
Object Classification using 3D
Convolutional Neural Networks
Master’s thesis in Systems, Control and Mechatronics

AXEL BENDER
ELÍAS MAREL ÞORSTEINSSON

Department of Energy and Environment
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2016

Master’s thesis 2016:11

Object Classification using 3D
Convolutional Neural Networks

Classification of Voxelized LiDAR Point Cloud Data using
3D Convolutional Neural Networks

Axel Bender
Elías Marel Þorsteinsson

Energy and Environment
Division of Physical Resource Theory

Complex Systems
Chalmers University of Technology

Gothenburg, Sweden 2016

Object Classification using 3D Convolutional Neural Networks
Classification of Voxelized LiDAR Point Cloud Data using
3D Convolutional Neural Networks
Axel Bender & Elías Marel Þorsteinsson

© Axel Bender & Elías Marel Þorsteinsson, 2016.

Supervisor: Robert Björkman, Semcon AB
Examiner: Peter Nordin, Energy and Environment

Master’s Thesis 2016:NN
Department of Energy and Environment
Division of Physical Resource Theory
Complex Systems
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: A 3D point cloud scan created by a Velodyne LiDAR sensor showing a typical
traffic scenario which is the subject for object classification.

Typeset in LATEX
Printed by TeknologTryck
Gothenburg, Sweden 2016

iv

Object Classification using 3D Convolutional Neural Networks
Classification of Voxelized LiDAR Point Cloud Data using
3D Convolutional Neural Networks
AXEL BENDER & ELÍAS MAREL ÞORSTEINSSON
Department of Energy and Environment
Chalmers University of Technology

Abstract
In the development of autonomous driving and active safety systems, knowledge
about the vehicle’s surroundings is critical. When it comes to making decisions in
real driving scenarios, the location and relative movement of surrounding vehicles,
pedestrians and even static objects gives invaluable information to the system re-
sponsible for decision making. To know whether an object is a car or pedestrian,
the system has to distinguish between the different features to predict object type.
LiDAR sensors are among the most commonly used sensors in the development of
modern AD systems as they produce dense images of their surroundings that are
relatively resistant to changing light and weather conditions. Many classification
methods use feature extraction or transformations to evaluate the 3D information
using methods commonly used in 2D image analysis. In this thesis we evaluate the
performance of training convolutional neural networks directly on 3D data, bypass-
ing any information loss through data extraction or transformation and allowing the
intensity hit of points to be used. The effectiveness of the method is evaluated on
a dataset created from the KITTI Vision Benchmarking Suite. Our results show a
total accuracy score of 96.35% and with a mean accuracy of 95.67% on a dataset
trained on 7 classes.

Keywords: Autonomous Driving, LiDAR Sensor, Machine Learning, Artificial Neu-
ral Networks, Convolutional Neural Networks, Object Classification

v

Acknowledgements
We would like to thank our examiner, Peter Nordin for his invaluable input and
guidance throughout the thesis work as well as our supervisor at Semcon, Robert
Björkman who was always ready to aid us along the way and help us integrate our
work with the AD-Tool team. We would also like to thank Jens Henriksson for his
advice and numerous suggestions along the way and the Semcon Brazil team who
generously supplied code to allow us to incorporate more data in our work. Finally,
we would like to thank the authors of VoxNet, Daniel Matuarna and Sebastian
Scherer as well as the community behind the Theano framework, whose work made
this project possible to begin with.

Axel Bender and Elías Marel Þorsteinsson, Gothenburg, September 2016

vii

Contents

List of Figures xi

List of Tables xiii

Glossary xv

List of Acronyms xvii

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 2
1.3 Related Work . 3
1.4 Objective . 4
1.5 Purpose and Aim . 5

2 Theory 7
2.1 Artificial Neural Networks . 7

2.1.1 Layers . 7
2.1.2 Activation functions . 8
2.1.3 Dropout . 9
2.1.4 Training algorithms . 9

2.2 Convolutional Neural Networks . 11
2.2.1 Convolution filters . 11
2.2.2 Feature maps . 12
2.2.3 Nonlinear down-sampling . 12
2.2.4 Loss layer . 13

2.3 Recurrent Neural Networks . 13
2.3.1 LSTM . 15

2.4 Point Cloud Data . 15
2.4.1 Velodyne HDL-64E . 16

3 Methods 19
3.1 Architecture . 19

3.1.1 Framework . 19
3.1.2 CNN Layers . 21
3.1.3 Concatenation Layer . 21
3.1.4 Input data manipulation . 22

ix

Contents

3.2 Dataset selection . 22
3.2.1 Sydney Urban Object Dataset 23
3.2.2 Stanford Track Collection . 25
3.2.3 KITTI . 26
3.2.4 Benchmarking dataset . 29

3.3 Voxelization . 30
3.3.1 Intensity occupancy grids . 30
3.3.2 Voxelization area scaling . 31
3.3.3 Voxelization algorithm . 33
3.3.4 Orientation correction . 34

3.4 Training . 35
3.5 Tracking . 36

3.5.1 Confidence Threshold . 37

4 Results 39
4.1 Comparison with VoxNet and ORION 39
4.2 Comparison with VCC Thesis Classification Work 41

5 Discussion 45
5.1 Improvements . 45
5.2 Impediments . 45
5.3 Future Work . 46

Bibliography 47

A Appendix III

x

List of Figures

2.1 A visual representation of a simple artificial neural network [1]. 7
2.2 Convolution layer with down-sampling. Units belonging to the same

colour share the same parametrization (weight vector and bias), the
different colours represent different filter maps [2]. 11

2.3 Convolutions between a linear filter and the receptive fields, resulting
in a feature map, followed by pooling and sub-sampling [3]. 12

2.4 Max-pooling of the feature map’s activation outputs. Filter size 3x3
and stride is 2. 13

2.5 A typical RNN structure being unfolded into a three layer network [4]. 14
2.6 A Velodyne HDL-64E LiDAR sensor. 16

3.1 The structure of the convolutional neural network. 21
3.2 Segmented objects from the Sydney Urban Object Dataset. Top: A

flatbed truck seen from the side. Bottom left: A pedestrian seen from
the side. Bottom right: A sedan car seen from the back. Red points
indicate high intensity return and blue indicate low intensity. 24

3.3 A car seen from the back from SUOD after being voxelized in Mat-
lab. The colors of each voxel represent the intensity of the hit before
applying the threshold method. 31

3.4 A car seen from the back from SUOD after being voxelized using the
threshold method. The colors of each voxel represent the intensity
threshold of the hit. 31

3.5 Comparison of the results of a voxelizing a pedestrian from SUOD
using fixed voxel sizes and the adaptive voxel size method. The left-
most pane shows used a fixed voxel size of 0.1 m, the middle pane
used 0.2 m and the right-most pane used dynamic voxel-size where
the method calculated a voxel size of 0.061 m. 32

3.6 Comparison of the results of a voxelizing a bus from SUOD using
fixed voxel sizes and the adaptive voxel size method. The left-most
pane shows used a fixed voxel size of 0.1 m, the middle pane used 0.2
m and the right-most pane used dynamic voxel-size where the method
calculated a voxel size of 0.236 m. 33

3.7 The bounding box calculated to determine the angle of an object from
the xz-plane and rotate it to a nominal orientation. 34

A.1 Training report from a training session of the CNN architecture on
the main benchmarking dataset. IV

xi

List of Figures

A.2 Isometrically rendered examples from a test run on the main bench-
marking dataset constructed from KITTI raw tracklets. V

xii

List of Tables

3.1 The data fields provided in the Sydney Urban Object dataset 23
3.2 The 14 classes of Sydney Urban Object dataset used in VoxNet and

ORION benchmarks [5][6]. 24
3.3 The number of total tracked objects in the Stanford Track Collection. 25
3.4 The number of total poses for all the tracked objects in the Stanford

Track Collection. 26
3.5 The number of total poses for all the tracked objects in the KITTI

raw tracklets. 28
3.6 The information fields relevant to point cloud data included in the

KITTI raw data tracklets. Fields relevant to stero vision are omitted. 28
3.7 The main dataset created for benchmarking from KITTI raw data

tracklets. 29
3.8 The intensity ranges used in the threshold intensity voxelization method

and the integers used to represent them in the voxelized matrix. . . . 30

4.1 The confusion matrix for a test run of the 14 class dataset from SUOD
used to compare to previous work. 40

4.2 The class accuracy for the 14 class dataset from SUOD used to com-
pare to previous work. 40

4.3 The results of the Sydney dataset tests compared to the best results
of previous work. 41

4.4 The confusion matrix for the main dataset used for benchmarking
using binary voxelization. 41

4.5 The class accuracy for the main dataset used for benchmarking using
binary voxelization. 42

4.6 The confusion matrix for the main dataset used for benchmarking
using intensity threshold voxelization. 42

4.7 The class accuracy for the main dataset used for benchmarking using
intensity threshold voxelization. 43

4.8 The results of our KITTI tests compared to the results of the VCC
thesis work. 43

xiii

List of Tables

xiv

Glossary

chunk Chunks of 16 batches that each contain 32 objects are used to utilize memory
better during training and cutting down training times.. 35

cuDNN Deep Neural Network library (cuDNN) is a GPU-accelerated library of
primitives for deep neural networks.. 35

epoch The process going once through the entire training dataset during training..
23, 35

iteration A batch of items is processed at once in the training algorithm to better
utilize memory.. 35

MNIST Handwritten digit database, commonly used for training and benchmark-
ing various image processing systems and classifiers.. 12

overfitting When training a classification model, there is a risk of the model adapt-
ing overly to noise in the training set rather then learning general correlations.
This has a high risk of happening if training is maintained for too long.. 9,
13, 35

scatter ratio Inverse ratio between the number of voxels an object has and the
distance to the object’s center of mass.. 21

supervised learning A method of ANN training, where a known set of input
and their corresponding outputs are fed through the network and the error
gradient, calculated through a loss function, is used to adjust the weight matrix
through backpropagation.. 8, 9

test set The unseen data that is used to evaluate the performance of the model
after training.. 25, 26, 27, 35, 36

training set The part of the dataset used for learning while training the model..
25, 26, 29, 35

validation set When an ANN has finished training on the training data set, the
accuracy of the ANN is tested using a data set it has not seen before, giving
a more realistic perception of the predictability of the model.. 9, 35

visual field A term used for the data that is observable by the input layer of an
Artificial Neural Network. 12

weight A computational variable adjusted during training of ANNs. Determines
the neural network’s response to a certain input. Also known as synaptic
weights or connection weights.. 7, 8, 9, 14

xv

Glossary

xvi

List of Acronyms

ANN Artificial Neural Network. xv, 1, 2, 3, 4, 7, 8, 9, 10, 11, 13, 19, 23, 25, 26

CNN Convolutional Neural Network. xi, 2, 4, 11, 13, 19, 20, 21, 22, 25, 30, 34, 36,
45, 46, III

cuDNN CUDA Deep Neural Network library. 20

FFNN Feed Forward Neural Network. 27, 43

KNN K-Nearest Neighbours. 27, 43

LiDAR Light Detection and Ranging. 1, 3, 4, 15, 16, 17, 24, 26, 27, 30, 45
LSTM Long Short-Term Memory. 4, 15

MLP Multilayer Perceptron. 3

PCD Point Cloud Data. 11, 15, 16, 22, 23, 24, 25, 26, 27, 28, 29
PCL Point Cloud Library. 26, 28

ReLU Rectified Linear Unit. 9, 14
RF Receptive field. 11, 12, 22
RFC Random Forest Classification. 27, 43
RNN Recurrent Neural Network. xi, 4, 13, 14, 15

STC Stanford Track Collection. 25, 26, 31
SUOD Sydney Urban Objects Dataset. xi, xiii, 23, 30, 31, 32, 31, 32, 39, 40
SVM Support Vector Machine. 27, 43

Tanh Hyberbolic tangent. 8, 9, 14

VCC Volvo Car Corporation. xiii, 27, 29, 37, 39, 43

xvii

List of Acronyms

xviii

1
Introduction

Autonomous driving has been a major focus point of engineering- and software
development research in the recent years. This has been facilitated mostly by im-
provements and lowered cost of computer hardware capable of running the complex
algorithms needed. Large amounts of sensor data is being utilized to localize and ul-
timately guide the vehicle through its environment and this requires fast processing
and considerable computational power.
Semcon is currently developing a framework for autonomous driving as part of a

large cooperation project with other companies in the Gothenburg area. The project
is referred to as AD-Tool and will be a modular framework where parts of the project
can be easily added in as they are developed.

