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Abstract

In this thesis the THz generation mechanism for a two-color laser pulse induced gas
plasma is investigated. A fluid model for the laser-plasma interaction is presented
and discussed. The model is discretised and implemented in a computational code,
and the scheme is tested and compared to published results of a similar model.
The simulations are used to show the impact of different parameters of the laser-
plasma interaction on THz generation. The different trends that are found are then
discussed and compared to the theory of THz generation.
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1
Introduction

The Terahertz (THz) spectrum corresponds to electromagnetic waves with frequen-
cies between 300 GHz and 30 THz, an interval which eludes most contemporary
sources of electromagnetic radiation. This is known as the THz gap. THz radia-
tion has been shown to be useful within several different areas. For example many
molecules have a characteristic spectrum in the THz region, making THz generating
sources useful for spectroscopy [1]. In medical applications the strong interaction
between THz radiation and polar molecules, such as water molecules, is exploited
and detection of diseases such as breast and skin cancer is possible [2]. In addition
it is harmless to living organisms in contrast to X-rays [3]. THz radiation can pen-
etrate materials such as polymers, papers and textiles, a property that can be used
to monitor industrial processes. It is for instance possible to measure the thickness
of drug coatings [4].
Conventional THz sources exist, but unfortunately they suffer from different dis-
advantages. Many of them are sourced by a mJ-laser which severely limits their
availability and compactness. A property that none of the conventional sources
have achieved is to produce a signal with a broad enough bandwidth to cover the
whole THz spectrum and take full advantage of its unique characteristics. The
largest bandwidth that is obtained today by established THz sources comes from
difference frequency generation (DFG) or optical rectification (OR). They can pro-
duce a bandwidth of about ∆ν ≈ 8-10 THz but are limited to either end of the
THz spectrum. DFG can only generate a signal with higher frequencies in the THz
frequency range, νDFG > 10 THz, while OR generates signals with frequencies in the
lower range 0.3 THz < νOR < 8 THz [5].
In 1994 [6] the first experiments showed that it was possible to create THz radiation
by inducing a plasma in a gas with high intensity laser pulses. This new source
showed a potential to fill the THz gap by delivering a signal with a bandwidth broad
enough to cover the entire THz spectrum. But to compete with the conventional
THz sources the laser-to-THz efficiency, ηTHz, needed to be further improved. A
decade later, 2008, the technique of inducing the plasma with a two-color laser
pulse was presented. Kim, Taylor, Glownia and Rodriguez[7] achieved a ηTHz in
their experiment, greater by a factor 102 when compared to a single color laser
induced plasma and they created a signal with ∆ν ≈ 75 THz generated with a mJ-
laser. The principle of a two-color laser is to create a second harmonic (SH) to
the fundamental harmonic (FH) by first propagating a single color beam through
a non-linear χ(2) crystal. The electromagnetic field that ionizes the gas will then
consist of two modes.
The THz generation can be thought in terms of the plasma acting like a small an-
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1. Introduction

tenna where the emission is driven by the plasma current Je. To achieve a THz
yield there must be a down conversion from the laser frequencies to the THz fre-
quencies. This is made possible by a non-linear interaction between the electric
field, E(r, t), and the free electron density, ne(r, t) [8]. Therefore, the mechanism
by which the laser ionizes the gas to create the free electrons, ne(r, t), is crucial for
THz generation.
The typical ηTHz for two-color (2C) laser induced plasma is ≈ 10−4, which is still too
low [9]. However, the promise of delivering a THz signal that covers the entire THz
spectrum makes the 2C-laser a desired technique. To make further improvements
to the technique, more research has to be done on the parameters that affect the
yield and spectrum of the THz radiation. In a study from 2010 [8], the THz spectral
amplitude and width were shown to depend on the pressure of the ionized gas. In
another study [7] there were also indications that the phase shift between the FH
and the SH in a two-color laser has a significant impact on the THz radiation.
The goal with this thesis is to investigate the generation of THz radiation via laser-
plasma interaction. The different laser parameters are studied and their effect on the
amount of THz radiation produced via ionization of argon gas is analyzed. In the
next chapter, Physical Background, the equations that govern the most important
phenomena of laser-plasma interaction are defined, and limits of the regimes are
discussed. In Numerics, the system of equations is discretized, the solution grid is
defined and the solver is tested and compared with previously published results. In
Modeling, the simulation and laser parameters are set up, optimal parameters for
the 1C and 2C-laser pulses are presented and its behaviour is analyzed. The final
chapter concludes the most important results and summarises the path to obtain
them.
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2
Physical Background

In this chapter, the physical background for modelling terahertz (THz) generation by
laser induced gas plasmas is presented. The equations that govern the most impor-
tant effects in the laser-plasma interaction, such as laser propagation, ionization and
material response are discussed. The limits of the model are also defined and core
of the mechanism responsible for generating THz radiation is pointed out. Finally
a simplified model which can be used to find promising parameters to maximize the
THz yield is presented.

2.1 Maxwell’s Equations
To model the propagation of the laser pulse in a gas and the propagation of the
THz radiation, it is necessary to employ the Maxwell’s equations. For the system
described in this thesis, they read12

∇ · E(r, t) = ρ(r, t)
ε0

, (2.1)

∇ ·B(r, t) = 0, (2.2)
∇× E(r, t) =− ∂tB(r, t), (2.3)

∇×B(r, t) = 1
c2∂tE(r, t) + µ0Je(r, t), (2.4)

where E(r, t) is the electric field, B(r, t) the magnetic field, c is the speed of light,
µ0 is the vacuum permeability, and Je(r, t) is the free electron current. The bound
electron response is neglected in this model. While Maxwell’s equations form the
basis for the description of electromagnetic field propagation and provide the link
between the free electron current of the plasma and the electromagnetic fields, they
do not describe the material response of the plasma. For this, a model of the response
is presented in the following section.

2.2 The Physics of the Drude model
In order to couple the free electron current Je(r, t) to the electromagnetic fields, an
additional expression is needed to describe the current produced by electrons that

1Bold faced characters, A denotes vectors and bold faced characters with hat x̂ denotes unit
vectors.

2∇ =
(
∂x, ∂y, ∂z

)
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2. Physical Background

are created when an electric field ionizes a gas to create a plasma. The free electron
current is created through the motion of charged particles. In this model, ions are
considered to be stationary, and thus the current depends solely on the speed of the
free electrons as well as the electron density and their charge. As ionization has
to be taken into account, electrons are considered to contribute to the free electron
current Je(r, t) only after the time of ionization ti. Then, the free electron current
can be written as [8]

Je(r, t) = qe

∫ t

−∞
v(r, t, ti)

[
∂tine(r, ti)

]
dti, (2.5)

where qe is the elementary charge, v(r, t, ti) is the velocity for the electrons born at
a time point ti, ∂tine(r, ti) is the change of the electron density at the time ti. Note
that the derivative is taken with respect to ti.
To find an expression for the speed of the electrons, consider the Lorentz force on
a single electron with the charge qe in an electric field E(r, t) and magnetic field
B(r, t). In App. A. it is shown that the speed of the electrons is low enough to
neglect the magnetic term in the Lorentz force for intensities considered in this
thesis, and the force reduces to

F(r, t) = qe
(
E(r, t) + v(r, t, ti)×B(r, t)

)
≈ qeE(r, t).

Moreover, to account for collisions of the free electron current with other electrons or
ions, a phenomenological constant damping term is introduced such that Newton’s
second law of motion for an electron in such an electric field reads

F(r, t) = me∂tv(r, t, ti) = qeE(r, t)− νemev(r, t, ti) (2.6)

→ ∂tv(r, t, ti) = qe

me
E(r, t)− νev(r, t, ti), (2.7)

where νe is the collision frequency. Electrons are considered as a density, not specific
electrons. As such, the electric field does not depend on electron position, only on the
electric field at r. This equation can be solved to determine v(r, t, ti). Integrating
from the time ti, when the electron is born, to the current time t, one finds an
expression for the velocity of the electron given by

v(r, t, ti) = qe

me

∫ t

ti
E(r, τ)e−νe(t−τ)dτ, (2.8)

where the speed of an electron at the time of ionization is assumed to be 0. This
speed is true for one electron, and the Drude model provides an expression to cal-
culate a macroscopic plasma current from a microscopic model of a single electron.
Eq. (2.8) is substituted into Eq. (2.5) and yields, after some algebraic manipulation
[App. B],

∂tJ(r, t) + νeJ(r, t) = q2
e
me

ne(r, t)E(r, t) . (2.9)

Finally, an equation relating the electron density to the electric field is to be deter-
mined.
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2. Physical Background

2.3 The Physics of the Plasma Generation
To generate a plasma from an initially neutral argon gas, the atoms need to be
ionized, that is bound electrons have to escape the atom. The ionization is achieved
by the interaction of the gas with an intense laser pulse.
The Keldysh theory is a well established theory describing ionization, from which
conditions for different ionization regimes depending on the intensity and frequency
of the electromagnetic field are extracted [10]. Keldysh’s theory is valid for fields
with intensity I << Iat and frequency ω << ωat where Iat ≈ 3 · 1020 Wm−2 and
ωat ≈ 4 · 1016 s−1 is of atomic dimensions [App. C].
According to Keldysh’s theory an EM-field can ionize atoms in a gas in two dif-
ferent ways. For a relatively weak field, the mechanism is that of multiphoton
ionization3 and for a relatively strong field tunneling ionization is dominant. The
relative strength of an EM-field is determined by the Keldysh parameter [10]

γ =
ω
√

2me|EI|
qeE

, (2.10)

where ω is the frequency of the field, E is the amplitude of the field and EI is the
ionization energy, which in this thesis is the ionization energy of argon equal to
15.76 eV [11]. For γ > 1 the field is considered weak and if γ < 1 it is strong [10].

0

r

E
A

Potential barrier

VC

VL

Figure 2.1: In (a) the total potential as a function of distance from the nucleus r,
where VL is the potential created by an external laser pulse, VC is the Coulomb po-
tential from the nucleus and EA is the energy of the bound electron. Total potential
is given as the difference of VC and VL. Tunneling is possible through the potential
barrier visible on the right side of the figure.

