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Probabilistic deep learning with variational inference
Uncertainty quantification using variational inference for
deep neural networks modelling oil and gas production
EVA HEGNAR
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
Deep neural networks are used in the petroleum industry to model gas and oil rate.
To optimise the production, the uncertainty of the network predictions is desirable.
The neural network weights are equipped with prior distributions to be able to
quantify the uncertainty of the model predictions within the Bayesian paradigm.
To obtain a numerically feasible procedure two different approaches of variational
inference are used and compared; black box variational inference and variational
inference using the reparameterisation trick. Both approaches are applied to real
measurements of gas and oil rate, which were given by Solution Seeker, a company
providing production optimisation to the petroleum industry. The results show a
more stable convergence using the reparameterisation trick. The uncertainty in
predictions is possible to be quantified using variational inference but setting a
proper prior distribution is difficult.

Keywords: deep neural network, Bayesian inference, variational inference, black box
variational inference, reparameterisation trick, probabilistic modelling, production
optimisation, flow rate estimation
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1
Introduction

There has been a tremendous development in the machine learning field in recent
years. In particular, research on artificial neural networks has advanced the under-
standing and practice of predictive modelling. The wide range of applications of
these models has driven academia and industry to develop software for predictive
modelling of big datasets. This development coincides with increased availability
of computing power and sensor data in the petroleum industry. The allure of pre-
dictive modelling lies in that it may simplify and speed up the modelling efforts for
complex systems compared to traditional mechanistic modelling.

The petroleum industry is interested in researching the applicability of data-driven
predictive modelling for decision support and optimisation of oil and gas production
systems. Machine learning techniques, especially deep learning, excel at finding
good predictors. In practice what is often needed is a good prediction together with
reliable uncertainty quantification. Solution Seeker develops artificial intelligence for
optimisation of the upstream production of petroleum and is interested in obtaining
uncertainty measurements for its models. A point estimation of the production can
be misleading when the uncertainty is not included since a high uncertainty for the
estimate could be crucial in the decision making.

A Bayesian approach can handle both systematic and random uncertainty in a
principled fashion. Both types of uncertainty are present in the problem of modelling
oil and gas production. Most of the sources of random uncertainty in the input can
be quantified. A challenging aspect of the modelling problem is that the flow rate
measurements are uncertain and difficult to quantify because the systematic error
is assumed to be heteroscedastic.

Within the Bayesian approach the uncertainty of inference and prediction is quan-
tified through the posterior distribution. Uncertainty quantification comes at the
price of additional requirements in computing power and requires more modelling
because priors need to be specified. Variational inference addresses this problem
by finding an approximation of the intractable posterior distribution within a rich
but tractable class of distributions by minimising a suitable distance to the actual
posterior [1].

Progress in prediction uncertainty is made by embedding deep neural networks in a
Bayesian framework. As neural networks form a very rich class of non-linear maps,
obtaining the exact posterior distribution will in general be intractable. Therefore
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1. Introduction

it is natural to consider variational inference [2] as a possible remedy of Bayesian
inference.

This project will investigate the use of uncertainty quantification in probabilistic
models using variational inference in deep learning approaches for modelling oil and
gas production systems. Two methods for implementing variational inference will
be presented and compared: the black box variational inference method [3] and
variational inference using the reparameterisation trick [4].
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2
Theory

2.1 Probabilistic background

One aspect of probability theory is to describe uncertainty. Probabilistic models
are an important tool in scientific problem solving and are useful when drawing
conclusions from data and making predictions. A probabilistic model incorporates
uncertainty in a model, and the model assigns probability distributions to the out-
put instead of a single number. In this way, an understanding of the uncertainty in
the model can be achieved. A probabilistic model is therefore a model where ran-
dom (stochastic) variables and probability distributions are integrated in the model.
The random variables represent the potential outcome of an uncertain event. The
probability distribution is used to assign probabilities to the potential outcomes.
By recognising that there is uncertainty in the input and model, a more realistic
prediction can be achieved.

Bayesian inference can be used for probabilistic modelling and is based on probability
theory. Variational inference is an approximation of Bayesian inference. Before
deriving methods for training a model using variational inference, some probabilistic
background is needed. Relevant fundamentals of probability theory are provided
below and will be expanded later on. The theory section is based on Bishop’s
Pattern recognition and machine learning [5].

Consider a random variable X taking values in a measurable space E = (Rn,B)
where E is a Euclidean space over n-dimensional real number and the σ-algebra B
is the set of events.

In probability theory, the probability distribution is the probability of the occurrence
of different outcomes of an experiment. The probability distribution PX measures
the probability of a random variableX belonging to some set A, P (X ∈ A) = PX(A).
If X has a density function f with respect to a reference measure ν, then the
distribution is

PX(A) =
∫
A
f(x) dν(x). (2.1)

PX is a probability measure defined over E = (Rn,B).

The expectation of a random variable X with probability density function f is

E[X] =
∫
xf(x) dν(x). (2.2)

3



2. Theory

Capital letters are used for random variables. This will be used throughout, also
when Greek letters are used as a notation for random variables.

Most of the time dν(x) is the Lebesgue measure, but sometimes it is useful to
consider for example the distribution of a random variable Y as reference measure,
e.g. ν = PY .

Let a measurable space M = (X,Σ) and let µ and ν be σ-finite on M. The
Radon–Nikodym theorem states that if µ � ν, then there is a measurable function
f : X → [0,∞), such that for any measurable set A ⊆ X

ν(A) =
∫
A
f dµ. (2.3)

The function f is called the Radon–Nikodym derivative and is denoted by dν
dµ
.

To change the reference measure consider random variables X ∼ PX and Y ∼ PY
where PX and PY are defined on the space E = (Rn,B), and their probability
distributions (2.1) are given by the respective densities p and q

PX(A) =
∫
A
p(x) dν(x) and PY (A) =

∫
A
q(x) dν(x). (2.4)

This can be written in short
dPX
dPY

= dPX/dν

dPY /dν
. (2.5)

Changing the reference measure for the probability of X ∈ A implies

PX(A) =
∫
A
p(x) dν(x) =

∫
A
p(x)q(x)

q(x) dν(x) =
∫
A

p(x)
q(x) dPY (x), (2.6)

where q(x) dν(x) = dPY (A) from equation (2.4) is used. Taking the expectation
(2.2) of a probability density f and using the relation from the equation above
implies

E[f(X)] =
∫
A
f(x)p(x) dν(x) =

∫
A
f(x)p(x)

q(x) dPY (x) = E
[
f(Y )p(Y )

q(Y )

]
. (2.7)

In equation (2.7), the expectation is expressed as an integral over the measure PY ,
therefore as an expectation with respect to random variable Y .

The joint probability is the probability of two or more events happening together.
It is the probability of an event when this event is the intersection of several events
from sub-experiments. For random variables, X taking values in E1, Y taking values
in E2, defined on a probability space, the joint probability distribution PX,Y is the
distribution of the pair (X, Y ) (seen as a random variable). The joint probability
density function fX,Y is the density of that random variable with respect to a suitable
reference measure µ on E1 × E2. For example, if X and Y are independent, then
fX,Y (x, y) = fX(x)fY (y) is the joint density with respect to the product measure
ν = dxdy.

The marginal probability is the probability of an event taking place without the
knowledge of the probability of the other events. Considering two continuous random
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2. Theory

variables X and Y , whose joint distribution fX,Y (x, y) is known. The marginal
probability density function of the random variable X is the integral over Y of the
joint distribution

fX(x) =
∫
y
fX,Y (x, y) dy. (2.8)

Conditional probability is the probability of an event given another event. For con-
tinuous random variables X and Y the conditional probability density function of
Y given the occurrence of x from X is

fY |X(y | x) = fX,Y (x, y)
fX(x) , (2.9)

where fX,Y (x, y) is the joint density of X and Y , and fX(x) is the marginal density
for X.

The marginal (2.8) can be rewritten using the conditional distribution (2.9)

fX(x) =
∫
y
fX|Y (x | y)fY (y) dy, (2.10)

where fX|Y (x | y) is the conditional density of X given Y = y and fY (y) is the mar-
ginal distribution. The marginal distribution can be interpreted as the conditional
probability of X, given a value of Y and averaged over the distribution of all values
of Y .

Bayes’ rule is the probability of an event based on prior knowledge and observations
of that event. For events A and B, Bayes’ rule is

P (A | B) = P (B | A)P (A)
P (B) , (2.11)

where P (B) 6= 0. Here P (A | B) is the posterior probability; given the observed
event B how probable is the event A? P (B | A) is the likelihood; given that event A
happens, how probable is the event B? P (A) is the prior probability; how probable
was the event A before observing event B? Lastly, P (B) is the marginal probability
or evidence; how probable is the observed event B under all possible events? The
power in Bayes’ rule is that it links the posterior probability that can often not
directly be computed to something that can be calculated, the likelihood.

When working with probability distributions, there are several known distributions
to explain how the values of a variable are distributed. The most common distri-
bution is the normal distribution as it fits many natural phenomena. The normal
distribution is symmetric and bell shaped around the mean showing that data close
to the mean is more frequent than data far from it. The further away a value is
from the mean, the less likely it is to occur. For a random variable X the notation
of normal distribution is

X ∼ N (µ, σ2), (2.12)
where µ ∈ R is the mean and with σ2 being the variance. The probability density
function is

f(x) = 1
σ
√

2π
e−

1
2(x−µ

σ )2

, (2.13)
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2. Theory

where σ is the standard deviation. When µ = 0 and σ = 1 it is the simplest form of
normal distribution called the standard normal distribution and is notated as

X ∼ N (0, 1). (2.14)

2.2 Bayesian inference

Bayesian inference is an approach to statistical inference where uncertainty is quan-
tified using probability distributions [5]. These probability distributions capture
prior information on the model (or the parameters) before a statistical experiment
is conducted. This makes it possible to solve the statistical problem of inferring
parameters from data using the laws of probability. In particular Bayes’ rule can
be used to infer the model parameters by updating the prior probability for the
parameters with the data obtained during the statistical experiment.