This thesis aims to supplement and improve a part of the project where objects
found in a traffic situation are detected and classified from 3D LiDAR data. The
objects can then be tracked and eventually used in localizing and steering the vehicle
through it environment. This will be done by implementing and training a convolu-
tional neural network to classify common types of urban objects such as cars, trucks,
cyclists, pedestrians, etc.

1.1 Background
Artificial Neural Networks (ANNs) are a type of computer model that simulate the

behaviour of biological neural networks such as the human brain. The models consist
of artificial neurons that can be used to estimate nonlinear functions and behaviours.
The method dates back to the 1940’s but it gained a lot of attention from computer
science researchers in the 1980’s with the birth of the backpropagation algorithm in
1975 [7]. However, the development of neural networks was limited at first by the
computational power and cost efficiency of computer hardware at the time.

A single neuron on its own has little useful computational power, however the
human brain as a whole has only recently been outmatched in pure computational
speed by the world’s most powerful supercomputers [8]. With that in mind, writing
algorithms and building software frameworks based on the structure and behaviour
of the human brain, might be the next step towards making autonomous robots
capable of making human-like decisions.

A very simplified example of how the human brain identifies an object, for an
instance a person’s face, is to say that the information gets broken down into simpler

1

1. Introduction

components that then get pieced back together to form the bigger picture. The way
that the information from the optical nerve gets processed can be envisioned as it
moving along a net of neurons, connected together by neural pathways. Each time
that the information gets to a crossroad a decision is made. Based on a fraction of the
information, say the curve of a nose or the shape of an eye, the path taken through
the neural net is chosen. In the end, depending on which neurons were stimulated,
the human brain identifies the face to be one that it has seen before, having triggered
close to the same neural response upon learning these facial features.

This example illustrates the need for using ANNs with many hidden layers to even
come close to representing similar architecture in a computer, as found in the human
brain. There is also the fact that human brain is remarkably good at associative
learning and using context to draw conclusions quickly.
To utilize the internal structure and context of the point cloud dataset, the idea is

to use Convolutional Neural Networks (CNNs) with deep learning that allow for sim-
ulation of the most basic cognitive capability of a human brain. Using deep learning
can however be very computationally expensive and can make the algorithms and
methods used in training ANNs for object classification very complicated.

In 1989 Yann LeCun attempted to use backpropagation with a deep neural net-
work, a network with multiple hidden layers of artificial neurons that better repre-
sents the structure of the human brain. The time to train the dataset took approx-
imately 3 days, which is perhaps too long for most practical applications. [9]. With
more computational power and efficient algorithms, capabilities of ANNs have risen.
By today’s standards the concept of deep learning can be considered to be a viable
option for training ANNs.
ANNs have already been proven to excel at identifying objects from images, doing

voice recognition and even creating art [4]. The purpose of this project is to look
at how effective ANNs are at identifying objects in a grid of 3D points from a
Velodyne LiDAR sensor. This approach of training ANNs using deep learning to
classify objects, compared to the more traditional method of matching objects to a
library of templates, will be the main focus of this Master’s thesis.

1.2 Motivation
The proficiency of neural network applications when it comes to classification of

2D image data is well documented, even when using close to 1000 possible image
categories, as was the case in the implementation of AlexNet [10]. Inspired by the
positive results of 2D ANN implementations, research groups and companies have
looked towards applying the more successful variants of neural networks to 3D data
such as RGB-D images, CAD models and 3D point cloud scans.

The main obstacle in handling 3D data with ANNs that researchers are still
working to overcome is that almost all neural network development frameworks and
training software is specifically designed to take inputs in the form of 2D images.
This has led to different approaches such as projecting 3D data to 2D, a method that

2

1. Introduction

is sometimes called 2.5D projection [11]. Other older methods use so-called point
histograms as a way of quantifying the dimensions of the 3D point clusters in a way
that 2D neural networks can handle [12]. Voxelizing the 3D data into occupancy
grids stored as binary matrices has been shown to have relatively high success in
comparison to the aforementioned input methods [6].

What drives this development is to see if the success that has been shown in clas-
sification of 2D images can be applied in the same degree to 3D data. With regards
to autonomous driving, the motivation behind using LiDAR sensor data in this way
is that the main alternative sensor type that still provides depth perception to the
vehicle’s AI algorithms are stereoscopic cameras which can be very unreliable as a
single data source in different lighting and especially in certain weather conditions.
LiDAR data is also completely unaffected by shadows, which can be hard to adjust
for with regular camera images and video feed. Another of the LiDAR’s strength
over cameras is its 360° field of view and the fact that it generates images that
are not directional or skewed by the camera’s narrow field of view. Having a high
definition camera as an additional source of sensor data for redundancy is generally
a good idea.

1.3 Related Work
Even though the usage of Artificial Neural Networks on 3D point cloud data is

still a fresh research topic, a number of articles and thesis work have been published
over the last few years on the topic. A paper published in 2013, at The Brazilian
Conference on Intelligent Systems, approaches the subject of a Multilayer Perceptron
(MLP) neural network implemented on 3D point cloud data where 2.5D projection
is applied to the data [11]. This article gave valuable insight in using deep learning
and ANNs to recognise objects in a point cloud data. The article also mentioned
a few interesting ways to segment the point cloud data into candidate objects for
classification and removing unnecessary data points, such as the ground, from the
data set.
Another interesting article published in 2015 explored an efficient way of repre-

senting 3D data, using a method of storing 3D points called point feature histograms
[13]. This method is usually used to stitch together two overlapping point clouds
by finding common point features and positioning and orientating the point clouds
so that a estimated error between them is minimized. To do this the data is stored
in a very efficient way using 2D like matrices. Another article by the same team
implements this method in a simple but effective object detection algorithm trained
on RGB-D data [14].

By following through on a few of the cited sources in the previously mentioned
article [11] lead to some very interesting papers concerning data segmentation and
its importance. Various different methods such as the socalled fast segmentation
method [12] and the clustering method for efficient segmentation of 3D point data
[15] are described. In the current version of the AD-tool a method for segmentation

3

1. Introduction

is being developed alongside this project. For the purposes of this thesis it is assumed
that this method will be used to deliver segmented clusters of data points to the
neural network for classification and a training dataset will be chosen with this in
mind.
A promising solution to the problem of input manipulation of the 3D point cloud

data was found in a paper released in 2014. In the paper the volumetric space of a
3D point cloud was voxelized using a relatively simple algorithm to make it input
compatible with the neural network framework used [6]. Other design features were
introduced in this paper that served as groundwork and inspiration for the data
flow and framework setup in this project. This includes an novel approach to data
augmentation during training and testing. The training data is rotated a set number
of times around the LiDAR’s rotational axis to simulate multiple viewpoints during
training in a process called rotation augmentation.

Closely related to the problem of the object classification is the complex task of
tracking each detected object in a flow of 3D point cloud frames. This is done by
assigning unique tags for each object in the frame and maintaining the same tag
throughout the "lifetime" of the tracked object. This kind of tracking will eventually
be implemented alongside online object classification in the AD-Tool software.
The problem of multiple object tracking is a open research problem in the field of
robotics and is the topic of many new research papers. Recently, a paper on the topic
was published where Recurrent Neural Network (RNN) were used to accomplish for
the first time, an end-to-end artificial learning approach to multi-object tracking
[16]. The recurrent aspect of RNNs, to deal with sequential information, along
with Long Short-Term Memory (LSTM) seems well suited for this task and given
that object classification is so closely related to the goal of object tracking, it can
be beneficial to utilize some of the methods used in this paper to possibly aid in
upcoming parts of the AD-Tool tracking implementation.

1.4 Objective

This thesis is focused on designing and training CNNs to accept inputs in the
form of 3D point cloud data. This involves designing the architecture of the neural
network to best suite the task and restructuring the point cloud input data to be
compatible with the input structure of the neural network. After formulating a
neural network structure suited for the purpose, the task is to select a method of
training the ANN, using a known set of inputs and corresponding outputs, to classify
objects. This involves selecting an appropriate dataset that fits the purpose of the
network.
An account of a few relevant research articles can be seen in Section 1.3. When

the stand-alone neural network has been implemented and trained to satisfaction,
the code must be made available in a form that can be combined with the AD-Tool
software package.

4

1. Introduction

1.5 Purpose and Aim
The goal of the thesis is to evaluate the performance of using neural networks to

classify objects from 3D data, both in an effort to utilize the intensity hits of the 3D
points as well as maintaining the 3D structure of the object without abstracting any
data via 2D conversion. The resulting classifier could also be a very useful tool in
detecting segmentation errors and faulty tracklets in point cloud data that is used
for tracking purposes.

5

1. Introduction

6

2
Theory

Before diving into the more hands-on parts of the implementation and framework
architecture, it is essential to start from the beginning and have a look at the base
elements of neural networks and the algorithms and tools that make up the foun-
dation of their development. Estimating the limits of the hardware is also valuable,
so this section will also cover the engineering behind the sensors used to collect the
necessary data for this project.

2.1 Artificial Neural Networks
Artificial Neural Networks are connected systems of learning algorithms that

through fast, weighted computations estimate an output, given a set of inputs.
The framework of ANNs is inspired by biological neural networks. It resembles its
biological counterpart in the way it breaks down the inputs and systematically dis-
tributes them amongst its computational units. It is then the collaboration between
them or parallel computation that dictates the estimated output.

Figure 2.1: A visual represen-
tation of a simple artificial neural
network [1].

General ANNs consist of a weight matrix,
which shape corresponds to the number of con-
nections between the artificial neurons of the
network and the dimensionality of the input
data. The ANNs are then divided into different
layers. The number of layers and their dimen-
sions depend greatly on the network’s intended
purpose. The layers are often referred to as in-
put layers, output layers and hidden layers. Fig-
ure 2.1 shows a visual representation of a simple
ANN example. This section covers the building
blocks of neural networks and the common func-
tions used to train and optimize their behaviours
as well as looking at more specific forms of neu-
ral networks that have had particular success in
their intended applications.

2.1.1 Layers
Modern ANNs used for object identification, can be broken down into three layers.

The input layer is responsible for encoding the incoming data into smaller units,

7

2. Theory

based on the resolution that the neurons are operating under.
In thhe hidden layers is where the actual processing of information happens.

Typically the input layer is fully connected to the hidden layer, however the neurons
occupying the hidden layer are not interconnected. The data segments get sent from
the input neuron to its corresponding neurons on the hidden layer, where each neuron
performs a feedforward calculation. This process is described in Equation 2.1.

yj = σ(b+
N∑
i=1

wijyi) (2.1)

Where yj is output from neuron j on to the corresponding neurons of the next layer,
σ is the activation function chosen for the ANN, b is a bias term for the current
layer, wij is the weight matrix between current neuron j and neurons i from the
previous layer and yi is the outputs from the previous layer.
The final layer of any ANN is a fully-connected output layer. After the hidden

layer the data goes through logical regression, a supervised learning algorithm, in
order to estimate which of the output categories the input belongs to. It is at
this point a method called backpropagation is used to calculate the accuracy of
this estimate and sends back information to the hidden layer, to adjust the current
weights between the different layers. The number of neurons on the output layer
usually corresponds to the number of categories up for classification. [17].

2.1.2 Activation functions
Activation functions are nonlinear functions that compute the response of a hidden-

layer neuron to a set of inputs. The nonlinearity allows the network to compute
nontrivial problems, using a small number of nodes.
The sigmoid function is a nonlinear function that is defined mathematically as seen

in Equation 2.2.

σ(x) = 1/(1 + ex) (2.2)
It was originally favoured as an activation function for its resemblance to the firing
rate of a biological neuron. The sigmoid function normalizes the input to a neuron
between 0 and 1, further simulating the firing of a biological neuron from not firing
to fully-saturated firing at maximum frequency. The drawbacks of using a sigmoid
function and the reason it has fallen out of favour in modern ANNs is that they
saturate and effectively kill gradients. The problem surfaces when it comes to train-
ing the ANN using backpropagation. The local gradient of the saturated neurons is
multiplied to the gradient of the loss function in order to adjust their weights and
minimize the loss function gradient. The gradient of the saturated neuron being
so close to zero causes them to effectively stop learning and the neuron becomes
stagnant [18].