The binding energy of an electron depends on the Coulomb potential of the nucleus,
VC , shown as the blue dashed-dotted line in Fig. 2.1. VC yields an attractive force
on the electron that is inversely proportional to the distance r from the nucleus.
With the electric field from a laser, EL, it is possible to change the potential so that
it becomes the difference between VC and VL, seen in Fig. 2.1 as the black solid line.
The created barrier implies the possibility for the electron to tunnel and escape the

3nice reading about multiphoton ionization in N. B. Delone and V. P. Krainov, Multiphoton
Processes (Springer, New York, 1985)
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2. Physical Background

atom. The probability for an electron to tunnel increases with time given a constant
potential barrier, and it also increases the smaller the potential barrier is. For an
oscillating field this potential barrier only exists for a limited time proportional
to half the period of the field, thus the tunneling rate depends on the period and
amplitude of the oscillating field. When the period of the field is long enough and
the amplitude sufficiently high for efficient tunneling to occur the field is considered
strong and γ << 1 [10].
In this thesis fields corresponding to γ ≤ 1, e.i. the tunneling regime, will be
considered and a static model of the tunneling ionization is used according to a
model derived by Landau [12]. The model expresses the ionization rate WZ as

WZ [E(r, t)] = 4ωat(rH)5/2
(

Eat
|E(r, t)|

)
exp

−2(rH)3/2Eat
3|E(r, t)|

, (2.11)

where ωat ≈ 4 · 1016 s−1 is the same as above and Eat ≈ 5 · 1011, see App. C, and
E(r, t) is the E-field. The factor rH depends on the atom to be ionized. Argon
has, for instance, 18 electrons and could therefore in principle be ionized 18 times.
The rH-factor therefore reads rH = EZ

ar/EH where EZ
ar is the Zth order of ionization

energy for argon and EH is the ionization energy of hydrogen. In App. D all
ionization energies for argon are listed. In Fig. 2.2.(a), WZ is seen an a function
of the intensity of the E-field, I0, for the first three orders of ionization. WZ is
exponentially increasing for all orders of ionization but with critical points at higher
intensities for higher the order of ionization. The exponential increase ofWZ makes a
oscillating field only ionize a considerable amount of electrons around the maximum
or minimum of it is oscillation. This makes the increase of electron density have a
steplike increase, this will be shown to be crucial for the generating THz-frequencies
by this model. The steplike increase can be seen in Fig. 2.2.(b).

1018 1019 1020

I0 [W/m2]

0.0

0.2

0.4

0.6
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W
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[1
/s

]

(a)
W 1

W 2

W 3

WZ = 0.1

I0 = 3 · 1018

I0 = 1.3 · 1019

I0 = 3.8 · 1019

0 20 40 60 80 100 120

t [1/ωL]

(b)

Steplike increase of ne

Ex

ne

tk

Figure 2.2: In (a) the ionization rate WZ for the first three orders of ionization
in argon gas. The horizontal dashed line marks WZ = 0.1. The vertical dashed
lines marks critical intensities for when the rate of ionization is equal to 0.1 for first,
second and third order of ionization respectively. In (b) the steplike increase ne when
ionized by a laser pulse. tk corresponds to maxima of Ex that give W [Ex] > 0.1.
This steplike increase is shown in Sec. 2.6 to have a crucial role in THz-genration.

When considering a gas with an atomic number K it is possible to ionize all the K
electrons bound to the nucleus. To take every species of ions into account the rate
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2. Physical Background

equation for the ion density of order Z > 1, Z < K is

∂tn
Z
ion(r, t) = WZ [E(r, t)]nZ−1

ion (r, t)−WZ+1[E(r, t)]nZion(r, t), (2.12)

where nZion is the density of ions with charge Z. The first term WZ [E]nZ−1
ion corre-

sponds to the rate that a lower order of ions Z − 1 become ionized and the second
termWZ+1[E]nZion is the rate of events leading to ionization of Z-times charged ions,
leading to creation of Z+ 1-times charged ions. Note that n0

ion is the density of neu-
tral atoms and thus W 0 = 0. Also WK+1 = 0 since it is only possible to ionize K
times. The electron density ne(r, t) follows from the quasineutrality as

ne(r, t) =
∑
Z

ZnZion(r, t). (2.13)

and n0
ion(t = −∞) = nat where nat is the density of argon atoms.

2.4 Summarizing the Full Model in 1D with Plasma
Units

The full model to simulate the THz generation in this thesis consists of Maxwell’s
curl equations coupled to the macroscopic current equation Eq. (2.9) and the ion
rate equations Eq. (2.12),(2.13). In plasma units, defined in App. E, the system of
equations for the full model4 is

∇× E(r, t) = −∂tB(r, t), (2.14)
∇×B(r, t) = ∂tE(r, t) + Je(r, t), (2.15)
∂tJe(r, t) = −νeJe(r, t) + ne(r, t)E(r, t), (2.16)
∂tn

Z
e (r, t) = WZ [E(r, t)]nZ−1

ion (r, t)−WZ+1[E(r, t)]nZion(r, t). (2.17)

For the simulation in 1D all fields are assumed to be constant in all but the direction
for the laser propagation, here chosen to be the z-direction, which implies that

∂xE(r, t) = ∂yE(r, t) = ∂xB(r, t) = ∂yB(r, t) = 0. (2.18)

Any field A will further be seen as functions of only z

A(r, t)→ A(z, t), (2.19)

From Faraday’s and Ampere’s law, Eq. (2.14),(2.15), one obtains the set of equations

(2.14)→x̂ : −∂zEy(z, t) = −∂tBx(z, t),
ŷ : ∂zEx(z, t) = −∂tBy(z, t),

(2.15)→x̂ : −∂zBy(z, t) = ∂tEx(z, t) + Jx(z, t),
ŷ : ∂zBx(z, t) = ∂tEy(z, t) + Jy(z, t).

4Gauss law, Eq. (2.1), and the equation for the divergence of B, Eq. (2.2), are not solved
explicitly, since solving the curl equations implicitly solves them.

8



2. Physical Background

These can be arrange into two sets of equations as

→

x̂ : −∂zEy(z, t) = −∂tBx(z, t)
ŷ : ∂zBx(z, t) = ∂tEy(z, t) + Jy(z, t)

x̂ : −∂zBy(z, t) = ∂tEx(z, t) + Jx(z, t)
ŷ : ∂zEx(z, t) = −∂tBy(z, t).

(2.20)

These are two decoupled sets of equations. Jx depends only on Ex and Jy only on
Ey. In this thesis, only linearly polarized fields are considered. Thus, for the 1D
Solver, the fields are set such that E = Exx̂, B = Byŷ and Je = Jxx̂. With this
choice, Eq. (2.16) and (2.17) reads

∂tJx(z, t) = −νeJx(z, t) + ne(z, t)Ex(z, t),
∂tn

Z
ion(z, t) = WZ [Ex(z, t)]nZ−1

ion (z, t)−WZ+1[Ex(z, t)]nZion(z, t),

respectively. Summarizing all the equations that are used to simulate the laser-
plasma interaction in 1D gives the equation system

∂zEx(z, t) = −∂tBy(z, t), (2.21)
∂zBy(z, t) = −∂tEx(z, t)− Jx(z, t), (2.22)
∂tJx(z, t) = −νeJx(z, t) + ne(z, t)Ex(z, t), (2.23)
∂tn

Z
i (z, t) = WZ [Ex(z, t)]nZ−1

ion (z, t)−WZ+1[Ex(z, t)]nZion(z, t), (2.24)

where the rate equation Eq. (2.24) needs to be solved for every order Z of ions that
are considered.

2.5 Valid Laser Intensities and Frequencies
The laser wavelength which is considered in this thesis is λL = 2πc/ωL = 800 nm.
This gives a range of laser intensities I0 = [1018, 1020] Wm−2 for which the model is
valid. The lower bound is set by the Keldysh parameter γ, where I0 = 1018 Wm−2

corresponds to γ ≈ 1.148, according to Eq. (2.10). The upper bound set to ensure
that the magnetic force contribution from the Lorentz force, (v ×B), is negligible.
The maximum electron velocity, vmax, in an oscillating E-field can be approximated,
see App. F, as

vmax = qeEL

meωL
. (2.25)

The upper bound in this thesis is then set to the intensity I0 = 1020 Wm−2 which
gives maximum electron velocity of vmax ≈ 0.05c.

2.6 Frequency down conversion via Ionization Cur-
rent

The laser-plasma interaction in this model is encapsulated in the current Eq. (2.23).
All frequencies produced in the interaction are results of the non-linear term that in-
volves the product between ne(z, t) and Ex(z, t). To maximize the laser-to-terahertz
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2. Physical Background

efficiency ηTHz, the down conversion from the laser frequencies to THz frequencies
by this mechanism is sought to be maximized.
The E-field from a laser pulse will ionize the gas when it reaches a high enough
amplitude. Atoms are thus ionized around the maxima and minima of the oscillating
E-field. The newly born electrons are then accelerated by the E-field, according to
Eq. (2.8).
To drive the down conversion to near-zero, i.e. THz, frequencies, a net gain of
electron velocity in one direction is sufficient such that a near-zero frequency com-
ponent is created in the ionization current Jx. This drift implies that, if collisions
are neglected, when t → ∞, Jx(t) is not equal to zero. A laser pulse that does not
accelerate electrons symmetrically in both direction is then required. From 2.5 the
following expression for Jx(t) can be derived as [App. G.]