Deep learning [5] is algorithms trying to model abstractions in data using com-
plex structures. Deep learning algorithms are often thought of as “black boxes”;
it is not as crucial to know how they work as long as they perform and produce a
satisfying prediction. A drawback of black box machine learning methods is that
they do not provide uncertainty of the predictions. A solution to this is using the
statistical method of Bayesian inference. In Bayesian inference, prior knowledge is
included in the model and updated using data. For deep learning models, inference
involves propagating parameter uncertainty through the network layers to produce
a distribution for the model output. The distribution allows for a prediction of the
uncertainty for the model and can provide a posterior predictive distribution. The
posterior predictive is the distribution over the possible unobserved values based on
the data already observed and can be used to predict new datapoints. Implement-
ing Bayesian inference has traditionally required specialised experience but modern
probabilistic programming such as Pytorch makes it achievable.

Bayesian inference establishes a model and parameters where the model formu-
lates observed events, and the parameters are factors in the model that affects the
observed data. The model needs a likelihood function and a prior distribution. As-
sume a model generating data x from a distribution with unknown parameter θ (the
uncertainty in input data). There is prior knowledge about the parameter θ in the
parameter space Θ that can be expressed through a prior distribution Π with density
π(θ). The prior can be updated using the likelihood p(x | θ) and the evidence p(x)
of the model. Using the formula from Bayes’ rule (2.11), the posterior distribution
Π(· | x) on Θ is given with density

π(θ | x) = p(x | θ)π(θ)
p(x) = p(x | θ)π(θ)∫

θ p(x | θ)π(θ) dν(θ) . (2.15)

Here, the evidence is rewritten using marginal density (2.10) and ν is the reference
measure. In short, Bayes’ rule computes the posterior from the likelihood, prior
and evidence, see figure 2.1. The likelihood and prior can often easily be found
as they are part of the assumed model. The evidence p(x) works as a normalising

6



2. Theory

factor but is difficult to compute. In lower dimensions, it is possible to compute
the evidence by numerical integration, but in higher dimensions this becomes in-
tractable. Combinatorial explosion can be a problem if the variables are discrete.
Therefore approximation methods are needed, and variational inference is such an
approximation method.

Figure 2.1: Flow chart of Bayesian inference [6].

2.2.1 Bayesian regression

To discuss Bayesian regression regular regression needs to be defined. Regression in
modelling is a statistical process for describing the relationship between a dependent
output variable y and one or more independent input variables x. This relationship
is described using a function f(x, θ) where θ is the unknown parameters

y = f(x, θ) + ε. (2.16)

The error term ε describes an unobserved noise. It is often described as independent
and identically distributed normal random variables with zero mean and constant
variance σ2

ε
iid∼ N (0, σ2). (2.17)

The goal of regression is to find the function f(x, θ) best fitted to describe the data.

Bayesian regression is an approach to regression using the assumptions from Bayesian
inference for the statistics in the model. In Bayesian regression, probability distribu-
tions are used instead of point estimations. Instead of estimating y as a single value
it is from a probability distribution. A posterior distribution is achieved for the
model parameters if the error is normally distributed, and a prior distribution can
be stated. When a normal distribution is assumed the Bayesian regression model is

y ∼ N (f(x, θ), σ2), (2.18)

where y is the output variable, x is the predictive variables, θ is the weight parameter
and σ is the standard deviation. Now the output is generated from a normal distri-
bution determined by the mean and variance. The posterior distribution Π(· | y, x)

7



2. Theory

on the parameter space Θ for the model is described using Bayes’ rule for Bayesian
regression (2.15) with density

π(θ | y, x) = p(y | x, θ)π(θ)
p(y | x) . (2.19)

Here p(y | x, θ) is the likelihood for the data, π(θ) is the prior density for the
parameters and p(y | x) is the evidence. If there is domain knowledge about the
parameters in the distribution, this can be included through the prior. The posterior
provides uncertainty about the model. For example, if there are few data point, this
will result in a larger spread in the distribution [5].

2.3 Kullback–Leibler divergence

Variational inference is a method based on approximation of Bayesian inference.
The distance of the approximation to the posterior is measured by the Kullback-
Leibler (KL) divergence. An understanding of the Kullback–Leibler divergence is
necessary to derive variational inference, but some essential information theory is
necessary before obtaining the KL divergence. Information theory is concerned with
quantifying the “information content” of a piece of information.

Consider a discrete space where an outcome x ∈ E has been observed. The event
{x} has probability P ({x}) = p(x), where p is the probability mass function. A way
to define the information associated with observing x is setting

I(x) = − log p(x). (2.20)

In the same fashion, the information of an event I(A), A ⊂ E is defined. In this
instance log is the natural logarithm but binary logarithms are also considered in
information theory. Note that the higher the probability, the lower the amount of
information. If an event A has a high probability it is expected to happen and A
happening indeed provides little new information.

The entropy H(P ) is the expected information. In the discrete case, the expected
information is a sum of the information contents of different outcomes weighted with
their probabilities

H(P ) = −
∑
x∈E

p(x) log p(x). (2.21)

To better understand why this notion quantifies information the three fundamental
properties of the information function I can be observed:

1. I(A) ≥ 0: information is a non-negative quantity.

2. I(E) = 0: events that always occur do not provide information.

3. I(A1 ∪ A2) = I(A1) + I(A2): information due to independent events A1 and
A2 is additive.

8



2. Theory

The expected information associated with observation of independent random vari-
ables is additive and therefore independent random variables provide new informa-
tion. On the contrary, perfectly correlated random variables ρ ∈ {1,−1} provide no
information already known.

Using the definition of a distribution (2.1) the entropy can also be defined for con-
tinuous random variables (or their distribution P ) with a density p(x) with respect
to a reference measure ν as

H(P ) = −
∫
p(x) log p(x) dν(x). (2.22)

The KL divergence is a way of measuring the distance between probability distri-
butions to see how similar they are. This method uses information theory as the
measure for information provided from the distributions.

For two probability measures P and Q over the same space, if Q� P , the Radon –
Nikodym derivative (2.3) exist dP

dQ
, then a general notation for the Kullback-Leibler

divergence is
KL(P ‖ Q) =

∫
A

log dP
dQ

dP. (2.23)

If P and Q have densities p and q with respect to the same reference measure ν, the
Kullback-Leibler divergence from Q to P is defined as

KL(P ‖ Q) =
∫
A
p(x) log p(x)

q(x) dν(x). (2.24)

If the KL integral diverges, KL(P ‖ Q) = ∞. With a random variable X ∼ P the
Kullback-Leibler divergence can be expressed as expectation using (2.2)

KL(P ‖ Q) = E
[
log p(X)

q(X)

]
(2.25)

or

KL(P ‖ Q) = −
∫
p(x) log q(x) dν(x)−

(
−
∫
p(x) log p(x) dν(x)

)
. (2.26)

The KL divergence is therefore the difference in expectation of the information
− log p(x) and the cross-information − log q(x), also called the “cross entropy”. The
expectation is taken of the random variable X with density p.

Some important properties of KL divergence are

KL(P ‖ P ) = 0
KL(P ‖ Q) 6= KL(Q ‖ P ) (in general)
KL(P ‖ Q) ≥ 0.

(2.27)

The first property, that the divergence of the same probabilities are equal to zero,
is because of

log p(x)
p(x) = log 1 = 0. (2.28)

9



2. Theory

This means when using KL divergence to find the similarity between two distribu-
tions the value of KL should be as close to zero as possible.

To illustrate the second property of inequality consider a random variable Y ∼ Q,
expand equation (2.24) and use the change of reference measure (2.7)

KL(P ‖ Q) =
∫
A
p(x) log

(
p(x)
q(x)

)
dν(x)

=
∫
A

p(x)
q(x) log

(
p(x)
q(x)

)
q(x) dν(x)

= E
[
p(Y )
q(Y ) log

(
p(Y )
q(Y )

)]
.

(2.29)

Compare the result to

KL(Q ‖ P ) = E
[
log q(Y )

p(Y )

]
. (2.30)

From the expectations it is obvious that KL(P ‖ Q) 6= KL(Q ‖ P ) in general.

The last property of non-negativity will not be derived because of its complexity.

If P and Q have densities p, q respective, the notation KL(p ‖ q) is used for
KL(P ‖ Q).

2.3.1 Example of Kullback-Leibler divergence

Figure 2.2: The uniform probability distributions PX = U(0, 1) and PY = U(0, 2)
defined on E = R1.

For two uniform probability distributions PX = U(0, 1) and PY = U(0, 2) and
E = R1 (the real line) there are two random variables X ∼ PX and Y ∼ PY , see
figure 2.2. The probability densities (with respect to the Lebesgue measure) are

p(x) =
{

1, if x ∈ [0, 1]
0, else (2.31)

q(x) =
{

0.5, if x ∈ [0, 2]
0, else, (2.32)

Using (2.24) with respect to PX is

KL(PX ‖ PY ) =
∫ 1

0
log 1

0.5 dx = log 2. (2.33)

10



2. Theory

Taking the KL divergence with respect to PY gives

KL(PY ‖ PX) =
∫ 1

0
0.5 log 0.5

1 dx+
∫ 2

1
0.5 log 0.5

0 dx

= 0.5 log 0.5 +∞ =∞.
(2.34)

This example shows the importance of choosing q(x) to be defined with a larger
support than p(x).

2.4 Variational inference

A central task in probabilistic modelling (see section 2.2 about Bayesian inference)
is to find the posterior distribution given some data, a model and a prior distribu-
tion. This could be in the form of the posterior density π(θ | x) and evaluating the
expectations with respect to this density, where θ is the unknown parameter or a
latent variable and x is an observed quantity. For simple models this is possible
but when the structures are more complex, like in a neural network the inference is
intractable.