Hyberbolic tangent (Tanh) is another commonly used activation function which
is essentially a scaled sigmoid function, as can be seen in Equation 2.3.

tanh(x) = 2σ(2x)− 1 (2.3)

8

2. Theory

This means that it saturates like the sigmoid function, however it is zero-centered
and normalizes its input between -1 and 1. Which means that neurons in later hidden
layers receives data that is zero-centered. This reduces the risk of the gradient of the
weight matrix w becoming either all positive or all negative during backpropagation,
avoiding the following zig-zag behaviour of the loss function. This makes for a better
training loss curve.
Rectified Linear Unit (ReLU) is another common activation function. It can be

described mathematically as seen in Equation 2.4.

f(x) = max(0, x) (2.4)
where the activation is a threshold at zero. Due to its linear, non-saturating form it
has been shown to greatly accelerate the convergence of stochastic gradient descent,
compared to sigmoid or Tanh functions [19]. The downside of ReLUs is that a large
gradient flowing through them can cause the weights to be updated in in such a
way, that the neuron will never fire from any data point from then on. This can
be avoided by carefully selecting an appropriate learning rate. If the learning rate
is too high, it will increase the frequency of this problem during training. Learning
rates are often adjusted in between training cycles in a process called learning rate
scheduling.

2.1.3 Dropout
Training ANNs is a time consuming process that can’t be accurately validated

while running. The reason for this inability to correctly estimate the accuracy of
the ANN is a concept known as overfitting. Typically when fitting a model to a set
of training data, using too many input parameters, the simulation becomes highly
reliant on the data it was modelled to. This leaves the model unreliable in predicting
an outcome, when a validation set is introduced. To minimize overfitting some form
of noise is usually introduced to the training, alongside the training data. In the
case of ANNs this deviation, from the symmetry of the training data, is achieved
using a method called dropout.
Dropout is usually applied between the layers that perform feedforward calcula-

tions on the input data. It is a stochastic method of removing a fixed percentage of
the data before passing it along to the next layer. This lessens the likelyhood that
the ANN does not start to anticipate a certain symmetry in its input.

2.1.4 Training algorithms
Training any ANN is by far the most time consuming part out of the whole

process. After completing feedforward calculations the ANN makes an estimate of
what category the input belongs to. Using backpropagation, which is a supervised
learning method, the network can compare the estimate to the known output to
adjust the weights and bias for every layer in the ANN. The focus of backpropagation
is usually a quadratic cost function defined as in Equation 2.5.

C = 1
2n

∑
x

||y(x)− αL(x)||2 (2.5)

9

2. Theory

Here n is the total number of training examples, y(x) is the expected output of the
ANN and α(x)L a vector of the activation functions output, with L denoting the
number of layers in the network, summed over training examples x.
The objective of backpropagation is first to compute partial derivatives of the cost

function, ∂C/∂wlij and ∂C/∂bli, with respect to the weight matrix and bias for every
layer. Backpropagation will provide the procedure to compute the error in each
neuron i on layer l in the ANN, namely δli, and correlate it to the partial derivatives
of the cost function. Where δli is defined as the partial derivative of the cost function
w.r.t. the weighted input zli to activation function σ for neuron i on layer l, or by
Equation 2.6:

δli = ∂C

∂zli
(2.6)

In essence, the method of backpropagation uses four equations to calculate its out-
come. First is the equation for calculating the error in the output layer.

δLi = ∂C

∂αLi
σ′(zLi) matrix form : δL = ∆αC � σ′(zL) (2.7)

The first term of Equation 2.7, ∆αC, is the rate at which the cost function changes
w.r.t. the activation output vector and σ′(zL) measures how fast the activation
function sigma is changing at zLi .
The second Equation 2.8 calculates the error δl in terms of the error calculated

for the next layer, δl+1.

δl = ((wl+1)T δl+1)� σ′(zl) (2.8)

This effectively propagates the error calculated at the output layer backwards to
the input layer of the ANN. Equation 2.9 relates the change in cost w.r.t. the bias
for each layer in the network to the error in neurons on the same layer.

∂C

∂bli
= δli (2.9)

Having already calculated the error for neurons in each layer, using Equations 2.7
and 2.8, and it being exactly equal to the rate of change in cost w.r.t. the bias,
means that the backpropagation is halfway towards linking the error δ to ∂C/∂wlij
and ∂C/∂bli.

Lastly, Equation 2.10 describes what is called momentum links the rate of change
of the cost w.r.t the weight in the network to the difference of the activation output
from previous layer to the neuron error in current layer.

∂C

∂wlij
= αl−1

k δli (2.10)

10

2. Theory

With these four Equations 2.7, 2.8, 2.9 and 2.10 the backpropagation method can
update the weight matrix and bias using gradient descent (Equation 2.11), based on
the error calculated for neurons in that layer [17].

wl → wl − η

m

∑
x

δx,l(αx,l−1)T

bl → bl − η

m

∑
x

δx,l (2.11)

2.2 Convolutional Neural Networks
When modifying ANNs to work on data sets where the structure or locality of

the data is an important aspect, as is the case with Point Cloud Data (PCD), the
concept of Convolutional Neural Networks (CNNs) becomes appealing. The reason
why CNNs are preferred in this case is that its architecture takes advantage of the
spacial locality of its input data. This attribute of CNNs is mainly due to the
generation of feature maps using convolution filters. Unlike the regular ANN, where
each unit on the input layer is connected to every unit on the first hidden layer,
each hidden unit in a CNN is connected only to a sub-region of the input image.
Segmenting the input data into these so called Receptive fields (RFs) and not having
the hidden layers fully connected, reduces the amount of feedforward calculations
performed and prevents the number of hidden units from scaling up, when resolution
of the input is increased. In addition to the layers described for the traditional ANN
in Section 2.1, CNNs generally include both convolution and pooling layers in their
hidden layers.

2.2.1 Convolution filters

Figure 2.2: Convolution layer with down-
sampling. Units belonging to the same colour
share the same parametrization (weight vec-
tor and bias), the different colours represent
different filter maps [2].

The input to a convolutional layer
of a CNN is, in the case of images,
a matrix of m ×m × r dimensions.
Where m is the height and width
of the image in pixels and r is the
depth of the input data, in coloured
images r = 3 for RGB. With higher
dimensionality r can be expanded
to accommodate for the data. On
the convolutional layer k linear fil-
ters with dimensions n×n×q, where
n < m and q ≤ r, are convolved
with the input data. The size of the
convolutional filters governs the lo-
cally connected structure of the hid-
den layer and each filter is convolved
with the input image, creating k fea-
ture maps of sizem−n+1 [2].

11

2. Theory

2.2.2 Feature maps
From the input layer the RFs are convolved with linear filters and after adding a

bias term and applying a non-linear function, the feature maps are generated. This
subject is covered in detail in Section 2.1.2. Using the notation that the k-th feature
map at a given layer is hk, whose filter is determined by the weight matrix W k and
bias bk, results in Equation 2.12 which describes the feature map pre-activation as
a function of the input channel x [20].

hkij = tanh((W k ∗ x)ij + bk) (2.12)

Figure 2.3: Convolutions between a linear
filter and the receptive fields, resulting in a
feature map, followed by pooling and sub-
sampling [3].

Each filter is convolved with ev-
ery RF on the visual field, pro-
ducing the same number of feature
maps as there are convolutional fil-
ters. Units belonging to the same
feature map, share between them
both weight and bias connecting the
RFs to that feature map.

For every feature map there is
therefore one weight matrix map-
ping each point of data on a RF
to its corresponding unit on the fea-
ture map in question. This results
in each feature map focusing on dif-
ferent aspects of the layer below and
every unit within a feature map cov-
ering different locations on the in-
put data, while keeping the number

of stored parameters low.
The size of a RF is governed by the resolution of the input data, while remaining

large enough for the hidden units to distinguish a pattern and establishing direction
of the data segment, typically for small images (e.g. MNIST) a 3x3 matrix.

2.2.3 Nonlinear down-sampling
Due to the overlapping nature of RFs, the process of convolution leaves some units

within a local neighborhood of the feature map to focus on the same parts of the
input image. This translates to unnecessary activation calculations for upper layers.
One solution to this problem is known as max-pooling.
Max-pooling is a form of nonlinear down-sampling that partitions the feature maps

into non-overlapping sets and selects the largest activation within each one. At the
pooling layer these local maxima represent each set in a smaller sub-sampled matrix,
which then gets passed on as input to the next hidden layer. The pooling layer is
defined by size and stride, where the size defines the dimensions of the pooling-filter
and stride is the step size in which the filter passes over the feature map. Example
of max-pooling is shown in Figure 2.4.

12

2. Theory

Figure 2.4: Max-pooling of the feature map’s activation outputs. Filter size 3x3
and stride is 2.

This method effectively reduces the number of units on the hidden layers and intro-
duces local translations invariance [20]. It can also help to reduce overfitting and
frees up memory. Benefits towards reduced overfitting only works on small data sets
and since max-pooling reduces the resolution of the convolutional layer, should be
used with care.

2.2.4 Loss layer
The last layer of a CNN is where the loss function (i.e. cost function, Equation

2.5) computes the deviation between the predicted- and true labels. The loss layer
has the fully-connected output layer and the ground truth distribution as inputs.
The loss functions can vary depending on the intended purpose for the ANN. An
example loss function, used here and in similar work, is cross entropy.

Cross-entropy (here categorical cross-entropy) computes the categorical cross-
entropy between predictions and targets.

Li = −
∑
j

ti,j log(pi,j) (2.13)

The function computes the error δi, w.r.t the parameters in the fully connected layer.
The error is then propagated through the pooling- and convolutional layers, where
the it is up-sampled, in order to adjust the weights between the input- and hidden
layers.

2.3 Recurrent Neural Networks
Although the main interest of this project is the object classification of segmented

3D point cloud clusters, a closely related part of the AD-Tool project at Semcon is
the tracking and tagging of these clusters. Multiple object tracking in real-world
scenarios is a complex and challenging research topic and recently the usage of recur-
rent neural networks in real time object tracking has been shown to have competitive
results to previous solutions that often use very complex state modelling and are
rarely computed online [16].

13

2. Theory

The main way RNNs differ from the conventional feedforward neural networks
is that they include at least one feedback loop between the input and output. By
doing this, RNNs utilize sequential information in the input and by doing so the
network gains a certain amount of memory that can help in learning tasks that have
a routine element. The most common application for RNNs is language modelling
and speech recognition, where the order of the inputs (words) and the connection
between them gives valuable information about the meaning.

In addition to the weights calculated when training feedforward neural networks
using backpropogation, the feedback loops in the hidden layer of a RNN have weights
that represent a hidden state that makes up the memory of the network. The way
the weights are calculated differs from conventional neural networks, the process is
referred to as unfolding and involves calculating the weights of the network for a
sequence of a known length where the number of layers in the network represents
the length of the sequence being calculated [21]. Figure 2.5 shows an example of a
simple RNN with one input and one output unfolded into a full network.

Figure 2.5: A typical RNN structure being unfolded into a three layer network [4].

When writing out a network in its unfolded form each node of the diagram repre-
sents a timestep marked by t. xt is the input at time t and ot is the output at time
t. U, V and W are the weights of the network calculated during training and st is
the hidden state of the network at timestep t. st is calculated by summing over the
current input and the last hidden state after passing through an activation function
as seen in Equation 2.14.

st = f(Uxt +Wst−1) (2.14)

where f is an activation function, commonly ReLU or Tanh. As can be seen, every
time a new state is calculated the previous state, st−1, is required. Since there exists
no previous state at the first timestep, st−1 is usually initialized as all zeros. Finally,
the output at each timestep ot is calculated as seen in Equation 2.15.

ot = softmax(V st) (2.15)

14

2. Theory

The weights U, V and W calculated during training are shared over each of the
timesteps and RNNs therefore have relatively few weights compared to other types
of neural networks.

2.3.1 LSTM
A Long Short-Term Memory (LSTM) network is a commonly used variant of RNNs
that is currently used in many state-of-the-art applications and research projects
due to their proficiency in recognizing long-term dependencies in the data they are
trained on. Their structure is more complex then the base type of RNNs and the
complexity is mostly in the way the hidden state is calculated. Instead of a single
activation function that is chained through all time steps, LSTM networks have four
calculation steps and the memory of the network, the hidden state is referred to as
the network’s cell. The four calculation steps are designed to allow the network to
"select" which information to keep from the previous states [21].
The details of these calculations is beyond the scope of this project but the func-

tionality aspect of LSTM is particularly interesting for the object tracking side of
AD-Tool which is under development at Semcon alongside the classification which
is the subject of this thesis. It is therefore of great interest to analyse the input-
and structural possibilities of the networks that are likely to be used in tracking
to best facilitate the sharing of any common elements and information between the
classification algorithms and tracking methods.

