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Vision-based state estimation of autonomous boats
ANNA PETERSSON
Department of Mechanics and Maritime Sciences
Chalmers University of Technology

Abstract

For any autonomous vehicle, such as a self-driving boat, it is essential to estimate its lo-
calisation accurately. One approach to this problem is to use visual odometry, which is a
purely vision-based state estimation. Today, autonomous boats mainly use global naviga-
tion satellite systems (GNSSs) or inertial measurements units (IMUs) and are commonly
only partly self-driving. In contrast, a camera-based system would be more cost-effective
and function in areas where there are no signals from the GNSS. However, a vision-based
state estimation tends to be not as accurate. This project implemented the algorithm
called direct sparse odometry to investigate how such a monocular localisation system
could replace an IMU and a GNSS. At the same time, the work addressed how this method
and similar kinds of algorithms could be automatically evaluated at a future web-based
platform.
We could show that the algorithm did not perform so well on the chosen sequences.

However, there are indications that a direct method could attain better performance than
a feature-based visual odometry method. The project’s results demonstrate how the ar-
chitecture of an algorithm running on the platform can be designed and showed directions
for research of more accurate performance. For example, to use several monocular cam-
eras or use a full simultaneous localisation and mapping (SLAM) system instead would
probably result in a more precise vision-based state-estimation of a boat. The resulting
algorithm will hopefully work as a reference algorithm for future localisation algorithms
on the mentioned platform. Moreover, the conclusions drawn from what requirements are
put on such algorithms can facilitate the platform’s design and implementation.

Keywords: direct sparse odometry, visual odometry, visual ego-motion estimation, con-
tinuous integration, autonomous surface vehicles, autonomous boats, SLAM.
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1 Introduction

For any self-driving vehicle, it is essential to have an accurate estimation of the vehicle’s
position and motion. Further, for such a system to be used widely, it must be simple
and cost-effective. Thus, in contrast to approaches using expensive sensors such as light
detection and ranging (lidar), using a camera is a reasonable alternative [1]. The problem of
a camera-based state estimation has been extensively studied in the context of autonomous
cars [2] but only sparsely in the area of autonomous boats [3].
The structure of a self-driving car is usually divided into a perception system and a

control system. Each of these is responsible for several tasks. The perception system
handles the state of the vehicle and, in many cases, manages a model of its environment.
The control system then uses these estimations to steer the car. The part of the perception
system responsible for computing the vehicle’s state can be called the localiser subsystem.
This segment may use sensor information, the vehicle’s odometry, and offline maps as input
and produces the car’s state as output. Various sensors can be used for the localisation
of the car. Apart from solutions using global navigation satellite systems (GNSSs), some
methods use lidar, camera, or a combination of these two. Using lidar gives high accuracy,
but the sensor is expensive. On the other hand, solutions based on cameras are not as
exact but are cheaper [2].
Changing the setting to autonomous boats, also called autonomous surface vehicles

(ASVs), the problem of a vision-based localisation alters. For a boat, the landscape
around it is constantly changing. In addition, the sea conditions will highly affect the
position of the boat. Further, there are no roads with lane markings to follow. For the
perception of an ASV, problems may also arise due to, for example, fog, reflections, and
changes in lighting and weather. As with land vehicles, a camera-based localisation of
boats is vital in areas with no GNSS signals, such as if there is blocking vegetation at a
shore. Self-driving boats have been suggested for areas such as environmental and other
scientific research as well as for military uses. Currently, only partly autonomous boats
are commonly used, and there is a lack of research covering state estimation using sensors
other than GNSS and inertial measurement units (IMUs) [3].
This master’s thesis is conducted at the Revere vehicle lab at the Chalmers University

of Technology and the University of Gothenburg, which studies different autonomous ve-
hicles. To this end, the lab has set up research platforms on a car and a truck as well as
built a fleet of miniature cars [4]. Recently, the lab has started a project named Reeds
which consists of setting up a platform for research on a ship. The aim of this platform is
to gather data sets for perception, similar to already existing ones for land vehicles, such
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Chapter 1. Introduction

as the Kitti data set [5]. Further, the project aims to set up a cloud service for automatic
comparison of algorithms for perception. Such a service would be able to benchmark com-
puter vision algorithms systematically, which is not done today [6]. This master’s thesis
is a part of this project and aimed to implement a reference algorithm that could be used
on the cloud service.

1.1 Research questions

The aim of this thesis project was to investigate the possibility of estimating the kinematic
state of a boat using a vision-based sensor system. A localisation system based only on
conventional cameras will be much more cost-efficient compared to other sensors, such as
an IMU or a lidar. Therefore, it could be widely available in the future. Moreover, a vision-
based system can be used as a complementary system to GNSS in environments where
higher accuracy is needed or where there is no GNSS signal. The localisation algorithm
direct sparse odometry is implemented to investigate this. The results from this algorithm
are statistically compared to the ground truth obtained from a fibre-optic gyroscope (FOG)
IMU and a GNSS.
Moreover, the project aimed to explore the requirements for such a vision-based lo-

calisation system to be run on the above-described cloud service. The envisioned Reeds
platform will enable a systematic, automatic evaluation and comparison of maritime per-
ception algorithms. Thus, this platform would facilitate further research and development
in this area. Therefore, one part of this thesis work was to examine what requirements
this puts on the algorithm in terms of, for example, software architecture, deployment,
and automatic evaluation.
The project includes the following two research questions:

RQ1: To what extent can a vision-based sensor system replace a high-end FOG
IMU sensor together with a GNSS in an algorithmic approach?
RQ2: What requirements are put on such an algorithm to be deployed as a con-
tainerized reference algorithm automatically evaluated and compared towards
future algorithms with future data?

1.2 Limitations

The algorithm was only tested using data collected at the west coast of Sweden, and it was
decided that the data should include some amount of coastline. Furthermore, the work
did not consider different weather conditions or nighttime.
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Chapter 1. Introduction

1.3 Outline

The rest of the report is outlined as follows: Sect. 2 highlights previous work in the areas
of localisation algorithms (2.1), autonomous boats (2.2), and containerised software (2.3).
The experimental work is then explained in detail in Sect. 3, starting with the experimen-
tal setup and the data collection (3.1), followed by an explanation of the used localisation
algorithm (3.2). Then, in Sect. 3.3, it is shown how the results are evaluated and Sect. 3.4
describes the implementation and deployment. The results are presented in Sect. 4 and
discussed in Sect. 5. More specifically, the latter section contains discussions of the per-
formance of the localisation algorithm (5.1), requirements for automatic evaluation (5.2),
ethical and sustainability aspects connected to the thesis (5.3), and future work (5.4).
Finally, conclusions can be found in Sect. 6.
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2 Background

In the first part of this section, there is a general introduction to related work connected to
the term visual ego-motion or visual odometry, which are important concepts in camera-
based localisation systems (2.1). Then, previous studies connected to the perception of
autonomous boats and motion models of such are covered in Sect. 2.2. This section con-
cludes with a discussion of work connected to the second research question of containerised
deployment (2.3).

2.1 Ego-motion estimation

The concept of ego-motion can be defined as the motion of a camera in an environment
and can also be called observer motion or camera motion. As an example, ego-motion
can be estimated from a sequence of images and can then be called visual ego-motion.
The latter is a classical problem in the area of computer vision. The word ego-motion
arose during the 1970s within psychology. Since the 1980s, it has also been studied as a
computational model. The motion in an image sequence can be divided into two different
types: the camera’s motion and the motion of an object in the images. The camera and
the object can be moving simultaneously or individually. Various types of cameras have
been used for ego-motion estimation, each having its particular drawbacks. These types
include omnidirectional cameras, giving a 360◦ panorama, as well as stereo and monocular
cameras [7]. A concept that can be used interchangeably with ego-motion estimation is
odometry, in which one estimates a position of, for example, a vehicle by using data from
different sensors [8].
A related concept is that of an optical flow. The definition of optical flow is temporal

changes in a frame, compared to adjacent frames, caused by the camera’s movement or
objects in the image. Measuring the optical flow can therefore give information about spa-
tial changes of objects in the image. The optical flow can also be seen as an estimate of the
motion field, which in turn is a projection of 3D points in the scene onto the image [7]. An
optical flow estimation can be used for motion estimation, and the problem of estimating
the optical flow is one of the main issues in computer vision [9]. Another connected notion
is scene flow. Where optical flow is 2D, the scene flow is the 3D representation of motion.
Optical flow only captures movement parallel to the plane of the image, while scene flow
can estimate the three-dimensional movement. Therefore, estimating scene flow is more
complex [10].
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Chapter 2. Background

Estimating the movement using only visual input is called visual ego-motion estimation
or visual odometry [7]. This concept can be divided into two classes: geometry-based visual
odometry, including the more classical methods, and learning-based visual odometry, based
on machine learning. The following two subsections will go further into details about these
two and discuss various studies. The third and last subsection will discuss the problem of
scale estimation which arises when using a monocular camera for visual odometry.

2.1.1 Geometry-based visual odometry

Classical, geometry-based visual odometry methods can be divided into two categories:
(1) feature-based or indirect methods and (2) appearance-based or direct methods [11],
[12]. A feature-based method is based on a number of features that are matched between
images, whereas an appearance-based approach instead considers the pixel intensities of
the image [12]. Thus, a direct method uses more of the information in an image, resulting
in a solution that is potentially more stable and with higher accuracy. This approach,
however, requires more computations [11]. Moreover, each of these approaches can be
further categorised into dense or sparse. A dense method tries to use all pixels while a
sparse algorithm selects and uses a smaller set of pixels [13]. These classical approaches
usually rely on a long pipeline having steps such as feature detection and matching [11].
An application of ego-motion estimation is simultaneous localisation and mapping (SLAM).

