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Abstract

The field of TMD (Transition Metal Dichalcogenide) monolayers is an active one due
to certain interesting properties such as a direct band gap, strong spin-orbit coupling
and a remarkably large Coulomb interaction leading to strongly bound excitons. For
technical applications heterostructures composed of stacked monolayers are also a
huge topic of interest. Recent experimental studies of the photoluminescence of
these structures show evidence of the existence of interlayer excitons.

The aim of this thesis is to propose a mechanism for the formation and dynamics of
these interlayer excitons in a bilayer heterostructure. For this purpose the second
quantization formalism and tight binding approach are employed. Aside from the
free, optical, carrier-photon, carrier-phonon and Coulomb interactions that have
already been studied for monolayers, a tunneling interaction that couples the two
layers is also included. For the intralayer Coulomb potential the familiar Keldysh
potential is used, while an extension of it derived here is used as the interlayer
potential.

The Hamiltonian constructed from these contributions is then converted to the ex-
citonic picture as opposed to the often used electron-hole picture. By using this
excitonic Hamiltonian in the Heisenberg equation of motion, equations for the mi-
croscopic polarization and exciton densities are derived analytically and solved nu-
merically. From these equations the physically measurable quantities absorption
and photoluminescence are computed. Parameters used in the tunneling interac-
tion are then varied to attempt to fit the results to the experimentally measured
photoluminescence of an MoSe2 - WSe2 heterostructure.

Keywords: TMD, van der Waals, heterostructure, interlayer, exciton, tunneling.
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1
Introduction

Monolayers of TMD’s (Transition Metal Dicalchogenides) have been a topic of much
interest during the last years [2], [3]. They are semiconductors that display an
indirect band gap in bulk, but when reduced to a single layer have direct ones at
the high symmetry K and K ′ points of the first Brillouin zone [4], [5], [6]. Their
small width leads to a significantly lessened screening of the Coulomb interaction,
resulting in strongly bound excitons with binding energies of a few hundreds of
meV’s [7], [8], [6]. They also exhibit strong spin-orbit coupling, especially in the
valence band. Being of the order of some hundreds of meV’s as well means that
two bright states for each excitonic energy level will appear, dubbed the A and B
excitons.

Monolayer and bulk are not the only interesting states the TMD’s can be used
in however. Another area of much research is the properties of van der Waals
heterostructures, structures created by stacking a few monolayers on top of each
other. In recent studies of the photoluminescence of one such structure, the bilayer
MoSe2 - WSe2, evidence of an interlayer exciton state, a state where the conduction
electron resides in one layer and the corresponding hole in another, was found. This
new state has a lower energy than the intralayer states due to the relative alignment
of the two layers’ band structures [1], [9]. The spectrum in question, in which the
interlayer peak is about one order of magnitude larger than the largest intralayer
peak, can be seen in Figure 1.1.

As will be seen later these results can not be explained through absorption only, as
very few interlayer excitons are created optically. There therefore needs to exist some
form of scattering process that couples inter- and intralayer densities. The purpose
of this thesis is to investigate this process by proposing a tunneling interaction that
couples the two layers, and see if it can be used to reproduce these results. To do
this the Hamiltonian first needs to be constructed. Thereafter equations of motion
for the microscopic polarization and exciton densities will be derived analytically
and solved numerically.

1



1. Introduction

Figure 1.1: Experimentally measured photoluminescence of MoSe2 - WSe2 taken
from [1]. The experiment was performed at a temperature of 4.5 K using an exciting
pulse with a power of 1µW, and integrated over a timespan of 2 ns. The colored areas
represent the energy intervals where the intralayer peaks would normally appear. A
small peak can be seen here for the energetically lower MoSe2. Most of the excitons
have however gathered in an even lower state centered at around 1.4 eV. Since this
peak does not appear when examining the monolayers separately it is believed to
correspond to an interlayer exciton state.

2



2
Theoretical basics

Before moving on to the main topic there are still some theoretical basics that need
to be sorted out, which is precicely what this section is dedicated to.

2.1 Transition metal dichalcogenide

The structure of a monolayer transition metal dichalcogenide (TMD), both in real
and reciprocal space, can be seen in Figure 2.1. It has the empirical formula MX2
where M is a transition metal (here being either Mo or W) and X a chalcogenide
(S or Se). The unit cell is composed of these three atoms, and together they create
the same hexagonal structure that graphene has. There is difference in the out of
plane direction though; while a layer of graphene is only one atom thick a TMD
layer is slightly wider since the two X atoms are vertically stacked. The resulting
thickness is then taken to be around the same as that of the lattice parameter a0,
being roughly 0.3 nm. This is still small enough that it can be neglected in most
occasions though.

The lattice vectors can be expressed as

a1 = −a0

2

( √
3

1

)
, a2 = −a0

(
0
1

)
, (2.1)

using which we can construct a vector pointing to an arbitrary unit cell as

R =
∑
i

niai (2.2)

where n1,2 are integers. We can also use these to create vectors that point from an
M atom to a neighbouring X atom, turning out to be

b1 = 1
3(a1 − 2a2) (2.3)

b2 = 1
3(a2 − 2a1) (2.4)

b3 = 1
3(a1 + a2). (2.5)

3



2. Theoretical basics

Figure 2.1: Figure showing the geometrical structure of a TMD monolayer in real
(a) and reciprocal space (b). In real space the a vectors represent lattice vectors
while the b vectors represent translation vectors from a metal to a dichalcogenide.
The structure in the z direction can be seen in (c). In reciprocal space the G vectors
are the reciprocal lattice vectors while theK, K ′,M and Γ points are high symmetry
points.

One final use for the lattice vectors is so construct the reciprocal lattice vectors,

G1 = − π√
3

(
4
√

3
0

)
(2.6)

G2 = − π√
3

(
−2
√

3
2

)
. (2.7)

All of these vectors can also be seen in Figure 2.1.

Aside from the physical structure, we also need to consider the electronic band
structure. This, taken from DFT calculations [10], can be seen in Figure 2.2 where
the high symmetry points Γ, M and K/K ′ points are marked. These mark points
in reciprocal space where there is an unusually high symmetry, making Taylor ap-
proximations easier. Since this figure only shows a single slice of the Brillouine zone
the points themselves are shown in Figure 2.1. In this thesis we will be focusing
specifically on the K/K ′ points, since these contain a direct band gap. When we in
the future use the words valence and conduction bands, it is the two bands related
to this particular band gap that is referred to.

Another property of the K/K ′ points is that there is a significant spin-orbit splitting
in the valence band. The split exists in the conduction band as well, but is about
one order of magnitude smaller. This means that for two different excitons with
identical properties but for the hole spin there will be a significant energy difference.
These are called the A and B excitons for lower and higher energies respectively.
The main difference between the K and K ′ points is that for the K point the A
exciton will correspond to spin up and the B exciton to spin down, while the K ′
point has the opposite ordering. This effect is illustrated in Figure 2.3.

4



2. Theoretical basics

Figure 2.2: Figure showing the electronic band structure along a slice of the first
Brillouin zone with the high symmetry points K, M and Γ marked. At the K point
the direct band gap and spin-orbit splitting can be seen. The figure is taken from
[10] and slightly modified.

Figure 2.3: Here the difference in spin-orbit splitting between the K and K ′ points
can be seen. The energies for the A and B excitons have been marked as well. Note
that the figure is not scaled correctly, as the conduction splitting Ec

soc is significantly
smaller than the valence splitting Ev

soc, which in turn is much smaller than the band
gap energy without spin-orbit coupling ∆E0.

5



2. Theoretical basics

Since there are three K points and three K ′ points in the Brillouine zone there are
three ways to express their vector representations each, but the ones here are the
opposite

K = 4π
3a0

(
0
−1

)
(2.8)

K = 4π
3a0

(
0
1

)
. (2.9)

2.2 Density matrix formalism

One quantity that is extremely useful when working with a statistical ensemble of
quantum states is the density matrix operator

ρ ≡
∑
i

pi|φi〉〈φi|, with
∑
i

pi = 0 (2.10)

where |φi〉 are the possible states and pi are the statistical probabilities of obtain-
ing one of these states. Note that these probabilities simply arise due to lack of
knowledge about the system, unlike the quantum mechanical uncertainty which is
intrinsic to the system and can not be removed though increased knowledge.

There is a lot that can be said about this formalism, but for the purpose of this thesis
we will restrict ourselves to some details about one specific case: a pure two-level
system. The state for such a system looks like

|φ〉 = c1|u1〉+ c2|u2〉, (2.11)

where |u1〉 and |u2〉 are eigenstates in a suitable basis. In this case the density matrix
looks like

ρ = |φ〉〈φ| (2.12)

=
(
|c1|2 c1c

∗
2

c∗1c2 |c2|2
)

(2.13)

≡
(
f1 p12
p∗12 f2

)
. (2.14)

As can be seen here the population fi determines the probability of finding the state
in state i, while the microscopic polarization p1,2 is related to the coupling between
the two states. These quantities are going to be very relevant for the rest of the
thesis.

6



2. Theoretical basics

2.3 Second quantization

Decribing quantum mechanical multiparticle systems can be quite messy, with all of
the symmetrization that is required. The formalism of second quantization greatly
simplifies this process though, through the use of creation and annihilation operators
a†a and aa, Here the compound index a contains relevant information about the
perticle in question, such as momentum or spin. A multiparticle state created from
N single particle states |φa1〉, . . . , |φaN 〉 would then be expressed as

|φa1 , . . . , φaN 〉 = 1
N !a

†
a1 . . . a

†
aN
|0〉, (2.15)

where |0〉 is a state describing the vacuum. The symmetrization is then automat-
ically taken care of by the commutation relations of the creation and annihilation
operator, which read

[aa1 , a
†
a2 ] = δa1a2 (2.16)

for bosons and
{aa1 , a

†
a2} = δa1a2 (2.17)

for fermions. Here [, ] represents a commutator while {, } is an anticommutator.

Any physically relevant N -particle observable AN can be expressed in terms of sums
of one- and two-particle operators Ai1 and A(i,j)

2 [11] as

AN =
N∑
i=1

Ai1 + 1
2

i 6=j∑
i,j

A
(i,j)
2 , (2.18)

which can then be expanded in terms of creation and annihilation operators as

AN =
∑
ab

〈φa|A1|φb〉a†aab + 1
2
∑
abcd

〈φaφb|A2|φdφc〉a†aa
†
badac. (2.19)

One advantage of this formalism that will be taken advantage of here is that the
Heisenberg equation of motion,

i~
d

dt
. = [., H] (2.20)

where H is the system’s Hamiltonian, can be relatively easily evaluated if all oper-
ators are expressed in terms of creation and annihilation operators since the com-
mutation relations for these are known and not too complicted.

Finally, the population and microscopic polarization quantities brought up in the
previous subsection are in this formalism expressed as

fa = 〈a†aaa〉 (2.21)

and
pab = 〈a†aab〉. (2.22)

7



2. Theoretical basics

2.3.1 A note about notation

In this thesis there will be a lot of different notation. If anything about the notation
in later parts appears unclear it can therefore be a good idea to return to this
segment, which covers the most basic notation.

There are three basic creation and annihilation operators that will be used in this
thesis. The most prominent ones are the fermionic operators a(†)

a , used to describe
electrons. In addition to those we also have the phonon operators b(†)

a and photon
operators c(†)

a , both being bosonic. In 3.2 we will also define excitonic operators P (†)
a ,

which we will approximate as bosons.

Taking the sheer number of different indices that will need to be used into account
we will try to use compound indices as much as possible. What each index contains
then depends on the type of operator it is assigned to: electronic operators have
momentum k, spin s and layer l, phonon operators have momentum K, layer l and
phonon mode α, photon operators have momentum K and polarity σ and excitonic
operators have center of mass momentum Q, energy state µ, hole spin sh, hole layer
lh electron spin se and electron layer le. This means that the indices can be expanded
as

a(†)
a = a

(†)sl
k (2.23)

b(†)
a = b

(†)lα
K (2.24)

c(†)
a = c

(†)σ
K (2.25)

P (†)
a = P

(†)µshlhsele
Q . (2.26)

Naturally this also applies to operator indices. If we for example had an arbitrary
matrix element Aaba†aaabb then the operator indices would be expanded as Asll′αk,K .

Note that while the electrons, phonons and excitons are bound to the layers the
photons are not, eaning that the photons’ momenta exist in three dimensional space
while the rest only occupy two. As a final remark, we will label fixed compound
indices with numbers 1, 2, 3, . . . while compound summation indices will be labeled
with letters a, b, c, . . ..

8



3
Constructing the Hamiltonian

This chapter will be dedicated to constructing the Hamiltonian that will be used in
the Heisenberg equation of motion. The one we will use here has the form

H = H0 +Hc−f +Hc−phot +Hc−phon + HT +Hc−c, (3.1)

where

H0 =
∑
a

εaa
†
aaa +

∑
a

Eab†aba +
∑
a

~ωac†aca ≡ H0,c +H0,phon +H0,phot (3.2)

describes the (effective) free interaction where εa is the electron dispersion, Ea the
phonon dispersion and ~ωa the photon dispersion,

Hc−f =
∑
ab

M ab ·Aa†aab (3.3)

describes the carrier-field interaction where M ab is what is often refered to as the
optical matrix element and A is the electromagnetic vector potential (treated clas-
sically),

Hc−phot =
∑
abc

Mabca
†
aab(ccδλcc + c†−cδλcv) (3.4)

describes the carrier-photon where Mabc is a sort of quantized optical matrix ele-
ment and the energy concerving Kronecker δ’s come from making a rotating wave
approximation,

Hc−phon =
∑
abc

gabca
†
aab(bc + b†−c) (3.5)

describes the electron-phonon interaction with coupling element gabc,

HT =
∑
ab

Taba
†
aab (3.6)

describes electron tunneling between the layers with tunneling element Tab and

Hc−c = 1
2
∑
a,b,c,d

V ab
cd a

†
aa
†
badac (3.7)

describes the carrier-carrier interaction where V ab
cd is the coupling element describ-

ing the Coulomb interaction. We will use the semiclassical carrier-field interaction

9



3. Constructing the Hamiltonian

to describe interaction with the exciting field and the carrier-photon interaction
to describe the interaction with the rest of the field. Before proceeding we first
want to find expressions for these coupling elements, which is done in the following
subsections.

