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Abstract
Context: Developments within the automotive domain have caused an increased
vulnerability to attacks against connected vehicles. To mitigate this threat, vehicles
utilize intrusion detection systems.
Problem: Intrusion detection systems can be very effective in detecting and stopping
ongoing attacks against vehicles. However, these systems are not infallible and would
benefit from increased accuracy in their attack detection.
Objective: By leveraging the access that these connected vehicles have to other ve-
hicles and the outside world, this thesis has designed and evaluated a framework for
collaborative intrusion detection (CIVID) with the stated goal of increasing detec-
tion accuracy.
Approach: A design science methodology has been applied to conceptualize the
problem, design a solution and validate this solution through the simulation of a
virtual vehicle fleet.
Result: The aforementioned validation of the collaborative framework shows a
marginal increase in accuracy measures through the utilization of a collaborative
intrusion detection approach. However, the results also show that the implemen-
tation of CIVID yields increased time-to-detection of security events that require
consultation.
Conclusion: Despite showing increased accuracy measures, it is unclear whether or
not the costs and risks associated with the CIVID framework outweigh the marginal
improvements in accuracy measures that it provides. Also, there are many additional
challenges that need to be dealt with when implementing the CIVID framework, such
as trust- and resource management. How these are to be implemented as well as
alternative implementations of the CIVID framework, is left to be explored in future
research.

Keywords: Automotive, AUTOSAR, Anomaly-based detection, Collaborative IDS
In-vehicle networks, Intrusion detection systems

v





Acknowledgements
Firstly, we would like to give our thanks to our supervisor Rodi Jolak for his support
and constructive feedback during the course of writing this thesis.

Secondly, we would like to extend our gratitude towards Christian Sandberg and
Afshin Soltani Esterabadi from AB Volvo, for their inputs and ideas, and for taking
their time to discuss this topic with us.

Furthermore, we would like to express our gratitude to Thomas Rosenstatter, for
his input and constructive feedback.

Lastly, we would like to give our thanks to our examiner Christian Berger.

Dnaiel Aryan & Kristoffer Söderberg, Gothenburg, June 2021

vii





Contents

List of Figures xi

List of Tables xiii

Nomenclature xiii

1 Introduction 1
1.1 Statement of the problem . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Purpose of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Scope and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 The connected vehicle and in-vehicle networks . . . . . . . . . . . . . 5

2.1.1 In-vehicle networks . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 External communication . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Controller Area Networks . . . . . . . . . . . . . . . . . . . . 6

2.2 Intrusion detection systems . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 IDPS Technology . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Network- and Host-based IDS . . . . . . . . . . . . . . . . . . 8
2.2.3 Detection methods . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Standardisation of intrusion detection systems for vehicles . . . . . . 10
2.3.1 AUTOSAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Standard for in-vehicle network intrusion detection . . . . . . 10
2.3.3 Security sensors and security events . . . . . . . . . . . . . . . 11
2.3.4 Intrusion detection manager (IDSM) . . . . . . . . . . . . . . 11
2.3.5 Intrusion detection reporter (IDSR) and security event mem-

ory (SEM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Threat modeling in the automotive domain . . . . . . . . . . . . . . . 14

3 Related work 17
3.1 Previous works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Collaborative IDS - IDN . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Challenges with IDNs . . . . . . . . . . . . . . . . . . . . . . . 18

4 Methodology 21
4.1 Design science methodology . . . . . . . . . . . . . . . . . . . . . . . 21

ix



Contents

4.1.1 Problem conceptualization . . . . . . . . . . . . . . . . . . . . 22
4.1.2 Solution design . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 The proposed framework 25
5.1 CIVID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Setup and experimental design 29
6.1 Acquiring a dataset of network injection attacks against a CAN-network 29
6.2 Building an anomaly based intrusion detection model . . . . . . . . . 31
6.3 Simulating a CAN-network . . . . . . . . . . . . . . . . . . . . . . . . 32
6.4 Hardware setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.5 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 Results 39
7.1 F1-scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.2 Statistical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.3 Processing times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8 Discussion 47
8.1 The added value & risks of using a collaborative approach . . . . . . 47
8.2 Pros and cons of the utilized detection method . . . . . . . . . . . . . 48
8.3 The effect of using a collaborative approach on time-to-detection . . . 49
8.4 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8.4.1 Internal validity . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.4.2 External validity . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.4.3 Construct validity . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.4.4 Conclusion validity . . . . . . . . . . . . . . . . . . . . . . . . 52

9 Conclusion 55
9.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Bibliography 57

A Appendix 1 I

B Appendix 2 V

C Appendix 3 XXXI
C.1 Raspberry PI 4 Model B . . . . . . . . . . . . . . . . . . . . . . . . . XXXI

x



List of Figures

2.1 Illustration of an in-vehicle network [6] . . . . . . . . . . . . . . . . . 6
2.2 CAN frame format . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Illustration of the AUTOSAR intrusion detection standard . . . . . . 11
2.4 Security event flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.1 Components involved in the collaborative IDS framework . . . . . . . 26
5.2 Collaborative IDS framework data-flow . . . . . . . . . . . . . . . . . 27

6.1 DNN-based detection model . . . . . . . . . . . . . . . . . . . . . . . 32
6.2 Modules included in the experimental setup . . . . . . . . . . . . . . 34

7.1 Boxplot of measured F1-scores . . . . . . . . . . . . . . . . . . . . . . 43
7.2 Q-Q plots for Normal distribution for each simulation mode . . . . . 44

xi



List of Figures

xii



List of Tables

2.1 Key terms used in the AUTOSAR standard for intrusion detection . . 10

6.1 Size and structure of the utilized dataset [16] . . . . . . . . . . . . . . 30
6.2 Example rows extracted from the dataset . . . . . . . . . . . . . . . . 30
6.3 Utilized csv-files and their corresponding DNN-models . . . . . . . . 35

7.1 Rounded F1-scores measured during the simulation runs . . . . . . . 40
7.2 95% Confidence intervals of the measured F1-scores . . . . . . . . . . 41
7.3 Tukey’s fences method . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.4 Shapiro-Wilk test of measured F1-scores . . . . . . . . . . . . . . . . 43
7.5 One-way repeated ANOVA measures . . . . . . . . . . . . . . . . . . 44
7.6 Post-hoc test (2-way pairwise t-tests) using Benjamini/Hochberg FDR

correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.7 Post-hoc test (one-way pairwise t-tests) using Benjamini/Hochberg

FDR correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.8 95% Confidence intervals of the measured times . . . . . . . . . . . . 46

A.1 Simulation runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I

B.1 Results of each simulation run . . . . . . . . . . . . . . . . . . . . . . V

xiii



List of Tables

xiv



Nomenclature

AUTOSAR
AUTOSAR AUTomotive Open System ARchitecture
IDSM Intrusion detection manager
IDSR Intrusion detection reporter
QSEv Qualified security event
SEM Security Event Memory
SEv Security event
SOC Security operations center

Intrusion detection
IDN Intrusion detection network
IDS Intrusion Detection System
IPS Intrusion Prevention System

Machine learning
DNN Deep neural network
ML Machine Learning
RNN Recurrent neural network

Automotive terms
CAN Controller area network
ECU Electrical control unit
IVN In-vehicle network
V2I Vehicle-to-infrastructure
V2V Vehicle-to-vehicle
VANET Vehicular ad-hoc network

xv



Nomenclature

xvi



1
Introduction

During the last few decades, the number of electronic devices and software systems
embedded into manufactured vehicles has been rapidly increasing. Control systems
within vehicles that had traditionally been implemented mechanically, such as the
brakes, throttle and steering, have gradually been replaced with electronic systems
[35]. These systems are run and controlled by small microcontroller-based comput-
ers, known as electronic control units (ECUs) [10] [18] [20].

These electrical components aim to provide higher levels of convenience, efficiency
and safety for the vehicle’s driver and its passengers, for example by means of provid-
ing advanced driver assistance systems (ADAS) and by exchanging massive amounts
of data between the vehicle’s various components [18]. Modern vehicles usually con-
tain more than 100 ECUs [39].

However, while this development does extend the capabilities of the vehicle, it also
increases the number of potential cybersecurity threats that the vehicle is exposed
to and may make the vehicle more prone to attacks[10] [20]. This, combined with
the safety-critical nature of a connected vehicle operating in traffic, increases the
need for high-security measures in vehicular IT systems [10].

Concurrently, so-called connected vehicle fleets are becoming increasingly common,
where a network-connected group of motor vehicles is owned or leased by private
businesses, governmental agencies, or other organizations. The addition of network
connectivity to these vehicles creates a wide range of possibilities within fleet man-
agement. As such a question arises: Is it possible to leverage the access that these
organizations have to a fleet of connected vehicles to detect ongoing attacks against
the vehicles in the fleet more accurately?

This study aims to answer the above question by outlining a potential framework for
collaborative intrusion detection within a vehicle fleet. This framework will adhere to
the intrusion detection standards laid out by the standardization body AUTOSAR,
and will be assessed using threat modeling. Following this, the framework will be
exemplified with a system implementation. This implementation will in turn be used
to further assess the usefulness of the framework, through an empirical evaluation
of the accuracy metrics outlined in chapter 4.
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1. Introduction

1.1 Statement of the problem

As vehicles are becoming more and more complex and the amount of software run-
ning on each vehicle increases, the number of potential attack surfaces and vul-
nerabilities in the vehicle increases accordingly. While vehicle manufacturers put
extensive effort into threat modeling, defining security requirements and securely
designing systems, these efforts cannot mitigate all the threats facing the vehicle.
Additionally, the vehicle’s different software components are often developed by a
variety of different vendors, with each vendor having its own security auditing rou-
tines [10]. This further increases the difficulty of designing secure systems. As such,
preemptive threat identification and mitigation efforts are not enough and need to
be augmented with active intrusion detection and response activities.

Nowadays, many new vehicles are equipped with intrusion detection systems (IDS),
which actively try to detect any incoming attacks targeting the vehicle, or other
anomalies [19]. However, these systems often have high false-positive rates [34] [19],
which results in many false alarms being raised and logged by the vehicles. This
may in turn make it harder for security experts to analyze data, identify the root
cause of the security incident and decide on a suitable response.

By using a collaborative intrusion detection approach within a fleet, as opposed to
only analyzing a suspected attack from the viewpoint of one single vehicle, the accu-
racy of intrusion detection systems may increase, which would ideally give security
experts more manageable data to work with.

1.2 Purpose of the study

Cyber-attacks impose a constant threat on vehicles. Methods to defend a vehi-
cle against such attacks is an ongoing process where failing to detect an attack,
can result in life-threatening consequences. The purpose of this study is to design
and evaluate a collaborative in-vehicle intrusion detection framework, henceforth re-
ferred to as CIVID, that aims to improve intrusion detection accuracy by enabling
the vehicles within a fleet to collaborate with each other. If such a framework can
be utilized to improve the detection accuracy of vehicles, an additional step towards
making vehicles more secure can be made.

The evaluation of the framework is to be performed through the analysis of a proto-
type implementation of the CIVID framework, where outlined accuracy metrics will
be used to determine the usefulness of the framework. This framework intends to
provide an additional building block to the area of collaborative intrusion detection
networks within vehicular fleets and is intended to pave the way for future research
on collaborative intrusion detection systems in the automotive domain.

2



1. Introduction

1.3 Research questions
The research questions for this study cover both the framework design as well as the
framework evaluation.

• RQ 1- How can vehicles within a vehicle fleet cooperate with each other in
order to better detect ongoing attacks?

• RQ 2- What is the effect of a collaborative intrusion detection approach in
vehicle fleets on the accuracy & efficiency of identifying ongoing attacks?

RQ1 will be answered through the design of the CIVID framework for collaborative
intrusion detection systems tailored specifically for the automotive domain. The
framework will be assessed through threat modeling efforts

RQ2 will be answered through empirical evaluation of an implementation of the
CIVID framework. More specifically, this evaluation will consist mainly of evaluat-
ing an implemented anomaly-based in-vehicle IDS which conforms to the proposed
framework, to see if increased accuracy measures are enabled by it. More details
regarding this evaluation and the precise metrics used are provided in chapter 4.

1.4 Scope and limitations
The goal of this thesis is to design a theoretical framework that is generally appli-
cable within vehicular IDSs. In other words, the CIVID framework itself should not
be limited to only work with certain kinds of detection methods or attack types.
As such, the framework will describe the general architecture and information flow
within a distributed and collaborative automotive IDS, but will not enforce imple-
mentation of any specific intrusion detection methodology.

However, for the prototype implementation of the proposed framework that will be
used for empirical evaluation, certain limitations will be applied. For instance, it
is not possible to validate the implemented system against every imaginable kind
of attack. Instead, the framework will only be tested against a select few types of
network injection attacks during the empirical evaluation phase of this thesis. These
attacks include flooding-, spoofing, fuzzing and replay attacks. Further details re-
garding the empirical evaluation and the selected attack examples are provided in
chapter 4 and section 6.1.

In addition, the prototype system will not implement the proposed CIVID frame-
work in full, but will instead only focus on implementing the core functionality
required to evaluate the proposed framework. More specifically, all of the mod-
ules included in the framework will be developed and the flow of information will
conform to the flow proposed in the framework. However, certain aspects of the
CIVID framework that are not needed to evaluate the framework and provide a

3



1. Introduction

proof-of-concept, but that would be essential for a real-world implementation of
the framework, will be left out of this prototype implementation. The parts of the
framework that have been left out of the prototype are the trust management and
suitability check aspects discussed in chapter 5. Additionally, the aspect of efficient
resource allocation as is discussed in section 3.2.1, has also been left out of the
framework.
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2
Background

This chapter provides some background into topics relevant to this thesis. The first
section briefly explores the inner workings of the modern vehicle, with its electrical
components and network connectivity.
Thereafter, some background is provided regarding intrusion detection systems and
the various techniques used to detect ongoing attacks. The chapter then goes on to
detail the standards for in-vehicle intrusion detection outlined by the standardiza-
tion body AUTOSAR.
Finally, some commonly used methodologies for threat modeling within the automo-
tive domain are provided, including a comprehensive attack model which outlines
some of the various assets that are vulnerable to attack within vehicles.

2.1 The connected vehicle and in-vehicle networks
The modern vehicle contains many electrical control units (ECUs), which control
many of the vehicle’s key features [10] [18] [20]. The various ECUs within the vehicle
are connected through a network called an in-vehicle network (IVN), consisting of
several different kinds of communication buses [18]. In addition, modern connected
vehicles can provide additional features by communicating with a wide range of
external devices and services through interfaces such as Wi-Fi or Bluetooth [18].
These external communication interfaces are also a part of the in-vehicle network.

2.1.1 In-vehicle networks
As previously mentioned, there exist several different types of communication buses
that serve to connect the various components within a vehicle. Figure 2.1 shows an
illustration of a modern IVN. The kind of bus that is used for a specific subsystem
depends on its functionality and requirements. A commonly used communication
protocol in the in-vehicle network is the Controller Area Network (CAN), which is
used to allow ECUs to broadcast important information over the CAN bus and even
to other buses. Other commonly used protocols include Media Oriented Systems
Transport (MOST), which is a high-speed multi-media protocol used to support en-
tertainment systems in the vehicle, and Local Interconnect Network (LIN), which is
used for communication within component groups that are working closely together
as a unit [18] [19].

As the number of ECUs in the vehicle grows, so does the complexity and size of the
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2. Background

Figure 2.1: Illustration of an in-vehicle network [6]

information flow within these buses, perhaps most notably the CAN bus. The CAN
protocol is the most widely used communication protocol within the IVN [41].

2.1.2 External communication
As mentioned, modern connected vehicles can enable a wide range of additional func-
tionality by communicating with the external world, through interfaces such as Wi-
Fi, Bluetooth or external gateways in the CAN-bus used for vehicle-to-infrastructure
(V2I), vehicle-to-vehicle (V2V) [19] or even vehicle-to-everything [4] communication.
For instance, these features include receiving traffic reports and service information
and allowing the passengers to access the internet from the vehicle. While the usage
of external communication can extend the capabilities of the vehicle and introduce
conveniences for its users, it also introduces additional attack surfaces that could
potentially be targeted by attackers.

One mode of communication is Vehicle-to-Vehicle (V2V). V2V allows a vehicle to
communicate with other vehicles directly, often by utilizing a protocol called VANET
(Vehicular ad-hoc network). This protocol allows vehicles to create and maintain
temporary ad-hoc networks, based on a peer-to-peer architecture. This direct com-
munication allows vehicles to share information with each other. Such information
could be the exchange of traffic information to prevent accidents by informing vehi-
cles to maintain safe distances.

2.1.3 Controller Area Networks
The controller area network (CAN) is a broadcast-based communication bus [41]
that was originally developed in the early 1980s by the German automotive supplier

6



2. Background

Robert Bosch in an effort to reduce the complexity and weight of wiring within vehi-
cles [25]. The latest version of the CAN protocol, known as CAN 2.0, was published
in 1991 [2] and is still used as the primary means of communication between ECUs
in modern vehicles [41].

Data is broadcast over the CAN-bus in frames, and each frame that is sent over the
CAN-bus is received by all of the devices that are connected to the bus [2]. The
general shape of a CAN-frame is shown in figure 2.2.
Each CAN-frame contains an arbitration ID, which is used for both identification
and prioritization of CAN-messages. When several ECUs try to broadcast messages
over the CAN-bus simultaneously, the message with the lowest arbitration ID will
be prioritized [41].
In addition, each CAN-frame also includes a data payload, which carries control
instructions and status information regarding the vehicle state. Additional low-level
bus control fields are also included in the CAN-frame, such as the DLC field (which
specifies the number of bytes in the data payload) [41].