In SLAM, the robot simultaneously builds a map and estimates its position on the map.
By using visual SLAM, this is done using only camera input [7]. The strength of SLAM,
compared to only using ego-motion estimation, is its use of loop closures which enables
the algorithm to find a more accurate map and to minimise drift and errors in the lo-
calisation [14]. There are both visual SLAM methods that are feature-based, such as
ORB-SLAM2, and those that use direct methods, such as LSD-SLAM [15], [16]. When
run on the Kitti benchmark data set, ORB-SLAM2 performs slightly better than LSD-
SLAM [17].
Another proposed visual ego-motion estimation method is called direct sparse odometry

(DSO). Compared to ORB-SLAM2, which is sparse and indirect, and to LSD-SLAM,
which is dense and direct, DSO is sparse and direct. An advantage of this method is that
each point is represented by the inverse depth instead of the actual 3D point. Moreover, the
model samples points from the whole image, also from sparsely textured parts. In short,
DSO handles points and keyframes over which it continuously optimises the photometric
error. DSO was first implemented for monocular cameras, but there is also a stereo version,
stereo DSO, as well as a version with loop closure, LDSO [13], [18], [19]. Compared to the
SLAM methods mentioned above, stereo DSO performs better than both of them on the
Kitti benchmark suite [17].
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Chapter 2. Background

2.1.2 Learning-based visual odometry

Visual odometry methods that instead use machine learning are called learning-based vi-
sual odometry. These approaches are thought to be more robust towards noise in the
images and do not require camera calibration [11]. The earliest works in this area use
the K-nearest neighbour algorithm and an expectation maximisation algorithm, respec-
tively [20], [21]. Learning-based visual odometry can be divided into three classes: absolute
pose regression, relative pose regression, and optical flow-based. Methods based on abso-
lute pose regression usually use a convolutional neural network (CNN) for finding features
in one image followed by a fully connected layer that estimates the absolute state of the
camera. In contrast, a relative pose regression scheme usually matches geometric features
in two adjacent images and computes the camera’s relative state using a CNN. Both cat-
egories have their drawbacks: absolute pose regression approaches in generalisation and
relative pose regression methods in overfitting. Learning-based visual odometry using op-
tical flow, on the other hand, estimates the optical flow between images to estimate the
pose of the camera [11].
Several learning-based visual odometry approaches have been trained and evaluated for

autonomous cars, mainly using the Kitti and Màlaga data sets [5], [22]. The rest of this
subsection will go through some examples. Constante et al. use a dense optical flow as
input to a CNN. The authors could show that the approach seems robust to changes in
lightness and sharpness [23]. A recently published study instead uses a combination of
one network for optical flow extraction followed by a CNN encoder and a recurrent neural
network (RNN) to estimate the pose. Moreover, the method also contains a decoder
that reconstructs the optical flow. This reconstruction is used to train the CNN encoder
unsupervised [11].

Another learning-based approach is implemented by Zhai et al. These authors use the
full images and not the optical flow as input to a CNN, in contrast to the two studies
mentioned above. More specifically, two consecutive images are used as input to a feature-
encoding module consisting of a CNN with ten convolutional layers. Second, a feature map
from the first module is used as input to a memory-propagating module which estimates
the relative pose of the camera [8]. These three approaches were all tested using the Kitti
data set [8], [11], [23]. Among these, the combination of a CNN and a RNN attained the
smallest errors by a large margin [11]. However, the results are far from the small errors
obtained when running stereo DSO [17].
In contrast, Hayakawa and Dariush perform an ego-motion estimation and estimate the

state of surrounding vehicles using three neural networks. The networks are responsible
for estimating bounding boxes of other vehicles, evaluating the depth, and optical flow
estimation, respectively. The depth estimation is used for computing the ground plane,
whereas the optimal flow estimation is used to calculate the absolute velocity of the own
car [1].
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Chapter 2. Background

2.1.3 Monocular visual odometry

Many of the visual ego-motion methods are based on stereo images from which, in contrast
to monocular images, it is possible to retrieve the absolute camera position. Monocular
visual odometry suffers from the drawback of only being capable of estimating the position
up to an unknown scale. Despite this, there are several advantages of using a monocular
camera, including its low cost, it can cover a wide field of view, and it does not need stereo
calibration. Consequently, there have been several methods developed for estimating the
scale in monocular visual odometry. To add metric information to the system, one may add
another sensor such as an IMU or GNSS, use wheel odometry, or add a second camera to
form a stereo system. Other approaches take advantage of the environment, for example,
using the height of the camera and assuming a flat ground plane. Moreover, some methods
use other objects in the scene, such as the height of pedestrians. There has recently also
been methods developed which use deep learning to solve this problem [24].

2.2 Autonomous boats

An ASV is a boat that has reached some level of autonomy by, for example, using systems
that can help or replace the human operator. The first academic project for ASVs was
developed by MIT in the 1990s and has been followed by several others. Standard sensors
are GNSS, IMU, lidar, automatic identification systems (AIS), and stereo cameras [25].
However, the vast majority of available ASVs are only capable of path following using IMU
and GNSS. In contrast, the most advanced prototypes use cameras or lidar for obstacle
detection and can adapt their course to avoid these [26]. In literature, autonomous boats
are also called maritime autonomous surface ships (MASS) and unmanned surface vehicles
(USV). This section covers studies on vision-based localisation of autonomous surface
boats (2.2.1) and waterline detection (2.2.2). The last part discusses motion models for
ASVs (2.2.3).

2.2.1 Vision-based localisation

Some different approaches for a vision-based localisation of autonomous boats have been
studied. However, almost all found studies have focused on localisation in a river where
it may not be possible to use GNSS due to vegetation or human-made structures at the
shores. Two approaches of visual odometry have been used by Kriechbaumer, one feature-
based and one appearance-based, for localisation in a river. Both methods are tested
on stereo images. Their results show a much better performance in the feature-based
method. Moreover, the authors use multiple linear regression to analyse the effect of
various covariates on the error in the estimation [12].
There have also been studies using a SLAM algorithm for the localisation of an au-

tonomous boat. For example, a study by Meier, Chung, and Hutchinson exploit reflec-
tions in a river to segment water from land. Using stereo images, they match symmetric
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features above and below the waterline in each image and use these to estimate the height
and normal of the water’s surface. Further, a robust algorithm for detecting the waterline
from the height and normal is introduced. To test the performance, this is used as input
to a SLAM algorithm called Curve SLAM [27].
Another study has implemented two methods for localisation and mapping using a

monocular camera and tested these in a harbour area. They test a feature-based visual
SLAM approach as well as an optical flow method based on DSO. In this setting, with
large parts of the image containing water, the feature-based method has difficulties finding
features, whereas the optical flow method operates better [28]
Several approaches have used a combination of visual odometry and sensor input. For

example, there have been studies conducted on a state estimation system that does simul-
taneous mapping and localisation in a river using both visual odometry and sensors such
as IMU and sparse GNSS [29], [30]. The method is, however, introduced for a low-flying
aircraft.

2.2.2 Waterline detection and segmentation

Images captured from a boat can, simplified, contain three different parts: water, land,
and sky. The lines separating these can be called the waterline, horizon line, shoreline, or
simply sea-sky line or sea-land line. Several vision-based systems for detecting these and
segmenting the image have been studied, with applications in, for example, navigation and
localisation [31]. An example of the latter application is described above [27]. This section
will discuss more methods for waterline or horizon line detection as well as segmentation.
Steccanella et al. have developed a camera-based method for detecting the line between

water and land or sky and detecting obstacles using a combination of neural networks and
classical computer vision. The solution has been developed for ASVs for water quality
monitoring. The authors first use a convolutional neural network to segment the image
into water and non-water. Then, an estimation of the waterline is attained by applying
edge detection and linear regression on the segmentation. Obstacles can then easily be
detected by finding contours in the binary, segmented image [32].
Another approach is described by Hożyń and Zalewski, where the aim is to find the

line between water and land and then segment the image into water, land, and sky. The
algorithm uses adaptive filtering for edge detection and then uses the results to estimate
the shoreline. Second, land and sky are segmented using a progressive land segmentation.
This approach’s advantages are the absence of parameters to tune and that there is no
need for an extensive database for training [31].

8
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Figure 2.1: The defined coordinate system on a boat showing the translation in surge,
sway, and heave and the rotation in roll, pitch, and yaw.

2.2.3 Motion models

A motion model of an ASV usually considers both kinematics and kinetics. The state or
pose of a robot or vehicle comprises its position and orientation described in six degrees
of freedom. The orientation is commonly described as Euler angles and denoted by roll,
pitch, and yaw. Roll is the orientation around the x-axis while pitch and yaw are the
orientation around the y-axis and z-axis, respectively. Further, the position in the three
directions can be called sway, surge, and heave. The coordinate system is visualised in
Fig. 2.1. Let η = [x, y, z,φ, θ,ψ]T denote the state in the global frame, where (x, y, z) is
the position and (φ, θ,ψ) is the orientation. More specifically, φ denotes roll, θ is pitch,
and ψ stands for yaw. Further, let v = [u, v,w, p, q, r]T be the linear (u, v,w) respectively
angular velocities (p, q, r) in the local frame. A transformation between these can be
expressed as:

η̇ = R(ψ)v (2.1)

Further, a well-used kinetics model for vessels is the one introduced by Fossen in 1994 [33].
This model can be expressed as follows:

M v̇ + C(v)v +D(v)v + g(η) = τ + τw (2.2)

Here, intertia is denoted by M , Coriolis is expressed as C(v), and damping is denoted by
D(v). The function g(η) models gravitational and buoyancy forces. Further, τ represents
the forces and moments on the boat from the control system, while τw are the same from
the surrounding environment such as wind and waves [34].
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For an object that can only move in the horizontal plane, such as an ASV, this model
is commonly simplified to only consider motion in surge, sway, and yaw. Hence, let
η = [x, y,ψ]T and v = [u, v, r]T . The relationship in (2.1) can then be expressed as:

η̇ = R(ψ)v ⇐⇒


ẋ

ẏ

ψ̇

 =


cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1



u

v

r

 (2.3)

Moreover, the kinetics model can be simplified to:

M v̇ + CRB(v)v +N(vr)vr = τ + τw, where N(vr) := CA(vr) +D(vr) (2.4)

and vr is the relative velocity vector. The subscript RB denotes quantities related to
rigid body kinetics [34]. Further, one can assume that M and D are diagonal matrices.
Moreover, higher order nonlinear damping terms are ignored for simplicity. Then, the full
model can be expressed as:



ẋ = u cos(ψ)− v sin(ψ)

ẏ = u sin(ψ) + v cos(ψ)

ψ̇ = r

u̇ = m22
m11

vr − du
m11

u−
∑3
i=2

dui
m11
|u|i−1u+ 1

m11
τu + 1

m11
τwu(t)

v̇ = −m11
m22

ur − dv
m22

v −
∑3
i=2

dvi
m22
|v|i−1v + 1

m22
τwv(t)

ṙ = m11−m22
m33

uv − dr
m33

r −
∑3
i=2

dri
m11
|r|i−1r + 1

m33
τr + 1

m33
τwr(t)

(2.5)

Here, mjj , 1 ≤ j ≤ 3, are the diagonal elements ofM , which thus denote intertia including
added mass. The damping is expressed in dk, dkl, k ∈ {u, v, r}, l ∈ {1, 2, 3}. The model
includes forward force τu and yaw moment τr but the sway force is zero. Thus, this is a
model of an underactuated ship, where the number of actuators are fewer then the degrees
of freedom of the model. The external forces τwu, τwv, τwr are assumed to be bounded [35].

2.3 Containerised software

Containerising an application is the concept of packaging an application together with
all libraries and tools needed for it to run [6], [36]. One can, for example, use Docker to
accomplish this. This paradigm opens up for other possibilities, such as usingmicroservices
as well as continuous integration and deployment. The current section will revise these
concepts and finish by connecting these to the area of autonomous vehicles.
Since the 1960s, developers have faced different problems connected to large-scale soft-

ware development. The software architecture concept emerged from these difficulties and
was fully defined in the 1990s. During the same period, object-oriented programming con-
tributed to the field by introducing design patterns, solutions to recurring design problems.