Jx(t) =
∑
k

ne(tk)H(t− tk)
∫ tk

−∞
Ex(τ)dτ, (2.26)

where tk is the time of every ionization event, i.e. the times where Ex has an
extremum, the steplike increase of the ne at tk is visulized in Fig. 2.1.(b). ne(tk) is
the electron density at that time and H(t− tk) is the heavyside function.
The simplest laser pulse contains only a single frequency, ωL. Approximating Ex '
EL, see Sect. 2.7, and taking EL ∝ sin(ωLt)5, Eq. (2.26) becomes

Jx ∝
∑
k

ne(tk)H(t− tk)
cos (ωLtk)

ωL
. (2.27)

Since cos(ωLtk) is zero whenever sin(ωLtk) is at an extremum, i.e. when the ioniza-
tion occurs, Jx is zero. However, for a short pulse the envelope can not be neglected
and Eq. (2.26) might give nonzero values.
Consider now a laser pulse that is a composite of two frequencies, a 2C-laser pulse,
such that

EL(t) ∝
√

1− ξ sin(ωLt) +
√
ξ sin(2ωLt+ φ), (2.28)

where ωL, 2ωL is the frequency of the FH and SH respectively, ξ is the fraction of
energy in the FH and φ is the relative phase between the FH and SH. For this pulse
Eq. (2.26) becomes

Jx ∝
∑
k

ne(tk)H(t− tk)
√1− ξ cos (ωLtk)

ωL
+
√
ξ cos (2ωLtk + φ)

2ωL

 (2.29)

This can certainly be nonzero because of the phase shift φ. To maximize Jx, and
thus the slow component of Jx responsible for the THz frequencies, different φ and
ξ will be investigated. In Fig. 2.3.(a) is a single frequency pulse is shown not to
create a offset in the current according to Eq. (2.27) when t → ∞ wheras two
frequency pulse in Fig. 2.3.(b) does create the offset needed for the down conversion
to near-zero frequencies by Eq. (2.28).

5for simplicity the envelope is neglected here, see App. G for details
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2. Physical Background
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Figure 2.3: The time trace shown in figure (a) and (b) are extracted from a spatial
point inside a gas plasma. The laser pulses have the wavelength λL = 800 nm, an

envelope e
− t2

2t20 were t0 = 7 fs, and for the 2C-laser in (b) ξ = 0.3 and φ = 0, Eq.
(2.28). In (a) a 1C-laser pulse is shown that it does not create an offset in Jx, Eq.
(2.26). For a 2C-laser pulse, shown in (b) there is a slight offset in Jx after the pulse.
This is the driving mechansim of the THz-generation in this model.

2.7 Simple source model, SSM
As argued above in Sec. 2.6 the frequency down conversion stems from the particular
time dependence of the product of Ex(z, t) and ne(z, t). Examining the frequency
components of the term ne(z, t), Ex(z, t) gives a more flexible way to predict the
THz-yield. If collisions are neglected, Eq. (2.16) becomes

∂tJx(z, t) = ne(z, t)Ex(z, t), (2.30)

where the E-field can be decomposed into the vacuum field from the laser EL(z, t)
and the field created by the excitation of the plasma Ẽ(z, t),

∂tJx(z, t) = ne
(
EL(z, t) + Ẽ(z, t)

)
. (2.31)

Since the field from the laser is the driving part of the current, for simplicity one
can consider the source term

i = ne(z, t)EL(z, t). (2.32)

The simple source model (SSM) is introduced where the source term i is calculated
with the time trail of a prescribed field EL(z0, t) in one point of space and ne(z0, t)
is calculated using Eq. (2.24) at that point. The benefit of the SSM is that the
simulations do not require propagating the EM-fields, since EL(t) is considered to
be known and the code is thus much faster than when solving the full set of equations.
Since the simulations with SSM are much faster, they can be very efficiently used to
find interesting trends and then confirm them with the 1D Solver. SSM is limited
to a single point in space, and effects of propagation are neglected.

11



3
Numerics

With the physical background established in the previous chapter, the next step is
to translate the equations into discrete versions which are to be solved by computers.
To this end, the Finite-Difference Time-Domain (FDTD) method is introduced and
applied. The Yee-scheme is established to specify the order in which the equations
must be solved. The numerical solutions are then compared to some analytic so-
lutions. The dispersion relation is derived for a plasma and then the dispersion in
the code is calculated compared to analytic values. Moreover, energy conservation
and dispersion properties of the solver are analyzed. The convergence of the code
is shown with respect to the energy, dispersion relation and the frequency spectrum
for the parameter sweeps done for the result part of the thesis, App. H. The im-
plementation can be downloaded at https://github.com/erikadamstrandberg/
TERAHERTZGENERATION.

3.1 Discretization using the Finite-Difference Time-
Domain method

In order to solve Eqs. (2.21)-(2.24) for Ex(z, t), By(z, t), Jx(z, t), ne(z, t) and nZion(z, t),
each field has space and time discretized into Nz × Nt equidistant points with the
temporal distance δt and spatial distance δz. The total length of the simulation
is ∆Z = Nzδz, and the total time of the simulation is ∆T = Ntδt. To solve the
equations the FDTD [13] method is used.
Using Taylor expansions for f(x+ δx) and f(x− δx), the derivative of any differen-
tiable function f(x) can be approximated as [13]

∂f(x)
∂x

=
f(x+ δx

2 )− f(x− δx
2 )

δx
+O(δx2), (3.1)

where O(δx2) is shorthand notation for the remainder term, which approaches zero
as the square of the argument, giving an accurate expression for a sufficiently small
δx.
In addition, linear interpolations between two discrete points are defined as

f(x) =
f(x− δx

2 ) + f(x+ δx
2 )

2 +O(δx2). (3.2)

Both the approximations above, used throughout the discretization, have a second
order error term.

12

https://github.com/erikadamstrandberg/TERAHERTZGENERATION
https://github.com/erikadamstrandberg/TERAHERTZGENERATION


3. Numerics

t

z
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i
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i+ 1
2

k − 1
2

k k + 1
2

k + 1 k + 3
2

k + 2

= E

= B

= ne,nZion

= J

Figure 3.1: The discrete grid where the different quantities are approximated. Ac-
cording to this scheme E takes turn with B, J, ne to be solved for all spatial points
to evolve the simulation forward in time by the update Eqs. (3.5)-(3.8). Note the
shift of δt/2 and δz/2 in the discretization of time and space for the different fields.

3.1.1 Discretizing the Maxwell curl equations
The discretization of Maxwell’s curl equations Eq. (2.21) and (2.22) by Eq. (3.1)
introduces a shift in space and time by δz/2 and δt/2 for Ex(z, t), By(z, t) that can
be seen in Fig. 3.1. This way of discretizing E(z, t), B(z, t) by shifting the fields by a
half step with respect to each other is called a Yee-scheme or a leap-frog scheme [13].
For the sake of brevity a continuous function A(z, t) will be abbreviated with zp =
pδz and tq = qδt

A(zp, tq) = A(pδz, qδt) = Aqp, p, q ∈ R. (3.3)

Steps in the different discrete grids for the fields are denoted by the integers k for
spatial steps and i for temporal steps, this can again be seen in Fig. 3.1,

k = 0, 1, ..., Nz, i = 0, 1, ..., Nt. (3.4)

Using the approximation of Eq. (3.1), can be discretized as

B
i+ 1

2
k = B

i− 1
2

k − δt

δz

(
Ei
k+ 1

2
− Ei

k− 1
2

)
, (3.5)

Ei
k+ 1

2
= Ei−1

k+ 1
2
− δt

δz

(
B
i− 1

2
k+1 −B

i− 1
2

k

)
− δtJ i+

1
2

k+ 1
2
. (3.6)

With these two equations Ei
k+ 1

2
, B

i 1
2
k are explicitly solved in time, meaning that to

be solved for a specific time step ti the fields only need to be known for previous

13



3. Numerics

time steps t < ti. With Eq. (3.5),(3.6) the E,B-fields can take turn being updated
for all spatial points moving the simulation forward in time, for this reason they are
called update equations.
The Yee-scheme for updating the EM-fields does a second order error for the choice
length in spatial and temporal step δz, δt from Eq. (3.1).
Also note that this shift in space means that to calculate a solution for the E,B-
field for a spatial point with index k the respective field needs to be known at the
neighboring points k + 1

2 , k −
1
2 . This means that the boundary of the simulation

window can not be solved by the update equations Eq. (3.5),(3.6) and instead
needs to be set to fulfill some boundary condition. For the simulations in this thesis
Ei

0 = Ei
end = 0 which corresponds to the edges being perfect conductors.

3.1.2 Discretizing the ionzation rate equation and the cur-
rent equation.

When coupling the current and plasma equation to the Maxwell’s equations, there
is a choice on how to discretize the current Jx(z, t) and the electron and ion density
ne(z, t), nZion(z, t). Equation (3.6) enforces that Jx(z, t) is discretized at the same
spatial step as Ex(z, t), but shifted in time by δt/2. The electron and ion density
ne(z, t), nZion(z, t) can be discretized freely, but it should be done so to keep the second
order accuracy of the scheme. Here ne(z, t), nZion(z, t) is discretized like the current
Jx(z, t). A benefit from this choice of discretization of ne(z, t), nZion(z, t) and Jx(z, t)
is that ne(z, t), nZion(z, t) are the only solutions that need to be saved for more than
one time step, which makes the computation use less memory. The discretization of
Jx(z, t) and ne(z, t), nZion(z, t) is visualized in Fig. 3.1.
Using Eqs. (3.1),(3.2) to discretize Eqs. (2.23),(2.24) gives

J
i+ 1

2
k+ 1

2
=

(
1− νeδt

2

)
J
i− 1

2
k+ 1

2
+ δt

2

(
(ne)

i+ 1
2

k+ 1
2

+ (ne)
i− 1

2
k+ 1

2

)
Ei
k+ 1

2(
1 + νeδt

2

) , (3.7)

(
nZion

)i+ 1
2

k+ 1
2

=

(
1− δt

2 W
Z+1[Ei

k+ 1
2
]
) (

nZion

)i− 1
2

k+ 1
2

+ δt
2 W

Z [Ei
k+ 1

2
]
((
nZ−1

ion

)i+ 1
2

k+ 1
2

+
(
nZ−1

ion

)i− 1
2

k+ 1
2

)
(

1 + δt
2 W

Z+1[Ei
k+ 1

2
]
) .

