SBK look-up service. The SBK look-up
results are then fed into the look-up screen generator, which generates a cryptic
screen.

The Retrieve Screen Generator

Because of the complexity and size of the SBK data structure, the retrieve sys-
tem turned out to be the largest system of the ones developed in the project. It
is able to generate a cryptic representation of any SBK entity worth displaying.
It is also able to calculate and display summary information of a SBK.

The retrieve system is built up by the following subsystems:

• A command class which orchestrates the screen generation. This class
takes a parse input and a context as input. It then calls the SBK retrieve
service in order to receive an SBK. Depending on the type of the request,
it then either feeds the entire SBK or a SBK element into one of the many
screen generators.

3.2. INFORMATION FLOW 21

• Given an input, a set of screen generators which generates full cryptic
screens.

Since the system is based upon navigation using local IDs, the screen generation
had to be performed in three passes:

1. The first pass identifies and fills a local representation of the screen. i.e.
references to full SBK elements are placed in lists as they are going to
appear in the final screen.

2. Local ids are assigned to each element which is capable of being further
navigated. If an item references another item by, e.g. a consuming rela-
tion. A representation of the consuming relation is generated using local
ids:
Example: Customer1 = CON => Product3 yields:

C1>P3

3. The full cryptic display is generated in standard ASCII.

The retrieve service uses a simple library called the panel toolkit, which provides
a simple way to position text in a screen buffer.

Records

The record screen uses a table based approach: All elements contained in the
record are displayed as one-line entries in its corresponding table. I have tried
to keep the table display as homogeneous as possible. Common information
like relations between elements are displayed at the same place regardless of the
type of element.

A quite comprehensive set of helper classes has been developed, in order to
ease the design of the record and summary screens. The most commonly used
helper classes, are the cryptic lists. SBK elements may be added to these cryptic
lists. The programmer may then specify the position of the list, and then add
it to his cryptic screen. The lists will then generate a cryptic representation of
a list of SBK elements.

Leaf entities

Leaf entities are entities which does not contain other entities. A prime example
of a leaf entity would be a document. These screens all follow the same design
principle: Display the information in a structured way and display the most
important information at the top of the screen.

These entities may contain lots of information, structured in a complex way.
An example of this would be, that a fare may have numerous associated fees
and taxes.

22 CHAPTER 3. DESIGN & IMPLEMENTATION

3.2.5 Navigation

The navigation in the system is handled by keeping a stack containing the
latest whereabouts of the user. In addition to navigating into something which
is already displayed in the current screen, the user may choose to navigate to
previously displayed screen. This navigation stack is kept in the context which
is stored in the context server.

3.2.6 Scrolling & Clipping

Since the screen generators returns full cryptic screens, a class which handles
clipping and scrolling needed to be implemented. Since the previous screen
position is stored in the context. This is a quite trivial class.

Since the screen generators returns full cryptic screens, support for clipping
and scrolling was implemented as a small set of quite trivial classes. These
classes makes use of the previous screen position, which is stored in the context.

It currently handles:

• Scrolling – Whenever a navigational request is received, the last known
full cryptic request is fetched from the context, parsed, and executed. The
screen manager is then fed the full cryptic screen along with the previous
screen position, which is available through the context. It then updates
the current position given the resolution of the client terminal.

• Wrapping – The terminal system is designed to fit well into terminals that
supports a maximum column resolution of 80 characters. However, there
still exists systems, which only supports resolutions less than 80 characters.
Thus, the screen manager wraps lines longer than 80 characters.

• Clipping – Until this point of execution, the system has only worked with
full cryptic displays, i.e. displays, which may be larger than the maximum
resolution of the terminal. The screen manager clips the screen to fit the
terminal’s resolution.

The system then returns a plain ASCII representation of the scrolled, wrapped
and clipped screen.

3.3 Tools used

This sections will be used to describe some of the tools, which were used
througout the development of the project.

3.3.1 The C++ Programming Language

Since the architecture around my service is developed using C++, the choice of
C++ as the implementation language felt natural.

3.4. ARCHITECTURE 23

3.3.2 Boost::spirit

An initial version of the cryptic service used a LL-parser3 based system to han-
dle the requests. Although the idea was later discarded in favor of a more simple
regex-based solution, I still think it is a more elegant solution to the problem.