10
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A typical example is the Model-View-Controller pattern. A predecessor of microservices
is the service-oriented computing architecture introduced for distributed systems, where a
program, service, interacts with other components using messages and gives functionality
to the other components. The microservice term was coined in 2011, but similar concepts
had also been used earlier under other names. By 2017, microservices were the new and
current trend in the field of software architectures [37].
Dragoni et al. define a microservice as ”a cohesive, independent process interacting via

messages” [37]. For example, in a calculator program, one of the microservices could handle
calculation, while another is responsible for displaying the result. Hence, this approach
gives loose coupling and high cohesion. To explain the advantages of microservices, one
can contrast these to single executable artefacts, whose modules are dependent on each
other and can thus not run independently. Common languages such as C++are designed
for the latter kind of programs. Among this architecture’s drawbacks, one finds difficulties
in maintaining, finding bugs, in deployment, and in scalability. Deploying a new version
of a module typically requires downtime of the whole application [37].
By building the software so that all modules are microservices, one can limit these

problems. First, this design principle makes it easier to locate bugs, as there is a smaller
amount of codebase where it can be. Moreover, as the modules can be run independently,
this facilitates testing and the deployment of a new version. There are, on the other
hand, drawbacks with this approach too. For example, it is slower to send communication
over a network than to do a lookup in memory, and there could thus be drawbacks in
performance. Moreover, one needs a defined communication interface, and there are risks
connected to security, as the program is more exposed to attacks [37].
To fully benefit from the microservice architecture, one needs to use continuous prac-

tices [37]. This is the general term which encloses continuous integration (CI), delivery
(CDE), and deployment (CD). These practices aim to achieve faster development and de-
livery of software. Applying CI in a development team means frequent integration of the
work, such as code, and automated testing and software building. CDE and CD handles
the next step, the release. The goal of CDE is to produce a ready product that can be
produced using CI and automated deployment. The product is, however, released manu-
ally. In CD, on the other hand, the last step is also done automatically. It is worth noting
that there is yet no consensus regarding these definitions [38].
The third related concept is containerisation techniques. A container is a way to inde-

pendently deploy an application together with everything it needs to run. This approach
has increased in popularity during the last years by both helping the development pro-
cess and the deployment by, for example, simplifying continuous practices. Docker1 is
the leading technology for accomplishing containers. A Docker image realises a Docker
container ; the image can thus be seen as a blueprint of the container. Advantages of using
containers are, for example, fast deployment and loose coupling [36]. Using CI and CDE

1https://www.docker.com/
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together with tools for containerisation, then a new microservice can be built fast and
entirely automatically [37].
The vehicle laboratory Revere emphasises the positive effects of using containerised de-

sign principles in autonomous vehicles, as stated by Berger, Nguyen, and Benderius [39].
Among these advantages are faster software testing and quicker onboarding. The architec-
ture is based on microservices, realised as Docker containers, which communicate through
UDP multicast using a set of standardised messages. Moreover, this facilitates the use of
cross-compilation. The article also points out the importance of automating deployment
and how labelling binaries support traceability [39]. The discussion continues in an arti-
cle by Lotz et al. The authors transform an already existing advanced driver assistance
system application into a microservice architecture and discuss the process. For this case,
several of the discussed benefits and weaknesses are familiar from the review article by
Dragoni et al. [37], such as modularity, scalability, and security concerns [40].
Furthermore, containerised software can facilitate the comparison of computer vision al-

gorithms and also the reproducibility of research. Nguyen, Berger, and Benderius describe
this using the example of optical flow estimation. Nowadays, researchers usually report
how well their algorithm performs in terms of accuracy and run-time and specifies the used
hardware. However, for a fair comparison, the research area needs standardised metrics
for measuring performance. Thus, the authors have packed several optical flow estimation
algorithms in Docker containers and test these using a proposed evaluation metric. A
further advantage of containers would be the possibility for automatic evaluation of the
algorithms [6].
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3 Method

This section describes the methodology used to investigate the two research questions. To
this end, the experimental setup is explained in Sect. 3.1, the localisation algorithm used
is defined in Sect. 3.2, and how these results are evaluated is described in Sect. 3.3. Lastly,
the details regarding the software architecture and the implementation are explained in
Sect. 3.4.

3.1 Experimental setup

The data collection was performed using the boat platform set up at Revere. One monoc-
ular, monochrome camera from Flir of model Oryx 10GigE was used. This camera can
have a frame rate of 112 frames per second. Furthermore, the platform used the KVH
P-1775 IMU, which is an IMU that can have a data rate as high as 5 kHz. Lastly, the
onboard GNSS system, an ANAVS MSRTK Module, was also used. Fig. 3.1 shows the
setup of the camera and the sensors on the boat. The data was collected on the west coast
of Sweden and only included scenarios containing at least some visible land.
The project compared the output from the chosen localisation algorithm to the ground

truth obtained from the IMU and GNSS. The algorithm was tested on three sequences,
each with a different amount of motion. Descriptions of the three sequences can be found
in Tab. 3.1, and example images from these are shown in Fig. 3.2. For all three sequences,
the camera was set to sixty frames per second and a resolution of 1920 × 1200. Further,
the algorithm was not run in real-time but instead used each frame in the sequences as
input.

Seq. 1 Seq. 2 Seq. 3
Frames 4825 7201 6785
Length (s) 80 121 113
Speed (m/s) 0.1 – 5.8 8.5 – 15.6 0.005 – 33.1
Distance travelled (m) 33 146 160

Table 3.1: Descriptions of the three sequences.
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Flir 
Camera

KVH
IMU

ANAVS

Figure 3.1: Setup of the camera and sensors on the boat showing the ANAVS system
which gives GNSS readings, the Flir camera, and the KVH IMU.

(a) Example image from sequence 1. (b) Example image from sequence 2.

(c) Example image from sequence 3.

Figure 3.2: Example images from the collected data set.
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3.2 Localisation algorithm

To choose what localisation algorithm to investigate further, an extensive literature study
was performed, see Sect. 2.1 and 2.2. A learning-based approach was not possible because
data was not available early enough for training and tuning of hyperparameters. Moreover,
these algorithms do not yet perform as well as the geometry-based approaches on the Kitti
benchmark set. Another option would be to estimate the boat’s state using waterline and
skyline detection. This approach is, however, likely only good for estimating rotation and
was hence not used.
A direct approach would possibly perform better in a marine environment than a feature-

based method as large parts of the image probably lack features. On the Kitti leader
board, only stereo DSO is ranked. Since this project is restricted to using a monocular
camera, those rankings cannot be used in the decision. However, a direct approach based
on monocular DSO has been tested in a harbour environment with better results than the
feature-based algorithm they used as a comparison. Hence, it was chosen to implement
monocular DSO.
The rest of this section describes the implemented localisation algorithm. First, the pre-

processing steps are outlined in Sect. 3.2.1, and in Sect. 3.2.2 the direct sparse odometry
method is explained. Finally, Sect. 3.2.3 describes how the results from DSO are aligned
to the ground truth for scale estimation.

3.2.1 Pre-processing and calibration of the data

For geometric camera calibration, the classical pinhole camera model was used. In this
model, the intrinsic parameters describing the camera are the focal length f and the
principal point (cx,xy). An illustration of the model can be seen in Fig. 3.3. Further, let
the projection from a 3D point to the 2D point in the image be denoted Πc : R3 → Ω and
denote a projection in the other direction by Π−1

c : Ω × R → R3. Here, c describes the
intrinsic parameters of the camera. This calibration was used to remove radial distortion
in a pre-processing step. To further improve the performance of DSO, one can use a
photometric calibration which is described in Sect. A.1. This calibration is, however, not
used in this work.

3.2.2 Direct sparse odometry

Direct sparse odometry, in short, optimises the photometric error over a selection of recent
frames. This section describes the details of the monocular version, including the formula-
tion of the model for the photometric error, the windowed optimisation, and management
of frames and points [13]. The whole algorithm is illustrated in Fig. 3.4. DSO has been
integrated into the OpenDLV framework using the library developed by the authors of
the article1. Further, the parameter values used by the authors of DSO was used. For

1https://github.com/JakobEngel/dso
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P ∈ R3

zc

yc

xc

y

x

v

u

(u, v) ∈ Ω

~u

~v

Principal
point

(cx, cy)

Optical
axis

z

Figure 3.3: In the pinhole camera model, the camera is defined by the principal point
(cx, cy) and the focal length f , which is equal to z. P ∈ R3 is in the
world coordinate system while (xc, yc, zc) is in the camera’s coordinate sys-
tem. (u, v) ∈ Ω is the point expressed in pixels.

example, the maximum number of active keyframes was Nf = 7 while the number of active
points was Np = 2000.

A camera pose is denoted by a transformation matrix T ∈ SE(3), where the matrix
defines the transformation of a point from the world’s coordinate system to the camera’s.
SE(3) is the special Euclidian group of dimension three, which is a transformation con-
sidering both rotation and translation. Further, each point p ∈ Ω is parametrised using
only the inverse depth in a frame, in contrast to an indirect model, where each point is
modelled using three parameters. The representation used here can be explained as ”the
point, where the source pixel’s ray hits the surface” [13].
First, the photometric error is defined. The observed pixel intensity in frame i and

pixel x ∈ Ω, is denoted by Ii(x). Let Ii be the reference image and Ij the target image.
For a point p ∈ Ωi in the reference image Ii that is observed in the target image Ij , the
photometric error is modelled as a weighted sum of squared differences, where the sum is
taken over a small neighbourhood. This neighbourhood of pixel p is denoted as Np. Let
p′ denote the projection of p with inverse depth dp, that is:

p′ = Πc(RΠ−1
c (p, dp) + t) (3.1)

where R and t define the camera pose:[
R t

0 1

]
= TjT

−1
i (3.2)
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Frame i

Compare to
keyframes

in F

Save i as new keyframeDiscard frame i

Select Np candidate
points in frame i

Optimise the
photometric error

Check if should marginalise
keyframe(s) and points

Frame i+ 1 ... Frame j

Output:
localisation

...
Candidate points tracked

in the next frames.
If active points < Np,

then choose which to activate

Repeat

Figure 3.4: Illustration of the direct sparse odometry algorithm showing the steps from
a new frame to the output. Each new frame is compared to the current
keyframes. If the frame is saved as a new keyframe, a selection of candidate
points in the frame is chosen, and the photometric error is optimised over the
keyframes. The candidate points can, in a later step, be turned into active
points.
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Let ωp define the weight for point p:

ωp = c2

c2 + ||∇Ii(p)||22
(3.3)

This formulation puts small weights on pixels with large gradients. Moreover, let ai and bi
be the brightness transfer function parameters of frame i. Finally, the photometric error
for point p in frame j is defined as:

Ep,j =
∑
p∈Np

ωp
∥∥∥(Ij [p′]− bj)− tje

aj

tieai
(Ii[p]− bi)

∥∥∥
γ

(3.4)