(3.8)

Note that these update equations differ from the discretization of the Maxwell’s
equations in the sense that they do not only depend on the fields from previous time
steps. The update equation for the current J i+

1
2

k+ 1
2
depends on the electron density

(ne)
i+ 1

2
k+ 1

2
and the ion density

(
nZion

)i+ 1
2

k+ 1
2
depends on

(
nZ−1

ion

)i+ 1
2

k+ 1
2
, both are dependent

on solutions of the fields at the same time step. This means that it is first required
to solve the ion densities from the lowest order of ionization to the highest, update
the electron density ne(z, t) and then solve for the current Jx(z, t) to update ne(z, t)
and Je(z, t) for a new time step.
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3. Numerics

3.2 Validating the numerical scheme
The code, created to solve the discretized system discussed above, is tested in dif-
ferent ways to ensure it is working correctly. Either, if possible, simplifications have
been made to achieve analytic solutions to compare with, or the code has been
benchmarked to published results. The Eqs. (2.21) and (2.22) have been compared
with analytic solutions in the special case of an electromagnetic wave in vacuum.
Then the dispersion, when propagating in plasma, has been compared with cal-
culations of the analytic dispersion relation in plasma. Also Eq. (2.23) has been
compared with analytic solutions. The code solving Eq. (2.24) has been compared
with published results.

3.2.1 Principle for testing the Maxwell solver in vacuum
To check that the discretization of Maxwell’s Eqs. (2.21) and (2.22) are correct,
they are considered in vacuum, Jx(z, t) = 0. In vacuum they are equivalent to two
wave equations, one for the E-field and one for the B-field

∂2
zEx(z, t)− ∂2

tEx(z, t) = 0, ∂2
zBy(z, t)− ∂2

tBy(z, t) = 0,

which have the solutions

Ex(z, t) = f(z − t) + g(z + t), By(z, t) = f(z − t)− g(z + t). (3.9)

The functions f(z − t) and g(z + t) are forward respectively backward propagating
waves along the z-axis and represent a rigid profile that is propagating with the speed
v = ±1. The sign difference in g(z+t) comes from requiring that the solutions satisfy
Eq. (2.21).

0 20 40 60 80 100 120

z [c/ωL]

(a)

t0 = 5 [fs], t= 0 [1/ωL]

Ex

By

0 20 40 60 80 100 120

z [c/ωL]

(b)

t0 = 5 [fs], t= 25 [1/ωL]

Ex

By

Figure 3.2: In (a), an initial condition EL(t) = E0 cos (ωLt)e
− t2

2t20 and BL = 0 has
been set up. In (b) both the forward and backwards solution to the wave equations
Eq. (3.9) can be seen. They keep their rigid profile and the backwards propagating
solution g(z + t) has opposite sign for By(z, t) compared to the forward solution as
predicted.
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3. Numerics

In Fig. 3.2 it is seen that the initial condition By(z, 0) = 0 implies f(z) = g(z)
from Eq. (3.9). Using this initial condition the solver creates both the forward and
backwards propagating wave as expected.

3.2.2 Introducing a forward propagating laser pulse
Only a forward propagating wave solution is needed for further simulations. To
achieve this the initial condition Ex(z, 0) = By(z, 0) is used so that Eq. (3.9) only
gives a forward propagating wave f(z). By Eq. (3.6) the discrete initial conditions
for a forward propagating wave read

E0
k+ 1

2
= fk → B

0+ 1
2

y = δt

δz

(
fk+ 1

2
− fk− 1

2

)
, (3.10)

for any function f(z), were Ex(z, t), By(z, t) = 0 for the time steps t < 0 . Note
that this is only valid for inserting a pulse in vacuum since it depends on Eq. (3.9),
which says that f(z − t) propagates with the speed v = 1. This is however not true
in a dispersive medium.

3.2.3 Verifying the plasma dispersion
The plasma dispersion relation can be derived from the system of Eqs. (2.21)-(2.24)
by assuming a preformed plasma. This means setting the electron density to be
constant in time ne(z, t) = ne → ∂tne = 0 for every spatial point z. By considering
the different fields in temporal Fourier space a wave equation for the E-field is found
as [App. I] (

∂2
z + ω2 − ne

)
Êx(z, ω) = 0, (3.11)

which has solutions with a frequency dependent wave number

Ẽ(z, ω) = Ẽ(0, ω)e∓ik(ω)z, k(ω) =
√
ω2 − ne. (3.12)

The sign difference in e∓ik(ω) corresponds to a forward propagating solution with −,
and a backwards propagating solution with +. In plasma units, found in App. E,
the plasma frequency is defined as ω2

p = ne,

k(ω) =
√
ω2 − ω2

p. (3.13)

Thus, for all modes with frequency ν = ω/2π lower than the plasma frequency
νp = ωp/2π, the wave number k(ω) becomes imaginary. These modes are evanescent
while modes with k(ω) ∈ R are propagating modes. Eq. (3.13) is equivalent to
having ω as a function of k instead, as

ω(k) =
√
k2 + ω2

p, (3.14)

which is the plasma dispersion relation.
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To be able to compare this analytic dispersion relation to the numerical disper-
sion relation in the code, the wave equation Eq. (3.12) is used. For two forward
propagating solutions that has propagated a length za and zb Eq. (3.12) read

Ẽx(za, ω) = Ẽx(0, ω)e−ik(ω)za , Ẽx(zb, ω) = Ẽx(0, ω)e−ik(ω)zb →

→ Ẽx(zb, ω)
Ẽx(za, ω)

= e−ik(ω)(zb−za). (3.15)

The phase of the quotient between two temporal Fourier transforms of the electric
field that has propagated a length za and zb is a function of the dispersion relation
k(ω) in Eq. (3.13).
By propagating a laser in a preformed plasma and then extracting E(z, t) at the
two points za and zb separated by the length z0 = zb − za, as seen in Fig. 3.3.(a).
The error in the dispersion from the code, in comparison to the analytic dispersion,
is shown in Fig. 3.3.(b). In App. H. the convergence of the dispersion in the code
is also shown to converge to the analytic solution. Note that for a plasma ionized
from a gas with atom density ne = 2.7 · 1025m−3, gives ωp ≈ 0.124 << 1, [App. J].
This gives a plasma dispersion relation, Eq. (3.14) that is very close to the vacuum
dispersion

ω(k) =
√
k2 + ω2

p, ω2
p << 1 → ω(k) ≈ k. (3.16)

To observe a plasma dispersion relation that sharply differ from the vacuum relation,
the laser pulse is propagated through a preformed plasma with ne = 8·1026m−3 which
corresponds to ωp ≈ 0.677.
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Figure 3.3: In (a) the setup for calculating the plasma dispersion relation in the code
by Eq. (3.15) is shown. Having a constant ne profile in the simulation represents
a preformed plasma. The E-field is extracted at the black lines in the plasma
separated by the length z0 = zb − za. In (b) the convergence of the total relative
error of the dispersion from the code ω(k) when compared to the analytic dispersion
ωa(k) dependency on the finer spatial resolution δz. The temporal resolution is set
to δt = 0.99δz.

17



3. Numerics

3.2.4 Verifying the Current Equation

The current equation, Eq. (2.24), can be solved analytically by setting Ex(z, t) =
Ex(z) and ne(z, t) = ne(z) as constant in time. For a fixed point in space z0 the
current equation is

∂tJ(z0, t) = −νeJ(z0, t) + ne(z0)E(z0),

which has the analytic solution

J(z0, t) = J0(z0)e−νet + ne(z0)E(z0)
νe

(
1− e−νet

)
,

assuming a initial current J(z0, 0) = J0(z0). The difference between the discrete
version and the analytic version is plotted in Fig. 3.4.
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Figure 3.4: The difference between the solution to Eq. (2.23) and the solution to
the same discretized Eq. (3.7) are plotted. The same parameters are used in both
solutions.

3.2.5 Validity of Code in Calculating the Electron Density

To validate the part of the code that calculates the electron density according to
Eq. (3.8) a simulation of a laser pulse that ionizes argon gas was made. The time
evolution of the process is considered in one point of space. This simulation is
compared to results presented in [14]. The laser pulse used is described by

E(t) = E0 sin (ωLt) exp
(
−t2

t20

)
, (3.17)

where ωL = 2πc/λ and E0 = (2I0/ε0c)1/2. The intensity used is I0 = 4 · 1014 W/cm2

and the wavelength is λ = 800 nm. Pulse duration is characterized by t0 = 50 fs.
The atom density was set to nat = 3·1019 cm−3 at the beginning. For the comparison
of ne, only the ionization equation (2.11) with a prescribed time-dependent electric
field from Eq. (3.17) is considered.
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Figure 3.5: Electron density, ne, (blue line) and the envelope of the pulse intensity,
I, (red line) as a function of time. ne is normalized to the atom density, nat =
3 · 1025 m−3, at t = 0 and I is normalized to I0 = 4 · 1018 Wm−2. The pulse duration
is characterized by t0 = 50 fs.

In Fig. (3.5) the result is shown which demonstrates the same step-like increase of
the electron density as [14]. It is also seen that full ionization is reached, which also
applies to the simulation in [14].

3.2.6 Energy conservation
With normalized units according to App. E, the energy density U of the electro-
magnetic field is

UEM(z, t) = 1
2
(
E2
x(z, t) +B2

y(z, t)
)
. (3.18)

The total energy UL(t) at time t is the space-integral of UEM according to

UL(t) = 1
2

∫
∆Z

(
E2
x(z, t) +B2

y(z, t)
)
dz. (3.19)

Since the system described in Sec. (2.4) is one dimensional, UL is actually energy
per area.
The rate of change in the energy of the laser pulse is described by the Poynting
theorem [15]

− ∂tUEM(z, t) = ∂zSz(z, t) + Jx(z, t)Ex(z, t), (3.20)

where Jx(z, t)Ex(z, t) is the rate of work done at charged particles by the field
and ∂zSz(z, t) is the energy flux. The Ponyting theorem is used here to calculate
the energy conservation in the simulation, in App. K, a expression for physically
interpreting Jx(z, t)Ex(z, t) is derived.
Because of the boundary conditions used in this thesis are Ei

0 = Ei
end = 0, Sec.