The boost::spirit library allows you to create a parser using a EBNF gram-
mar. The main difference between boost::spirit and other EBNF based parser
systems is, that boost::spirit lets you define the parser as EBNF in C++. This is
accomplished by heavy use of templates and operator overloading. Other EBNF
parser systems often requires you to generate a parser from a source EBNF file.

3.3.3 Boost::regex

The second version of the cryptic command parser was written as a series of
regular expressions using the boost::regex library.
Although this version of the parser turned out to be quicker and more simple
than the boost::spirit version. It also turned out to be less extensible.

3.3.4 Valgrind

Valgrind is a profiling/debugging tool which proved to be an invaluable asset
during the implementation phase of the project. It’s main purpose is to help
finding bugs related to memory-management, such as memory leaks and stack
corruptions.

3.4 Architecture

This section will describe the underlying software and technologies used by the
service.

3.4.1 Open Transaction Framework

The service is built on-top of an, internally developed, application server called
OTF. Besides usual application server functionality, it also provides support for
sending and receiving EDIFACT and XML messages.

3.4.2 EDIFACT

The United Nations/Electronic Data Interchange For Administration, Com-
merce, and Transport(UN/EDIFACT) is an electronic data interchange stan-
dard developed by United Nations. It is also standardized by the International
Organization for Standardization4 as ISO 9735.

EDIFACT is a hierarchical structure. A set of elements builds up a composite.
A repetition of composites builds up a segment, which is what a message con-
sists of. These entities also have a set of associated restrictions: Entities may
be mandatory or conditional, repeatable or non-repeatable.

3http://en.wikipedia.org/wiki/LL parser
4http://www.iso.org

24 CHAPTER 3. DESIGN & IMPLEMENTATION

The following is an example of an EDIFACT message handling flight availability
requests:

UNB+IATB:1+6XPPC+LHPPC+940101:0950+1’

UNH+1+PAORES:93:1:IA’

MSG+1:45’

IFT+3+XYZCOMPANY AVAILABILITY’

ERC+A7V:1:AMD’

IFT+3+NO MORE FLIGHTS’

ODI’

TVL+240493:1000::1220+FRA+JFK+DL+400+C’

PDI++C:3+Y::3+F::1’

APD+74C:0:::6++++++6X’

TVL+240493:1740::2030+JFK+MIA+DL+081+C’

PDI++C:4’

APD+EM2:0:1630::6+++++++DAä

UNT+13+1’

UNZ+1+1’

As you can see, the message carries significantly less overhead than what an
XML equivalent of it would.

3.4.3 EBCDIC and the tn3270 Communication Protocol

IBM 3270 is a series of terminals developed by IBM in the 1970’s. The classic
terminals used green as a standard color, which also led to it’s commonly used
nickname: ”green screens”.
Communication to and from the cryptic service is done through the tn3270
protocol, which is a slight modification of the standard telnet protocol. It com-
municates through a structured data stream. The contents is inter-weaved with
different kinds of control characters, in order to support text and cursor place-
ment.

Tn3270 uses Extended Binary Coded Decimal Interface Code (short: EBCDIC)
as its character coding. The Jargon file 4.4.7 has the following to say about it:

EBCDIC: /eb´s@·dik/, /eb´see‘dik/, /eb´k@·dik/, n. [abbrevi-
ation, Extended Binary Coded Decimal Interchange Code]

An alleged character set used on IBM dinosaurs. It exists in at
least six mutually incompatible versions, all featuring such delights
as non-contiguous letter sequences and the absence of several ASCII
punctuation characters fairly important for modern computer lan-
guages (exactly which characters are absent varies according to which
version of EBCDIC you’re looking at). IBM adapted EBCDIC
from punched card code in the early 1960s and promulgated it as
a customer-control tactic (see connector conspiracy), spurning the
already established ASCII standard. Today, IBM claims to be an
open-systems company, but IBM’s own description of the EBCDIC
variants and how to convert between them is still internally classified

3.5. PROBLEMS ENCOUNTERED 25

top-secret, burn-before-reading. Hackers blanch at the very name of
EBCDIC and consider it a manifestation of purest evil.

3.5 Problems Encountered

3.5.1 First version of the screens

The first draft of the cryptic screen design were based on a design which relied
heavily on indentation.
Although the design were able to give the user with a very nice overview of
the SBK, the design lacked scaling, and the results were quite horrid for large
SBK:s.

