
DF

Original Teacher network

Student network

input Loss

Under

training

Smaller

network

Original

network

Original Teacher network

Student network

Loss

Student network

Loss

Original Teacher network

Training Binary Deep Neural Networks
Using Knowledge Distillation

SOFIA LUNDBORG

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2020

Master’s thesis 2020:57118

Training Binary Deep Neural Networks
Using Knowledge Distillation

SOFIA LUNDBORG

DF

Chalmers University of Technology
Gothenburg, Sweden 2020

Training Binary Deep Neural Networks Using Knowledge Distillation
SOFIA LUNDBORG

© SOFIA LUNDBORG, 2020.

Supervisor: Giovanni Volpe, Department of Physics at Gothenburg University
Examiner: Giovanni Volpe, Department of Physics at Gothenburg University

Master’s Thesis 2020:57118
Department of Physics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Visualization of three different knowledge distillation techniques

Typeset in LATEX
Printed by Chalmers Reproservice
Gothenburg, Sweden 2020

iv

Training Binary Deep Neural Networks Using Knowledge Distillation
SOFIA LUNDBORG
Chalmers University of Technology

Abstract
Binary networks can be used to speed up inference time and make image analysis
possible on less powerful devices. When binarizing a network the accuracy drops.
The thesis aimed to investigate how the accuracy of a binary network can be im-
proved by using knowledge distillation. Three different knowledge distillation meth-
ods were tested for various network types. Additionally, different architectures of a
residual block in ResNet were suggested and tested. Test on CIFAR10 showed an
1.5 % increase in accuracy when using knowledge distillation and an increase of 1.1 %
when testing on ImageNet dataset. The results indicate that the suggested knowl-
edge distillation method can improve the accuracy of a binary network. Further
testing needs to be done to verify the results, especially longer training. However,
there is great potential that knowledge distillation can be used to boost the accuracy
of binary networks.

Keywords: deep neural networks, knowledge distillation, binary neural networks.

v

Acknowledgements
I want to thank my supervisors at Bit Addict Karl Svensson, Fredrik Ring and Niclas
Wikström for guiding me through the whole process of writing this thesis. You have
helped me find a relevant subject, structure the work, and contribute with helpful
knowledge and insights. I also want to thank my supervisor och examiner Giovanni
Volpe for making this thesis possible. Lastly, I want to express gratitude to all the
staff at Bit Addict for your warm welcome and great company - making the whole
experience more enjoyable.

Sofia Lundborg, Gothenburg, June 2020

vii

Contents

List of Figures xi

List of Tables xv

1 Introduction 1
1.1 Limitations . 2

2 Theory 3
2.1 Binary neural networks . 3

2.1.1 Using binary weights . 3
2.1.2 Using binary weights and inputs 4

2.1.2.1 Efficiency of binary CNNs 5
2.1.2.2 Gradient approximation in backward propagation . . 5

2.1.3 Improving accuracy of binary networks 6
2.1.3.1 Network architecture 6
2.1.3.2 Scaling factors in convolution layers 7

2.2 Knowledge Distillation . 9
2.2.1 Alternative training schemes 9

2.2.1.1 Method I - progressive learning 9
2.2.1.2 Method II - simultaneously learning 10
2.2.1.3 Method III - progressive learning without scaling fac-

tors . 10
2.2.2 Binarization and knowledge distillation 11

3 Method 13
3.1 Tests using CIFAR10 . 13

3.1.1 Architecture of ResNet block 15
3.1.2 Comparison of Knowledge Distillation techniques 18
3.1.3 Binary network type . 18

3.2 ImageNet test - Method I on ResNet18 19

4 Results 21
4.1 Results using CIFAR10 dataset . 21

4.1.1 Architecture of residual block 21
4.1.2 Knowledge Distillation technique 22

4.1.2.1 Training with method I 23
4.1.2.2 Training with method II 24

ix

Contents

4.1.2.3 Training with method III 24
4.1.2.4 Comparison of methods 25

4.1.3 Binary network type - binary, XNOR and XNOR++ 26
4.2 Results using ImageNet dataset . 27
4.3 Memory Savings . 28

5 Discussion 29
5.1 Analysis of CIFAR10 results . 29

5.1.1 Which architecture of residual connection is best? 29
5.1.2 Does knowledge distillation work for binary networks? 30

5.1.2.1 Initially closer to minimum which is equivalent with
longer training time 31

5.1.2.2 Learning from intermediate layers 31
5.1.2.3 Progressive learning 32

5.1.3 Which network type works best? 32
5.2 Analysis of ImageNet results . 33

5.2.1 Comparison with others work 33
5.2.2 Does the analysis of CIFAR10 hold for ImageNet? 34

5.3 Choice of method . 35
5.3.1 Other loss function of intermediate layers might improve learning 35
5.3.2 Using knowledge distillation method that does not require

same distributions . 36
5.3.3 Order of binarization . 36
5.3.4 Not all combinations were tested 37

5.4 Future studies . 37
5.4.1 Verify results . 37
5.4.2 Adapt teacher architecture to suit optimal student architec-

ture instead of the other way around 37
5.4.3 Use other loss function for intermediate layers 38
5.4.4 Use other low-precision network types 38

6 Conclusion 39

Bibliography 41

x

List of Figures

2.1 Illustration of how matrix multiplication is replaced by applying XNOR-operation
on the two vector/matrices and then summing the results with bitcount operator.
To the left, we have a regular convolution where the values of the input and weights
are element-wise multiplied and then summed. To the right, the corresponding
XNOR-botcount operation is shown. 4

2.2 The left figure shows the gradient of the sign function (impulse function) and the
right figure its approximation which is used in backward propagation. 6

2.3 The left figure shows the sign function and the right figure its approximation. . . 6
2.4 To the left - a block of ResNet network for a conventional full precision network.

In the middle - a binary version of a ResNet block. To the right - a ResNet block
with double shortcuts used in Bi-Real networks. The values are binary after the
Sign function and integers after the convolutional layers. This is indicated by an
orange line. In the other positions, the values are real and it is represented as a
black line. 7

2.5 Computation of scaling factors used in XNOR-nets. 8
2.6 Schematic figure of method I [20], method II [19] and method III [18] 11

3.1 First, different architectures of ResNet block is tested. Then knowledge distillation
methods are tested using the best result from the previous tests. Lastly, different
network types are tested. 15

3.2 Where the distributions are sampled in Figure 3.3. 15
3.3 Distributions of the output at different stages in convolutional layer 7. The left

figure shows the distribution of output after the second batch normalisation layer,
while the middle figure shows the shortcut and the right figure the summation of
the two. In the rightmost figure, one can see that the mean has shifted and the
tail is extended for positive values . 16

3.4 Tested architectures for ResNet block. 17
3.5 The four different architectures of ResNet block were tested. Knowledge distilla-

tion method III was used and the factorised version of XNOR++ scaling factors
was used. Double ReLU was used in the following tests. 17

3.6 The three different knowledge distillation methods were tested using double ReLU
shortcut and factorised XNOR++ scaling factors. Method I was used in the next
test. 18

3.7 Four different network types were tested using double ReLU shortcut and knowl-
edge distillation method I. The factorised version of XNOR++ network was used
in the following ImageNet test. 19

xi

List of Figures

4.1 Method III with different architectures of the residual block. The blue represents
a naive block where the ReLU activation is replaced by a Sign activation. The
yellow represents a block identical to an original full precision ResNet block, but
with a Sign activation before every convolutional layer. The green represents a
block with two shortcuts in every ResNet block. The red represents a block where
absolute value and a scaling factor is used instead of ReLU activation in the
shortcut. The different residual architectures tested is presented in Section 3.1.1.
The solid lines represent validation loss/accuracy while the dotted lines represent
train loss/accuracy. 22

4.2 The leftmost figure shows the training loss for method I. The middle figure shows
the validation and train loss of regular training but where the network is initialised
by the network trained by method I. The far right figure shows the corresponding
accuracy of the regular training. The accuracy of regular training without initial-
isation using method I is included in the rightmost figure as a grey line. In all
figures, the orange line represents the validation loss/accuracy and the blue dotted
line represents the train loss/accuracy . 23

4.3 The leftmost figure shows the training loss for method II. The middle figure shows
the validation and train loss of regular training but where the network is initialised
by the network trained by method II. The right figure shows the corresponding
accuracy of the regular training. The accuracy of regular training without initiali-
sation using method II is included in the right figure as a grey line. In all figures,
the orange line represents the validation loss/accuracy and the blue dotted line
represents the train loss/accuracy . 24

4.4 The leftmost figure shows the training loss for method III. The middle figure shows
the validation and train loss of regular training but where the network is initialised
by the network trained by method III. The right figure shows the corresponding
accuracy of the regular training. The accuracy of regular training without ini-
tialisation using method III is included in the right figure as a grey line. In all
figures, the orange line represents the validation loss/accuracy and the blue dotted
line represents the train loss/accuracy . 25

4.5 Final accuracy for networks initialised by method I, 11, III or no method. For
method I and II different values of scaling factor β is tested (x-axis). method III
and no method does not contain any scaling parameter and is represented as a
straight line. 25

4.6 Training of different binary network types using method I as initialisation. Train-
ing of method I is shown in the left figure followed by regular training in the middle
(loss) and right figure (accuracy). Binary network, where no scaling factor were
used is represented as blue. XNOR is represented as orange. XNOR++ where
Γ = α ⊗ β ⊗ γ, i.e. Γ is factorised, is represented by red. XNOR++ where Γ
has the same dimension as output from the convolutional layer is represented by
green. The solid lines represent validation loss/accuracy while the dotted lines
represent train loss/accuracy. 26

4.7 Training using method I on ImageNet. The train loss is represented as the dotted
line and the validation loss as the solid line. 27

xii

List of Figures

4.8 Training using cross-entropy loss where one network has been pre-trained accord-
ing to method I and one has not. The train loss/accuracy is represented as dotted
lines while the validation loss/accuracy is represented by solid lines. 27

5.1 Visualisation of how better initial accuracy means a head start and in turn is
equivalent to longer training time. 31

5.2 Representation of limitations of a model. In a regular full precision network, the
representational capability is higher than the model’s ability to generalise. The
limiting factor is therefore, the ability to generalise and not the representational
capability. The larger and more varied train dataset in ImageNet leads to a higher
ability to generalise in comparison to CIFAR10. 34

5.3 Visualisation of the potential limiting factor for CIFAR10 and ImageNet when
the network is binarized. When the network is binarized both the representational
capability and the ability to generalise decreases. The networks ability to gen-
eralise is higher for ImageNet compared to CIFAR10 and it is possible that the
representational capability becomes the limiting factor for ImageNet but not for
CIFAR10. It is reasonable to believe that the drop in representational capability is
larger than the drop in ability to generalise since binarization acts as a regulizer
[8]. The representational capability can be improved by using XNOR++ scaling
factors or add an extra shortcut. 35

xiii

List of Figures

xiv

List of Tables

2.1 Rules for XNOR gate. 4

3.1 Architecture for ResNet20. The network consists of an initial convolutional layer,
followed by 3 large blocks each containing 3 residual blocks. One residual block is
made up of 2 convolutions layers with kernel size 3 and corresponding batch norm
layers as well as a residual connection (shortcut). Following the residual blocks
there is an average pooling layer and lastly a fully connected layer. 14

3.2 Architecture of ResNet18. It is made up of the four large blocks conv2_x, conv3_x,
conv4_x and conv5_x which each consists of two convolutional layers with kernel
size 3. Before the residual blocks, there is an initial convolutional layer and a
max pool layer. After the residual blocks, there is an average pooling layer and a
fully connected layer. 20

4.1 Top 1 and top 5 accuracies for ResNet18. The first two rows are the accuracies
achieved in this paper while the following four are results form others work. . . . 28

xv

List of Tables

xvi

1
Introduction

In recent years, there have been great advances in the field of image analysis, in-
cluding tasks such as image classification, object detection, face recognition, and
segmentation. This has been possible thanks to the development of deep Convolu-
tional Neural Networks (CNNs). However, most of these deep CNNs require pow-
erful hardware with sufficient memory and computing resources, for example GPU.
Meanwhile, there are new technologies e.g. virtual reality, augmented reality and
other small devices that could benefit from image analysis, but are not equipped
with a powerful GPU. To be able to run real-time image analysis tasks on these
less powerful devices one would need to reduce inference time as well as memory
size of the CNNs. There are several methods to reduce memory size and inference
time. One way is to design compact networks [1][2]. Other methods are pruning [3],
quantization [4][5], or a combination of them [6]. This project has however studied
another approach - binarization.