Here, || · ||γ is the Huber norm. As above, ti and tj are the exposure times for each
image. Hence, the photometric error in each point depends on the inverse depth dp, the
intrinsic parameters of the camera c, the camera poses in the two frames Ti and Tj , and
the brightness transfer function parameters for both frames ai, bi, aj , bj .
Further, let F denote the set of keyframes, Pi be the set of tracked points in frame i,

and obs(p) be the set of frames where the point p is visible. Then, the full photometric
error is computed as:

Ephoto =
∑
i∈F

∑
p∈Pi

∑
j∈obs(p)

Ep,j (3.5)

The model defined above in (3.5) is optimised using a sliding window and the Gauss-
Newton method. DSO uses the approach proposed by Leutenegger et al. [41], where
the model is optimised over a set of keyframes. The set of variables over which the
model is optimised contains the camera poses of all keyframes together with the brightness
parameters, inverse depth values, and camera intrinsic parameters.
Finally, the front-end part of the algorithm handles frame and point management. More

specifically, this part decides on the sets F ,Pi and obs(p) as well as on initialisation of
parameters. The set F always contains a maximum of Nf active keyframes. Over these
keyframes, Np active points are kept, where Pi is the set of active points in keyframe
i. First, the frame management will be explained. Each new frame is tracked using the
current keyframes. All active points are projected into the latest created keyframe. Then,
the new frame is only compared to the newest keyframe. The new frame and the latest
keyframe are compared using classical image alignment together with an image pyramid
and a constant motion model. Note that this motion model is not related to the one
discussed in Sec. 2.2.3. Here, the model is the same as in the original DSO. In the next
step, the frame is either saved as a new keyframe or discarded. The three aspects
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considered for turning a frame into a keyframe are:

Change in field of view: f = ( 1
n

n∑
i=1
||p− p′||2)

1
2 (3.6)

Translation: ft = ( 1
n

n∑
i=1
||p− p′t||2)

1
2 (3.7)

Change in camera exposure: a = | log
(
eaj−aitjt

−1
i

)
| (3.8)

New keyframe if: wff + wftft + waa > Tkf (3.9)

Equation (3.6) is a measurement of the mean square optical flow, which tells us if the field
of view changes, requiring more keyframes. In (3.7), p′t is the projected point attained
when R equals the identity matrix. The quantity in this equation measures the mean flow
without rotation, as more translation requires more keyframes. Finally, (3.8) measures
the change in camera exposure between the two frames; a new keyframe is needed if this
change is large. A weighted sum of these three aspects is used as the criterion for if a new
keyframe is needed, as defined in (3.9) with weights ωf , ωft , and ωa, and threshold Tkf .
The next step considers if any keyframe in F should be removed. The two latest created

keyframes, call these I1 and I2, are always kept. A keyframe is removed if only a few of
its points are visible in the newest keyframe. Moreover, if the number of keyframes exceed
Nf , then the keyframes that are furthest apart from the other keyframes are removed. To
this end, let d(i, j) be the Euclidean distance between Ii and Ij , and ε a small constant.
The following quantity expresses a distance score for keyframe i:

s(Ii) =
√
d(i, 1)

∑
j∈F ,j 6={1,2},j 6=i

(d(i, j) + ε)−1, (3.10)

where the keyframe with the highest distance score is marginalised. Moreover, the corre-
sponding active points are also marginalised.
The last section of the algorithm governs point management. There are three types of

points: candidate points, active points, and marginalised points. For each new keyframe,
Np candidate points are selected. These are sampled so that they are well-distributed
over the image and at the same time have a high enough magnitude of its image gradient
compared to its pixel neighbours. To this end, the image is split into blocks from which
the pixel with the highest gradient is chosen. However, if this highest gradient does not
reach a certain threshold, no pixel in that block is selected. This procedure is repeated
two times more with larger block sizes and lower thresholds to also include some points in
areas with a low gradient. The block size is adaptive based on the number of candidate
points in the last frame. This procedure results in evenly spread candidate points in areas
with a high gradient and some sparse points from regions with a lower gradient.
The candidate points are then tracked in the succeeding frames. The points are tracked

along the epipolar line using a discrete search which aims to minimise the photometric
error for that point. From this search, one also retrieves initial values of the depth for each
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point, which are used if the point later is activated. Next, if some of the old, active points
are marginalised, then a selection of the tracked candidate points will be activated. First,
all active points and candidate points are projected onto the newest keyframe. Then,
candidate points that have the largest distance to already active points are selected to be
activated. Candidate points chosen in the second or third iteration, that is, with larger
block size, need an even larger distance to be activated. Finally, an active point will be
marginalised if its corresponding keyframe is marginalised, as described above. In total,
there are Np candidate points per keyframe and Np active points in all keyframes.

3.2.3 Scale estimation

The output from the direct sparse odometry algorithm is the camera pose for each keyframe,
that is, the orientation R and position t. Due to the problem of scale estimation for monoc-
ular visual odometry, as discussed in Sect. 2.1.3, the translation is only correct up to a
scaling factor. As scale estimation is a large project on its own and will introduce more
errors, it will not be considered here. The estimated trajectory was instead aligned with
the ground truth obtained from the GNSS to evaluate the localisation algorithm. More
specifically, the trajectory was Sim(3) aligned using the theorem proposed by Umeyama
in 1991 [42]. This method seems to be well-established for evaluating monocular visual
odometry algorithms. Sim(3) is the lie group called similarity transformations. This group
is similar to SE(3) as it comprises rotation and translation, but it also includes a scaling
factor. We thus want to compute a rotation, translation, and scaling such that the mean
squared error between the ground truth and the estimated trajectory is minimised:

e2(R, t, s) = 1
n

n∑
i=1
||yi − (sRxi + t)||2 (3.11)

Here, yi are the ground truth positions and xi the estimated positions. Define the following
mean vectors, variances, and covariance:

µx = 1
n

n∑
i=1
xi (3.12)

µy = 1
n

n∑
i=1
yi (3.13)

σ2
x = 1

n

n∑
i=1
||xi − µx||2 (3.14)

σ2
y = 1

n

n∑
i=1
||yi − µy||2 (3.15)

Σxy = 1
n

n∑
i=1

(yi − µy)(xi − µx)T (3.16)

20



Chapter 3. Method

Let further Σxy = UDV T be a singular value decomposition. Finally, define the matrix S
as:

S =

I if det(Σxy) ≥ 0

diag(1, 1, ..., 1,−1) if det(Σxy) < 0
(3.17)

for rank(Σxy) > 1. If rank(Σxy) = 1, then S is instead defined as:

S =

I if det(U) det(V ) = 1

diag(1, 1, ..., 1,−1) if det(U) det(V ) = −1
(3.18)

Umeyama showed that for rank(Σxy) ≥ 1, the optimum is reached for:

R = USV T (3.19)

t = µy − sRµx (3.20)

s = 1
σ2
x

tr(DS) (3.21)

For flexibility, the alignment runs in its own microservice. Then, it would be easy to
instead use a scale estimation algorithm later on as well as use this alignment for other
monocular localisation algorithms.

3.3 Evaluation of the results

The results of the localisation algorithm on data collected on the boat were measured using
several metrics and tests. The aim of this was twofold: to evaluate the performance of
DSO and to investigate what metrics would be suitable to present on the cloud platform.
The translational error was attained by comparing the ground truth position from the
GNSS to the result from DSO. In addition, a rotational rate error was obtained by a
comparison of the angular velocities attained from the IMU to the change over time in the
rotation from DSO. Moreover, an error in yaw was obtained by comparing to the north
heading from the GNSS. Let these errors be denoted by:

εm,t =mGNSS(t)−mDSO(t) ∀m ∈ {x, y} (3.22)

εṅ,t =ṅIMU (t)− ṅDSO(t) ∀n ∈ {φ, θ,ψ} (3.23)

εψ =ψGNSS(t)− ψDSO(t) (3.24)

Here, mGNSS(t) and ṅIMU (t) are the position and angular velocities measured by the
GNSS and IMU at time t while mDSO(t) and nDSO(t) are the values estimated by DSO
at time t. The yaw obtained from the GNSS at time t is denoted ψGNSS(t) while ψDSO(t)
is the estimation from DSO. These errors were studied using the mean, minimum, and
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maximum errors. Moreover, let the total translational error be defined as:

εp,t =
√
ε2x,t + ε2y,t (3.25)

These errors were analysed in sections of equal lengths of the entire trajectory as well as
over the whole trajectory.
Moreover, the metrics used in the Kitti data set for visual odometry and SLAM algo-

rithms would be valuable to use. These metrics would enable a comparison between the
results from the Kitti data set and results obtained in a marine setting [5]. The metrics
are the total errors in rotation and translation as a function of the trajectory’s length and
the vehicle’s velocity. These are formally defined as:

Erot(F) = 1
|F|

∑
(i,j)∈F

∠|(p̂j 	 p̂i)	 (pj 	 pi)| (3.26)

Etrans(F) = 1
|F|

∑
(i,j)∈F

||(p̂j 	 p̂i)	 (pj 	 pi)||2 (3.27)

In this formulation, pi ∈ SE(3) and p̂i ∈ SE(3) are the ground truth poses respectively
estimated poses. F is a set of frames, and the operator 	 is the inverse compositional
operator while ∠[·] is the rotation angle. In the notation used above, we compute Etrans
as the total translational error εp,t divided by the distance travelled at time t at equally
spaced distances. As for the total rotation error, this comparison is not possible as this
requires a ground truth orientation in all three dimensions. To only integrate the values
from the IMU to get the rotation is usually not a good alternative due to a high drift.
Instead, only the error in yaw divided by the distance travelled is computed as a function
of the distance travelled and of the boat’s velocity. The error measurements used by Engel
et al. when showing the performance of DSO were not used, as these rely on having the
same start and end position of each sequence [13].
Furthermore, the errors were analysed using statistical tests. If the distribution of the

errors can be assumed to follow a normal distribution, it would be possible to do one
sample t-test to test the null hypothesis of a zero-mean of the errors. Set up the following
hypotheses:

H0 : µ = µ0 (3.28)

H1 : µ 6= µ0 (3.29)

where we test for µ0 = 0. For a t-test, one assumes that the errors εm = (εm,1, ..., εm,N )
are drawn from N(µ,σ) and computes the t-score as the test statistic:

t = εm − µ0
sεm

(3.30)
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where εm is the sample mean and sεm the sample standard deviation. Under the null
hypothesis, we have that T H0∼ tN−1. For a large sample size, one can approximate to
T

H0≈ N(0, 1). To complement the parametric t-test, a non-parametric sign-test can also
be performed, where this test does not require the assumption of a normal distribution.
For this test, let:

H0 : m = m0 (3.31)

H1 : m 6= m0 (3.32)

where m is the median. We will test for m0 = 0. Compute the following test statistic:

y0 =
N∑
i=1

1{εm,i≤m0} (3.33)

where Y H0∼ Bin(n, 0.5).
A multiple regression model, as used by Kriechbaumer, was used to investigate how

different covariates can explain the total position error εp,t [12]. Let the model be defined
as:

εp,t = β1ρp + β2ψ + β3v + u, u ∼ N(0,σ2) (3.34)

The chosen covariates are the mean speed, v, and yaw, ψ, to account for the kinematics
of the platform. Moreover, the current number of active points in DSO divided by Np,
denoted ρp, was included as a measure of the scenery. The regression coefficients β1,β2,
and β3 were estimated using ordinary least squares.