RESERVATION 1:

EASYJET FL12345 NCE CDG 05MAY07:

ENGVALL/TOBIAS MR

3.5.2 Setting up a bank account in France

On of the most challenging tasks I faced during my stay in France was setting
up a bank account.

In order to succeed in this vital task, I had to provide the correct authorities
with the following:

1. Two copies of my ”internship placement agreement”.

2. Three copies of my passport.

3. Two copies of my insurance policy.

4. Two copies of my cohabitant’s most recent electricity bill.

5. Two copies of a signed document explaining that I was in fact living in
the same flat as my cohabitant.

After providing the documents above, together with a two-week-long mail ex-
change using recommended letters, I finally received my account details.

3.6 Testing

A set of regression scenarios which verified the system were also developed. This
was done with help from a script which injected XML or EDIFACT messages
to the service. A test scenario consisted of a set of messages to be injected to
the service – the cryptic commands – and a set of corresponding expected replies.

To ease the development of these test cases, the functional test scenarios were
written using the HSFREQ/S set of EDIFACT messages which contains plain-
text ASCII data.
The testing of the conversion between ASCII and EBCDIC was handled by a
set of special test cases.

Chapter 4

Results

This section is meant to provide a ”tour” of the cryptic Shopping Basket inter-
face. It is not meant to provide a complete specification of the screens, rather
to provide an example of a normal use case scenario.

The sections are ordered in a similar way, that an end user would encounter
the screens during normal usage.

4.1 Lookups

As mentioned in the time plan, the first sub-project I began working with after
familiarizing myself with the environment, was to enable cryptic support for the
Shopping Basket Look-ups.

4.1.1 Syntax

A cryptic look-up query is built up by a set of look-up criteria. A criteria
is specified by encapsulating the attribute of the criteria within parentheses.
The type of the criteria is defined by pre-pending the encapsulated text with a
criteria label.

CL(criteria attributes)

This allows the user to enter complex look-up queries in a quite nice and struc-
tured way. An example of a more complex query could look something like
this:

RK/LN(ENGVALL)FN(TOBIAS)BP(NCE)DD(05MAY07)

This line tells the system to look for all SBK:s containing a customer named
Tobias Engvall, it should depart from Nice on the 5th may 2007.

4.1.2 Presentation

The look-up results are then presented using a simple, table based approach.
From left to right, a row contains of:

26

4.2. RETRIEVE 27

Figure 4.1: Results from a cryptic look-up query.

• 1 ENGVALL/TOBIAS

The local id of the match and the main passenger’s name.

• SBKNAME123 SBKID1234

A truncated version of the SBK:s name and the full SBK id are then
shown.

25MAY07 NCE 25MAY07 STO

Finally, a short summary of the start date and end destination, and their
dates are shown.

4.2 Retrieve

4.2.1 Syntax

Contrary to the look-ups, the retrieve system doesn’t need to offer a complex
syntax. It only needs to identify a whole SBK or an element living in a SBK.

SBK elements are uniquely identified by their identification number together
with their type.

DKSBKID1234/T1004CUS

This query tries to fetch the customer element identified with an id of 1004.
However, the retrieve system is meant to be used by issuing follow-up queries.
The user is never supposed to enter a query like this.

4.2.2 The Summary Screen

The Summary Screen is the screen the user is first presented with, when a
retrieve command is issued. It is meant to function as an entry-point to the rest
of the SBK.
The purpose of this screen is to give the user a quick overview of the SBK:s
topology and contents.

T87JR29X1:Auftragsname Drucken tes 02OCT07 HAJ 09OCT07 FUE

The first line shows the calculated begin and end dates of the SBK, the name
of the SBK, the record locator of the SBK, and the departure and destination
codes. Under the status line, we find the description of the SBK and the SBK:s
associated customers.

After the header line, the customers referenced in the SBK are shown. Long
names are truncated.

28 CHAPTER 4. RESULTS

Figure 4.2: The Summary Screen

1.Hofmann/Ulrike 2.HOFMANN/ULRIKE 3.HOFMANN/ULRIKE 4.HOFMANN/ULRIK ST.. 5

HOFMANN/ULRIKE 6.HOFMANN/ULRIK ST.. 7.HOFMANN/ULRIKE 8.HOFMANN/ULRIK ST..