3.1.1, the integral over the energy flux for all z ∈ ∆Z is zero. The loss of EM-energy
,−UEM = Uloss, is after a time t therefore

Uloss(t) =
∫ t

0

∫
∆Z

∂zSz(z, τ) + Ex(z, τ)Jx(z, τ)dzdτ =

=
∫ t

0

∫
∆Z

Ex(z, τ)Jx(z, τ)dzdτ. (3.21)
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This energy is used to accelerate the electrons in the plasma and for energy to be
conserved in the model Utot = UL + Uloss should be constant for all times. That is

Utot(t) =
∫
z

(
1
2E

2
x(z, t) + 1

2B
2
y(z, t) +

∫ t

0
Jx(z, τ)Ex(z, τ)dτ

)
dz = U0, (3.22)

where U0 is the initial energy of the system. Since the laser pulse initially is put
into vacuum, and therefore no current exist, U0 is calculated as UL(0) according to
Eq. (3.19). Due to the Yee-scheme in Fig. (3.1) the numeric solution of Ex(z, t) is
defined at half a time-step before By(z, t) and Jx(z, t) and the numeric solution of
By(z, t) is defined at half a space-step before Ex(z, t) and Jx(z, t). A mean value
in time is therefore used for Ex(z, t) and a mean value in space for By(z, t) in the
discretization of Eqs. (3.19) and (3.22) according to

E
i
k = 1

2(Ei+ 1
2

k + E
i− 1

2
k ),

B
i
k = 1

2(Bi
k+ 1

2
+Bi

k− 1
2
).

The discretization of Eq. (3.22) becomes

Utotal(t) ≈ δz
∑
k

1
8(Ei+ 1

2
k + E

i− 1
2

k )2 + 1
8(Bi

k+ 1
2

+Bi
k− 1

2
)2+

δt
t∑
i=0

J ik ·
1
2(Ei+ 1

2
k + E

i− 1
2

k )
. (3.23)

To show that the energy is conserved in the model a simulation was made and
the energy calculated according to Eq. (3.23). The initial simulation window is
presented in Fig. (3.6) where the area marked with the dotted line is the atom
density of the slab of argon gas. The argon gas is 50 µm long with additional ramps
that are about 10 µm each. The atom density, nat, is at most 3 · 1025 m−3. Also the
initial pulse is shown as the solid line in Fig. (3.6). The pulse is the same as in Eq.
(3.17). The simulations were made for different δz and δt = 0.9δz.
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nat

Figure 3.6: The initial simulation window for simulations where energy conservation
was checked. At time t = 0 the pulse was put in vacuum and a length of argon gas
with atom density nat was inserted between z = 300 and z = 900 with a linear ramp.

20



3. Numerics

0 100 200 300 400 500 600 700 800

t [1/ωL]

-4

-2

1

2

U
to

ta
l(
t)
/
U

0

×10−7 + 1

(a)

δz= 0. 01, δt= 0. 009

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

δz [c/ωL]

0.0

0.5

1.0

1.5

2.0

m
a
x
|U to

ta
l(
t)
−
U

0

U
0
|

×10−5

(b)

δt= 0. 9δz

Figure 3.7: (a) Total energy of the simulation window, Utotal(t), normalized to the
initial energy, U0, for a system consisting of a laser pulse propagating first in vacuum,
then in argon gas-plasma, and then vacuum again. (b) Relative maximum error for
simulations with different δz separated by 0.01 units in the range 0.01 to 0.10.

The result of a simulation with δz = 0.01 and δt = 0.009 is shown in Fig. (3.7.a)
where the total energy in the simulation window is plotted for all times. The energy
is seen to be conserved within a magnitude of 10−7. It is also seen that when the
pulse enters the argon at t = 100 and leaves at t = 600 there is a small but negligible
change in the energy. This is due to discontinuities in the shape of the argon gas.
When the pulse is inside the gas there is a very small decrease in the energy. This
is due to the lossy behavior of the model [App. K]. In Fig. (3.7.b) it is shown that
the maximum error in energy conservation decreases with smaller δz.

3.2.7 Comparing to published results

A previous published article [16] have done similar 1D simulations of the laser-plasma
interaction. In the article they have published their frequency spectrum

∣∣E(z, ω)
∣∣

for different propagation length z into a gas plasma. The spectrum, using the same
parameters, as in the article for this model is seen in Fig. 3.8.

21



3. Numerics

0 20 40 60 80
ν [Thz]

10-6

10-5

10-4

|E
|[

ar
b
.

u
.]

(a)

z= 3 [µm]

Plasma Frequency

0 20 40 60 80
ν [Thz]

10-6

10-5

10-4

|E
|[

ar
b
.

u
.]

(b)

z= 10 [µm]

Plasma Frequency

0 20 40 60 80
ν [Thz]

10-6

10-5

10-4

|E
|[

ar
b
.

u
.]

(c)

z= 100 [µm]

Plasma Frequency

0 20 40 60 80
ν [Thz]

10-6

10-5

10-4

|E
|[

ar
b
.

u
.]

(d)

z= 1 [mm]

Plasma Frequency

Figure 3.8: The spectrum of a 2C-laser propagated a length z0 through a 3, 10, 100
and 1000 µm long argon gas, is shown. This is to be compared to previous work
[16] which has published the same simulations with a similar model.

The 2C-laser pulse used is defined from the article as

EL(t) = E0

(√
1− ξ cos(ωLt)e−2 ln 2 t

2
τ2 +

√
ξ cos(2ωLt+ φ)e−8 ln 2 t

2
τ2

)
, (3.24)

where E0 =
√

2I0
cε0

is laser amplitude, νL = ωL/2π is the fundamental laser frequency.
ξ is the fraction of energy in the SH, φ is the relative phase between the FH and SH
and τ is the FWHM pulse duration of the FH. For the comparison in Fig. 3.8 the
laser parameters I0 = 1.5 · 1018 Wm−2 ξ = 0.1,φ = π/2 and τ = 50 fs are used. The
laser pulse is inserted into vacuum and is then propagated into a slab of argon gas.
The time trace Ex(z0, t) is extracted at z0 = 3, 10, 100 and 1000 µm of propagation
in argon.
Comparing the spectrum simulated with this model in Fig. 3.8 to the article [16]
they both show a almost a constant |E(z0, ω)| for all ν < νp, a peak at νp and a
sharp drop off for ν > νp. The spectrum also match how fast they drop off for
ν > νp and the shape of the spectrum from the article matches.
The spectra from the simulations in this thesis show a slightly higher amplitude.
This can be explained by two reasons. The article is not clear on how they extracted
the time trace of the electric field E(z0, t). The spectrum in the Fig. 3.5 is interpreted
as E(z0, t) being extracted from a spatial point z0 inside the plasma. The second
reason is that the article does not use the static tunneling ionization model for their
ionization probabilityW [Ex(z, t)] for the rate equation Eq. (2.24), but instead what
is called quasistatic ADK theory.
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Modeling THz Emission in Gas

Plasmas

In this chapter, the THz emission in laser-induced gas-plasmas, based on the 1D
fluid model equations presented in Sec. 2, is investigated. The solution of the
model equations is performed with the numerical scheme discussed in Sec. 3, and
results and analysis are presented. First, the focus will be on 1C-laser pulses, after
which 2C-laser pulses will be discussed. Throughout this chapter we are mainly
interested in the efficiency of the THz generating process and its dependence on
laser parameters. The parameters that produce the highest efficiency are then of
interest, as well as the extent at which the SSM described in Sec. 2.7 can be used
as a predictive tool for the response of the system.

4.1 Model setup and laser parameters
In the following, the numerical setup and laser parameters are described. The setup
for simulations with 1D fluid model is described here.

z [c/ω0]

E
,n

at

E

nat

z0

Figure 4.1: A typical simulation set-up is shown. A forward propagating laser
pulse is inserted in space, Sec. 3.2.2, and the initial atom density profile is setup.
The atom density profile is modelled by an exponentially ramped profile nat(z) =
nmax(1 − e−

1
10 z), where nmax = 2.7 · 1025 m−3, App. J. The time trace E(z0, t) is

sampled behind the plasma.

In Fig. 4.1, the simulation setup for the 1D fluid model is shown. The pulse will be
analyzed after it has propagated through the plasma by extracting the time trace,
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4. Modeling THz Emission in Gas Plasmas

Ex(z0, t), at a specific point, z0, in space. The boundaries of the simulation window
are considered perfect conductors, meaning that any signal reaching either end will
be reflected, see Sec. 3.1.1. When the signal reaches the plasma, a portion of it will
be reflected backwards. Since the boundary is a perfect conductor this reflection will,
after long enough time, again be reflected back towards the plasma. The simulation
box is therefore chosen large enough so that any reflections from the plasma are
unable to interfere with measurements.

4.1.1 Laser definitions
In the following simulations, three different laser pulses are considered. Two 1C
laser pulses and one 2C laser pulse. The 1C laser pulses are defined as

Esin(t) = EL sin(ωLt)e
− t2

2t20 , (4.1)

Ecos(t) = EL

[
ωL cos(ωLt)−

2t
t20

sin(ωLt)
]
e
− t2

2t20 , (4.2)

where EL =
√

2I0
ε0c

is the amplitude of the pulse, ωL is the laser frequency and t0
is a characteristic duration of the pulse. The 2C-laser pulse consists of a FH with
frequency νL = ωL/2π and a SH with frequency 2νL = ωL/π according to

E(t) =EL

√1− ξ sin (ωLt)e
− t2

2t20 +
√
ξ sin (2ωLt+ φ)e

− t
2
t20

 , (4.3)

where EL =
√

2I0
ε0c

is the amplitude of the pulse, t0 is the characteristic length of the
pulse, ξ is the fraction of energy in the SH and φ is the relative phase between the
harmonics. Introducing a SH can create an asymmetry in the pulse which greatly
increases the THz generation as discussed in Sec. 2.6.
To reduce the dimensions needed to plot results, it is practical to introduce yields.
The THz yield Y 1D

THz is defined as the integral of the power spectrum for the time
trace of Ex(z0, t) over ω = [0, 2π · 30 THz]. For SSM the yield Y SSM

THz is the power
spectrum of the source term integrated up to the same ω, such that

Y 1D
THz =

∫ 2π·30 THz

0

∣∣∣Ẽ(z0, ω)
∣∣∣2 dω, Y SSM

THz =
∫ 2π·30 THz

0

∣∣i(ω)
∣∣2 dω, (4.4)

where Ẽ(z, ω) denotes the Fourier transform, defined in App. L, of the E-field. To
be able to compare YTHz between different laser pulse parameters we define a laser-
to-terahertz efficiency ηTHz for the full model and an excitation efficiency µTHz for
the SSM, giving that

ηTHz = Y 1D
THz
PL

, µTHz = Y SSM
THz
PLn2

at
, (4.5)

where PL is the integrated power spectrum for the initial laser used in the simulation,

PL =
∫ ∞
−∞

∣∣∣ẼL(ω)
∣∣∣2 dω. (4.6)

The excitation efficiency µTHz for SSM in Eq. (4.5) is normalized by n2
at since it is

to be independent of nat.
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4.2 Measurements, figures and analysis

In this section, results from simulations are presented and analyzed, starting with
the 1C laser pulses and continuing with the 2C laser pulse. Both results from the
SSM and the 1D fluid model are presented and comared. Also comparison with the
theory establised in Sec. 2.6 is made.