Figure 2.2: CAN frame format

While the use of CAN-buses in automotive- and other applications does serve to
reduce complexity and wiring costs, the simplicity of the protocol also introduces
certain weaknesses into the network [41]. For instance, since messages are broadcast
to all devices connected to the CAN-bus, the confidentiality of messages cannot
be guaranteed on the CAN-bus. The CAN-protocol does not require any message
encryption to be implemented on the CAN-bus [2], and while it is still possible to
adopt end-to-end encryption for messages sent over the CAN-bus, this remains a
difficult task due to the limited processing power of the ECUs. In addition, devices
connected to the CAN-bus do not have any means of validating the origin of a CAN
message, which enables many different network injection attacks such as Spoofing or
Flooding attacks [41].
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2. Background

2.2 Intrusion detection systems
The National Institute of Standards and Technology (NIST) specifies intrusion de-
tection as the process of monitoring events in networks and computer systems in
order to identify whether these events are malicious or not. If an event is considered
to be malicious, this event will be classified as a security incident [33]. An incident
can have several causes, ranging from malicious code injections to deliberate intru-
sion attempts. A security incident can also be caused by authorized users trying to
alleviate or in other ways misuse their privileges on a system [33].

2.2.1 IDPS Technology
An Intrusion Detection System is a software that automates the detection process
and triggers alerts if security incidents are detected. The difference between an IDS
and the closely connected Intrusion Prevention System (IPS), is that an IPS has the
same detection possibilities as an IDS but can also take action in preventing secu-
rity incidents from taking effect. As an example, one way to enforce this prevention
could be for the IPS to close the connection between the malicious source and the
intended target. The IDS and IPS technology also operate under the shared name
of IDPS technology. Since this thesis aims more toward attack analysis over attack
prevention, the main focus in this thesis will be intrusion detection systems [33].

There exist several different types of intrusion detection systems but they all have
some key functionality in common. This key functionality is the ability to perform
logging of information related to an incident, alerting security administrators of ob-
served events and producing reports that summarize the observed events that were
identified as security incidents [33].

2.2.2 Network- and Host-based IDS
Deepha et al [7] discuss several different types of IDSs where the difference between
them is the area of the system that the intrusion detection monitors. Two types of
IDSs are network-based- and host-based IDSs.
A network-based IDS monitors network traffic and established connections by im-
plementing techniques like packet sniffing to identify malicious activity and attacks.
On the other hand, a Host-based IDS monitors system calls and application log files
when implementing its detection method.

2.2.3 Detection methods
There are several different types of detection methods that can be used to detect an
intrusion. Some of these are signature-based detection, anomaly-based detection,
specification-based detection and stateful protocol analysis [33].

8



2. Background

Signature-based detection operates by checking traffic or events on a system for sig-
natures that are known to be malicious. This detection method is very efficient at
detecting threats that are already known, but can not detect novel attacks [33].

Anomaly-based detection is another detection method which, as opposed to signature-
based detection, can detect previously unknown attacks [34]. Anomaly-based detec-
tion often operates by implementing machine learning algorithms to learn what a
system’s normal state is. The IDS does this by performing a training period where
it monitors a specific system, creates a profile to act as a baseline of what is to
be considered as normal behavior and if events on the system deviate from what is
considered to be normal, the IDS will classify the event as an intrusion.

A common issue with anomaly-based detection is that many of the detected attacks
are false alarms, also known as false positives. The machine learning model is trained
on the system to know what is normal user behavior, however a lot of events on any
system are often exhibiting currently unseen, but legitimate behavior. This means
that even though the anomaly-based detection method can be proficient in detecting
novel attacks, many of the triggered alerts will be false alarms [34]. Another issue
with anomaly-based detection is that it could by accident include malicious behavior
when learning what the normal state is. This would of course be detrimental to the
accuracy of the IDS. However, as previously mentioned, the main advantage of using
an anomaly-based detection method is its effectiveness in identifying novel attacks
[33].

Stateful protocol analysis is another detection method that operates by keeping a
state of protocols in order to identify malicious behavior. This behavior is based on
sequences of commands that by themselves may not be malicious, but as a sequence
can constitute malicious behavior [33].

Specification-based detection is similar to anomaly-based detection in that it also
detects attacks as behavior that differs from a normal state. However, unlike
anomaly-based detection which usually relies on machine learning techniques, the
specification-based detection method instead manually specifies what normal behav-
ior is, and triggers an alert when system events deviate from this specified behavior.
The benefit of using specification-based detection is that it has been shown to pro-
duce a low amount of false positives [34]. However, a limitation with specification-
based detection is that it can be very time-consuming to specify what the normal
behavior of a system should be. Additionally, it is not as proficient in detecting
novel attacks as the anomaly-based detection method [34].

Even though several different detection methods exist, there is nothing that prevents
utilizing a hybrid-based IDS that combines two or more of the described detection
methods to increase the accuracy of the IDS, as has been performed in [13].
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2. Background

2.3 Standardisation of intrusion detection systems
for vehicles

The main purpose of embedding intrusion detection systems within vehicles is to
detect security incidents at an early stage. To achieve this, vehicular IDSs log
information regarding detected security events that it deems to be alarming so that
this can be evaluated at a later stage [22]. In addition, these events are usually
reported to a central backend, which can perform further aggregation and analysis
of the reported security incidents, to try to figure out the root cause of the problem.
If an incident is determined to have been caused by some security issue within the
vehicle, some countermeasure can be developed and deployed [22].

2.3.1 AUTOSAR
AUTomotive Open System ARchitecture (AUTOSAR) is a global partnership be-
tween a wide range of parties active within the automotive domain and the devel-
opment of automotive software. AUTOSAR was founded in 2003 and its primary
directive includes establishing an open and standardized software architecture for
ECUs. By establishing an open software architecture standard that can be im-
plemented by any developer of automotive software, AUTOSAR hopes to improve
the transferability of software between different vehicle models and manufactur-
ers, improve the scalability of automotive systems and ensure that availability and
safety concerns are properly considered within these systems. Today the AUTOSAR
standards are widely used within the automotive industry and are considered the
de-facto standard within the automotive domain [39]. There are currently more
than 280 companies participating in the partnership [1].

2.3.2 Standard for in-vehicle network intrusion detection
AUTOSAR is currently in the process of introducing a new standard for how in-
trusion detection systems are to be implemented within automotive systems. This
standard is a part of the Foundation platform and is primarily described in [28] [36]
[37] [38]. Some of the key terms used in the standard are highlighted in table 2.1.

Table 2.1: Key terms used in the AUTOSAR standard for intrusion detection

Term Abbreviation
Security sensors -
Security event SEv
Qualified security event QSEv
Intrusion detection manager IDSM
Intrusion detection reporter IDSR
Security operations center SOC
Security event memory SEM
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The AUTOSAR standard described in [28] [36] [37] [38] takes into consideration
that a vehicle in effect operates as a distributed system in and of itself. The ve-
hicle consists of many ECUs that are connected through the IVN. The IVN is in
turn divided into several different domains and subsystems and consists of multiple
different kinds of communication buses such as CAN, LIN, MOST, etc. As such,
there exist many different attack surfaces within the vehicle that could be targeted
by attackers.
Since attacks targeting the vehicle do not only occur in one central point of the IVN,
it is not enough to embed an IDS at a single point within the system architecture.
Therefore, the AUTOSAR standard calls for a distributed onboard IDS, which em-
beds Security sensors and IDSMs throughout several locations throughout the IVN
architecture [28], as shown in figure 2.3.

Figure 2.3: Illustration of the AUTOSAR intrusion detection standard

2.3.3 Security sensors and security events
The security sensors are spread throughout the IVN in various ECUs and gateways,
and actively try to detect security events (SEvs) when they occur [28]. The precise
definition of a SEv can vary between different sensors based on the tasks performed
by the ECU it monitors and can be configured by the vehicle’s manufacturer by
sending updated SEv definitions to the sensor using an Security Extract [28]. The
security sensors may utilize a vast variety of detection techniques to identify SEvs,
such as anomaly- or specification-based detection.

2.3.4 Intrusion detection manager (IDSM)
When a security sensor detects that a SEv has occurred, it passes this information
along to the local IDSM. IDSMs are placed in every key domain within the IVN.
The IDSMs main tasks are to receive the SEvs from the security sensors, buffer them
and then process them. In addition, an IDSM can be used as a security sensor as
well, generating SEvs for later processing [36] [37].
When an IDSM processes SEvs, it applies a set of consecutive filters to the security
event. These filter chains consist of slightly differing layers depending on whether
the AUTOSAR Classic Platform or AUTOSAR Adaptive Platform standard is being
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implemented. However, the filters included in both standards serve similar purposes
[36] [37]. For instance, both include a sampling filter, where vehicle manufactur-
ers can configure the IDSM to only consider a sample of the reported SEvs. Both
standards also include an aggregation filter, which aggregates all reported SEvs of
a given type for a configured time interval and then processes these as a single SEv
instead. Both also implement a threshold filter, which can be configured to drop
SEvs of a given type if their count is smaller than a certain threshold value [36] [37].

The main purpose of these filter chains is to allow vehicle manufacturers to better
manage the resources used within the vehicle. Resources such as processing power,
RAM and nonvolatile memory are scarce in the ECUs of a vehicle. These limitations
force vehicle manufacturers to pursue optimizations that usually aren’t required in
traditional IT systems [22]. In addition, a vehicle is capable of generating a very
large amount of security events. As such developers of automotive software must
consider these resource limitations when configuring the IDSMs.

Security events that pass through the entire filter chain of an IDSM are deemed as
qualified security events (QSEv) [28].

2.3.5 Intrusion detection reporter (IDSR) and security event
memory (SEM)

Once a QSEv has been identified by an IDSM, the IDSM needs to decide what to
do with the logged data. How the QSEv data should be handled by the vehicle
largely depends on the configuration decided by the vehicle manufacturer. Broadly
speaking, there are two potential ways of handling the QSEv data. One way of
handling it is to send the logged data to a local dedicated storage location within
the vehicle, an SEM [28]. The number- and placement of SEMs within a vehicle are
left up to the vehicle manufacturer.

Another way of dealing with the QSEv is to have the IDSM forward the logged
data through the IVN to the vehicle’s intrusion detection reporter. The IDSR is a
module normally placed within the vehicle’s telematic control unit. The IDSR then
forwards this information along to a centralized backend, the SOC, for further anal-
ysis and response. In addition, the IDSR has the ability to enrich the QSEvs before
sending them to the SOC by attaching relevant context data such as a timestamp
or geolocation [28].
The flow of security events described in sections 2.3.3 through 2.3.5 is summarized
in figure 2.4.
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Figure 2.4: Security event flow
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2.4 Threat modeling in the automotive domain
In order to design a resilient framework for collaboration between vehicles, it is im-
portant to first consider the potential threats that such a system would be exposed
to. This is commonly done through the process of threat modeling. Myagmar et
al. [23] describe threat modeling as the systematic process of identifying all the
potential threats to a system. This process requires an in-depth understanding of
the system and its complexities and should ideally be incorporated into the system
design process as early as possible. Threat modeling is useful for developing mean-
ingful security requirements and prioritizing between different security requirements
based on their criticality and likelihood. Therefore, using this approach reduces the
attackers’ ability to misuse the system, while also helping the system designers to
anticipate attack goals [23]. Furthermore, threat modeling provides system design-
ers with the tools to answer questions regarding exactly what the system is designed
to protect, and from whom [23].

According to Ma and Schmittner [20], the following steps are generally included in
software threat modeling:

• Modelling of the system by means of drawing the system architecture in a
Data-flow Diagram (DFD), adding system details to each node in the DFD
and drawing trust boundaries

• Identification of various threats originating from data flows by using some
threat identification methodology

• Addressing each threat by redesigning the system, performing threat mitiga-
tion actions, or ignoring the threat if the risk is acceptable

• Validation of the threat modeling diagram against the actual system

Within the academic community, the subject of threat modeling has been exten-
sively researched and much research effort is still being put towards this field. In
addition, threat modeling is actively used and researched upon within the industry,
and many threat identification methodologies have been developed for various pur-
poses and functions. These include the STRIDE, DREAD, SWOT, and OCTAVE
threat models [15].

Within the automotive domain in particular, many research papers have been pub-
lished regarding suitable threat modeling practices within the field. Many of these
try to build upon the STRIDE model [20] [12], while others try to combine several
established models to cover all threats within the domain in question [10].

Rosenstatter et al. [30] use the latter approach, and try to establish an attack model
specific to the domain by identifying the different asset types surrounding vehicles
that are vulnerable to attack and various examples of attacks towards these assets.
These asset types include:

• Hardware - One attackable asset is the hardware infrastructure of the vehi-
cle, i.e the hardware of ECUs, sensors and actuators in the vehicle. These are
exposed to attacks that can disrupt, directly intervene with or otherwise com-
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promise the availability and integrity of these devices. Typically, attacking the
hardware often requires physical access to the vehicle. One such attack could
be that an existing component of the vehicle is replaced with a malicious one.
Another potential attack could be performed by installing ill-intended hard-
ware to be used as a mediary in order to gain control of the vehicle.

• Software - Attackable assets with regards to software include the software of
ECUs, libraries and operating systems. These assets are exposed to the ma-
nipulation of software, measurements or control signals. Examples of attacks
towards the software assets are many but generally attacks that in any way
manipulate the software are considered. An example of such an attack is a
privilege escalation attack, which enables attackers to reprogram devices such
as ECUs and can by doing that gain remote access to a vehicle.

• Network/Communication - Vehicle assets with regards to the network and
communication include the controller area network (CAN), mobile-, WiFi- and
Bluetooth networks to name a few. The general threat against the network
and communication domain are communication failures, protocol vulnerabil-
ities or attacks that generally compromise the confidentiality, integrity and
availability of data in the respective network. As an example, a spoofing at-
tack can be used to act as a legitimate node by suspending an authentic ECU
and send fabricated messages that seem to come from the same ECU.

• Data Storage - The asset of data storage is also an attackable surface where
information such as user data, logs, forensic data and cryptographic material
can be exposed. If the storage of such data is not secured against malicious
handling, this data can be subject to various attacks such as removal of foren-
sic data or reverse engineering of secret keys by extraction and analysis of
firmware.
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3
Related work

This chapter begins by briefly detailing some of the previous works that have been
made towards the field of collaborative intrusion detection as well as the current
state of vehicular IDSs.
Thereafter, the concept of intrusion detection networks and the research behind this
is explained in further detail. Finally, some of the challenges of implementing and
managing IDNs are described.

3.1 Previous works
A common issue with IDSs that implement anomaly-based detection is that they
are prone to produce many false alarms, as mentioned in section 2.2. [40] proposed
in the year 2003 the use of a Collaborative Intrusion Detection System (CIDS) and
showed that having IDSs collaborate could improve the accuracy of detection com-
pared to using only one IDS for detection.

[14] presents how collaborative IDSs efficiently can decrease detection time due to
the correlative nature of many attacks. Additionally, [14] also shows how this de-
crease in detection time effectively decreases the number of triggered alarms.
Furthermore, Fung and Boutaba propose in their study "Design and management of
collaborative intrusion detection networks" [9], how IDSs can collaborate with each
other and thereby create an intrusion detection network (IDN) to both increase
detection accuracy but at the same time mitigate common challenges facing these
IDNs. These challenges are further outlined in 3.2

[47] proposed an implementation of a collaborative intrusion detection system for
identifying betrayal attacks against a VANET network. This collaborative IDS
would utilize dynamic behavior analysis in order to detect malicious behavior from
any of the vehicles in the network. Thus this paper proposes a collaborative intru-
sion detection approach to better meet the challenges of trust management.

State-of-the-art accuracy of vehicular IDSs varies depending on the detection method
used and how this detection method is implemented. For example, in a car hacking
challenge in 2020 [13], one of the best performing IDSs used was one implementing
a rule-based detection method that produced an F1-score of 0.869. However, the
runner-ups in this competition did hold an F1-score of 0.864 when using a hybrid-
based IDS implementing several different detection methods. Additionally, [41] man-
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aged to gain an impressive F1-score of 99.9 percent when using a hybrid-based IDS
implementing both rule-based and machine learning based (RNN) detection meth-
ods. These measures are interesting as comparison metrics to the F1-scores obtained
and presented in section 7.

This thesis will continue the research on how collaborative intrusion detection net-
works can be used to achieve gains in attack detection, but also extending this re-
search by proposing a generic attack-detection framework for the automotive domain
that not only implements a collaborative intrusion detection network to increase the
accuracy of the attack detection but at the same time adhering to the newly defined
AUTOSAR standards.

3.2 Collaborative IDS - IDN
According to [9], a downside with having a single IDS responsible for detection is
that an IDS only has knowledge of information that has traversed the area in a
system or subsystem which that specific IDS is set to monitor. Therefore it is not
presented with a global view and thus is not efficient at detecting fast-spreading new
attacks. [9] concludes that an IDS could become more effective by collaborating with
other IDSs and sharing information between them. A network of collaborating IDSs
forms an Intrusion Detection Network (IDN) where participating IDSs benefits from
knowledge and experience sharing to enhance the accuracy of the detection [9].

There are two main types of IDNs, information-based and consultation-based [9].
An information-based IDNs continuously share information such as detection data
and possible new attacks that the separate IDSs have found suspicious. This type
of IDN is proficient at detecting fast-spreading new attacks. An example of such a
fast-spreading attack could be a worm, which has proven to be a very efficient way
to infect many different systems in the past, where the Morris worm can act as a
famous example. Even though the information-based IDN is efficient at detecting
fast-spreading new attacks, they often pay for this increased effectiveness with a
large message overhead. Messages, of which some may not even be useful to the
other IDSs [9].

A consultation-based IDN operates in the way that when an IDS detects suspi-
cious activity but needs more confidence to declare it as an incident, the IDS can
send consultation messages to other IDSs in the IDN to get feedback from other
IDSs in the network. The requester can then use the provided feedback to make
a more informed, final decision in whether to classify the activity as a security in-
cident or not. The consultation-based IDN has less communication overhead than
information-based IDNs [9].

3.2.1 Challenges with IDNs
One challenging aspect of IDNs is that of trust management. If an adversary could
manipulate some of the IDSs on the network and send false or untrustworthy in-
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formation to uncompromised IDSs on the network, that could effectively lower the
detection accuracy when using the falsified feedback for the final decision [9]. A
possible countermeasure for this scenario is to implement some protocol for trust
management to decrease the risk of making such a scenario successful.