The topology of the SBK is shown by a table displaying the records contained
in the SBK:

9. HEADER C1-8

10. REQUIREMENT C1

11. RESERVATION C3,5 2AIR 1CAR 02MAY07 NCE AMS R12

From left to right, the row consists of:

• Type of record. (RESERVATION)

• Associated customers, if applicable [C1]

• Product summary, if applicable [2AIR 1CAR]

• Calculated begin date, boarding point, and off point, if applicable [02MAY07
NCE AMS]

• List of records contained in this record, if applicable [R12]

4.2. RETRIEVE 29

The Record Screen

The purpose of this screen is to display details about the all the entities con-
tained in one record. And since records are meant to be the main ”storage-
container” of the SBK, most of the browsing will be done by viewing records.

As we recall, a record can contain:

• Customers – All customers, which are referenced at any point in a record,
are displayed in a short list.

1.VIEILLARD BARON/.. 2.TEULIERE/OLIVIER 3.ENGVALL/TOBIAS 4.PARADA/LUIS MIGU..

• Products of all kinds: Flights, Rental cars, Cruises, Insurances, Trains,
etc.

3. AIR:AF112345678 C1-2 02MAY07 NCE 02MAY07 AMS

This line displays an air product. It is a flight with Air France from
Nice to Amsterdam. We can tell from the association column, that only
passengers 1 and 2 are attending the flight.

• Information related to fares, fees and taxes.

7. FEE 100 EUR C1>P3

Item number 7 tells us that Customer one’s flight on product three, which
is the above mentioned flight, has a fee of 100 euros associated to it.

• Modes of payment for said fares:

11.CA 4850 EUR C1>F6-11

A small summary of the form-of-payment is displayed. In this case: Cus-
tomer number one is paying for all products in the record.

• External references – Any references to external data, e.g. a booking in
another reservation system is also displayed in a short summarized view.

Other entities, such as documents and remarks, are also displayed in a similar
fashion.

30 CHAPTER 4. RESULTS

Figure 4.3: Viewing a reservation record.

4.2. RETRIEVE 31

Figure 4.4: Viewing a customer

4.2.3 The Customer Screen

A customer is always represented in the same way, regardless of whether the
customer is buying a flight, cruise or anything else.

VIEILLARD BARON REF 30 APR 1971

BRUNO

The first line displays the names and birth date of the customer. It is displayed
in a simple way. The SBK has a feature, which allows displaying the customers
poor name. The poor name is just a conversion between the real customer name,
which may contain any kinds of special characters, into a terminal friendly rep-
resentation.

After the passenger’s name, any accompanied infants are displayed. Along with
the specified address and contact information of the customer.

AF GOLD 102456987 L1

Any kind of related frequent traveler information is also displayed. A customer
may have many different memberships, which all are displayed in a table.

32 CHAPTER 4. RESULTS

Figure 4.5: A flight with a space cow, now that’s something!

4.2.4 The Product Screen

All of the product screens follows the same general layout. The products com-
mon characteristics - Begin and end locations, dates, etc. are shown at the
top of the screen. Under the general information, product specific information
is found, such as: luggage information, information about boarding for an air
product, and the type of car for rental car products.

The above screen describes a fictive air product:

AIR:SCFLIGHT1234 SPACE COW DISCOUNT FLIGHT

The first line gives us information about the type of the product. After the
product type, a product identifier is shown which in this case is a flight number.
If this was a car product, the car reservation number would be shown. This line
is common for all kinds of products.

HAJ 02OCT07 FUE 09OCT07

The boarding and off points are then shown along with the begin and return
dates. This information is also common for all types of products.
This specific line tells us that the flight leaves from Hannover on the 2:nd of
October 2007 and that the return flight from Fuerteventura leaves on the 9th
of October.

-- FLIGHT DETAILS --

SPACECOW 0 STP

DEP: 1900 T2 G123 AF12 CHK:0705041900

ARR: 1900 T2 G123 AF12

The product details section contains information about the check-in, departure
and arrival times together with more related information such as luggage details,
number of stops, etc.

4.2. RETRIEVE 33

Figure 4.6: Viewing a fare.

4.2.5 The Fare and Fee Screen

Fares and fees can be quite complex entities by themselves. Fares can have any
number of fees and taxes associated to them. Fares, fees, and taxes also have
types associated to them.

The above screen shows a fictive test fee.

1 STD 78.75 EUR

The first line shows a fee of 78.75 euros. The STD flag tells us, that this is a
standard fee.