4.2.1 One Color Pulses

The parameter to investigate for 1C is t0. To this end we used the SSM to predict
which values of t0 produce more THz radiation, the results are then followed up
with the 1D fluid model.
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Figure 4.2: (a) and (c) show the power spectrum of the source, and (b) and (d) the
laser for the 1C pulse defined by Eq. (4.1). The pulse has a power spectrum that
vanish for physically meaningful values of t0.
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Figure 4.3: (a) and (c) show the power spectrum of a pulse that has propagated
through 10 µm of argon gas, computed by the 1D Solver. (b) and (d) show the power
spectrum for the initial pulse. The atom density of the gas was nat = 3 · 1025 m−3,
and had a gas profile with an exponential ramp described in Fig. 4.1. The resolution
was set to dz = 0.1 and dt = 0.09.

Power spectrum of the source term using the SSM is presented in Fig. 4.2 for the
1C laser pulse defined by Eq. (4.1). The pulse has THz frequency components only
for very low values of t0, below 1 fs, seen in Fig. 4.2.(b). However, such a laser field
already contains significant THz frequency components, see Fig. 4.2.(d).
The spectrum of the corresponding electric fields for the 1C laser pulse is also shown.
Only when the laser itself contains THz frequencies can they be observed in the
source term. The only meaningful amount of excitation in this spectrum is gained
with a very low value for t0.
Based on the results of the SSM, short laser pulses were investigated using the 1D
fluid model. The results are presented in Fig. 4.3. At large the findings by the 1D
fluid model match those found by the SSM, both indicating that if there is THz
radiation to be had from a 1C pulse, very small values of t0 need to be used. As
seen in Fig. 4.3.(b) there is no THz for ν > 30 THz contrast to the results from the
SSM shown in Fig. 4.2.(b). This difference is due to propagation, which the SSM
can not take into account.
The results from both the SSM and the 1D fluid model show that a 1C laser pulse
is not very efficient in generating THz radiation. This result is in agreement with
the discussed mechanism of THz generation, in Sec. 2.6. However, some THz yield
is seen for very short t0. These short laser pulse are hard to create practically and
thus the 1C laser pulse is not useful for creating THz radiation.
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4.2.2 Two Color Pulses

The investigated parameters for the 2C-laser pulse given by Eq. (4.3) are the fraction
of energy in the second harmonic ξ, the relative phase φ, the laser intensity I0 and
the characteristic pulse duration t0.

4.2.2.1 Investigation of Laser Parameters of the fraction of energy in
SH and the relative phase

Using SSM, the excitation efficiency µTHz was calculated for sweeps over the laser
parameters ξ and φ with different values of I0 and the same t0 = 15 fs. The degree
of ionization ne/nat of the final electron density was also calculated. The result is
presented in Fig. 4.4 left and right column respectively.
Two different regimes are distinguished. One where the ionization degree is nearly
constant for all ξ and φ and full single ionization is reached, seen in (f). For this
regime, the maximum excitation is achieved around ξ ≈ 0.3, φ ≈ 0, π. In the other
regime, the ionization degree is varying over different laser parameters, seen in the
right column except (f). Here, the maximum of ne/nat is achieved for a ξ ≈ 0.45.
The same parameter sweeps over ξ and φ have been made with the 1D fluid model,
for a constant t0 = 15 fs. The laser pulse is propagated through a 3 µm long argon
gas-plasma, and then the time trace E(z0, t) is sampled at another 3 µm behind
the plasma. The electron-ion collision frequency for the 1D fluid model was set to
νe = 100 fs−1 and the electron density to ne = 2.7 · 1025 m−3. The results for the
1D fluid model are presented in Fig. 4.5 and shows a general agreement with the
results for SSM. The 2C laser pulse is propagated through a 3 µm long gas plasma.
Pulse duration is t0 = 15 fs, with resolution set to dz = 0.1, dt = 0.099.

4.2.2.2 Discussing the trends seen for the fraction of energy in the SH
and the relative phase

The trend of the optimal parameters for different intensities are explained by ne.
Consider the intensity regime where the ionization is dependent on ξ and φ.
For these intensities, the optimal laser parameters for the highest µTHz and ηTHz
tends towards the optimal ξ for ionizing the gas. The laser pulse with this parameter
has a higher peak amplitude, which is beneficial for ionization. Such a pulse is
presented in Fig. 4.6.(a). In addition, the net electron drift, discussed in Sec. 2.6,
for near-zero frequency currents is also affected by intensity. For lower intensities, the
results indicate that the net electron drift is negligible compared to the ionization as
the optimal parameters tend more strongly toward those that maximize ionization.
The same effect is were the optimal parameters for the efficiency tends towards
ξ ≈ 0.45 is seen for the higher intensities aswell. The same reasoning that the
down conversion can be neglected can not be applied here since it increases with
intensity. But for the intensities in the regime where the ionization is nearly constant
for different laser parameters, the optimal parameters instead shape the laser pulse
such that the down-conversion of frequencies is maximized. The laser pulse with
these parameters is presented in (b).
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Figure 4.4: In the left column the excitation efficiency µTHz for pulses with dif-
ferent intensities I0 made with the SSM are shown. In the right column are the
corresponding ionization degrees ne/nat.
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Figure 4.5: Laser-to-THz efficiency ηTHz (left) for pulses with different intensities I0
for the 1D fluid model is shown with corresponding ionization degrees ne/nat (right).
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Figure 4.6: (a) shows the laser pulse with parameters such that ionization is max-
imized, and (b) shows the laser pulse with parameters such that down-conversion
of frequencies is maximized. For a pulse to ionize the gas, the amplitudes at the
extrema should be large for as many peaks as possible. To generate THz radiation,
the pulse has has to create a net electron drift as discussed in Sec. 2.6.

Although the overall results were similar for SSM and 1D Solver, there are a few
differences. One is that they differ in the drop off in µTHz and ηTHz when lowering
the intensity to I0 = 1018 Wm−2. µTHz drops three orders of magnitude for Fig.
4.4.(a) to (c) while ηTHz only drops one from 4.5.(a) to (c). For higher intensities
ηTHz is seen to plateau in Fig. 4.5.(g) and (i), whereas µTHz seems to only keep
increasing with higher intensity I0, seen in Fig. 4.4.(g) and (i).

4.2.2.3 Investigation of laser intensity for the optimal THz-generating
parameters

Further investigations of the impact of I0 on the THz yield was made for pulses that
were shown to maximize the THz-mechanism ξ = 0.3 and φ = 0. The THz-yield
for different I0 was simulated with SSM is presented in Fig. 4.7.(a) together with
the corresponding with excitation efficiency µTHz in (b) and the ionization degree
nTHz/nat in (c). From (a) one can observe that Y SSM

THz increases monotonically with
I0. Also distinct plateaus matching the ionization degree is seen.
The plateaus are due to the exponential shape of the ionization rate, WZ , seen in
Fig 2.2. The dashed lines in Fig. 4.7 marks the intensities where WZ = 0.1 for first,
second and third ionization. The local maxima is seen in the excitation efficiency
for I0 ≈ 3.5·18, 1.3 ·1019, 3.8 ·1019 Wm−2 in (b). These maxima matches the plateaus
in the ionization shown in (c).
Considering the results of the SSM in Fig. 4.4, there is a large difference between the
excitation efficiency for I0 = 1018 Wm−2 (a) and I0 = 2 · 1018 Wm−2 (b) compared
to the differences between the efficiency for the higher intensities. For ξ = 0.3 and
φ = 0 this trend is further confirmed in Fig. 4.7. A fast increase in the yield for
intensities between I0 = 1018 Wm−2 and I0 = 3.5 · 1018 Wm−2 is shown in (a) while
the increase declines with higher intensities. In (c) the corresponding ionization
degrees is shown and it is seen that it is indeed increasing the most between the
same intensities I0 = 1018 Wm−2 and I0 = 3.5 · 1018 Wm−2.
The same sweep over I0 is computed with the 1D fluid model. A 2C laser pulse with
the parameters ξ = 0.3 and φ = 0 is swept over all valid intensities for the model
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Figure 4.7: THz excitation yield Y SSM
THz for different laser intensities I0 for the 2C-

laser with parameters, ξ = 0.3 and φ = 0. The vertical dashed lines mark where
the ionization rate for the first, second and third degree of ionization is greater than
0.1.
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intensities of when the next order of ionization starts.
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and the result is presented in Fig. 4.8.
The SSM and the 1D fluid solver for the yield and ionization degree, most notably
in that the intensities were a plateau is seen for Y 1D

THz and ne/nat is matched with the
intensities that give WZ = 0.1. The decrease in efficiency after I0 = 3.5 ·1018 Wm−2

is not seen in the SSM simulations. This is a propagation effect that is due to that
a higher ionization ne changes the shape of the laser pulse to a higher degree, see
Sec. 3.2.3. As shown with the parameters sweep in Fig. 4.4 and 4.5 the THz-yield is
highly dependent on the shape of the laser pulse. Since the deformation of the laser
pulse is a propagation effect this is plateau is not seen for the SSM simulations.
The maximum for the efficiency seen in Fig. 4.8.(b) is were the intensity is strong
enough to fully ionize the argon gas to the first order.
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4.2.2.4 Investigation of pulse duration

A parameter sweep with SSM over ξ and φ was also made for different pulse dura-
tions, t0, with I0 = 4 · 1018 W/m−2. The result is presented in Fig. 4.9 and shows
the same trend for the optimal laser parameters for µTHz as for different I0 when
ionizing the argon gas unevenly, that is when the gas is not fully evenly ionized for
all ξ and φ, the maxima for ξ and φ tend toward those that maximize the ionization.
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Figure 4.9: THz excitation efficiency µTHz (left) and ionization degree ne/nat (right)
for in the simple source term model. I0 = 4 · 1018 W/m2
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For the lowest pulse duration, t0 = 5 fs, the laser pulse only ionizes the gas signif-
icantly for about four laser cycles. Here, the same argument for the trend of the
laser parameters that creates the highest νTHz can be made as when having a lower
intensity. The low amount of laser cycles makes the down conversion negligible and
the parameter sweep instead convey how effectively the laser ionizes the gas.
From Fig. 4.9 it is also indicates that when a pulse duration of t0 = 15 fs or higher
is used, the same relative level of ionization is achieved for all values of ξ and φ.
This justifies the use of the shorter t0 = 15 fs when simulating with the 1D fluid
model in the sense that it at least reaches the same relative ionization for the laser
parameters ξ and φ as it does for the longer t0 = 50 fs pulses.