3.1 Computing the matrix elements

Before we start computing our matrix elements we need to come up with an expres-
sion for the wave functions involved. We start out by separating the spatial and
spin dependencies as

Ψas(r, s) ≡ Ψa(r)χs(s), (3.8)
where Ψa(r) is a function in real space and χs(s) is a function in spin space. We then
proceed to express the spatial wave function using the tight binding approximation,
meaning that we assume that the electrons are so tightly bound to the ions of the
crystals that they can be approximated using their respective atomic orbitals. The
wave function can then be written as

Ψa(r) =
M,X∑
i

Ca
i Ψa

i (r) (3.9)

= 1√
V

M,X∑
i

Ca
i

∑
Ri

eik·RiΦa
i (r −Ri), (3.10)

where Ca
i are the so called tight binding coefficients, V is the volume (in this case

area) of the sample, the i sums separates the two M and X sublattices, the Ri sum
runs over all ions in the sublattice in question and Φa

i is the corresponding atomic
wave function. From DFT studies of the band structures it has been discovered
that around the K/K ′ points the M atoms consists mostly of d0 = dz2 orbital for
the conduction band and d±2 = 1√

2(dx2+y2 ± idxy) for the valence band, while both
bands for the X atoms mostly contain p±1 = 1√

2(px ± ipy) [12].

3.1.1 Electronic dispersion

The electronic despersion can be obtained by solving the free Schrödinger equation
for the above expression of the wave function. Doing this (something that can be
seen in D.1) and performing a Taylor expansion around theK/K ′ point then results
in

ελsl(k) = (−1)δλ,v
(

∆Eλsl

2 + ~2k2

2mλsl

)
, (3.11)

where ∆Eλsl is the energy of the λ band in the l layer with spin-orbit coupling taken
into consideration and mλsl is the correspinding effective mass, a meassure of the
parabolic curvature. These values are taken from DFT calculations when taken on

10



3. Constructing the Hamiltonian

their own. The ∆E parameters often appear as differences though, corresponding
to band gaps, in which case more accurate experimental values will be used instead.

In finding the electronic dispersion, expressions for the tight binding coefficients can
be obtained as well. These turn out to be

Ca
M(k) = Ca

X(k)ga(k), (3.12)

Ca
X(k) = (−1)δλ,v√

1 + |ga(k)|2
, (3.13)

ga(k) = tae(k)
∆Ea

2 − εa(k)
, (3.14)

where the hoping integral ta is related to the effective mass as

~2k2

2mλsl
= 3|tλsl|2

4∆Eλsl

(
k

al0

)2

. (3.15)

3.1.2 Phonon dispersion

A DFT calculation of the phonon dispersion in MoS2 can be seen in Figure 3.1. In
this figure we can clearly see that the different modes can be separated into two
categories, one with lower energy and one with higher. These are called acoustic
and optical phonon modes respectively.

For the purpose of this thesis we will be working in the long wavelength limit,
meaning that we will assume that all phonons lie near the Γ point. Since the
acoustic phonons have zero energy at this point we can assume a linear dispersion.
This is the Debye approximation, meaning that the dispersion can be expressed as

EAq = ~vq (3.16)

where v is the velocity of sound in the medium. We will also omit the out of plane ZA
modes since they only couple to weak charge carriers [13], keeping the longitudinal
and transverse modes LA and TA.

For the optical modes, modes that are non-zero at the Γ point, we will instead use
a constant dispersion. This is an Einstein approximation. Here we will once again
only use the longitudinal and transverse modes LO and TO.

3.1.3 Optical matrix element

The optical matrix element is given by

M ab = −i~e0

m0
〈Ψa|∇|Ψb〉. (3.17)

11



3. Constructing the Hamiltonian

Figure 3.1: In this figure the phonon dispersion, taken from DFT calculations in
[13], can be seen. The approximately linear dependence of the in-plane acoustic
modes LA and TA near the Γ point can be seen at the bottom, while the more
constant behaviour of the optical E’ modes (corresponding to the in-plane modes
LO and TO) can be seen higher up. In general the figure shows how the optical
modes are of a higher energy than the acoustic ones.

By performing a number of approximations including the tight binding approxima-
tion and performing a Taylor approximation around theK/K ′ points (done in D.2)
we find that it can be written as

M vcslalb
k |K = M lalbCvsla

X (k)Ccslb
X (k)αcslb(k)ke−iϕk

(
1
i

)
δsasbδka,kb , (3.18)

M vcslalb
k |K′ = M lalbCvsla

X (k)Ccslb
X (k)αcslb(k)keiϕk

(
1
−i

)
δsasbδka,kb , (3.19)

where we for the second lines have expressed k in complex polar coordinates and
used the notation

Mλaλbsalalb
ka

≡Mλaλbsasblalb
kakb

δsasbδka,kb . (3.20)

The coefficient
αa(k) = ta

∆Ea
2 − εa(k)

(3.21)

is the ga(k) coefficient without the e(k) factor and the intralayer M lalb parameters
are chosen so that 10% of the incoming light gets absorbed, something that fits well
with experimental results. The corresponding interlayer parameters were calculated
using DFT and scaled in a similar manner, and ended up being about 1000 times
smaller.

We can see that the optical matrix elements in this approximation are Jones vectors,
and more specifically that the K point is optically active for right handed light

12



3. Constructing the Hamiltonian

Figure 3.2: Here the optical matrix element projected to the right handed (a) and
left handed (b) basis can be seen. Something that is clear from this is that the K
point is optically active to right handed light while the K ′ point is the same for
left handed light. Another aspect that can be seen is the element’s iconic trigonal
warping effect stemming from the electronic dispersion. The figure is taken from [6].

(
σ− =

(
1
−i

))
while the K ′ point is active for left handed

(
σ+ =

(
1
i

))
. This

has been seen in DFT calculations, and can be seen in Figure 3.2.

We can also see that the optical interaction conserves not only spin but also mo-
mentum. This is a good approximation as the photon momentum is a lot smaller
than that of the electrons.

3.1.4 Carrier photon matrix element

The carrier-photon matrix element can be expressed as

Mabc = Mλaλbsalalb
kb

· eσckc‖

√√√√2π~c2

ωσckcV
δka,kb+kc‖δλaλ̄bδsasb ≡Mλaλbsaσclalb

kb,kc‖
(3.22)

where eσk is the photon polarization vector, V the quantization volume and k‖ the in-
plane component of the photon momentum. As with the optical element we neglect
intraband transitions. Unlike the classical case however the electron momentum is
not conserved, since the photon momentum is now included. We could go deeper
into the quantization volume and photon dispersion, but for reasons you will see
later it will not be needed.

3.1.5 Carrier phonon matrix element

In the tight binding approximation the carrier-phonon matrix element can be ex-
pressed as

gabc =
√√√√ Ω~2

2M la
Ω E lαq

M,X∑
i

∑
l

C laλa
i,kb+kcC

laλa
i,kb

Ṽ laλaα
kc

δlblclalb
δλaλbδsasbδka,kb+kc ≡ gλalaαkb,kc

, (3.23)
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3. Constructing the Hamiltonian

where Ṽ lλα
k is a deformation potential [13]. For the optical modes we use a zeroth

order expansion Ṽ lλαopt
k = Dlλ

0 while we use a first order expression Ṽ lλαac
k = Dlλ

1 |k|
for the acoustic modes. The D parameters were taken from DFT calculations. The
δ functions come from spin- and momentum conservation and how we don’t consider
the possibility of phonons inducing either interband or interlayer transitions.

3.1.6 Tunneling matrix element

The tunneling matrix element is given by

Tab = 〈Ψa|VT |Ψb〉 = 〈Ψλasala|VT |Ψλbsblb〉δλaλbδsasbδla l̄b , (3.24)

where the tunneling potential VT is the static potential between the two layers. The
conservation of band indices is not fundamental to the interaction, but is enforced
here since energy conservation would be violated unless the interlayer band gap was
zero or lower.

For the purpose of this thesis we will be using a potential on the form

VT (r) = VT,ρVT,z (3.25)

where VT,ρ is a slowly varying periodic potential in the in-plane direction with ρ as
the in-plane spatial coordinate, and VT,z is the potential in the out of plane direction.
We can then use the procedure that will be used for the Coulomb element in 3.1.7
to find

Tab = 1
Ωl

∑
q

VT,q

M,X∑
i

Ca
i C

b
i/̄i〈Φa

i (r)|eiq·rVT,z|Φb
i/̄i(r −R)〉δλaλbδsasbδla l̄bδka,kb+q

(3.26)
≡ T λslkakb

(3.27)

where once again the i/̄i corresponds to either AA or AB stacking and Φ are atomic
orbitals. The 〈Φa

i (r)|eiq·rVT,z|Φb
i/̄i(r−R)〉 integral will for the purpose of this thesis

be taken as a single parameter. In the future it might be worth it to get a better
approximation using for example DFT, but for now this is what we will have to deal
with.

Finally, the VT,q potential (the Fourier transform of VT,ρ) was given the form

VT,q = πL2
C(

1 + q2L2
C

2

) (3.28)

where LC is a correlation length that will be varied as a parameter. This expression
was taken from [14].
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3. Constructing the Hamiltonian

3.1.7 Coulomb matrix element

The Coulomb matrix element is given by

V ab
cd = 〈Ψa(r)Ψb(r′)|V (r − r′)|Ψc(r)Ψd(r′)〉 (3.29)

where V (r) is the Coulomb potential in real space. Using various steps written in
D.3 this element to first order in q · r can be expressed as

V ab
cd = 1

Ω2

∑
q

Vq

M,X∑
i,j

Ca
i C

c
iC

b
jC

d
j (3.30)

· (δla,lc + 〈Φa
i (r)|eiq·r|Φc

i/̄i(r −R)〉δla,l̄c)(δlb,ld + 〈Φa
j (r)|eiq·r|Φc

j/j̄(r −R)〉δlb,l̄d)
(3.31)

· δλb,λdλa,λc
δsb,sdsa,scδka,kc+qδkb,kd−q. (3.32)

Here Vq is the Coulomb potential in Fourier space and the i/̄i index corresponds to
AA or AB stacking. Unlike the spin conserving Kronecker delta the band conserving
one is not fundamental, but has been enforced to neglect interband transitions since
the band gap energy is much larger than the typical electron energies. We can also
see that the total electron momentum is conserved, and the Fourier momentum q
describes the momentum transferred between the scattering electrons.

We now have one final obstacle left, and that is to find an expression for the Fourier
transformed Coulomb potential. For the intralayer case we can simply use the
Keldysh potential, which looks like

Vq = e2
0

ε0(ε1 + ε2)
1

q(1 + r0q)
, r0 = d

ε
1
2(ε1 + ε2) (3.33)

where ε1, ε2 and ε are the relative permittivities of the over- and underlying sub-
strates and the TMD itself, and d is the thickness of the layer. For the interlayer case
further investigation is required, which will be explored in the following subsection.

3.1.7.1 Deriving the interlayer Coulomb potential

To find the interlayer Coulomb potential potential we examine a situation where we
using cylindrical coordinates (ρ, z) have a point charge at the origin and relative
permitivities

ε(z) =


ε1, z > R + 3

2d
εl1 , R + 1

2d < z < R + 3
2d

εR,
1
2d < z < R + 1

2d
εl2 , −1

2d < z < 1
2d

ε2, z < −1
2d

 . (3.34)

The physical meaning of this setup is that the lower TMD occupies the space z ∈[
−1

2d,
1
2d
]
where d is its thickness, and the upper TMD is placed at a distance R
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3. Constructing the Hamiltonian

Figure 3.3: The purpose of this figure is to illustrate how the bilayer system is
treated when deriving the extended Keldysh potential. The two layers are treated
as homogenous slabs with infinite reach in the in-plane direction, thickness d and
relative permittivity εl1,2 . They are surrounded by medium with permittivity ε1,2
the R thick segment in between them has the permittivity εR. At the origin a point
charge (blue) is placed. The extended Keldysh potential is then obtained by solving
the Poisson equation for this setup with respect to a test charge in the other layer
(red).

above it. It can be seen illustrated in Figure 3.3. To find the potential between
two charges in the different layers we then place a point charge at the origin and
calculate the potential for a test charge in the other layer. The Poisson equation
then becomes

∇2φ(r) = − e

ε(z)δ(r). (3.35)

We are however not interested in this basis. Instead we want to Fourier transform
the x and y coordinates while keeping the z coordinate unchanged, giving(

−k2 + ∂2

∂z2

)
φ(k, z) = − e

ε(z)δ(z). (3.36)

This equation has the solution

φ(k, z) =



F2e
−kz, z > R + 3

2d
E1e

kz + E2e
−kz, R + 1

2d < z < R + 3
2d

D1e
kz +D2e

−kz, 1
2d < z < R + 1

2d
C1e

kz + C2e
−kz, 0 < z < 1

2d
B1e

kz +B2e
−kz, −1

2d < z < 0
A1e

kz, z < −1
2d


, (3.37)

where the coefficients can be solved for using the boundary conditions

φ|z+ − φ|z− = 0 (3.38)

and
ε
∂φ

∂z

∣∣∣∣∣
z+
− ε

∂φ

∂z

∣∣∣∣∣
z−

=
(
−e, z = 0
0, z 6= 0

)
. (3.39)
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3. Constructing the Hamiltonian

By solving the resulting equation system while using the approximations ε1, ε2, εR �
εl1 , εl2 , kd � 1 and neglecting the effect of different z values within the layers we
then find our potential as

Vk = eφ
(
k,R + 1

2d < z < R + 3
2d
)

(3.40)

= e2

ε0

(
(ε1 + ε2) cosh(kR) + ε2R+ε1ε2

εR
sinh(kR)

) (3.41)

· e−kR

k

1 + d
(εl1+εl2 ) cosh(kR)+

εl2 ε1+εl1 ε2
εR

sinh(kR)

1
2

(
(ε1+ε2) cosh(kR)+

ε2
R

+ε1ε2
εR

sinh(kR)
)k

. (3.42)

We can see that if we go from here to the monolayer case by letting R → 0 and
removing either εl1 or εl2 this expression reduces to the familiar Keldysh potential

Vk,Keldysh = e2

ε0(ε1 + ε2)
1

k(1 + d
εl1,2

1
2 (ε1+ε2)k)

(3.43)

If we instead let R→ 0 without removing a permittivity constant we end up with

Vk,R→0 = e2

ε0(ε1 + ε2)
1

k(1 + 2d
1
2 (εl1+el2 )
1
2 (ε1+ε2) k)

(3.44)

which is the same as a Keldysh potential with d→ 2d and εl1,2 → 1
2(εl1 + el2).