ASS 22 CANCELLATION 100 EUR

Under the first line is a number of associated fees. The ASS flag signals that
the fee is associated to the first standard fee. If any remarks about the fee are
present, they would be displayed between the flag and the amount.

ASS 22 MILK 100 EUR

The fare and fee structure can become quite complex, with lots of different fees
and taxes associated to them.

34 CHAPTER 4. RESULTS

Figure 4.7: A cryptic representation of a Form of Payment

4.2.6 The Form of Payment Screen

This screen displays information about a form of payment. It displays informa-
tion about how something is payed.

CA 91.0 EUR

The first line tells us that the customer chose to pay by cash, as indicated by
the CA flag. If the customer had chosen to use his credit card instead, the flag
would have been CC.

PY: 05May06 00:00:00

It is followed by a line indicating when the payment was done. If the customer
had chosen to pay by invoice instead, it would also had shown the deadline for
the payment.

-- BILLING ADDRESS --

1 PRASTGARDSVAGEN 13

HUS 1234

Another address than the customer’s main address may be used as a billing
address. Additional information like this is displayed after the payment details.

Chapter 5

Conclusion

What surprised me most while I was writing this project, was lack of previous
work done on the subject. Since green-screen terminals are very common and
widespread in the airplane industry, I was expecting to see large studies made
on the subject. Sadly, I was unable to find any studies of interest.

Green-screen terminals will probably continue to be widely used in the future.
Although somewhat crude and outdated, they still offer features that many
modern interfaces lack, most notably: speed and simplicity.

5.1 Future work

The time frame of the project didn’t allow for designing and implementing
cryptic support for all the features of the shopping basket system. The two
most significant improvements to the system would have been adding support for
updating SBK:s, and finding a way of displaying information stored in externally
referenced booking systems, such as PNR databases.

5.1.1 Update functionality

The current state of the cryptic SBK system does not allow the user to modify
the contents of a SBK. In order to support this, the parser would have needed
to be greatly extended in order to support all commands for adding, updating,
and deleting information. In addition to this, a more advanced version of the
context would also have been developed, along with a basic ”end-of-transaction”
mechanism in order to support commits of the changes made to the SBK.

5.1.2 PNR Bridge

The SBK system allows the user to reference data in external booking systems,
most notably the Amadeus PNR database. Another possible extension of the
system would have been to find a nice way of displaying the information con-
tained in these systems.
This would involve creating a quite huge mapping between the corresponding
attributes of the different systems as well as finding a nice way of letting the
different systems communicate with each other.

35

Bibliography

[1] Wikipedia article on 3270
http://en.wikipedia.org/wiki/3270
2007-11-01

[2] Wikipedia article on EBCDIC
http://en.wikipedia.org/wiki/Ebcdic
2007-10-20

[3] Wikipedia article on EDIFACT
http://en.wikipedia.org/wiki/EDIFACT
2007-11-01

[4] United Nations Directories for Electronic Data Interchange for
Administration, Commerce and Transport
http://www.unece.org/trade/untdid/welcome.htm
2007-10-27

[5] Eric S. Raymond
The Jargon File
http://catb.org/jargon/
2007-10-27

36

Chapter 6

Appendix

6.1 Abbreviations

1A Amadeus
3270 The IBM 3270 class of terminals
tn3270 Modified version of the telnet protocol
ATE Amadeus Terminal Emulator
SBK Shopping Basket
PNR Passenger Name Record
ORG Originator
SI Service Integrator
HSFREQ Hybrid Screen Format Request Message
HSFRES Hybrid Screen Format Response Message
TRMREQ Process 3270 Query Message
TRMRES Process 3270 Response Message
EBNF Extended Backus Naur Form
Regex Regular expressions
GCC The GNU Compiler Collection
G++ The GNU C++ Compiler
XML Extended Markup Language
EDIFACT United Nations/Electronic Data

Interchange For Administration, Commerce, and Transport

6.2 Overview

37

SBK Cryptic Message Interface (draft) – 04 Oct -07 rev5

Introduction

This document will describe the mechanics of the SBK cryptic interface. In the initial
version of the cryptic interface, functionality for searches (lookups) and retrieving of
SBKs will be supported

Lookup

Introduction

This command will implement searching for a group of SBKs given a search criterion.
The idea is to parse a search request entered via the cryptic channel, wrap it into a
SSBLRR message and pass it onto the SBK services. The response then needs to be
parsed and presented in a nice way.