Variational inference (VI) is a form of approximating Bayesian inference where the
distance between the approximation and the exact posterior is measured using
Kullback-Leibler divergence. Finding a good approximation is then an optimisa-
tion problem. The idea behind variational inference is to make an approximation of
Bayesian inference by finding a probability distribution Q among a parameterised
family of distributions Q close to the actual posterior probability Π. Kullback-
Leibler divergence is measuring the closeness and is the measure of how alike the
two distributions are. If the approximation is perfect, then KL divergence is equal
to 0. The goal of VI is in other words to minimise the KL divergence. Later it will
be shown that minimising the KL divergence is equivalent to maximising what is
called the evidence lower bound (ELBO). The distributions in Q can be of any type
but in this thesis normal approximations are used.

The goal of probabilistic modelling is to find the exact posterior distribution for the
model Π(· | X = x) with random variable X observed to be x with a distribution
PX depending on θ and density θ 7→ π(θ | x), θ ∈ Θ. When this is not possible to
extract, a density θ 7→ q(θ) from a family of distributions Q is used to estimate the
true posterior. Each distribution in Q is a possible best approximation of the exact
posterior distribution. This distribution is called the variational distribution and
should be as close to the true posterior as possible. To measure the quality of the
estimation, the KL divergence (2.24) from Π to Q ∈ Q is used

KL(Q ‖ Π(· | x)) =
∫
q(θ) log q(θ)

π(θ | x) dν(θ). (2.35)

Remembering Bayes’ rule for Bayesian inference (2.15) the true posterior π(θ | x)

11
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can be rewritten as

KL(Q ‖ Π(· | x)) =
∫
q(θ) log

(
q(θ)p(x)

p(x | θ)π(θ)

)
dν(θ)

=
∫
q(θ)

(
log q(θ)

p(x | θ)π(θ) + log p(x)
)
dν(θ)

=
∫
q(θ) log q(θ)

p(x | θ)π(θ) dν(θ) + log p(x)
∫
q(θ) dν(θ)

= −
∫
q(θ) log

(
p(x | θ)π(θ)

q(θ)

)
dν(θ) + log p(x).

(2.36)

Here θ is the latent variable governing the distribution of the data, x are the obser-
vations, q(θ) is the variational density, p(x | θ) is the likelihood function, π(θ) is the
prior density and p(x) is the evidence. This can be rewritten as

KL(Q ‖ Π(· | x)) = −L(q) + log p(x). (2.37)

L is called the evidence lower bound (ELBO) and can be rewritten as

L(q) =
∫
q(θ) log

(
p(x | θ)π(θ)

q(θ)

)
dν(θ)

=
∫

log(p(x | θ))q(θ) dν(θ)−
∫
q(θ) log

(
q(θ)
π(θ)

)
dν(θ)

= E [log p(x | ϑ)]−KL(Q ‖ Π),

(2.38)

where ϑ ∼ Q. The interpretation of the ELBO is that the first term will push for
optimisation for the expected log likelihood of the unknown parameters that explain
the observed data. The second term is pushing for the variational distribution to be
close to the prior. These two terms will balance each other. A small KL implies a
close estimation q(θ) of π(θ | x), see figure 2.3. Using Kullback-Leibler as defined is
difficult because the evidence p(x) is intractable. The ELBO can instead control the
KL divergence as the likelihood p(x | θ) is easier to compute. Therefore, instead of
optimising on the Kullback-Leibler divergence from Π to Q, it is the ELBO (2.38)
that is optimised. Minimising the KL is the same as maximising the ELBO when
noting the sign in front of L(q) in (2.37). The ELBO provides a lower bound for the
evidence because the KL divergence is always non-negative, see properties (2.27),

KL(Q ‖ Π(· | x)) + L(q) = log p(x)
L(q) ≤ log p(x).

(2.39)

Later the variational distributions will be considered Q(λ) ∈ Q indexed by a vari-
ational parameter λ ∈ Λ, Q = {Q(λ), λ ∈ Λ}. For the density of Q(λ) write
suggestively q(θ | λ) [5].
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Figure 2.3: Variational inference where the variational density q(θ) estimates the
posterior density π(θ | x).

2.4.1 Example of variational inference

The reader is referred to Appendix A.2 for complete calculation of all steps in the
following example.

Consider a sample of independent random variables that are all normally distrib-
uted with a mean µ and variance σ2

x, so x1, ..., xn ∼ N(µ, σ2
x). Assume that

x = (x1, . . . , xn) was observed.

The parameter mean µ in the parameter space M of the distribution for this model
Π(· | X) with density π(µ | x) is found using variational inference (2.36). For this
model a simple prior distribution Π = N(0, σ2

0) is assumed with density π(µ) and
two variational distributions Q1 = N(0, σ2) with density q1(µ) and Q2 = N(1, σ2)
with density q2(µ). To simplify the calculations assume that σx = σ0 = σ. Using the
probability density function for the normal distribution (2.13) the different densities
for the likelihood, prior and the two different variational densities are found:

the likelihood

p(x | µ) =
n∏
i=1

1√
2πσ2

exp
(
−(xi − µ)2

2σ2

)

= (2πσ2)−n2 exp
(
− 1

2σ2

n∑
i=1

(xi − µ)2
)
,

(2.40)

the prior

π(µ) = 1√
2πσ2

exp
(
− µ2

2σ2

)
, (2.41)

the first variational
q1(µ) = 1√

2πσ2
exp

(
− µ2

2σ2

)
(2.42)

and the second variational

q2(µ) = 1√
2πσ2

exp
(
−(µ− 1)2

2σ2

)
. (2.43)

To find the best distribution for approximating the posterior distribution, the KL
divergence from the posterior distribution Π(· | X) to the variational distributions
Q1 and Q2, are to be minimised. This is done by instead maximising the evidence
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lower bound (ELBO) (2.38). To simplify the integration of the likelihood times the
prior the distribution of the two combined can be used instead. Using conjugate
prior the hyperparameters of the posterior can be found from (A.2)

p(x | µ)π(µ) ∝ N

(
1

1
σ2 + n

σ2

(
0 +

∑n
i=1 xi
σ2

)
,
( 1
σ2 + n

σ2

)−1)

= N

(∑n
i=1 xi
n+ 1 ,

σ2

n+ 1

)
.

(2.44)

The ELBO is calculated for each variational density at a time and the result com-
pared. First for q1(µ)

L(q1) =
∫
q1(µ) log

(
p(x | µ)π(µ)

q1(µ)

)
dµ

= 1√
2πσ2

∫ ∞
−∞

exp
(
− µ2

2σ2

)−1
2 log 2πσ2

n+ 1 −
(n+ 1)

(
µ−

∑n

i=1 xi
n+1

)2

2σ2

+ 1
2 log 2πσ2 + µ2

2σ2

)
dµ.

(2.45)

The Gaussian integrals (see A.9) are needed for the integration. Expanding the
brackets and applying the Gaussian integrals implies

L(q1) = 1
2 log(n+ 1)− 1

2σ2

(n+ 1)σ2 + 1
n+ 1

(
n∑
i=1

xi

)2

− σ2

 . (2.46)

For q2(µ) the ELBO is

L(q2) =
∫
q2(µ) log

(
p(x | µ)π(µ)

q2(µ)

)
dµ

= 1√
2πσ2

∫ ∞
−∞

exp
(
−(µ− 1)2

2σ2

)−1
2 log 2πσ2

n+ 1 −
(n+ 1)

(
µ−

∑n

i=1 xi
n+1

)2

2σ2

+ 1
2 log 2πσ2 + (µ− 1)2

2σ2

)
dµ.

(2.47)

Expanding the brackets and applying the Gaussian integrals (A.9) implies

L(q2) = 1
2 log(n+ 1)− 1

2σ2

(n+ 1)(1 + σ2)− 2
n∑
i=1

xi + 1
n+ 1

(
n∑
i=1

xi

)2

− σ2

 .
(2.48)

When comparing the results of the ELBO for the two different variational densities
to see which gives the largest result, it can be noted that all terms in the result for

14



2. Theory

L(q1) (2.46) are found in the result for L(q2) (2.48). In this way,

L(q1) ≤ L(q2)

⇔ 0 ≤ − 1
2σ2

(
−2

n∑
i=1

xi + (n+ 1)
)

⇔ 1
2 ≤

1
n+ 1

n∑
i=1

xi.

(2.49)

For a sample of random variables the mean is given by 1
n

∑n
i=1 xi. Because q1(µ) has

the mean µ1 = 0 and q2(µ) the mean µ2 = 1, if the sample mean is above 1
2 , q2(µ)

should give the best approximation. The result above has the term of 1
n+1 instead of

1
n
. This can be interpreted as that more observations need to be closer to the value

1 for q2(µ) being the best approximation. The random variables need to compensate
for the prior distribution having a mean value equal to 0 because the prior is also
an observation at 0. Note that when the number of observations is large the impact
of this decreases.

2.4.2 Black box variational inference

While a method for computing the variational inference has been established, an op-
timisation method is also necessary. Variational inference is an optimisation problem
where the variational parameter is updated trying to be as similar to the true pos-
terior as possible. Knowledge about the model is required to efficiently derive an
algorithm using variational inference but this is often not available. Using gradi-
ent descent is a standard method for optimisation and is an iterative optimisation
algorithm for finding a local minimum for a differentiable function. The problem
when using Bayesian inference for modelling is that the parameters have distribu-
tions and using regular gradient descent is therefore problematic. Two methods for
optimisation while getting around this problem will be presented. First, the black
box variational inference method is presented based on Ranganath, Gerrish and Blei
2014 [3]. Later, variational inference using the reparameterisation trick based on
Kingma and Welling 2013 [4] will be shown. Last, these two optimisation methods
will be compared.