3.4 Implementation and deployment

The implemented solution is supposed to, in the end, fit into the future framework of the
Reeds automatic evaluation cloud environment. This cloud service should automatically
run the whole pipeline from incoming data to the visualisation of results. Furthermore,
it must also handle different categories of algorithms such as object detection and visual
odometry, where annotation or training might be needed. A developer should be able to
download small parts of the data for development and then publish the algorithm on the
cloud service when it is finished. The whole pipeline should be automatically re-run when
there is new data.

Following these requirements, a possible design of the Reeds platform was made, shown
in Fig. 3.5. One can see the data collection at the boat to the left, from which the data
is saved in a database. To the right, a developer who wants to add its algorithm to the
platform is shown. New data will trigger a filter that chooses which categories of algorithms
to start based on the signals and possibly the signals’ contents. For example, to use lidar
there must be land close by. For a category of algorithms triggered, the pipeline will run
training, if any, followed by the supplied algorithms and an evaluation. The results are
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Data collection

Database Filter

Leaderboard

Evaluation
Algorithm(s)

Training

Webpage for making 
Annotations

Annotations

Webpage for visualising 
the results

Server

Developer 
with 

algorithms 
to test

Figure 3.5: A sketch of a possible design of the Reeds cloud environment showing data
coming in on the left, a developer that supplies an algorithm to the right, and
the results being visualised at the bottom. The filter chooses which categories
of algorithms to trigger based on the data. Some categories might need new
annotated data to be triggered. The annotation is made on a dedicated web
page.

saved on a leader board and displayed on a web page. Moreover, there should also be a
web page dedicated to making annotations. Categories that need annotated data to run,
such as object detection, will be triggered when new annotations have been made.

With this design in mind, the software was implemented as a microservice architecture
consisting of three main microservices. One microservice runs DSO on camera input2, as
described in Sect. 3.2.2. Next, the output is transformed to be aligned with the ground
truth, as outlined in Sect. 3.2.3, in a second microservice3. Lastly, one microservice han-
dles the evaluation of the result4 as described in Sect. 3.3. The software architecture is
visualised in Fig. 3.6. The microservices use the software framework OpenDLV, developed
by the Revere team, to communicate [4]. Each microservice is bundled together with the
needed dependencies in a Docker image. Further, the project used a continuous integration
and deployment pipeline.

2https://git.chalmers.se/annpeter/opendlv-perception-vision-dso
3https://git.chalmers.se/annpeter/opendlv-sim3-alignment
4https://git.chalmers.se/annpeter/opendlv-evaluation-localisation
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Monocular camera

opendlv-perception-vision-dso

opendlv-sim3-alignment

opendlv-evaluation-localisation

FOG IMU

GNSS

Output to file

opendlv.logic.sensation.Geolocation
opendlv.logic.sensation.Orientation

opendlv.logic.sensation.Geolocation
opendlv.logic.sensation.Orientation

Video/images

opendlv.proxy.AngularVelocityReading

opendlv.proxy.GeodeticWgs84Reading

opendlv.proxy.GeodeticWgs84Reading

Errors in five dimensions

Figure 3.6: Illustration of the implemented microservice architecture. The microservice
named opendlv-perception-vision-dso runs DSO using input from a camera.
Next, opendlv-sim3-alignment aligns the estimated locations to the ground
truth from a GNSS. Finally, opendlv-evaluation-localisation evaluates the
state estimations using readings from the IMU and GNSS. The translation
is evaluated in the x and y directions and the rotation in all three direc-
tions. The names on the arrows specify the OpenDLV messages used for the
communication.
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4 Results

(a) New keyframe in sequence 1.

(b) New keyframe in sequence 2

Figure 4.1: Example keyframes used by DSO illustrating the candidate points (white),
active points (blue), and marginalised points (green).

The results from running direct sparse odometry on the three sequences described in
Sect. 3.1 are presented in this part of the report. Note that for all three sequences, the
algorithm did not reach the end of the sequence. First, Fig. 4.1 illustrates how and where
in the image the algorithm finds the point used in the optimisation. Here, white points
are the candidate points, blue points are the active points, and green points show the
marginalised points.
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(b) Aligned estimation and ground truth for se-
quence 1.
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(c) Translation estimation for sequence 2.

−100 −50 0 50 100 150
x(m)

−75

−50

−25

0

25

50

75

100

y(
m
)

Aligned estimation
Aligned start point
Ground truth
Ground truth start point

(d) Aligned estimation and ground truth for se-
quence 2.

−0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0.0
x

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

y

Estimation
Estimation start point

(e) Translation estimation for sequence 3.
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(f) Aligned estimation and ground truth for se-
quence 3.

Figure 4.2: Estimated translation (left) and the aligned estimation together with the
ground truth (right) for all three sequences.
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The estimated translation, together with the aligned estimation and the ground truth,
can be seen for all sequences in Fig. 4.2. In Fig. 4.2b, one can see that the estimated
trajectory for the first sequence goes in almost the opposite direction of the ground truth.
For the two other sequences, Fig. 4.2d and 4.2f show that the estimations and the ground
truths are moving more in the same direction. Moreover, parts of the general shape of the
movement have been captured by the algorithm. However, the start points are far off for
all three sequences.
The translation and yaw errors plotted against the distance travelled for the whole

sequence are shown in Fig. 4.3. More specifically, the translation errors εx, εy, and εp can
be seen to the left in Fig. 4.3. Here, for sequence one and two, the error increases with
the length travelled. In contrast, the error in yaw εψ shown to the right in the same figure
does not show the same behaviour. For sequence one (Fig. 4.3b) and two (Fig. 4.3d), the
error is just over three radians for the whole trajectory. For the last sequence (Fig. 4.3f),
the error is mostly much higher but more stable.
Fig. 4.4 and 4.5 show the errors in roll rate, pitch rate, and yaw rate. The errors in pitch

rate εθ̇, to the left in Fig. 4.4, are mainly oscillating around zero except for some spikes. In
addition, the last part of the third sequence shows much larger error values than the rest
of the sequences. To the right in the same figure, the error in yaw rate εψ̇ is shown. Here,
the errors are also mainly fluctuating around zero but with a larger magnitude. Note that
some values are larger than what fits the figures for both the pitch and yaw rate errors.
The roll rate errors εφ̇ can be seen in Fig. 4.5. These show a much lower magnitude than
the same ones in pitch and yaw rate.

Histograms showing all εm,∀m ∈ {x, y, φ̇, θ̇, ψ̇,ψ} are shown in Fig. 4.6. These show that
a normal distribution assumption of the errors is not plausible. Furthermore, the mean,
maximum, and minimum values of εm can be seen in Tab. 4.1. The resulting p-values
from t-tests and sign tests are shown in Tab. 4.2. Further, the results from the multiple
linear regression analysis are shown in Tab. 4.3. However, the model assumptions do not
seem to be fulfilled. For all three sequences, the Jarque-Bera test for normal distribution
of the residuals rejects the null hypothesis of a normal distribution. The third sequence
has a skew and kurtosis closest to a normal distribution, with values at 0.24 for the skew
and 3.5 for the kurtosis.
Next, the cumulative errors for equally long parts of the sequences are shown in Fig. 4.7,

4.8, and 4.9. Here, each sequence is split into lengths of five meters, where the errors εm
are summed over these sub-sequences. These are shown in grey while the blue lines show
the mean, and the blue, dotted lines show the mean plus or minus the standard deviation.
In most of the figures, the mean error increases over the distance travelled. The exceptions
are, for example, the y-direction in sequence one (Fig. 4.7b) and the yaw rate for sequence
three (Fig. 4.9e). Furthermore, one can note that many of the figures show some trajectory
that has a much larger cumulative error than the rest, such as Fig. 4.9f.
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Finally, the Kitti metrics are shown in Fig. 4.10 and 4.11. Here, the error in yaw εψ

divided by the length travelled is plotted against the distance to the left and the speed
to the right in Fig. 4.10. Further, the translation error εp divided by the length travelled
is plotted against the same in Fig. 4.11. Both figures show these metrics for all three
sequences.

Mean Min Max
εx 25.39 5.75 41.44
εy 7.85 -0.24 16.73
εφ̇ 0.000040 -0.12 0.13
εθ̇ 0.0011 -0.40 1.40
εψ̇ 0.85 -221.49 131.69
εψ 3.15 3.13 3.16

(a) Sequence 1.

Mean Min Max
εx 139.65 15.77 241.16
εy 20.41 -1.87 39.95
εφ̇ 0.0025 -0.27 0.30
εθ̇ -4.86 -733.65 0.65
εψ̇ -0.00075 -1.49 1.19
εψ 3.12 3.10 3.16

(b) Sequence 2.

Mean Min Max
εx 8.09 -34.93 24.057
εy -7.06 -18.46 16.38
εφ̇ 0.00037 -0.18 0.21
εθ̇ -0.031 -0.98 0.89
εψ̇ -5.99 -677.09 5.24
εψ 3.98 -0.21 6.28

(c) Sequence 3.

Table 4.1: Mean, minimum, and maximum values of the errors.

T-test p-values Sign test p-values
Seq. 1 Seq. 2 Seq. 3 Seq. 1 Seq. 2 Seq. 3

εx 0.0 0.0 0.0 0.0 0.0 0.0
εy 0.0 0.0 0.0 0.0 0.0 0.0
εφ̇ 0.93 2.6× 10−5 0.56 0.0 0.0 0.0
εθ̇ 0.52 0.0001 9.4× 10−16 0.0 0.0 0.0
εψ̇ 0.003 0.70 2.1× 10−5 0.0 0.0 0.0
εψ 0.0 0.0 0.0 0.0 0.0 0.0

Table 4.2: P-values for t-tests and sign-tests made on all errors.
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(b) Sequence 1, yaw error.
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(c) Sequence 2, translation errors.
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(d) Sequence 2, yaw error.
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(e) Sequence 3, translation errors.
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(f) Sequence 3, yaw error.

Figure 4.3: Translation errors (left) and yaw errors (right) for all three sequences.
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(a) Sequence 1, pitch rate error.
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(b) Sequence 1, yaw rate error.
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(c) Sequence 2, pitch rate error.
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(d) Sequence 2, yaw rate error.
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(e) Sequence 3, pitch rate error.
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(f) Sequence 3, yaw rate error.

Figure 4.4: Pitch rate errors (left) and yaw rate errors (right) for all three sequences.
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Figure 4.5: Roll rate errors for all three sequences.