4.2.3 Comparing with theory
The results for the parameters that maximizes the µTHz and ηTHz is inline with the
discussion of how to maximize the net electron drift with the ionization current
Jx(z, t) discussed in Sec. 2.6. For ξ ≈ 1 the pulse in Eq. (4.3) is essentially the
single colored pulse in Eq. (4.1) and the ionization current should not have a net
drift of electrons according to Eq. (2.27). This is also what is seen in the results
for both SSM and the 1D fluid model in Fig. 4.4 and Fig. 4.5 respectively where
µTHz and ηTHz is practically zero when ξ approaches 1 for all intensities. When ξ
approaches 0 on the other hand, (2.28) → (2.27) but with a doubled frequency ωL
and the same argument for no net drift is applicable. This is also seen in Fig. (4.4)
and (4.5) for all intensities.
For small values of ξ, the FH is the dominating part of the 2C laser pulse in Eq.
(4.3) implying that the peaks of the laser and thus the ionization events occurs at
about tk = π

2ωL + j π
ωL

for j ∈ Z. The near-zero frequency component of Jx according
to Eq. (2.28) is then proportional to only the contribution from the second harmonic
as

Jx ∝
∑
k

cos(2ωLtk + φ)
ωL

=
∑
k

cos(π + j2π + φ)
ωL

, (4.7)

which is maximized when φ = 0 + nπ for n ∈ Z, as found by the simulations. It
is also clear that Eq. (4.7) is zero for φ = π

2 + nπ, also in agreements with the
simulations. When ξ is larger and the FH is not dominating, the peaks of the laser
will be shifted and the analysis is complicated.
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Summary & Conclusion

In conclusion, a 1D fluid model for describing the interaction of an intense laser
pulse with a gas-plasma has been implemented and analyzed. The interaction has
been simulated for different laser parameters and compared with the theory with
respect to the terahertz (THz) generation.
The discretization of the model used in this thesis is done by the finite-difference
time-domain method. The scheme has been validated by showing that it converges
to analytic solutions and by comparison to already published results.
Near-zero frequencies in the current density can be generated by drifting free elec-
trons that are created due to ionization. These near-zero frequency components can
lead to THz emission for particular laser field shapes. Single-color laser pulses have
been shown to be typically inefficient for THz generation while two-color pulses were
shown to be efficient in particular regimes.
For two-color laser pulses, the pulse intensity, the energy ratio between the fun-
damental and the second harmonic as well as their relative phase difference were
analyzed. Depending on the laser intensity, optimal regimes with respect to the
energy ratio and phase difference were identified. In general, two intensity regimes
with a distinct optimal parameter choice have been found: One, where the ionization
degree depends strongly on the energy ratio and phase difference, and one where
the ionization degree is constant with respect to these parameters. The latter case
happens for instance when the full single ionization level is reached. This case has
been shown to produce typically the highest conversion efficiency.
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Appendix

A Neglecting magnetic term in the Lorentz force
The Lorentz force acting on a charged particle is

F(r, t) = q
(
E(r, t) + v(r, t)×B(r, t)

)
, (A.1)

the magnitudes of the electric and magnetic contributions are

|FE| = |qE(r, t)| = qE, (A.2)
|FB| = |qv(r, t)B(r, t) sin θ| ≤ qvB, (A.3)

respectively, where θ is the angle between v(r, t) of the charged particle and B(r, t).
This gives the relation between the magnitudes as

|FB|
|FE|

≤ vB

E
. (A.4)

For a electromagnetic waves in vacuum (resp. argon gas) µr = εr = 1 (resp. µr ≈
1,εr ≈ 1) the relation between the electric and magnetic field is E = cB (resp.
E ≈ cB). Then,

|FB|
|FE|

≤ vB

E
≈ v

c
. (A.5)

In this thesis the magnetic term in the Lorentz force has been neglected as long
as the velocity of an electron does not reach a speed comparable to the speed of
light. For all simulations made the upper bound for the electron velocity is set to
vmax = 0.1c.

B Drude Fluid Model Derivation
The equations needed to derive Eq. (2.9) are Eqs. (2.5), (2.8). Differentiate Eq.
(2.5) with respect to time to get

∂tJe = qe∂t

∫ t

−∞
v(r, t, ti)

[
∂tine(r, ti)

]
dti,

which, through Leibniz integral rule, can be reduced to

qe

ne(t) v(t, t)︸ ︷︷ ︸
=0

+
∫ t

−∞
dtiv(r, t, ti)

[
∂tine(r, ti)

]
dti

 , (B.1)
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5. Summary & Conclusion

where v(r, t, t) = 0 since electrons are assumed to be born with an initial velocity
of 0. The time derivative of Eq. (2.8) is then taken to get

∂tv(r, t, t) = qe

me
∂t

∫ t

ti
E(r, τ)e−νe(t−τ)dτ,

which again through Leibniz integral rule can bet rewritten as

∂tv(r, t, ti) = qe

me
E(r, t)− qeνe

me

∫ t

ti
E(r, τ)e−νe(t−τ)dτ.

Inserting this value for ∂tv(r, t, ti) into Eq. (B.1) to obtain

∂tJe = q2
e
me

E(r, t)
∫ t

0

[
∂tine(r, ti)

]
dti −

q2
eνe

me

∫ t

−∞

[
∂tine(r, ti)

] ∫ t

ti
E(r, τ)e−νe(t−τ)dτ =

q2
e
me

E(r, t)ne(r, t)− qeνe

∫ t

−∞

[
∂tine(r, ti)

]
v(r, ti, t)dti = q2

e
me

E(r, t)ne(r, t)− νeJe(r, t),

according to the definition of Je given by Eq. (2.5), and we end up with the equation
coupling the current to the electron density, given by

∂tJe(r, t) + νeJe(r, t) = q2
e
me

ne(r, t)E(r, t).

C Details of Atomic Quantities Eat, Iat and ωat

Eat = q

4πε0a2
0
, (C.1)

which is the Coulomb field at the Bohr radius a0 = 4πε0~2

me
. The atomic intensity Iat

is defined as the intensity of light for a field strength with amplitude equal to the
Coulomb field in Eq. (C.1) [10]

Iat = E2
atε0c

2 . (C.2)

The ground-state binding energy of hydrogen is [17]

EH = q2

8πε0a0
≈ 13.6 eV. (C.3)

The atomic frequency is defined as

ωat = 2
~
|EH |. (C.4)

With numbers for the physical constants this gives us

Eat ≈ 5 · 1011 V/m, (C.5)
Iat ≈ 3 · 1020 W/m2, (C.6)
ωat ≈ 4 · 1016 s−1. (C.7)
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D Ionization energies of argon gas

The ionization energy for argon gas is taken from “National Institute of Standards
and Technology”. [11]

Order of Ionization [Z] Ionization Energy [eV]
1 15.7596117
2 27.62967
3 40.735
4 59.58
5 74.84
6 91.290
7 124.41
8 143.4567
9 422.60
10 479.76
11 540.4
12 619.0
13 685.5
14 755.13
15 855.5
16 918.375
17 4120.6656
18 4426.222

Table D.1: The energy needed to ionize a argon atom to the next order of ionization.
Note the big jumps in energy from Z = 8 to 9 and Z = 16 to 17. This is due to
the shell structure of the electrons around the nucleus. For the most intense laser,
I0 = 1020 Wm−2, considered in this thesis, with a wavelength λL = 800 nm, the
probability of ionizing the argon gas to order Z = 9 is W9

(√
2I0
ε0c

)
= 7.65 ·10−89 s−1,

Eq. (2.11) hence a higher ionization then Z = 8 is not considered in this thesis.

III



5. Summary & Conclusion

E Plasma Units
To make calculations simpler, a specific unit normalization scheme is used in this
thesis. The list of normalized quantities follows as

t′ = tω0,

s′ = s
ω0

c
,

E ′ = E
q

meω0c
,

B′ = B
q

meω0
,

J ′ = J
q

meω2
0cε0

,

n′e = ne
q2

ω2
0meε0

,

where ω0 is a frequency, c is the speed of light, me is the electron rest mass, q is the
elementary charge and ε0 is the vacuum permittivity. These normalizations give the
plasma frequency as

ω2
p = neq

2

meε0
→

→ ω′p =
√
n′.

Throughout this thesis, ω0 is chosen to be the angular frequency for the laser used
in the simulation ωL.