Cryptic commands

 Must not be ambiguous

Proposal of a syntax

“DK” = Placeholder for a SBK query.

Syntax:

 Encapsulate search attributes.

 Possibly with the most common criteria type not encapsulated. The examples
below show the passenger name without encapsulation.

 Use a simple label for encapsulation, e.g. ER() for external reference.

 Encapsulation with parenthesises, e.g. DD(27MAY07) for departure date 2007-05-
27

 Missing a leading slash after the DK indicates a search for a SBK ID. This criteria
is not encapsulated.

Lookup-attributes:

 LN Passenger Last name

 FN Passenger First name

 DD Date of Departure

 DR Date of Return

 OP Off Point: NCE

 BP Boarding Point: STO

 SN Shopping basket name: MYSHOPPINGBASKET

 ER External reference: ID/Type

Example queries:

DK/DD(27MAY05)BP(NCE)LN(ENGVALL)FN(TOB*)

Search for all SBKs departing from Nice the 27th of May where the passenger’s last
name is “Engvall” and the given name starts with “Tob”.

DK/ER(ASD1234/PNR)

Search for all SBKs having an external reference to a PNR with the ID “ASD1234”.

DKSBKID1234

Retrieve the SBK with the SBK id “SBKID1234”

Screens

While designing the initial version of the output format, these premises were taken in to
account:

 Maximum of 50 returned results by the SBK lookup. Thus two characters used
for local IDs.

 SBK IDs are of 9 characters length.

The compact display of an SBK in the output list includes:

 Local ID [2 characters]

 Passenger name [20 characters]
o EDIFACT: Basket->shoppingBasketCustomers->customerInformation->...

Check for a main customer. If none, use the first result

 SBK name [15 characters]
o EDIFACT: Basket->shoppingBasketName->name

 SBK unique ID [9 characters]
o EDIFACT: Basket->shoppingBasketIdentifier->controlNumber

 Departure and return date and location 2*[7+3 characters]
o EDIFACT Basket->shoppingBasketSummaryInfo...

Note that the SBK and passenger names will be truncated if their size exceeds the
predefined boundaries.
Mock-up of output:

Legend:

 [Local ID] [Passenger name] [SBK Name] [SBK Id] [Date of departure] [Departure loc.] [Date of return] [Return loc.]

Error messages

To be defined.

Retrieve

Introduction

The complexity of the SBK data structure makes displaying the contents of a SBK on
very limited screen estate a bit tricky. Although the SBK data structure has well over
2000 attributes associated to it, the interface for retrieving and displaying a SBK must be
user-oriented without lacking information about details.
Since the SBK contains very much information, especially in the product and fares&fees
sections, the initial work will focus on the most commonly used attributes.

Some commonly used composites of elements are often reused throughout the SBK, an
example being the date/time composite. This is a very good thing that can and should be
taken advantage of.

Premises

 Standard screens are 79x24 characters.

The cryptic displays – overview

The first screen the user is presented with when retrieving a SBK is the
summary/records screen. Its purpose is to show the structure of the SBK as well as
some calculated summary information along with the customers of the SBK.
By using this as an entry point, the user can then choose to view information about the
different entities: Customers, Records etc.

Detailed views

Retrieve a SBK

Summary View

Customer

Business

reservation

record

Business record:

Offer

Business record:

...

Navigation

The SBK is a quite complex data structure. With that in mind, having some kind of
navigation stack would be a great asset.
The current plan is to have the current navigation context along with some navigational
data stored in the context server by OTF. This data is used to navigate the SBK through
local IDs.
Enumerating all entities capable of being browsed gives the user quick access to
continued exploration. Instead of saying: “Show me the type of fees associated to this
specific flight”, a user could just type in: “Show me more information about field 3” while
viewing details on a flight.

[3.AIR:FLIGHTASD123 05MAY07 0700 NCE STO EJ1233321]

The “Show me details of 3” command would take you to the detailed display of the air
product.

The general approach described in this document uses a “flattened” style for displaying
things. Instead of showing all stand-alone, top-level business objects as entry points, all
the business records contained in the SBK are presented in a structured table.
Information about the relations between records can be found in one of the columns of
the table.

Relations

The business and reservation records consist of atomic elements and their associated
relations. Since these are the records which in a way defines the whole meaning of the
SBK, this is what is important to display in a nice way. The SBK way of life document
describes relations of order two as the highest type of a relation. An example of such a
relation would be a SSR having the EXT relation relating to a CON relation: A
passenger’s consuming relation is extended with a product. Having this as a premise,
relations can be presented quite nicely as shown in the examples given later on.