This potential as a function of k for different values of R can been seen in Figure
3.4.

3.2 Going to the pair operator picture

Using our newly evaluated matrix elements and the notation

v(†) ≡ a(†)v, c(†) ≡ a(†)c (3.45)

we can expand the free Hamiltonians to

H0,e =
∑
ksl

(εvslk v†slk vslk + εcslk c
†sl
k c

sl
k ), (3.46)

H0,phon =
∑
Klα

E lαK b
†lα
K blαK (3.47)

and
H0,phot =

∑
Kσ

~ωσKc
†σ
K c

σ
K , (3.48)
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0 0.5 1 1.5

Momentum [nm
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Keldysh, 2d

Interlayer, R = 0.5 d

Interlayer, R = 1.0 d

Interlayer, R = 5.0 d

Figure 3.4: This figure shows how the extended Keldysh potential depends on
the layer distance R. We can see that the potential gets smaller for larger R, and
converges towards the Keldysh potential for a thickness of 2d.

our carrier-field Hamiltonian to

Hc−f =
∑
kslalb

(M vcslalb
k v†slak cslbk +M cvslalb

k c†slak vslbk ), (3.49)

the carrier-photon Hamiltonian to

Hc−phot =
∑

kKsll′σ

(M cvsσll′

k+K‖,kc
†sl
k+K‖v

sl′

k c
σ
K +M vcsσll′

k+K‖,kv
†sl
k+K‖c

sl′

k c
†σ
−K), (3.50)

the carrier-phonon Hamiltonian as

Hc−phon =
∑
kqslα

(gclαk,qc
†sl
k+qc

sl
k + gvlαk,q v

†sl
k+qv

sl
k )(blαq + b†lα−q ), (3.51)

the tunneling Hamiltonian as

HT =
∑
kl

(T cslkakb
c†slka c

s¬l
kb

+ T vslkakb
v†slka v

s¬l
kb

) (3.52)

and the Coulomb Hamiltonian as

Hc−c = 1
2

∑
kakbqsasblalblcld

V ccsasblalblcld
ka,kb,q

c†salaka+qc
†sblb
kb−qc

sbld
kb
csalcka

(3.53)

+ 1
2

∑
kakbqsasblalblcld

V vvsasblalblcld
ka,kb,q

v†salaka+qv
†sblb
kb−qv

sbld
kb

vsalcka
(3.54)

+
∑

kakbqsasblalblcld

V cvsasblalblcld
ka,kb,q

c†salaka+qv
†sblb
kb−qv

sbld
kb

csalcka
(3.55)

≡ He−e +Hh−h +He−h (3.56)
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where
V λaλbsasblalblcld
ka,kb,q

≡ V ab
cd δ

λb,λd
λa,λc

δsb,sdsa,scδka,kc+qδkb,kd−q (3.57)
and the three terms describe electron-electron, hole-hole and electron-hole interac-
tion.

Normally we would have gone ahead and insert this into the Heisenberg equation.
In this thesis we will use a slightly different approach however. First off we will need
to define the pair operators

P shlhsele
khke

≡ v†shlhkh
cseleke

, P †shlhselekhke
≡ c†seleke

vshlhkh
(3.58)

which are basically the microscopic polarization in operator form. By using the
relations ∑

a

vav
†
a =

∑
a

c†aca = 1 (3.59)

we can then form the conservation laws
c†s1l1
k1 cs2l2

k2 =
∑
khshlh

c†s1l1
k1 vshlhkh

v†shlhkh
cs2l2
k2 (3.60)

=
∑
khshlh

P †shlhs1l1
khk1 P shlhs2l2

khk2 (3.61)

and
v†s1l1
k1 vs2l2

k2 = δl1l2s1s2δk1k2 − vs2l2
k2 v†s1l1

k1 (3.62)
= δl1l2s1s2δk1k2 −

∑
kesele

vs2l2
k2 c†seleke

cseleke
v†s1l1
k1 (3.63)

= δl1l2s1s2δk1k2 −
∑
kesele

P †s2l2sese
k2ke P s1l1sele

k1ke , (3.64)

by which we can finally find the commutation relations

[P shlhsese
khke

P
†s′hl

′
hs
′
el
′
e

k′hk
′
e

] = [v†shlhkh
cseleke

, c
†s′el′e
k′e

v
s′hl
′
h

k′h
] (3.65)

= v†shlhkh
[cseleke

, c
†s′el′e
k′e

]vs
′
hl
′
h

k′h
+ c
†s′el′e
k′e

[v†shlhkh
, v

s′hl
′
h

k′h
]cseleke

(3.66)

= v†shlhkh
(2cseleke

c
†s′el′e
k′e
− {cseleke

, c
†s′el′e
k′e
})vs

′
hl
′
h

k′h
(3.67)

+ c
†s′el′e
k′e

(2v†shlhkh
v
s′hl
′
h

k′h
− {v†shlhkh

, v
s′hl
′
h

k′h
})cseleke

(3.68)

= v†shlhkh
(δlel

′
e

ses′e
δkek′e − 2c†s

′
el
′
e

k′e
cseleke

)vs
′
hl
′
h

k′h
(3.69)

+ c
†s′el′e
k′e

(2v†shlhkh
v
s′hl
′
h

k′h
− δlhl

′
h

shs
′
h
δkhk′h)cseleke

(3.70)

= δ
lel′e
ses′e

δkek′ev
†shlh
kh

v
s′hl
′
h

k′h
(3.71)

− δlhl
′
h

shs
′
h
δkhk′hc

†s′el′e
k′e

cseleke
(3.72)

= δ
lel′e
ses′e

δkek′eδ
lhl
′
h

shs
′
h
δkhk′h (3.73)

− δlel
′
e

ses′e
δkek′e

∑
k′′e s
′′
e l
′′
e

P
†s2l2s′′e s

′′
e

k2k
′′
e

P
s1l1s′′e l

′′
e

k1k
′′
e

(3.74)

− δlhl
′
h

shs
′
h
δkhk′h

∑
khshlh

P
†s′′hl

′′
hs1l1

k′′hk1
P
s′′hl
′′
hs2l2

k′′hk2
. (3.75)
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While these relations work they are a bit messy. If we however keep them in the
electron-hole picture and take the expectation value we find that

〈[P shlhsese
khke

P
†s′hl

′
hs
′
el
′
e

k′hk
′
e

]〉 = δ
lel′e
ses′e

δkek′e〈v
†shlh
kh

v
s′hl
′
h

k′h
〉 − δlhl

′
h

shs
′
h
δkhk′h〈c

†s′el′e
k′e

cseleke
〉. (3.76)

These quantities are densities (the populations from 2.2) meaning that we can ex-
tract δ functions from them for any non-matching quantum numbers (we aren’t
really interested in densities with different momenta for a† and a for example). We
can also use that the density of holes fh can be expressed as 1−fv where fv ≡ 〈v†v〉
(and similarily fc ≡ 〈c†c〉), meaning that we can express the commutator expectation
value as

〈[P shlhsese
khke

P
†s′hl

′
hs
′
el
′
e

k′hk
′
e

]〉 = δ
lel′e
ses′e

δkek′eδ
lhl
′
h

shs
′
h
δkhk′h(fkhshlhv − fkeselee ) (3.77)

= δ
lel′e
ses′e

δkek′eδ
lhl
′
h

shs
′
h
δkhk′h(1− fkhshlhh − fkeselee ). (3.78)

The phase-space filling term (1 − fkhshlhh − fkeselee ) corresponds to Pauli blocking
due to the fact that excitons are not bosons on the fundamental level, they are only
composite bosons created by a pair of fermions. We will however be working in the
low-excitation limit where the electron-hole densities are small enough that they
can be neglected, which can also be interpreted as there being so few excitons that
they won’t be interacting to such a degree that their fermionic properties need to
be accounted for. However you want to phrase it the consequence is that we within
this approximation can assume that our pair operators have the purely bosonic
commutation relations

[P shlhsese
khke

, P
†s′hl

′
hs
′
el
′
e

k′hk
′
e

] = δ
lel′e
ses′e

δkek′eδ
lhl
′
h

shs
′
h
δkhk′h . (3.79)

With this out of the way we now want to convert our electron-hole Hamiltonian to
this picture. For the free carrier part part we obtain

H0,c =
∑
khshlh

εvshlhkh

δlhlhshsh
δkhkh −

∑
kesele

P †shlhsesekhke
P shlhsele
khke

 (3.80)

+
∑
kesele

εcseleke

∑
khshlh

P †shlhselekhke
P shlhsele
khke

(3.81)

=
∑

khshlhkesele

(εcseleke
− εvshlhkh

)P †shlhsesekhke
P shlhsele
khke

+
∑
khshlh

εvshlhkh
(3.82)

=
∑

khshlhkesele

(
~2k2

h

2mh

+ ~2k2
e

2me

+ Eshlhsele
G

)
P †shlhsesekhke

P shlhsele
khke

+
∑
khshlh

εvshlhkh
(3.83)

where Eshlhsele
G is the total band gap energy and the last term can be ignored since it’s

a constant energy offset that doesn’t contribute to any dynamics. We do not need
to change the rest of the free Hamiltonian since it does not contain any electronic
operators. Next we proceed to the carrier-field Hamiltonian

Hc−f =
∑
kslhle

(
M vcslhle

k P slhsle
k,k +M vcslhle

k P †slhssek,k

)
(3.84)
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the carrier-photon Hamiltonian

Hc−phot =
∑

kKslhleσ

(
M vcsσlhle
k,K‖

P slhsle
k+K‖,kc

†σ
−K +M vcsσlhle

k,K‖
P †slhslek,k+K‖c

σ
K

)
, (3.85)

the carrier-phonon Hamiltonian

Hc−phon =
∑
qlhα

gvlhα0,q (blhαq + b†lhα−q ) (3.86)

+
∑

khkeqshselhleα

(gcleαke,q
P †shlhselekh,ke+q P

shlhsele
kh,ke

(bleαq + b†leα−q ) (3.87)

− gvlhαkh,q
P †shlhselekh,ke

P shlhsele
kh+q,ke(b

lhα
q + b†lhα−q )) (3.88)

and the tunneling Hamiltonian

HT =
∑

khkek
′
eshlhsele

T cselekek
′
e
P †shlhselekh,ke

P shlhse¬le
kh,k

′
e

(3.89)

−
∑

khk
′
hkeshlhsele

T vshlhkhk
′
h
P †sh¬lhselek′h,ke

P shlhsele
kh,ke

. (3.90)

The Coulomb Hamiltonian is a bit more complicated due to involving 4 operators.
This process is shown in D.3.1, and the results are

He−e = 1
2

∑
kek
′
ekhk

′
hqses

′
eshs

′
h
lal′blcl

′
d
lhl
′
h

V
ccses′elal

′
blcl
′
d

ke,k
′
e,q

P †shlhselakh,ke+q P
†s′hl

′
hs
′
el
′
b

k′h,k
′
e−q

P
s′hl
′
hs
′
el
′
d

k′hk
′
e

P shlhselc
khke

,

(3.91)

Hh−h = 1
2

∑
kek
′
ekhk

′
hqses

′
eshs

′
h
s′
h
lel′elal

′
b
lcl′d

V
vvshshs

′
hlcl
′
dlal
′
b

kh−q,k′h+q,q P †shlaselekh−q,ke P
†s′hl

′
bs
′
el
′
e

k′h+q,k′e
P
s′hl
′
ds
′
el
′
e

k′h,k
′
e
P shlcsele
kh,ke

(3.92)
and

He−h = −
∑

kek
′
ekhk

′
hqses

′
eshs

′
h
lelal′blcl

′
d
l′
h

V
cvses′hlal

′
dlcl
′
b

ke,k
′
h+q,q P †shlhselakh,ke+q P

†s′hl
′
bs
′
el
′
e

k′h+q,k′e
P
s′hl
′
ds
′
el
′
e

k′h,k
′
e
P shlhselc
kh,ke

.

(3.93)
There are also some terms arising from the commutations on the form ∑

a VaP
†
aPa.