2.4 Point Cloud Data
3D Point Cloud Data (PCD) is a digital representation of volumetric information,

most commonly portraying outdoor scenes or landscapes. PCD is also used in con-
junction with CAD modelling and 3D printing. Point clouds are usually created by
scanning real world objects and landscapes for further analysis and replication in
computer simulations. The usage of point clouds in robotics and landscape map-
ping has steadily increased as the scanners have become both more affordable and
increasingly powerful.
The most common sensor type used to create PCD is called a Light Detection and

Ranging (LiDAR) which works on the same principles as a radar. In the same way
that radars transmit radio waves and receive them back as they reflect from objects
in their path, LiDARs send out beams of light that reflect off any object in their
path. The time it took for the laser beam to travel to and from the object, or flight
time is then used to calculate its distance from the LiDAR. The collision location
between the laser beam and the object is then represented as a single point in a 3D
point cloud. Most LiDARs contain multiple light sources that make up an array of
laser beams to cover an wide vertical angle. The sensor is then rotated to span the
area around it.
The amount of data stored in the resulting PCD depends on the exact model and

type of sensor used. The Cartesian coordinates of each point are always included but
additional data is often available. This can be e.g. the intensity of the reflected laser
beam, the ring number of the laser source corresponding to the hit, a timestamp

15

2. Theory

for the laser hit and the azimuth angle from the center of the LiDARs field of view.
There are even methods of portraying the intensity of each reflected point as color
and store the information as RGB values.

The method for storing this data varies from manufacturer and the intended
purpose of the PCD. The most bare-bones file format is the .XYZ format which
only contains the Cartesian coordinates of the measured points in a ASCII file
format where each line represents a measured point and the coordinates themselves
are separated by a comma or white space. Since more information is often required
the most common file formats .LAS or .CSV, which are also ASCII files, but can
include many fields that are then described by contained headers or external help
documentation. Common practice is to convert these ASCII files to binary data
(.BIN) to speed up their processing. This however makes the information hard
to interpret for the user so it is usually done only when high processing speed is
needed.

2.4.1 Velodyne HDL-64E
Velodyne LiDAR is a leading developer of light-weight high functionality LiDARs

that can be mounted on mobile robots and vehicles. The flagship product of the
company is the Velodyne HDL-64E, which uses 64 laser beams spread over a 26.8°
vertical angle and achieves a 360° horizontal field of view by spinning at 300-900
RPM around its base [22]. The sensor can map up to 2.2 million points per second
and the Cartesian accuracy is listed as <2 cm, at its operating range of upwards
to 120 m [23]. The company also produces lighter and lower functionality LiDARs
that are aimed at smaller robots and applications that do not require the range and
point density of the Velodyne HDL-64E.

Figure 2.6: A Velodyne HDL-64E LiDAR sensor.

The sensor itself consists of a rotating head with a sensor array on one side
mounted behind a glass panel. The laser arrays and photo sensors that are used to
scan the surroundings of the sensor are split into an upper level and a lower level,
each comprising of three lenses. For both levels, the lasers are fired out of the two

16

2. Theory

outer lenses, 16 lasers in the right lens and 16 in the left while all laser returns are
picked up through the middle lens for each level. An annotated photograph of the
HDL-64E can be seen in Figure 2.6.
Velodyne, an acoustics manufacturer moved into the development of laser range

finding when two of the company’s founders took part in the DARPA Grand Chal-
lenge, a driverless vehicle challenge where the vehicles were set to follow a route
marked by GPS coordinates and had to navigate the terrain with onboard sensors.
They saw the need for sophisticated laser range finding sensors and developed their
first edition of a LiDAR sensor for the 2005 challenge. The sensor that the team
used in the 2005 challenge was about 100 pounds and instead of competing in the
next DARPA challenge, Velodyne decided to commercialize the sensor. In the 2007
DARPA Grand Challenge, five of the six top teams all used Velodyne’s HDL-64E
LiDAR for obstacle avoidance and guiding [24]. The HDL-64E has been used to
create many of the 3D point cloud data sets available to the public, including all the
datasets considered for this project (see Section 3.2) and the sensor is considered
state-of-the-art in vehicle LiDAR technology.

17

2. Theory

18

3
Methods

With ANN implementations, the architecture of the network is paramount to the
success of the application. This includes the choice of inputs and outputs, layer
structures and filtering as well as the training methods and learning parameters.
However, before addressing all of the low level parameter choices and tweaks, the
software framework that is the foundation of the neural network itself must be
carefully selected for the task at hand.

Programming a network structure as complex as CNN training is not elementary
and even more complicated when it comes to making it work with GPU accelerated
libraries that allow much faster training times than training on a regular CPU. Deep
learning applications are therefore very seldom programmed from scratch unless for
a very specific purpose.

A range of deep learning frameworks are available as open source licence with
different levels of support and hardware compatibility, selecting one that is right for
each application project is an important decision and might single-handedly make or
break a project’s success. After establishing the base structure of the network, the
next important part is knowing how to use the tools of the framework to implement
the characteristics and learning features that are right for the application.

Training is another key point to a network’s application success and the training
dataset used is vital to its ability to recognize the range of data it will be used on
eventually. Choosing the right dataset for this specific task with the necessary range
and sample size is therefore instrumental.

3.1 Architecture
In this section titled architecture the focus is on describing both the support frame-

work chosen for training and computing the CNNs and the type of CNN architecture
used in this project. The motivation for both the framework and architecture will
be discussed and modifications and implementations introduced.

3.1.1 Framework
When working with CNNs there are a few frameworks worth mentioning in con-

trast to the framework chosen for this project. First framework considered for this
project was CUDA-convnet2, prized for being a fast C++/CUDA implementation

19

3. Methods

of CNNs, by Alex Krizhevsky. Second honorable mention is TensorFlow, developed
by Google researchers working on the Google Brain Team, which flexible architec-
ture allows for deploying computations to one or more GPUs or CPUs. The main
attribute of TensorFlow is the modular GUI that allows for easy assembly of the
layers and components of a CNN.

Theano ended up being framework chosen for this project due to its flexibil-
ity and efficiency working with CNNs, allowing for up to 3x faster convolutions.
Theano allows for specifying models symbolically and compiles the representation
to well optimized code for both CPUs and GPUs. Furthermore it does symbolic
differentiation, for gradient descent, which simplifies the process of training CNNs
and updating the weight matrix, regardless of the dimensionality or input to the
CNN.

There are a few Theano dependencies which are listed as follows:
– python-numpy
– python-scipy
– python-dev
– python-pip
– python-nose
– libopenblas-dev [25]

Theano is built to work with latest version of CUDA toolkit and samples [26],
which for this project was CUDA 7.5 for GPU accelerated computing. When com-
piling CNNs for GPUs, Theano replaces its default convolution with a cuDNN-based
implementation, if the cuDNN package is installed. When training large CNNs, with
many convoluted hidden layers, its vital to utilize GPU accelerated computing. It
can take up to 3x to 15x longer to train a CNN on a high end CPU than it would
take using a high end GPU, depending heavily on the task [27]. Theano has good in-
tegration with GPU accelerated computing libraries and well documented examples
of working with CUDA.

This project needs a modified Theano framework to work on 3D Convolutional
Neural Network. The solution comes in the form of VoxNet, a modified implemen-
tation of Theano by Daniel Maturana [6]. In addition to Theano VoxNet relies on
Lasagna [28], a lightweight library to construct and train CNNs in Theano. Lasagna
provides memory and layer management, along with useful functions and algorithms
to implement with CNNs.

20

3. Methods

3.1.2 CNN Layers

Figure 3.1: The structure of the convolutional
neural network.

Deep neural networks are of-
ten classified by the number of
layers, or their "depth". When
it comes to CNNs this metric
is quite hard to define due to
the nature of the convolutional
filters and the numerous calcu-
lations that are sometimes ap-
plied to one set of feature maps.
The question becomes, what is
defined as a single layer? Is
it the number of convolutions
or is the result of each convo-
lution, drop-out or other op-
erations considered a separate
layer?
The standard for this was set

by Karpathy et. al in in their
ImageNet paper [19]. There,
each convolution is considered
it’s own layer and fully con-
nected layers add to the count.
In our case there are there-
fore two convolutional layers
and two fully connected layers
before the output, making the
depth in total 4 for the whole
network. Figure 3.1 shows the
breakdown of the CNN along
with the product of each signif-
icant layer.

3.1.3 Concatenation Layer
Aside from the traditional layers of a CNN, input-, output-, convolutional-, dropout-
, fully connected and pooling layers, described in section 2.2, a concatenation layer
to merge the product of the second convolutional layer with an injected input was
used. This addition to the CNN was implemented due to the dynamic voxelization
discussed in section 3.3. By injecting the dimensions of an object subjected to the
CNN, along with other derived features, after the second convolutional layer and
before the output, it is possible to diminish the negative impact of dynamically
scaling the input, while keeping the benefits of maintaining shape and reducing loss
of information.
The injected parameters used were x, y, z dimensions [1x3] for the current object

and Z-scores for these dimensions corresponding to a comparison between the object

21

3. Methods

and the average size of each known training class [3x7]. This resulted in a total of
24 injected parameters merged with the second fully connected layer. Another set
of parameters considered was to use scatter ratio Z-score [1x7] from a comparison
between the current object and every training class and average number of high
intensity points to the number of intensity points of the object [1x7].

3.1.4 Input data manipulation
One of the more difficult challenges faced in this thesis is to manipulate the input

of PCD onto a form more suitable for the architecture of CNNs. For 2D CNNs
a typical input would be a 2D image, sometimes a grayscale- or RGB image, will
be an n × n matrix with input channel r corresponding to the number of layers
in the image. Transferring 3D information into a format that a CNN can process
can be seen as having r represent the 3rd dimension, changing the input matrix
from n× n× r into m×m×m. This requires no manipulation of the input rather
just a small adjustment to the architecture of the CNN. It does however not solve
the problem of making the PCD a suitable input to a CNN. The distribution of
the points in PCD is neither uniform or discrete which creates a problem when
segmenting the input matrix into RFs to create feature maps in the hidden layers.
A solution to this problem is to create a volumetric occupancy grid out of the PCD
which is represented by a 3D matrix.
Volumetric occupancy grid have been used in 3D environmental mapping for un-

manned aerial vehicles, using range detection methods such as laser scanners or
sonar [29]. Occupancy grids represent the state of an environment as a matrix of
randomly initialized variables, each number corresponding to a voxel, while main-
taining a probabilistic estimate of the occupancy of each voxel based on incoming
sensor data and previous input. The benefits of using occupancy grids are they
allow for efficient estimation of free, occupied and unknown space of the working
environment, even if using multiple sensory inputs that do not have the same origins
or occur at he same time instance. This method discretizes the PCD from floating
points in 3D space into even spaced voxels in a 3D grid [6].

3.2 Dataset selection
A range of object classification datasets have been created by research institutes

and universities around the world. The focus of each dataset varies by its intended
use case and only a handful are aimed at autonomous driving and traffic situations.
Until recently, most labelled training data sets provided for object classification have
been in the form of video footage, either monoscopic or stereoscopic.
When it comes to 3D point cloud data sets, the selection becomes more limited.

The biggest and most popular dataset, the KITTI Vision Benchmark Suite was cre-
ated by Karlsruhe Institute of Technology in cooperation with Toyota Technological
Institute at Chicago in 2012. Along with 3D PCD, the dataset contains timestamped
GPS data, stereoscopic video footage in both color and grey-scale. Another popular
choice is the Stanford Track Collection, which is a compilation of segmented objects
that are portrayed as a series of tracks within a customized data format known as

22

3. Methods

TrackManager. The dataset is intended for use in real time tracking applications
but could be used to develop object classification applications as well.