β t p-value (t) F p-value (F) R2

ρp -24.8 -53.4 0.000
ψ 13.4 56.5 0.000
v -0.59 -3.4 0.001 1466 0.00 0.603

(a) Sequence 1.
β t p-value (t) F p-value (F) R2

ρp -15.6 -1.9 0.054
ψ -234.0 -19.1 0.000
v 65.5 22.9 0.000 236.6 6× 10−103 0.200

(b) Sequence 2.
β t p-value (t) F p-value (F) R2

ρp 16.5 42.0 0.000
ψ 1.6 25.2 0.000
v 0.1 6.9 0.000 4108 0.00 0.861

(c) Sequence 3.

Table 4.3: Results from running ordinary least squares on the multiple linear regression
model defined in (3.34).
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Figure 4.6: Histograms over the errors for all three sequences.
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Figure 4.7: Cumulative errors for sequence 1.
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Figure 4.8: Cumulative errors for sequence 2.
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Figure 4.9: Cumulative errors for sequence 3.
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Figure 4.10: Rotation error (in yaw) against distance and speed for the three sequences.
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(a) Sequence 1.

0 25 50 75 100 125
Distance (m)

0

2

4

6

8

10

Tr
an

sla
tio

n 
er
ro
r (
%
)

Distance vs translation error

13.0 13.5 14.0 14.5 15.0 15.5
Speed (m/s)

0

2

4

6

8

10

Tr
an

sla
tio

n 
er
ro
r (
%
)

Speed vs translation error

(b) Sequence 2.

0 25 50 75 100 125 150
Distance (m)

0

2

4

6

8

10

Tr
an

sla
tio

n 
er
ro
r (
%
)

Distance vs translation error

0 10 20 30
Speed (m/s)

0

2

4

6

8

10

Tr
an

sla
tio

n 
er
ro
r (
%
)

Speed vs translation error

(c) Sequence 3.

Figure 4.11: Translation error against distance and speed for the three sequences.
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5 Discussion

The performance of the localisation algorithm and related topics to the first research
question is discussed in Sect. 5.1. Further, the second research question is discussed
in Sect. 5.2. Finally, ethical issues together with sustainability aspects are reviewed in
Sect. 5.3 and topics for future work are outlined in Sect. 5.4.

5.1 Performance of the localisation algorithm

The accuracy of DSO is generally not so high. For the translation, Fig. 4.2 shows that the
algorithm mainly does not estimate the correct direction nor shape. Moreover, the error
increases with the distance travelled in almost all sequences and directions, as also shown
in the cumulative errors plots (Fig. 4.7, 4.8, and 4.9). Hence, one can conclude that there
is a considerable drift in the translation. However, comparing the three sequences, the
magnitude of the mean error in x and y is much smaller for the third sequence than for
the second sequence despite these being approximately equally long. Hence, other factors
than the distance travelled also affect the performance. Studying Fig. 4.11, the third
sequence has a higher maximum translational error than the other sequences. However,
for the main part of the sequence, the third sequence has a much smaller error than the
second sequence. The figures to the right, showing the translational error against the
speed, indicate that this might be due to the lower speed in the main part of sequence
three. That too high speed would mean a poorer performance was expected.
For the rotation, the main drawbacks are the spikes with the very large errors and the

fluctuating. However, for the angular velocities, the errors have, in most cases, a mean
close to zero. In contrast, the yaw error is mostly around three radians. Since the error is
close to π, this might suggest that the same coordinate system is not used for the GNSS
and the camera. Similar to the translation, the most significant yaw error seems to be for
the largest speeds; see Fig. 4.10. In addition, it is worth noting that the roll rate errors
are much smaller than the same for pitch and yaw rate. A possible reason for this could
be if there is less movement in that direction, or the algorithm might be better to estimate
the rotation rate in the roll direction. Finally, Fig. 4.7, 4.8, and 4.9 suggest that there is
a drift also in the rotation errors.
Regarding the statistical tests and linear regression model, the algorithm’s accuracy is

so poor that these tests are not useful. Moreover, neither the histograms nor the residual
analysis of the regression model’s results indicates a normal distribution. These tools
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for analysis might, however, still be helpful when studying a more accurate localisation
algorithm.
There are several technical issues that may have affected the results. The images were

converted from ten bits to eight bits which can have introduced artefacts in the image.
In addition, the images were captured using an offset at (0, 0), which means that the
centre of the lens is at the bottom right corner of each frame. This setting might have
introduced more distortion in the top left side of the frames. Furthermore, the algorithm
added a black border to the upper and right parts of the image when running on the Flir
camera images. This behaviour most likely worsened the performance of DSO as it used
points in this black area during the optimisation. Another possible source of errors was
the computation of the rate of change in orientation. A related issue is that the algorithm
was not run in real-time. This choice most likely improved the accuracy, but it also added
a possible source of errors when needed to time sync the output from the algorithm to the
readings from the IMU and GNSS.
The implemented solution for alignment did not work, and the results were instead

produced using the Matlab script made by the authors of DSO [43]. A reason why the
microservice did not work might be the used implementation of the Umeyama theorem.
Another reason might be that this kind of estimation possibly requires more or less the
whole trajectory. It could hence be challenging to run continuously in a microservice
architecture.
How well the choice of implementing DSO helped in answering the first research question

is another question worth discussing. Implementing a SLAM algorithm instead would most
likely have improved the performance as this would enable loop closing and reduce the
drift. Moreover, it could have been more interesting to choose a newer, more state-of-the-
art algorithm. Most of the latest algorithms are, however, learning-based and seem not to
perform as well yet. One argument for choosing to investigate the direct sparse odometry
method was the indications that a direct algorithm could perform better in a maritime
setting than a feature-based. The qualitative results in Fig. 4.1 seem to indicate that
the algorithm mainly activates points that are not in the part of the frame showing the
sea. This result might indicate better performance for a direct algorithm than a feature-
based one in this setting. However, a comparison between a feature-based visual odometry
algorithm is needed to investigate this thoroughly. Thus, choosing to implement DSO will
not give a complete answer to the first research question, but the work has nevertheless
shown directions for future research.
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Figure 5.1: A sketch of a possible design of the Reeds cloud environment and how the
implemented solution could fit into it.

5.2 Requirements for automatic evaluation at a cloud
service

The second part of the project was centred around the requirements for running a local-
isation algorithm on the envisioned cloud service for automatic evaluation. First, having
a microservice architecture together with Docker images was found to be essential. This
architecture provides the flexibility needed for setting up different pipelines, such as dif-
ferent algorithms for localisation or scale estimation. Furthermore, Docker images are
a simple solution to how external parties can supply their algorithms, including various
dependencies, to the cloud service.

It is, however, needed to define the input and output from different pipelines to utilise
this flexibility of the architecture. That is, to define classes or categories of algorithms.
These classes of algorithms must be carefully defined to ensure a fair comparison between
methods. For example, one must decide how to compare various categories of localisation
algorithms, such as visual-inertial odometry, full SLAM systems, and how many camera
streams are utilised. A possible solution is to have a category for all kinds of localisation
and mapping and then define several subcategories, where it should be possible to compare
all or some of the subcategories. Defining these while staying flexible for future innovations
is a significant problem for the continued implementation of the platform.
One such algorithm category could be a purely vision-based localisation algorithm such

as direct sparse odometry. Then, an evaluation microservice is required to work for all
algorithms in this category. A visualisation of how the implemented solution could work
in the proposed design (Fig. 3.5) can be seen in Fig. 5.1. Here, a pipeline consisting
of monocular visual odometry followed by a scale estimation and, finally, the evaluation
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is shown. A possible extension is to use a sensor or data fusion microservice before the
assessment to get smoother and more precise results. Moreover, a supplied state estimation
algorithm may use learning-based visual odometry, thus requiring a pre-step for training.
Regarding how to compare different algorithms, it is imperative to have fair metrics. A

probable solution is to choose one or two metrics that can cover as much information as
possible and use these in a leader board. The rest of the analysis should be accessible if
the reader wants to see more details, as this is essential information both for a developer
and someone choosing which algorithm to use. An alternative for localisation algorithms
is to use a mean translational error and a mean rotational error, possibly divided by the
distance travelled or the sequence length. Another possibility could be defining a single
measure taking into account the translational error and the yaw error. To decide if this
can be a reasonable ranking metric, one would need to investigate if it can be a sound
assumption that the pitch and roll are negligible in this setting, as is commonly done in
the motion models for ASVs. The other metrics used to compare the algorithms in this
work were found suitable for an extended analysis, except for the statistical tests and the
regression model. These tools might, however, be valuable for analysing a more accurate
estimation.
An issue specific for the evaluation of localisation algorithms is how long sequences to

run on. As mentioned in the results, DSO did not reach the end of any of the three
sequences as it crashed during the runs. On the cloud platform, one would need to decide
if the data should be divided into separate, shorter sequences, as done in this work, or
if the algorithms should be evaluated on all collected data directly. In the latter case,
one would need to include a measurement considering if the algorithm crashes or not.
An algorithm that does not crash should be classified as more robust even though the
performance might be worse than another method that does crash.
A technical issue regarding the evaluation is the need for time sync between sensors, as

mentioned in the section above. Since the replay of the IMU and GNSS sensor values in
the current OpenDLV implementation tries to output the values as fast as possible, this
issue needs to be handled at the platform too.

5.3 Ethical and sustainability aspects

Ethical issues related to this research project are mainly connected to questions regarding
privacy as the video data collected will contain images of boats and possibly also people.
Thus, these images must be handled with care regarding whether it is reasonable to save
them and for who they should be available. In addition, some data should be available
to download for external parties to develop algorithms, and the images are also shown
for members of the general public during annotation. Thus, to handle privacy issues,
one would, for example, need to review the images before uploading and make sure that
external parties delete the data after using it. Another data signal that can be problematic
for privacy issues is the logging of signals from AIS, as these signals are used to identify
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boats, and for smaller boats, it is reasonable to assume that the owner is in the boat.
However, it is worth noting that this is only a concern for the research platform. If an
algorithm runs on a boat, then there are no privacy issues since data is not stored in the
long term.
Aspects of sustainability connected to the project are foremost related to what inno-

vations the Reeds platform can contribute to in the future. The development of driver
assistance systems, remote control, or autopilots can result in safer boats. Innovations
of ASVs for areas such as environment control can facilitate research and contribute to
better insights. However, as with all autonomous robots, there is a risk of it being used in
the military. Turning to the broader picture, several sustainability topics are connected
to the transport sector and autonomous driving. These include, but are not limited to,
greenhouse gas emissions, air pollutants, noise, and safety risks such as traffic accidents.
Studies suggest that autonomous vehicles can transition this sector into a more sustainable
one regarding all the above topics. On the other hand, a review of the research on self-
driving vehicles found the body of research insufficient in discussing various sustainability
impacts such as environmental and cultural [44].