However, since these are on the same form as the free Hamiltonian what they end
up doing is renormalizing the band gap energy. The value used for the band gap
energy is taken from experiment, meaning that these terms can be ignored. There
is one term that survives however, which we choose to call

H0
e−h = −

∑
kekhqseshlalblcld

V cvseshlaldlcld
ke,kh+q,q P †shlbselakh+q,ke+qP

shldselc
kh,ke

. (3.94)

Since the coupling element is significantly smaller for the interlayer coupling we will
neglect it for this particular element, leading to

H0
e−h = −

∑
kekhqseshlelh

V cvseshlelhlelh
ke,kh+q,q P †shlhselekh+q,ke+qP

shlhsele
kh,ke

. (3.95)
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3.3 Going to the excitonic picture

We are however not done quite yet. First we will transform to center of mass
coordinates using the coordinate transformations

kh = q − βQ,ke = q + αQ ⇐⇒ q = αkh + βke,Q = ke − kh (3.96)

with
α = mh

mh +me

, β = me

mh +me

. (3.97)

Here q can be interpreted as the relative momentum while Q is the center of mass
momentum. The momentum dependent parts of the electronic band structure then
becomes

k2
h

2mh

+ k2
e

2me

= (q − βQ)2

2mh

+ (q + αQ)2

2me

(3.98)

= 1
2

( 1
mh

+ 1
me

)
q2 +

(
− β

mh

+ α

me

)
q ·Q+ 1

2

(
β2

mh

+ α2

me

)
Q2

(3.99)

= 1
2

( 1
mh

+ 1
me

)
q2 + 1

2
1

mh +me

Q2 (3.100)

≡ q2

2mr

+ Q2

2M . (3.101)

We then map our pair operators to a basis of complete functions ϕµshlhseleq as

P shlhsele
kh,ke

= P shlhsele
q,Q =

∑
µ

ϕµshlhseleq P µshlhsele
Q . (3.102)

Using this expansion and coordinate system we now need to once again rewrite our
Hamiltonian. The free electronic part turns out to be

H0,c =
∑

qQshlhsele

(
q2

2mr

+ Q2

2M + Eshlhsele
G

)
P †shlhseseq,Q P shlhsele

q,Q (3.103)

=
∑

qQshlhseleµν

(
q2

2mr

+ Q2

2M + Eshlhsele
G

)
ϕµshlhseleq ϕνshlhseleq P †µshlhseseQ P νshlhsele

Q .

(3.104)

Before proceeding we take a look at the two-operator term from the electron-hole
Coulomb interaction, which gains the form

H0
e−h = −

∑
qQseshlelhK

V cvseshlelh
q+αQ,q−βQ+K,KP

†shlhsele
q+K,Q P shlhsele

q,Q (3.105)

= −
∑

qQseshlelhKµν

V cvseshlelh
q+αQ,q−βQ+K,Kϕ

µshlhsele
q+K ϕνshlhseleq P †µshlhseseQ P νshlhsele

Q .

(3.106)
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If we now add these together we obtain

H0,c +H0
e−h (3.107)

=
∑

qQshlhseleµν

(
q2

2mr

+ Q2

2M + Eshlhsele
G

)
ϕµshlhseleq ϕνshlhseleq P †µshlhseseQ P νshlhsele

Q

(3.108)
−

∑
qQseshlelhKµν

V cvseshlelh
q+αQ,q−βQ+K,kϕ

µshlhsele
q+K ϕνshlhseleq P †µshlhseseQ P νshlhsele

Q (3.109)

=
∑

qQshlhseleµν

((
Q2

2M + Eshlhsele
G

)
ϕµshlhseleq (3.110)

+ q2

2mr

ϕµshlhseleq −
∑
K

V cvseshlelh
q+αQ,q−βQ+K,Kϕ

µshlhsele
q+K

)
(3.111)

· ϕνshlhseleq P †µshlhseseQ P νshlhsele
Q . (3.112)

Now, the second row just so happens to have the shape of the left hand side of a time
independent Schrödinger equation, meaning that we can choose our ϕ functions as
solutions to

q2

2mr

ϕµshlhseleq −
∑
K

V cvseshlelh
q+αQ,q−βQ+K,Kϕ

µshlhsele
q+K = Ẽµshlhsele

Q ϕµshlhseleq (3.113)

to simplify the expression greatly. Moreover, this is the so called Wannier equation
that is used for describing excitons. In other words ϕµshlhseleq is an excitonic excitonic
wave function with n, l and m quantum numbers compound into µ, Ẽµshlhsele

Q its
corresponding binding energy and P (†)µshlhsese

Q is an excitonic annihilation (creation)
operator. Inserting this then gives us

H0,c +H0
e−h (3.114)

=
∑

qQshlhseleµν

(
Q2

2M + Eshlhsele
G + Ẽµshlhsele

Q

)
ϕµshlhseleq ϕνshlhseleq P †µshlhseseQ P νshlhsele

Q .

(3.115)

By using the orthonormalization condition
∑
q

ϕµshlhseleq ϕνshlhseleq = δµν (3.116)

we can then redefine the electronic part of the free Hamiltonian as

H0,c =
∑

Qshlhseleµ

Eµshlhsele
Q P †µshlhseseQ P µshlhsele

Q , (3.117)

where

Eµshlhsele
Q ≡ Q2

2M + Eshlhsele
G + Ẽµshlhsele

Q . (3.118)
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With this out of the way we can now move on to the optical term,

Hc−f =
∑
qslhle

(M vc,s,lalb
q P slhsle

q,0 +M cv,s,lalb
q P †slhsseq,0 ) (3.119)

=
∑

qslhleµ

(
M vc,s,lhle

q ϕµslhsleq P µslhsle
0 +M cv,s,lelh

q ϕµslhsleq P †µslhsse0

)
(3.120)

=
∑
slhleµ

(
Mµs,lhleP µslhsle

0 +Mµs,lelhP †µslhsse0

)
, (3.121)

where

Mµs,lhle ≡
∑
q

M vc,s,lhle
q ϕµslhsleq , (3.122)

the carrier-photon term

Hc−phot =
∑

qKslhleσ

(M cvsσlelh
q,K‖

P †slhsleq+βK‖,K‖c
σ
K +M vcsσlhle

q,K‖
P slhsle
q−βK‖,−K‖c

†σ
−K) (3.123)

=
∑

qKslhleσµ

(
M cvsσlelh
q,K‖

ϕµslhsleq+βK‖P
†µslhsle
K‖

cσK +M vcsσlhle
q,K‖

ϕµslhsleq−βK‖P
slhsle
−K‖ c

†σ
−K

)
(3.124)

≡
∑

Kslhleσµ

(
M vcsσlhle
K‖

P †µslhsleK‖
cσK +M vcsσlhle

−K‖ P slhsle
K‖

c†σK
)

(3.125)

where
M vcsσlhle
K‖

=
∑
q

M vcsσlhle
q,K‖

ϕµslhsleq+βK‖ , (3.126)

the carrier-phonon term

Hc−phon (3.127)
=

∑
qQKshselhleα

(gcleαq+αQ,KP
†shlhsele
q+βK,Q+KP

shlhsele
q,Q (bleαK + b†leα−K ) (3.128)

− gvlhαq−βQ,KP
†shlhsele
q,Q P shlhsele

q+αK,Q−K(blhαK + b†lhα−K )) (3.129)
=

∑
qQKshselhleαµµ′

(
gcleαq+αQ−βK,Kϕ

µshlhsele
q ϕµ

′shlhsele
q−βK P †µshlhseleQ+K P µshlhsele

Q (bleαK + b†leα−K )

(3.130)
− gvlhαq−βQ−βK,Kϕ

µshlhsele
q ϕµ

′shlhsele
q+αK P †µshlhseleQ+K P µ′shlhsele

Q (blhαK + b†lhα−K )
)

(3.131)

≡
∑

QKshselhlelαµµ′
gshlhselelαµµ

′

Q,K P †µshlhseleQ+K P µshlhsele
Q (blαK + b†lα−K) (3.132)

where

gshlhselelαµµ
′

Q,K (3.133)
≡
∑
q

ϕµshlhseleq (gcleαq+αQ−βK,Kϕ
µ′shlhsele
q−βK δlle − g

vlhα
q−βQ−βK,Kϕ

µ′shlhsele
q+αK δllh) (3.134)
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and the tunneling term

HT =
∑

qq′QQ′shselhle

T cseleq+αQ,q′+αQ′P
†shlhsele
q,Q P shlhse l̄e

q′,Q′ δq−βQ,q′−βQ′ (3.135)

−
∑

qq′QQ′shselhle

T vsh l̄hq′−βQ′,q−βQP
†shlhsele
q,Q P sh l̄hsele

q′,Q′ δq+αQ,q′+αQ′ (3.136)

=
∑

qQQ′shselhleµµ′

T cseleq+αQ,q+Q′−βQϕ
µshlhsele
q ϕµ

′shselh l̄e
q−β(Q−Q′)P

†µshlhsele
Q P µ′shlhse l̄e

Q′ (3.137)

−
∑

qQQ′shselhleµµ′

T vsh l̄hq−Q′+αQ,q−βQϕ
µshlhsele
q ϕµ

′shse l̄hle
q+α(Q−Q′)P

†µshlhsele
Q P µ′sh l̄hsele

Q′ (3.138)

≡
∑

QQ′shselhlel
′
h
l′eµµ

′

T shlhseleµµ
′

Q,Q′ P †µshlhseleQ P
µ′shl

′
hsel

′
e

Q′ , (3.139)

where

T
shselhlel

′
hl
′
eµµ
′

Q,Q′ (3.140)

≡
∑
q

(
T cseleq+Q,q+Q′ϕ

µshlhsele
q+βQ ϕµ

′shselh l̄e
q+βQ′ δ

le l̄′e
lhl
′
h
− T vsh l̄hq−Q′,q−Qϕ

µshlhsele
q−αQ ϕµ

′shse l̄hle
q−αQ′ δ

lel′e
lh l̄
′
h

)
.

(3.141)

As usual the Coulomb term is a bit more complicated and therefore put in D.3.2,
but the resulting expression is

Hc−c =
∑

QQ′shses
′
h
s′el

a
h
lb
h
lc
h
ld
h
lae l
b
el
c
el
d
eKµµ

′νν′

V
µµ′νν′shses

′
hs
′
el
a
hl
b
hl
c
hl
d
hl
a
e l
b
el
c
el
d
e

Q,Q′,K (3.142)

· P †µshl
a
hsel

a
e

Q+K P
†µ′s′hl

b
hs
′
el
b
e

Q′−K P
ν′s′hl

d
hs
′
el
d
e

Q′ P
νshl

c
hsel

c
e

Q , (3.143)

where

V
µµ′νν′shses

′
hs
′
el
a
hl
b
hl
c
hl
d
hl
a
e l
b
el
c
el
d
e

Q,Q′,K ≡ 1
4V

µµ′νν′shses
′
hs
′
es
′
el
a
hl
b
hl
c
hl
d
hl
a
e l
b
el
c
el
d
e

e−e,Q,Q′,K (3.144)

+ 1
4V

µµ′νν′shses
′
hs
′
es
′
el
a
hl
b
hl
c
hl
d
hl
a
e l
b
el
c
el
d
e

h−h,Q,Q′,K (3.145)

− 1
2V

µµ′νν′shses
′
hs
′
es
′
el
a
hl
b
hl
c
hl
d
hl
a
e l
b
el
c
el
d
e

e−h,Q,Q′,K (3.146)

and

V
µµ′νν′shses

′
hs
′
es
′
el
a
hl
b
hl
c
hl
d
hl
a
e l
b
el
c
el
d
e

e−e,Q,Q′,K (3.147)

≡
∑
qq′
V
cc,ses′elalblcld
q+αQ,q′+αQ′,Kϕ

µshl
a
hsel

a
e

q+βK ϕ
µ′s′hl

b
hs
′
el
b
e

q′−βK′ ϕ
ν′s′hl

b
hs
′
el
d
e

q′ ϕ
νshl

a
hsel

c
e

q δla
h
lc
h
δlb
h
ld
h
, (3.148)

V
µµ′νν′shses

′
hs
′
es
′
el
a
hl
b
hl
c
hl
d
hl
a
e l
b
el
c
el
d
e

h−h,Q,Q′,K (3.149)

≡
∑
qq′
V
vv,ses′elcldlalb
q−βQ−K,q′−βQ′+K,Kϕ

µshlasel
a
e

q−αK ϕ
µ′s′hlbs

′
el
b
e

q′+αK′ ϕ
ν′s′hlds

′
el
b
e

q′ ϕνshlcsel
a
e

q δlae lceδlbelde , (3.150)

V
µµ′νν′shses

′
hs
′
es
′
el
a
hl
b
hl
c
hl
d
hl
a
e l
b
el
c
el
d
e

e−h,Q,Q′,K (3.151)

≡
∑
qq′
V
cv,ses′hlaldlclb
q+αQ,q′−βQ′+K,Kϕ

µshl
a
hsel

a
e

q+βK ϕ
µ′s′hl

b
hs
′
el
b
e

q′+αK′ ϕ
ν′s′hl

d
hs
′
el
b
e

q′ ϕ
νshl

a
hsel

c
e

q δla
h
lc
h
δlbelde . (3.152)
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3.3.1 Solving the Wannier equation

In order to actually evaluate these new elements the Wannier equation

q2

2mr

ϕµshlhseleq −
∑
K

V cvseshlelh
q+αQ,q−βQ+K,Kϕ

µshlhsele
q+K = Ẽµshlhsele

Q ϕµshlhseleq (3.153)

will need to be solved. First off we assume that the effects of the center off mass
momentum is negligible. Next we will restrict ourselves to states whose absolute
values are isotropic, averaging over the angular dependency. If we look at the Bloch
equation to be derived in 4.2, we can see that the dominant states are the ones
in phase with the optical matrix element. We already know its phase from 3.1.3,
meaning that we can write ϕq = ϕqe

iϕq (for the K point, for the K’ point the sign
would be opposite). By also performing a shift of K → K − q and multiplying by
e−iϕq we can then express the equation as

Ẽµshlhseleϕµshlhseleq = q2

2mr

ϕµshlhseleq − 1
2π

∑
ϕq

∑
K

V cvseshlelh
q,K,K−q e

i(ϕk−ϕq)ϕµshlhseleK (3.154)

=
∑
K

 q2

2mr

δK,q −
1

2π
∑
ϕqϕK

V cvseshlelh
q,K,K−q

 ei(ϕk−ϕq)ϕµshlhseleK (3.155)

≡
∑
K

W shlhsele
qK ϕµshlhseleK . (3.156)

This is an eigenvalue problem. When treating this numerically W shlhsele
qK will be

a matrix, meaning that the wave functions and energy levels can be obtained as
eigenfunctions and eigenenergies of this matrix.