Binarization is the extreme case of quantization where all weights are set to either
1 or -1 [7]. To take this one step further, one can also binarize the inputs of every
convolutional layer in the CNN [8]. This makes it possible to replace the matrix-
matrix multiplication in convolution layers by logical operations and in turn reduce
inference time substantially. It has been shown that the inference time on a CPU
can be accelerated by ≈ ×50 by binarization [9]. It can also reduce memory size up
to ×32 [8].

When a network is binarized, there is a substantial loss in accuracy. Several methods
to close the gap between the binary and full precision networks have been proposed
[10][11][12][13]. A method for improving the accuracy of a network, not specific to
binary networks, is knowledge distillation, where a student network is trained with
the help of a larger teacher network by mimicking the teacher network’s output in
certain layers. There are multiple measures to compare how similar two networks are
- their softmax output [14], their distribution in intermediate layers [15][16], their
flow between layers [17], or simply the mean square error between feature responses
[18][19][20].

In classical knowledge distillation methods, the student network is a smaller full
precision network in comparision to its teacher network. One could say that the
student network has a lower representational capability (the functions which the
model can learn) compared to the teacher network. The same is true for a binarized

1

1. Introduction

network and its corresponding full precision network. It is therefore possible that
knowledge distillation can be used for binary networks as a smart way of initialising
the network.

This thesis aims to investigate how knowledge distillation can be used to improve
the accuracy of a binary deep convolutional neural network. The following research
question will be answered:

• Does some knowledge distillation technique works better for binary networks
than others?

• Can the architecture of a network be modified to improve the effect of knowl-
edge distillation training?

• Are some network types better suited for knowledge distillation?

1.1 Limitations
The main advantage of using networks that binarize both its weights and its inputs
is that the matrix-matrix multiplication in the convolutions layers can be replaced
by logical operations. To make this binary multiplication efficient on a CPU or
other computational device, one needs to manage the execution scheduler and how
memory is stored. Methods for this have been developed [9][21], but it will not
be implemented in this project. Instead, the focus will be to investigate binary
networks’ ability to learn to make accurate predictions.

There are multiple types of binary networks [10][11][12][13], as well as ternary net-
works (inputs set to 0, 1, -1) [22]. The ideas presented in this project are not limited
to a specific binary network type. However, in this work, only Xnor-nets [10] and
Xnor++-nets [11] will be evaluated, incorporating ideas from Bi-Real nets [12].

The list of different network architectures is long and constantly growing - leNet,
VGG, AlexNet, DarkNet, ResNet to name a few. ResNet is a widely used network
that has shown being suitable for binary networks [10][11][13][12]. To make the
results of this work easy to compare with others, only ResNet [23] will be studied
in this thesis.

Due to time limitation and long training times, no hyper-parameter optimisation
was made and the training was kept relatively short.

2

2
Theory

The aim of this thesis is to investigate the combination of binary network and
knowledge distillation. This section will present a background of previous research
in the fields of binary networks (Section 2.1) and knowledge distillation (Section
2.2).

2.1 Binary neural networks

How binary networks are trained are described in this section, both for networks
using binary weights as well as networks using both binary weights and inputs.
In Section 2.1.3 a few methods to improve the accuracy of binary networks are
described.

2.1.1 Using binary weights
It is not obvious what a binary neural network is. What part of the network is bina-
rized - is it the weights? the inputs? Courbariaux et al. introduced the concept with
their network BinaryConnect [7] which binarizes the weights in the convolutional
layers. The weights are real-valued during training but are set to binary values in
the forward propagation, using the sign function:

wbinary =

+1 if wreal ≥ 0
−1 otherwise.

(2.1)

The backward propagation is done with the binary weights, but it is the real-valued
weights that are updated. The reason being that the changes during the parameter
update are too small to change the sign on a binary value, and the weights would
remain unchanged. The real-valued weights are binarized again in the forward prop-
agation for the next mini-batch. Since the magnitude of the real-valued weights does
not affect the sign, the weights are clipped to remain in the interval [−1, 1] to avoid
growing unnecessarily large (with no impact). See Algorithm 1.

3

2. Theory

Algorithm 1 Training of BinaryConnect network where wreal is the real valued
weights, b is the biases, t+ 1 is the next time step and η is the learning rate.
for all mini batches do
1. Forward propagation:

wbinary = sign(wreal) for all layers.
Propagate forward and get loss L using the binary weights

2. Backward propagation:
Calculate ∂L

∂wbinary
and ∂L

∂b
for all layers.

3. Update parameters:
wt+1

real = clip
(
wt − η ∂L

∂wbinary

)
bt+1 = bt − η ∂L

∂b

end for

When the training is finished, the real-valued weights can be removed and we are
left with a network with reduced memory and inference time.

2.1.2 Using binary weights and inputs
As a further development of BinaryConnect, Courbariaux et al. proposed a network
with both binary weights and inputs, BNN [8]. The input to every convolutional
layer is binarized, i.e. the sign function is applied to the input. Binarization makes
it possible to replace multiplication in the convolutional layers with the logical op-
erators XNOR and bitcount [8]. XNOR is a logical gate which follows the rules:

input input XNOR
1 1 1
1 -1 -1
-1 1 -1
-1 -1 1

Table 2.1: Rules for XNOR gate.

bitcount simply sum the vector. Figure 2.1 visualises how a binary multiplication
can be substituted with XNOR and bitcount.

- 1 1

1 - 1

- 1 1

1 1

2

*

-1 1 1 1

-1 1 1 -1

1 1 1 -1 2

XNOR
bit count

1 1

- 1 - 1

1 1

-1 - 1

- 1 1

1 - 1

Figure 2.1: Illustration of how matrix multiplication is replaced by applying XNOR-operation
on the two vector/matrices and then summing the results with bitcount operator. To the left, we
have a regular convolution where the values of the input and weights are element-wise multiplied
and then summed. To the right, the corresponding XNOR-botcount operation is shown.

4

2. Theory

2.1.2.1 Efficiency of binary CNNs

The matrix multiplications in the convolutional layers are the most computation-
ally demanding and time-consuming task during inference [24]. Different theoretical
speed-up factors has been reported. The calculated potential speed up varies de-
pending on the network, as well as how the efficiency is calculated. Some only look
at the speed up for the convolutional layer - ×23 [8], ×58 [10], ×64 [11], while others
look at the complete network - ×7 [8] on an MLP network with 2048 units, ×11 on
ResNet18 and ×19 on ResNet34 [12].

The actual efficiency improvements also depend on the computing device (CPU/GPU
etc.) and the framework (TensorFlow/Pytorch etc.). Xu et al. implemented a com-
puting kernel for Python storing the binary weights in unsigned ints [25]. However,
the performance of their kernel only increased ≈ ×1.5 on a CPU and performed
worse than Pytorch in-build matrix multiplication on a GPU. Hu et al. also stored
the weights in unsigned ints, but they used locally-aware layout (not the conven-
tional image-to-column method) and vector parallelism to achieve ×50 acceleration
on a CPU [9]. Zhang et al. have implemented another binary framework for ARM-
devices, achieving ≈ ×3.5 compared to TensorFlow light and ≈ ×20 compared to
Caffe on Bi-Real 18 network [21].

2.1.2.2 Gradient approximation in backward propagation

The training of a binary network is not trivial. The derivative of the sign function is
equal to zero everywhere except at origo, where it is not defined (impulse function).
This makes the conventional back-propagation training problematic since the gradi-
ent of the loss function with respect to the weights will be zero for all layers except
the last. Let L be the loss, Areal the activation function for real-valued output of
the previous layer, and Abinary the binarization function, i.e. sign-function. The
derivative of the loss with respect to Areal can be written as

∂L
∂Areal

= ∂L
∂Abinary

∂Abinary

∂Areal

= ∂L
∂Abinary

δ(Areal) (2.2)

where δ(Areal) is the delta-function, i.e.

δ(x) =

∞ if x = 0
0 otherwise.

(2.3)

In the binary network proposed by Courbariaux et al. δ(Areal) is approximated as

∂Abinary

∂Areal

≈

1 if − 1 ≤ Areal ≤ 1
0 otherwise

(2.4)

This is then used in the backward propagation. The approximation of the gradient
is illustrated in Figure 2.2, and its corresponding function in Figure 2.3.

5

2. Theory

-1 +1

Original Approximation

Figure 2.2: The left figure shows the gra-
dient of the sign function (impulse function)
and the right figure its approximation which
is used in backward propagation.

-1 +1

Original Approximation

Figure 2.3: The left figure shows the sign
function and the right figure its approxima-
tion.

Equation 2.4 is the standard way of approximating the gradient (used in BNN,
XNOR, XNOR++ networks) but alternatives have been studied. In Bi-Real net-
works, the gradient of the sign function is approximated by a piecewise linear func-
tion according to Equation (2.5) [12].

∂Abinary

∂Areal

≈


2 + 2Areal if − 1 ≤ Areal ≤ 0
2− 2Areal if 0 ≤ Areal ≤ 1
0 otherwise

(2.5)

2.1.3 Improving accuracy of binary networks
Courbariaux et al. showed that it was possible to train a binary network for image
classification on the MNIST and CIFAR10 dataset. However, when trained with
ImageNet there was a large drop in top 1 accuracy - from 56.6 % to 27.9 % on
AlexNet [10]. To close this gap, several methods have been proposed. One way is
to change the networks architecture (Section 2.1.3.1), another to add scaling factors
(Section 2.1.3.2).

2.1.3.1 Network architecture

A common network architecture is ResNet [23] and it is used in almost all binary
network implementation. ResNet is particularly suitable for binary network due
to the shortcuts (residual connections). ResNet consists of blocks containing two
convolutional layers each followed by a batch normalisation layer and a ReLU layer.
For every block there is a shortcut adding the values of the input to the block with
the values obtained after the second batch normalisation layer, see Figure 2.4.

For a binary network, the ReLU function before the convolutional layers are replaced
by a sign function. At every sign layer, information is lost - when the real-valued out-
put from the batch normalisation layers are binarized. But the shortcuts in ResNet
allows for the information to be stored and propagated throughout the network. For
the second convolutional layer, the information is lost in the binarization step. To
remedy this, Liu et al. proposed an additional shortcut in their Bi-Real network
[12] and achieved a top 1 accuracy of 56.4 % on ImageNet. This idea was used by

6

2. Theory

Bethge et al, but they also adjusted the network architecture additionally to min-
imise information loss [13] and achieved a top 1 accuracy of 56.7 %. In Figure 2.4,
a ResNet block is visualised in a full precision network (left), in a binary network
(middle) and in a Bi-Real network (right).

ReLU

conv

BN

ReLU

conv

BN

ReLU

conv

sign

conv

BN

sign

conv

BN

sign

conv

sign

conv

BN

sign

conv

BN

sign

Original Binary Bi-Real

Binary or integer

Real valued

Figure 2.4: To the left - a block of ResNet network for a conventional full precision network.
In the middle - a binary version of a ResNet block. To the right - a ResNet block with double
shortcuts used in Bi-Real networks. The values are binary after the Sign function and integers
after the convolutional layers. This is indicated by an orange line. In the other positions, the
values are real and it is represented as a black line.

2.1.3.2 Scaling factors in convolution layers

Instead of modifying the network architecture, Rastegari et al. introduced XNOR-
net which uses scaling factors in the convolutional layers to approximate a full-
precision convolution better [10]. They calculated scaling factors by computing the
mean of input and weights and thereby retain some of the otherwise lost information.
The calculation of the scaling factors is visualised in Figure 2.5. The scaling factor
connected to the input, kij, is calculated as the mean over the input channels and
the receptive field:

kij = 1
n
‖X‖l1 (2.6)

where X is a sub-tensor of the input with the same size as the weight tensor. The
calculation result for each sub-tensor of the input is collected in the matrix K.