Black box variational inference is a stochastic optimisation method computing the
gradient of the variational objective using Monte Carlo sampling from the variational
distribution. This method is quite general, meaning it can be applied to almost any
model with little effort because of the rewriting of the gradient to only be of the
variational distribution and not the whole objective function. The rewriting can be
done even though the likelihood and prior is dependent on the variational objective.
This makes the black box method easy to use to any model because the likelihood
is the model-specific probability.

The variational distribution is from now on parameterised by λ so the variational
distribution Q have a density q = q(· | λ) depending on λ. The objective function,
the evidence lower bound (ELBO) (2.38), to optimise is
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L(q) =
∫
q(θ | λ) log

(
p(x | θ)π(θ)
q(θ | λ)

)
dθ, (2.50)

where q(θ | λ) is the variational density with latent parameters θ and free parameters
of the variational distribution λ. The variational parameter λ will later represent
the mean value µ and standard deviation σ of the variational distribution because it
is assumed in this thesis that q(· | λ) is Gaussian. As stated earlier, optimising the
ELBO implies minimising the Kullback-Leibler divergence which in turn searches for
the parameters in the variational distribution closest to the conditional distribution
that is not known.

The black box method uses stochastic optimisation to optimise the ELBO. Stochastic
optimisation is a method for optimising an objective function with randomness
present, so noisy estimates of the gradient are used to maximise the objective func-
tion [7]. The estimation is done by sampling from the variational distribution,
computing the gradient using these samples, multiplying them with the ELBO and
updating the parameters with the result. Stochastic optimisation for the variable λ
at iteration t will be

λ(t+1) = λ(t) + ρ(t)∇λL(t). (2.51)

λ is updated by the gradient of the objective function L(q) with respect to λ. This
converges to a local maximum of L(q). ρ is the step size, also called the learning
rate. The learning rate can follow the Robbins-Monro conditions [7]

∞∑
t=1

ρt =∞ and
∞∑
t=1

ρ2
t <∞. (2.52)

A step size that meets these conditions and does not decrease too fast is for example

ρ = ρ0
1√
t
, (2.53)

where ρ0 is a parameter selected small.

The gradient of the ELBO is estimated by Monte Carlo samples from the variational
distribution. By using randomness, Monte Carlo methods give approximate solu-
tions to deterministic problems that are hard to solve. When deriving the gradient
note that the integral in the ELBO is the same as the expected value dependent on
the variational distribution Q with density q(θ | λ). Start by taking the gradient of
the ELBO (2.50) with respect to λ

∇λL(q) = ∇λ

∫
q(θ | λ) log

(
p(x | θ)π(θ)
q(θ | λ)

)
dθ

=
∫
∇λ [q(θ | λ) (log p(x | θ) + log π(θ)− log q(θ | λ))] dθ,

(2.54)

assuming the gradient and integral can be interchanged. Using the product rule for
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the gradient and cancelling out the terms not dependent on λ implies

∇λL(q) =
∫
∇λ[q(θ | λ)](log p(x | θ) + log π(θ)− log q(θ | λ)) dθ

+
∫
∇λ[log p(x | θ) + log π(θ)− log q(θ | λ)]q(θ | λ) dθ

=
∫
∇λ[q(θ | λ)](log p(x | θ) + log π(θ)− log q(θ | λ)) dθ

− E[∇λ log q(ϑ | λ)],

(2.55)

where ϑ ∼ q(· | λ). The expectation is zero and is realised by using the chain rule
on the logarithm and integrating over the whole probability space which is equal to
one,

E[∇λ log q(ϑ | λ)] = E
[
∇λq(ϑ | λ)
q(ϑ | λ)

]
= ∇λ

∫
q(θ | λ) dθ = ∇λ1 = 0. (2.56)

Using the same rewriting for the first term in (2.55), so that the gradient of the
logarithm using the chain rule is ∇λ[q(θ | λ)] = ∇λ[log q(θ | λ)]q(θ | λ), implies that

∇λL(q) =
∫
∇λ[log q(θ | λ)](log p(x | θ) + log π(θ)− log q(θ | λ))q(θ | λ) dθ

= E[∇λ[log q(ϑ | λ)](log p(x | ϑ) + log π(ϑ)− log q(ϑ | λ))].
(2.57)

In the end the gradient has only to be taken on the logarithm of the variational
distribution and not on the underlying model. The expectation is with respect to
the variational distribution. Therefore samples θ can be drawn from the variational
density q(θ | λ) to approximate the gradient of the ELBO.

To compute this gradient of the ELBO a Monte Carlo method where samples drawn
from the variational distribution are used to approximate the expected value

∇λL(q) ≈ 1
S

S∑
s=1
∇λ[log q(ϑs | λ)](log p(x | ϑs) + log π(ϑs)− log q(ϑs | λ)), (2.58)

where ϑs iid∼ q(· | λ) and S is the number of samples drawn from the variational
distribution. The approximation of the gradient of the ELBO, ∇λL(q), is used in
the stochastic optimisation (2.51) and moves λ in direction of promising values for
the distribution.

2.4.3 Variational inference using the reparameterisation trick

The black box method rewrites the gradient of the ELBO and avoids the need to take
the gradient of the likelihood with respect to the parameters. On the other hand if
this gradient is available using it can speed up the optimisation. The problem is that
taking the gradient of a parameterised distribution is problematic. When using a
neural network and backpropagating through a random node there can be a problem
with high variance. The reparameterisation trick [4] s a way of getting around this
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by backpropagating through a deterministic node instead. Monte Carlo sampling
is still used to approximate the gradient of the ELBO but shifting the randomness
to a parameter-free distribution so the gradient of the stochastic variables can be
computed.

To illustrate the reparameterisation trick consider the variational density q(θ | λ)
parameterised by λ = (µ, σ) where µ is the mean and σ is the standard deviation of
the normal distribution (2.12), ϑ is sampled from q(θ | λ) and

ϑ ∼ N (µ, σ2). (2.59)

This can be shifted to a deterministic linear function of µ and σ and a standard
normal distribution (2.14) random variable Ξ

ϑ = µ+ σΞ, Ξ ∼ N (0, 1). (2.60)

The randomness in ϑ is shifted to a much simpler parameter-free distribution. Ξ will
be sampled the same number of times that ϑ is earlier sampled from the variational
distribution in the Monte Carlo approximation. Then ϑ is generated from this
reparameterisation function g(λ, ξ) where

g(λ, ξ) = µ+ σξ. (2.61)

Even though ϑ is rewritten using g(λ, ξ) it still follows a normal distribution with
parameters µ and σ. Recall that Y = a + bX, where X ∼ N(µX , σ2

X) is normally
distributed with Y ∼ N(a+ bµX , b

2σ2
X). Thus with Ξ ∼ N (0, 1),

g(λ,Ξ) ∼ N(µ, σ2).

Finding the gradient descent will require some rewriting using the reparameterisation
function g(λ, ξ). Recall the stochastic optimisation of variable λ (2.51) at iteration
t is updated using the gradient descent of L(q) by

λ(t+1) = λ(t) + ρ(t)∇λL(t), (2.62)

where ρ is the step size, and the gradient of the ELBO (2.38) is

∇λL(q) = ∇λ

∫
q(θ | λ) log

(
p(x | θ)π(θ)
q(θ | λ)

)
dθ. (2.63)

Splitting the integral into two terms makes the derivation of the gradient using the
reparameterisation trick easier:

∇λL(q) =
∫
∇λ [log p(x | θ)q(θ | λ)] dθ

−
∫
∇λ [(log q(θ | λ)− log π(θ))q(θ | λ)] dθ.

(2.64)

For the first term in the equation above, since the randomness in ϑ is shifted to
Ξ using g(λ, ξ) (2.61), a trick of shifting the reference measure (2.7) to rewriting
the integral in terms of ξ can be used. Because of the choice of g it holds that
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q(θ | λ) dθ = q(ξ) dξ, compare with Proposition 1 in [8]. Also θ in the likelihood is
rewritten using the function g(λ, ξ) so using this with p(x | θ) = p(x | g(λ | ξ)) and
the chain rule implies

∇λ

∫
log p(x | θ)q(θ | λ) dθ = ∇λ

∫
log p(x | g(λ, ξ))q(ξ) dξ

=
∫ ∂

∂λ
g(λ, ξ) · ∇θ[log p(x | g(λ, ξ))]q(ξ) dξ

= E
[
∂

∂λ
g(λ,Ξ) · ∇ϑ log p(x | ϑ)

]
,

(2.65)

where ϑ ∼ q(· | λ), Ξ ∼ N (0, 1) and ∂
∂x
f =

(
∂
∂xi
fj
)
i,j

is the Jacobian matrix of f(x)
in x.

The second term in equation (2.64) can be rewritten using the same method as
earlier in the black box version of variational inference. The product rule for the
gradient is first used∫

∇λ[(log q(θ | λ)− log π(θ))q(θ | λ)] dθ =∫
∇λ[log q(θ | λ)− log π(θ)]q(θ | λ) dθ

+
∫
∇λ[q(θ | λ)](log q(θ | λ)− log π(θ)) dθ.

(2.66)

The first term is equal to zero,∫
∇λ[log q(θ | λ)]q(θ | λ) dθ −

∫
∇λ[log π(θ)]q(θ | λ) dθ = 0, (2.67)

because the integral on the whole probability space of q is equal to 1 and the gradient
of 1 is equal to zero (same reasoning as in equation (2.56)). The gradient of the
prior distribution is not dependent on λ and therefore this term is also equal to zero.

The second term can be rewritten using the same trick as from black box, see
equation (2.57),∫

∇λ[q(θ | λ)](log q(θ | λ)− log π(θ)) dθ

=
∫
∇λ[log q(θ | λ)](log q(θ | λ)− log π(θ))q(θ | λ) dθ

= E[∇λ[log q(ϑ | λ)](log q(ϑ | λ)− log π(ϑ))].