Common protocols for trust management in distributed systems, which an IDN can
be defined as, is to implement some consensus protocol such as a byzantine fault
agreement protocol. Such a protocol essentially works by having a majority vote
among the nodes to rule out malicious nodes [9]. Of course, using this approach does
mean that if an adversary could control a large amount of the nodes on the network
they could then thwart the consensus protocol in their favor or in other ways harm
the decision process. [9] proposed the use of a "Dirichlet-based trust model" which
uses Bayesian statistics to calculate the trustworthiness of other peers and uses this
as a weighted factor in choosing how much to trust the information of certain IDSs
before calculating the final decision based on the given feedback.

Additional challenges with IDN networks include how to use the collective informa-
tion from the other IDSs and calculate a final decision. [9] proposed a Bayesian
optimization problem and specified whether to raise an alarm or not based on a
threshold value. This approach proved to have the lowest cost compared to a simple
average cost function [9].

Another issue with IDNs is how to manage resources. IDSs usually have limited
resources and may therefore not be able to respond to every request from other
IDSs. Also, how should the IDSs choose which collaborators to contact for feedback
and how to manage this list of collaborators as this will also require additional
resources. [9] provides a solution to these questions as well, but this is considered
to be outside the scope of this thesis and will therefore be omitted.
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4
Methodology

This chapter describes the methodology used when producing this thesis. A brief
introduction to design science methodology is provided and followed by a road map
as to how this methodology will be applied. This road map spans from the initial
step of conceptualizing the problem, to the validation of a designed solution that
addresses this problem.

4.1 Design science methodology
In accordance with Runesson et al [31] a design science methodology was imple-
mented for conducting this research. [31] defines design sciences as the "aim to
understand and improve human-made designs in an area of practice". [31] continues
with specifying that design science is a suitable research methodology for software
engineering since the software itself is made by humans.

Design science research generally studies specific problem instances in order to ad-
dress general problems. The design science paradigm is comprised of three distinct
steps. These are problem conceptualization, solution design, and validation. Further-
more, the activity of problem conceptualization is to be performed in connection to
an envisioned solution. Thus, the problem conceptualization step is often tightly
connected to the activity of solution design, where alternative solutions, as well as
related research, are to be considered. Additionally, per Runesson et al. [31], the
steps of problem conceptualization, solution design and empirical validation are to
be executed in a cyclic iterative manner until a finalized version is reached.

In this study, we aimed to design a framework for collaborative intrusion detection
through the study of automotive intrusion detection systems and intrusion detection
networks (IDNs). The designed CIVID framework has been refined through the use
of established principles such as threat modeling and has been exemplified through
a system implementation. Finally, this exemplification of the framework has been
validated through an empirical evaluation [31] as shown in chapter 7.

Furthermore, Knauss [17] proposes 7 actionable guidelines for utilizing a design sci-
ence methodology in research thesis work. The aim of these guidelines is to assist
students in balancing the trade-off between academic values and practical relevance.

The guidelines proposed by Knauss include:
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• Define the artifact early
• Work in iterations
• Define research questions with respect to the regulative cycle, i.e. one related

to the problem, one related to potential solutions and their construction, and
one related to evaluation

• Schedule regular meetings
• Shift emphasis between cycles
• Have a dedicated section to describe the artifact
• Write the thesis document as you go

The guidelines laid out by Knauss [17] have been adhered to during the process of
producing this thesis. The produced artifact, i.e the proposed framework, has been
defined early on as a solution to the aforementioned problem conceptualization.
Throughout the thesis work, one-week iterations have been applied and meetings
with the academic supervisor have been scheduled once every iteration. Further-
more, meetings with academic and industry advisors have been scheduled roughly
once per cycle, i.e roughly once per month. The defined research questions have been
defined with respect to the regulative cycle. The first research question addresses
both the problem and potential solution. The second research question addresses
the evaluation of the potential solution.
Focus has oftentimes shifted between different aspects of the solution design and
evaluation between iterations. Furthermore, chapter 5 is dedicated to describing
the produced artifact in full detail. Finally, the thesis document has been continu-
ously written during the course of this thesis.

4.1.1 Problem conceptualization
Initially, in order to acquire domain knowledge, an extensive literature review was
conducted. During the aforementioned review, the writers of this thesis searched
the databases of Elsevier and Google Scholar for research papers by keywords: "con-
nected vehicles", "cyberattacks on connected vehicles", "in-vehicle intrusion detec-
tion", "collaborative ids", "ids in connected vehicles". In addition, meetings were
held with scholars and domain experts in the field of connected vehicles, which gave
further insight into the true nature of the problem that required solving. These
activities provided clarity into the actual problem to be solved and a provided guid-
ance in the design of the proposed collaborative intrusion detection framework.

During subsequent iterations of the framework design process, additional queries for
available literature were performed in order to provide further context information
and clarity.

4.1.2 Solution design
During the initial literature review, a more clear view of the problem that had to
be solved was gained. Following this, work began on designing the proposed CIVID
framework. The design of the framework was informed by previous works on collab-
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orative intrusion detection systems and automotive intrusion detection.

Concurrently with the design of the theoretical framework, the authors worked on
the implementation of the framework exemplification. This implementation was
realized by simulating a CAN-network by using the Python programming language
and implementing a collaborative anomaly-based intrusion detection system on top
of this. The setup and design of this implementation are described in more detail
in chapter 6.

4.1.3 Validation
Once a viable implementation of the proposed CIVID framework had been finalized,
the validation phase of the research was started. During the validation phase, empir-
ical validation of the implemented system was performed. Details regarding how this
empirical validation was performed, such as how data was collected as well as how a
baseline for comparison was established, are described in further detail in section 6.5.

The primary metric used to evaluate the accuracy of the implementation is the F1-
score measured during the evaluation. The F1-score is used in statistical analysis
and is a measure of a test’s accuracy. It is calculated by the test’s precision (P)
and recall (R) with their harmonic mean as result. The precision is calculated by a
given test’s True Positives (TP) divided by the sum of the test’s TP and its False
Positives (FP) [29] [8].

Precision = TP

TP + FP
(4.1)

The recall is calculated by the test’s TP divided by the sum of the test’s TP and its
False Negatives (FN) [29] [8].

Recall = TP

TP + FN
(4.2)

The formula of the harmonic mean will produce the F1-score which will give a value
ranging from 0 to 1, with 1 being the most accurate [29] [8].

F1-score = 2
precision−1 + recall−1 (4.3)

The F1-score is also used in multiclass classification where the same formulas apply,
but where a mean is calculated from the results of the classes F1-score. This mean
can be weighted in different ways, depending on the desired outcome, but as an
example, the calculated mean can be weighted by each class’s occurrence in the test
data [24].
The F1-score is a common metric used when evaluating the accuracy of intrusion
detection systems [41] [13], hence the choice of applying this metric for evaluation
in this study as well.

An F1-score will be calculated for each sample data point collected. The data col-
lection phase is thoroughly described in section 6.5. In order to test if statistical
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significance holds between the baseline and the collaborative settings, a statistical
test is to be used. Naturally, the statistical test to be used will need to be performed
on data that adheres to the assumptions of the intended statistical test. Given that
all of the assumptions hold to be true, a One-way repeated measures ANOVA test
is deemed suitable for this thesis, as the simulations described in section 6.5 are
performed in a triplewise manner. The repeated measures ANOVA test is used in
order to see if there are statistically significant changes in the mean of a measure
when different treatments are applied to the same subjects. The core difference
between the repeated measures ANOVA test and the standard ANOVA test is that
measurements are collected from the same subject several times in a repeated mea-
sures ANOVA test.

The assumptions of the repeated measures ANOVA test are the following [45]:
• The independent variable needs to be on a categorical (nominal or ordinal)

scale and the dependent variable needs to be on a metric scale (interval or
ratio)

• The subjects are randomly selected from the full population
• There should be no outliers present in the data
• The dependent variable, i.e. the measured F1-scores, should be normally dis-

tributed in the population for each level of the within-subjects factor, i.e. the
different simulation modes presented in section 6.5

• The population variance of difference calculated between any two levels of a
within-subjects factor is the same regardless of which two levels are chosen.
This assumption is also referred to as the sphericity assumption or as the
homogeneity-of-variance-of-differences assumption, and is typically tested us-
ing Mauchley’s test for sphericity

In addition, the average elapsed real-time (i.e wall-clock time) from when a CAN-
message arrives until the analysis of it is complete, was used as a secondary metric to
evaluate the time efficiency of using a collaborative intrusion detection approach in
comparison to only performing intrusion detection activities locally in one vehicle.
The metric of elapsed real-time will be used in order to showcase the real-world
value and applicability of the proposed collaborative intrusion detection approach,
and as such will be used to assess the usefulness of the framework. Details regarding
the measuring of this metric are also provided in section 6.5

24



5
The proposed framework

This chapter outlines the collaborative in-vehicle intrusion detection framework
(CIVID) proposed by this thesis. This includes explanations regarding each compo-
nent included in the framework, their respective roles and responsibilities, the flow
of information etc. Furthermore, the various aspects of the framework that are left
ambiguous and open for different implementations, such as the utilized detection
methods, are explained.

5.1 CIVID
As described in section 3.2, there mainly exist two different approaches to designing
a collaborative intrusion detection system, an information-based- or a consultation-
based approach [9]. There are pros and cons to each approach. For instance, the
information-based approach is highly useful for detecting new and fast-spreading
attacks, but introduces a lot of message overhead. The consultation-based approach
on the other hand introduces far less overhead, but at the cost of limiting the sharing
of information between different nodes in the network.

For the automotive domain in particular, the consultation-based approach is deemed
the most suitable out of these, primarily because of resource limitations. As pre-
viously discussed, the various ECUs within a vehicle are usually highly limited in
both processing capabilities and memory [22]. In addition, these devices are often
in charge of handling safety-critical functions in real-time, which should be consid-
ered before introducing additional overhead to these devices. For these reasons, the
overhead introduced by using an information-based approach is considered to be too
great.

A key assumption made in designing the CIVID framework is that other vehicles
or the security backend have access to some resource or information that is not
available to the requesting vehicle. In other words, it is assumed that there are
potential gains to be had from using a collaborative approach. The resources that
may be only be accessed by collaboration partners could be anything from network
traffic logs, computational power or authorization keys. For instance, in the case of
auto-adaptive intrusion detection systems, which are continually trained over time
[46], other vehicles may be better equipped to identify whether or not some network
traffic constitutes an intrusion.
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The CIVID framework has been designed to be compatible with the AUTOSAR
in-vehicle intrusion detection standard described in section 2.3 and uses the same
notations as used within the standard. This standard has provided the CIVID
framework with its structure, components and flow of information. However, it is
important to note that the collaborative approach utilized in the CIVID framework
is not limited to only functioning within the structure provided by the AUTOSAR
standard, since the collaborative intrusion detection approach has been proven to be
valid in contexts outside of the automotive domain as well. Neither is the framework
meant to serve as an extension of the AUTOSAR standard itself.

The different components included in the framework and their respective roles are
summarized in figure 5.1. The flowchart shown in figure 5.2 shows the general flow
of information for requesting consultation within the framework. The key properties
of the framework are described below:

Figure 5.1: Components involved in the collaborative IDS framework

• Security sensor - Just as in the AUTOSAR standard, the security sensor
is responsible for raising alerts whenever malicious or suspicious activity is
detected. This can be done through various methods, as described in section
2.2.3. The method used to decide when to raise an IDS alarm is denoted as
Decision algorithm 1 in figure 5.2.

• IDSM - The IDSM also serves the same purpose that it does within the
AUTOSAR standard, e.g. to filter and aggregate the various intrusion alerts
raised by the security sensors within its domain. However, the CIVID frame-
work introduces a couple of additional tasks to be performed by the IDSM.

Firstly, the IDSM is tasked with deciding when to request consultation in re-
gards to a security event or incident. This is denoted as Decision algorithm 2
in figure 5.2. Depending on how the framework is implemented, this decision
can be influenced by a wide range of factors such as availability of resources,
the certainty of the prediction, etc.
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Figure 5.2: Collaborative IDS framework data-flow

Secondly, the IDSM needs to decide how it should process received responses
to its consultation requests. In other words, the IDSM needs to implement
an algorithm for deciding the final outcome of a security event based on the
received consultation responses, i.e whether or not to mark the event as a qual-
ified security event (QSEV) (And if so, whether or not to attach additional
context information to the event). There exist several ways of implementing
such algorithms, as discussed in section 3.2.1. For instance, such a decision
might be based on the certainty of the response, trust relations with the con-
sultation partners and aggregate statistics in cases where several consultation
responses are received. This decision is denoted as Decision algorithm 3 in
figure 5.2.

Finally, the IDSM should be able to respond to consultation requests received
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from other vehicles. As mentioned in section 2.3.4, the IDSM itself may serve
as a security sensor. This is leveraged in order to enable the IDSM to ana-
lyze incoming consultation requests and formulate a response. Of course, the
IDSM may opt to ignore incoming consultation requests for various reasons,
such as resource constraints or security considerations.

• IDSR - The IDSR is responsible for finding and maintaining relations with po-
tential consultation partners. Depending on the configuration of the IDN, the
IDSR may communicate with a security backend, with other vehicles directly
or both. If the IDN is configured to only allow direct communication between
a single vehicle and the security backend, the act of requesting consultation
becomes relatively simple. However, some complications may remain, such as
how to keep the security backend well-informed and potential latency due to
geographical distance.

On the other hand, if the IDN is configured to enable direct communication
between different vehicles in a peer-to-peer manner, such as by utilizing the
VANET protocol mentioned in section 2.1.2, several additional complications
need to be considered. One such complication is the issue of trust management,
which was discussed in section 3.2.1. Additionally, the differing configurations
between different vehicles may render them unable to assist each other in
their intrusion detection efforts. For instance, network traffic that may be
considered unusual in one vehicle may not be unusual in another. As such,
the IDSR needs to implement a check to make sure that its collaboration
partners are suitable for specific collaboration requests.
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Setup and experimental design

In this chapter, the experimental setup and each step taken for the implementation
of the CIVID exemplification discussed in chapter 4 is described in detail.
Firstly, the dataset of network injection attacks against a CAN-network that was
used for the implementation is explained.
Secondly, details are provided regarding the utilized intrusion detection model, which
was created using the machine-learning resources TensorFlow and Keras.
Thereafter, additional details are provided on how the virtual CAN-network used to
simulate actual CAN-traffic was implemented and which components are included
in the virtual network.
Then, a description is given of the hardware components used for the simulations
and how these were connected to each other.
Finally, a detailed description is given of how data collection was performed during
the simulations. This includes how the various simulation runs were chosen, what
data was collected and how it was collected.

6.1 Acquiring a dataset of network injection at-
tacks against a CAN-network

For the evaluation of the proposed framework, the authors have chosen to focus pri-
marily on detecting attacks against the Network asset, as described in section 2.4.
As such, a dataset of network injection attacks against a CAN-network has been
utilized.

The dataset used in this study has been acquired from the HCRL (Hacking and coun-
termeasures research lab), a research laboratory affiliated with the School of Cyber-
security, Korea University [16] [13]. HCRL mainly performs research in data-driven
security, using machine learning and data mining technology on large datasets. Their
publicly available datasets are collected from authentic services that range from mo-
bile payment data, e-commerce transaction data, as well as car-driving and attack
data. HCRL contributes to the field of data-driven security by sharing its datasets
with the public.

The dataset used in this thesis was made publicly available by HCRL following a
cybersecurity competition hosted by HCRL together with the organizations Culture
Makers as well as Korea Internet & Security Agency in 2020 [16]. The competition
aimed to develop attack and detection techniques towards a Controller Area Net-
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work, and the target vehicle used during the competition was the Hyundai Avante
CN7 [16] [13].

The dataset acquired from this competition consists of CAN traffic collected from
the Hyundai Avante CN7 and portrays normal traffic as well as malicious attack
messages. The dataset is divided into 8 CSV files labeled as "preliminary" and one
CSV file labeled as "final". For the "preliminary" datasets, the data was acquired
when the vehicle was in a stationary state as well as a driving state. The dataset
labeled as "final" however, only consists of data from the vehicle while in a stationary
state, due to safety reasons [16] [13]. The size and structure of the dataset are shown
in table 6.1. Out of the 9 CSV-files present, three were excluded from the model
training and network simulation. Two were excluded for only containing "Normal"
traffic and one was excluded for only containing 5 attacks in total.

The rows of the dataset contain raw CAN-frames as described in section 2.1.3, as
well as a class- and subclass column. The ’class’ column indicates if the particular
message is normal traffic by labeling it "Normal", or if it is an attack by labeling
it with "Attack". The ’subclass’ column indicates which type of attack has been
injected, if any, by labeling it with either "Normal" or with the name of the cor-
responding attack type. [16] [13]. These attack types can be Flooding-,Spoofing-,
Replay and Fuzzing-attacks. Example rows extracted from the dataset can be seen
in table 6.2.

Table 6.1: Size and structure of the utilized dataset [16]

Round Type #Normal #Attack #Rows (Total)

Preliminary Training 3,372,743 299,408 3,672,151
Submission 3.358,210 393,836 3,752,046

Final Submission 1,090,312 179,998 1,270,310

Table 6.2: Example rows extracted from the dataset

Timestamp Arbitration ID DLC Data Class Subclass
1599046395.285203 164 4 00 08 12 5C Normal Normal
1599046433.36685 000 8 00 00 00 00 00 00 00 00 Attack Flooding
1599046458.3852608 553 8 00 00 00 02 01 00 80 00 Attack Spoofing
1599046512.425457 164 8 54 88 A7 2C FB FE 51 08 Attack Fuzzing
1599046630.5071099 329 8 4A C7 7E 8C 32 2E 00 10 Attack Replay

Furthermore, HCRL has detailed that the dataset was constructed by logging the
OBD-II port from the Hyundai Avante CN7 while performing message injection
attacks. Each of the injection attacks was performed for 3-5 seconds with some in-
terleaving time between each message [16] [13]. The implementation of the different
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attacks was performed as follows:

The Flooding attack, also known as a denial-of-service attack, was implemented by
injecting messages with an arbitration (CAN) ID of ’0000’ every 0.3 milliseconds.
This attack aims to consume the bandwidth of the Controller Area Network. [16]
[13].