The resulting energies can be seen in Figure 3.5 which compares the intralayer ener-
gies for MoSe2 and WSe2 as well as the interlayer energies for MoSe2−WSe2, while
Figure 3.6 does a similar comparison of the wavefunctions for the first three s states.
In these we can see that the interlayer binding energies are a fair bit smaller than the
intralayer ones, meaning that the wavefunctions have smaller radii (in momentum
space, in real space the opposite applies). These details aside, the wavefunctions
look like you would expect two dimensional hydrogen-like wavefunctions would.
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Figure 3.5: This figure displays the three lowest excitonic energy levels for the
MoSe2 and WSe2 intralayer states and the energetically lower interlayer state, in
that order. Here we can see that while the WSe2 states are somewhat lower than
their MoSe2 counterparts, the interlayer states are lower than both of them. This
can be explained by the spatial separation between the electron and hole.
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Figure 3.6: This figure displays the three lowest excitonic wavefunctions in mo-
mentum space for the MoSe2 and WSe2 intralayer states and the energetically lower
interlayer state, in that order. By comparing this to Figure 3.5 we can see that
a lower energy corresponds to a sharper wavefunction, meaning that the interlayer
excitons are more delocalized in real space than the other two.
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3. Constructing the Hamiltonian
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4
The Bloch equation

Now that the Hamiltonian has been constructed we can start finding equations of
motion. We will start with deriving the Bloch equation, the equation of motion for
the microscopic polarization, and then use it to calculate the absorption spectrum.

If we look at the definition for the Pair operators we find that

pshlhseleq,Q = 〈P shlhsele
q,Q 〉 =

∑
µ

ϕµshlhseleq 〈P µshlhsele
Q 〉 ≡

∑
µ

ϕµshlhseleq pµshlhseleQ , (4.1)

meaning that we can find the Bloch equation by finding the equation of motion for
〈P µshlhsele

Q 〉. To do this we first find the different contributions for all the different
terms in the Hamiltonian.

4.1 Deriving the Bloch equation

Using compound indices the free electronic contribution is given by

i~
∂

∂t
p1

∣∣∣∣∣
H=H0,c

= 〈
∑
a

Ea[P1, P
†
aPa]〉 (4.2)

= E1p1 (4.3)

while the free photon and phonon terms don’t contribute at all since it commutes
with the excitonic operators. After this we get the optical term

i~
∂

∂t
p1

∣∣∣∣∣
H=He−f

= 〈
∑
a

[
P1,M a ·APa +M a ·AP †a

]
〉 (4.4)

= M 1 ·A (4.5)

and the photon term

i~
∂

∂t
P1

∣∣∣∣∣
H=Hc−phot

= 〈
∑
ab

[
P1,MabP

†
acb +Ma−bPac

†
−b

]
〉 (4.6)

=
∑
a

M1b〈cb〉. (4.7)
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4. The Bloch equation

Aside from the differences between the semi-classical and quantum descriptions of
the field interaction (the prescense of the photon momentum) we can here see yet
another difference, that the polarization couples to the expectation value of the
photon. We will therefore need to find an equation of motion for this quantity later
on as well.

For the carrier-phonon contribution we get

i~
∂

∂t
p1

∣∣∣∣∣
H=Hc−phon

= 〈
∑
abc

gabc[P1, P
†
aPb(bc + b†−c)]〉 (4.8)

=
∑
ab

g1ab(〈pabb〉+ 〈pab†−b〉) (4.9)

≡
∑
ab

g1ab(Sab + S̃a−b) (4.10)

where the so called phonon assisted polarizations that describe absorption and emis-
sion of phonons respectively are yet another set of quantities we will need to find
equations of motion for.

The tunneling contribution then turns out to be

i~
∂

∂t
p1

∣∣∣∣∣
H=HT

= 〈
∑
ab

Tab[P1, P
†
aPb]〉 (4.11)

=
∑
a

T1apa (4.12)

in which we can see that the tunneling couples intra andinterlayer polarizations. We
now finally have the Coulomb contribution, and it should not come as a surprise
that it is more complex than the rest. When approaching this like we did for the
previous contributions we end up with

i~
∂

∂t
p1

∣∣∣∣∣
H=Hc−c

= 〈
∑
abcd

V ab
cd [P1, P

†
aP
†
b PcPd]〉 (4.13)

=
∑
abcd

V ab
cd 〈(P †aδ1b + δ1aP

†
b )PcPd〉 (4.14)

=
∑
abc

(V a1
bc V

1a
bc )〈P †aPbPc〉 (4.15)

= 2
∑
abc

V 1a
bc 〈P †aPbPc〉. (4.16)

Here we can immediately identify a problem. The polarization couples to a 3-
operator quantity. If we try doing the same for this quantity we find that it in turn
couples to a 5-operator quantity, and by exprapolating this we find that a quantity
with n operator couples to one with n+ 2 operators. To solve this problem we must
find a way to close the equation. What we do here is a correlation expansion (see
A),where we approximate

〈P †aPbPc〉 ≈ 〈P †aPb〉〈Pc〉+ 〈P †aPc〉〈Pb〉+ 〈PbPc〉〈P †a〉+ 〈P †a〉〈Pb〉〈Pc〉. (4.17)
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4. The Bloch equation

The 〈P †P 〉 quantities are exciton densities, which we can neglect since we work in
the low excitation limit. We can also neglect the 〈PbPc〉 term since it describes
a kind of oscillation we will not be examining here, one where two excitons are
simultaneously created or annihilated. Finally we can neglect 〈P †a〉〈Pb〉〈Pc〉 as well,
since it is to third order in p. In other words, in the approximation used here the
aspects of the Coulomb interaction that are not responsible for the formation of
excitons (the terms that were absorbed into H0) vanish entirely.

4.1.1 Photon expectation value

We now have to find the corresponding equations for the photon expectation value
and phonon assisted polarizations, starting with the former. Since only two terms
contain photon operators and both have relatively simple forms it is easy to see that
the equation of motion for the photon expectation value becomes

i~
∂

∂t
〈c1〉 =

∑
a

〈[c1, ~ωac†aca]〉 (4.18)

+
∑
ab

〈
[
c1,MabP

†
acb +MabPac

†
−b

]
〉 (4.19)

= ~ω1〈c1〉+
∑
a

Ma1pa. (4.20)

In other words it has one free term and one that couples back to the polarization.

4.1.2 Phonon assisted polarizations

Now we finally have the phonon assisted polarizations, starting with S1. For all
contributions aside from the phonon related ones we can use our previous results to
trivially obtain

i~
∂

∂t
S12

∣∣∣∣∣
H=H0,c

= E1S12, (4.21)

i~
∂

∂t
S12

∣∣∣∣∣
H=Hc−f

= M 1〈b2〉, (4.22)

i~
∂

∂t
S12

∣∣∣∣∣
H=Hc−phot

=
∑
a

M1a〈cab2〉 (4.23)

i~
∂

∂t
S12

∣∣∣∣∣
H=HT

=
∑
a

T1aSa2. (4.24)

and
i~
∂

∂t
S12

∣∣∣∣∣
H=Hc−c

= 0 (4.25)
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4. The Bloch equation

For the purpose of this thesis we will only be interested in incoherent phonons, mean-
ing that we can neglect 〈b(†)〉 and with is the optical contribution. For the photon
term we instead have the 〈cb(†)〉 expectation value. This describes phonon-assisted
absorption. While this is an interesting topic that deserves it’s own investigation, it
lies beyond the scope of this thesis and will therefore be ignored.

Now it is time to proceed to the terms containing phonon operators, starting with
the free phonon contribution

i~
∂

∂t
S12

∣∣∣∣∣
H=H0,p

= 〈
∑
a

EaP1[b2, b
†
aba]〉 (4.26)

= E2S12. (4.27)

The more complicated carrier-phonon term then becomes

i~
∂

∂t
S12

∣∣∣∣∣
H=Hc−phon

(4.28)

= 〈
∑
abc

gabc[P1b2, P
†
aPb(bc + b†−c)]〉 (4.29)

=
∑
abc

gabc〈(P1[b2, b
†
−c]P †aPb + [P1, P

†
a ]Pb(bc + b†−c)b2)〉 (4.30)

=
∑
ab

〈(gab−2P1P
†
aPb + g1abPa(bb + b†−b)b2)〉 (4.31)

=
∑
ab

〈(gab−2Pbδa1 + gab−2P
†
aPbP1 + g1abPa(bbb2 + b2b

†
−b)− g1abPaδ−b2)〉 (4.32)

=
∑
ab

(gab−2〈P †aPbP1〉+ g1ab(〈Pabbb2〉+ 〈Pab2b
†
−b〉)). (4.33)

As for the Coulomb contribution we now ignore the term that is cubic in P . When
taking the expectation value we then make use of the Born approximation by sep-
arating the exciton and phonon expectation values as 〈P1b

(†)
2 b

(†)
3 〉 ≈ 〈P1〉〈b(†)

2 b
(†)
3 〉.

We also neglect the 〈b1b2〉 terms since we are once again not interested in coherent
phonon effects, and identify 〈b1b

†
2〉 = (1 + n1)δ12 where n1 is the phonon density.

Doing this then leads to

i~
∂

∂t
S12

∣∣∣∣∣
H=Hc−phon

=
∑
a

g1a−2pa(1 + n2). (4.34)

Using the same method for S̃12 with 〈b†1b2〉 = n1δ12 and neglecting 〈b†1b†2〉 we get

i~
∂

∂t
S̃12

∣∣∣∣∣
H=Hc−phon

=
∑
ab

(−gab2〈P †aPbP1〉+ g1ab(〈Pab†2b†b〉+ 〈Pab†2bb〉)), (4.35)

leading to

i~
∂

∂t
S̃12

∣∣∣∣∣
H=Hc−phon

=
∑
a

g1a2pan2. (4.36)
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4. The Bloch equation

For the free phonon term we get

i~
∂

∂t
S̃12

∣∣∣∣∣
H=H0,p

= −E2S̃12, (4.37)

while the rest of the terms can be obtained by simply exchanging b with b† and S
with S̃.

4.2 Simplifying the Bloch equation

Now that all the individual terms of the Bloch equation have been derived we can
put them together to find

i~
∂

∂t
p1 = E1p1 +M 1 ·A+

∑
a

M1a〈ca〉+
∑
ab

g1ab(Sab + S̃a−b) +
∑
a

T1apa, (4.38)

where the photon expectation value is given by

i~
∂

∂t
〈c1〉 = ~ω1〈c1〉+

∑
a

Ma1pa (4.39)

and the phonon assisted polarizations follow

i~
∂

∂t
S12 = (E1 + E2)S12 +

∑
a

g1a−2pa(1 + n2) +
∑
a

T1aSa2 (4.40)

and
i~
∂

∂t
S̃12 = (E1 − E2)S12 +

∑
a

g1a2pan2 +
∑
a

T1aS̃a2. (4.41)

These could be solved numerically as they stand. They can however still be simplified
further to a good approximation by solving all but the Bloch equation using the
Markov approximation (see B). Doing this results in

〈c1〉 ≈
π

i~
∑
a

Ma1paδ(~ω1 − Ea), (4.42)

S12 ≈
π

i~
∑
a

g1a−2pa(1 + n2)δ(E1 − Ea + E2) + π

i~
∑
a

T1aSa2δ(E1 − Ea) (4.43)

and

S̃12 ≈
π

i~
∑
a

g1a2pan2δ(E1 − Ea − E2) + π

i~
∑
a

T1aS̃a2δ(E1 − Ea). (4.44)

If we now look at how the tunneling elements look we can see that the delta function
for the tunneling contributions contain a difference between intra and interlayer
energies. Since the difference in band gap energy is too large to be compensated for
by a shift in excitonic energy level without a huge momentum transfer we can safely
omit the tunneling terms for the phonon-assisted polarizations.
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4. The Bloch equation

By inserting these solutions we then obtain

i~
∂

∂t
p1 = E1p1 +M 1 ·A + π

i~
∑
ab

M1bMabpaδ(Ea − ~ωb) (4.45)

+ π

i~
∑
abc

g1acgab−cpb(1 + nc)δ(Ea − Eb + Ec) + π

i~
∑
abc

g1acgab−cpbncδ(Ea − Eb − Ec)

(4.46)
+
∑
a

T1apa, (4.47)

where we have used that E and n only depends on the magnitude of the momentum.