(2.68)

where ϑ ∼ q(· | λ). The important difference from the black box method is that
ϑ is not sampled directly from the variational distribution N (µ, σ2). Instead Ξ
is sampled from the standard normal distribution N (0, 1) and ϑ is obtained from
g(λ, ξ) = µ + σξ. The Monte Carlo approximation of the gradient used for the
reparameterisation trick is

∇λL(q) ≈ 1
S

S∑
s=1

[
∂

∂λ
g(λ,Ξs) · ∇ϑs log p(x | ϑs)

−∇λ[log q(ϑs | λ)](log q(ϑs | λ)− log π(ϑs))
]
.

(2.69)
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2.5 Neural network

Machine learning is a way for achieving artificial intelligence through a process of
automatically teaching and updating a program without explicitly programming it.
By learning the structure of the input data, machine learning models can be used
for predicting upcoming events. A neural network is a machine learning method
loosely based on the structure of the biological brain, consisting of neurons and the
connections between them. The neural network is a deep learning technique that
is skilled at learning complex patterns in large datasets and are popular modelling
tools thanks to their ability to learn complicated non-linear functions.

A feedforward neural network [5] is a simple deep neural network. Mathematically,
it can be represented as a function x 7→ f(x,w) mapping an input x to an output y
depending on weight parameters w. A feedforward network consists of one or more
hidden layers with several connected nodes (neurons) that send information through
the network. These nodes and connections emulate the neurons in the human brain.
The feedforward network moves information forward from the input nodes, through
the hidden nodes and to the output nodes. The feedforward network is often used
in supervised learning. Supervised learning is when a function is determined from
labelled data with input-output pairs, meaning that in the training an input value
will lead to a known output. The goal of the feedforward network is to learn the
function mapping input values to the output values so that ŷ = f(x,w) ≈ y.

A feedforward network is separated into layers. It consists of an input layer, one
or more hidden layers and an output layer. Each layer consists of several nodes
that have connections (edges) to the nodes in the previous layer, see figure 2.4. In
a fully connected network, all the nodes in one layer are connected with all nodes
in the next layer. All of the edges have weights associated with them. Each neuron
takes input and multiplies it with a weight. The weight will determine how much
to emphasise or ignore the inputs. A bias is then added and transformed using an
activation function, and this is the output. The bias helps to shift the activation
function to fit the prediction better, the same way as the intercept is added in a
linear function. A simple structure of a feedforward network with two hidden layers
can be

x→ φ
(
w(1) · x+ b(1)

)
︸ ︷︷ ︸

z(1)

→ φ
(
w(2) · z(1) + b(2)

)
︸ ︷︷ ︸

z(2)

→ ŷ. (2.70)

Here x is the input data, w(i) is the weights of the l-th layer, b(i) is the biases, and φ
is the activation function. The activation function adds non-linearity to the model.
A very common activation function is the ReLu function that transform negative
values to zero and keep the rest

φ(z) = max(0, z). (2.71)

A neural network needs to be trained to learn how to classify the input-output pairs
correctly. When training, the weights and biases are adjusted so that the estimated
output ŷ is as close to the true value y as possible. A cost function of choice is used
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Figure 2.4: An example of the structure of a feedforward neural network [9]
.

to keep track of how correct the prediction is. A common choice is the mean squared
error MSE for a set of N input-output pairs X = {(x1, y1), . . . , (xN , yN)}

MSE(X) = 1
2N

N∑
i=1
‖ ŷi − yi ‖2 . (2.72)

When the predictions are identical ŷ = y for all input-output pairs, MSE(X) = 0.
Therefore, the objective is to minimise the mean square error with respect to the
weight w and bias b. Backpropagation is when the error from the cost function is
propagated back through each layer to update the weights using the gradient of the
loss function with respect to the weights.

In order to minimise the objective function, gradient descent can be used. Gradient
descent is using the direction of the negative gradient of the cost function (2.72)
to adjust the weights and biases. It is an iterative process that converges the cost
function to a local minimum. For the weights and biases, the update at iteration i
when using gradient descent is

w(i+1) = w(i) − α∂MSE(X)
∂w(i)

b(i+1) = b(i) − α∂MSE(X)
∂b(i) .

(2.73)

α > 0 is the learning rate which determines the step size the gradient takes in each
iteration. The learning rate is a hyperparameter often chosen to be a small number.
Hyperparameters in machine learning are the parameters set before training and
often need to be adjusted. A too small learning rate will produce a slow convergence
while a too large learning rate will fail to converge at all.

Often a stochastic gradient which uses a randomised approximation of the gradient
is used. A popular optimiser is the adaptive learning rate optimisation algorithm,
Adam [10]. Adam is often used when training deep neural networks and is an
extension of stochastic gradient descent. It computes individual learning rates for
the different parameters and is adapted during training. The learning rate in Adam
is scaled by the squared gradients and use a moving average of the gradient to create
momentum.
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When modelling using a neural network, the dataset is often split into a training
dataset and a testing dataset. The training dataset is used to train the model where
the weights and biases are learned. The testing dataset evaluates the model once
when finished training. In this way, the model can be tested on data it has never
seen before.

The batch size is another ”hyperparameter of gradient descent that controls the
number of training samples to work through before the model’s internal parameters
are updated”[11]. The number of epochs is a hyperparameter ”that controls the
number of complete passes through the training dataset”[11].

2.5.1 Bayesian neural networks

Neural networks have become popular tools for prediction but with regular networks
there may be an overconfidence in the results. For example a small or imbalanced
dataset can lead to overfitting. Bayesian inference for neural networks is useful when
the data is sparse or noisy, prior knowledge about the unknown parameters exist or
details about the uncertainty in the results are wanted.

As for Bayesian regression in section 2.2.1 consider a dataset D = (x, y) with input
variables x and output variables y. A Bayesian neural network is basically a regres-
sion model where the functional relationship is given by a neural network. Assuming
a normal distribution error a Bayesian neural network model can be expressed as

y ∼ N (f(x, θ), σ2), (2.74)

where θ are the weight parameters and σ is the standard deviation. The function to
be determined is f(x, θ) and is describing the relationship in the data. A likelihood
function can be constructed for the data p(y | x, θ). Imposing a prior belief on the
weights and Bayesian inference can be used for prediction.

Bayesian neural networks include a measure of the uncertainty in the prediction
by providing a posterior distribution. Where regular neural networks give point
estimations, Bayesian neural networks provide uncertainty measurements for the
model. The model parameters in the neural network are assigned priors, so both
the weights and the biases will have probability distributions. Specification on which
priors used in the case study section 3.4. The variational parameter θ will therefore
obtain all unknown parameters of the model so on this case the mean and standard
deviation of the weights and biases so

θ = {collection of parameters for each weight and bias}. (2.75)

The posterior of the prediction is quantified using the uncertainty of the weights
propagated through the system. Therefore the output y will have uncertainty as
well. This uncertainty is quantified by the posterior predictive distribution. It
determines a model’s confidence at new datapoints and the range of which the new
data is most likely to be observed.
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Bayesian inference for deep learning works similarly to regular deep learning so it
is useful to compare the different methods. The following three steps are common
in deep learning: first a model is defined, then a dataset is chosen and last the
algorithm is run which will learn the unknown parameters of the model. When using
a Bayesian neural network, these three steps are adjusted in the following way. First,
when defining the model, the parameters get distributions with a prior belief of which
values these distributions can take. Second, the data is viewed as observations from
these distributions. Last, as the learning algorithm runs, the knowledge of these
parameters are used to update the model. In the end, a probability distribution is
provided. The wider the spread of the distribution, the larger the uncertainty in the
model.

By applying Bayes’ rule for Bayesian regression (2.19) on a neural network the
probability distribution for the weights given the data can be found. Using Bayesian
inference for neural networks will provide a full distribution for the parameter θ
instead of the single most likely value for θ. The Bayesian network can also be
used to find the distribution over output y and in model selection by learning the
appropriate model size and type.

Optimisation in neural networks is to minimise the cost function, for example, the
mean squared error function. For Bayesian networks, this is the same as finding a
maximum of the likelihood function p(y | x, θ∗), meaning finding the weights and
biases θ∗ that maximises the probability of the data given that parameter.

The challenge with a Bayesian neural network is that it is computationally expensive
when there are large datasets and complex models (many parameters). Bayesian
inference involves integrals that are intractable except in trivial cases. There are
several strategies to get around this, for example making algorithms that handle
large datasets better, using several computers or approximating the answer by using
variational inference. The VI as an approximation for Bayesian neural networks
works the same way as described in section 2.4. Specifications of how VI is considered
for the neural network in details will be described in the case study section 3.3.

To summarise, a family of distributions Q is used to approximate the posterior
distribution. A minimisation of the Kullback-Leibler divergence is used to get a
satisfying approximation which is equivalent to maximising the ELBO (2.38). A
Monte Carlo sampling is used, as explained in 2.4.2 Black box and 2.4.3 Repara-
meterisation trick, to approximate the intractable integrals. These two VI methods
also ensure that the sampling is from the simpler distribution Q which is also used
for approximating the posterior.
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Case study

3.1 Flow rate prediction

A model structure is needed for problem-solving using Bayesian inference. The
modelling process is separated into four steps: modelling, approximating, optimising
and the goal, see the flowchart in figure 3.1. First, the model is stated with stochastic
variables and a prior distribution. A Bayesian approach is used to find a posterior
distribution for the model. Bayesian inference is intractable for complex models so
approximations is used. The posterior distribution is approximated using a family
of densities q ∈ Q. The objective function is the ELBO (2.38) from the Kullback-
Leibler divergence. Third, optimising through either black box variational inference
(2.58) or variational inference using the reparameterisation trick (2.69). Last, the
goal is to get a posterior distribution explaining the distribution of the model.