The scaling factor connected to the weights, α is computed as the total mean for
each weight tensor - one for each output channel:

α = 1
n
‖W‖l1 (2.7)

where W is the weight tensor.

7

2. Theory

0.4 0.7 0.4

0.2 -0.5

-0.3 -0.2 0.8

0.4 0.7 0.4

0.2 -0.5 -0.7

-0.3 -0.2 0.8

0.4 0.7 0.4

0.2 -0.5 -0.7

-0.1 0.5

-0.3 -0.2 0.8 0.3

0.4 0.7 0.4 0.4

0.2 -0.5 -0.7 -0.1

0.1

0.4 0.7 0.4

0.2 -0.5

-0.3 -0.2 0.8

0.4 0.7 0.4

0.2 -0.5 -0.7

-0.3 -0.2 0.8

0.4 0.7 0.4

0.2 -0.5 -0.7

-0.1 0.6 0.3

-0.3 -0.2 0.8 0.1

0.4 0.7 0.4 0.3

0.2 -0.5 -0.7 -0.6

0.5
0.4 0.7 0.4

0.2 -0.5

-0.3 -0.2 0.8

0.4 0.7 0.4

0.2 -0.5 -0.7

-0.3 -0.2 0.8

0.4 0.7 0.4

0.2 -0.5 -0.7

-0.2 0.4

-0.3 -0.2 0.8 0.7

0.4 0.7 0.4 0.1

0.2 -0.5 -0.7 -0.2

-0.2

0.4 0.7 0.4

0.2 -0.5

-0.3 -0.2 0.8

0.4 0.7 0.4

0.2 -0.5 -0.7

-0.3 -0.2 0.8

0.4 0.7 0.4

0.2 -0.5 -0.7

0.6 0.3

0.8 0.1

0.4 0.7 0.4 0.3

0.2 -0.5 -0.7 -0.6

0.6
0.4

0.2

0.4

0.2
0.4

0.2

0.4

0.2
0.4

0.2

0.4

0.2

-0.3 -0.2

0.4 0.7

0.2 -0.5

0.4

0.2
0.4

0.2

0.4

0.2

-0.3 -0.2

0.4 0.7

0.2 -0.5

0.4

0.2

-0.3 -0.2

0.4 0.7

0.2 -0.5

-0.3 -0.2

0.4 0.7

0.2 -0.5

mean

0.3

k
11

K

-0.1

-0.3 -0.2

 0.2

 0.3

0.5

0.6

-0.4 -0.7

0.1 -0.3

-0.4

-0.2

 0.3

 0.5

mean

0.2

α

Input Weights

 0.1 0.1

-0.2 0.2 0.6

0.1 0.3 0.4

0.3

Figure 2.5: Computation of scaling factors used in XNOR-nets.

The full precision convolution is approximated by

I ∗W ≈ K · sign(I) ∗ αsign(W) (2.8)

where ∗ is convolution, · is scalar product, I is the input, W is a weight tensor
related to one output channel and K and α are the scaling factors calculated by
Equation (2.6) and (2.7).

In XNOR-nets, the two scaling factors, α and K are computed analytically. In
contrast to this Bulat et al. suggested to fuse these factors into one, and instead of
calculating the scaling factors, learning them via backpropagation [11]. In XNOR++
networks the convolution is approximated as

I ∗W ≈ Γ · (sign(I) ∗ sign(W)) (2.9)

where ∗ is convolution, · is scalar product, I is the input and W is a weight tensor
related to one output channel and Γ is a matrix containing learnable scaling factors.
The output dimensions of the convolution is Ro×hout×wout where o is number of output
channels, hout is the output height, wout the output width.

Γ has the same dimensions as the convolution output, Ro×hout×wout . There are dif-
ferent ways of constructing Γ. One possibility is to let every element in Γ be a
learnable parameter. Another way is to let Γ be the outer product of three vectors

Γ = α⊗ β ⊗ γ, α ∈ Ro, β ∈ Rhout , γ ∈ Rwout (2.10)

This method has fewer learnable parameters and are therefore less prone to overfit-
ting.

8

2. Theory

2.2 Knowledge Distillation
Knowledge distillation is a method for boosting the accuracy of a network, by learn-
ing with the help of a pre-trained large teacher network which performs well on the
task. It was first introduced by Hinton et al. where the student network learned to
mimic the softmax output of the teacher network instead of the true label - it distils
knowledge from the teacher network [14]. The idea of Hinton et al.’s work was to
make use of the information in the relative probabilities of incorrect answers in the
teacher model since it can give an idea of how the teacher model tends to generalise.
The softmax is a value oi ∈ [0, 1] and is computed as

pi = exi/T∑
j e

xj/T
(2.11)

where T is called temperature - the larger the temperature, the softer the outputs
(the output elements have more similar values). A regular loss is the cross-entropy
loss:

L = −
∑

i

qi log(pi) (2.12)

where pi is the softmax output and q is the target (qi ∈ {0, 1}). Hinton et al. instead
uses the softmax output from the teacher network as q.

Romero et al. developed the idea of distilling knowledge further by proposing
to make the student network mimic the teacher network in intermediate layers
[26]. Several comparison measures between feature responses have been proposed.
Zagoruyko et al. suggested to compare the absolute values of the feature response
(flattened to a 2D tensor) as a measure of the importance (attention) of a single
neuron w.r.t. a specific input [15]. Huang et al. proposed a similar, but more
general, measure to match the distributions of student and teacher network [16].

2.2.1 Alternative training schemes
The previously mentioned knowledge distillation methods train in a conventional
way but with an unusual loss function; either containing a term including soft output
or feature responses from intermediate layers. As for any optimisation of a deep
CNN, the problem is non-convex and the search space huge. To make the search
space smaller and therefore the training more stable, alternative training schemes
have been proposed.

2.2.1.1 Method I - progressive learning

Wang et al. suggested a progressive approach, where only a sub-part of the network
is trained at every stage [20], see method I in Figure 2.6 for an illustration of the
method. The student network and the teacher network is divided into sub-networks.
Even though the student network is smaller, the features of the student and teacher
network need to have the same dimensions at the end of the sub-network. This is not
a problem when the student network is a binarized version of the teacher network
since the architecture is identical.

9

2. Theory

Assume the network is divided into a few parts. The first sub-network consists of
the first part, i.e. the first layers of the network. The second sub-network consists
of the first two parts and so on. The loss is divided into two terms - a local loss
Llocal and a classification loss Lcls (cross entropy-loss). The two losses are balanced
by a scaling factor β, see Equation (2.13).

LI = βLlocal + (1− β)Lcls (2.13)

where β ∈ [0, 1]. The local loss is the mean square error between the feature re-
sponses of the teacher’s and student’s sub-network respectively:

Llocal = 1
n

∑
i

(xteacher
i − xstudent

i)2 (2.14)

where xteacher and xstudent are the outputs from the teacher and student network in
an intermediate layer and n is the number of elements in the output.

The input is propagated through the complete network and the gradients are com-
puted with respect to the total loss, but only the active sub-network is updated. The
sub-networks are trained successively, and in the last step, all layers in the network
are trained.

2.2.1.2 Method II - simultaneously learning

In the method proposed by Wang et al. (method I) the individual parts of the
networks are trained multiple times. Instead, Koratana et al. suggested a method
where all parts of the network are trained simultaneously, see method II in Figure 2.6
[19]. The loss consists of two terms - a local loss, Llocal, and a knowledge distillation
loss, LKD, balanced by a scaling factor β:

LII = βLlocal + (1− β)LKD (2.15)

where α ∈ [0, 1]. The knowledge distillation loss consist of two parts - the cross-
entropy loss of the true label, Lhard and the cross-entropy of the soft output as in
equation (2.12), Lsoft. The two terms are balanced by scaling factor α according to

LKD = αLhard + (1− α)Lsoft (2.16)

The local loss is calculated as the mean square error as in Equation (2.14). The
main difference to method I is that the input to every sub-network is not the output
from the previous layer in the student network but the previous layer in the teacher
network. This makes it possible to train all sub-networks simultaneously while still
reducing the search space.

2.2.1.3 Method III - progressive learning without scaling factors

In method I and II there are multiple hyper-parameters that needs to be optimised
(e.g. temperature and balancing terms). Gao et al. proposed a progressive method

10

2. Theory

where there is only one term in the loss - the mean square error according to Equation
(2.14) [18], i.e.

LIII = 1
n

∑
i

(xteacher
i − xstudent

i)2 (2.17)

The student network is trained one sub-network at a time, gradually reaching the
final size.

Original Teacher network

Student network

input Loss

Under

training

Smaller

network

Original

network

Original Teacher network

Student network

Loss

Student network

Loss

Method I Method II Method III

Original Teacher network

Figure 2.6: Schematic figure of method I [20], method II [19] and method III [18]

2.2.2 Binarization and knowledge distillation
Knowledge distillation in combination with binarization has been studied by Xu et
al.[27]. In their work, they only binarized the weights (and not the inputs as done in
this work, which makes their problem easier). They tested it on very large networks
used for object detection such - YOLO [28] and MobileNet [29]. They used a total
loss which included both a loss from the final layer and mean square error loss from
intermediate layers. In contrast to the training schemes presented in Section 2.2.1,
they binarized the network in reversed order with respect to inference. The logic
behind the reversed order is that binarizing the weights in the last layers had a small
effect on the network while binarizing the first layers had a large negative effect on
the performance of the model [30]. The resulting accuracy dropped from the 78 %
(full precision network) to 72 % (their binary network) on the KITTI dataset [31],
which can be seen as a relatively small decrease.

11

2. Theory

12

3
Method

The aim of this thesis was to investigate if the accuracy of a binary network can
be improved by using a knowledge distillation training method. There are several
different knowledge distillation methods (Section 2.2), binary network types (Section
2.1.3.2) and binary network architectures (section 2.1.3.1). To evaluate the effects of
these different cases a relatively small dataset, CIFAR10, was used. The tests using
CIFAR10 is described in Section 3.1. In able to compare the result of this project
with other work on binary networks, it is necessary to use the same dataset and the
most commonly used is ImageNet. In Section 3.2, tests performed with ImageNet
are described. The models are built in the Pytorch framework [32].

3.1 Tests using CIFAR10

CIFAR10 is a dataset consisting of 32× 32 colour images in 10 classes, with 60,000
images per class [33]. There are 50,000 training images and 10,000 validation images.
The images were normalised w.r.t. mean and variance for the three colour channels.
When training, the input was randomly flipped horizontally and the mini-batch size
was set to 256.

The network used together with CIFAR10 was ResNet20. It consists of 3 large
blocks - conv2_x, conv3_x and conv4_x each consisting of 3 residual blocks which
in turn consists of two convolutional layers and a residual connection. The original
structure of a ResNet block can be seen to the left in Figure 2.4. Before the first
large block, there is a convolutional layer and after the last large block, there is
an average pooling layer followed by a fully-connected layer. The architecture of
ResNet20 is presented in Table 3.1.

13

3. Method

Layer Name Output size ResNet20

conv1 32 x 32 x 16 3 x 3, 16, stride 1

conv2_x 32 x 32 x 16
3 x 3, 16

3 x 3, 16[

[

x 3, stride 1

conv3_x 16 x 16 x 32
3 x 3, 16

3 x 3, 16[

[

conv4_x 8 x 8 x 64
3 x 3, 16

3 x 3, 16[

[

x 3, stride 2

x 3, stride 2

average pool

fully connected

1 x 1 x 64 8 x 8 average pool

10 64 x 10 fully connected

Table 3.1: Architecture for ResNet20. The network consists of an initial convolutional layer,
followed by 3 large blocks each containing 3 residual blocks. One residual block is made up of 2
convolutions layers with kernel size 3 and corresponding batch norm layers as well as a residual
connection (shortcut). Following the residual blocks there is an average pooling layer and lastly a
fully connected layer.