Cryptic commands

Support for:

 Navigation.

 Filtering – not initially.

 Customizing the view – not initially.

RK = Placeholder Retrieve.

RKSBKID12345

Retrieve the SBK with id “SBKID12345”

RK/DESC

Show the description of the SBK, another way of displaying this would be to assign it as
a browsable item in the summary screen.

RK/REC

Show the records in the SBK.

RK/15

Navigate to element number 15.

RK/T1005

Navigate to the entity with tattoo 1005.

Support for filtering of data and custom displays will be explored in later versions.

Labels/Captions

Having a caption or a label which explains the entities is probably necessary, especially
in sections which are not frequently used.

The summary screen:

This is the screen the user is first presented with when a retrieve is performed. The
purpose of this screen is to give the user a quick overview of the SBK’s contents and
topology.

Example 1: The SBK summary screen.

The first line shows the calculated begin and end dates of the SBK, the departure and
destination codes and the calculated monetary summary. Under the status lines we find
the description of the SBK and the SBK’s associated customers.
The topology of the SBK is shown by a table displaying the records contained in the
SBK:

[11.RESERVATION C3,5 2AIR 1CAR 02MAY07 NCE AMS R12]

From left to right, the row consists of:

 Type of record. [RESREC]

 Associated customers. [C3,5]

 Product summary. [2AIR 1CAR]

 Calculated begin date, boarding point and off point. [02MAY07 NCE AMS]

 List of records contained in this record. [R12]

Viewing one record

Access to the underlying records is gained from further navigation from the topology
screen. In this case: the reservation record with tattoo 1005 is shown. The screen uses a
table-based approach and the different sections of the record are separated by a
header.

Example 2: The single record view.

This screen’s purpose is to show details about the entities contained in one record. In
this case, the record contains two passengers and three products.

 A product is displayed by its common characteristics, as shown by the below
example.

[3. AIR:AF112345678 02MAY07 NCE 02MAY07 AMS]

From left to right, the row consists of:

 The type of the product [AIR]

 The product identification, Flight number for air product, Hotel code for hotel
product etc. [AF112345678]

 The entities consuming this product. [C1-2]

 A short summary of the begin/end date and locations.
 [02MAY07 NCE 02MAY07 AMS]

 After the product summary, information related to the SBK is shown. In this case, we
have a special service request for a vegetarian meal on Customer 1’s consumption
of Product 3 and some information about Customer 3’s frequent traveller data.

[6. SSR:VGML C1>P3]

This row shows the vegetarian meal special service request and how it is related to
Customer 1’s flight with AF112345678. As a placeholder, the ‘>’ sign is used to
indicate a relation.

 The fares section describes monetary information about the record. The below
example shows a fare of 1000€ related to Customer 1’s consumption of Product 4, it
also has a fee of 120€ associated to it.

[8. FAR 1000 EUR C1>P4 FEE SVT 120 EUR]

The row consists of:

 Type: fare or fee. [FAR], [FEE]

 Type of fee. [SVT]

 Amount and currency. [1000 EUR], [120 EUR]

 Consumptions. [C1>P4]

 Payment is defined after the fares in the Forms of Payment-section. In the above
scenario, Customer 1 pays for the entire record in cash.

[11.CA 4850 EUR C1>F6-11]

The row consists of:

 Type: Cash, Credit card, etc. [CA]

 Amount and currency. [4850 EUR]

 Relations. (Who is paying for what?) [C1>F6-11]

 The last entry shows the underlying records of this record. It is displayed in the same
way as it is in the summary screen.

Viewing one entity: A customer

Example 3: Viewing a customer.

This is an example of a view of a single entity. The screen displays the entity and the
attributes associated to it. In an initial phase, no information about participation or other
information about relations with other products will be shown.

The above example shows a passenger accompanied by an infant. One address, two
phone numbers and an email address are shown along with some frequent flyer
information.

A feature that was left out to future versions was having a list of all items referencing to
this particular customer.

Viewing one entity: Product

Example 3: Viewing an air product.

This initial version of the screen shows an air product. Since the record screen uses
limited space for displaying the consumers of a product, it is also necessary to show the
consumers of the flight on this screen.

The flight info is just displayed as a concatenated list of the attributes.