Modelling Approximating Optimising Goal

Figure 3.1: Flowchart of the modelling process.

There are two methods presented for optimising using variational inference, the
black box- and the reparameterisation trick method. These two methods will be
compared to identify which performs best. A regression model is used instead of
a neural network for the comparison. The data used for the regression model is
generated from a simple function and not flow rate data. When the best-suited
optimisation method is identified, this method will be used on a neural network
plate model with flow rate data provided by Solution Seeker.

The dataset used for training the neural network is comprised of samples of steady-
state production data from a petroleum field on the Norwegian continental shelf,
recorded between January 2014 and January 2018. The production data consists
of 11 wells producing oil, gas and water through two risers. Solution Seeker gen-
erated this data using a steady-state classification algorithm that tracks periods of
steady-state production. Steady-state production is when all variables measured are
approximately the same during a specific time period. One data point is therefore a
period when no variables change outside certain given restrictions. The variables in
the dataset have a mean value and a standard error measurement. In this paper only
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the mean value measurement of the variables are used. The dataset is anonymised
and shared under a non-disclosure agreement with Solution Seeker. The dataset will
be explained in detail in section 3.5.

3.2 Plate model

A plate model can be used to illustrate the model for a Bayesian network. The
different shapes in the plate model in figure 3.2 have the following meanings:

• Circle: distribution of random variables.

– Coloured: observed random variable.

– White: unknown (latent) variable.

• Arrow: relationship between random variables. The arrow pointing from x to
y means that y depends on x.

• Square: the compact figure for N samples.

Samples

Figure 3.2: Plate model for flow rate.

The plate model for the Bayesian network modelling flow rate is shown in figure 3.2.
The different variables are:

• Xi – Explanatory variables such as pressure, temperature, choke and flow rates.
These are observed values and not used as output. These variables could be
random, but for example the choke is known to have minimal randomness. The
distributions of pressure and temperature are known and often considered as
normally distributed.

• Zi – Latent random variables and the true flow rate. The true flow rate is not
measured.

• Yi – The measurements of the flow rate. These are dependent on a noise εi.
Note that Yi is directly dependent on Zi and not Xi. This mean that if Zi is
known Xi does not provide any new information for Yi.
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• θ – Parameters of the conditional probability π(θ | x), given data x. These
can be thought of as the usual parameters used for training a network without
the heteroscedastic noise.

• εi – Heteroscedastic noise. These are dependent on variables Xi but could also
be noise to Zi.

• η – Parameters describing the conditional probability of εi.

3.3 Variational inference for the regression model
and the neural network

To estimate the uncertainty of a probabilistic model the ELBO (2.38) is optimised.
For latent parameter θ governing the distribution of the data, observed variables x
and output variable y the ELBO is

L(q) =
∫
q(θ | λ) log

(
p(y | x, θ)π(θ)

q(θ | λ)

)
dθ. (3.1)

q(θ | λ) have free parameters of the variational distribution λ = (µ, σ) which is
normally distributed where µ ∈ Rm is the mean vector and σ ∈ Rm×m are the
elements of a diagonal covariance matrix. m is the number of unkown parameters
in the model. Because σ are the elements of a diagonal covariance matrix the
parameters θ are assumed to be independent. Remembering from section 2.4 that
a parameterised family of distributions Q is needed to find the distribution Q to
approximate the posterior distribution. The mean-field variational family [1] is
used for creating a variational family Q. Here each unknown parameter θ in Θ is
assumed to be independent. So for m parameters of θ, the density of a distribution
that belongs to the mean-field variational family can be written as

q(θ | λ) =
m∏
i=1

q(θi | λi), (3.2)

where λ parameterises the marginal distribution.

Recall the optimisation of variable λ at iteration t with step size ρ is (2.51):

λ(t+1) = λ(t) + ρ(t)∇λL(t). (3.3)

Using black box VI (2.58) to approximate the gradient of L, the optimisation step
in stochastic gradient descent is

λ(t+1) = λ(t)+ρ(t) 1
S

S∑
s=1
∇λ(t) [log q(θs | λ(t))](log p(y | x, θs)+log π(θs)−log q(θs | λ(t))).

(3.4)
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VI using the reparameterisation trick (2.69) gives the optimisation

λ(t+1) = λ(t) + ρ(t) 1
S

S∑
s=1

[
∂

∂λ(t) g(λ(t), ξs) · ∇θs log p(y | x, θs)

−∇λ(t) [log q(θs | λ(t))](log q(θs | λ(t))− log π(θs))
]
.

(3.5)

To calculate the gradient of the ELBO the logarithms of the different distributions
are needed. The probability density function for the normal distribution (2.13) is
used throughout.

The log likelihood density of p(y | x, θ) has the form p(y | f(x, θ)) in both the regres-
sion model (2.18) and the neural network model (2.74). When y ∼ N (f(x, θ), σ2)
and n is the number of samples the logarithm of the normal density is

log p(y | x, θ) = log
n∏
i=1

p(yi | f(xi, θ))

= log
n∏
i=1

1√
2πσ

exp
−1

2

(
yi − f(xi, θ)

σ

)2


= −1
2

n∑
i=1

(
log 2π + log σ2 + (yi − f(xi, θ))2

σ2

)

= −1
2

(
n log 2π + n log σ2 + 1

σ2

n∑
i=1

(yi − f(xi, θ))2
)
.

(3.6)

For the log prior density π(θ), where θ ∼ N (µπ, σ2
π),

log π(θ) = −1
2

(
log 2π + log σ2

π + (θ − µπ)2

σ2
π

)
. (3.7)

Note that the prior distribution has a fixed mean µπ and standard deviation σπ that
are not updated during training.

Similarly, the log variational density for q(θ | λ), where θ ∼ N (µ, σ2) being para-
meterised by λ = (µ, σ), is

log q(θ | λ) = −1
2

(
log 2π + log σ2 + (θ − µ)2

σ2

)
. (3.8)

The different gradients of the log densities are also needed. The gradient should be
able to take both positive and negative values when training the model. If the value
of λ is overestimated it should be able to decrease and vice versa. σ is a parameter
of λ, but σ is the standard deviation so it is assumed positive. This constraint needs
to be included but it is tedious to add constraints to stochastic gradient descent
optimisation. To ensure a variable is positive the softplus [8] transformation can be
used instead

σ = log(1 + exp(v)). (3.9)

28



3. Case study

The softplus function maps v from a value that can be both positive and negative
to a value σ taking only positive values. Note that as v grows larger, v ≈ σ. The
model is therefore parameterised with v instead of σ. The softplus transformation
of v is used when λ is input to a distribution because σ needs to be positive in the
normal distribution.

The gradient of the log variational density (3.8) using the softplus transformation
(3.9) on v is

∇λ log q(θ | λ) = ∇λ

[
−1

2

(
log 2π + log σ2 + (θ − µ)2

σ2

)]
. (3.10)

Here σ = log(1 + exp(v)). Because λ = (µ, v) this leads to two gradients, one for µ
and one for v

∇µ log q(θ | λ) = θ − µ
(log(1 + exp(v)))2 ,

∇v log q(θ | λ) = − exp(v)−µ
2 + 2µθ − θ2 + (log(1 + exp(v)))2

(1 + exp(v))(log(1 + exp(v)))3 .

(3.11)

To calculate the gradient of the log likelihood (3.6) the simple definition for the
derivative can be used because θ is a single value variable.

The partial derivatives of reparameterisation function g (2.61) is dependent on λ =
(µ, σ) so the softplus transformation (3.9) is used for v,

∂

∂λ
g(λ, ξ) = ∂

∂λ
[µ+ log(1 + exp(v))ξ]. (3.12)

The different derivatives are

∂

∂µ
g(λ, ξ) = 1,

∂

∂v
g(λ, ξ) = exp(v)

1 + exp(v)ξ.
(3.13)

For simplicity the case where g : R1 → R1 is used.

3.4 Initialisation of the regression model and the
neural network

The variational parameter θ is sampled from the normal distribution N (µ, σ2) para-
meterised by λ = (µ, σ). λ is initialised using the prior distribution N (µπ, σ2

π).
Note that this will lead to a KL-divergence close to zero in the first iteration, but θ
will change as the training updates λ, and the parameters of the prior distribution
remain the same.
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As addressed earlier the parameter v is used instead of σ. The inverse softplus (3.9)
function transforms σ in the initialisation so λ = (µ, v) can be used in training,

v = log(exp(σ)− 1). (3.14)

For the regression model (2.18), the mean µ = 0 and the standard deviation σ = 1
is used.

For the neural network (2.74), all the weights and biases have a probability distri-
bution, meaning θ is the shape of the number of unknown parameters. The µ and
σ of the weights and biases have different initialisations.

The mean of both weights and bias is initialised to zero, µw = µb = 0.

The standard deviation of the weights is initialised using He initialisation [12]. He
initialisation depends on the size of the previous layer

σw = N (0, 1) ·
√

2
fan_in , (3.15)

where ”fan_in” is the number of input nodes to the weight matrix.

The standard deviation of the bias is set to a small number to avoid large output
variances when the network is deep, so σb = 0.01. This is a hyperparameter that
can be changed to see which value works best.

Note that the weights and the biases of the network is not initialised to zero even
though the mean value are because of the values of the standard deviation.

The structure of the feedforward neural network consists of two hidden layers with
100 nodes in each layer. This is hyperparameters for the architecture of the network
that are set to reasonable values but could be changed. The input layer has 7
variables and output has 1 variable. This is because of the structure of the dataset
explained in section 3.5. The total amount of parameters in the model ism = 22004.
The batch size is set to 100. Adam is the optimiser used with a learning rate set to
α = 0.001.

The number of Monte Carlo samples S of θ from the variational density q(θ | λ) is
S = 3 for the neural network. In the results section 4.1 where the black box and
reparameterisation trick is compared both S = 3 and S = 10 is used. It is shown
that using a large number of samples is computationally heavier without achieving
a significant improvement in convergence, so therefore a smaller amount of sampling
is used for the neural network.