The first and last layer in ResNet20 was not binarized. This is common practice
for binary networks because it does affect the networks ability to predict while it
does not affect the speed significantly since the first layer has a small channel size
(3) and the last layer is a fully connected layer (equivalent to filter size of 1 in a
convolutional layer) [10].

During training the Adam optimiser was used. Similarly to stochastic gradient
descent, SGD, it uses the first-order gradient to update the weights. However, in
contrast to SGD, Adam calculates an adaptive learning rate for each individual
weight from estimates of first and second moments of the gradients. Using Adam
reduces the need for tuning of hyperparameters and it has shown to work better
than SGD for binary input networks [8].

For all tests using a knowledge distillation method, the ResNet20 was divided in
the same way - into the three large blocks: conv2_x, conv3_x and conv4_x. The
training was divided into two parts - knowledge distillation training followed by
a conventional cross-entropy training. In the cross-entropy training, the network
was initialised to the network trained by knowledge distillation instead of randomly
initialised. The model was trained for 120 epochs in the cross-entropy training.
Initial learning rate for cross-entropy training was set to 0.01 and the learning rate
was decreased by a factor of 10 at epoch 70, 90, 100 and 110. The ResNet block
used was the double shortcut with ReLU as described in Section 3.1.1.

Three tests were made using CIFAR10 - network architecture, knowledge distillation
method and network type. The best result from the previous tests were used in the
following test, i.e. not all combinations were tested. See Figure 3.1 for a schematic
figure of the progressive testing.

14

3. Method

Naive

Single ReLU

Double ReLU

Abs

Method I

Method II

Method III

Binary

XNOR

XNOR++

XNOR++ fac

1. Architecture 2. Method 3. Network type

Figure 3.1: First, different architectures of ResNet block is tested. Then knowledge distillation
methods are tested using the best result from the previous tests. Lastly, different network types are
tested.

3.1.1 Architecture of ResNet block

A block in a full precision ResNet is visualised in Figure 2.4 and it consists of two
convolutional layers each followed by a batch norm layer. The first batch norm layer
is followed by a ReLU layer while the second is followed by the summation with the
residual connection (shortcut). A ReLU layer is then applied to the summed output
and the results are saved as the shortcut to the next block. The distribution after the
second batch norm layer is on average Gaussian distributed, but this is not the case
for the output from the previous layer (the shortcut) since all the negative values
are removed by the ReLU layer. This makes the distribution after the summation
shift its mean as well as extend the tail for positive values. An example of the
distribution of the output before and after the summation of the previous output is
shown in Figure 3.3. Figure 3.2 shows where the distributions are sampled.

ReLU

conv

BN

ReLU

conv

BN

ReLU

conv

Before summation

After summation

Output from previous layers

Figure 3.2: Where the distributions are sampled in Figure 3.3.

15

3. Method

−5 0 5
value

0.0

0.1

0.2

0.3

0.4

de
ns

ity
Before summation

−5 0 5
value

0.00

0.25

0.50

0.75

1.00

1.25

de
ns

ity

Output from previous layer

−5 0 5
value

0.0

0.1

0.2

0.3

de
ns

ity

After summation

Figure 3.3: Distributions of the output at different stages in convolutional layer 7. The left
figure shows the distribution of output after the second batch normalisation layer, while the middle
figure shows the shortcut and the right figure the summation of the two. In the rightmost figure,
one can see that the mean has shifted and the tail is extended for positive values

The non Gaussian distribution poses a problem. Previous works with binary net-
works, removes the ReLU function which makes the shortcut and the result of
the summation Gaussian distributed. If one wants to use a knowledge distillation
method that compares intermediate output between the teacher and the student
network, it is reasonable that the intermediate output of teacher and student net-
work should have the same distribution. One way of getting the same distributions
as the teacher is to re-introduce the ReLU activation in the shortcut, see Figure
3.4 second to the left. However, when applying a ReLU function to the shortcut,
information is lost.

Another approach is to take the absolute value of the shortcut and multiply it with a
scaling parameter α ∈ [0, 1] to get similar distributions. What the value of α should
be is not clear. The mean of the distribution is shifted towards higher positive
values progressively throughout the network, and fewer and fewer values are set to
zero by the ReLU function. One possibility is to let α be a learnable parameter
for every convolutional layer. See Figure 3.4 for a schematic figure of the suggested
architecture.

In Section 2.1.3.1, Bi-real nets and double shortcuts are mentioned. The idea of
double shortcuts is that less information is lost in the binary step of the second
convolution. The extra shortcut in Bi-Real nets changes the distributions in two
ways. First, there is the absence of the ReLU function as previously discussed.
Secondly, it increases the variance when summing two Gaussian distributions. In
this project, a network with a different type of ResNet block is proposed, which has
double shortcuts but results in the same distribution as an original full precision
ResNet block. The ResNet block is visualised in Figure 3.4 furthest to the right.
In contrast to Bi-Real nets, the two shortcuts differ. One shortcut adds the output
from the two batch norm layers and scales the results with 1/

√
2 to achieve the same

distribution as if this extra shortcut did not exist. The second shortcut is identical
to a single shortcut with ReLU activation.

16

3. Method

sign

conv

BN

sign

conv

BN

ReLUsign

conv

BN

sign

conv

BN

sign

conv

ReLU

sign

sign

conv

BN

sign

conv

BN

sign

conv

sign

conv

BN

sign

conv

BN

sign

conv

abs

α

ReLU

ReLU abs

α

Naive With ReLU With abs Double shortcut

Figure 3.4: Tested architectures for ResNet block.

In contrast to the other methods, method III uses either cross-entropy loss or mean
square error loss and not a combination of the two. The problem of mimicking the
response of the teacher network and binary student network in the intermediate
layers is more overdetermined compared to the cross-entropy loss in the final layer.
To get a better understanding of how the ResNet blocks performs on the different
losses method III is used for testing.

The four architectures of ResNet blocks shown in Figure 3.4 were tested on knowl-
edge distillationmethod III. When training withmethod III, the network was progres-
sively binarized and trained one large block at a time, i.e. in three parts conv2_x,
conv3_x and conv4_x. The initial learning rate for every block was 0.01 and was
decreased by a factor of 10 at epoch 25, 30 and 35. Method III was followed by a
cross-entropy training for 120 epochs. Figure 3.5 shows a schematic figure of which
knowledge distillation method and network type that is used in the test.

Architecture test

Naive

Single ReLU

Double ReLU

Abs

Method I

Method II

Method III

Binary

XNOR

XNOR++

XNOR++ fac

Architecture Method Network type

Figure 3.5: The four different architectures of ResNet block were tested. Knowledge distillation
method III was used and the factorised version of XNOR++ scaling factors was used. Double
ReLU was used in the following tests.

17

3. Method

3.1.2 Comparison of Knowledge Distillation techniques
As described in the theory Section 2.2, there are multiple knowledge distillation
techniques. In many real-life scenarios when image analysis is used, the complexity
of the problem and therefore the size of the networks are large. When training a
large network the search space is huge. The knowledge distillation methods using
alternative training schemes, see Section 2.2.1, can reduce the search space and
consequently make the training more stable. In this project, only these methods has
been studied, i.e. method I, II, and III presented in Section 2.2.1.

Testing of method I was done where each sub-network was trained for 40 epochs
with an initial learning rate of 0.01 which was decreased by a factor 10 at epoch
20, 30 and 35. Multiple values of β was tested, β ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. It was
followed by a cross-entropy training for 120 epochs. Figure 3.6 shows a schematic
figure of which ResNet block and network type that is used in the test.

Testing of method III was done where each sub-network was trained for 40 epochs
with an initial learning rate of 0.01 which was decreased by a factor of 10 at epoch
25, 30 and 35. It was followed by a cross-entropy training for 120 epochs.

In method II all layers are trained simultaneously and the model was trained for 60
epochs in the knowledge distillation phase. The initial learning rate was set to 0.01
and was decreased by a factor of 10 at epoch 30, 40, 50 and 55. The values for α and
the temperature was set to the optimal values found in [19]: α = 0.95 and T = 6,
while multiple values of β was tested, β ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. It was followed by
a cross-entropy training for 120 epochs.

Method test

Naive

Single ReLU

Double ReLU

Abs

Method I

Method II

Method III

Binary

XNOR

XNOR++

XNOR++ fac

Architecture Method Network type

Figure 3.6: The three different knowledge distillation methods were tested using double ReLU
shortcut and factorised XNOR++ scaling factors. Method I was used in the next test.

3.1.3 Binary network type
Multiple version of binarized networks has been proposed. To evaluate if any specific
type works better with knowledge distillation, ordinary binary network [8], XNOR
network [10] and XNOR++ network were tested using knowledge distillation method
I. For XNOR++, both the ways of constructing the scalar parameter Γ was tested,
i.e. Γ containing a factor for every value of the output of the convolutional layer
or Γ being factorised: Γ = α ⊗ β ⊗ γ. The same parameters, epochs, learning rate
etc. were used as in the training of method I in Section 3.1.2 and the double ReLU
shortcut architecture was used. Method I was followed by a cross-entropy training

18

3. Method

for 120 epochs. Figure 3.7 shows a schematic figure of which ResNet block and
knowledge distillation method that are used in the test.

Network type test

Naive

Single ReLU

Double ReLU

Abs

Method I

Method II

Method III

Binary

XNOR

XNOR++

XNOR++ fac

Architecture Method Network type

Figure 3.7: Four different network types were tested using double ReLU shortcut and knowl-
edge distillation method I. The factorised version of XNOR++ network was used in the following
ImageNet test.

3.2 ImageNet test - Method I on ResNet18

To compare with other results, method I is tested with the common large dataset
ImageNet and network ResNet18. ImageNet is a dataset containing colour images of
1000 different classes [34]. The training set consists of a little more than 1.2 million
images and the validation set consists of 50,000 images. When training, the images
were randomly resized and cropped to the size 224× 224 and then randomly flipped
horizontally, which is the standard way of augmenting the input. During testing,
the images were center-cropped and normalised. During training and testing the
images were normalised w.r.t. mean and variance for the three colour channels. The
models were trained with mini-batch size 64. The mini-batch size was set to fit on
the GPU.

The network used together with ImageNet was ResNet18. Its architecture is shown
in Table 3.2. It consists of an initial convolutional layer and a max-pooling layer
followed by four main blocks each containing two residual blocks. One residual
block is made up of 2 convolutional layers and a residual connection, see Table 2.4.
Following the residual blocks is an average-pooling layer and lastly a fully connected
layer.

19

3. Method

Layer Name Output size ResNet18

conv1 112 x 112 x 64 7 x 7, 64, stride 2

conv2_x 56 x 56 x 64 3 x 3, 16

3 x 3, 16[

[

x 2, stride 1

conv3_x 28 x 28 x 128
3 x 3, 16

3 x 3, 16[

[

conv4_x 14 x 14 x 256
3 x 3, 16

3 x 3, 16[

[

x 2, stride 2

x 2, stride 2

average pool

fully connected

1 x 1 x 512 7 x 7 average pool

1000 512 x 10 fully connected

3 x 3 max pool, stride 2

conv5_x 7 x 7 x 512
3 x 3, 16

3 x 3, 16
x 2, stride 2[

[

Table 3.2: Architecture of ResNet18. It is made up of the four large blocks conv2_x, conv3_x,
conv4_x and conv5_x which each consists of two convolutional layers with kernel size 3. Before
the residual blocks, there is an initial convolutional layer and a max pool layer. After the residual
blocks, there is an average pooling layer and a fully connected layer.

During training with method I, ResNet18 was divided into the four large blocks
conv2_x, conv3_x, conv4_x and conv5_x. The first and last layer in ResNet18 was
not binarized and the residual block used was the double shortcut with ReLU, which
is described in Section 3.1.1. Adam was used as optimiser for both the knowledge
distillation training and cross-entropy training. Each sub-network is trained for 5
epochs with the initial learning rate of 0.01. The learning rate is decreased by a
factor of 10 at epoch 2, 4 and 5. During cross-entropy training the model is trained
for 25 epochs with an initial learning rate of 0.001 which decreases by a factor of 10
at epoch 15, 20 and 23.