The Fuzzing attack was performed by injecting random arbitration (CAN) id as
well as completely random data for the Data[] attributes every 0.5 milliseconds. A
fuzzing attack aims to create unexpected behavior in the system by sending unex-
pected input data [16] [13].

For the Spoofing attack, messages were injected with a particular CAN ID that tar-
gets the drive gear and RPM gauge respectively, every 1 millisecond. The spoofing
attack aims to inject a CAN message in order to control some desired functionality
[16] [13].

More comprehensive details regarding this dataset can be acquired from [16] and
[13].

6.2 Building an anomaly based intrusion detec-
tion model

To implement the CIVID framework detailed in chapter 5, an intrusion detection
algorithm is required for the Security sensors. As described in section 2.2.3, there
exist several different kinds of intrusion detection methods, such as specification-
based and anomaly-based. For this implementation, anomaly-based intrusion detec-
tion was used. More specifically, a simple deep neural network (DNN) model was
built to detect anomalous CAN traffic. This machine learning model was built using
the Python deep-learning resources TensorFlow [21] and Keras [5]. These resources
allow data scientists to easily implement their own deep learning neural networks.

Since the aim of this thesis isn’t to develop a flawless intrusion detection system for
CAN-networks, the implemented DNN model was kept simple while still producing
relatively accurate predictions. Figure 6.1 shows the layers included in the model.
The eleven features used as input for the DNN model are as follows: The interarrival
time of each CAN-frame, the frame’s arbitration ID, its DLC as well as each of its
8 bytes of data, separated into 8 separate features. For CAN-frames containing less
than 8 bytes of data, the model input was padded with zeroes in order to fit the
expected model input.

The utilized dataset described in section 6.1, contains far more "Normal" CAN-traffic
than network injection attacks. This means that the different output variables to
be classified are highly imbalanced. Training a DNN-model on such a dataset will
result in the model being more inclined to predict the CAN-traffic to be "Normal",
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Figure 6.1: DNN-based detection model

even if this is not the case. In order to enable the DNN-model to better handle this
kind of imbalanced datasets, threshold-moving has been applied [3]. As such, the
different classes are weighted by their prior probabilities in order to penalize the
model for misclassifying minority classes [3]. An exception to this is the ’Replay’
class, which in its structure is indistinguishable from ’Normal’ CAN-frames. Because
of its simplicity, the designed model is incapable of distinguishing between ’Normal’
and ’Replay’ messages. As such, and since the detection methodology itself is not
the focus of this thesis, the authors opted to give the ’Replay’ class a weight of 0. In
other words, the designed model will not attempt to detect replay attacks targeting
the CAN-network.

6.3 Simulating a CAN-network
In order to showcase how the proposed CIVID framework could work in a practical
application, several virtual CAN-networks were created using the Python program-
ming language and the python-can package [11]. In addition the python-can-isotp
package [27], which is a Python implementation of the ISO-15765 protocol, was used
to facilitate higher-level communication between nodes in the CAN-network. This
was for instance useful for sending alerts and consultation requests between the dif-
ferent nodes in the network, as these required a more complex message structure
than the one provided by the low-level CAN-protocol.
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Ideally, the framework would be tested directly on actual CAN-networks placed
within vehicles. However, because of resource limitations and the difficulty of ac-
quiring such hardware, a virtual environment was utilized instead. Once the virtual
CAN-networks were initialized, the dataset described section 6.1 was used to simu-
late real-time CAN-network traffic.

To closely resemble a real-world setting, the virtual CAN-network was designed per
the in-vehicle intrusion detection standard introduced in section 2.3. As such, sep-
arate modules were built for Security sensors, IDSMs and IDSRs. Each module is
in charge of some aspect of the intrusion detection process, as described below:

• Security sensor - The security sensor is in charge of analyzing the CAN-
network traffic that passes through its domain in order to try to detect possible
intrusions. It does this by utilizing the intrusion detection model described
in section 6.2. Whenever a possible intrusion is detected, an alarm is raised
which contains relevant context information such as the type of attack that was
detected, the "certainty" of the prediction as well as the row number (which
is used for validation purposes). Once raised, the alarm is forwarded to the
IDSM by utilizing the isotp (ISO-15765) protocol.

• IDSM - The IDSM is the primary decision-making module within the virtual
CAN-network, and is in charge of logging intrusion alerts, deciding when to re-
quest consultation from another ’vehicle’ and to receive consultation requests
from other ’vehicles’. In addition, the IDSM serves as a Security sensor as
well, as it processes consultation requests from other vehicles through its own
intrusion detection model and formulates a response.
In order to decide whether or not to request consultation for a particular secu-
rity event received from the security sensor, the IDSM looks to the certainty of
the prediction made by the sensor. In cases where the certainty of the predic-
tion falls below a certain threshold value, the IDSM will request consultation
for that particular security event. For the simulation runs described in section
6.5, a threshold value of 85% was used.
When the IDSM decides to request consultation from other ’vehicles’, it sends
a consultation request to the IDSR using the isotp protocol. If a response is
not received within a specified amount of time, the IDSM registers the intru-
sion alert as it was received from the Security sensor. However, if a response
is received in time, the prediction with the highest ’certainty’ is registered.
In order to enable empirical validation of the implementation’s performance
by means of calculating the F1-score, no filtering or aggregation mechanism
has been implemented within the IDSM despite this being supported by the
CIVID framework described in chapter 5.

• IDSR - The IDSRs primary task is to connect the vehicle to other nearby
vehicles and to forward consultation requests from the IDSM to these. In our
simulated scenarios, up to three devices were connected through the IDSM
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by utilizing the python-can-remote package [32], which creates a "CAN over
TCP/IP bridge" which is compatible with python-can. However, in a real-
world setting, some other means of facilitating communication between differ-
ent vehicles would be more suitable, such as the VANET protocol. In addition,
our implementation of the framework does not incorporate any trust manage-
ment nor suitability checks as mentioned in chapter 5, as these components lie
outside the scope of the empirical evaluation.

6.4 Hardware setup

Figure 6.2: Modules included in the experimental setup

When evaluating the implemented system, up to three Raspberry Pi 4, model b,
4GB devices were used to simulate three vehicles collaborating with each other.
The exact specifications of these devices is detailed in Appendix C. Three differ-
ent configuration modes have been used when evaluating the system. These modes
are denoted as "Baseline", "Collaborative 1" and "Collaborative 2". The "Baseline"
mode involves using only one device when running simulations. The "Collaborative
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1" mode involves using two devices when running simulations and the "Collabora-
tive 2" mode involves using all three devices when running simulations. Figure 6.2
showcases the "Collaborative 1" mode and how these two devices are connected. For
the "Collaborative 2" mode, a third device was connected to device 1 in the same
manner as in figure 6.2. Further details regarding the various simulation runs and
the three different configuration modes utilized are provided in section 6.5.

The primary reasons for using the Raspberry Pi devices were as follows:

• Similarity to in-vehicle hardware - Due to the limited processing capabili-
ties of the Raspberry Pi 4b devices, they were considered to be closer to actual
in-vehicle hardware, such as the ECUs, than any other hardware available to
the authors. Of course, the differences between these and the ECUs of a ve-
hicle may still be great, and ideally, actual in-vehicle hardware would be used
for this simulation. However, given the options available, this was deemed to
be the most suitable approach nonetheless.

• Homogeneous hardware - While there technically isn’t any need for the
implemented system to be run on devices with similar computing capabilities,
doing so allows for a simpler experimental setup and allows the authors to
more easily control for- and understand the properties and limitations of the
utilized devices.

6.5 Data collection
In order to collect the data required to perform the empirical evaluation, a number of
simulation runs were performed. As mentioned in section 6.1, the dataset is divided
into 9 separate CSV-files, of which 6 will be used for data collection.
During each of these simulation runs, one of these files was used to simulate net-
work traffic on a single Raspberry pi device, while other files were used to train the
required DNN-models. The datasets used and their corresponding DNN-models are
shown in table 6.3

Table 6.3: Utilized csv-files and their corresponding DNN-models

ID File name Model name
1 Pre_train_D_1 model1
2 Pre_train_D_2 model2
3 Pre_train_S_1 model3
4 Pre_train_S_2 model4
5 Pre_submit_S model5
6 Pre_submit_D model6
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The simulation runs were conducted in a triplewise manner, with each simulation
run using the "Baseline" approach having two corresponding simulation runs where
the "Collaborative 1" and "Collaborative 2" approaches were utilized.

During the "Baseline" simulation runs, the collaborative features of the system had
been disabled, and as such all final decisions made by the IDSM were only based on
the local analysis on that particular device. These "Baseline" simulation runs will
be used to establish the baseline performance of the system without using collabora-
tion and will be performed using the same data configurations as the corresponding
collaborative simulation runs.

During the "Collaborative 1" simulation runs, the collaborative features of the sys-
tem were activated and a single "consultation partner" device was connected to the
device with the simulated network traffic, henceforth referred to as the primary de-
vice. This enabled the primary device to request consultation whenever this was
deemed necessary. As mentioned in section 6.3, consultation was requested when-
ever the prediction of the security sensor had a certainty of less than 85%. Once
the primary device received a response from the consultation partner, the prediction
with the highest certainty was picked and logged.

"Collaborative 2" simulation runs worked in the same manner as the "Collabora-
tive 1" simulation runs, with the only difference being that yet another consultation
partner device was connected to the primary device. In other words, for each con-
sultation request sent out by the primary device, two consultation responses were
received back. The decision algorithm for dealing with received consultation re-
sponses also worked in the same manner as in "Collaborative 1" simulation runs, i.e.
the prediction with the highest certainty was logged.

In total, 90 simulation runs were performed: 30 utilizing the "Baseline" approach, 30
using the "Collaborative 1" approach and 30 using the "Collaborative 2" approach.
Using 30 simulation runs for each simulation mode was a suitable number of data
points for use in the planned statistical tests. Furthermore, after 90 simulation runs
the measured results seemed to have stabilized and hence this was considered to be
a suitable stopping point.

The data- and model configurations for each of the simulation runs were selected
using a probabilistic approach, by Python script to randomly generate the configu-
rations of each simulation run. In order to protect the integrity of the results, the
authors enforced that each dataset could only be used in a single capacity during
each simulation run. In other words, cases where the network traffic data had also
been used to train any of the models were disallowed, as were cases where several
devices utilized the exact same model. The resulting data configuration of each
simulation run is detailed in Appendix A.

As mentioned, during the simulation runs CAN-network traffic was only simulated
on one of the Raspberry Pis. Meanwhile, the other devices remained focused solely
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on receiving and responding to consultation messages. This was done in order to
keep the setup as simple as possible.

As previously discussed, the IDSM is the primary decision-making and logging mod-
ule. However, the security sensor only sends alerts for suspected intrusions to the
IDSM, and not all alerts end up becoming qualified security events (QSEVs). As such
the IDSM does not log information regarding every row from the original dataset,
but only rows that qualify as QSEVs. As such, a separate validation script had to
be developed in order to compare these logs to the original datasets and calculate
the F1-score.

During any given simulation run, the following information was collected and logged
by the IDSM:

• Qualified security events - I.e. the alerts raised by the security sensor.
Each QSEv consists of two components: The corresponding row number in
the simulated network traffic dataset, which is required for validation pur-
poses, as well as the suspected type of intrusion. During simulation runs using
the baseline approach, the IDSM simply logs the intrusion type reported by
the security sensor. However, during collaborative simulation runs, and for
security events where consultation is deemed necessary, the prediction with
the highest certainty is logged as described in section 6.3.

• Average local time - For security event, the time from when that message
arrived at the Security sensor until it had been received, parsed and processed
by the IDSM was measured using the time module included in Python. A dis-
tinction is made here between the messages that only require local processing
and the ones that require consultation. At the end of each simulation run, the
average time required to process the locally handled messages is calculated
and logged.

• Average consultation time - For simulation runs where the collaborative
approach is utilized, the IDSM also logs the average time it takes for messages
that require consultation to be fully processed. For security events, a timer
is started when the message is received by the Security sensor. In the cases
where consultation requests are required, this timer is not stopped until the
security event’s consultation responses have been received and processed. The
timer isn’t stopped until the final consultation response to the security event
has arrived and been processed by the primary devices’ IDSM. At the end of
the simulation run, the average time required for the consultation messages is
calculated and logged.

The collected data, as well as the scripts used for simulation and validation, can be
found on the following GitHub page https://github.com/DanielAryan/CIVID.
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7
Results

This chapter outlines the results obtained after conducting the data collection phase
described in section 6.5. Firstly, the F1-scores obtained from each of the three dif-
ferent simulation modes are presented in detail.
Thereafter, the statistical tests performed on these results are described, including
the various assumption checks that needed to be performed.
Finally, the results pertaining to the time required for processing of local- and con-
sultation messages are presented.

7.1 F1-scores
Table 7.1 presents the measured F1-scores obtained from the 90 simulation runs, pre-
sented in a triplewise manner. The leftmost column shows the F1-scores obtained
from the "Baseline" simulation runs, where only one device was used for detection.
The middle column shows the F1-scores of the corresponding "Collaborative 1" sim-
ulation runs, which utilized the collaborative approach with a single consultation
partner. Finally, the last column shows the results of the "Collaborative 2" simula-
tion run, where two consultation partner devices were used for detection.
Furthermore, table 7.2 shows the means and 95% confidence intervals of each simu-
lation mode’s F1-scores.

A comparison between the "Baseline" simulation runs and the "Collaborative 1"
simulation runs shows that the F1-scores of the "Collaborative 1" simulation runs
are consequently greater than the "Baseline" runs. However, they only seem to be
greater by a relatively small margin. Additionally, the F1-scores obtained from the
"Collaborative 2" simulation runs are also consequently greater than the "Baseline"
runs, and are greater than the "Collaborative 1" runs in most cases. However, in a
few cases, namely simulation runs 39, 57, 60, 63, 84 and 87, the F1-scores of the
"Collaborative 2" runs are slightly lower than their corresponding "Collaborative 1"
runs. A more detailed breakdown of the results of each simulation run is presented
in appendix B where the precision and recall used to derive each F1-score is also
presented.

As previously mentioned, the results only show a marginal increase in F1-scores
from using the collaborative approach. From Appendix B, when looking at the dif-
ferent F1-scores for each attack, it is clear that the attack benefiting most from a
collaborative approach, and thus is mainly responsible for the increase in F1-score,
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Table 7.1: Rounded F1-scores measured during the simulation runs1

Baseline Collaborative 1 Collaborative 2
Sim-run F1-Score Sim-run F1-Score Sim-run F1-Score
1 0.463264 2 0.495187 3 0.497803
4 0.540365 5 0.555521 6 0.556409
7 0.611609 8 0.637676 9 0.641449
10 0.629500 11 0.633065 12 0.633625
13 0.591291 14 0.603199 15 0.631814
16 0.540590 17 0.543474 18 0.545305
19 0.549778 20 0.564924 21 0.569497
22 0.643081 23 0.669723 24 0.672263
25 0.568531 26 0.588151 27 0.600198
28 0.537090 29 0.539972 30 0.540503
31 0.465695 32 0.473161 33 0.474219
34 0.464736 35 0.472763 36 0.482419
37 0.560695 38 0.572603 39 0.570021
40 0.608112 41 0.628673 42 0.632940
43 0.440935 44 0.455877 45 0.460078
46 0.507057 47 0.521624 48 0.531502
49 0.472845 50 0.481844 51 0.483209
52 0.541948 53 0.561075 54 0.561586
55 0.548979 56 0.572546 57 0.571328
58 0.658585 59 0.686092 60 0.679878
61 0.572473 62 0.632326 63 0.590040
64 0.459100 65 0.464881 66 0.465872
67 0.457182 68 0.480110 69 0.485338
70 0.443996 71 0.459744 72 0.467119
73 0.499257 74 0.512783 75 0.512853
76 0.541157 77 0.568336 78 0.569993
79 0.492692 80 0.505431 81 0.505606
82 0.485754 83 0.496986 84 0.496582
85 0.666681 86 0.686779 87 0.686747
88 0.725958 89 0.757439 90 0.758155

is the Fuzzing attack. For this individual attack type, the collaborative approach is
providing a quite substantial increase. For example, comparing the results of simu-
lation runs 1, 2 and 3 in appendix B, the "Baseline" F1-score of the fuzzing attack
in particular is 0.42 but compared to the collaborative approaches the F1-scores are
0.55 and 0.56 respectively.

For the other attack types, their respective F1-scores does not seem to be greatly
affected by the application of a collaborative approach. In regards to the Flooding

1The bold cells showcases simulation runs where the Collaborative 2 mode performs worse than
Collaborative 1
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Table 7.2: 95% Confidence intervals of the measured F1-scores

Mode n 95% CI
Lower bounds Mean 95% CI

Upper bounds
Baseline 30 0.515238 0.542965 0.570691
Collaborative 1 30 0.531273 0.560732 0.590191
Collaborative 2 30 0.533521 0.562478 0.591436

attack, all of the utilized models used for detection appear to be predicting this
kind of attack very well, hence no consultation is ever needed when detecting these
attacks.
For the Replay and Spoofing attacks however, no benefit is gained from using a
collaborative approach since all models, no matter how many devices are used, are
equally bad at predicting these attacks. The utilized machine learning models are
simply not very adept at detecting those attacks because those kinds of attacks are
structurally no different from normal CAN-traffic. The reasoning behind this is fur-
ther outlined in section 6.2.