Before we solve this there is one final step we can take. We already decided to
handle the exciting field classically and the rest quantum mechanically, but at this
moment it is constructive to examine how the optical part would look if we treated
the entire field classically. By solving Maxwell’s equations (see C) we can see that
that the total field can be written in the Fourier basis as

A(ω) = A0(ω) + icµ0

ω
j(ω). (4.48)

Using second quantization the current can be expressed as

j(ω) = e0

2m0
〈p− e0A〉+ c.c. (4.49)

= e0

2m0

∑
a

〈φa|p− e0A|φb〉〈a†aab〉+ c.c. (4.50)

where e0 and m0 are the carge and mass of the electron [11]. When Coulomb
interaction is included the A term becomes relatively small [11], and will therefore
be neglected. By using that p = −i~∇ we can now identify the optical matrix
element to obtain

j(ω) =
∑
a

Im(M apa(ω)). (4.51)

If we insert these results into our optical term and only consider the non-exciting
part of the field we see that it ends up looking like

i~
∂

∂t
p1

∣∣∣∣∣
Opt,non− exc

= M 1 ·
(
icµ0

ω

∑
a

Re (M apa)
)

(4.52)

≈ −icµ0

ω

∑
a

M 1M apa (4.53)

≡ −i~
∑
a

γ1a
radpaδse1sh1

δQ1,0 (4.54)

where we have used the rotating wave approximation to neglect off-resonant terms.
The whole point of this exercise is that if we recall that the photon coupling element
also conserves spin and use that the photon momentum is relatively small we can
see that this term and the photon term have roughly the same form. Since this form
is much easier to calculate and has given results consistent with experiment in past
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4. The Bloch equation

studies we can simply replace the photon term with this expression, which gives us
our final form for the Bloch equation

∂

∂t
p1 = 1

i~
E1p1 + 1

i~
M 1 ·A0 −

∑
a

γ1a
radpaδse1sh1

δQ1,0 (4.55)

− π

i~2

∑
abc±

g1acgbacpb

(1
2 ±

1
2 + nc

)
δ(Ea − Eb ± Ec) (4.56)

+ 1
i~
∑
a

T1apa. (4.57)

Here the ± index is an ’operator index” that is either + or −. Now that we have
reached this final form it is finally time to expand the indices. Since all of our terms
but the free one which is purely imaginary contain a factor δshse we can also simplify
our notation to only include one spin index, resulting in

∂

∂t
p
µ1s1lh1 le1
Q1

(4.58)

= 1
i~
E
µ1s1lh1 le1
Q1

p
µ1s1lh1 le1
Q1

+ 1
i~
Mµ1s1lh1 le1 ·A0 −

∑
µslhle

γ
µ1s1lh1 le1 ,µslhle
rad pµslhle0 δQ1,0

(4.59)

− π

~2

∑
Klαµν±

g
s1lh1 le1 lαµ1µ
Q1−K,K g

s1lh1 le1 lανµ
Q1−K,K p

νs1lh1 le1
Q1

(4.60)

·
(1

2 ±
1
2 + nlαK

)
δ
(
E
µs1lh1 le1
Q1−K − Eνs1lh1 le1

Q1
± E lαK

)
(4.61)

+
∑
Qlhleµ

T
s1lh1 le1 lhleµ1µ
Q1,Q

pµs1lhle
Q . (4.62)

We can now take the time to go over the different terms one by one. The first one
results in free oscillation. The second will be real and positive in our definition of
the optical matrix element, exciting the polarization using an initial pulse A0(t).
The third term, being mostly real and negative, will lead to radiative dephasing. In
a similar way the third term will lead to non-radiative dephasing by the means of
emission and absorption of phonons respectively. Finally the last term will couple
intra and interlayer polarizations to each other. The imaginary part will lead to a
frequency offset in the absorption.

4.3 Solving the Bloch equation

To solve this equation we have used the Runge-Kutta method implemented in the C
programming language. The system was solved on a 100× 100 grid in polar coordi-
nates. To account for uncertainty the phonon delta functions were implemented as
Lorentzians. The widths that were used for these were the non-radiative dephasing
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4. The Bloch equation

rates found in the Bloch equation as

∂

∂t
p
µ1s1lh1 le1
Q1

∣∣∣∣∣
H=Hc−phon

(4.63)

= π

~2

∑
Klαµν±

g
s1lh1 le1 lαµ1µ
Q1−K,K g

s1lh1 le1 lανµ
Q1−K,K p

νs1lh1 le1
Q1

(4.64)

·
(1

2 ±
1
2 + nlαK

)
δ
(
E
µs1lh1 le1
Q1−K − Eνs1lh1 le1

Q1
± E lαK

)
(4.65)

≡
∑
ν

γ
Q1s1lh1 le1µ1ν
non− rad p

νs1lh1 le1
Q1

. (4.66)

However these have to satisfy

γ
Q1s1lh1 le1µ1ν
non− rad (4.67)

= π

~2

∑
Klαµ±

g
s1lh1 le1 lαµ1µ
Q1−K,K g

s1lh1 le1 lανµ
Q1−K,K

(1
2 ±

1
2 + nlαK

)
δ
(
E
µs1lh1 le1
Q1−K − Eνs1lh1 le1

Q1
± E lαK

)
(4.68)

while also being a part of the delta functions. To get around this the dephasing
rates were solved iteratively with a suitable initial value until they had converged.

We then assumed that the total phonon population was already in equilibrium. This
means that the phonon densities could be treated as Bose-Einstein distributions.
Finally we treated A0(t) as a δ function.

As for the integrals we calculated them as Riemann sums in polar coordinates,
meaning that for an arbitrary sum over momentum space we get

∑
k

f(k) = 1
(2π)2

∫
kdk

∫
dϕf(k, ϕ)→ 1

(2π)2 ∆k∆ϕ
Nn∑
n

Nm∑
m

knf(kn, ϕn), (4.69)

where ∆k = kmax
Nk

and ∆ϕ = 2π
Nm

are the discretized differentials and kn = n∆k and
ϕm = m∆ϕ are the discretized momenta and angles.

Finally we made use of the fact that the K/K ′ points being isotropic implies that
the polarization is also isotropic. By averaging the angular dependence we could
then simplify the Bloch equation to

∂

∂t
p
µ1s1lh1 le1
Q1 (4.70)

= 1
i~
E
µ1s1lh1 le1
Q1 p

µ1s1lh1 le1
Q1 + 1

i~
Mµ1s1lh1 le1 ·A0 −

∑
µslhle

γ
µ1s1lh1 le1 ,µslhle
rad pµslhleQ δQ1,0

(4.71)

−
∑
ν

1
2π

∑
ϕQ1

γ
Q1s1lh1 le1µ1ν
non− rad p

νs1lh1 le1
Q1 (4.72)

+
∑
Qlhleµ

1
2π

∑
ϕQ1

T
s1lh1 le1 lhleµ1µ
Q1,Q

pµs1lhle
Q . (4.73)
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4. The Bloch equation

The point of doing this is that now the angular dependency can be included into
the definition of the matrix elements. While this makes the computation of these
take more time it greatly improves the time needed for the Runge-Kutta method
since the angular summation now only needs to be performed once and not once for
every timestep.

We also chose to neglect the tunneling contribution. This can be motivated by the
fact that our tunneling element in this model is mostly real, meaning that only a
very small part of it will drive the creation of new polarizations. The imaginary
part will only contribute to the oscillations, shifting the position in Fourier space.
Combined with the fact that the interlayer optical matrix element is relatively small
this means that the tunneling term will have a correspondingly small effect on the
intralayer polarization while the interlayer one will be so small that a frequency
shift would not affect the overall dynamics anyway. It may be an interesting topic
to examine in the future though.

4.3.1 Calculating the absorption

It is now time to finally use our newly calculated polarizations to calculate the
absorption spectrum of the TMD. In Appendix C we derive the classical absorption
coefficient to be

α(ω) ∝ Im
(
j(ω)
ωA(ω)

)
. (4.74)

We also showed that the current can be expressed as

j(ω) = Im(M apa(ω)). (4.75)

Inserting this into the absorption coefficient then finally results in

α(ω) ∝ Im (∑a Im(M apa(ω)))
ωA(ω) (4.76)

= −
Re

(∑
slhleµM

µslhle
0 pµslhsle0 (ω)

)
ωA(ω) . (4.77)

The result for the three first energy levels at room temperature can be seen in
Figure 4.1. There are a number of aspects we can observe here. We can see the
spin-orbit splitting in the significant energy difference between the A and B excitons.
We can also see how the WSe-WSe excitons have slightly higher energies than the
MoSe-MoSe ones, and how the absorption gets smaller for higher excitonic energy
levels. This can be attributed to how the shape of the excitonic wavefunctions when
projecting the optical matrix element to the excitonic picture. Finally we can see
that the absorption is significantly lower for the interlayer excitons, meaning that,
as predicted, the experimental results can not be replicated using optical excitation
alone.
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Figure 4.1: In the upper figure the absorption spectrum for the three lowest exci-
tonic energy states at room temperature can be seen. The large spin-orbit coupling
clearly separates the A from the B excitons. It can also be seen that the absorption
greatly lessens for higher energy levels, meaning that most excitons will be created
at the ground state. Due to the huge difference in magnitude the interlayer peaks
can not be seen in this figure. They are therefore shown isolated in the lower one
instead. Since the purpose of this figure is to highlight these aspects without going
into the finer aspects we have chosen to use the same linewidth for all peaks. The
total spectrum has also been raised by a tiny amount to more easily distinguish the
components.
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5
The exciton density equation

It is now time to do what we just did for the polarization p1 ≡ 〈P1〉 for the exciton
density N1 ≡ 〈P †1P1〉, starting with the more general N12 ≡ 〈P †1P2〉. This is however
the total density. What we are interested in is the incoherent part of it, obtained by
subtracting the coherent part from the total density as δN12 ≡ 〈P †1P2〉−〈P †1 〉〈P2〉 =
N12 − p1p2. In other words the incoherent density is nothing but the correlation
term in a correlation expansion. In the way we can define δS12 ≡ 〈P1b2〉 − 〈P1〉〈b2〉,

but since we neglect the 〈b〉 terms we get δS12 = S12.

Now, when it comes to finding the actual equations we can save a lot of time by
making use of a couple of tricks. First off, we see that

i~
∂

∂t
P †1 = −

(
i~
∂

∂t
P1

)†
. (5.1)

We then use the Leibniz rule to find

i~
∂

∂t
δN12 = i~

∂

∂t
(〈P †1P2〉 − 〈P †1 〉〈P2〉) (5.2)

= 〈i~ ∂
∂t

(P †1 )P2〉+ 〈P †1 i~
∂

∂t
P2〉 −

(
i~
∂

∂t
(〈P †1 〉)〈P2〉+ 〈P †1 〉i~

∂

∂t
〈P2〉

)
(5.3)

= 〈P †1 i~
∂

∂t
P2〉 − 〈

(
i~
∂

∂t
P1

)†
P2〉 −

(
〈P †1 〉i~

∂

∂t
〈P2〉 −

(
i~
∂

∂t
〈P1〉

)
〈P2〉

)
.

(5.4)

By doing this we can find the equations of motion directly from our results in the
previous section.
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5. The exciton density equation

5.1 Constructing the contributions

Using the above tricks we can now easily find the free contribution

i~
∂

∂t
δN12

∣∣∣∣∣
H=H0,c

= (E2 − E1)N12 − (E2 − E1)p1p2 (5.5)

= (E2 − E1)δN12

and the optical

i~
∂

∂t
δN12

∣∣∣∣∣
H=Hc−f

= M 2 ·Ap1 −M 1 ·Ap2 − (M 2 ·Ap1 −M 1 ·Ap2) (5.6)

= 0, (5.7)

which apparently disappears. The photon contribution then turns out to be

i~
∂

∂t
δN12

∣∣∣∣∣
H=Hc−phot

(5.8)

=
∑
a

M2a〈P †1 ca〉 −
∑
a

M1a〈P2c
†
a〉 −

(∑
a

M2ap1〈ca〉 −
∑
a

M1ap2〈ca〉
)

(5.9)

=
∑
a

M2a〈P1c
†
a〉 −

∑
a

M1a〈P2c
†
a〉 −

(∑
a

M2a(p1〈c†a〉)−
∑
a

M1ap2〈c†a〉
)

(5.10)

≡
∑
a

(
M2aδT̃1a −M1aδT̃2a

)
, (5.11)

where δT̃ab ≡ 〈Pac†b〉 − 〈Pa〉〈c
†
b〉 is the incoherent part of the photon assisted po-

larization. In a similar but slightly more complex way the phonon contribution
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5. The exciton density equation

becomes

i~
∂

∂t
δN12

∣∣∣∣∣
H=Hc−phon

(5.12)

=
∑
ab

g2ab(〈P †1Pabb〉+ 〈P †1Pab†−b〉)−
∑
ab

g1ab(〈P †ab−bP2〉+ 〈P †ab
†
bP2〉) (5.13)

−
(∑
ab

g2ab(〈P †1 〉〈Pabb〉+ 〈P †1 〉〈Pab†−b〉)−
∑
ab

g1ab(〈P †ab−b〉〈P2〉+ 〈P †ab
†
b〉〈P2〉)

)
(5.14)

=
(∑
ab

g2ab(〈P †1Pabb〉+ 〈P †1Pab†−b〉)−
∑
ab

g1ab(〈P †aP2b−b〉+ 〈P †aP2b
†
b〉) (5.15)

−
(∑
ab

g2ab(〈P †1 〉〈Pabb〉+ 〈P †1 〉〈Pab†−b〉)−
∑
ab

g1ab(〈P †a〉〈P2b−b〉+ 〈P †a〉〈P2b
†
b〉)
)
(5.16)

−
(∑
ab

g2ab(〈Pa〉〈P †1 bb〉+ 〈Pa〉〈P †1 b†−b〉)−
∑
ab

g1ab(〈P2〉〈P †ab−b〉+ 〈P2〉〈P †ab
†
b〉)
))
(5.17)