To compare the accuracy with and without knowledge distillation, a network without
knowledge distillation pre-training was trained using cross entropy in the same way
as the cross-entropy training after method I.

20

4
Results

In this section, the results of the tests described in section 3 are presented. Two
datasets were used to test how binary networks in combination with knowledge dis-
tillation performs - CIFAR10 and ImageNet. CIFAR10 is a relatively small dataset
and extensive tests were made to evaluate which knowledge method, network archi-
tecture and binary network type worked best. The results of the CIFAR10 dataset
is presented in Section 4.1. To verify the results and to compare with others work,
the method suggested in this report is evaluated on the ImageNet dataset, which is
much larger than CIFAR10. The results of the ImageNet test can be seen in Section
4.2.

4.1 Results using CIFAR10 dataset
The testing with CIFAR10 can be divided into three parts. First different archi-
tectures of the residual block were tested, see Section 4.1.1. Secondly, different
knowledge distillation methods were tested, see Section 4.1.2. Lastly, different types
of binary network types (XNOR, XNOR++, etc.) were tested, see Section 4.1.3.
Ideally, all possible combinations of residual block architecture, knowledge distilla-
tion method and network type should have been tested. However, in this report,
only the most promising results from the previous test were used in the subsequent
tests.

4.1.1 Architecture of residual block
To evaluate how well the different architectures of a ResNet block performs, they
were tested onmethod III followed by a regular cross-entropy training. Four different
blocks were tested - a naive block where ReLU is substituted by a Sign activation,
single ReLU block which is the same as the naive but with a ReLU activation in the
shortcut, double ReLU which contains two shortcuts in every block and an abs-block
where the ReLU activation is replaced by absolute value function multiplied by a
learnable scaling factor. The ResNet blocks tested are described in Section 3.1.1.
The results are presented in Figure 4.1, where training of method III is shown in the
leftmost figure and the cross-entropy training is shown in the middle and rightmost
figure. See Figure 3.5 for a schematic figure showing which settings are varied and
which are fixed.

21

4. Results

0 50 100
Epochs

1.0

1.5

2.0

2.5

3.0

M
S

E
 lo

ss
Training using method III

naive
single relu
double relu
abs

0 50 100
Epochs

0.4

0.6

0.8

1.0

1.2

C
ro

ss
 E

nt
ro

py
 lo

ss

Training after method III - loss

naive
single relu
double relu
abs

0 50 100
Epochs

70

75

80

85

A
cc

ur
ac

y,
 [%

]

Training after method III - accuracy

naive
single relu
double relu
abs

Figure 4.1: Method III with different architectures of the residual block. The blue represents
a naive block where the ReLU activation is replaced by a Sign activation. The yellow represents
a block identical to an original full precision ResNet block, but with a Sign activation before every
convolutional layer. The green represents a block with two shortcuts in every ResNet block. The
red represents a block where absolute value and a scaling factor is used instead of ReLU activation
in the shortcut. The different residual architectures tested is presented in Section 3.1.1. The solid
lines represent validation loss/accuracy while the dotted lines represent train loss/accuracy.

When observing figure 4.1 one can note a few interesting things. Looking at the
training using method III, the lowest loss is achieved by the ReLU double shortcut
(green) followed by ReLU single shortcut (orange). Next comes the abs-block and
highest loss has the naive architecture were no ReLU is used in the shortcut. It is
not surprising that the naive block performs the worst since the student network
and the teacher network does not have the same distribution, see motivation in
Section 3.1.1. It is also expected that the double shortcut is better at mimicking the
teacher’s response since less information is lost in the binarization step of the second
convolutional layer in every residual block. To avoid losing information in the ReLU
step but still maintaining similar distribution, the abs-block was suggested, where
the ReLU activation was replaced by absolute value and a scaling factor which was
a trainable parameter. The abs-block resulted in a lower loss compared to the naive
block, but worse than the ReLU blocks even though less information got lost.

The results of the cross-entropy training differ from the method III training. In this
”regular” training, the abs-block performs worse than the naive block. One can also
observe that the single and double connections of a ReLU-block gave a very similar
final accuracy.

The ReLU double shortcut architecture performed best in both the knowledge dis-
tillation training and the cross-entropy training. The following tests all use double
ReLU shortcut.

4.1.2 Knowledge Distillation technique
In this section the results of the different knowledge distillation methods I, II and
III described in Section 2.2.1 is presented. First, the results of one run for method
I, II, III and their corresponding cross entropy training are presented. In Section
4.1.2.4, the accuracy achieved by method I, II, III is compared for various values

22

4. Results

of the scaling factor β in method I and II. Double ReLU shortcut was used since
it performed best at mimicking the intermediate feature response from the teacher
network, while also achieving good results of the cross-entropy training. See Figure
3.6 for a schematic figure showing which settings are varied and which are fixed.

4.1.2.1 Training with method I

In the leftmost figure in Figure 4.3, the loss of method I training is presented. The
scaling factor balancing the mean square error loss in intermediate layers and the
cross-entropy loss of the target was set to β = 0.4, see Equation (2.13). The training
using method I was followed by regular training with cross-entropy loss and these
results are shown in the middle and right figures. As a reference, a training without
initialising the network by training with a knowledge distillation method is included.

0 50 100
Epochs

0.75

1.00

1.25

1.50

1.75

To
ta
l l
os

s

Training using method I

train
validation

0 50 100
Epochs

0.4

0.6

0.8

1.0

C
ro
ss

 e
nt
ro
py

 lo
ss

Training after method I - loss

train
validation

0 50 100
Epochs

40

50

60

70

80

C
ro
ss

 e
nt
ro
py

 lo
ss

Training after method I - accuracy

no method
train
validation

Figure 4.2: The leftmost figure shows the training loss for method I. The middle figure shows
the validation and train loss of regular training but where the network is initialised by the network
trained by method I. The far right figure shows the corresponding accuracy of the regular training.
The accuracy of regular training without initialisation using method I is included in the rightmost
figure as a grey line. In all figures, the orange line represents the validation loss/accuracy and the
blue dotted line represents the train loss/accuracy

The final accuracy - right figure in Figure 4.2 shows that training the network with
method I before regular training improves the final accuracy. After the first epoch,
the accuracy is ≈ 70 % when using method I as initialisation, compared to ≈ 40 %
without.

23

4. Results

4.1.2.2 Training with method II

In the leftmost figure in Figure 4.3, the loss of method II training is shown. The
scaling factor balancing the mean square error loss in intermediate layers and the
loss of the final layer was set to β = 0.4, see Equation (2.15). The other hyper-
parameters for the KD loss was set to α = 0.95 and T = 6, see Equation (2.16)
and (2.11). The training using method II was followed by regular training with
cross-entropy loss and these results are shown in the middle and right figure. As a
reference, a training without initialising the network by training with a knowledge
distillation method is included.

0 20 40 60
Epochs

3.0

3.5

4.0

4.5

To
ta
l l
os
s

Training using method II

train
validation

0 50 100
Epochs

0.50

0.75

1.00

1.25

1.50

C
ro
ss
 e
nt
ro
py
 lo
ss

Training after method II - loss

train
validation

0 50 100
Epochs

40

50

60

70

80

C
ro
ss
 e
nt
ro
py
 lo
ss

Training after method II - accuracy

no method
train
validation

Figure 4.3: The leftmost figure shows the training loss for method II. The middle figure shows
the validation and train loss of regular training but where the network is initialised by the network
trained by method II. The right figure shows the corresponding accuracy of the regular training. The
accuracy of regular training without initialisation using method II is included in the right figure
as a grey line. In all figures, the orange line represents the validation loss/accuracy and the blue
dotted line represents the train loss/accuracy

In Figure 4.3, the final accuracy with and withoutmethod II training as initialisation
is presented in the rightmost figure. One can see that the final accuracy is not
improved by using method II. After the first epoch, the accuracy is ≈ 50 % when
using method II as initialisation, compared to ≈ 40 % without.

4.1.2.3 Training with method III

In the leftmost figure in Figure 4.4, the loss of method III training is presented. The
training using method III is followed by regular training with cross-entropy loss and
these results are shown in the middle and right figures. As a reference, a training
without initialising the network by training with a knowledge distillation method is
included.

24

4. Results

0 50 100
Epochs

1.0

1.5

2.0

M
S
E
 lo
ss

Training using method III

train
validation

0 50 100
Epochs

0.4

0.6

0.8

1.0

C
ro
ss
 E
nt
ro
py
 lo
ss

Training after method III - loss

train
validation

0 50 100
Epochs

40

50

60

70

80

A
cc
ur
ac
y,
 [%

]

Training after method III - accuracy

no method
train
validation

Figure 4.4: The leftmost figure shows the training loss for method III. The middle figure shows
the validation and train loss of regular training but where the network is initialised by the network
trained by method III. The right figure shows the corresponding accuracy of the regular training.
The accuracy of regular training without initialisation using method III is included in the right
figure as a grey line. In all figures, the orange line represents the validation loss/accuracy and the
blue dotted line represents the train loss/accuracy

In Figure 4.4, one can see that the final accuracy is improved slightly when using
method III as initialisation compared to without. After the first epoch, the accuracy
is already above 70 % when using method III as initialisation, compared to ≈ 40 %
without.

4.1.2.4 Comparison of methods

Figure 4.5 shows the final accuracy for a network that has been trained using cross-
entropy loss but where the network has been initialised by training using method
I, II or III. Methods I and II both contain the hyper-parameter β which balances
the loss from intermediate layers and the loss from the final layer. This scaling
parameter β was varied. For method II α = 0.95 and T = 6, see Equation (2.16)
and (2.11). Method III does not have any hyper-parameter, just like the regular
training without ”smart” initialisation and is therefore represented as a constant
line in Figure 4.5.

Figure 4.5: Final accuracy for networks initialised by method I, 11, III or no method. For
method I and II different values of scaling factor β is tested (x-axis). method III and no method
does not contain any scaling parameter and is represented as a straight line.

25

4. Results

As seen in Figure 4.5, it is apparent that method I performs the best - increasing the
accuracy by 1.5 %. It might also be possible to observe a slight decrease in accuracy
for method I when the scaling parameter increases. Important to note is that when
the scaling factor β = 0 there is no contribution from the intermediate layers loss
to the total loss.

Method II and method III also improves the final accuracy. For method II, the
accuracy’s dependence of the scaling factor is difficult to interpret since the accuracy
decreases for larger values of the scaling parameter until it is set to β = 1. Since
method I consistently performed best, it is used in the following tests.

4.1.3 Binary network type - binary, XNOR and XNOR++
From the previous tests, the most promising block of architecture was found to be
the double shortcut ReLU and the most promising knowledge distillation method
was method I. Using these, four different binary network types were tested - binary
(without scaling factors), XNOR, XNOR++ with Γ ∈ Ro×hout×wout and XNOR++
where Γ = α⊗ β ⊗ γ. The results are shown in Figure 4.6. Scaling factor β was set
to 0.4 since it yielded the best accuracy (Figure 4.5). See Figure 3.7 for a schematic
figure showing which settings are varied and which are fixed.

0 50 100
Epochs

0.75

1.00

1.25

1.50

1.75

2.00

To
ta

l L
os

s

Training with method I

binary
xnor
xnor++
xnor++ fac

0 50 100
Epochs

0.4

0.6

0.8

1.0

1.2

C
ro

ss
 E

nt
ro

py
 L

os
s

Training after method I - loss

binary
xnor
xnor++
xnor++ fac

0 50 100
Epochs

60

65

70

75

80

85

A
cc

ur
ac

y

Training after method I - accuracy

binary
xnor
xnor++
xnor++ fac

Figure 4.6: Training of different binary network types using method I as initialisation. Training
of method I is shown in the left figure followed by regular training in the middle (loss) and right
figure (accuracy). Binary network, where no scaling factor were used is represented as blue. XNOR
is represented as orange. XNOR++ where Γ = α⊗β⊗γ, i.e. Γ is factorised, is represented by red.
XNOR++ where Γ has the same dimension as output from the convolutional layer is represented
by green. The solid lines represent validation loss/accuracy while the dotted lines represent train
loss/accuracy.