The ELBO is the objective function to be maximised and the training is done when
the ELBO converges. The stopping criteria when training the model is either a
maximum number of epochs run or that the ELBO has converged. The maximum
number of epochs is set to a million. The ELBO is tested for convergence if the
training has not improved the last number of iterations. The accepted number
of iterations without improvement is set to 100. An averaging window called the
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moving average is moved across the ELBO to smooth the result. The window size
used is 100.

The model is tested after training using the test dataset. When estimating the
prediction, mean and variance are sampled 1000 times to get average estimations.
This gives a mean predicted value and a standard deviation that can be plotted

Implementation of the algorithm is done in Python where functions from PyTorch
are used for the neural network.

3.5 Datasets

Two different datasets are used for modelling; one simple dataset generated for the
regression model and Solution Seeker’s flow rate dataset for the neural network.

The black box and the reparameterisation trick are compared for a simple regression
model (2.16). A regression dataset is created using

y = f(x) + σdata · N (0, 1), with f(x) = sin(θdatax), (3.16)

where the variational parameter to be learned is θdata = 2.7, the noise σdata = 0.3,
and x is in the range between 0 and 1. Number of data points used is n = 1000.
See figure 3.3.

Figure 3.3: Dataset using y (3.16) where θdata = 2.7, σdata = 0.3 and number of
data points n = 1000.

Solution Seeker’s flow rate dataset for the neural network consists of several variables
measured by sensors during the extraction of liquid (meaning the oil, gas and water).
The seven variables used as input when training the model is described below:

• CHK - This is the opening of a choke where all the liquid coming upstream
pass. Unit in %.
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• PWH - pressure measured at the well-head. Unit in bar.

• TWH - temperature measured at the well-head. Unit in ℃.

• PDC - pressure measured downstream the choke. Unit in bar.

• TDC - temperature measured downstream the choke. Unit in ℃.

• GOR - gas per oil. Value calculated from measured QGAS and QOIL which
is volumetric gas and oil flow rate both measured in Sm3/h, cubic meters per
hour measured under standard conditions. GOR = QGAS

QOIL .

• WCT - water per water and oil. Value calculated from measured QWAT and
QOIL which is volumetric water and oil flow rate both measured in Sm3/h, cu-
bic meters per hour measured under standard conditions. WCT = QWAT

QWAT+QOIL .

The output variable is QTOT which is the total quantity of measured oil, gas and
water volumetric flow rate. QTOT = QOIL + QGAS + QWAT.

Time is also a variable saved in the dataset but is only used when plotting the result
of the predictions, not in training. Only the start time of a steady-state period is
used.

There are several other variables in the dataset that are not used as they do not
contribute with relevant enough information beyond the variables described above.

Preprocessing of the dataset is needed. Preprocessing is important when predicting
using real-life data as the datasets are rarely in good enough condition from the
beginning. Error sources such as missing data points or inaccurate measurements
need to be eliminated. First, the variables of GOR, WCT and QTOT need to be
created from QOIL, QGAS and QWAT as they are not measured but calculated.
All the columns with no measurements on some of the variables, also called NaNs,
are removed. If a value is infinitely large it is also removed which could happen
when GOR and WCT are created if QOIL or QWAT plus QOIL is equal to zero.
The choke value CHK must be in between the value of 0 and 100 as this is measured
in percentage. If the choke value is below 0, it is set to 0, and if it is above 100,
it is set to 100. The flow rate measurements of oil, gas and water, QOIL, QGAS,
QWAT, are set to 0 if they are negative as there can not be a negative flow. If PDC
> PWH the measurement is considered inaccurate and removed from the dataset
since the well-head pressure must always be larger than the choke pressure.

The dataset is split into a training and testing dataset. The training set contains
1998 data points from the period between January 2014 and January 2017. The
test set has 639 data points from the period between January 2017 and January
2018. The model is developed using the training dataset and then tested on the test
dataset.

Due to poor quality data from some wells they lack many datapoints after prepro-
cessing. In general, the data from these wells are eliminated and instead wells with
interesting and more complete datasets are used for modelling.
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Results

4.1 Black box compared to reparameterisation trick
using regression

The Bayesian regression model (2.18) is used on the dataset generated by the sine
function (3.16). The model is used to compare the black box VI (2.58) and VI using
the reparameterisation trick (2.69).

The variational parameter to be learned is θ = 2.7 because this determines the
shape of the dataset. The algorithm is run a maximum of T = 5000 iterations.
Even though the ELBO may not always have converged at this time a tendency of
how well the method have learned the true parameter θ is visible. Two parameters
are changed when testing to clarify the difference between the two methods:

• ρ0 used in the step size (2.53), ρ = ρ0/
√
t, t = 1, .., T and T is the maximum

number of iterations.

• S which is the number of samples of θ from the variational density q(θ | λ).

In figures 4.1 - 4.4 the black box and reparameterisation trick is trained for different
values of ρ0 and S. The number of samples used is S = 3 and S = 10 and the step
sizes is ρ0 = 0.001 and ρ0 = 0.0001. In the figures the true value of θ = 2.7 is plotted
and the posterior mean value µ should be as close to this as possible. The posterior
standard deviation σ is also included. Frequentist inference is used so there is no
true σ to be learned. The posterior value for σ should instead be roughly equal to
the difference between the true parameter θ and the estimated posterior µ. The
value of σ will tell about how far off the estimate is.

33



4. Results

Figure 4.1: The black box and the reparameterisation trick with S = 3 and
ρ0 = 0.001.

Figure 4.2: The black box and the reparameterisation trick with S = 10 and
ρ0 = 0.001.

Figure 4.3: The black box and the reparameterisation trick with S = 3 and
ρ0 = 0.0001.
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Figure 4.4: The black box and the reparameterisation trick with S = 10 and
ρ0 = 0.0001.

For S = 3 and ρ0 = 0.001 in figure 4.1, the black box method is performing worse
than the reparameterisation trick in predicting θ. The posterior mean µ is noisy
and not converging for the black box. The reparameterisation trick seems to handle
the small step length combined with few samples and converges almost to θ. The
black box method improves when sampling more times S = 10 in figure 4.2 and
the same step size, but the predicted µ is still noisy. The best improvement for the
black box method is when smaller initial step size is used ρ0 = 0.0001 in figures 4.3
and 4.4. Here the mean converges to the true value for both S = 3 and S = 10.
The reparameterisation trick converges in all cases and is much more stable.

Figure 4.5: ELBO versus time for the black box left and the reparameterisation
trick right for S = 3 and ρ0 = 0.0001. log(−ELBO) is used to scale the y-axis.
Reparameterisation have a longer computational time.
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Figure 4.6: ELBO versus time using the reparameterisation trick for ρ0 = 0.0001.
S = 3 left and S = 10 right. log(−ELBO) is used to scale the y-axis. S = 10 have
a longer computational time.

Comparing the computational time for the black box and the reparameterisation
trick for S = 3 and ρ0 = 0.0001 in figure 4.5, the black box is more efficient
than the reparameterisation trick. The computational time is probably because
the gradient in the black box method is only involving the variational distribution.
For the reparameterisation trick, the gradient is taken of both the likelihood and
variational distribution, and this is computationally heavier. When comparing the
computational time between the number of samples in figure 4.6, it is a larger
difference when comparing the number of samples rather than methods. Seeing the
stability of the reparameterisation trick, it makes more sense using this model with
a smaller amount of samples S.

4.2 Neural network using reparameterisation trick
on flow rate dataset

The results from the last section 4.1 indicate the reparameterisation trick for vari-
ational inference is a better method to use. For modelling the flow rate using a
Bayesian feedforward neural network (2.74), the reparameterisation trick (2.69) is
used. Solution Seeker’s dataset of production data explained in section 3.5 is used
when modelling. The specifics of the neural network is explained in section 3.4 about
initialisation.

In figures 4.7 - 4.14 are the results of training the neural network using data from
different wells. The testing data is plotted simulating the total flow rate QTOT
over time. The real data is the red line. The predicted mean value µ is the black
line and the grey area around is the credible interval using the standard deviation
±2σ. There is a spread in how well the models perform. The quality of the data
sets varies as the preprocessing remove datapoints. Wells with interesting results
are presented here and for all predictions see appendix A.3.
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Figure 4.7: Result of modelling well 1 using test data. QTOT versus time
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Figure 4.8: Result of modelling well 2 using test data. QTOT versus time
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Figure 4.9: Result of modelling well 3 using test data. QTOT versus time
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Figure 4.10: Result of modelling well 4 using test data. QTOT versus time
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Figure 4.11: Result of modelling well 6 using test data. QTOT versus time.
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Figure 4.12: Result of modelling well 7 using test data. QTOT versus time.
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Figure 4.13: Result of modelling well 8 using test data. QTOT versus time.
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Figure 4.14: Result of modelling well 10 using test data. QTOT versus time

For well 2 in figure 4.8 the predicted mean are following the real data but then
after a time overpredicting while still following the shape of the flow rate. The same
tendency can be found for well 3 in figure 4.9, well 6 in figure 4.11, well 8 in figure
4.13 and well 10 in figure 4.14. In figure 4.12 there is instead an underprediction of
the flow rate after some time while still following the shape. The result of modelling
well 4 in figure 4.10 shows a prediction matching quite well but missing some of
the outliers. The prediction of the flow rate for well 1 in figure 4.7 is never quite
matching. This is despite the well having many datapoints, see table 4.1. Well 2,
7 and 10 have fewer datapoints but managing to match the shape of the real data.
Having fewer datapoints might instead affect the computation time, see appendix
A.3, where the ELBO is plotted versus the number of epochs. There is a difference in
the credible intervals for the different predictions. The error between the predicted
and the real result are not always covered.