3.2.1 Sydney Urban Object Dataset

The Sydney Urban Objects Dataset (SUOD), created by the Australian Centre
for Field Robotics is a smaller dataset than KITTI but more since it only consists
of PCD it is more focused on concise labelling of the 3D point cloud objects rather
than focusing on the video images. As in the other dataset mentioned before the
PCD was created by a Velodyne HDL-64E and each scan frame is broken down
into smaller 3D point clouds consisting only of one object. The entire scans are
also available before segmentation. The dataset contains 588 labelled objects of 26
classes ranging from trucks, cars and pedestrians to cyclists, traffic signs and poles.
The data is supplied both in ASCII .CSV format as well as binary .BIN format and
the data fields can be seen in Table 3.1.

Table 3.1: The data fields provided in the Sydney Urban Object dataset

Field name Description
t The timestamp in microseconds since epoch
intensity The intensity of the laser return hit (0-255)
id Laser array ID (1-64)
x,y,z Cartesian coordinates in meters
azimuth Azimuth angle from sensor’s front face
range Distance of laser return in meters
pid Point ID in the original scan

Even though the dataset consists of 26 different classes, the applications that we
are comparing our Sydney dataset training results with (Voxnet [6] and ORION [5])
use 14 classes to train and test on. This is done because using all 26 classes for
ANN training on an ANN is quite unsuitable since 10 of the classes would contain
5 or less objects. The 14 classes used for early training efforts and validation of the
neural network framework can be seen in Table 3.2. The ratio of objects used for
training and testing was aimed at being 3:1.

23

3. Methods

Table 3.2: The 14 classes of Sydney Urban Object dataset used in VoxNet and
ORION benchmarks [5][6].

Class ID Training objects Test objects Total objects
4wd 16 5 21
building 15 5 20
bus 12 4 16
car 66 22 88
pedestrian 114 38 152
pillar 15 5 20
pole 16 5 21
traffic_lights 35 12 47
traffic_sign 38 13 51
tree 25 9 34
truck 9 3 12
trunk 42 13 55
ute 12 4 16
van 27 8 35
sum 442 146 588

Figure 3.2: Segmented objects from the Sydney
Urban Object Dataset. Top: A flatbed truck seen
from the side. Bottom left: A pedestrian seen from
the side. Bottom right: A sedan car seen from the
back. Red points indicate high intensity return
and blue indicate low intensity.

When selecting the dataset
to use for training of the neu-
ral network in our project, the
first criteria was that the 3D
PCD was available in a form
where the initial scans were ei-
ther available, or could be ex-
tracted without extensive work,
be segmented into clusters rep-
resenting only the object of in-
terest as this was the assump-
tion made at the start of the
project. Segmentation of point
clouds without any embedded
data to aid the process is a chal-
lenging problem and has its own
field of research. For this par-
ticular project the focus is on
the classification as the segmen-
tation is being performed by an-
other group of researchers at
Semcon.
Having access to the intensity

return of the laser points is a valuable piece of information, since using the intensity
as an input to the neural network might increase the accuracy of the classification
due to the fact that the location of points that return a high intensity value gives

24

3. Methods

Table 3.3: The number of total tracked objects in the Stanford Track Collection.

Class ID Training objects Test objects Total objects
car 904 847 1751
cyclist 187 140 327
pedestrian 205 112 317
sum 1296 1099 2395

a whole new layer of information about the object. E.g. if the backside of a car is
facing the LiDAR, highly reflective surfaces such as tail lights or a licence plate have a
relatively standardized location on a normal car and utilizing this information when
training a neural network to learn to recognize a car could increase the accuracy of
the network.

The Australian Centre for Field Robotics has created two Linux packages intended
to help the user visualize and navigate the dataset. The first of these is called
Comma and mostly consists of functions and applications to convert between known
PCD formats. The second package is called Snark and it is mostly used for PCD
visualization and is provides useful tools to customize the visualized output.
The Sydney Urban Object Dataset was selected as the first focus of the voxelization

algorithm development and initial training since it was the dataset that best fits the
requirements of the ANN framework as well as the compatibility it comes to data
format. A sample of the objects supplied in the dataset can be seen in Figure 3.2.
Later on the voxelization process and training was extended to include two other
datasets who will be discussed in more detail. Eventually the main training data will
consist of KITTI data with the other two datasets being used for augmenting the
classes that were the most sparse and being used for validation and benchmarking
the recognition of completely unknown objects when inputted to the CNN.

The main strength of the Sydney dataset is its versatility and number of labelled
classes but a weakness that makes it quite unsuitable for high accuracy Artificial
Neural Network (ANN) training is the limited number of objects compared to other
datasets.

3.2.2 Stanford Track Collection
The Stanford Track Collection (STC) was created with the purpose of object

tracking more than classification. However it contains relatively many separate
objects that can be used for object classification. The labelled objects are only
classified into three classes, cars, cyclists and pedestrians. The number of individual
objects in the dataset can be seen in Table 3.3.

Since all of the individual objects that occur in the dataset are represented multiple
times through the different poses special care must be taken to avoid including poses
of the same object in both the training set and test set. Doing so would create a
bias in such a way that the network is conditioned to recognize very similar poses

25

3. Methods

Table 3.4: The number of total poses for all the tracked objects in the Stanford
Track Collection.

Class ID Training objects Test objects Total objects
car 92255 59173 151428
cyclist 31165 25410 56575
pedestrian 32281 22203 54484
sum 155701 106786 262487

of the same objects and when the trained weights are used on the test set it loses
some of it’s "unseen" quality.
Even though STC has plenty of segmented objects, one main drawback causes it

to be unsuitable for training ANNs for object classification. Since there are only
three classes and because they are quite distinctive in shape and size, the network
can quickly learn to differentiate between them without much training. Even though
this would give good results it fails to evaluate the ability of the trained network to
distinguish between similar classes, which tends to be what causes issues in object
classification. For this reason the Stanford dataset was more used as a large reservoir
of unseen data for later testing on networks trained using a combination of diverse
datasets.

To be able to use the STC dataset for voxelization it must be converted from the
TrackManager format that it is provided in. This can be done using PCL, which the
team in charge of the segmentation process had already experimented with. They
supplied us with a simple reader written in C++ that could be modified to convert
the data into individual .csv files with xyz coordinates and intensity. This was done
for all available poses of the objects in dataset, which is a substantial amount of
poses. The statistics can be seen in Table 3.4.

3.2.3 KITTI
The KITTI Vision Benchmark Suite is a dataset created by Karlsruhe Institute

of Technology and Toyota Technological Institute at Chicago for multiple computer
vision challenges with regards to autonomous driving. These include benchmarking
challenges in object detection, object tracking, lane detection, visual odometry and
scene flow evaluation. The dataset is more aimed towards the usage of stereo vision
cameras but the set also includes Velodyne LiDAR data as ground truth. The PCD
from the LiDAR is also supplied even though it is not intended as the main method
of tracking and identifying objects. The point clouds are presented in three forms,
firstly as raw data in tracklet form organized by the driving run, or log, that they
were collected in, secondly as PCD scans organized into training and testing sets
and thirdly as tracklets split into training and testing.
The latter two are intended for benchmarking different methods of object identi-

fication and tracking and the actual testing is intended to be done by a test server
hosted by the institute. Object identification in this case refers to both localizing
and classifying the objects. Therefore the sets are only supplied with labels and

26

3. Methods

bounding boxes for the training set, but the test set is unlabelled. This makes it
impossible to test locally. Additionally the training labels for the object set are sup-
plied in camera coordinates but not the LiDAR coordinates, but can be converted.
Another reason the object identification set is poorly suited for this project is that
the test set does not come with information about the location or indices of the seg-
ments in the test set, so segmentation is a required part of the object identification
method.

The raw data tracklets however include labels for all the PCD frames supplied
directly in the LiDAR’s coordinates, so the data can be organized into labelled
training and test sets locally, which results in a greater number of objects. This is
exactly what was done to create the main dataset for benchmarking for this project.
A reason supporting this decision was that a recent master’s thesis project done at
Chalmers Technical University for Volvo Car Corporation (VCC), comparing four
different object classification methods used data extracted from the same KITTI raw
data tracklets [30]. The dataset created for this thesis was therefore made in effort
to match the size and classes of the dataset used there. This was done partly as
a request from the AD-Tool team, since estimating the performance of the method
against other methods that were developed for the same application purposes.
The VCC thesis involved evaluating four different classification methods as well

as looking into segmentation of point cloud data. Each of the classification methods
take as input a set of features extracted from the 3D PCD. The report considers two
different sets of features, considering different aspects of the object classes. The four
methods evaluated in the thesis work are K-Nearest Neighbours (KNN), Support
Vector Machine (SVM), Random Forest Classification (RFC) and a version of a Feed
Forward Neural Network (FFNN).

The same classes are used in all three of the supplied versions. The raw set in-
cludes 1235 individual objects in total, but multiple instances, or poses of the same
object can be extracted from the tracklets. The classes supplied, number of individ-
ual objects in each class and the number of poses for each class can be seen in Table
3.5. It is important to mention that the total number of available logs for download
in the raw dataset do not all have matching tracklet files with labels and bounding
boxes for extraction. The scans that did not have matching tracklets were instead
used for manual extraction of poles, since that class is need for comparison with the
VCC thesis.

27

3. Methods

Table 3.5: The number of total poses for all the tracked objects in the KITTI raw
tracklets.

Class ID Individual objects Total poses
car 932 39923
cyclist 43 1550
misc 33 1115
pedestrian 84 2340
person_sitting 16 234
tram 9 500
truck 22 1738
van 96 5408
sum 1235 52808

The tracklets for the KITTI raw dataset are supplied as xml files with information
about each individual object and it’s occurrences, or poses, in the included PCD files.
The fields supplied in the tracklets can be seen in Table 3.6.

Table 3.6: The information fields relevant to point cloud data included in the
KITTI raw data tracklets. Fields relevant to stero vision are omitted.

Field name Description
objectType The label of the object
h The height of the 3D bounding box
w The length of the 3D bounding box
l The width of the 3D bounding box
first_frame The index of the first occurrence of the object
poses The number of occurrences for the object
x The x location of the midpoint of the 3D bounding box
y The y location of the midpoint of the 3D bounding box
z The z location of the midpoint of the 3D bounding box
rx The orientation of the 3D bounding box around the x-axis
ry The orientation of the 3D bounding box around the y-axis
rz The orientation of the 3D bounding box around the z-axis

The PCD files are supplied in .BIN format and must be converted to .CSV to allow
it to be run through the voxelization algorithm. This was done by creating a C++
conversion script using the PCL library in Visual Studio 2013. After converting all
the included PCD files to ASCII .CSV files that are readable by Matlab, a segmen-
tation script was created in Matlab to extract every pose of every individual object
using the bounding box information in the tracklet files and store them as individ-
ual files. This is done to allow the comparison of different voxelization algorithms
without the need of extracting the object being voxelized each time.

28

3. Methods

Table 3.7: The main dataset created for benchmarking from KITTI raw data
tracklets.

Class ID Training Testing Validation sum
car 6302 1765 865 8932
cyclist 429 123 55 607
misc 115 28 19 162
pedestrian 482 152 63 697
pole 165 44 22 231
truck 821 241 96 1158
van 1579 469 220 2268
sum 9893 2822 1340 14055
Ratio of total 70.39% 20.08% 9.53%

3.2.4 Benchmarking dataset

The main dataset used for benchmarking in this report was created by walking
through the raw data tracklets and voxelizing the poses of each object. Since the
training of neural networks suffers greatly from unbalanced datasets and due to the
fact that cars make up over 75% of the total poses in the raw data tracklets, the
number of cars in the dataset created from the tracklets must be reduced. This
was done by randomly picking a limited number of poses for each car object when
walking through the tracklets. Since the number of poses differs for each car, care
must be taken to pick a similar number of poses for each car so that one car does
not appear much more often than another.
To do this, the tracklet for each car was split up into 25 segments, starting a tenth

of the way into the tracklet. A pose is then picked from each segment so the same
number of poses are pick if there exist 200 poses for the car or 25. However, if less
than 25 poses exist, each one is used. Other classes were limited in numbers only
to give a fair comparison to the VCC thesis that the method is being benchmarked
against.
Since the raw data tracklets do not include poles, 231 poses of 26 individual poles

were manually extracted from the raw PCD scans. This was also done to match
the dataset used by the VCC thesis [30]. After segmenting a sufficient number of
poses for each class, the resulting objects were split into three sets; A training set,
a validation set for use during training and a testing set. Care was taken to not
include poses of the same object in the same set as this would create a bias during
testing on the unseen data. The resulting dataset used for benchmarking can be
seen in Table 3.7.