When observing the regular training in Figure 4.6 one can see that, surprisingly,
the binary network without any scaling factors achieves the highest accuracy for
the train dataset. For the validation set, there is no significant difference between
the binary network and the factorised version of XNOR++. The least successful
network type was XNOR which has the most unstable training as well as yields the
lowest final accuracy.

26

4. Results

4.2 Results using ImageNet dataset
Several tests were made on CIFAR10 dataset, but in order to be able to compare with
others work ImageNet is used. The method that performed best in the CIFAR10
test were method I with double ReLU shortcut and factorised XNOR++ scaling
factors. Training of method I on ImageNet with scaling factor β = 0.4 is presented
i Figure 4.7.

0 10 20
Epochs

2

3

4

5
Lo

ss

Training with method I

train
validation

Figure 4.7: Training using method I on ImageNet. The train loss is represented as the dotted
line and the validation loss as the solid line.

There are four large blocks in ResNet18, and the successive binarization of each
block is clearly visible in Figure 4.7. As expected, the cross-entropy loss increases
for every block that is binarized.

After the network was trained using method I it was trained using cross-entropy
loss and the results can be seen in Figure 4.8. A network which is not initialised by
training of method I is also shown.

0 10 20
Epochs

2

3

4

5

C
ro

ss
 e

nt
ro

py
 lo

ss

Loss

method I
no method

0 10 20
Epochs

20

30

40

50

60

A
cc

ur
ac

y

Top 1 accuracy

method I
no method

0 10 20
Epochs

60

70

80

To
p

5
ac

cu
ra

cy

Top 5 accuracy

method I
no method

Figure 4.8: Training using cross-entropy loss where one network has been pre-trained according
to method I and one has not. The train loss/accuracy is represented as dotted lines while the
validation loss/accuracy is represented by solid lines.

The train loss in Figure 4.8 is higher than the validation loss. This might seem

27

4. Results

unreasonable, but it can be explained by the data augmentation performed on the
train data. In the accuracy calculation, non-augmented train data is used and the
train accuracy is higher than validation accuracy which is expected. Observing
Figure 4.8, one can see that the accuracy improves when the network is pre-trained
with method I. The final accuracy for both networks is shown in Table 4.1 as well
as the accuracy of other binary networks.

Top 1 accuracy Top 5 accuracy
Method I 53.9 % 77.4 %
No method 52.8 % 76.3 %
Binary 42.2 % 69.2 %
XNOR 51.2 % 73.2 %
XNOR++ 57.1 % 79.9 %
Bi-Real 56.4 % 79.5 %
Full precision 69.3 % 89.2 %

Table 4.1: Top 1 and top 5 accuracies for ResNet18. The first two rows are the accuracies
achieved in this paper while the following four are results form others work.

Comparing the results in Table 4.1, one can see that the results in this project are
better than the XNOR-net - both with and without method I training. However,
Bi-real and XNOR++ report better results.

4.3 Memory Savings
When binarizing ResNet18, the memory size of the model dropped from 46.8 MB
to 13.3 MB (≈ ×3.5 less memory is used). The weights in the convolutional layers
take up 44.7 MB of the total memory, i.e. the rest of the model, e.g. the weights in
the batch norm layers and the fully connected layer only constitutes 2.1 MB. The
weights in the first convolutional layer, that is not binarized is only 38 KB. The
added parameters α, β, γ in XNOR++ networks use only 33 KB. Almost all of the
memory is consumed by the convolutional layers which are binarized. Theoretically,
the memory saved by using a boolean compared to a floating-point is 32. However,
the framework used (numpy in Python) saves boolean as a byte and not a bit
(maximal potential memory saving is 4). If another framework was used, which
represents a boolean as a bit, the memory savings will be substantially larger.

28

5
Discussion

In this section the results of the CIFAR10 test are discussed in Section 5.1. The
discussion of the ImageNet test is found in Section 5.2. Method choices are analysed
in Section 5.3 and in section 5.4 potential future work is suggested.

5.1 Analysis of CIFAR10 results
Three main things were tested using the CIFAR10 dataset - architecture of residual
block, knowledge distillation techniques and if any binary network type was better
suited for knowledge distillation. The results are discussed in Section 5.1.1, 5.1.2
and 5.1.3 respectively. A conclusion of the discussion is presented in the beginning
of each section, then followed by the actual discussion.

5.1.1 Which architecture of residual connection is best?

The single and double ReLU architecture performed the best since the distributions
of teacher and student network match. Even though the representational capability
increased in the double shortcut network, it does not help the network to generalise
when trained with CIFAR10 dataset.

In section 4.1.1, different architectures were trained for ResNet20 using CIFAR10.
When trained using method III, the architecture which performed best was the dou-
ble ReLU shortcut followed by ReLU single shortcut. This is not surprising since
the student and teacher network has the same output distribution in the interme-
diate layers. It is also expected that the network with double shortcuts performed
better than the single shortcut network when training towards minimising the mean
square error loss. Since less information is lost in the second convolutional layer in
each block the representational capability (the functions which the block/model can
learn) is higher for the double shortcut block. When training with cross-entropy
loss, there is no difference between the single and double shortcut. Apparently, the
network cannot make use of its increased representational capability.

The student network is initialised as the teacher network. This likely makes the stu-
dent network converge faster when learning to mimic the teachers feature responses.
However, when the network is changed, either by removing ReLU from shortcut or
by adding an extra shortcut, the information obtained from initialising from the

29

5. Discussion

teacher network is largely lost. If this had a large effect, the single ReLU shortcut
would have a lower loss in the first epochs compared to the double shortcut ReLU.
However, this is not the case and if the effect does exist it is too small to be visible.

Furthermore, it is obvious that the block, where the ReLU activation was substituted
with Abs as activation followed by a learnable scaling factor, was unsuccessful.
The scaling factor was introduced to make the distributions of teacher and student
network similar. There is a unique scaling factor for each layer in the network. It is
possible that the individual difference between each element is too large so that the
scaling factor cannot learn to mimic the distribution but instead tries to mimic the
individual parameters. This does not improve the networks ability to generalise.

5.1.2 Does knowledge distillation work for binary networks?

The results from CIFAR10 tests indicate that knowledge distillation improves the
network’s ability to learn. Method I performed the best which in turn could have
several different explanations. Three of them are:

• When using knowledge distillation, the initial network is closer to a minimum
which is equivalent to longer training time.

• The student network can utilise the information in the teacher network’s in-
termediate layers.

• The progressive learning makes the search space gradually larger, which im-
proves learning.

From analysing the results, the progressive learning is likely to be the main reason
why method I performs well.

The main goal of the project is to answer the question - does knowledge distillation
work for binary networks? In section 4.1.2.4 the results showed that a network that
has been trained according to method I before its regular training improved the final
accuracy by 1.5 %. But why is the accuracy improved and are the results reliable?

When training a network there is a great deal of stochasticity involved. In this case,
it mainly originates from the mini-batch size being much smaller than the dataset.
This is not a bad thing, rather the opposite, since it helps escape local minima.
However, the stochastic nature of the problem makes the results more difficult to
interpret. For example, it is not safe to say that 0.4 is the best value for the scaling
factor β in method I. It is also possible that the trend break for method II, where
the accuracy is decreasing for large values of scaling factor β until equal to 1, could
be explained by ”lucky” training. To evaluate which hyper-parameter is the best,
multiple runs have to be made to minimise the ”lucky effect”.

With this argument, all results in this report could be questioned, but there is a
limit of how much the stochasticity affects the results. Method I constantly performs
1 % better than if no method is used, which indicate that it would improve accuracy
independent of the stochastic element in the optimisation. But this leads to the

30

5. Discussion

follow-up question, why does it work? The following sections will explore possible
explanations.

5.1.2.1 Initially closer to minimum which is equivalent with longer train-
ing time

Compared to regular full precision networks, binary networks is not as sensitive to
overfitting. Courbariaux et al. argued that binarization could be seen as a reguliser
similar to dropout [35][8]. But instead of randomly setting half of the activations
to zero when computing gradients of the parameters, the input and weights are
binarized. Since overfitting is not a problem, the network benefits from long training
times. In this thesis, knowledge distillation is used as an initialisation process. It
is relevant to note that the total training time is doubled when pre-trained with
method I or III compared to no pre-training. As seen in Figure 4.4, 4.3 and 4.2,
the initial accuracy of the regular training is much higher if the network has been
initialised with a knowledge distillation method. The training is starting closer to a
minimum and it can be seen as equivalent to longer training time. A visualisation
of this can be seen in Figure 5.1.

120 epochs 120 epochs

Accuracy

Initial accuracy

after knowledge

distillation

Initial accuracy

no knowledge

distillation

Figure 5.1: Visualisation of how better initial accuracy means a head start and in turn is
equivalent to longer training time.

However, it is interesting to note that the initial accuracy when regular training has
started, is higher for method III compared to method I, while the final accuracy is
better for method I. This implies that it is not solely a question of longer training
time but about finding a more optimal minimum. Longer training time does not
explain why method I performs best.

5.1.2.2 Learning from intermediate layers

One hypothesis why method I works is that the network can make use of the infor-
mation in the teacher’s intermediate layers. However, the results presented in Figure
4.5 points towards the fact that low values of scaling factor β improves the accuracy
the most, i.e. when no or little information in intermediate layers is used during
training. As a counter-argument, method III boosts the accuracy even though it only

31

5. Discussion

trains to mimic the feature responses of the teacher network. This suggests that in-
formation in the teacher’s intermediate layers is helpful during training. However,
this could be explained by a head start in training (equivalent to longer training).
To conclude, it is not reasonable to believe that information from intermediate layers
is the main reason why method I works.

5.1.2.3 Progressive learning

Another hypothesis is that the progressive training in method I is what makes the
accuracy improve. When β = 0 for training c) the loss only consists of the cross-
entropy loss of the final layers. The only difference from regular training is that the
network is binarized and trained successively, starting with the first block conv2_x
(see Figure 3.2 or 3.1). This procedure makes the search space gradually larger and
it might minimise the risk of the network getting stuck in a sub-optimal minimum.
This is the most probable reason.

5.1.3 Which network type works best?

The two network types which achieved the highest validation accuracy was the bi-
nary network without scaling factors and the factorised XNOR++ network. Both
performed equally well. A reason why the scaling factors did not improve the per-
formance could be that the batch norm layers absorb the effects of scaling factors or
that the binary network converges faster.

In section 4.1.3, different binary network types were tested together with method I
training. Unexpectedly, the binary network, i.e. the one without any scaling fac-
tors, had the lowest training loss (and highest train accuracy). This is unexpected
because XNOR and XNOR++ nets were introduced to boost the accuracy of bi-
nary networks. In XNOR-nets some information about the weights and input are
retained. In XNOR++ additional parameters are trained. For a regular ResNet18
both XNOR and XNOR++ improved the accuracy significantly compared to binary
networks without scaling factors [10][11]. Therefore it seems likely that the accuracy
would be better for networks using scaling factors.

However, there is one large difference between the XNOR and XNOR++ papers
and this thesis - in this work another network structure is used. In the works of
Z. Liu et al. [12] and J. Bethge et al. [13], networks with double shortcuts are
used and they achieved good results without the use of scaling factors. Bethge
et al. even got better results without the use of XNOR scaling factors than with
when using CIFAR10 dataset. They argued that the batch norm layers following
the convolutional layers might absorb the effect of scaling factors. The results in
this project mirror the results of Bethge et al. which also reports lower accuracy
when using XNOR scaling factors than without.

In this thesis, the XNOR++ scaling factors were tested and it gave equivalent vali-
dation accuracy as using no scaling factors. However, when observing the Figure 4.6
one can see that the train accuracy for the binary network is well above the accuracy

32

5. Discussion

for XNOR++ nets. Looking at the loss, the binary network learns much faster than
the other network types. This is expected since there are fewer parameters to learn
compared to the XNOR++ networks and the input is not as varying as in the XNOR
networks. But this also means that there is a chance that the XNOR++ networks
did not train long enough, but that the potential is higher if trained long enough.
This argument is strengthened by the fact that the non-factorised XNOR++ per-
forms worse than the factorised version (more parameters to train).