5.4 Future work

There are several topics of future work. A first step to improve the performance of DSO
would be to use a photometric calibration of the camera used, as explained in Sec. A.1. The
authors of DSO found a photometric calibration to be vital for accurate results. Further,
one could implement LDSO, DSO with loop closure or extend it to a complete SLAM
system. Furthermore, it would be interesting to compare feature-based, appearance-based,
and learning-based visual odometry algorithms for the marine setting. For example, ORB-
SLAM2, which is feature-based, would be a good comparison algorithm as this algorithm
is already integrated into the OpenDLV framework but only tested on road vehicles [45].
For any monocular visual odometry to be useful, the scale estimation needs to be solved

in a way that does not utilise a GNSS system. For the Reeds platform, the plan is to
equip the boat with more cameras, whereas this problem could be solved using a scale
estimation similar to stereo cameras. Moreover, there were plans to use a Kalman filter
to fuse outputs from several DSO algorithms, each running on separate video streams.
The motion model defined in Sect. 2.2.3 could then be used. As it is the stereo version of
DSO that has performed well on the Kitti data set, these advancements would probably
improve the performance. Furthermore, implementing such a filter would possibly also
improve the results using only one camera by stabilising the angular velocity estimations.
For the evaluation, a development could be to compare rotation instead of rotation

rates. Then it would be possible to make a systematic comparison with the Kitti results.
Moreover, it is also a source of errors to compute the rotation difference to get rates.
Therefore, a suggestion is to use the yaw readings from the GNSS together with the angular
velocities from the IMU and fuse these to retrieve rotations in all three dimensions using,
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for example, a Kalman filter. Another possibility is to compare to the mean of the latest
IMU and GNSS readings and not only one value. This approach might give more stable
values for the comparison.
It would also be interesting to test the algorithm in other weather conditions and situa-

tions and explore how the performance changes when running the algorithm in real-time.
Finally, as a more real-world problem, it would be interesting to try the implementation in
an environment with partly no GNSS signals and use DSO to estimate the position when
there are no GNSS signals.
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6 Conclusion

This project has investigated how well a vision-based state estimation can replace a high-
end FOG IMU and GNSS in a marine setting by implementing the algorithm monocular
direct sparse odometry and evaluating it on collected data. Whereas the current imple-
mentation does not reach a high enough accuracy to be able to replace or improve the
accuracy of an IMU or GNSS, the project has initialised the work in this area and pointed
towards several ways of improving the performance. In addition, the results indicate nev-
ertheless that a direct method might attain better performance than a feature-based visual
odometry method in the marine setting. Still, more research is needed to confirm this.
The project has also explored how such an algorithm can be automatically evaluated

at a future cloud-based platform. The algorithm was, to this end, implemented in a
microservice architecture and containerised using Docker. Different requirements on the
platform and algorithm have been discussed, such as the need to define classes of algorithms
and ensure privacy issues in the collected data. Furthermore, a suggestion about how
localisation algorithms can fit into a possible design of the automatic evaluation flow has
been discussed.
The results of this study will hopefully help in the continued implementation of the

Reeds platform. Future studies could further improve the performance of the localisa-
tion algorithm in different ways, such as by implementing a full SLAM system or using
information from several camera streams for data fusion or scale estimation.

45





References

[1] J. Hayakawa and B. Dariush, “Ego-motion and surrounding vehicle state estimation
using a monocular camera,” in 2019 IEEE Intelligent Vehicles Symposium (IV),
Paris, France, 2019, pp. 2550–2556. doi: 10.1109/IVS.2019.8814037.

[2] C. Badue et al., “Self-driving cars: A survey,” Expert Systems with Applications,
vol. 165, p. 113 816, Mar. 2021. doi: 10.1016/j.eswa.2020.113816.

[3] Z. Liu, Y. Zhang, X. Yu, and C. Yuan, “Unmanned surface vehicles: An overview of
developments and challenges,” Annual Reviews in Control, vol. 41, pp. 71–93, 2016.
doi: https://doi.org/10.1016/j.arcontrol.2016.04.018.

[4] C. Berger, “An open continuous deployment infrastructure for a self-driving vehicle
ecosystem,” in IFIP Advances in Information and Communication Technology, K.
Crowston, I. Hammouda, B. Lundell, G. Robles, J. Gamalielsson, and J. Lindman,
Eds., vol. 472, Springer International Publishing, 2016, pp. 177–183. doi: 10.1007/

978-3-319-39225-7_14.
[5] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the

KITTI vision benchmark suite,” Proceedings of the IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, pp. 3354–3361, 2012. doi:
10.1109/CVPR.2012.6248074.

[6] B. Nguyen, C. Berger, and O. Benderius, “Systematic benchmarking for reproducibil-
ity of computer vision algorithms for real-time systems: The example of optic flow
estimation,” in IEEE International Conference on Intelligent Robots and Systems,
Macau, China, Nov. 2019, pp. 5264–5269. doi: 10.1109/IROS40897.2019.8968066.

[7] N. H. Khan and A. Adnan, “Ego-motion estimation concepts, algorithms and chal-
lenges: an overview,” Multimedia Tools and Applications, vol. 76, no. 15, pp. 16 581–
16 603, Aug. 2017. doi: 10.1007/s11042-016-3939-4.

[8] G. Zhai, L. Liu, L. Zhang, Y. Liu, and Y. Jiang, “PoseConvGRU: A Monocular
Approach for Visual Ego-motion Estimation by Learning,” Pattern Recognition,
vol. 102, p. 107 187, Jun. 2020. doi: 10.1016/j.patcog.2019.107187.

[9] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High accuracy optical flow
estimation based on a theory for warping,” in Computer Vision - ECCV 2004, T.
Pajdla and J. Matas, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,
pp. 25–36.

[10] R. Schuster, C. Bailer, O. Wasenmüller, and D. Stricker, “Combining stereo disparity
and optical flow for basic scene flow,” in Commercial Vehicle Technology 2018, K.
Berns et al., Eds., Wiesbaden: Springer Fachmedien Wiesbaden, 2018, pp. 90–101.

47

https://doi.org/10.1109/IVS.2019.8814037
https://doi.org/10.1016/j.eswa.2020.113816
https://doi.org/https://doi.org/10.1016/j.arcontrol.2016.04.018
https://doi.org/10.1007/978-3-319-39225-7_14
https://doi.org/10.1007/978-3-319-39225-7_14
https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1109/IROS40897.2019.8968066
https://doi.org/10.1007/s11042-016-3939-4
https://doi.org/10.1016/j.patcog.2019.107187


References

[11] B. Zhao, Y. Huang, H. Wei, and X. Hu, “Ego-Motion Estimation Using Recurrent
Convolutional Neural Networks through Optical Flow Learning,” Electronics, vol. 10,
no. 3, p. 222, Jan. 2021. doi: 10.3390/electronics10030222.

[12] T. Kriechbaumer, K. Blackburn, T. Breckon, O. Hamilton, and M. Rivas Casado,
“Quantitative Evaluation of Stereo Visual Odometry for Autonomous Vessel Locali-
sation in InlandWaterway Sensing Applications,” Sensors, vol. 15, no. 12, pp. 31 869–
31 887, Dec. 2015. doi: 10.3390/s151229892.

[13] J. Engel, V. Koltun, and D. Cremers, “Direct Sparse Odometry,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 40, no. 3, pp. 611–625, 2018. doi:
10.1109/TPAMI.2017.2658577.

[14] C. Cadena et al., “Past, present, and future of simultaneous localization and map-
ping: Toward the robust-perception age,” IEEE Transactions on Robotics, vol. 32,
no. 6, pp. 1309–1332, 2016. doi: 10.1109/TRO.2016.2624754.

[15] R. Mur-Artal and J. D. Tardos, “ORB-SLAM2: an Open-Source SLAM System for
Monocular, Stereo and RGB-D Cameras,” IEEE Transactions on Robotics, vol. 33,
no. 5, pp. 1255–1262, Oct. 2016. doi: 10.1109/TRO.2017.2705103.

[16] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-Scale Direct Monocular
SLAM,” in Computer Vision – ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and T.
Tuytelaars, Eds., Cham: Springer International Publishing, 2014, pp. 834–849.

[17] The KITTI Vision Benchmark Suite: Visual Odometry / SLAM Evaluation 2012,
http://www.cvlibs.net/datasets/kitti/eval_odometry.php, Accessed: 2021-
02-12.

[18] R. Wang, M. Schwörer, and D. Cremers, “Stereo DSO: Large-Scale Direct Sparse
Visual Odometry with Stereo Cameras,” in International Conference on Computer
Vision (ICCV), Venice, Italy, Oct. 2017.

[19] X. Gao, R. Wang, N. Demmel, and D. Cremers, “LDSO: Direct Sparse Odometry
with Loop Closure,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Madrid, Spain, 2018, pp. 2198–2204. doi: 10.1109/

IROS.2018.8593376.
[20] R. Roberts, Hai Nguyen, N. Krishnamurthi, and T. Balch, “Memory-based learn-

ing for visual odometry,” in 2008 IEEE International Conference on Robotics and
Automation, Pasadenca, CA, USA, 2008, pp. 47–52. doi: 10.1109/ROBOT.2008.

4543185.
[21] R. Roberts, C. Potthast, and F. Dellaert, “Learning general optical flow subspaces for

egomotion estimation and detection of motion anomalies,” in 2009 IEEE Conference
on Computer Vision and Pattern Recognition, Miami, FL, USA, 2009, pp. 57–64.
doi: 10.1109/CVPR.2009.5206538.

[22] J.-L. Blanco-Claraco, F.-Á. Moreno-Dueñas, and J. González-Jiménez, “The Málaga
urban dataset: High-rate stereo and LiDAR in a realistic urban scenario,” The In-
ternational Journal of Robotics Research, vol. 33, no. 2, pp. 207–214, Feb. 2014. doi:
10.1177/0278364913507326.

48

https://doi.org/10.3390/electronics10030222
https://doi.org/10.3390/s151229892
https://doi.org/10.1109/TPAMI.2017.2658577
https://doi.org/10.1109/TRO.2016.2624754
https://doi.org/10.1109/TRO.2017.2705103
http://www.cvlibs.net/datasets/kitti/eval_odometry.php
https://doi.org/10.1109/IROS.2018.8593376
https://doi.org/10.1109/IROS.2018.8593376
https://doi.org/10.1109/ROBOT.2008.4543185
https://doi.org/10.1109/ROBOT.2008.4543185
https://doi.org/10.1109/CVPR.2009.5206538
https://doi.org/10.1177/0278364913507326


References

[23] G. Costante, M. Mancini, P. Valigi, and T. A. Ciarfuglia, “Exploring Representation
Learning With CNNs for Frame-to-Frame Ego-Motion Estimation,” IEEE Robotics
and Automation Letters, vol. 1, no. 1, pp. 18–25, 2016. doi: 10.1109/LRA.2015.

2505717.
[24] D. Zhou, Y. Dai, and H. Li, “Ground-plane-based absolute scale estimation for

monocular visual odometry,” IEEE Transactions on Intelligent Transportation Sys-
tems, vol. 21, no. 2, pp. 791–802, 2020. doi: 10.1109/TITS.2019.2900330.