F Electron velocity
An expression for electron velocity in an oscillating transverse electric field can be
derived to set a maximum value for the electrons in the ionized plasma. In the
model for this thesis the magnetic term in the Lorentz force is excluded

F(r, t) = qe
(
E(r, t) + v(r, t)×B(r, t)

)
≈ qeE(r, t), (F.1)

when deriving the current equation from the Drude model Sec. (2.2). The E-field
has the amplitude EL and frequency ωL of the linearly polarized laser used in a
simulation

F(r, t) = qeE(r, t), E(r, t) = EL sin (ωLt)x̂→ (F.2)

→ F (t) = qeEL sin (ωLt), (F.3)

from Newton’s second law of motion, F (t) = medtv(t),

medtv(t) = qeEL sin (ωLt), (F.4)
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which then can be integrated to give a expression for the total velocity of a electron

v(t) = qeEL

m

∫ t

−∞
sin (ωLτ)dτ. (F.5)

Note that here the collision term from the Drude model is excluded since we want
to set a upper bound for the electron velocity. In an oscillating sinusoidal field
the maximum velocity will be achieved for a electron that has zero velocity at the
maximum of a oscillation τ = π/2ωL to half of the period τ = π/ωL,

vmax =
∣∣∣∣∣qeEL

me

∫ π/ωL

π/2ωL
sin (ωLτ)dτ

∣∣∣∣∣ (F.6)

= qeEL

meωL
. (F.7)

G Ionization Current Mechanism
To derive Eq. (2.26), We start with Eq. (2.23).. The derivation is equal for all space
z, hence the functions will only be considered as functions in time in the following
part.

Jx(t) =
∫
vx(t, ti)ṅe(ti)dti. (G.1)

If collisions are neglected, the electron speed is given as

vx(t, ti) =
∫ t

ti
E(τ)dτ, (G.2)

ṅe(t) =
∑
k

nk(ti)δ(t− tk). (G.3)

Substituting Eq. (G.3) in (G.1) gives

Jx =
∫
vx(t, ti)

∑
k

nk(ti)δ(t− tk)dti (G.4)

=
∑
k

vx(t, tk)n(tk). (G.5)

With Eq. (G.2) we get

Jx =
∑
k

n(tk)H(t− tk)
∫ t

tk

Ex(τ)dτ

=
∑
k

n(tk)
(∫ t

−∞
Ex(τ)dτ −

∫ tk

−∞
Ex(τ)dτ

)
. (G.6)

Assuming Ex is oscillating harmonically and is zero outside a finite interval, for
t > max{t | Ex(t) 6= 0} the first integral is zero and we get

JTHz = −
∑
k

n(tk)H(t− tk)
∫ tk

−∞
Ex(τ)dτ. (G.7)
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For an electric field given by

E(t) =
_

E (t)
∑
m

sin (ωmt+ φm), (G.8)

with a slow varying envelope
_

E (t) in the sense that∣∣∣∣∣∣∣
∂t

_

E (t)
_

E (t)

∣∣∣∣∣∣∣� ωm, ∀m, (G.9)

the integral over E(t) from −∞ to t can be approximated as
∫ t

−∞
E(τ)dτ ≈

_

E (t)
∑
m

− cos (ωmt+ φm)
ωm

. (G.10)

Using this approximation in Eq. (G.7) we obtain for t > max{t | Ex(t) 6= 0}

Jx =
∑
k

n(tk)H(t− tk)
_

E (tk)
∑
m

cos (ωmtk + φm)
ωm

. (G.11)

H Convergence of the code
Here the convergence of the code is studied for the power spectrum from a 2C
laser defined by Eq. (4.3). With the laser parameters ξ = 0.3, φ = 0 rad, I0 =
4 · 1018 W/m2. The laser pulse in the Fig. E.1 has propagated through a 10 µm
long plasma. The time trace Ex(z0, t) for the laser is taken z0 = 3 µm behind the
plasma.
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Figure E.1: Convergence of the |Ex(ν)|2 for the 1D solver. dt = 0.99dz in plasma
units for all the simulations.

We also show that the transform gives the same power spectrum independent of
the length of the extracted E-field E(z0, t). A smaller time trace only gives less
frequency resolution in the power spectrum. In Fig. E.2 the same simulation as in
Fig. E.1 is shown, but with different lengths of the time trace. In the last picture
the time trace is reduced by a factor of 5 from the original simulation.
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Figure E.2: In Fig. E.1 the power convergence of the code was studied with a time
trace of N points. In (a) the same time trace is reduced to N/2, in (b) N/2.5 and
in (c) N/5.

The convergence is also shown in terms of the plasma dispersion relation from Sec.
3.2.3.
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Figure E.3: In (a) the dispersion relation extracted from the code is compared to
the analytic dispersion relation for a plasma that converges for a finer resolution
in the simulation. (b) is a zoomed version of the comparison, clearly showing the
convergence. The dispersion is only shown for frequency components that have
an amplitude of at least 8 orders of magnitude within the amplitude of the laser
frequency.

The convergence of the energy conservation for the model is shown in Fig. E.4.
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Figure E.4: Convergence of the energy conservation for the code. The setup for the
simulation is shown in Fig. 3.6 were it is seen that the bumps in the energy loss
comes from the ramping up of the atom density profile.

I Plasma dispersion relation

Considering the different fields in temporal Fourier space1

∂zÃ(z, ω) = −iωÃ(z, ω),

the dispersion relation is obtained by

(2.21)→ ∂zẼx(z, ω) = −(−iω)B̃y(z, ω)→ B̃y(z, ω) = − i
ω
∂zẼx(z, ω), (a)

(2.22)→ ∂zB̃y(z, ω) = −(−iω)Ẽx(z, ω)− J̃x(z, ω)→ − i
ω
∂2
z Ẽx(z, ω) = iωẼx(z, ω)− J̃x(z, ω), (b)

(2.23)→ (−iω)J̃x(z, ω) = neẼx(z, ω)→ J̃x(z, ω) = i
ne

ω
Ẽx(z, ω), (c)

(b), (c)→ − i
ω
∂2
z Ẽy(z, ω) = iωẼx(z, ω)− ine

ω
Ẽx(z, ω),

(I.1)

where the terms can be arranged to give a wave equation for Ẽ(z, ω), Eq. 3.11.

J Atom density in the gas
The initial atom density in the gas that will be ionized is calculated from the ideal
gas law

pV = NkBT,

1The sign convention is chosen according to the spatial and temporal Fourier transforms used
in this thesis, found in App. L.
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where p is the pressure, V is the-1considered volume, N is the number of particles,
kB = 1.38064852 · 10−23 JK2 and T is the temperature. For atmospheric pressure
pat = 101325 Pa and with T = 273.15 K the atom density reads

nat = N

V
= p

kBT
≈ 2.7 · 1025 m−3. (J.1)

K Energy considerations
A model must conserve energy if it is to be used to accurately model a conservative
system. In Sec. 3.2.6 the Poynting theorem is used to show the energy conservation
of the simulations. Here it is shown how the Jx(z, t)Ex(z, t) can be interpreted in
the laser-plasma interaction for the 1D model. The electromagnetic energy in 1D is

UEM(z, t) = 1
2
(
E2(z, t) +B2(z, t)

)
.

The Poynting theorem in 1D reads

− ∂tUEM(z, t) = ∂zSz(z, t) + Jx(z, t)Ex(z, t), (K.1)

i.e, the change of UEM(z, t) in time in a plane is equal to the flux of energy through
this plane, described by the divergence of the Poynting vector ∂zSz(z, t). The last
term Jx(z, t)Ex(z, t) is the change of the work in time done by the EM-fields on the
electrons in the plasma. In the fluid model the fluid velocity is used to calculate the
new current in Eq. (2.8).
If the different velocities for the electrons is considered, the electron energy density
can be separated into a kinetic term and a thermal term. We assume a distribution
of velocities of electrons f(vx) that has∫ ∞

−∞
vxf(vx)dvx = v, (K.2)

where this v is the mean velocity used as the fluid velocity in the Drude model. The
total electron energy density can then be separated as∫ ∞
−∞

(vx − v)2f(vx)dvx =
∫ ∞
−∞

v2
xf(vx)dvx − 2v

∫ ∞
−∞

vxf(vx)dvx +
∫ ∞
−∞

v2f(vx)dvx =
(K.3)

=
∫ ∞
−∞

v2
xf(vx)dvx − v2 → (K.4)

→
∫ ∞
−∞

v2
xf(vx)dvx = v2 +

∫ ∞
−∞

(vx − v)2f(vx)dvx. (K.5)

where the right hand side is the electron energy density and v2 is the kinetic energy
density. The last term is identified as a thermal energy since it depends on the
spread of vx from v,

Utot ∝
∫ ∞
−∞

v2f(vx)dx+
∫ ∞
−∞

(vx − v)2 f(vx)dx. (K.6)
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As mentioned the fluid model used in this thesis does not take the different electron
velocities into account, hence this thermal effect is neglected in this sense.
However, if the work term in Eq. (3.20) is separated into change of kinetic and
thermal energy as Eq. (K.6)

Jx(z, t)Ex(z, t) = ∂tUwork(z, t) = ∂tUkin(z, t) + ∂tUth(z, t), (K.7)

and the change in kinetic and thermal energy density can be found in terms of the
field quantities, with change in kinetic energy density being

∂tUkin(z, t) = ∂t

(
J2
x(z, t)

2ne(z, t)
,

)

and change in thermal energy density being

∂tUth(z, t) = νeJ
2
x(z, t)

ne(z, t)
+ J2

x(z, t)
2n2

e(z, t)∂tne(z, t),

where the first term νeJ
2(z, t)/ne(z, t) originates from the heat loss due to collisions

and the second term
(
J2
x(z, t)/2n2

e(z, t)
)
∂tne(z, t) originates from the rate of change

in electron density ne(z, t).

L Fourier transform
In the thesis we are using the temporal Fourier and inverse-Fourier transform defined
as

Ã(ω) =
∫ ∞
−∞

A(t)e−iωtdt, (L.1)

A(t) = 1
2π

∫ ∞
−∞

Ã(ω)eiωtdω, (L.2)

and the spatial Fourier and inverse Fourier transform defined as

Ã(k) =
∫ ∞
−∞

A(z)eikzdz, (L.3)

A(z) = 1
2π

∫ ∞
−∞

Ã(k)e−ikzdk. (L.4)
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