29

3. Methods

3.3 Voxelization

The input format of the first layer of the 3D CNNs is a 32x32x32 array and there-
fore a pipeline of data transformations must be constructed to convert a segmented
object from the point cloud scan created by the Velodyne LiDAR into a format that
the network accepts. The method used was to generate an occupancy grid in the
form of a matrix where the elements of the matrix represent a hit from the laser in
the area. VoxNet uses so called binary occupancy grid where 1 is used to represent
a hit and 0 the lack of a hit. This idea was expanded to include the intensity if the
LiDAR hit as well.
The process was created using Matlab as it allows for accessible prototyping, file

handling and visualization during the construction of the voxelization process. An-
other motivation for using Matlab to create the occupancy grid is that the original
framework includes a conversion script to transform a .MAT array to numpy for-
mat stored as pickled .NPY.Z files that are compatible with the input layer of the
network.
As part of the conversion to numpy arrays, the voxelized array result from Matlab

is subject to zero-padding. This is essentially adding rows and columns of zeros
around the edges of the 3D matrix. This is done to allow randomly chosen displace-
ment augmentation, or "jittering", during training. During the process, the entire
content of the array is randomly shifted up or down one seat in the occupancy grid
with respect to one of it’s three dimensions. This is done as a way of injecting noise
to the networks input during training to reduce the risk of overfitting.

3.3.1 Intensity occupancy grids
Two methods were considered to store the intensity of the point cloud data in

the voxelized matrix, the first of which is to represent each point by a normalized
intensity value, e.g. as floating point numbers in the range [0, 1] or as 8 bit unsigned
integers in the range [1, 255], which is how the original data is stored by the Velodyne
sensor.
The second method was to use predetermined thresholds to create intensity ranges

and represent a hit within each of these ranges with a different integer. The intensity
ranges that showed the most promising results and the integers used to represent
each intensity range can be seen in Table 3.8.

Table 3.8: The intensity ranges used in the threshold intensity voxelization method
and the integers used to represent them in the voxelized matrix.

Intensity ranges Integer representation
No hit 0
1-129 1
130-239 2
240-255 3

30

3. Methods

Figure 3.3: A car seen from the back from SUOD
after being voxelized in Matlab. The colors of each
voxel represent the intensity of the hit before ap-
plying the threshold method.

The threshold depicted in
Table 3.8 were suggested by
the AD-Tool team since they
had experimented with in-
tensity mapping and locating
highly reflective surfaces as
points of interests in scans,
such as vehicle licence plates,
headlights and tire rims. Fig-
ure 3.3 shows the results of
the voxelization of a car seen
from the back from the Syd-
ney dataset using Matlab. This
image shows the intensity be-
fore the threshold method is ap-
plied. The taillights of the car
can be clearly seen as bright
pink boxes behind the slightly
less reflective purple points of
the trim and glass surrounding
the lights. Also noticeable is the licence plate of the car as another set of purple
points. The rest of the car mostly comprises of light blue points representing low
intensity hits. The same car can be seen in Figure 3.2 as a segmented points cloud
for comparison.

Figure 3.4: A car seen from the back from
SUOD after being voxelized using the thresh-
old method. The colors of each voxel represent
the intensity threshold of the hit.

After applying the threshold
method to the voxelized data and
converting the voxelized data to
numpy format, the data can be vi-
sualized in the exact same form that
the network’s input sees. Figure 3.4
shows the same car in its final vox-
elized form. The red voxels indicate
high intensity hits, purple indicates
medium intensity and blue indicate
the lowest intensity hits.

3.3.2 Voxelization area
scaling

A recurrent issue when voxelizing
point clouds in this manner is the
choice of resolution of the voxelized
area, which is essentially the chosen
size of each voxel edge. In [6] the

issue is encountered and voxel sizes of several different values are examined. The

31

3. Methods

Figure 3.5: Comparison of the results of a voxelizing a pedestrian from SUOD using
fixed voxel sizes and the adaptive voxel size method. The left-most pane shows used
a fixed voxel size of 0.1 m, the middle pane used 0.2 m and the right-most pane used
dynamic voxel-size where the method calculated a voxel size of 0.061 m.

results concluded that for urban objects such as are encountered in datasets like
SUOD, STC and KITTI, the most appropriate resolution was determined to be
obtained using between 0.1 m and 0.2 m as the voxel edge length. However, neither
of these values showed reliable results for both large and small objects. If the
voxelization area is too small it will cut off parts of the bigger items used as inputs,
which in this case would be objects like trucks and buildings and if the voxelization
area is chosen as too large it will shrink smaller objects such as pedestrians and
cyclists into a voxel cluster of a relatively small size in the middle of the voxelized
space.
With 32x32x32 voxels this translates to a box with an edge length of 3.2 m to 6.4 m

respectively. A method was proposed to work as a compromise where two identical
networks where trained on two inputs voxelized with separate resolution and the
outputs of both were combined via a softmax layer. This turned out to results in
the best mean accuracy recorded in the paper for the Sydney dataset.

After experimenting with voxelizing SUOD using different resolutions, an alter-
native method was examined. This includes calculating the xyz dimensions of the
object being segmented and choosing the dimension that was the largest and used
that as the edge length for the total voxelized area. The individual voxel length
is then calculated by dividing this longest axis dimension by the number of voxels,
which in our case is 30.

Figures 3.5 and 3.6 show the advantages of using dynamic scaling for the voxel
size. In the left most pane of both figures a voxel size of 0.1 m is used. This causes
the pedestrian to be relatively well defined but most of the bus is cut from the
voxelization space. This voxel size was used in previous work to suit medium sized
vehicles such as cars well. In the middle pane a fixed voxel size of 0.2 m is used.
This suits the bus much better, which is almost fully included in the voxelization
space, but the pedestrian is reduced to occupy only very few voxels in the occupancy
grid. This voxel size was used in previous work to suit large objects such as trucks,

32

3. Methods

Figure 3.6: Comparison of the results of a voxelizing a bus from SUOD using fixed
voxel sizes and the adaptive voxel size method. The left-most pane shows used a
fixed voxel size of 0.1 m, the middle pane used 0.2 m and the right-most pane used
dynamic voxel-size where the method calculated a voxel size of 0.236 m.

buses, buildings and trees.
In the final right-most pane, the dynamic voxelization was used to calculate the

minimum voxel size that includes the full object. For the pedestrian this turned out
to be 0.061 m per voxel and for the bus it was 0.236 m per voxel. This makes sure
that all objects are fully included and no information about occupancy of points is
lost when shown to the network. in previous work multiple networks where trained
on voxelized data that used different voxel sizes and a soft max layer was used to
merge the results. This is no necessary using our method.
A downside of using the dynamic scaling method is that information about the

size of the object is lost. In this way, a car can have very similar shape as a
truck and unless the network gets information about the scale of the object it has
less information to go by to predict the class correctly. As a solution to this, the
distance that each object occupies on the x, y, z axis is inputted straight into the
fully connected layer of the network, therefore bypassing the convolutions and giving
the network pure size information about the object. This is explained in more detail
in Section 3.1.3.

3.3.3 Voxelization algorithm

The Matlab voxelization function created for the project uses a simple and fast
algorithm that only requires stepping through the points of the segmented object a
single time. Firstly the midpoint of the object is calculated and the dimension of
the axis that spans the longest distance, dmax, is found. This longest axis dimension
is then used to create the voxelization area that spans from the midpoint to the
distance dhalf = dmax

2 in all directions from it. This voxelization area is then split up
into 30 segments on all three axes and the distance dvox, representing the side length
of each individual voxel is created. Next vector division with a ceiling function is
used to calculate the appropriate matrix seat for each point in the segmented object.
A key line in the voxelization algorithm can be seen in Equation 3.1.

33

3. Methods

Figure 3.7: The bounding box calculated to determine the angle of an object from
the xz-plane and rotate it to a nominal orientation.

Mvox = ceil
(
x− xstart
dvox

)
(3.1)

WhereMvox is the voxelized 3D matrix, x is a 3xN vector containing the xyz coor-
dinates for each point in the segmented object and xstart is a 3x1 vector containing
the lower boundary of the voxelization area on all three axes. The ceil function
used here is a mathematical operator that returns the smallest integer that is larger
than the input.
Since the intensity of each point is preserved in the voxelization, special care is

taken to not overwrite a lower intensity hit with a higher one. This could overwrite
important information in the voxelized object, e.g. the high intensity points repre-
senting a car’s headlights being overwritten by the low intensity points next to them
representing the bumper.

3.3.4 Orientation correction
When dealing with objects from a real traffic scenario, the objects can be orien-

tated in any manner, determined by the orientation of the sensor and the object
being recorded. Even though the 3D CNN is observant to spatial localities and can
recognize shapes occurring in different parts of the matrix space, it is a good idea
to normalize the different possible orientations of input in some way. In VoxNet
[6] and ORION [5] this is done through rotation augmentation, where the input is
augmented by rotating it a N number of times and using all N versions of the object
essentially as one input. To allow an output to be formed from this, a majority vote
is calculated between the augmented versions of the input.

An alternative is to create a method that can determine the orientation of the
object in some way and rotate it to a nominal orientation before voxelizing and
processing the object. Our solution to this is to calculate the smallest convex hull
that envelops every point in the segmented object and drawing the smallest possible
rectangular bounding box around the convex hull. The angle θ, which lies between

34

3. Methods

the longer of the rectangles sides and the xz-plane can then be calculated and all
the points in the objects can then be rotated by θ. Figure 3.7 shows this process
implemented on a segmented car from the KITTI dataset. The car is shown in a
top-down view and the angle θ can be seen between the one of the longer of the
bounding boxes sides and the xz-plane.

3.4 Training
Training the model is done using a Nvidia GTX 970 graphics card for which

CUDA is required in order to utilize GPU acceleration. The voxelization algorithm
generates integer arrays from the training set that are converted to a numpy.ndarray
and stored in compressed (pickled) file structures.
The different sub-sets of the dataset used in machine learning have different nam-

ing conventions depending on the field of research. Here the sub-set used to iterate
through and train on is called the training set and the completely unseen data used
to test the trained weights after training is done is called the test set. The sub-
set used to check for overfitting during training is called the validation set. Before
training starts, the training file structure containing all the objects to be trained on
is shuffled so that the object classes are randomized before training. The training
is run for a maximum of 80 epochs and after 20 epochs validation tests are done on
unseen data to minimize model overfitting to the training set. Every time that the
validation returns a better result than previous epochs, the corresponding weights
are stored. If overfitting is detected, the resulting weights are not saved.

An epoch is counted as one iteration through the entire training set. The training
framework uses batching to better utilize memory. This is done by grouping up a
number of objects and train on them in the same instance. In our case, a iteration
size of 16 objects was used and each chunk that is processed in the same instance
contains 32 batches. An iteration is considered the training of a single batch. Be-
cause of this, the number of iterations and the number of epochs are not the same
when training on datasets of different sizes.

The model is loaded into the training script from a config file, where general
parameters like input shape, number of classes, learning rate etc. and the model
architecture i.e. layer structure and weights initializations are stored. Since training
is done using a GPU with the cuDNN installed, both the weight matrices and the
layer outputs are stored as CudaNdarrays. This greatly speeds up the process of
training and testing using the model, however since the model utilizes the custom
VoxNet Conv3dMMLayer objects as convolutional layers, testing the model on a
CPU is not possible without rewriting or swapping out these objects.

During the training process, parameters can be altered between epochs to optimize
the result. The main parameter scheduling that the training process benefits from
is learning rate. Best practice is to slowly decrease the learning rate to allow the
network to learn the general aspects of the training set quickly in the beginning of

35

3. Methods

the training process and slowly fade out into learning the more subtle details that
separate the object classes. If the learning rate is set too high in the beginning of
the training, the results will not converge at all, so care must be taken to find an
appropriate initial value before lowering the learning rate. In the original VoxNet
framework this was done in fixed steps, so that if the number of iterations through
the training set reaches some predetermined value, the learning rate is lowered by a
set amount. Since the number of iterations needed changes if the number of training
objects are changed, this approach was very sensitive to dataset changes.