An interesting aspect of the results is the F1-scores of the spoofing attacks. In most
cases, the spoofing attacks achieve an F1-score of 0, for the reasons outlined above.
However, in some cases, such as in simulation runs 88, 89 and 90, the F1-scores
of the spoofing attacks are much greater (often close to 1.0). This discrepancy is
a result of the simplicity of the utilized detection methodology as well as a quirk
of the utilized dataset. As mentioned in section 6.5, 6 dataset files were used for
both model training and to simulate network traffic. Between these 6 files, the exact
structure of the utilized spoofing attack varied somewhat. Therefore, since our mod-
els are incapable of detecting the true markers of a spoofing attack, in most cases
no spoofing attacks were detected at all. However, in the cases where the F1-scores
of the spoofing attack increased, the model utilized by the primary device and the
network traffic data happened to use the same spoofing attack frames, resulting in
a much higher detection rate due to overfitting. As such, these results are in no way
indicative of the utilized models’ actual ability to detect spoofing attacks. Despite
this quirk of the utilized dataset and detection methodology, this variability of the
spoofing attack F1-scores does not affect the overall integrity of the results. The
reason for this is that this discrepancy is not affected whatsoever by whether or not
a collaborative approach was utilized or not, hence the F1-scores of the spoofing
attacks are roughly the same across all simulation run triplets.

Compared to the state-of-the-art IDSs discussed in section 3, the IDS utilized in
this thesis performs much worse in terms of F1-scores. This is partially because the
individual F1-scores for the spoofing and replay attacks are very low which decreases
the average F1-score for the simulation run as a whole.
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7.2 Statistical tests
As mentioned in section 4.1.3, given that the assumptions of the one-way repeated
measure ANOVA test holds, this statistical test will be utilized to infer whether
or not there are statistically significant differences between the "Baseline" and the
collaborative approaches.

The dependant variable used, i.e the F1-scores of these simulation runs, does operate
on a continuous scale, thus this assumption holds. Furthermore, since each simula-
tion run was run independently, i.e under the exact same operating conditions and
without affecting other simulation runs, the assumption of independent responses
between subjects should also hold.

The assumption of subjects being randomly selected from the population is also
considered to hold since a random generator has been used for selecting which data
to use for each simulation run.

Figure 7.1 presents a boxplot of the measured F1-scores, which can be used to vi-
sually assess the variability of the data and infer the presence of outliers. Based
on this table, one might infer that there are three potential outliers, one in each
simulation mode. These are the topmost data points measured in each simulation
mode, i.e the F1-scores from simulation runs 88,89 and 90. From a visual stand-
point, it is unclear whether these points differ to such an extent that they should be
deemed as outliers. To assess this, the Turkey’s fences method [42] has been utilized.

Based on the results of Tukey’s fences, as can be seen in table 7.3, the largest F1-
scores seen in each simulation mode are still lower than the upper bound set by
Tukey’s fences. Thus, even though they appear close to the upper bounds, these
data points are not deemed as outliers. Therefore, the assumption of no outliers
being present is also deemed to hold.

Table 7.3: Tukey’s fences method

Tukey’s fences Q3 IQR Q3+1.5*IQR Largest F1-score
Baseline 0.581882 0.102582 0.735755 0.725958
Collaborative 1 0.615936 0.119849 0.795710 0.757439
Collaborative 2 0.616006 0.118813 0.794226 0.758155

As for the assumption that the dependent variable should be normally distributed
in each simulation mode, both Shapiro-Wilk tests (table 7.4) and Q-Q plots (figure
7.2) to assess the normality of the data. Based on the p-values shown in table 7.4,
which are all higher than the standard α value of 0.05, we are not able to reject the
null-hypothesis that the simulation modes’ F1-scores are normally distributed. Ad-
ditionally, the Q-Q plots shown in figure 7.2 roughly show the ordered quantiles of
the measured F1-scores following the theoretically expected quantiles of the normal
distribution in all three simulation modes. Thus, it is not unreasonable to assume
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that the F1-scores are normally distributed in each simulation mode. Therefore, the
normality assumption of the repeated measures ANOVA test is also deemed to hold.

Table 7.4: Shapiro-Wilk test of measured F1-scores

Mode Statistic p-value
Baseline 0.947006 0.140490
Collaborative 1 0.944406 0.119567
Collaborative 2 0.941054 0.097102

The final assumption of the repeated measures ANOVA is the sphericity assump-
tion, i.e that the differences in sample variance should be equal between any two
levels of the independent variable. This sphericity assumption is usually tested using
Mauchly’s test of sphericity. Using this test on the measured F1-scores of each sim-
ulation mode, resulted in a p-value of 1.0 which indicates sphericity. Furthermore, a
visual inspection of the boxplot in figure 7.1 also seems to indicate the homogeneity
of variances in differences. Based on this, the sphericity assumption is considered
to hold.

As all of the assumptions of the repeated measures ANOVA test have been checked
and deemed to be met by the collected data, this test has been applied to the F1-
scores of the three different simulation modes. The results of this ANOVA test is

Figure 7.1: Boxplot of measured F1-scores
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Figure 7.2: Q-Q plots for Normal distribution for each simulation mode

shown in table 7.5. The meaning of each statistic displayed in this table and how
these should be interpreted is outlined in [44], however for the purpose of inferring
whether or not there are significant differences between the groups it is sufficient to
look at the p-value of the test (p-unc).

As this table shows a p-value that is significantly lower than the applied α value
of 0.05, we can reject the null-hypothesis that there are no differences between the
means of the three groups.

Table 7.5: One-way repeated ANOVA measures

Source SS DF MS F p-unc np2 eps
Mode 0.00699 2 0.00349 62.89297 2.98095e-15 0.68442 0.96372
Error 0.00323 58 5.56125e-05 NaN NaN NaN NaN

In order to find out exactly which groups that differ significantly from each other, a
post-hoc test, utilizing 2-way pairwise t-tests, has been applied. The results of this
test are shown in table 7.6. The meaning of each statistic displayed in this table and
how these should be interpreted is described in [43], however the corrected p-values
(p-corr) of the tests are the most relevant when interpreting the results.
.
From these results, we can infer that there are statistically significant differences
between the means of the "Baseline" and both collaborative simulation modes. How-
ever, since the p-value obtained by comparing the "Collaborative 1" and "Collabo-
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rative 2" approaches (0.36) is higher than the α value of 0.05, we cannot infer any
statistically significant differences between these two groups.

Table 7.6: Post-hoc test (2-way pairwise t-tests) using Benjamini/Hochberg FDR
correction

Mode 1 Mode 2 T-statistic DF Tail p-unc p-corr
Baseline Collaborative 1 -8.472075 29.0 two-sided 2.461940e-09 3.692910e-09
Baseline Collaborative 2 -10.929051 29.0 two-sided 8.471511e-12 2.541453e-11
Collaborative 1 Collaborative 2 -0.928644 29.0 two-sided 0.360739 0.360739

Finally, in order to confirm the direction of the differences between the "Baseline"
and collaborative approaches, a one-way post-hoc test has also been applied. The
results of this test are shown in table 7.7. From these results we can infer that
the means of both "Collaborative 1" and "Collaborative 2" F1-scores are statistically
greater than those of the "Baseline" simulation runs.

Table 7.7: Post-hoc test (one-way pairwise t-tests) using Benjamini/Hochberg
FDR correction

Mode 1 Mode 2 T-statistic DF Tail p-unc p-corr
Baseline Collaborative 1 -8.472075 29.0 one-sided 1.230970e-09 1.846455e-09
Baseline Collaborative 2 -10.929051 29.0 one-sided 4.235756e-12 1.270727e-11
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7.3 Processing times
Table 7.8 presents the average times in seconds required for processing different
kinds of messages, as measured during the simulation runs. The first row shows the
times required to process a message locally, i.e when no consultation is needed.
The table also presents the average time for processing a message when collaboration
with external devices is needed. The timings are calculated by measuring the time
from when a message arrives at the Security sensor until all consultation responses
have been processed and a final decision on the message has been reached. The
"Collaborative 1" row presents the average time for processing messages that require
consultation when using one collaborative partner device. The "Collaborative 2" row
presents the average time for processing messages that require consultation when
using two collaborative partner devices. The results presented in table 7.8 have
been obtained by taking the average of the averaged processing times calculated
from each simulation run. These results are further detailed in Appendix B.

Table 7.8: 95% Confidence intervals of the measured times

Mode n 95% CI
Lower bounds Mean 95% CI

Upper bounds
Average local time 90 0.01839 0.02005 0.02170
Average consultation time
(Collaborative 1) 30 0.13405 0.14277 0.15149

Average consultation time
(Collaborative 2) 30 0.15434 0.16736 0.18038

Table 7.8 shows that processing a consultation message using "Collaborative 1" takes
approximately 7 times as long compared to processing a local message. However,
the times for processing a consultation message when using two collaborative de-
vices, i.e "Collaborative 2", takes longer time compared to "Collaborative 1", but the
additional increase is only 17 percent, compared to the aforementioned comparison
which had an increase of 700 percent.
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In this chapter, a discussion relating to the results obtained in chapter 7, is per-
formed. Initially, a discussion regarding the trade-off between the added value of
implementing the proposed CIVID framework, and the added risks of doing so. This
is followed by a discussion on the pros and cons of utilizing a machine learning based
detection method. Thereafter, an analysis of how the utilization of a collaborative
intrusion detection approach affects the time-to-detection of potential intrusions is
presented. Finally, the various threats to validity identified by the authors are pre-
sented and discussed.

8.1 The added value & risks of using a collabora-
tive approach

Based on the results showcased in chapter 7, the collaborative approach does yield
greater F1-scores than the baseline approach, having an average increase of 3.3%
between the "Baseline" and the "Collaborative 1" simulation runs. Furthermore,
despite the fact that the "Collaborative 2" simulation runs most often performed
better than the "Collaborative 1" simulation runs, one could not infer a statisti-
cally significant improvement in F1-scores when an additional consultation partner
was added. However, the fact that adding an additional consultation partner did
not yield even greater gains than the ones observed is likely more reflective of the
specific implementation than it is of the CIVID framework as a whole. If another
decision algorithm had been implemented for processing and aggregating consulta-
tion responses, or if another detection methodology had been utilized, it is possible
that even greater gains could have been observed by adding additional consulta-
tion partners. For instance, the implemented algorithm for processing consultation
responses only takes the prediction with the highest certainty into consideration.
A more sophisticated algorithm for processing responses, which aggregates the re-
sponses from several consultation partners might have resulted in additional gains
as more consultation partners are added. Further research on this topic would be
particularly interesting considering that the time-to-detection does not appear to
scale proportionally as more consultation partners are added. Furthermore, for
future research, it would be interesting to study how different implementation de-
signs and decision algorithms for the CIVID framework could be used to leverage
the information and resources of other vehicles in the fleet to an even greater extent.

As mentioned in chapter 7, the increase in F1-scores observed from utilizing the
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collaborative approach is primarily derived from the improved detection accuracy
of Fuzzing attacks in particular. The Flooding attacks however, hardly seemed to
require consultation at all and were barely affected by the introduction of a collabo-
rative approach. Therefore, it would seem that the collaborative intrusion detection
approach may be more suitable for detecting certain kinds of attacks than others.
One important thing to note however, is that the gains yielded by the collaborative
intrusion detection framework are highly dependent on how it is implemented, what
kind of detection methods are utilized and what type of information is shared during
consultation.

As mentioned in chapter 5, some kind of trust management mechanism is required
in order to implement the CIVID framework for a real-world setting. However, even
with a sophisticated trust management system in place, usage of the collaborative
approach does introduce an additional attack vector that could be targeted by mali-
cious actors. For instance, if one of the vehicles in a collaborative intrusion detection
network were to be compromised, it might try to utilize the intrusion detection net-
work in order to influence other vehicles in the network. As such, there are inherent
risks to the usage of intrusion detection networks that must be considered. There-
fore, the potential gains of any specific implementation of the CIVID framework
need to be weighed against the introduced risks. In addition, if the CIVID frame-
work is to be implemented, e.g. in some vehicular fleet, it might be beneficial to
limit the consultation to the attack types that benefit the most from collaboration.

The fact that the collaborative approach does not yield greater improvements in
detection accuracy, as well as its perceived tendency to perform better with certain
kinds of attacks, raises the questions of whether implementing a collaborative ap-
proach is worth the added cost and potential risks, and for what types of intrusions
the collaborative approach is most useful. Therefore, it would also be interesting for
future research to investigate under which circumstances it is suitable to implement
the CIVID framework.

8.2 Pros and cons of the utilized detection method
The accuracy measures presented in chapter 7 show that the implemented anomaly-
based IDS used in this thesis produced F1-scores averaging at approximately 0.6.
As mentioned in chapter 3, state-of-the-art IDSs in the vehicular domain produces
higher F1-scores than the IDS implemented in this thesis.
However, as mentioned in section 6.2, it was never the intention of the authors of this
report to produce an IDS with F1-scores comparative to the aforementioned state
of the art IDSs, but rather to investigate whether or not a collaborative approach
could lead to increased F1-scores in an IDS. Despite this, the discrepancy between
the F1-score performance of the IDS produced in this thesis and the state-of-the-art
IDSs mentioned in chapter 3 is deemed interesting enough to warrant further anal-
ysis. It is also worth mentioning that the datasets- and evaluation methods used
in the related works regarding other IDSs differ from the ones used in this thesis,
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meaning that a direct comparison between the F1-scores obtained in the various
studies might give a slightly misleading impression.

The main reason why the implemented IDS performs worse than state-of-the-art
IDSs is mainly that the only detection method used is anomaly-based detection im-
plemented using machine learning, whereas many state-of-the-art IDSs use at least
a specification-based detection method, or hybrid-based IDS, which combine several
different detection methods. A machine learning based detection method, such as
the one used in this thesis, can be very suitable when detecting certain types of at-
tacks, such as Flooding or Fuzzing attacks, as can be seen in Appendix B. However,
it is much harder for a machine learning model to detect attacks such as Spoofing-
or Replay attacks, as they are structurally indistinguishable from normal traffic.
Flooding and Fuzzing attacks have characteristics, such as the time between mes-
sages or uncommon data patterns, which makes them more easily identifiable when
compared to normal network traffic. The replay- and spoofing-attacks however, are
seemingly just like any other normal message which makes them much harder to
single out from normal traffic. Thus, a machine learning based detection method
might not be the most suitable choice for detecting these kinds of attacks.

As mentioned in section 3.2, there are pros and cons with every type of detection
method, therefore implementing a hybrid-based IDS, as was seen being done in [41]
and [13], may be a suitable choice when combating the diverse arena of cyber-attacks
in the automotive domain. It would be interesting to see how the CIVID framework
proposed in this thesis, could be leveraged in combination with other types of detec-
tion methods as well. As an example, if anomaly-based detection, which seemingly
works well on flooding attacks, would collaborate with an IDS that implements some
other detection method that works well on spoofing and replay attacks, then their
collaborative gains could likely produce an even greater increase in accuracy than
what was observed in this thesis. This is a topic suitable for future research.

8.3 The effect of using a collaborative approach
on time-to-detection

The average times from when messages are received by the IDSM until they have
been fully processed are presented in table 7.8. As mentioned in 7.3, this table shows
that messages that require consultation require significantly more time before a final
decision can be made than messages that are only processed locally. This difference
can primarily be attributed to the transmission time required to send messages back
and forth to the consultation partners. Interestingly, as was also highlighted in sec-
tion 7.3, this increase in processing times do not seem to scale proportionally as the
number of consultation partners increases. As such, it should be possible to consult
with a large number of consultation partners without inducing an adverse effect on
the time-to-detection, as opposed to only consulting with a few consultation part-
ners.
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Worth noting here is that, as mentioned in chapter 6.3, the implemented IDSM
does not perform all of the tasks that an IDSM should perform according to the
AUTOSAR standard, e.g. the filtering and aggregation of security events. As such,
one might expect to see higher local processing times in a real-world setting.

While the time until a final decision can be made is significantly greater while us-
ing the collaborative approach, the IDSM does not simply sit idle while waiting for
consultation responses to arrive. Instead, it continues to process incoming network
traffic as it arrives, and processes the consultation responses as they arrive. There-
fore, the time it takes to process collaboration messages should not greatly affect the
system as a whole. In addition, only a very small percent of security events require
consultation. However, for the messages that do require consultation, the increased
duration of time might constitute a security risk, if intrusions are not dealt with
in a timely manner. To mitigate this risk, it might be necessary to perform some
intermediary action on security events that are awaiting consultation responses.
For instance, the messages in question could be suspended until the consultation
responses arrive.

8.4 Threats to validity
This section outlines the various threats to validity identified by the authors while
writing this thesis. These threats are divided into four categories. These are internal-
, external-, construct- and conclusion validity.

8.4.1 Internal validity
The obtained F1-scores, as presented in 7, are the product of the chosen anomaly-
based detection method with its implemented threshold set to 85%. This value of
85% could just as well have been set to another value, such as 75% or 95%. The
reason for choosing a threshold value of 85% was only because it was a value that
was deemed by the authors of this thesis to generate a reasonable amount of con-
sultation messages. Choosing a different threshold value, would very likely yield
different F1-scores. Additionally, since the detection method used was based on
anomaly detection, it is not clear what the results would have been if a different
detection method, such as specification-based detection, had been used instead.

The data used for the training of the models consists of 6 CSV-files of CAN-frames.
However, these files do differ in the amount of CAN-frames, as well as how many
attacks are included in each file. Since the models are trained on different files, if
one model is trained on a file with 800 000 rows and another on a file with 2000
000 rows, therefore if the data would have been assigned differently, then maybe
the outcome would also differ. Additionally, from the attacks included in the files,
only two of four attacks are suitable for anomaly-based detection. If other, from a
machine learning perspective, more easily identifiable attacks had been chosen, then
a higher F1-score would probably also have been produced. On the other hand, if
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none of the included attacks would be manageable by the anomaly-based detection
method, the simulation runs wouldn’t even be sensible to perform and would prob-
ably also produce a different result.

The anomaly-based detection method used was a simplistic DNN model. As pre-
viously stated, since the goal was not to implement a flawless IDS, the generated
results of the simulation runs might have been different if a differently designed
model had been used. To address this issue, a replication of this approach would be
advised with different intrusion detection models.