5.2 Analysis of ImageNet results
An exhaustive testing was performed using the CIFAR10 dataset. However, in order
to compare the results with those of others, method I was tested using ImageNet
dataset. In section 5.2.1 the results of this thesis is compared with others work.
This is followed by a discussion about if the results achieved on CIFAR10 dataset is
also valid for the ImageNet problem.

5.2.1 Comparison with others work
In Table 4.1, the results of ResNet18 and ImageNet are presented. The network
type used was XNOR++. It would therefor be expected that the accuracy in this
work would be close to that of XNOR++ nets. Clearly, this is not the case and
there are several reasons why that might be.

One cause might be that the training was too short. The XNOR++ network in the
works of Bulat et al. trained for 80 epochs, while the networks in this thesis only
trained for 25 epochs. Too short training might be part of the explanation, but it
is not certain that longer training would increase the accuracy by more than 3 %
(which is the difference between the achieved accuracy in this work and the reported
accuracy by XNOR++). Another difference is the mini-batch size - 64 (this project)
compared to 256 (XNOR++). A smaller mini-batch size increases the stochasticity
and even though it helps to escape sub-optimal local minima, it might also make it
escape an optimal minimum.

The largest difference between the XNOR++ paper and this work is that different
network architectures are used. In Bulats et al.’s paper, the original architecture
of the residual block is used (i.e. the Naive in figure 3.4). In this work, different
architectures were tested and the best one to mimic the feature response of teacher
network was found to be the architectures containing ReLU, since the student and
teacher then have the same distribution. However, when the ReLU activation is
applied, some information is lost. This might be the reason why the network in this
thesis does not achieve higher accuracy.

If we for a moment ignore the comparison with the works of others, we can observe
that the network pre-trained withmethod I performs better than the one without any
”smart” initialisation. This indicates that knowledge distillation works for binary
networks. In Section 5.1.2 various reasons why knowledge distillation might improve
the accuracy was discussed. The discussion was based on the results of CIFAR10

33

5. Discussion

dataset, and one needs to ask if the same results and reasoning holds when using
the ImageNet dataset.

5.2.2 Does the analysis of CIFAR10 hold for ImageNet?
A thorough analysis was performed using the CIFAR10 dataset. With the ImageNet
dataset only one test was made and it is relevant to ask if the results found by testing
with CIFAR10 is applicable to the ImageNet problem. The CIFAR10 and ImageNet
problem are quite different. ImageNet is a much more complex problem but has,
on the other hand, more training images. In the work of Courbariaux et al., where
no scaling factors were used, they achieved great results on the MNIST [36] and
CIFAR10 datasets. But when tested with ImageNet and ResNet they only achieved
an accuracy of 42.2 % [11] which is much lower than its full precision accuracy as
well as the results reported in this, and other’s work (see Table 4.1). This indicates
that the results are probably not directly transferable and that the methods to
increase representational capability (scaling factor and extra shortcuts) might work
for ImageNet even though the CIFAR10 results did not indicate any improvements.

To discuss the difference between CIFAR10 and ImageNet, two concepts of limit-
ing factors are used - representational capability, which is a measure of how many
functions the network can learn, and the model’s ability to generalise. In general,
the limit of representational capability is much higher than the limit of the model’s
ability to generalise. The model’s ability to generalise is dependent on a several
factors, for example, the network architecture, regularisation techniques (dropout,
L1 and L2 regularisation etc.) or the dataset itself. The more variation there is in
a dataset, either naturally or by data augmentation, the easier it is for the network
to generalise. The ImageNet dataset is a more complex problem and has 1.2 million
data samples compared to the 60,000 images in CIFAR10. Additionally, the Ima-
geNet input is more augmented. While the representational capability is similar for
the networks used when training on CIFAR10 and ImageNet, the model’s ability to
generalise is higher for ImageNet. This is visualised in Figure 5.2.

ability to

gereralise

representational

capability

Variation in

dataset

CIFAR10 ImageNet

Higher

Limit

Figure 5.2: Representation of limitations of a model. In a regular full precision network, the
representational capability is higher than the model’s ability to generalise. The limiting factor is
therefore, the ability to generalise and not the representational capability. The larger and more
varied train dataset in ImageNet leads to a higher ability to generalise in comparison to CIFAR10.

When the networks are binarized, the representational capability as well as the
models ability to generalise drops. One hypothesis is that the representational ca-
pability drops below the model’s ability to generalise for the ImageNet problem, but

34

5. Discussion

not for the CIFAR10 problem. A visualisation of this can be seen in Figure 5.3.
Adding learnable scaling parameters or an extra shortcut increases the representa-
tional capability, but not necessarily the ability to generalise. If the limiting factor
is generalisation, scaling factors or extra shortcuts might not improve the learning.
This might be the reason why these methods did not improve the accuracy in the
CIFAR10 tests but have proven successful for ImageNet [11][13][12].

bin

bin

full precision

binary

CIFAR10 ImageNet

bin

bin

ability to

gereralise

representational

capability
XNOR++ XNOR++

Figure 5.3: Visualisation of the potential limiting factor for CIFAR10 and ImageNet when the
network is binarized. When the network is binarized both the representational capability and the
ability to generalise decreases. The networks ability to generalise is higher for ImageNet compared
to CIFAR10 and it is possible that the representational capability becomes the limiting factor for
ImageNet but not for CIFAR10. It is reasonable to believe that the drop in representational ca-
pability is larger than the drop in ability to generalise since binarization acts as a regulizer [8].
The representational capability can be improved by using XNOR++ scaling factors or add an extra
shortcut.

The results from previous studies have shown that binary networks using a smaller
dataset such as MNIST and CIFAR10 learns better than large datasets such as
ImageNet. It has also been reported that scaling factors and extra shortcuts improve
the accuracy for ImageNet, but in this thesis, the CIFAR10 test did not show any
indication of improved learning. This difference between CIFAR10 and ImageNet
could potentially be explained by different limiting factors - CIFAR10 is limited by
the ability to generalise, while ImageNet is limited by the representational capability.
If this is the case, it is not possible to draw any certain conclusions of the CIFAR10
test for the ImageNet problem.

5.3 Choice of method
In this section the method choices in this thesis are discussed, more specifically the
loss function used, the binarization order and that not all combinations of knowledge
distillation technique, architecture and network type were tested.

5.3.1 Other loss function of intermediate layers might im-
prove learning

In this thesis only a few knowledge distillation methods were tested and only ones
using mean square loss from intermediate layers. When a network is binarized

35

5. Discussion

large amounts of information is lost, and the representational capability shrinks
substantially. For CIFAR10, the mean square error term in the loss in method I and
II did not seem to add any valuable information to the loss. It is likely that the
drop in representational capability makes the network unable to mimic the teachers
feature responses sufficiently well. Another alternative to mean square error is to
let the student network learn to mimic the absolute values of the teacher network
in the intermediate layer as done by Zagoruyko et al. [15]. This would allow the
student to learn more freely while still getting help from the teacher to focus on the
important features.

5.3.2 Using knowledge distillation method that does not re-
quire same distributions

In all methods using information from the teacher’s intermediate layers, the student
intermediate layers need to have the same distribution to make sense. But in order
for the networks to have the same distributions, the student network needs to use
ReLU in its shortcut. As discussed earlier, information is lost in ReLU, and these
methods might therefore not be optimal for binary networks. It might be better to
instead use the original knowledge distillation training proposed by [14] which only
uses the last output layer from the teacher network.

5.3.3 Order of binarization
To my knowledge, the only work using knowledge distillation in combination with
binary networks is the one by Xu et al. [27]. Their work differs from this thesis
in many ways. First of all, their network only binarized the weights but not the
input. They also used a different dataset and a deeper network which solves an
object recognition problem (compared to image classification in this work). The
differences make the results difficult to compare. There were also some similarities
- they used both knowledge distillation and a progressive approach when binarizing
the network. In contrast to this work, they binarized the network in the opposite
order (last layers first). Their reasoning being that binarizing the last layers had
less effect than binarizing the first layers which were reported by Zhuang et al. [30].
A few things to note is that Xu et al. trained the whole network and not just the
binary parts. They also had a much easier problem to solve since they did not
binarize the input to convolutional layers as done in this work. They showed great
results but the reverse order is not applicable to this problem.

Let us use a metaphor and let the training of a network be represented as making a
sculpture. If binarizing and training of the first layer affects the network the most
it can be represented as a hammer to carve out the initial shape. While the last
layers do not change the network too much and can be represented as sand paper
making the final polishing. The reverse order would imply that one starts with the
sandpaper to then take out the hammer and destroy all the work done with sand
paper.

Wang et al. (method I) tested their progressive training both forward and backwards

36

5. Discussion

and got better results for the forward variant [20] which strengthens this choice of
not binarizing in reverse order. Even though Wang et al. did not study binarization,
they used a smaller student network and it is reasonable that their results will hold
for binary networks as well.

5.3.4 Not all combinations were tested
In this project, the most promising results from the previous test were chosen as
the basis for the next test. For example, was the ReLU double shortcut used when
testing knowledge distillation technique and network type. To be certain that one
combination of the three things tested is best all combination needs to be tested.
Additionally, each test should be made multiple times to minimise the risk of mis-
leading results from stochastic effects.

5.4 Future studies
To further investigate binarization and knowledge distillation a few possible future
studies are suggested. However, the first step would be to verify the results.

5.4.1 Verify results
The results presented in Section 4 indicated that knowledge distillation techniques
could improve the accuracy of a binary network. To confirm the results in this
thesis, the following test could be made:

• Longer training for both CIFAR10 and ImageNet, both in knowledge distilla-
tion training and in the cross-entropy training.

• Test all combinations of knowledge distillation methods, network type and the
architecture of residual shortcut.

• Make multiple runs of the same test to minimise stochastic effects.

• As discussed in Section 5.2.2 it is not possible to draw any conclusions regard-
ing ImageNet by observing the CIFAR10 results. To evaluate which knowledge
distillation method, architecture of residual shortcut and network type work
best for ImageNet, all tests have to be repeated using ImageNet.

5.4.2 Adapt teacher architecture to suit optimal student ar-
chitecture instead of the other way around

In this thesis the architectures of the binary ResNet block were constrained to output
identical distributions as the teacher network. This limitation can be avoided by
using the original knowledge distillation by Hinton et al. [14] which only uses the
last output layer from the teacher network. Another approach would be to train
the original full precision network using the same ResNet block as in the binary
student network. So, instead of modifying the student network to match the teacher

37

5. Discussion

network, the teacher network can be modified to match the student network. This
might be slightly problematic since the modified teacher might not perform as well
as the original teacher architecture. However, it probably still performs better than
the student network and is therefore relevant to test. If the limitation of block-
architecture is removed, it would be possible to evaluate how Bi-real nets [12] or
DenseNet [13] can be improved by the usage of knowledge distillation.

5.4.3 Use other loss function for intermediate layers
In this project, a few versions of knowledge distillation techniques have been tested
all using mean square error loss from intermediate layers. It would be interesting
to investigate how other loss functions would affect accuracy. For example, the
absolute value of the feature responses between student and teacher network could
be compared [15] or the maximum mean discrepancy could be compared [16]. Both
have shown improved results compared to regular knowledge distillation training
[14].

5.4.4 Use other low-precision network types
Only completely binary networks, i.e. both input and weights are set to -1 or +1,
were studied in this thesis. There are other networks proposed, for example, TBN
which uses ternary inputs i.e. inputs ∈ {−1, 0, 1}, HORQ networks which use higher-
order quantization [5] or DoReFa networks which use low bitwidth of convolutions
and gradients (but 6= 1) [4]. Knowledge distillation methods have proven successful
when a smaller, but full precision, student net have trained. It is likely to believe that
knowledge distillation performs better the higher the representational capability of
a network is. It would, therefore, be very interesting to see if these networks would
benefit more from knowledge distillation compared to the binary networks studied
in this project.