An alternative way of scheduling the learning rate was therefore chosen. The
learning rate was tied to an exponential decay function which would update after
each chunk. A number of different mathematical functions were tested for learning
rate scheduling, including many variations of exponential decay as well as Gaussian
decay and linear decay. The best results were found when using exponential decay
with a value of α somewhere between 0.9950 and 0.9999, depending greatly on the
size of the training set. For the main benchmarking dataset gathered from the KITTI
raw tracklets described in Table 3.7, the optimal value was found to be α = 0.9993.
The new learning rate was updated using Equation 3.2.

lrnew = α · lrold (3.2)

The testing process is similar to the training in the fact that the testing script is
run on a compressed pickle file that contains the entire test set. The file is iterated
through in order and run through the trained weights. The predicted class and the
true class of each object are stored and used to calculate the accuracy of each class
as well as the mean accuracy and macro recall. Both training and testing scripts
generate symbolic tensor- functions and variables which get substituted with data
when iterating through the input matrices. For each batch a loss function gets
computed and accuracy is calculated. During training the outputs of these tensor
functions are used to backpropagate through the CNN and the weight matrices get
adjusted.

3.5 Tracking
Multi-object tracking in real world scenarios is a challenging problem that is the

subject of constant research and development. The level of complexity is mainly
caused by the number of targets constantly changing, making it difficult to consis-
tently keep track of a single target’s identity. Knowledge about the class of an object
that is being tracked can greatly reduce the number of possible matches between
frames and semantic knowledge such as the possible velocity of the object can help
even further. E.g. if a target that is to be tagged as a pedestrian is moving at 80
km/h down the highway, it is most likely incorrect. Conversely, knowledge about
the tracked identity of an object can give the classification method more information
to go on. E.g. if an object has been tracked for multiple frames in a row with the
same tracking index and has been classified through all those frames as a car and
the identity does not change between frames, it is likely that the next frame is also

36

3. Methods

going to be a car.
A common occurrence is that a target switches identities for only a few frames,

sometimes only a single frame, before being consistently tracked once again. If a
classification task were to be run by the side of the tracking algorithm, this behaviour
could be avoided by looking at the predicted class of the previous instances of the
object. If an object that has been tracked for 20 frames as a car suddenly changes
into a cyclist, it hints that an identity mismatch might be taking place. Even though
a single frame of classification change might only be the result of a bad segment or a
classification mistake, a longer lasting mismatch that eventually changes back into
the original identity can be used to retrospectively fix the tracklet.

This idea was discussed during the process of the thesis work and since VCC has
a storage of logs collected from real world driving scenarios, a handful of these were
supplied to us to experiment with the practical usage of the classification method,
in addition to benchmarking against the other classification methods. Since the
logs are unlabelled, visual inspection was the only available form of performance
evaluation.
It soon became clear that the dataset trained from KITTI for benchmarking was

poorly suited for this task and a great improvement was found by intentionally
not training on the ’misc’ class, since it is essentially intended as a dump class for
objects that are not of interest. Instead, the network is only trained on objects that
are valuable in terms of tracking. Cars and vans were merged since the distinction
between the classes is not important when it comes to the traffic behaviour and
semantic knowledge for training. The network is therefore trained to recognize cars,
pedestrians, cyclists, trucks and poles. Large structures and trees would be excellent
candidates for training classes but the lack of training data prevented this.

3.5.1 Confidence Threshold
Instead of attempting to recognize miscellaneous objects, which could be of any

shape and size, a confidence interval was introduced to quantify the certainty of
the network’s prediction for the classes it should recognize. Every time the network
gives a prediction about the class of an object, each output of the neural network
gets a score. In the original framework the highest scoring class is chosen, without
considering the score of the other classes and whether their prediction score was
close to that of an optimal score for that class.

Two methods were explored to achieve this, the first was done by normalizing
the prediction values of all the classes being trained on and giving them each a
percentage score of the total. That way a threshold could be chosen such that the
prediction must have a minimum score before being classified. The other method
involved gathering prediction data during training and using it to estimate the
certainty of the predictions during testing.
Every time the validation set gets a new best accuracy score the correct predictions

for each class are saved, making sure that we are comparing only to relatively good
prediction scores when determining a confidence threshold. After training is done,

37

3. Methods

the gathered data is then accessed in the test script and the mean and standard
deviation of the set is calculated. This information can be then be used to determine
a threshold for each class that a prediction score must be above to be accepted. This
method was used only as a practical visualization of the classification and since
there is no ground truth available for the data, the performance could not be readily
quantified.

38

4
Results

Test runs were done both on networks trained on the Sydney- and KITTI data
described in Section 3.2. The Sydney data was used to compare the additions and
improvements made on the original framework and compared to test runs from
VoxNet [6] and ORION [5]. The KITTI data was used to evaluate the method on
a more realistic urban scenario as well as to allow comparison with the methods
evaluated in the VCC classification thesis [30].
Since different evaluation systems are used to compare the results of the VoxNet

and ORION on one hand and the VCC thesis on the other hand, the different
measurement systems must be explained briefly. Total accuracy is the ratio between
the number of correct predictions and the total number of test objects in the set.
Class accuracy is the same ratio for each individual class and mean accuracy is
the average of the individual class accuracy scores. Recall is the ratio between the
number of correct predictions for each class and the total number of predictions for
that same class. Macro recall is the average of the recall scores for all classes.

The main results of the VCC thesis are presented as total accuracy and mean
accuracy, while VoxNet and ORION only give the result as F1 score. F1 score is
an accuracy measure that takes into account both accuracy and recall and it can be
calculated using 4.1.

F1 Score = 2 ·
(
Accuracy ·Recall
Accuracy +Recall

)
(4.1)

4.1 Comparison with VoxNet and ORION

Table 4.1 shows the results of testing on the trained network using the dataset
described in Table 3.2 in Section 3.2.1. Table 4.2 shows the accuracy of each class
as well as the mean accuracy calculated over all classes. To match the size of
the datasets used in VoxNet and ORION for fair comparison of our additions and
improvements, rotation augmentation with 12 rotations was used.
The total accuracy for the test set is 83.51%, the mean accuracy is 64.46% and

macro recall is 79.45%. The calculated F1 score is 81.43%.

39

4. Results

Table 4.1: The confusion matrix for a test run of the 14 class dataset from SUOD
used to compare to previous work.

Pr
ed
/T
ru
e

4w
d

bu
ild

in
g

bu
s

ca
r

pe
de
st
ria

n

pi
lla

r

po
le

tr
affi

c_
lig

ht
s

tr
affi

c_
sig

n

tr
ee

tr
uc
k

tr
un

k

ut
e

va
n

4wd 1 0 0 2 0 0 0 0 0 0 0 0 0 2
building 0 5 0 0 0 0 0 0 0 0 0 0 0 0
bus 0 2 1 0 0 0 0 0 0 0 0 0 0 1
car 0 0 0 21 0 0 0 0 0 0 0 0 0 1
pedestrian 0 0 0 0 38 0 0 0 0 0 0 0 0 0
pillar 0 0 0 0 0 2 1 1 0 0 0 1 0 0
pole 0 0 0 0 0 0 4 0 0 0 0 1 0 0
traffic_lights 0 0 0 0 1 0 0 9 1 0 0 1 0 0
traffic_sign 0 0 0 0 1 0 0 2 8 0 0 2 0 0
tree 0 0 0 0 0 0 0 0 0 9 0 0 0 0
truck 0 1 0 0 0 0 0 0 0 0 1 0 0 1
trunk 0 0 0 0 0 0 1 1 0 0 0 11 0 0
ute 0 0 0 3 0 0 0 0 0 0 0 0 1 0
van 0 1 0 2 0 0 0 0 0 0 0 0 0 5

Table 4.2: The class accuracy for the 14 class dataset from SUOD used to compare
to previous work.

Class ID Accuracy
4wd 20.00%
building 100.00%
bus 25.00%
car 95.45%
pedestrian 100.00%
pillar 40.00%
pole 80.00%
traffic_lights 75.00%
traffic_sign 61.54%
tree 100.00%
truck 33.33%
trunk 84.62%
ute 25.00%
van 62.50%
Mean accuracy 64.46%

A comparison with the best results of the previous work can be seen in Table 4.3.
We compare the results on the Sydney dataset from VoxNet [6] and ORION [5], the
second of which builds upon the work of the first with improvements in orientation

40

4. Results

estimation. ORION essentially turns the task of classification into a two step task,
firstly to estimate the orientation of the object and secondly the class label. Both
tasks are performed using deep neural networks.
Both articles use F1 score as their main result, however only the result is given

by class in ORION. Four different version of ORION are considered in the article,
we will only compare our results to the best resulting method. Since no confusion
matrices or specific class accuracies are supplied in the articles, comparison to other
evaluation scores than the F1 score is impossible for VoxNet and ORION. Regardless,
the total and mean accuracy scores in addition to macro recall are listed in the
comparison table.

Table 4.3: The results of the Sydney dataset tests compared to the best results of
previous work.

Method F1 score Total accuracy Mean accuracy Macro recall
Our results 81.43% 83.51% 64.46% 79.45%
VoxNet 72% N/A N/A N/A
ORION 77.8% N/A N/A N/A

4.2 Comparison with VCC Thesis Classification
Work

Table 4.4 shows the results of testing on the trained network using the dataset de-
scribed in Table 3.7 in Section 3.2.4 using binary voxelization, therefore not utilizing
intensity information. Table 4.5 shows the calculated accuracy scores of each class
for both methods as well as the mean accuracy calculated over all classes.
The total accuracy for the test set is 94.90%, the mean accuracy is 92.34% and

macro recall is 98.08%.

Table 4.4: The confusion matrix for the main dataset used for benchmarking using
binary voxelization.

Pr
ed
/T
ru
e

ca
r

cy
cl
ist

m
isc

pe
de
st
ria

n

po
le

tr
uc
k

va
n

car 1752 0 0 0 0 0 13
cyclist 0 123 0 0 0 0 0
misc 1 0 21 0 0 5 1
pedestrian 1 0 0 151 0 0 0
pole 0 0 0 0 44 0 0
truck 1 0 0 0 0 236 4
van 118 0 0 0 0 0 351

41

4. Results

Table 4.5: The class accuracy for the main dataset used for benchmarking using
binary voxelization.

Class ID Accuracy
car 99.26%
cyclist 100.00%
misc 75.00%
pedestrian 99.34%
pole 100.00%
truck 97.93%
van 74.84%
Mean accuracy 92.34%

Table 4.6 shows the results of testing on the trained network using the dataset
described in Table 3.7 in Section 3.2.4 using the intensity threshold method described
in Section 3.3.1. Table 4.7 shows the calculated accuracy scores of each class for
both methods as well as the mean accuracy calculated over all classes.

The total accuracy for the test set is 96.35%, the mean accuracy is 95.06% and
macro recall is 98.60%.

Table 4.6: The confusion matrix for the main dataset used for benchmarking using
intensity threshold voxelization.

Pr
ed
/T
ru
e

ca
r

cy
cl
ist

m
isc

pe
de
st
ria

n

po
le

tr
uc
k

va
n

car 1753 0 0 0 0 0 12
cyclist 0 123 0 0 0 0 0
misc 0 0 24 0 0 2 2
pedestrian 1 1 0 150 0 0 0
pole 0 0 0 0 44 0 0
truck 1 0 0 0 0 240 0
van 84 0 0 0 0 0 385

42

4. Results

Table 4.7: The class accuracy for the main dataset used for benchmarking using
intensity threshold voxelization.

Class ID Accuracy
car 99.32%
cyclist 100.00%
misc 85.71%
pedestrian 98.68%
pole 100.00%
truck 99.59%
van 82.09%
Mean accuracy 95.06%

A comparison with the results of the VCC thesis work can be seen in Table 4.8.
Four classification methods are considered in the report using two different feature
sets extracted from the 3D point cloud data. One of the feature sets had better
results for all four considered methods so we will compare our results to them.
Since a confusion matrix is supplied for each of classification method’s result, the
macro recall and F1 score could be calculated to compare to even though the scores
are not specifically listed in the thesis paper [30].

Table 4.8: The results of our KITTI tests compared to the results of the VCC
thesis work.

Method Mean accuracy Total accuracy Macro recall F1 score
Our results (intensity) 95.06% 96.35% 98.60% 97.46%
Our results (binary) 92.34% 94.90% 98.08% 96.46%
VCC thesis SVM 73.36% 96.08% 82.31% 88.66%
VCC thesis KNN 66.82% 93.99% 80.23% 93.99%
VCC thesis FFNN 77.83% 95.87% 83.38% 89.19%
VCC thesis RFC 74.85% 95.14% 80.79% 87.38%

43

4. Results

44

5
Discussion

In this thesis an object classification method was implemented using a deep con-
volutional neural network. The focus was on the utilization of the 3D information
inherent in LiDAR point clouds, such as the original shape and size of an object and
the intensity hits of each LiDAR point.