+
(∑
ab

g2ab(〈Pa〉〈P †1 bb〉+ 〈Pa〉〈P †1 b†−b〉)−
∑
ab

g1ab(〈P †a〉〈P2b−b〉+ 〈P †a〉〈P2b
†
b〉)
)
(5.18)

≡
∑
ab

g2ab(O1ab + Õ1a−b)−
∑
ab

g1ab(Oa2−b + Õa2b) (5.19)

+
∑
ab

g2ab
(
〈Pa〉〈P1b

†
b〉+ 〈Pa〉〈P1b−b〉

)
−
∑
ab

g1ab(〈P †a〉〈P2b−b〉+ 〈P †a〉〈P2b
†
b〉) (5.20)

=
∑
ab

g2ab(δO1ab + δÕ1a−b)−
∑
ab

g1a−b(δOa2b + δÕa2−b) (5.21)

+
∑
ab

g2abpa
(
δS̃1b + δS1−b

)
−
∑
ab

g1a−bpa(δS2b + δS̃2−b) (5.22)

where δOabc ≡ 〈P †aPbbc〉−〈P †a〉〈Pbbc〉−〈Pb〉〈P †abc〉 and δÕabc ≡ 〈P †aPbb†c〉−〈P †a〉〈Pbb†c〉−
〈Pb〉〈P †ab†c〉 are the incoherent parts of the phonon assisted densities. We then have
the tunneling contribution

i~
∂

∂t
δN12

∣∣∣∣∣
H=HT

=
∑
a

T2a〈P †1Pa〉 −
∑
a

T1a〈P †aP2〉 (5.23)

−
(∑

a

T2a〈P †1 〉〈Pa〉 −
∑
a

T1a〈P †a〉〈P2〉
)

(5.24)

=
∑
a

T2aδN1a −
∑
a

T1aδNa2 (5.25)
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5. The exciton density equation

and finally the Coulomb term

i~
∂

∂t
δN12

∣∣∣∣∣
H=Hc−c

= 2
∑
abc

V 2a
bc 〈P

†
1P
†
aPbPc〉 − 2

∑
abc

V 1a
bc 〈P

†
b P
†
cPaP2〉 (5.26)

−
(

2
∑
abc

V 2a
bc 〈P

†
1 〉〈P †aPbPc〉 − 2

∑
abc

V 1a
bc 〈P

†
b P
†
cPa〉〈P2〉

)
(5.27)

≈ 0. (5.28)

Here we have we once again neglected higher order terms. Before proceeding to put
these together we first have to find the corresponding equations for the photon- and
phonon assisted quantities.

5.1.1 Photon assisted polarization

Similar to how we handled the phonon assisted polarization we can easily find the
contributions from all non-photon related terms to be

i~
∂

∂t
δT̃12

∣∣∣∣∣
H=H0,c

= E1〈P1c
†
2〉 − E1〈P1〉〈c†2〉 (5.29)

= E1T̃12, (5.30)

i~
∂

∂t
δT̃12

∣∣∣∣∣
H=He−f

= M 1 ·A〈c†2〉 −M 1 ·A〈c†2〉 (5.31)

= 0, (5.32)

i~
∂

∂t
δT̃12

∣∣∣∣∣
H=Hc−phon

(5.33)

=
∑
ab

g1ab(〈Pabbc†2〉+ 〈Pab†−bc
†
2〉)−

∑
ab

g1ab(〈Pabb〉〈c†2〉+ 〈Pab†−b〉〈c
†
2〉) (5.34)

=
∑
ab

g1ab(δ〈Pabbc†2〉+ δ〈Pab†−bc
†
2〉) (5.35)

≈ 0, (5.36)

i~
∂

∂t
δT̃12

∣∣∣∣∣
H=HT

=
∑
a

T1a〈Pac†2〉 −
∑
a

T1a〈Pa〉〈c†2〉 (5.37)

=
∑
a

T1aδT̃a2 (5.38)

and

i~
∂

∂t
δT̃12

∣∣∣∣∣
H=Hc−c

= 2
∑
abc

V 1a
bc 〈P †aPbPcc

†
2〉 − 2

∑
abc

V 1a
bc 〈P †aPbPc〉〈c

†
2〉 (5.39)

≈ 0 (5.40)
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5. The exciton density equation

where we have neglected the incoherent parts of the phonon assisted absorption
quantities 〈Pab(†)

b c
†
2〉 and the higher order terms of the Coulomb interaction. For the

remaining two terms we get

i~
∂

∂t
δT̃12

∣∣∣∣∣
H=H0,phot

= δ〈
∑
a

~ωa[P1c
†
2, c
†
aca]〉 (5.41)

= −~ω2δ〈P1c
†
2〉 (5.42)

= −~ω2δT̃12 (5.43)

and

i~
∂

∂t
δT̃12

∣∣∣∣∣
H=Hc−phot

= δ〈
∑
ab

[
P1c

†
2,MabPac

†
−b +MabP

†
ac−b

]
〉 (5.44)

=
∑
ab

Mabδ〈P1[c†2, cb]P †a + [P1, P
†
a ]cbc†2〉 (5.45)

= −
∑
a

Ma2δ〈P1P
†
a〉 (5.46)

+
∑
a

M1aδ〈cac†2〉 (5.47)

= −
∑
a

Ma2δ〈P †aP1〉 (5.48)

−M12 (5.49)
+
∑
a

M1aδ〈c†2ca〉 (5.50)

+M12 (5.51)
≈ −

∑
a

Ma2δNa1. (5.52)

The first term simply adds an oscillating term to the free part, and in the second
one we have neglected the δ〈c†2c−a〉 term since we are only interested in coherent
photon densities.

5.1.2 Phonon assisted densities

For the terms containing only excitonic operators this can be handled the usual way,
giving

i~
∂

∂t
δO123

∣∣∣∣∣
H=H0,c

= (E2 − E1)δO123, (5.53)
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5. The exciton density equation

i~
∂

∂t
δO123

∣∣∣∣∣
H=Hc−f

= i~
∂

∂t
(〈P †1P2b3〉 − 〈P †1 〉〈P2b3〉 − 〈P2〉〈P †1 b3〉)

∣∣∣∣∣
H=Hc−f

(5.54)

= M 2 ·A〈P †1 b3〉 −M 1 ·A〈P2b3〉 (5.55)
−
(
M 2 ·A〈P †1 〉〈b3〉 −M 1 ·A〈P2b3〉

)
(5.56)

−
(
M 2 ·A〈P †1 b3〉 −M 1 ·A〈P2〉〈b3〉

)
(5.57)

≈ 0 (5.58)

where we have once again neglected the 〈b(†)〉 terms,

i~
∂

∂t
δO123

∣∣∣∣∣
H=Hc−phot

= i~
∂

∂t
(〈P †1P2b3〉 − 〈P †1 〉〈P2b3〉 − 〈P2〉〈P †1 b3〉)

∣∣∣∣∣
H=Hc−f

(5.59)

=
∑
a

M2a〈P †1 cab3〉 −
∑
a

M1a〈P2c
†
ab3〉 (5.60)

−
(∑

a

M2a〈P †1 〉〈cab3〉 −
∑
a

M1a〈c†a〉〈P2b3〉
)

(5.61)

−
(∑

a

M2a〈ca〉〈P †1 b3〉 −
∑
a

M1a〈P2〉〈c†ab3〉
)

(5.62)

=
∑
a

M2aδ〈P †1 cab3〉 −
∑
a

M1aδ〈P2c
†
ab3〉 (5.63)

≈ 0, (5.64)

where we have neglected phonon assisted absorption and emission as usual,

i~
∂

∂t
δO123

∣∣∣∣∣
H=HT

= i~
∂

∂t
(〈P †1P2b3〉 − 〈P †1 〉〈P2b3〉 − 〈P2〉〈P †1 b3〉)

∣∣∣∣∣
H=HT

(5.65)

=
∑
a

T2a〈P †1Pab3〉 −
∑
a

T1a〈P †aP2b3〉 (5.66)

−
(∑

a

T2a〈P †1 〉〈Pab3〉 −
∑
a

T1a〈P †a〉〈P2b3〉
)

(5.67)

−
(∑

a

T2a〈Pa〉〈P †1 b3〉 −
∑
a

T1a〈P2〉〈P †ab3〉
)

(5.68)

=
∑
a

T2aδO1a3 −
∑
a

T1aδOa23 (5.69)

and

i~
∂

∂t
δO123

∣∣∣∣∣
H=Hc−c

= i~
∂

∂t
(〈P †1P2b3〉 − 〈P †1 〉〈P2b3〉 − 〈P2〉〈P †1 b3〉)

∣∣∣∣∣
H=HT

(5.70)

= 2
∑
abc

V 2a
bc 〈P

†
1P
†
aPbPcb3〉 − 2

∑
abc

V 1a
bc 〈P

†
b P
†
cPaP2b3〉 (5.71)

−
(

2
∑
abc

V 2a
bc 〈P

†
1 〉〈P †aPbPcb3〉 − 2

∑
abc

V 1a
bc 〈P

†
b P
†
cPa〉〈P2b3〉

)
(5.72)

−
(

2
∑
abc

V 2a
bc 〈P

†
1 b3〉〈P †aPbPc〉 − 2

∑
abc

V 1a
bc 〈P

†
b P
†
cPab3〉〈P2〉

)
(5.73)

≈ 0. (5.74)
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For the free phonon part we predictably get

i~
∂

∂t
δO123

∣∣∣∣∣
H=H0,phon

= E3δO123 (5.75)

while the phonon term is more complicated. Deriving it is going to take a few steps,
but all of them will be variants of tricks we have used before. First off we have

i~
∂

∂t
δO123

∣∣∣∣∣
H=Hc−phon

(5.76)

= i~
∂

∂t
(〈P †1P2b3〉 − 〈P †1 〉〈P2b3〉 − 〈P2〉〈P †1 b3〉)

∣∣∣∣∣
H=Hc−phon

(5.77)

=
(
〈i~ ∂

∂t
(P †1P2)b3〉+ 〈P †1P2i~

∂

∂t
b3〉
)∣∣∣∣∣

H=Hc−phon

(5.78)

−
(
i~
∂

∂t
(〈P †1 〉)〈P2b3〉+ 〈P †1 〉i~

∂

∂t
〈P2b3〉

)∣∣∣∣∣
H=Hc−phon

(5.79)

−
(
i~
∂

∂t
(〈P2〉)〈P †1 b3〉+ 〈P2〉i~

∂

∂t
〈P †1 b3〉

)∣∣∣∣∣
H=Hc−phon

(5.80)

=
∑
ab

g2ab(〈P †1Pabbb3〉+ 〈P †1Pab†−bb3〉)−
∑
ab

g1ab(〈P †aP2b−bb3〉+ 〈P †aP2b
†
bb3〉) (5.81)

+
∑
ab

gab−3〈P †1P2P
†
aPb〉 (5.82)

−
(∑
ab

g2ab(〈P †1 〉〈Pabbb3〉+ 〈P †1 〉〈Pab3b
†
−b〉)−

∑
ab

g1ab
(
〈Pabb〉〈P2b3〉+ 〈Pab†−b〉〈P2b3〉

))
(5.83)

−
(∑
ab

g2ab(〈Pabb〉〈P †1 b3〉+ 〈Pab†−b〉〈P
†
1 b3〉)−

∑
ab

g1ab
(
〈P2〉〈Pab†3bb〉+ 〈P2〉〈Pab†3b

†
−b〉
))

(5.84)
=
∑
ab

g2ab(〈P †1Pabbb3〉+ 〈P †1Pab3b
†
−b〉)−

∑
ab

g1ab(〈P †aP2b−bb3〉+ 〈P †aP2b
†
bb3〉) (5.85)

+
∑
ab

gab−3〈P †1P †aP2Pb〉+
∑
a

g2a−3〈P †1Pa〉 −
∑
a

g2a−3〈P †1Pa〉 (5.86)

−
(∑
ab

g2ab(〈P †1 〉〈Pabbb3〉+ 〈P †1 〉〈Pab3b
†
−b〉)−

∑
ab

g1ab
(
〈P2〉〈Pab†3bb〉+ 〈P2〉〈Pab†3b

†
−b〉
))

(5.87)

−
(∑
ab

g2ab
(
〈Pabb〉〈P1b

†
3〉+ 〈Pab†−b〉〈P1b

†
3〉
)
−
∑
ab

g1ab
(
〈Pabb〉〈P2b3〉+ 〈Pab†−b〉〈P2b3〉

))
.