38

6
Conclusion

A binary network requires less memory and much less computational power, which
makes it suitable for less powerful devices. The aim of this thesis was to investi-
gate how the accuracy of a binary network can be improved by using knowledge
distillation techniques, as well as answering the questions: Does some knowledge
distillation technique work better for binary networks than others? Can the ar-
chitecture of a network be modified to improve the effect of knowledge distillation
training? Are some network types better suited for knowledge distillation? The
main contributions of this thesis can be summarised as:

• A novel approach for training binary network was suggested and tested which
used knowledge distillation techniques to pre-train a network.

• Different architectures of a residual block were suggested and tested on CI-
FAR10 dataset. An architecture with double shortcuts and ReLU activation
performed best when using knowledge distillation.

• The different network types XNOR, XNOR++ and regular binary network
were tested in combination with knowledge distillation. The binary and XNOR++
networks worked best.

• Three different knowledge distillation methods were tested on CIFAR10 dataset.
The best performing model was trained using a progressive approach where
the loss consisted of a mean square error loss from an intermediate layer in
student and teacher network as well as a cross-entropy loss of final layer. It
gave an improvement of 1.5 % on CIFAR10 and ResNet20.

• The same method was tested on ResNet18 and ImageNet as dataset. Knowl-
edge distillation improved the accuracy of 1.1 % compared to regular cross
entropy training.

Compared to other reported results, the accuracy in this work does not achieve as
high value. This was mainly explained by two reasons - too short training time and
loss of information in ReLU activation. To avoid the problem of information getting
lost in the shortcut by ReLU, it was suggested that the teacher network could be
trained such that the distributions in student and teacher network are the same,
instead of the student network being constructed to suit the teacher network.

The results on CIFAR10 and ImageNet indicate that knowledge distillation can be

39

6. Conclusion

used as a method to boost the accuracy of a binary network. Further testing has
do be done to verify that this statement is valid, especially longer training for the
ImageNet tests. If, however, the statement holds after further testing, this could be
used as a tool for improving the accuracy for binary networks and in turn, make
accurate image analysis more available on less powerful devices.

40

Bibliography

[1] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and K.
Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer parameters and
<1mb model size”, CoRR, vol. abs/1602.07360, 2016. arXiv: 1602 . 07360.
[Online]. Available: http://arxiv.org/abs/1602.07360.

[2] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M.
Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks
for mobile vision applications”, CoRR, vol. abs/1704.04861, 2017. arXiv: 1704.
04861. [Online]. Available: http://arxiv.org/abs/1704.04861.

[3] S. Han, J. Pool, J. Tran, and W. J. Dally, Learning both weights and connec-
tions for efficient neural networks, 2015. arXiv: 1506.02626 [cs.NE].

[4] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, Dorefa-net: Training
low bitwidth convolutional neural networks with low bitwidth gradients, 2016.
arXiv: 1606.06160 [cs.NE].

[5] Z. Li, B. Ni, W. Zhang, X. Yang, andW. Gao, Performance guaranteed network
acceleration via high-order residual quantization, 2017. arXiv: 1708 . 08687
[cs.CV].

[6] S. Han, H. Mao, and W. J. Dally, Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding, 2015. arXiv:
1510.00149 [cs.CV].

[7] M. Courbariaux, Y. Bengio, and J. David, “Binaryconnect: Training deep neu-
ral networks with binary weights during propagations”, CoRR, vol. abs/1511.00363,
2015. arXiv: 1511.00363. [Online]. Available: http://arxiv.org/abs/1511.
00363.

[8] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized
neural networks: Training deep neural networks with weights and activations
constrained to +1 or -1”, Feb. 2016.

[9] Y. Hu, J. Zhai, D. Li, Y. Gong, Y. Zhu, W. Liu, L. Su, and J. Jin, “Bitflow:
Exploiting vector parallelism for binary neural networks on cpu”, May 2018,
pp. 244–253. doi: 10.1109/IPDPS.2018.00034.

[10] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, Xnor-net: Imagenet
classification using binary convolutional neural networks, 2016. arXiv: 1603.
05279 [cs.CV].

[11] A. Bulat and G. Tzimiropoulos, Xnor-net++: Improved binary neural net-
works, 2019. arXiv: 1909.13863 [cs.CV].

41

https://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1602.07360
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1606.06160
https://arxiv.org/abs/1708.08687
https://arxiv.org/abs/1708.08687
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1511.00363
http://arxiv.org/abs/1511.00363
http://arxiv.org/abs/1511.00363
https://doi.org/10.1109/IPDPS.2018.00034
https://arxiv.org/abs/1603.05279
https://arxiv.org/abs/1603.05279
https://arxiv.org/abs/1909.13863

Bibliography

[12] Z. Liu, B. Wu, W. Luo, X. Yang, W. Liu, and K.-T. Cheng, Bi-real net: En-
hancing the performance of 1-bit cnns with improved representational capability
and advanced training algorithm, 2018. arXiv: 1808.00278 [cs.CV].

[13] J. Bethge, M. Bornstein, A. Loy, H. Yang, and C. Meinel, Training competitive
binary neural networks from scratch, 2018. arXiv: 1812.01965 [cs.LG].

[14] G. Hinton, O. Vinyals, and J. Dean, Distilling the knowledge in a neural net-
work, 2015. arXiv: 1503.02531 [stat.ML].

[15] S. Zagoruyko and N. Komodakis, Paying more attention to attention: Improv-
ing the performance of convolutional neural networks via attention transfer,
2016. arXiv: 1612.03928 [cs.CV].

[16] Z. Huang and N. Wang, Like what you like: Knowledge distill via neuron
selectivity transfer, 2017. arXiv: 1707.01219 [cs.CV].

[17] J. Yim, D. Joo, J. Bae, and J. Kim, “A gift from knowledge distillation: Fast
optimization, network minimization and transfer learning”, in 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 7130–
7138.

[18] M. Gao, Y. Shen, Q. Li, J. Yan, L. Wan, D. Lin, C. C. Loy, and X. Tang,
An embarrassingly simple approach for knowledge distillation, 2018. arXiv:
1812.01819 [cs.CV].

[19] A. Koratana, D. Kang, P. Bailis, and M. Zaharia, Lit: Block-wise intermedi-
ate representation training for model compression, 2018. arXiv: 1810.01937
[cs.LG].

[20] H. Wang, H. Zhao, X. Li, and X. Tan, “Progressive blockwise knowledge
distillation for neural network acceleration”, in Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI-18,
International Joint Conferences on Artificial Intelligence Organization, Jul.
2018, pp. 2769–2775. doi: 10.24963/ijcai.2018/384. [Online]. Available:
https://doi.org/10.24963/ijcai.2018/384.

[21] J. Zhang, Y. Pan, T. Yao, H. Zhao, and T. Mei, Dabnn: A super fast inference
framework for binary neural networks on arm devices, 2019. arXiv: 1908 .
05858 [cs.CV].

[22] D. Wan, F. Shen, L. Liu, F. Zhu, J. Qin, L. Shao, and H. T. Shen, “Tbn:
Convolutional neural network with ternary inputs and binary weights”, in
Computer Vision – ECCV 2018, V. Ferrari, M. Hebert, C. Sminchisescu, and
Y. Weiss, Eds., Cham: Springer International Publishing, 2018, pp. 322–339,
isbn: 978-3-030-01216-8.

[23] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recog-
nition, 2015. arXiv: 1512.03385 [cs.CV].

[24] P. Maji and R. Mullins, “On the reduction of computational complexity of
deep convolutional neural networks”, Entropy, vol. 20, p. 305, Apr. 2018. doi:
10.3390/e20040305.

[25] X. Xu and M. Pedersoli, “A computing kernel for network binarization on
pytorch”, ArXiv, vol. abs/1911.04477, 2019.

[26] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio,
Fitnets: Hints for thin deep nets, 2014. arXiv: 1412.6550 [cs.LG].

42

https://arxiv.org/abs/1808.00278
https://arxiv.org/abs/1812.01965
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1612.03928
https://arxiv.org/abs/1707.01219
https://arxiv.org/abs/1812.01819
https://arxiv.org/abs/1810.01937
https://arxiv.org/abs/1810.01937
https://doi.org/10.24963/ijcai.2018/384
https://doi.org/10.24963/ijcai.2018/384
https://arxiv.org/abs/1908.05858
https://arxiv.org/abs/1908.05858
https://arxiv.org/abs/1512.03385
https://doi.org/10.3390/e20040305
https://arxiv.org/abs/1412.6550

Bibliography

[27] J. Xu, P. Wang, H. Yang, and A. M. López, Training a binary weight object
detector by knowledge transfer for autonomous driving, 2018. arXiv: 1804.
06332 [cs.CV].

[28] J. Redmon and A. Farhadi, Yolo9000: Better, faster, stronger, 2016. arXiv:
1612.08242 [cs.CV].

[29] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M.
Andreetto, and H. Adam, Mobilenets: Efficient convolutional neural networks
for mobile vision applications, 2017. arXiv: 1704.04861 [cs.CV].

[30] L. Zhuang, Y. Xu, B. Ni, and H. Xu, Flexible network binarization with layer-
wise priority, 2017. arXiv: 1709.04344 [cs.CV].

[31] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving?
the kitti vision benchmark suite”, in Conference on Computer Vision and
Pattern Recognition (CVPR), 2012.

[32] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-
Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala, “Pytorch: An imperative style, high-performance deep learning
library”, in Advances in Neural Information Processing Systems 32, H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett,
Eds., Curran Associates, Inc., 2019, pp. 8024–8035. [Online]. Available: http:
//papers.neurips.cc/paper/9015- pytorch- an- imperative- style-
high-performance-deep-learning-library.pdf.

[33] A. Krizhevsky, “Learning multiple layers of features from tiny images”, Uni-
versity of Toronto, May 2012.

[34] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A
Large-Scale Hierarchical Image Database”, in CVPR09, 2009.

[35] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting”, J. Mach.
Learn. Res., vol. 15, no. 1, pp. 1929–1958, Jan. 2014, issn: 1532-4435.

[36] Y. LeCun and C. Cortes, “MNIST handwritten digit database”, 2010. [Online].
Available: http://yann.lecun.com/exdb/mnist/.

43

https://arxiv.org/abs/1804.06332
https://arxiv.org/abs/1804.06332
https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1709.04344
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://yann.lecun.com/exdb/mnist/

Bibliography

44

	List of Figures
	List of Tables
	Introduction
	Limitations

	Theory
	Binary neural networks
	Using binary weights
	Using binary weights and inputs
	Efficiency of binary CNNs
	Gradient approximation in backward propagation

	Improving accuracy of binary networks
	Network architecture
	Scaling factors in convolution layers

	Knowledge Distillation
	Alternative training schemes
	Method I - progressive learning
	Method II - simultaneously learning
	Method III - progressive learning without scaling factors

	Binarization and knowledge distillation

	Method
	Tests using CIFAR10
	Architecture of ResNet block
	Comparison of Knowledge Distillation techniques
	Binary network type

	ImageNet test - Method I on ResNet18

	Results
	Results using CIFAR10 dataset
	Architecture of residual block
	Knowledge Distillation technique
	Training with method I
	Training with method II
	Training with method III
	Comparison of methods

	Binary network type - binary, XNOR and XNOR++

	Results using ImageNet dataset
	Memory Savings

	Discussion
	Analysis of CIFAR10 results
	Which architecture of residual connection is best?
	Does knowledge distillation work for binary networks?
	Initially closer to minimum which is equivalent with longer training time
	Learning from intermediate layers
	Progressive learning

	Which network type works best?

	Analysis of ImageNet results
	Comparison with others work
	Does the analysis of CIFAR10 hold for ImageNet?

	Choice of method
	Other loss function of intermediate layers might improve learning
	Using knowledge distillation method that does not require same distributions
	Order of binarization
	Not all combinations were tested

	Future studies
	Verify results
	Adapt teacher architecture to suit optimal student architecture instead of the other way around
	Use other loss function for intermediate layers
	Use other low-precision network types

	Conclusion
	Bibliography