Table 4.1: Training dataset sizes for each well. The wells had 1998 datapoints
before preprocessing.

Well 1 2 3 4 6 7 8 10
Training dataset size 1109 532 1268 1318 1311 659 1301 590
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4. Results

For well 4 in figure 4.10 and well 6 in figure 4.11, the model is wrongly predicting
when the flow rate is suddenly low and instead of predicting the flow rate to be high.
This does not seem to be a problem for the other wells. A probable explanation
could be that the training data does not consist of scenarios like this so the model
has not ”seen” this behaviour before. The training data for well 4 and 6 are plotted
in figures 4.15 and 4.16. These kinds of sudden drops in the flow rate is indeed a
part of the training data.
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Figure 4.15: Training and test data for well 4.
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Figure 4.16: Training and test data for well 6.
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5
Discussion

Based on section 4.1, variational inference using the reparameterisation trick yielded
a more stable convergence than the black box variational inference. The reparamet-
erisation trick was used when modelling using a feedforward neural network. The
training of the neural network consisted of a forward pass and a backward pass.
In the forward pass, a stochastic sample from the variational distribution was used
to evaluate the ELBO with the aim of maximising it. The variational and prior
distribution were evaluated layer-wise while the likelihood, being data-dependent,
was evaluated at the end of the forward pass. In the backward pass, the gradient
of λ was computed and backpropagated through the network. This was done by an
optimiser so that the values were updated continuously. For the backpropagation
to work, because of the stochastic sampling, the reparameterisation trick needs to
be used. The reparameterisation trick conduct the sampling from a parameter-free
distribution (the standard normal distribution) and transforms the samples to a
deterministic function which the gradient can be taken of in the backpropagation.

The mean-field approximation (3.2) for the variational family is used, giving a di-
agonal covariance matrix and independent variational parameters. Having a diag-
onal covariance matrix makes computations easier. Another Gaussian family with
non-diagonal covariance matrix could be used with the interactions of the weights
dependent (they are assumed independent with the mean-field). It is not obvious
how the correlation between the weights work. Neural networks are often described
as ”black boxes” meaning it is hard to get the insight on how they work; what do
the weights learn and why do they emphasise certain features. Picking a variational
family that works with this is not obvious. One could be used where all weights in
one layer are correlated, for example. As a first try, the mean-field is used, but other
Gaussian approximations are feasible, but it is not clear which one that should be
used.

When modelling using the flow rate dataset in section 4.2 note that the predictions
over time diverge more and more. It is a worsening in the testing the further away
from the training dataset the predictions are. The mean value follows the shape of
the flow rate but is missing by a factor that grows over time. This can be because the
wells changes over time. The training and testing data are split according to time
with the training dataset from January 2014 to January 2017 and the test dataset
from January 2017 to January 2018. The development of a production field changes
over time as more oil and gas are being extracted. The model is on the other hand
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5. Discussion

not dependent on time as a variable and this can be the source of the error that
grows. Improved modelling of the noise in the model could make the predictions
more accurate as well.

The prior distribution can be hard to determine. Because the prior has set values
for mean and standard deviation affecting the training of the model throughout,
these must be as accurate as possible. On the other hand is it hard to guess a prior
distribution. The structure of the variational inference method is that information
is extracted from the data when training and subtracted with the prior times the
variational distribution. If the prior is far off, this will result in poor results. This can
be seen in the results in section 4.2. When the mean is not predicted correctly, the
standard deviation is not on the same scale as the error between the predicted and
the real result. The standard deviation should cover the actual result. The model is
probably poorly calibrated because of a bad prior. As the weights of a neural network
do not have an interpretation being hidden in a ”black box”, the prior distribution
to weights are hard to set. A KL-factor multiplied with the variational times the
prior term could reduce the effect of the prior. Another idea is that a network could
be pre-trained on a dataset. The resulted posterior distribution could then be used
as the the prior distribution to the same network when new data is achieved. Due
to limitation in time this has not been tested.

It should be noted that variational inference might not be needed on the dataset
provided here because it is not that complex or large. Methods like the computa-
tionally expensive Markov chain Monte Carlo (MCMC) that also provide a posterior
distribution could be used. In future modelling for Solution Seeker, the models will
be more complex and the dataset larger, motivating the desire to explore variational
inference.

Kullback-Leibler divergence is one way of performing variational inference, but it
does not necessarily have to be used. Other optimisation methods approximating the
inference can be used such expectation propagation, belief propagation or Laplace
approximation.
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A
Appendix 1

A.1 Conjugate prior

When the likelihood and prior are in the same family of distributions the conjugate
prior can be used to find the posterior hyperparameters. In Bayesian statistics the
hyperparameters are the parameters that belong to the prior distribution and dis-
tinguished from the parameters of the model for the underlying distribution (like-
lihood). Consider the problem of extracting a distribution from the parameter θ
given some data x. Because of Bayes’ rule (2.11) the posterior hyperparameters can
be found from

p(θ | x) = p(x | θ)p(θ)
p(x) ∝ p(x | θ)p(θ) (A.1)

When the likelihood is normally distributed with known variance σ2
x, the prior is

normally distributed with hyperparameters µ0 and σ2
0 and the model parameter is

µ, the posterior is also normally distributed as

N

 1
1
σ2

0
+ n

σ2
x

(
µ0

σ2
0

+
∑n
i=1 xi
σ2
x

)
,

(
1
σ2

0
+ n

σ2
x

)−1
 . (A.2)

A.2 Example of variational inference

Following is the example of variational inference from section 2.4.1 with all steps.

Consider a sample of random variables that are all normally distributed with a
mean µ and variance σ2

x so X = x1, ..., xn ∼ N(µ, σ2
x). The parameter mean µ in the

parameter spaceM of the distribution for this model Π(· | X) with density π(µ | x) is
to be found using variational inference (2.36). For this model it is assumed a simple
prior distribution Π = N(0, σ2

0) with density π(µ) and two variational distributions
Q1 = N(0, σ2) with density q1(µ) and Q2 = N(1, σ2) with density q2(µ). To simplify
the calculations assume that σx = σ0 = σ. Using the probability density function
for the normal distribution (2.13) the different densities for the likelihood, prior and
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A. Appendix 1

the two different variational densities are found: the likelihood,

p(X | µ) =
n∏
i=1

1√
2πσ2

exp
(
−(xi − µ)2

2σ2

)

= (2πσ2)−n2 exp
(
− 1

2σ2

n∑
i=1

(xi − µ)2
)
,

(A.3)

the prior,

π(µ) = 1√
2πσ2

exp
(
− µ2

2σ2

)
, (A.4)

the first variational
q1(µ) = 1√

2πσ2
exp

(
− µ2

2σ2

)
, (A.5)

the second variational,

q2(µ) = 1√
2πσ2

exp
(
−(µ− 1)2

2σ2

)
. (A.6)

To find the best distribution for approximating the posterior distribution, the KL
divergence from the posterior distribution Π(· | X) to the variational distributions
Q1 and Q2, are to be minimised. This is done by instead maximising the evidence
lower bound (ELBO) (2.38). To simplify the integration of the likelihood times the
prior the distribution of the two combined can be used instead. Using conjugate
prior the hyperparameters of the posterior can be found from (A.2),

p(X | µ)π(µ) ∝ N
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1
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σ2 + n

σ2

(
0 +
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)
.

(A.7)

The ELBO is calculated for each variational density at a time and the result com-
pared. First for q1(µ),

L(q1) =
∫
q1(µ) log
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)
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(A.8)
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The Gaussian integrals are needed for the integration,∫ ∞
−∞

exp
(
−x

2

a

)
dx =

√
aπ,

∫ ∞
−∞

exp
(
−x

2

a

)
xdx = 0,

∫ ∞
−∞

exp
(
−x

2

a

)
x2dx = a

√
aπ

2 ,

∫ ∞
−∞

exp
(
−(x− b)2

a

)
dx =

√
aπ,

∫ ∞
−∞

exp
(
−(x− b)2

a

)
xdx = b

√
aπ,

∫ ∞
−∞

exp
(
−(x− b)2

a

)
x2dx = (2b2 + a)

√
aπ

2 .

(A.9)

Expanding the brackets and applying the Gaussian integrals implies,
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(A.10)

For q2(µ) the ELBO is,
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∫
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Expanding the brackets and applying the Gaussian integrals (A.9) implies,
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(A.12)

A.3 Neural network using reparameterisation trick
on flow rate dataset

Modelling of the flow rate using a Bayesian feedforward neural network (2.74) and
the reparameterisation trick (2.69). Solution Seeker’s dataset of production data
explained in section 3.5 is used when modelling. Predictions using all wells are
presented here.
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Figure A.1: Result of modelling well 1 using test data.
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Figure A.2: Result of modelling well 2 using test data.
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Figure A.3: Result of modelling well 3 using test data.
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Figure A.4: Result of modelling well 4 using test data.
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Figure A.5: Result of modelling well 5 using test data.
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Figure A.6: Result of modelling well 6 using test data.
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Figure A.7: Result of modelling well 7 using test data.
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Figure A.8: Result of modelling well 8 using test data.
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Figure A.9: Result of modelling well 9 using test data.
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Figure A.10: Result of modelling well 10 using test data.
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Figure A.11: Result of modelling well 11 using test data.

The convergence of the ELBO (2.38) for some of the different wells. log(−ELBO)
is used to scale the y-axis.
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Figure A.12: ELBO versus number of epochs for well 1. log(−ELBO) is used to
scale the y-axis.
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Figure A.13: ELBO versus number of epochs for well 4. log(−ELBO) is used to
scale the y-axis.
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Figure A.14: ELBO versus number of epochs for well 7. log(−ELBO) is used to
scale the y-axis.
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Figure A.15: ELBO versus number of epochs for well 10. log(−ELBO) is used to
scale the y-axis.
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