8.4.2 External validity
As previously mentioned, the packages python-can, python-isotp and python-can-
remote were used to simulate a network that operates on CAN-frames. This setup
has then been utilized to run the simulations used to validate the proposed frame-
work. One threat to validity is that the authors of this report have not seen these
packages used to any extent in other research, thus it is unclear how well these
packages have managed to implement the underlying protocols. This is unclear as
no evaluation of the underlying source code has been conducted and no compar-
isons to real-world vehicle implementations have been performed. However, given
that these packages have implemented the underlying protocols correctly and that
the authors of this report haven’t introduced bugs when using these packages to
simulate the network implementation, the difference between the implementation
used in this thesis, and a real-world setting, is deemed to only differ regarding the
performance metric of time. Based on this, the results derived from the validation
regarding processing times probably differ from a real-world setting, but perhaps it
doesn’t differ much in quota. This is something that needs to be further investi-
gated. Furthermore, the results regarding the F1-scores should not differ based on
the network implementation since the F1-scores are not dependent on transmission
times, but only on the implementation of the IDS and the data processed.

Three Raspberry PIs have been used as computing resources. How well these Rasp-
berry PIs compare to ECUs in computational performance and storage capacity,
are not known. Even though our proposed collaborative attack-detection seems to
work well based on the performed simulation runs, it could be the case that actual
ECU hardware is not able to handle the additional computing efforts or storage
requirements necessary for implementing the CIVID framework.

Additionally, when performing simulation runs, the three Raspberry PIs used have
been in very close proximity to one another and the network router. They have
also been connected to the same local network. Therefore the actual implication on
processing times in a real-world setting and how these relate to one another is not
known and should be considered as a threat to validity.

This thesis has concluded that implementing a collaborative approach to attack de-
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tection can increase the accuracy of an IDS. As already known, this conclusion is
based on the F1-scores provided by experimental simulation runs. However, the
question remains whether these F1-scores actually measures the accuracy of a real
in-vehicle IDS. From vehicle research articles presented in this thesis, the F1-score
has been identified as a commonly used metric for evaluating the accuracy of IDSs,
however, it is not clear whether this specific metric is actually used by vehicle man-
ufacturers or if some other metric is used. If some other metric is used, there is
the possibility that the conclusions drawn from the F1-scores differ from the results
obtained when using some other accuracy metric.

When validating the framework, the focus has been to validate the performance
benefits of implementing a collaborative approach compared to a baseline approach.
However, the applicability of the CIVID framework will be affected by other factors
as well. As mentioned in section 2.2, important aspects to consider when implement-
ing an IDN is how to implement trust management as well as resource management.
This thesis has shown that a collaborative approach can be beneficial in increasing
the accuracy of an in-vehicle IDS, but the question is whether this benefit is benefi-
cial enough when adding all the message-overhead needed when implementing trust
management? Will the hardware of vehicles be able to handle the added overhead
of storing messages and tables for possible collaborators? The framework has not
been validated under these constraints and will therefore need further investigation.
This will be left for future research.

8.4.3 Construct validity
Before running the 90 simulation runs, each model was randomly paired with a
dataset to be trained with and the data used as network data for each simulation
run were chosen. The random pairing was done in order to ensure comparable
groups and eliminate a source of bias when pairing the models with the data. This
process was scripted in python using randomization and some basic rules, such as
not allowing the network data to be the same as any of the current models had
been trained with. From what the authors have been able to tell from the generated
set-up, this script seems to work as expected, but there is always the possibility of a
bug being implemented either in this phase or anywhere else in the implementation
which could potentially be a threat to the validity of the results.

8.4.4 Conclusion validity
The conclusions drawn from the statistical tests are not completely clear-cut. The
decision to use a confidence level of 95 percent in all statistical tests is a potential
threat to the validity of this thesis. The foremost reason that this confidence level
has been applied is that it is a commonly used α value when dealing with frequentist
statistics. Using this α value does constitute a 5% risk of making a type 1 error,
which should be taken into consideration. However, for values close to a confidence
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level boundary, the consequences of using this α value are not always clear cut.

Additionally, in this thesis we used the outlier determination rule-of-thumb known
as Tukeys’ fences to find out whether some data points were outliers or not. Tukeys’
fences concluded that the data points were not to be considered as outliers. However,
they were very close to the boundary and could just as well have been considered to
be outliers. Therefore, concluding that there are no outliers in the data used for a
repeated measures ANOVA test, is a potential threat to the validity of the results.
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Conclusion

In this thesis, a study has been performed to explore whether or not connected
vehicles can benefit from a collaborative approach when detecting attacks. To this
end, the CIVID framework for collaborative intrusion detection in vehicle fleets
has been developed, which utilizes a consultation-based collaboration mechanism.
The CIVID framework is designed to adhere to the latest AUTOSAR standard for
in-vehicle intrusion detection, however the utilized collaborative approach is not de-
pendent on the AUTOSAR standard, but is applicable for other architectures as well.

In order to evaluate whether or not the CIVID framework can yield improve-
ments in detecting ongoing attacks against a vehicle, a prototype implementation
of the framework has been created by utilizing a machine-learning-based anomaly-
detection method.

The results obtained from the aforementioned evaluation have shown that imple-
menting the CIVID framework yields improved F1-score accuracy compared to not
implementing the framework. The observed improvements in accuracy from im-
plementing the CIVID framework with a single collaborator averages around 3.3%.
In addition, no statistically significant improvement in accuracy could be observed
when adding an additional collaboration partner. However, it is believed by the
authors of this thesis that alternative implementation decisions, such as utilizing
different detection methods or utilizing a different algorithm for processing consul-
tation responses, could likely result in even greater improvements in accuracy as
well as further improvements when additional collaborators are added.

It has also been shown that implementing the CIVID framework significantly in-
creases the time-to-detection when consultation is required. However, this increase
does not appear to scale proportionally as more collaborators are introduced, thus
it should be possible to utilize the CIVID framework with many collaborators.

In conclusion, the CIVID framework has been shown to enable improved accuracy
measures in in-vehicle intrusion detection. However, the improved accuracy mea-
sures need to be weighed against the increased time-to-detection and other added
costs of implementing the framework. Thus, it would be beneficial to conduct fur-
ther research on how to best implement the CIVID framework, as well as finding
ways to combine the CIVID framework with some of the state of the art detection
algorithms to see if even greater accuracy measures can be achieved there as well.
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9.1 Future work
Our study shows that the accuracy of vehicular IDSs can be improved by utilizing
the collaborative CIVID framework proposed in this thesis. However, the improve-
ments in accuracy measured during the evaluation phase of this thesis were marginal,
and thus it is unclear if the added value from this accuracy improvement outweighs
the potential risks and costs of implementing the CIVID framework. Additionally,
it is unknown whether or not greater improvements in accuracy could be achieved
through the CIVID framework if other implementation decisions had been made.
Thus, it is left for future research to identify whether or not other implementations
of the CIVID framework could yield further gains.

Furthermore, this study shows that the utilization of a collaborative approach in-
creases the time-to-detection of certain security events. This increased time does
not appear to scale proportionally with the number of consultation partners. How-
ever, when compared to the time required to process security events locally only, this
increase proved quite significant. Thus, future implementations of the CIVID frame-
work will need to find ways to address this issue, for instance through intermediary
action on the security events in question.
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Appendix 1

Table A.1: Simulation runs

Simulation run Mode Data Device Partner1 Partner2
1 Baseline 1 3 N/A N/A
2 Collaborative1 1 3 5 N/A
3 Collaborative2 1 3 5 6
4 Baseline 5 2 N/A N/A
5 Collaborative1 5 2 3 N/A
6 Collaborative2 5 2 3 1
7 Baseline 1 4 N/A N/A
8 Collaborative1 1 4 5 N/A
9 Collaborative2 1 4 5 6
10 Baseline 6 5 N/A N/A
11 Collaborative1 6 5 3 N/A
12 Collaborative2 6 5 3 4
13 Baseline 3 2 N/A N/A
14 Collaborative1 3 2 4 N/A
15 Collaborative2 3 2 4 6
16 Baseline 1 6 N/A N/A
17 Collaborative1 1 6 4 N/A
18 Collaborative2 1 6 4 3
19 Baseline 5 1 N/A N/A
20 Collaborative1 5 1 4 N/A
21 Collaborative2 5 1 4 3
22 Baseline 3 1 N/A N/A
23 Collaborative1 3 1 2 N/A
24 Collaborative2 3 1 2 5
25 Baseline 2 1 N/A N/A
26 Collaborative1 2 1 4 N/A
27 Collaborative2 2 1 4 5
28 Baseline 2 6 N/A N/A
29 Collaborative1 2 6 1 N/A
30 Collaborative2 2 6 1 5
31 Baseline 1 5 N/A N/A
32 Collaborative1 1 5 6 N/A
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33 Collaborative2 1 5 6 3
34 Baseline 6 2 N/A N/A
35 Collaborative1 6 2 4 N/A
36 Collaborative2 6 2 4 3
37 Baseline 4 1 N/A N/A
38 Collaborative1 4 1 6 N/A
39 Collaborative2 4 1 6 2
40 Baseline 4 2 N/A N/A
41 Collaborative1 4 2 5 N/A
42 Collaborative2 4 2 5 1
43 Baseline 6 4 N/A N/A
44 Collaborative1 6 4 3 N/A
45 Collaborative2 6 4 3 1
46 Baseline 6 1 N/A N/A
47 Collaborative1 6 1 4 N/A
48 Collaborative2 6 1 4 3
49 Baseline 3 5 N/A N/A
50 Collaborative1 3 5 1 N/A
51 Collaborative2 3 5 1 6
52 Baseline 4 5 N/A N/A
53 Collaborative1 4 5 3 N/A
54 Collaborative2 4 5 3 6
55 Baseline 3 6 N/A N/A
56 Collaborative1 3 6 5 N/A
57 Collaborative2 3 6 5 2
58 Baseline 2 4 N/A N/A
59 Collaborative1 2 4 6 N/A
60 Collaborative2 2 4 6 3
61 Baseline 1 2 N/A N/A
62 Collaborative1 1 2 6 N/A
63 Collaborative2 1 2 6 5
64 Baseline 4 3 N/A N/A
65 Collaborative1 4 3 1 N/A
66 Collaborative2 4 3 1 5
67 Baseline 6 3 N/A N/A
68 Collaborative1 6 3 4 N/A
69 Collaborative2 6 3 4 2
70 Baseline 2 3 N/A N/A
71 Collaborative1 2 3 4 N/A
72 Collaborative2 2 3 4 6
73 Baseline 2 5 N/A N/A
74 Collaborative1 2 5 3 N/A
75 Collaborative2 2 5 3 4
76 Baseline 5 4 N/A N/A
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77 Collaborative1 5 4 3 N/A
78 Collaborative2 5 4 3 6
79 Baseline 4 6 N/A N/A
80 Collaborative1 4 6 5 N/A
81 Collaborative2 4 6 5 3
82 Baseline 5 3 N/A N/A
83 Collaborative1 5 3 4 N/A
84 Collaborative2 5 3 4 2
85 Baseline 3 4 N/A N/A
86 Collaborative1 3 4 6 N/A
87 Collaborative2 3 4 6 1
88 Baseline 5 6 N/A N/A
89 Collaborative1 5 6 3 N/A
90 Collaborative2 5 6 3 1

III
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Table B.1: Results of each simulation run

Simulation run 1
Flooding Fuzzing Normal Replay Spoofing

Precision 0.9745 0.2724 0.9849 0.0000 0.0110
Recall 1.0000 0.9430 0.8033 0.0000 1.0000
F1-score 0.9871 0.4227 0.8849 0.0000 0.0217
F1-score average 0.4632642240805171
Average local time(s) 0.00924413881012882
Average consultation time(s) N/A
Total number of CAN-frames 806390
Total number of security events 207962
Consultation messages sent 0

Simulation run 2
Flooding Fuzzing Normal Replay Spoofing

Precision 0.9805 0.3947 0.9851 0.0000 0.0114
Recall 1.0000 0.9400 0.8410 0.0000 1.0000
F1-score 0.9902 0.5559 0.9074 0.0000 0.0225
F1-score average 0.49518730618379686
Average local time(s) 0.02422968879251890
Average consultation time(s) 0.12509782695955882
Total number of CAN-frames 806390
Total number of security events 207962
Consultation messages sent 31341

Simulation run 3
Flooding Fuzzing Normal Replay Spoofing

Precision 0.9805 0.4068 0.9851 0.0000 0.0114
Recall 1.0000 0.9395 0.8432 0.0000 1.0000
F1-score 0.9902 0.5677 0.9086 0.0000 0.0225
F1-score average 0.4978029830030538
Average local time(s) 0.02715964448692883
Average consultation time(s) 0.17785932701193363
Total number of CAN-frames 806390
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Total number of security events 207962
Consultation messages sent 31341

Simulation run 4
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.6058 0.9697 0.0000 0.0000
Recall 1.0000 0.9133 0.9771 0.0000 0.0000
F1-score 1.0000 0.7284 0.9734 0.0000 0.0000
F1-score average 0.5403649056584626
Average local time(s) 0.01269283785650726
Average consultation time(s) N/A
Total number of CAN-frames 1751313
Total number of security events 180334
Consultation messages sent 0

Simulation run 5
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.7177 0.9695 0.0000 0.0000
Recall 1.0000 0.9049 0.9848 0.0000 0.0000
F1-score 1.0000 0.8005 0.9771 0.0000 0.0000
F1-score average 0.5555214562925321
Average local time(s) 0.02245297089636788
Average consultation time(s) 0.14894742371576017
Total number of CAN-frames 1751313
Total number of security events 180334
Consultation messages sent 24471

Simulation run 6
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.7238 0.9695 0.0000 0.0000
Recall 1.0000 0.9061 0.9852 0.0000 0.0000
F1-score 1.0000 0.8048 0.9773 0.0000 0.0000
F1-score average 0.5564089183097984
Average local time(s) 0.02322356693386549
Average consultation time(s) 0.1941606768316235
Total number of CAN-frames 1751313
Total number of security events 180334
Consultation messages sent 24471

Simulation run 7
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.1931 0.9838 0.0000 0.6800
Recall 1.0000 0.9664 0.8758 0.0000 1.0000
F1-score 1.0000 0.3219 0.9267 0.0000 0.8095
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F1-score average 0.611609252384845
Average local time(s) 0.01028034987697497
Average consultation time(s) N/A
Total number of CAN-frames 806390
Total number of security events 153199
Consultation messages sent 0

Simulation run 8
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.2326 0.9838 0.0000 0.7737
Recall 1.0000 0.9629 0.9023 0.0000 1.0000
F1-score 1.0000 0.3747 0.9413 0.0000 0.8724
F1-score average 0.6376758107221018
Average local time(s) 0.02891414778971760
Average consultation time(s) 0.1348762946569698
Total number of CAN-frames 806390
Total number of security events 153199
Consultation messages sent 30491

Simulation run 9
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.2447 0.9839 0.0000 0.7737
Recall 1.0000 0.9614 0.9087 0.0000 1.0000
F1-score 1.0000 0.3900 0.9448 0.0000 0.8724
F1-score average 0.6414492867367638
Average local time(s) 0.02907465045904520
Average consultation time(s) 0.15621831090158392
Total number of CAN-frames 806390
Total number of security events 153199
Consultation messages sent 30491

Simulation run 10
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.1918 0.9776 0.0000 0.8049
Recall 1.0000 0.9673 0.8968 0.0000 1.0000
F1-score 1.0000 0.3201 0.9355 0.0000 0.8919
F1-score average 0.6295004383722211
Average local time(s) 0.01051485650591716
Average consultation time(s) N/A
Total number of CAN-frames 2000733
Total number of security events 350262
Consultation messages sent 0

Simulation run 11
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Flooding Fuzzing Normal Replay Spoofing
Precision 1.0000 0.2122 0.9775 0.0000 0.7790
Recall 1.0000 0.9639 0.9085 0.0000 1.0000
F1-score 1.0000 0.3479 0.9417 0.0000 0.8758
F1-score average 0.6330647439953994
Average local time(s) 0.01792383643000037
Average consultation time(s) 0.1168857001649193
Total number of CAN-frames 2000733
Total number of security events 350262
Consultation messages sent 28339

Simulation run 12
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.2130 0.9775 0.0000 0.7813
Recall 1.0000 0.9639 0.9089 0.0000 1.0000
F1-score 1.0000 0.3489 0.9420 0.0000 0.8772
F1-score average 0.6336254737921314
Average local time(s) 0.01800044240286858
Average consultation time(s) 0.13191625237267196
Total number of CAN-frames 2000733
Total number of security events 350262
Consultation messages sent 28339

Simulation run 13
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.2965 0.9833 0.0000 0.3800
Recall 1.0000 0.9154 0.9336 0.0000 1.0000
F1-score 1.0000 0.4479 0.9578 0.0000 0.5507
F1-score average 0.5912906152742234
Average local time(s) 0.01138513168497635
Average consultation time(s) N/A
Total number of CAN-frames 799292
Total number of security events 108292
Consultation messages sent 0

Simulation run 14
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.3419 0.9831 0.0000 0.3837
Recall 1.0000 0.9112 0.9460 0.0000 1.0000
F1-score 1.0000 0.4972 0.9642 0.0000 0.5546
F1-score average 0.6031986590261011
Average local time(s) 0.03525482519863726
Average consultation time(s) 0.1874087551690297
Total number of CAN-frames 799292
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Total number of security events 108292
Consultation messages sent 43659

Simulation run 15
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.4791 0.9835 0.0000 0.3840
Recall 1.0000 0.9109 0.9690 0.0000 1.0000
F1-score 1.0000 0.6280 0.9762 0.0000 0.5549
F1-score average 0.6318140159755838
Average local time(s) 0.03519608717974126
Average consultation time(s) 0.24761949069020664
Total number of CAN-frames 799292
Total number of security events 108292
Consultation messages sent 43659

Simulation run 16
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.5815 0.9839 0.0000 0.0000
Recall 1.0000 0.9515 0.9784 0.0000 0.0000
F1-score 1.0000 0.7218 0.9811 0.0000 0.0000
F1-score average 0.5405901858681553
Average local time(s) 0.01296681092699768
Average consultation time(s) N/A
Total number of CAN-frames 806390
Total number of security events 76756
Consultation messages sent 0

Simulation run 17
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.6008 0.9837 0.0000 0.0000
Recall 1.0000 0.9482 0.9799 0.0000 0.0000
F1-score 1.0000 0.7356 0.9818 0.0000 0.0000
F1-score average 0.5434744621168063
Average local time(s) 0.01949592119582156
Average consultation time(s) 0.13201598918346494
Total number of CAN-frames 806390
Total number of security events 76756
Consultation messages sent 6256