[25] M. Schiaretti, L. Chen, and R. R. Negenborn, “Survey on autonomous surface vessels:
Part I - A new detailed definition of autonomy levels,” in Computational Logistics,
T. Bektaş, S. Coniglio, A. Martinez-Sykora, and S. Voß, Eds., vol. 10572, Oct. 2017,
pp. 219–233. doi: 10.1007/978-3-319-68496-3_15.

[26] ——, “Survey on autonomous surface vessels: Part II - Categorization of 60 proto-
types and future applications,” in Computational Logistics, T. Bektaş, S. Coniglio,
A. Martinez-Sykora, and S. Voß, Eds., vol. 10572, Oct. 2017, pp. 234–252. doi:
10.1007/978-3-319-68496-3_16.

[27] K. Meier, S. J. Chung, and S. Hutchinson, “River segmentation for autonomous
surface vehicle localization and river boundary mapping,” Journal of Field Robotics,
vol. 38, no. 2, pp. 192–211, 2021. doi: 10.1002/rob.21989.

[28] S. Wang, Y. Zhang, and F. Zhu, “Monocular visual SLAM algorithm for autonomous
vessel sailing in harbor area,” in 2018 25th Saint Petersburg International Conference
on Integrated Navigation Systems (ICINS), St. Petersburg, Russia, 2018, pp. 1–7.
doi: 10.23919/ICINS.2018.8405856.

[29] A. Chambers et al., “Perception for a river mapping robot,” in 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems, San Francisco, CA,
USA, 2011, pp. 227–234.

[30] S. Scherer et al., “River mapping from a flying robot: State estimation, river de-
tection, and obstacle mapping,” Autonomous Robots, vol. 33, no. 1-2, pp. 189–214,
Aug. 2012. doi: 10.1007/s10514-012-9293-0.

[31] S. Hożyń and J. Zalewski, “Shoreline Detection and Land Segmentation for Au-
tonomous Surface Vehicle Navigation with the Use of an Optical System,” Sensors,
vol. 20, no. 10, p. 2799, May 2020. doi: 10.3390/s20102799.

[32] L. Steccanella, D. D. Bloisi, A. Castellini, and A. Farinelli, “Waterline and obstacle
detection in images from low-cost autonomous boats for environmental monitoring,”
Robotics and Autonomous Systems, vol. 124, p. 103 346, Feb. 2020. doi: 10.1016/

j.robot.2019.103346.
[33] T. Fossen, Guidance and Control of Ocean Vehicles. Hoboken, New Jersey: John

Wiley Sons Inc, 1994.
[34] ——, Handbook of Marine Craft Hydrodynamics and Motion Control, Vademecum

de Navium Motu Contra Aquas et de Motu Gubernando. Chichester, West Sussex,
U.K: John Wiley & Sons Ltd, 2011.

49

https://doi.org/10.1109/LRA.2015.2505717
https://doi.org/10.1109/LRA.2015.2505717
https://doi.org/10.1109/TITS.2019.2900330
https://doi.org/10.1007/978-3-319-68496-3_15
https://doi.org/10.1007/978-3-319-68496-3_16
https://doi.org/10.1002/rob.21989
https://doi.org/10.23919/ICINS.2018.8405856
https://doi.org/10.1007/s10514-012-9293-0
https://doi.org/10.3390/s20102799
https://doi.org/10.1016/j.robot.2019.103346
https://doi.org/10.1016/j.robot.2019.103346


References

[35] K. Do, Z. Jiang, and J. Pan, “Robust adaptive path following of underactuated
ships,” Automatica, vol. 40, no. 6, pp. 929–944, 2004. doi: https://doi.org/10.

1016/j.automatica.2004.01.021.
[36] S. Kugele, D. Hettler, and J. Peter, “Data-Centric Communication and Container-

ization for Future Automotive Software Architectures,” in 2018 IEEE 15th Interna-
tional Conference on Software Architecture (ICSA), Seattle, WA, USA, Jul. 2018,
pp. 65–74. doi: 10.1109/ICSA.2018.00016.

[37] N. Dragoni et al., “Microservices: Yesterday, today, and tomorrow,” in Present and
Ulterior Software Engineering, M. Mazzara and B. Meyer, Eds. Cham: Springer
International Publishing, 2017, pp. 195–216, isbn: 978-3-319-67425-4. doi: 10.1007/

978-3-319-67425-4_12.
[38] M. Shahin, M. Ali Babar, and L. Zhu, “Continuous integration, delivery and deploy-

ment: A systematic review on approaches, tools, challenges and practices,” IEEE
Access, vol. 5, pp. 3909–3943, 2017. doi: 10.1109/ACCESS.2017.2685629.

[39] C. Berger, B. Nguyen, and O. Benderius, “Containerized development and microser-
vices for self-driving vehicles: Experiences & best practices,” in 2017 IEEE Inter-
national Conference on Software Architecture Workshops (ICSAW), Gothenburg,
Sweden, 2017, pp. 7–12. doi: 10.1109/ICSAW.2017.56.

[40] J. Lotz, A. Vogelsang, O. Benderius, and C. Berger, “Microservice Architectures for
Advanced Driver Assistance Systems: A Case-Study,” in 2019 IEEE International
Conference on Software Architecture Companion (ICSA-C), Hamburg, Germany,
May 2019, pp. 45–52. doi: 10.1109/ICSA-C.2019.00016.

[41] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale, “Keyframe-based
visual–inertial odometry using nonlinear optimization,” The International Journal of
Robotics Research, vol. 34, no. 3, pp. 314–334, 2015. doi: 10.1177/0278364914554813.

[42] S. Umeyama, “Least-squares estimation of transformation parameters between two
point patterns,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 13, no. 4, pp. 376–380, 1991. doi: 10.1109/34.88573.

[43] J. Engel, V. Usenko, and D. Cremers, “A photometrically calibrated benchmark for
monocular visual odometry,” in arXiv:1607.02555, Jul. 2016.

[44] L. Mora, X. Wu, and A. Panori, “Mind the gap: Developments in autonomous driving
research and the sustainability challenge,” Journal of Cleaner Production, vol. 275,
p. 124 087, Dec. 2020. doi: 10.1016/j.jclepro.2020.124087.

[45] M. Andersson and M. Baerveldt, “Simultaneous localization and mapping for ve-
hicles using ORB-SLAM2,” M.S. thesis, Department of Mechanics and Maritime
Sciences, Chalmers University of Technology, Gothenburg, Sweden, 2018.

50

https://doi.org/https://doi.org/10.1016/j.automatica.2004.01.021
https://doi.org/https://doi.org/10.1016/j.automatica.2004.01.021
https://doi.org/10.1109/ICSA.2018.00016
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1109/ACCESS.2017.2685629
https://doi.org/10.1109/ICSAW.2017.56
https://doi.org/10.1109/ICSA-C.2019.00016
https://doi.org/10.1177/0278364914554813
https://doi.org/10.1109/34.88573
https://doi.org/10.1016/j.jclepro.2020.124087


A Appendix

The appendix covers an explanation of a photometric calibration in Sect. A.1.

A.1 Photometric calibration

The images can be calibrated using a photometric camera calibration as this improves the
performance of DSO. To this end, a model for image formation can be used that defines
the mapping of energy received on the sensor in each pixel to the intensity value in the
image. The observed pixel intensity in frame i and pixel x ∈ Ω, denoted by Ii(x), is
modelled as:

Ii(x) = G(tiV (x)Bi(x)) (A.1)

Here, G : R → [0, 255] stands for the non-linear camera response function, and V : Ω →
[0, 1] denotes vignetting, also called lens attenuation. Bi is the irradiance of image i
and ti is the exposure time for frame i. Using this model, each frame is corrected by
computing: [13]

I ′i(x) = tiBi(x) = G−1(Ii(x))
V (x) (A.2)

To use this correction, one must thus first estimate the camera response function G and
the vignette V . G is estimated from a sequence of images where the scene is static, but
the exposure time changes. As the scene is static, the model in (A.1) can be simplified to:

Ii(x) = G(tiB′(x)) ⇐⇒ G−1(Ii(x)) = tiB
′(x) (A.3)

where B′(x) = V (x)B(x). Assuming that G−1(Ii(x)) follows Gaussian white noise, one
can set up the following quantity using maximum likelihood, where one want to minimise:

E(G−1,B′) =
∑
i

∑
x∈Ω

(G−1(Ii(x))− tiB′(x))2 (A.4)

By minimising this alternately for G−1 and B′, this problem can be solved by:

(G−1)∗(k) = arg min
U(k)

E(G−1,B′) =
∑

Ωk
tiB
′(x)

|Ωk|
(A.5)

(B′)∗(x) = arg min
B′(x)

E(G−1,B′) =
∑
i tiG

−1(Ii(x))∑
i t

2
i

(A.6)

I
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where |Ωk| = {i,x|Ii(x) = k}, that is, the set of all pixels in all images with intensity
k ∈ R. Note that overexposed pixels are not included since then G−1 is not well-defined.
Moreover, as the irradiance, B, is unknown and estimated, it is only known up to a scalar
factor. Hence, also G and V are also only known up to a scalar factor. As a final step,
G−1 is scaled so that G−1(255) = 255 [43].

The vignette V is estimated similarly. V is estimated as a non-parametric map, where
the estimation requires a sequence of images of a planar surface having bright colour
and which is Lambertian. Let P ⊂ R3 denote this surface. First, the camera’s state is
estimated, resulting in a mapping πi : P → Ω from the plane to an image pixel, for each
frame. The camera pose πi is estimated using an artificial reality marker, due to it being
simple. As above, G−1(Ii(πi(x))), for x ∈ P, is assumed to follow Gaussian white noise.
One can then retrieve the following formulation:

E(C,V ) =
∑
i,x∈P

(
tiV

(
[πi(x)]

)
C(x)−G−1

(
Ii(πi(x))

))2
(A.7)

which we want to minimise. Here, let C : P → R be the planar surface’s unknown
irradiance. The surface is discretised when solving for this, and [·] denotes rounding to
the closest point. As before, this can be solved by alternately fixing C and V :

C∗(x) = arg min
C(y)

E(C,V ) =

∑
i tiV

(
[πi(x)]

)
G−1

(
Ii(πi(x)

)
∑
i

(
tiV

(
[πi(x)]

))2 (A.8)

V ∗(x) = arg min
V (x)

E(C,V ) =

∑
i tiC(x)G−1

(
Ii(πi(x))

)
∑
i

(
tiC(x)

)2 (A.9)

The vignette function is lastly scaled so that max(V ) = 1 [43].
The photometric calibration can be performed using functions distributed by the Tech-

nical University Munich1, where DSO was developed, which has been wrapped in a Docker
file2.

1https://github.com/tum-vision/mono_dataset_code
2https://git.chalmers.se/annpeter/opendlv-perception-photometric-calibration
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