Looking back over course of this thesis work, having finished implementing a
working CNN framework and produced compelling results, it can be said that our
motivation for choosing this approach for solving the problem of object classification
of a 3D point cloud is rightly justified. Same can be said of the improvements added
onto the VoxNet framwork, in order to focus the method of 3D CNNs to work with
urban object classification.

Implementing this method on a training set of 9893 objects and test set of 2822,
both composed of 7 classes resulted in; an F1 score of 97.46%, total accuracy of
96.35%, mean accuracy of 95.06%, and macro recall of 98.60%.

5.1 Improvements
The results of the comparison with previous work indicate that the additions and

changes made to the underlying framework did indeed show an improvement in
results. These include the utilization of intensity in training, dynamic voxelization
scaling and the feature injection to the fully connected layer both convolutional
layers described in Section 3.1.3.
The comparison of using all the above mentioned improvements except for intensity

in the comparison using the dataset gathered from KITTI tracklets further indicate
that the utilization of intensity does improve classification results. We believe this
to be mainly due to the fact that highly reflective surfaces tend to be located in
similar relative locations for many of the object classes considered. An example of
this is the headlights and licence plate of a car.

5.2 Impediments
As evident by the results in Tables 4.6 and 4.7, a large portion of the false positives

were between classes that had many similarities. In our experience that was the case
with cars and vans. In both the training and test sets there are blurred lines between
what constitutes a car and gets classified as a van. In order to limit these classifica-
tion errors we attempted implementing a trump voting specialist to supersede the

45

5. Discussion

main CNN when it would classify an object as either a car or a van. This specialist
was trained on 4 segments of training data, each containing a balanced number of
cars and vans, that the training algorithm would loop through during training. This
produced no improvements to the total accuracy and analysis of the results lead to
the conclusion that even with focusing on only those two classes during training and
exposing the CNN to equal number of cars and vans, only ended up reaffirming the
errors made by the main CNN since the training data for both networks have the
same origins in the KITTI data set.

5.3 Future Work
The focus of the thesis was to evaluate the viability of using neural network

classification methods that are commonly used on 2D images without sacrificing
3D information such as the spatial locality of point cloud data and the intensity
hits of the points. To do this, the datasets and classes used had to be easy to
benchmark against other methods and the choices made during the creation of the
main dataset reflect that. As the project developed however, the focus shifted to
the gain of using classification to aid in object tracking by running the classification
method on tracklet data.

It is our conclusion that this aspect of the project holds the most promise for
practical application until multi-class training can be done on datasets much larger
and more versatile than what researchers have access to today. Implementing a
confidence threshold such as is described in Section 3.5 has shown great promise
in practical examples and further training a network on only the objects that are
desired does aid the network in recognizing them. By limiting the amount of false
positives as well by introducing a confidence threshold, the overall performance of
the classification is improved.

Another avenue of research that we believe could be beneficial, especially when it
comes to very similar classes like cars and vans, is to train specialized networks for
each class. It can be done in one of two ways; each class has a CNN that is trained to
recognize only that class with a binary output, or specialized CNNs that are trained
using all classes but with a bias in the number of objects that each CNN trains on.
Theoretically this would result in a majority of the specialized CNNs agreeing on
what object is being run through the network.

46

Bibliography

[1] C. C., “Simple Neural Network Example by Murx~enwiki.” [Online]. Available:
https://creativecommons.org/licenses/by/2.0/

[2] A. Ng, J. Ngiam, C. Y. Foo et al., “Convolutional Neural Network
UFLDL Tutorial,” Stanford, September 2015. [Online]. Available: http:
//ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/

[3] H. Lee, “Tutorial on Deep Learning and Applications,”
2010. [Online]. Available: http://www.slideshare.net/CloudyNguyen2/
2010-deep-learning-and-unsupervised-feature-learning

[4] Y. LeCun, Y. Benigo, and G. Hinton, “Deep Learning,” Nature, May 2015.
[Online]. Available: http://dx.doi.org/10.1038/nature14539

[5] N. Sedaghat, M. Zolfaghari, and T. Brox, “Orientation-boosted Voxel Nets for
3D Object Recognition,” arXiv:1604.03351v1, April 2016.

[6] D. Maturana and S. Scherer, “VoxNet: A 3D Convolutional Neural Network
for Real-Time Object Recognition,” 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems, September 2015.

[7] P. J. Werbos, The Roots of Backpropagation: From Ordered Derivatives to
Neural Networks and Political Forecasting. John Wiley & Sons, 1994.

[8] M. Fischetti, “Computers versus Brains,” Scientific American, Novem-
ber 2011. [Online]. Available: http://www.scientificamerican.com/article/
computers-vs-brains/

[9] Y. LeCun, B. E. Boser, J. S. Denker et al., “Handwritten Digit
Recognition with a Back-Propagation Network,” 1989. [Online]. Available:
http://yann.lecun.com/exdb/publis/pdf/lecun-90c.pdf

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc.,
2012, pp. 1097–1105. [Online]. Available: http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

[11] D. Habermann, A. Hata, D. Wolf, and F. Osório, “Artificial Neural Nets object
recognition for 3D point clouds,” Proceedings of 2013 Brazilian Conference on
Intelligent Systems, p. 101 to 106, 2013.

[12] M. Himmelsbach, F. v. Hundelshausen, and H.-J. Wuensche, “Fast Segmenta-
tion of 3D Point Clouds for Ground Vehicles,” 2010 IEEE Intelligent Vehicles
Symposium, June 2010.

47

https://creativecommons.org/licenses/by/2.0/
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
http://www.slideshare.net/CloudyNguyen2/2010-deep-learning-and-unsupervised-feature-learning
http://www.slideshare.net/CloudyNguyen2/2010-deep-learning-and-unsupervised-feature-learning
http://dx.doi.org/10.1038/nature14539
http://www.scientificamerican.com/article/computers-vs-brains/
http://www.scientificamerican.com/article/computers-vs-brains/
http://yann.lecun.com/exdb/publis/pdf/lecun-90c.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Bibliography

[13] R. B. Rusu, N. Blodow, and M. Beetz, “Fast Point Feature Histograms (FPFH)
for 3D Registration,” 2009 IEEE International Conference on Robotics and
Automation (ICRA), May 2009.

[14] M. B. Soares, P. Barros, G. I. Parisi, and S. Wermter, “Learning objects from
RGB-D Sensors using Point Cloud-based Neural Network,” Proceedings of 23th
European Symposium on Artifical Neural Networks, Computational Intelligence
and Machine Learning, University of Hamburg, 2015.

[15] K. Klasing, D. Wollherr, and M. Buss, “A Clustering Method for Efficient Seg-
mentation of 3D Laser Data,” 2008 IEEE International Conference on Robotics
and Automation, May 2008.

[16] A. Milan, S. H. Rezatofighi, A. Dick, K. Schindler, and I. Reid, “Online Multi-
target Tracking using Recurrent Neural Networks,” arXiv:1604.03635v1, April
2016.

[17] M. A. Nielsen, Neural Network and Deep Learning. Determination Press, 2016.
[18] A. Karpathy, “CS231n Convolutional Neural Networks for Visual Recognition,”

2015. [Online]. Available: http://cs231n.github.io/neural-networks-1/
[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with

Deep Convolutional Neural Networks,” University of Toranto, September 2012.
[20] L. lab, “Convolutional Neural Networks (LeNet),” Deeplearning.net, June

2016. [Online]. Available: http://deeplearning.net/tutorial/lenet.html
[21] D. Britz, “Introduction to RNNs,” September

2015. [Online]. Available: http://www.wildml.com/2015/09/
recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

[22] T. Deyle, “Velodyne HDL-64E Laser Rangefinder
(LIDAR) Pseudo-Disassembled,” January 2009. [On-
line]. Available: http://www.hizook.com/blog/2009/01/04/
velodyne-hdl-64e-laser-rangefinder-lidar-pseudo-disassembled

[23] “Velodyne LiDAR HDL-64E Specifications,” 2016. [Online]. Available:
http://velodynelidar.com/hdl-64e.html

[24] J. Rendleman, “Engines of change,” August 2007. [Online]. Available:
https://gcn.com/articles/2007/08/03/engines-of-change.aspx

[25] L. lab, “Deeplearning Theano Installation,” Deeplearning.net, June 2016.
[Online]. Available: http://deeplearning.net/software/theano/install.html

[26] N. Corporation, “Cuda Toolkit & Samples (Nvidia),” NVIDIA Developer,
June 2016. [Online]. Available: https://developer.nvidia.com/cuda-toolkit

[27] M. Nandi, “Faster deep learning with GPUs and Theano,” Domino
Datalab, August 2015. [Online]. Available: https://blog.dominodatalab.com/
gpu-computing-and-deep-learning/

[28] Lasagne, “Lasagna Installation,” https://lasagne.readthedocs.io, June 2016.
[Online]. Available: https://lasagne.readthedocs.io/en/latest/

[29] K. Schauwecker and A. Zell, “Robust and Efficient Volumetric Occupancy
Mapping with an Application to Stereo Vision,” Universität Tübingen, June
2014. [Online]. Available: http://www.ra.cs.uni-tuebingen.de/publikationen/
2014/schauwecker_icra2014.pdf

[30] P. Nygren and M. Jasinski, “A comparative study of segmentation and classi-
fication methods for 3d point clouds,” 2016.

I

http://cs231n.github.io/neural-networks-1/
http://deeplearning.net/tutorial/lenet.html
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.hizook.com/blog/2009/01/04/velodyne-hdl-64e-laser-rangefinder-lidar-pseudo-disassembled
http://www.hizook.com/blog/2009/01/04/velodyne-hdl-64e-laser-rangefinder-lidar-pseudo-disassembled
http://velodynelidar.com/hdl-64e.html
https://gcn.com/articles/2007/08/03/engines-of-change.aspx
http://deeplearning.net/software/theano/install.html
https://developer.nvidia.com/cuda-toolkit
https://blog.dominodatalab.com/gpu-computing-and-deep-learning/
https://blog.dominodatalab.com/gpu-computing-and-deep-learning/
https://lasagne.readthedocs.io/en/latest/
http://www.ra.cs.uni-tuebingen.de/publikationen/2014/schauwecker_icra2014.pdf
http://www.ra.cs.uni-tuebingen.de/publikationen/2014/schauwecker_icra2014.pdf

Bibliography

II

A
Appendix

This section contains visuals that were considered too bulky to be included in the
main text but do however add context and help the reader visualize the training
process and the output of the neural network.
Figure A.1 shows a sample of a training report, a vital tool used to manage the

learning rate scheduling of the training process as well as indicating if overtraining
is occurring.
Figure A.2 shows eight randomly selected objects and their predicted and trued

labels as well as an isometrically rendered image of the object. The colors in the
rendered image indicate the intensity level of the points in each individual voxel,
red voxels indicate a high intensity hit, purple indicate a medium intensity hit and
the blue voxels represent a low intensity hit.

III

A. Appendix

Figure A.1: Training report from a training session of the CNN architecture on
the main benchmarking dataset.

IV

A. Appendix

Figure A.2: Isometrically rendered examples from a test run on the main bench-
marking dataset constructed from KITTI raw tracklets.

V

	List of Figures
	List of Tables
	Glossary
	List of Acronyms
	Introduction
	Background
	Motivation
	Related Work
	Objective
	Purpose and Aim

	Theory
	Artificial Neural Networks
	Layers
	Activation functions
	Dropout
	Training algorithms

	Convolutional Neural Networks
	Convolution filters
	Feature maps
	Nonlinear down-sampling
	Loss layer

	Recurrent Neural Networks
	LSTM

	Point Cloud Data
	Velodyne HDL-64E

	Methods
	Architecture
	Framework
	CNN Layers
	Concatenation Layer
	Input data manipulation

	Dataset selection
	Sydney Urban Object Dataset
	Stanford Track Collection
	KITTI
	Benchmarking dataset

	Voxelization
	Intensity occupancy grids
	Voxelization area scaling
	Voxelization algorithm
	Orientation correction

	Training
	Tracking
	Confidence Threshold

	Results
	Comparison with VoxNet and ORION
	Comparison with VCC Thesis Classification Work

	Discussion
	Improvements
	Impediments
	Future Work

	Bibliography
	Appendix