Simulation run 18
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.6131 0.9837 0.0000 0.0000
Recall 1.0000 0.9469 0.9808 0.0000 0.0000
F1-score 1.0000 0.7443 0.9822 0.0000 0.0000
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F1-score average 0.5453048605054158
Average local time(s) 0.01933875602356931
Average consultation time(s) 0.14563795249632863
Total number of CAN-frames 806390
Total number of security events 76756
Consultation messages sent 6256

Simulation run 19
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.6649 0.9706 0.0000 0.0000
Recall 1.0000 0.9374 0.9712 0.0000 0.0000
F1-score 1.0000 0.7780 0.9709 0.0000 0.0000
F1-score average 0.5497778046589369
Average local time(s) 0.01239404026101591
Average consultation time(s) N/A
Total number of CAN-frames 1751313
Total number of security events 191234
Consultation messages sent 0

Simulation run 20
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.7821 0.9702 0.0000 0.0000
Recall 1.0000 0.9319 0.9782 0.0000 0.0000
F1-score 1.0000 0.8505 0.9742 0.0000 0.0000
F1-score average 0.5649244731880099
Average local time(s) 0.02267848227725682
Average consultation time(s) 0.15100586334997237
Total number of CAN-frames 1751313
Total number of security events 191234
Consultation messages sent 28097

Simulation run 21
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.8213 0.9703 0.0000 0.0000
Recall 1.0000 0.9301 0.9801 0.0000 0.0000
F1-score 1.0000 0.8723 0.9752 0.0000 0.0000
F1-score average 0.5694974719317341
Average local time(s) 0.02246912009309587
Average consultation time(s) 0.17421387636683167
Total number of CAN-frames 1751313
Total number of security events 191234
Consultation messages sent 28097

Simulation run 22

X



B. Appendix 2

Flooding Fuzzing Normal Replay Spoofing
Precision 1.0000 0.5765 0.9851 0.0000 0.3509
Recall 1.0000 0.9385 0.9783 0.0000 1.0000
F1-score 1.0000 0.7143 0.9817 0.0000 0.5195
F1-score average 0.6430809696594382
Average local time(s) 0.01275120077003419
Average consultation time(s) N/A
Total number of CAN-frames 799292
Total number of security events 76582
Consultation messages sent 0

Simulation run 23
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.7678 0.9848 0.0000 0.3522
Recall 1.0000 0.9274 0.9904 0.0000 1.0000
F1-score 1.0000 0.8401 0.9876 0.0000 0.5210
F1-score average 0.669722599955785
Average local time(s) 0.02340435794868040
Average consultation time(s) 0.17431849472723393
Total number of CAN-frames 799292
Total number of security events 76582
Consultation messages sent 15090

Simulation run 24
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.7842 0.9849 0.0000 0.3526
Recall 1.0000 0.9325 0.9911 0.0000 1.0000
F1-score 1.0000 0.8520 0.9880 0.0000 0.5214
F1-score average 0.672263213415282
Average local time(s) 0.02304780522405865
Average consultation time(s) 0.20697769298705146
Total number of CAN-frames 799292
Total number of security events 76582
Consultation messages sent 15090

Simulation run 25
Flooding Fuzzing Normal Replay Spoofing

Precision 0.9994 0.4273 0.9829 0.0000 0.1701
Recall 1.0000 0.9351 0.9490 0.0000 1.0000
F1-score 0.9997 0.5865 0.9656 0.0000 0.2908
F1-score average 0.5685306979723106
Average local time(s) 0.01188307035534849
Average consultation time(s) N/A
Total number of CAN-frames 889395
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Total number of security events 105883
Consultation messages sent 0

Simulation run 26
Flooding Fuzzing Normal Replay Spoofing

Precision 0.9996 0.4979 0.9823 0.0000 0.1917
Recall 1.0000 0.9289 0.9597 0.0000 1.0000
F1-score 0.9998 0.6483 0.9709 0.0000 0.3218
F1-score average 0.5881509643801524
Average local time(s) 0.02869033111675804
Average consultation time(s) 0.15312072131383783
Total number of CAN-frames 889395
Total number of security events 105883
Consultation messages sent 22175

Simulation run 27
Flooding Fuzzing Normal Replay Spoofing

Precision 0.9996 0.5670 0.9825 0.0000 0.1920
Recall 1.0000 0.9314 0.9660 0.0000 1.0000
F1-score 0.9998 0.7049 0.9742 0.0000 0.3221
F1-score average 0.6001979079730219
Average local time(s) 0.02841550306588697
Average consultation time(s) 0.1787600277402893
Total number of CAN-frames 889395
Total number of security events 105883
Consultation messages sent 22175

Simulation run 28
Flooding Fuzzing Normal Replay Spoofing

Precision 0.9999 0.5632 0.9799 0.0000 0.0000
Recall 1.0000 0.9503 0.9767 0.0000 0.0000
F1-score 1.0000 0.7072 0.9783 0.0000 0.0000
F1-score average 0.5370897234921677
Average local time(s) 0.01328485558534588
Average consultation time(s) N/A
Total number of CAN-frames 889395
Total number of security events 80533
Consultation messages sent 0

Simulation run 29
Flooding Fuzzing Normal Replay Spoofing

Precision 0.9999 0.5841 0.9796 0.0000 0.0000
Recall 1.0000 0.9411 0.9785 0.0000 0.0000
F1-score 1.0000 0.7208 0.9791 0.0000 0.0000
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F1-score average 0.5399721247890498
Average local time(s) 0.02031302319711752
Average consultation time(s) 0.13343317589570314
Total number of CAN-frames 889395
Total number of security events 80533
Consultation messages sent 6869

Simulation run 30
Flooding Fuzzing Normal Replay Spoofing

Precision 0.9999 0.5858 0.9797 0.0000 0.0000
Recall 1.0000 0.9455 0.9786 0.0000 0.0000
F1-score 1.0000 0.7234 0.9792 0.0000 0.0000
F1-score average 0.5405029986484851
Average local time(s) 0.02015493282939847
Average consultation time(s) 0.14404288742597454
Total number of CAN-frames 889395
Total number of security events 80533
Consultation messages sent 6869

Simulation run 31
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.2413 0.9827 0.0000 0.0000
Recall 1.0000 0.9673 0.9050 0.0000 0.0000
F1-score 1.0000 0.3862 0.9423 0.0000 0.0000
F1-score average 0.4656948381698919
Average local time(s) 0.01075891183010454
Average consultation time(s) N/A
Total number of CAN-frames 806390
Total number of security events 130652
Consultation messages sent 0

Simulation run 32
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.2663 0.9827 0.0000 0.0000
Recall 1.0000 0.9629 0.9169 0.0000 0.0000
F1-score 1.0000 0.4172 0.9486 0.0000 0.0000
F1-score average 0.4731613501119729
Average local time(s) 0.02012780384547831
Average consultation time(s) 0.11802650368760892
Total number of CAN-frames 806390
Total number of security events 130652
Consultation messages sent 12896

Simulation run 33
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Flooding Fuzzing Normal Replay Spoofing
Precision 1.0000 0.2700 0.9827 0.0000 0.0000
Recall 1.0000 0.9634 0.9180 0.0000 0.0000
F1-score 1.0000 0.4218 0.9493 0.0000 0.0000
F1-score average 0.4742188375753115
Average local time(s) 0.01998012149668836
Average consultation time(s) 0.12945322137760465
Total number of CAN-frames 806390
Total number of security events 130652
Consultation messages sent 12896

Simulation run 34
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.2385 0.9647 0.0000 0.0000
Recall 1.0000 0.9156 0.9265 0.0000 0.0000
F1-score 1.0000 0.3785 0.9452 0.0000 0.0000
F1-score average 0.46473646798932117
Average local time(s) 0.01149169180056112
Average consultation time(s) N/A
Total number of CAN-frames 2000733
Total number of security events 272991
Consultation messages sent 0

Simulation run 35
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.2672 0.9648 0.0000 0.0000
Recall 1.0000 0.9104 0.9370 0.0000 0.0000
F1-score 1.0000 0.4132 0.9507 0.0000 0.0000
F1-score average 0.47276312564914297
Average local time(s) 0.03768504468279315
Average consultation time(s) 0.1829225367339803
Total number of CAN-frames 2000733
Total number of security events 272990
Consultation messages sent 104596

Simulation run 36
Flooding Fuzzing Normal Replay Spoofing

Precision 0.9999 0.3043 0.9651 0.0000 0.0000
Recall 1.0000 0.9090 0.9474 0.0000 0.0000
F1-score 1.0000 0.4560 0.9561 0.0000 0.0000
F1-score average 0.48241933025973305
Average local time(s) 0.03738557330610345
Average consultation time(s) 0.2377954632563837
Total number of CAN-frames 2000733
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Total number of security events 272989
Consultation messages sent 104595

Simulation run 37
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.3351 0.9811 0.0000 0.2152
Recall 1.0000 0.9397 0.9308 0.0000 1.0000
F1-score 1.0000 0.4941 0.9553 0.0000 0.3542
F1-score average 0.5606952135328033
Average local time(s) 0.01122287994840310
Average consultation time(s) N/A
Total number of CAN-frames 817042
Total number of security events 115242
Consultation messages sent 0

Simulation run 38
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.3856 0.9808 0.0000 0.2167
Recall 1.0000 0.9330 0.9422 0.0000 1.0000
F1-score 1.0000 0.5457 0.9611 0.0000 0.3562
F1-score average 0.5726028396273561
Average local time(s) 0.03157324821573743
Average consultation time(s) 0.1522965395519949
Total number of CAN-frames 817042
Total number of security events 115242
Consultation messages sent 28188

Simulation run 39
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.3744 0.9807 0.0000 0.2166
Recall 1.0000 0.9303 0.9402 0.0000 1.0000
F1-score 1.0000 0.5340 0.9600 0.0000 0.3561
F1-score average 0.5700205868365913
Average local time(s) 0.03134830780146734
Average consultation time(s) 0.18166102649337673
Total number of CAN-frames 817042
Total number of security events 115242
Consultation messages sent 28188

Simulation run 40
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.2997 0.9799 0.0000 0.4636
Recall 1.0000 0.9180 0.9316 0.0000 1.0000
F1-score 1.0000 0.4519 0.9551 0.0000 0.6336
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F1-score average 0.6081124947063008
Average local time(s) 0.01127589320044494
Average consultation time(s) N/A
Total number of CAN-frames 817042
Total number of security events 113884
Consultation messages sent 0

Simulation run 41
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.3273 0.9798 0.0000 0.5405
Recall 1.0000 0.9118 0.9409 0.0000 1.0000
F1-score 1.0000 0.4817 0.9599 0.0000 0.7017
F1-score average 0.628672971724123
Average local time(s) 0.02439368822560710
Average consultation time(s) 0.12486498998532236
Total number of CAN-frames 817042
Total number of security events 113884
Consultation messages sent 15470

Simulation run 42
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.3452 0.9798 0.0000 0.5405
Recall 1.0000 0.9117 0.9452 0.0000 1.0000
F1-score 1.0000 0.5008 0.9622 0.0000 0.7017
F1-score average 0.6329403472802897
Average local time(s) 0.02427980572855567
Average consultation time(s) 0.1414569181400341
Total number of CAN-frames 817042
Total number of security events 113884
Consultation messages sent 15470

Simulation run 43
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.1663 0.9644 0.0000 0.0000
Recall 1.0000 0.9661 0.8812 0.0000 0.0000
F1-score 1.0000 0.2837 0.9209 0.0000 0.0000
F1-score average 0.44093511994260454
Average local time(s) 0.01052775516929245
Average consultation time(s) N/A
Total number of CAN-frames 2000733
Total number of security events 356915
Consultation messages sent 0

Simulation run 44
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Flooding Fuzzing Normal Replay Spoofing
Precision 0.9987 0.2089 0.9649 0.0000 0.0000
Recall 1.0000 0.9592 0.9106 0.0000 0.0000
F1-score 0.9994 0.3430 0.9370 0.0000 0.0000
F1-score average 0.4558769171958651
Average local time(s) 0.02998754099933197
Average consultation time(s) 0.14023613173707833
Total number of CAN-frames 2000733
Total number of security events 356913
Consultation messages sent 74013

Simulation run 45
Flooding Fuzzing Normal Replay Spoofing

Precision 0.9991 0.2218 0.9650 0.0000 0.0000
Recall 1.0000 0.9591 0.9172 0.0000 0.0000
F1-score 0.9995 0.3603 0.9405 0.0000 0.0000
F1-score average 0.46007841529413085
Average local time(s) 0.02992565699742371
Average consultation time(s) 0.15940093272548406
Total number of CAN-frames 2000733
Total number of security events 356914
Consultation messages sent 74012

Simulation run 46
Flooding Fuzzing Normal Replay Spoofing

Precision 0.9995 0.4099 0.9669 0.0000 0.0000
Recall 1.0000 0.9364 0.9637 0.0000 0.0000
F1-score 0.9998 0.5702 0.9653 0.0000 0.0000
F1-score average 0.5070570849234042
Average local time(s) 0.01279946520011168
Average consultation time(s) N/A
Total number of CAN-frames 2000733
Total number of security events 207546
Consultation messages sent 0

Simulation run 47
Flooding Fuzzing Normal Replay Spoofing

Precision 0.9996 0.4855 0.9666 0.0000 0.0000
Recall 1.0000 0.9310 0.9737 0.0000 0.0000
F1-score 0.9998 0.6382 0.9701 0.0000 0.0000
F1-score average 0.5216236624847614
Average local time(s) 0.02674672122280557
Average consultation time(s) 0.1676054527258302
Total number of CAN-frames 2000733
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Total number of security events 207544
Consultation messages sent 43127

Simulation run 48
Flooding Fuzzing Normal Replay Spoofing

Precision 0.9996 0.5429 0.9668 0.0000 0.0000
Recall 1.0000 0.9291 0.9781 0.0000 0.0000
F1-score 0.9998 0.6853 0.9724 0.0000 0.0000
F1-score average 0.5315017741514232
Average local time(s) 0.02624313487719361
Average consultation time(s) 0.19111344604059655
Total number of CAN-frames 2000733
Total number of security events 207545
Consultation messages sent 43127

Simulation run 49
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.2640 0.9829 0.0000 0.0000
Recall 1.0000 0.9683 0.9180 0.0000 0.0000
F1-score 1.0000 0.4149 0.9493 0.0000 0.0000
F1-score average 0.47284487467968805
Average local time(s) 0.01103758130640841
Average consultation time(s) N/A
Total number of CAN-frames 799292
Total number of security events 119610
Consultation messages sent 0

Simulation run 50
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.2965 0.9828 0.0000 0.0000
Recall 1.0000 0.9635 0.9302 0.0000 0.0000
F1-score 1.0000 0.4534 0.9558 0.0000 0.0000
F1-score average 0.4818438923656969
Average local time(s) 0.02224680805400842
Average consultation time(s) 0.12417991897588011
Total number of CAN-frames 799292
Total number of security events 119610
Consultation messages sent 13724

Simulation run 51
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.3016 0.9828 0.0000 0.0000
Recall 1.0000 0.9628 0.9319 0.0000 0.0000
F1-score 1.0000 0.4594 0.9567 0.0000 0.0000
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F1-score average 0.48320960150380865
Average local time(s) 0.02213600945572240
Average consultation time(s) 0.1410630242673762
Total number of CAN-frames 799292
Total number of security events 119610
Consultation messages sent 13724

Simulation run 52
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.5891 0.9781 0.0000 0.0000
Recall 1.0000 0.9693 0.9757 0.0000 0.0000
F1-score 1.0000 0.7329 0.9769 0.0000 0.0000
F1-score average 0.5419479997470582
Average local time(s) 0.01270618425773808
Average consultation time(s) N/A
Total number of CAN-frames 817042
Total number of security events 79185
Consultation messages sent 0

Simulation run 53
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.7184 0.9780 0.0000 0.0000
Recall 1.0000 0.9665 0.9844 0.0000 0.0000
F1-score 1.0000 0.8242 0.9812 0.0000 0.0000
F1-score average 0.5610752362761042
Average local time(s) 0.02061397127532327
Average consultation time(s) 0.15747332546820397
Total number of CAN-frames 817042
Total number of security events 79185
Consultation messages sent 9129

Simulation run 54
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.7228 0.9779 0.0000 0.0000
Recall 1.0000 0.9652 0.9847 0.0000 0.0000
F1-score 1.0000 0.8266 0.9813 0.0000 0.0000
F1-score average 0.5615859693428462
Average local time(s) 0.02029755559089563
Average consultation time(s) 0.18277092311139148
Total number of CAN-frames 817042
Total number of security events 79185
Consultation messages sent 9129

Simulation run 55
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Flooding Fuzzing Normal Replay Spoofing
Precision 1.0000 0.6344 0.9839 0.0000 0.0000
Recall 1.0000 0.9521 0.9830 0.0000 0.0000
F1-score 1.0000 0.7615 0.9834 0.0000 0.0000
F1-score average 0.5489794444528007
Average local time(s) 0.01320500561442549
Average consultation time(s) N/A
Total number of CAN-frames 799292
Total number of security events 72211
Consultation messages sent 0

Simulation run 56
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.8115 0.9839 0.0000 0.0000
Recall 1.0000 0.9479 0.9928 0.0000 0.0000
F1-score 1.0000 0.8744 0.9883 0.0000 0.0000
F1-score average 0.5725456548698753
Average local time(s) 0.02088532523344809
Average consultation time(s) 0.16259432618608946
Total number of CAN-frames 799292
Total number of security events 72211
Consultation messages sent 9205

Simulation run 57
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.8018 0.9839 0.0000 0.0000
Recall 1.0000 0.9473 0.9924 0.0000 0.0000
F1-score 1.0000 0.8685 0.9881 0.0000 0.0000
F1-score average 0.5713283301234593
Average local time(s) 0.02061403540888654
Average consultation time(s) 0.19136733757549496
Total number of CAN-frames 799292
Total number of security events 72211
Consultation messages sent 9205

Simulation run 58
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.2542 0.9827 0.0000 0.8863
Recall 1.0000 0.9646 0.9210 0.0000 1.0000
F1-score 1.0000 0.4024 0.9508 0.0000 0.9397
F1-score average 0.6585852937026102
Average local time(s) 0.01121088262143662
Average consultation time(s) N/A
Total number of CAN-frames 889395
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Total number of security events 128821
Consultation messages sent 0

Simulation run 59
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.3407 0.9826 0.0000 0.9278
Recall 1.0000 0.9593 0.9482 0.0000 1.0000
F1-score 1.0000 0.5029 0.9651 0.0000 0.9625
F1-score average 0.6860918087155801
Average local time(s) 0.02874992386869768
Average consultation time(s) 0.14243647631099784
Total number of CAN-frames 889395
Total number of security events 128821
Consultation messages sent 26032

Simulation run 60
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.3456 0.9826 0.0000 0.8617
Recall 1.0000 0.9595 0.9489 0.0000 1.0000
F1-score 1.0000 0.5082 0.9655 0.0000 0.9257
F1-score average 0.6798782952473199
Average local time(s) 0.02865986921500828
Average consultation time(s) 0.16373201245791208
Total number of CAN-frames 889395
Total number of security events 128821
Consultation messages sent 26032

Simulation run 61
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.2635 0.9830 0.0000 0.3361
Recall 1.0000 0.9141 0.9197 0.0000 1.0000
F1-score 1.0000 0.4090 0.9503 0.0000 0.5031
F1-score average 0.5724729581024459
Average local time(s) 0.01108266144745935
Average consultation time(s) N/A
Total number of CAN-frames 806390
Total number of security events 119946
Consultation messages sent 0

Simulation run 62
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.5244 0.9836 0.0000 0.3504
Recall 1.0000 0.9065 0.9731 0.0000 1.0000
F1-score 1.0000 0.6644 0.9783 0.0000 0.5189
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F1-score average 0.6323256286040959
Average local time(s) 0.03865799916539484
Average consultation time(s) 0.17935920611537934
Total number of CAN-frames 806390
Total number of security events 119946
Consultation messages sent 46933

Simulation run 63
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.3180 0.9830 0.0000 0.3505
Recall 1.0000 0.9070 0.9385 0.0000 1.0000
F1-score 1.0000 0.4709 0.9602 0.0000 0.5190
F1-score average 0.5900404918491323
Average local time(s) 0.03838480249856085
Average consultation time(s) 0.22142436434107926
Total number of CAN-frames 806390
Total number of security events 119946
Consultation messages sent 46933

Simulation run 64
Flooding Fuzzing Normal Replay Spoofing

Precision 0.9957 0.2265 0.9815 0.0000 0.0311
Recall 1.0000 0.9457 0.7844 0.0000 1.0000
F1-score 0.9978 0.3654 0.8719 0.0000 0.0603
F1-score average 0.4590997718962645
Average local time(s) 0.00907380395375699
Average consultation time(s) N/A
Total number of CAN-frames 817042
Total number of security events 225855
Consultation messages sent 0

Simulation run 65
Flooding Fuzzing Normal Replay Spoofing

Precision 0.9964 0.2445 0.9810 0.0000 0.0311
Recall 1.0000 0.9410 0.7940 0.0000 1.0000
F1-score 0.9982 0.3882 0.8777 0.0000 0.0603
F1-score average 0.46488099573725855
Average local time(s) 0.01296815704643392
Average consultation time(s) 0.10321753614773922
Total number of CAN-frames 817042
Total number of security events 225855
Consultation messages sent 9420

Simulation run 66
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Flooding Fuzzing Normal Replay Spoofing
Precision 0.9964 0.2477 0.9811 0.0000 0.0311
Recall 1.0000 0.9422 0.7954 0.0000 1.0000
F1-score 0.9982 0.3922 0.8785 0.0000 0.0604
F1-score average 0.4658721544037692
Average local time(s) 0.01300273314581389
Average consultation time(s) 0.11433701381055666
Total number of CAN-frames 817042
Total number of security events 225855
Consultation messages sent 9420

Simulation run 67
Flooding Fuzzing Normal Replay Spoofing

Precision 0.9737 0.2244 0.9696 0.0000 0.0322
Recall 1.0000 0.9437 0.8024 0.0000 0.3217
F1-score 0.9867 0.3625 0.8781 0.0000 0.0586
F1-score average 0.4571818731623981
Average local time(s) 0.00926444469179732
Average consultation time(s) N/A
Total number of CAN-frames 2000733
Total number of security events 511897
Consultation messages sent 0

Simulation run 68
Flooding Fuzzing Normal Replay Spoofing

Precision 0.9810 0.2993 0.9701 0.0000 0.0332
Recall 1.0000 0.9399 0.8324 0.0000 0.3217
F1-score 0.9904 0.4540 0.8960 0.0000 0.0602
F1-score average 0.4801101613293661
Average local time(s) 0.02457990077196037
Average consultation time(s) 0.12626114170728656
Total number of CAN-frames 2000733
Total number of security events 511896
Consultation messages sent 80120

Simulation run 69
Flooding Fuzzing Normal Replay Spoofing

Precision 0.9810 0.3199 0.9701 0.0000 0.0332
Recall 1.0000 0.9385 0.8375 0.0000 0.3217
F1-score 0.9904 0.4771 0.8989 0.0000 0.0602
F1-score average 0.4853384832832968
Average local time(s) 0.02445319888792081
Average consultation time(s) 0.1407474543045195
Total number of CAN-frames 2000733
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Total number of security events 511896
Consultation messages sent 80119

Simulation run 70
Flooding Fuzzing Normal Replay Spoofing

Precision 0.9480 0.1997 0.9827 0.0000 0.0276
Recall 1.0000 0.9434 0.7698 0.0000 1.0000
F1-score 0.9733 0.3297 0.8633 0.0000 0.0537
F1-score average 0.44399609167496423
Average local time(s) 0.00900703845882573
Average consultation time(s) N/A
Total number of CAN-frames 889395
Total number of security events 253698
Consultation messages sent 0

Simulation run 71
Flooding Fuzzing Normal Replay Spoofing

Precision 0.9631 0.2417 0.9828 0.0000 0.0278
Recall 1.0000 0.9396 0.7949 0.0000 1.0000
F1-score 0.9812 0.3844 0.8789 0.0000 0.0542
F1-score average 0.4597435013243105
Average local time(s) 0.02127223472596935
Average consultation time(s) 0.1206767295378248
Total number of CAN-frames 889395
Total number of security events 253698
Consultation messages sent 31928

Simulation run 72
Flooding Fuzzing Normal Replay Spoofing

Precision 0.9631 0.2664 0.9829 0.0000 0.0278
Recall 1.0000 0.9394 0.8050 0.0000 1.0000
F1-score 0.9812 0.4151 0.8851 0.0000 0.0542
F1-score average 0.4671189126956188
Average local time(s) 0.02120892985000297
Average consultation time(s) 0.13202957308283428
Total number of CAN-frames 889395
Total number of security events 253698
Consultation messages sent 31928

Simulation run 73
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.3669 0.9794 0.0000 0.0000
Recall 1.0000 0.9669 0.9498 0.0000 0.0000
F1-score 1.0000 0.5319 0.9644 0.0000 0.0000

XXIV



B. Appendix 2

F1-score average 0.49925697862518426
Average local time(s) 0.01199094708738224
Average consultation time(s) N/A
Total number of CAN-frames 889395
Total number of security events 102384
Consultation messages sent 0

Simulation run 74
Flooding Fuzzing Normal Replay Spoofing

Precision 0.9999 0.4295 0.9793 0.0000 0.0000
Recall 1.0000 0.9640 0.9602 0.0000 0.0000
F1-score 1.0000 0.5943 0.9697 0.0000 0.0000
F1-score average 0.5127828595173121
Average local time(s) 0.02270185109935061
Average consultation time(s) 0.13490751541744234
Total number of CAN-frames 889395
Total number of security events 102384
Consultation messages sent 12566

Simulation run 75
Flooding Fuzzing Normal Replay Spoofing

Precision 0.9999 0.4298 0.9794 0.0000 0.0000
Recall 1.0000 0.9641 0.9603 0.0000 0.0000
F1-score 1.0000 0.5946 0.9697 0.0000 0.0000
F1-score average 0.512852615560583
Average local time(s) 0.02249040781274375
Average consultation time(s) 0.14737918005804718
Total number of CAN-frames 889395
Total number of security events 102384
Consultation messages sent 12566

Simulation run 76
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.5883 0.9714 0.0000 0.0000
Recall 1.0000 0.9656 0.9779 0.0000 0.0000
F1-score 1.0000 0.7311 0.9747 0.0000 0.0000
F1-score average 0.5411571133525003
Average local time(s) 0.01281932621653754
Average consultation time(s) N/A
Total number of CAN-frames 1751313
Total number of security events 181614
Consultation messages sent 0

Simulation run 77
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Flooding Fuzzing Normal Replay Spoofing
Precision 1.0000 0.7805 0.9712 0.0000 0.0000
Recall 1.0000 0.9591 0.9911 0.0000 0.0000
F1-score 1.0000 0.8606 0.9810 0.0000 0.0000
F1-score average 0.5683364000548614
Average local time(s) 0.02091047717288571
Average consultation time(s) 0.17159639621317987
Total number of CAN-frames 1751313
Total number of security events 181614
Consultation messages sent 26992

Simulation run 78
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.7934 0.9712 0.0000 0.0000
Recall 1.0000 0.9596 0.9917 0.0000 0.0000
F1-score 1.0000 0.8686 0.9813 0.0000 0.0000
F1-score average 0.569993276727365
Average local time(s) 0.02057189805622596
Average consultation time(s) 0.20402609196087984
Total number of CAN-frames 1751313
Total number of security events 181614
Consultation messages sent 26992

Simulation run 79
Flooding Fuzzing Normal Replay Spoofing

Precision 0.9999 0.3434 0.9772 0.0000 0.0000
Recall 1.0000 0.9510 0.9412 0.0000 0.0000
F1-score 1.0000 0.5046 0.9589 0.0000 0.0000
F1-score average 0.4926920217606742
Average local time(s) 0.01167097021042733
Average consultation time(s) N/A
Total number of CAN-frames 817042
Total number of security events 104573
Consultation messages sent 0

Simulation run 80
Flooding Fuzzing Normal Replay Spoofing

Precision 0.9999 0.3996 0.9773 0.0000 0.0000
Recall 1.0000 0.9472 0.9532 0.0000 0.0000
F1-score 1.0000 0.5621 0.9651 0.0000 0.0000
F1-score average 0.5054307193365066
Average local time(s) 0.02193113432495054
Average consultation time(s) 0.11076986213530864
Total number of CAN-frames 817042
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Total number of security events 104573
Consultation messages sent 10407

Simulation run 81
Flooding Fuzzing Normal Replay Spoofing

Precision 0.9999 0.4004 0.9773 0.0000 0.0000
Recall 1.0000 0.9478 0.9533 0.0000 0.0000
F1-score 1.0000 0.5630 0.9651 0.0000 0.0000
F1-score average 0.5056057216924295
Average local time(s) 0.02191854739071162
Average consultation time(s) 0.12338044683035437
Total number of CAN-frames 817042
Total number of security events 104573
Consultation messages sent 10407

Simulation run 82
Flooding Fuzzing Normal Replay Spoofing

Precision 0.9850 0.3317 0.9732 0.0000 0.0312
Recall 1.0000 0.9439 0.8177 0.0000 0.3062
F1-score 0.9924 0.4909 0.8887 0.0000 0.0567
F1-score average 0.4857537666996848
Average local time(s) 0.00931420431380791
Average consultation time(s) N/A
Total number of CAN-frames 1751313
Total number of security events 441293
Consultation messages sent 0

Simulation run 83
Flooding Fuzzing Normal Replay Spoofing

Precision 0.9863 0.3776 0.9731 0.0000 0.0315
Recall 1.0000 0.9403 0.8301 0.0000 0.3062
F1-score 0.9931 0.5388 0.8959 0.0000 0.0571
F1-score average 0.4969858011277147
Average local time(s) 0.01480238286663409
Average consultation time(s) 0.10824584629193988
Total number of CAN-frames 1751313
Total number of security events 441293
Consultation messages sent 25657

Simulation run 84
Flooding Fuzzing Normal Replay Spoofing

Precision 0.9863 0.3761 0.9730 0.0000 0.0315
Recall 1.0000 0.9392 0.8298 0.0000 0.3062
F1-score 0.9931 0.5371 0.8957 0.0000 0.0571

XXVII



B. Appendix 2

F1-score average 0.496582074073548
Average local time(s) 0.01475588529714444
Average consultation time(s) 0.11903079099581183
Total number of CAN-frames 1751313
Total number of security events 441294
Consultation messages sent 25657

Simulation run 85
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.2531 0.9845 0.0000 0.9677
Recall 1.0000 0.9686 0.9150 0.0000 1.0000
F1-score 1.0000 0.4014 0.9485 0.0000 0.9836
F1-score average 0.6666805094051171
Average local time(s) 0.01104313598860028
Average consultation time(s) N/A
Total number of CAN-frames 799292
Total number of security events 122895
Consultation messages sent 0

Simulation run 86
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.3226 0.9843 0.0000 0.9782
Recall 1.0000 0.9628 0.9398 0.0000 1.0000
F1-score 1.0000 0.4833 0.9616 0.0000 0.9890
F1-score average 0.6867787984075168
Average local time(s) 0.02719627027846706
Average consultation time(s) 0.13694631473029373
Total number of CAN-frames 799292
Total number of security events 122895
Consultation messages sent 21753

Simulation run 87
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.3226 0.9843 0.0000 0.9782
Recall 1.0000 0.9623 0.9398 0.0000 1.0000
F1-score 1.0000 0.4832 0.9616 0.0000 0.9890
F1-score average 0.686746536090552
Average local time(s) 0.02701090538457659
Average consultation time(s) 0.15197091230177548
Total number of CAN-frames 799292
Total number of security events 122895
Consultation messages sent 21753

Simulation run 88
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Flooding Fuzzing Normal Replay Spoofing
Precision 1.0000 0.6549 0.9834 0.0000 0.7734
Recall 1.0000 0.9506 0.9807 0.0000 1.0000
F1-score 1.0000 0.7755 0.9821 0.0000 0.8722
F1-score average 0.725958373763487
Average local time(s) 0.01239648328296182
Average consultation time(s) N/A
Total number of CAN-frames 1751313
Total number of security events 196471
Consultation messages sent 0

Simulation run 89
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.9102 0.9833 0.0000 0.7725
Recall 1.0000 0.9440 0.9942 0.0000 1.0000
F1-score 1.0000 0.9268 0.9887 0.0000 0.8717
F1-score average 0.7574392245255972
Average local time(s) 0.02038490765084561
Average consultation time(s) 0.16132129927770034
Total number of CAN-frames 1751313
Total number of security events 196471
Consultation messages sent 26713

Simulation run 90
Flooding Fuzzing Normal Replay Spoofing

Precision 1.0000 0.9166 0.9834 0.0000 0.7726
Recall 1.0000 0.9442 0.9944 0.0000 1.0000
F1-score 1.0000 0.9302 0.9889 0.0000 0.8717
F1-score average 0.7581546040039193
Average local time(s) 0.02032375087102205
Average consultation time(s) 0.18919854690174187
Total number of CAN-frames 1751313
Total number of security events 196470
Consultation messages sent 26713
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C
Appendix 3

C.1 Raspberry PI 4 Model B
Specifications of the Raspberry PI 4 Model B, derived from the official Raspberry
PI webpage [26]:

• Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz
• 4GB LPDDR4-3200 SDRAM
• 2.4 GHz and 5.0 GHz IEEE 802.11ac wireless, Bluetooth 5.0, BLE
• Gigabit Ethernet
• 2 USB 3.0 ports; 2 USB 2.0 ports.
• Raspberry Pi standard 40 pin GPIO header (fully backwards compatible with

previous boards)
• 2 × micro-HDMI ports (up to 4kp60 supported)
• 2-lane MIPI DSI display port
• 2-lane MIPI CSI camera port
• 4-pole stereo audio and composite video port
• H.265 (4kp60 decode), H264 (1080p60 decode, 1080p30 encode)
• OpenGL ES 3.0 graphics
• Micro-SD card slot for loading operating system and data storage
• 5V DC via USB-C connector (minimum 3A*)
• 5V DC via GPIO header (minimum 3A*)
• Power over Ethernet (PoE) enabled (requires separate PoE HAT)
• Operating temperature: 0 – 50 degrees C ambient

XXXI


	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Statement of the problem
	Purpose of the study
	Research questions
	Scope and limitations

	Background
	The connected vehicle and in-vehicle networks
	In-vehicle networks
	External communication
	Controller Area Networks

	Intrusion detection systems
	IDPS Technology
	Network- and Host-based IDS
	Detection methods

	Standardisation of intrusion detection systems for vehicles
	AUTOSAR
	Standard for in-vehicle network intrusion detection
	Security sensors and security events
	Intrusion detection manager (IDSM)
	Intrusion detection reporter (IDSR) and security event memory (SEM)

	Threat modeling in the automotive domain

	Related work
	Previous works
	Collaborative IDS - IDN
	Challenges with IDNs


	Methodology
	Design science methodology
	Problem conceptualization
	Solution design
	Validation


	The proposed framework
	CIVID

	Setup and experimental design
	Acquiring a dataset of network injection attacks against a CAN-network
	Building an anomaly based intrusion detection model
	Simulating a CAN-network
	Hardware setup
	Data collection

	Results
	F1-scores
	Statistical tests
	Processing times

	Discussion
	The added value & risks of using a collaborative approach
	Pros and cons of the utilized detection method
	The effect of using a collaborative approach on time-to-detection
	Threats to validity
	Internal validity
	External validity
	Construct validity
	Conclusion validity


	Conclusion
	Future work

	Bibliography
	Appendix 1
	Appendix 2
	Appendix 3
	Raspberry PI 4 Model B