(5.88)
Now it is time to perform a correlation expansion of our 4-operator quantity

〈P †1P2b3b4〉 ≈ 〈P †1P2〉〈b3b4〉+ 〈P †1 b3〉〈P2b4〉+ 〈P †1 b4〉〈P2b3〉, (5.89)

while we use the same Born approximation as before for

〈P1b2b3〉 ≈ 〈P1〉〈b2b3〉. (5.90)
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We then neglect the 〈b1b2〉 and 〈b†1b†2〉 terms because we are only interested in inco-
herent phonons, and then we finally neglect the 〈P †1P †aP2Pb〉 term. Doing all of this
then results in

i~
∂

∂t
δO123

∣∣∣∣∣
H=Hc−phon

(5.91)

≈
∑
ab

g2ab(〈P †1Pa〉 − 〈P †1 〉〈Pa〉)〈b3b
†
−b〉 −

∑
ab

g1ab(〈P †aP2〉 − 〈P †a〉〈P2〉)〈b†bb3〉 (5.92)

+
∑
ab

g2ab(〈P †1 bb〉〈Pab3〉+ 〈P †1 b3〉〈Pabb〉)−
∑
ab

g1ab(〈P †ab3〉〈P2b−b〉+ 〈P †ab−b〉〈P2b3〉)

(5.93)
+
∑
ab

g2ab(〈P †1 b†−b〉〈Pab3〉+ 〈P †1 b3〉〈Pab†−b〉)−
∑
ab

g1ab(〈P †ab3〉〈P2b
†
b〉+ 〈P †ab

†
b〉〈P2b3〉)

(5.94)

−
(∑
ab

g2ab
(
〈Pabb〉〈P1b

†
3〉+ 〈Pab†−b〉〈P1b

†
3〉
)
−
∑
ab

g1ab
(
〈Pabb〉〈P2b3〉+ 〈Pab†−b〉〈P2b3〉

))
(5.95)

=
∑
ab

g2abδN1a〈b3b
†
−b〉 −

∑
ab

g1abδNa2〈b†bb3〉 (5.96)

+
∑
ab

g2ab
(
S̃1bSa3

)
−
∑
ab

g1ab
(
S̃a3S2−b

)
(5.97)

+
∑
ab

g2ab (S1−bSa3)−
∑
ab

g1ab
(
S̃a3S̃2b

)
, (5.98)

which once again can be simplified further by identifying 〈b†1b2〉 = n1δ12 and 〈b1b
†
2〉 =

(1 + n1)δ12 to obtain our final expression,

i~
∂

∂t
δO123

∣∣∣∣∣
H=Hc−phon

(5.99)

=
∑
ab

g2ab
(
S̃1bSa3 + S1−bSa3 + δN1a(1 + n3)δb−3

)
−
∑
ab

g1ab
(
S̃a3S2−b + S̃a3S̃2b + δNa2n3δb3

)
.

(5.100)

For Õ we get the same expressions (with Õ instead of O) for the non-phonon related
terms, while the rest in the same way become

i~
∂

∂t
δÕ123

∣∣∣∣∣
H=H0,phon

= −E3δÕ123 (5.101)

and

i~
∂

∂t
δÕ123

∣∣∣∣∣
H=Hc−phon

=
∑
ab

g2ab
(
S1bS̃a3 + S̃1−bS̃a3 + δN1an3δb3

)
(5.102)

−
∑
ab

g1ab
(
Sa3S̃2−b + Sa3S2b + δNa2(1 + n3)δb−3

)
. (5.103)
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5.2 Simplifying the density equation

We now have arrived at the equation

i~
∂

∂t
δN12 = (E2 − E1)δN12 (5.104)

+
∑
a

(
M2aδT̃1a −M1aδT̃2a

)
(5.105)

+
∑
ab

g2ab(δO1ab + δÕ1a−b)−
∑
ab

g1a−b(δOa2b + δÕa2−b) (5.106)

+
∑
ab

g2abpa
(
δS̃1b + δS1−b

)
−
∑
ab

g1a−bpa(δS2b + δS̃2−b) (5.107)

+
∑
a

T2aδN1a −
∑
a

T1aδNa2, (5.108)

where the photon assisted polarization follows

i~
∂

∂t
δT̃12 = (E1 − ~ω2)δT̃12 (5.109)

−
∑
a

Ma2δNa1 (5.110)

+
∑
a

T1aδT̃a2 (5.111)

and the phonon assisted densities obey

i~
∂

∂t
δO123 = (E2 − E1 + E3)δO123 (5.112)

+
∑
ab

g2ab
(
S̃1bSa3 + S1−bSa3 + δN1a(1 + n3)δb−3

)
(5.113)

−
∑
ab

g1ab
(
S̃a3S2−b + S̃a3S̃2b + δNa2n3δb3

)
(5.114)

+
∑
a

T2aδO1a3 −
∑
a

T1aδOa23 (5.115)

and

i~
∂

∂t
δÕ123 = (E2 − E1 − E3)δÕ123 (5.116)

+
∑
ab

g2ab
(
S1bS̃a3 + S̃1−bS̃a3 + δN1an3δb3

)
(5.117)

−
∑
ab

g1ab
(
Sa3S̃2−b + Sa3S2b + δNa2(1 + n3)δb−3

)
(5.118)

+
∑
a

T2aδÕ1a3 −
∑
a

T1aδÕa23. (5.119)

Like we did for the phonon assisted polarizations in 4.1.2 we will now proceed to
find approximate expressions for the photon assisted polarization and the phonon
assisted densities. Just like earlier the tunneling contributions will be neglected since
the delta functions will contain interlayer energy differences, which are relatively
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5. The exciton density equation

large compared to the contents of the other delta functions. The terms containing
the phonon assisted polarizations will be neglected as well since the final expression
would contain a product of three delta functions. Using these modifications we then
end up with

δT̃12 ≈ −
π

i~
∑
a

Ma2δNa1δ(Ea − ~ω2) (5.120)

δO123 ≈
π

i~
∑
a

g2a−3δN1a(1 + n3)δ(E2 − Ea + E3) (5.121)

− π

i~
∑
a

g1a3δNa2n3δ(Ea − E1 + E3) (5.122)

and

δÕ123 ≈
π

i~
∑
a

g2a3δN1an3δ(E2 − Ea − E3) (5.123)

− π

i~
∑
a

g1a−3δNa2(1 + n3)δ(Ea − E1 − E3). (5.124)

Inserting this into the density equation then results in

∂

∂t
δN12 (5.125)

= 1
i~

(E2 − E1)δN12 (5.126)

− π

~2

∑
ab

(M2aMabδNa1 +M1bMabδNa2) δ(Ea − ~ωb) (5.127)

− π

~2

∑
abc

g2ac (gab−cδN1b(1 + nc)δ(Ea − Eb + Ec)− g1bcδNbancδ(Eb − E1 + Ec))

(5.128)

− π

~2

∑
abc

g2ac (gab−cδN1bn−cδ(Ea − Eb − E−c)− g1bcδNba(1 + n−c)δ(Eb − E1 − E−c))

(5.129)

− π

~2

∑
abc

g1a−c (g2b−cδNab(1 + nc)δ(E2 − Eb + Ec)− gabcδNb2ncδ(Eb − Ea + Ec))

(5.130)

− π

~2

∑
abc

g1a−c (g2b−cδNabn−cδ(E2 − Eb − E−c)− gabcδNb2(1 + n−c)δ(Eb − Ea − E−c))

(5.131)

+ π

~2

∑
abc

g2acpa (g1bcpbncδ(E1 − Eb − Ec) + g1bcpb(1 + n−c)δ(E1 − Eb + E−c))

(5.132)

+ π

~2

∑
abc

g1a−cpa(g2b−cpb(1 + nc)δ(E2 − Eb + Ec) + g2b−cpbn−cδ(E2 − Eb − E−c))

(5.133)

+ 1
i~
∑
a

T2aδN1a −
1
i~
∑
a

T1aδNa2. (5.134)
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What we normally would like to do now is to focus only on densities by enforcing
δN12 = δN1δ12. If we do this for the tunneling terms they will disappear though,
since we would obtain factors like δl1l2δl1 l̄2 . To circumvent this we treat the coupled
equations

i~
∂

∂t
δN12

∣∣∣∣∣
H=H0+HT

= (E2 − E1)δN12 (5.135)

+
∑
a

T2aδN1a −
∑
a

T1aδNa2 (5.136)

and

i~
∂

∂t
δN1

∣∣∣∣∣
H=H0+HT

=
∑
a

T1aδN1a −
∑
a

T1aδNa1 (5.137)

= 2i
∑
a

Im(T1aδN1a) (5.138)

separately. By using a Markov approximation to find an approximate solution to
(5.135) we get

δN12|H0+HT ≈
π

i~
∑
a

T2aδN1aδ(E2 − Ea)−
π

i~
∑
a

T1aδNa2δ(Ea − E1). (5.139)

By inserting this into (5.137) and now enforcing δN12 = δN1δ12 then gives us

i~
∂

∂t
δN1

∣∣∣∣∣
H=H0+HT

≈ 2i
∑
ab

Im
(
T1a

π

i~
(TabδN1bδ(Ea − Eb)− T1bδNbaδ(Eb − E1))

)
(5.140)

= −2πi
~
∑
a

Im (T1a (Ta1δN1 − T1aδNa)) δ(Ea − E1) (5.141)

= 2πi
~
∑
a

|T1a|2(δNa − δN1)δ(Ea − E1). (5.142)

An interesting fact is that this is the same expression that would have been obtained
using Fermi’s golden rule.
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With this out of the way we can now finally obtain

∂

∂t
δN1 = −2π

~2

∑
a

|M1a|2δN1δ(E1 − ~ωa) (5.143)

− π

~2

∑
ab

|g1ab|2(δN1(1 + nb)δ(Ea − E1 + Eb)− δNanbδ(Ea − E1 + Eb))

(5.144)

− π

~2

∑
ab

|g1ab|2(δN1nbδ(Ea − E1 − Eb)− δNa(1 + nb)δ(Ea − E1 − Eb))

(5.145)

− π

~2

∑
ab

|g1ab|2(δNa(1 + nb)δ(E1 − Ea + Eb)− δN1nbδ(E1 − Ea + Eb))

(5.146)

− π

~2

∑
ab

|g1ab|2(δNanbδ(E1 − Ea − Eb)− δN1(1 + nb)δ(E1 − Ea − Eb))

(5.147)

+ π

~2

∑
abc

g1acg1bcpapb(ncδ(E1 − Eb − Ec) + (1 + nc)δ(E1 − Eb + Ec)) (5.148)

+ π

~2

∑
abc

g1acg1bcpapb((1 + nc)δ(E1 − Eb + Ec) + ncδ(E1 − Eb − Ec)) (5.149)

+ 2π
~2

∑
a

|T1a|2(δNa − δN1)δ(Ea − E1). (5.150)

If we now look at the first term we can see that it is strikingly similar to a term we
had in the Bloch equation in 4.2. In fact, we can perform the same approximation
here and use

2π
~2

∑
a

|M1a|2δN1δ(E1 − ~ωa) ≈ 2γ11
radδN1δse1sh1

δQ1,0 (5.151)

We also introduce a new index that we simply call ”±”, which takes on the ”values”
+ and −. By doing this we can contract our density equation to

∂

∂t
δN1 = −2γ11

radδN1δse1sh1
δQ1,0 (5.152)

− 2π
~2

∑
ab±
|g1ab|2δN1

(1
2 ±

1
2 + nb

)
δ(Ea − E1 ± Eb) (5.153)

+ 2π
~2

∑
ab±
|g1ab|2δNa

(1
2 ±

1
2 + nb

)
δ(E1 − Ea ± Eb) (5.154)

+ 2π
~2

∑
abc±

Re (g1acg1bcpapb)
(1

2 ±
1
2 + nb

)
δ(E1 − Eb ± Ec) (5.155)

+ 2π
~2

∑
a

|T1a|2(δNa − δN1)δ(Ea − E1). (5.156)

Now that we have gotten this far it is finally time to expand the indices. As we do
not have any processes that do not conserve the spin we can shorten our notation
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to only include a single spin index instead of one for the electron and one for the
hole. Doing this leads to the exciton density equation:

∂

∂t
δN

µ1s1lh1 le1
Q1

(5.157)

= −2γµ1s1lh1 le1
rad δN

µ1s1lh1 le1
0 δQ1,0 (5.158)

− 2π
~2

∑
Klαµ±

∣∣∣gs1lh1 le1 lαµ1µ
Q1+K,−K

∣∣∣2 δNµ1s1lh1 le1
Q1

(1
2 ±

1
2 + nlαK

)
δ
(
E
µs1lh1 le1
Q1+K − Eµs1lh1 le1

Q1
± E lαK

)
(5.159)

+ 2π
~2

∑
Klαµ±

∣∣∣gs1lh1 le1 lαµ1µ
Q1+K,−K

∣∣∣2 δNµs1lh1 le1
Q1+K

(1
2 ±

1
2 + nlαK

)
δ
(
E
µ1s1lh1 le1
Q1

− Eµs1lh1 le1
Q1+K ± E lαK

)
(5.160)

+ 2π
~2

∑
Klαµν±

Re
(
g
s1lh1 le1 lαµ1µ
Q1+K,−K g

s1lh1 le1 lαµ1ν
Q1+K,−K p

µs1lh1 le1
Q1+K p

νs1lh1 le1
Q1+K

)
(5.161)

·
(1

2 ±
1
2 + nlαK

)
δ
(
E
µ1s1lh1 le1
Q1

− Eνs1lh1 le1
Q1+K ± E lαK

)
(5.162)

+ 2π
~2

∑
Qlhleµ

∣∣∣T s1lh1 le1 lhleµ1µ
Q1,Q

∣∣∣2 (δNµs1lhle
Q − δNµ1s1lh1 le1

Q1

)
δ
(
Eµs1lhle
Q − Eµ1s1lh1 le1

Q1

)
.

(5.163)

Now, after all this work, we can finally start analyzing the equation. We can see
that the first row describes radiative decay of the exciton densities. The next two
rows describe exciton-phonon scattering while the fourth row shows how incoherent
exciton densities can form from the non-radiative decay of coherent densities. Finally
the last row describes how inter and intralayer excitons will form from intra- and
interlayer ones through tunneling.

5.3 Solving the density equation

For solving the density equation numerically the same methods as for the Bloch
equation were used. For the tunneling matrix element some further simplifications
were made however. Without DFT input we have to resort to using the overlap
integral Mab

T ≡ 〈Φa|ei(kb−ka)·r|Φb〉 and correlation length LC as parameters. Since
we wanted as few parameters as possible we ignored the index dependence of MT ,
reducing the number of parameters to two. We will also restrict ourselves to the
lowest excitonic energy states for the sake of saving computation time (we have seen
in the absorption spectrum that a relatively small number of these get absorbed and
the increasing sharpness of the wavefunctions means that the matrix elements will
decrease in size), and A excitons. The reason for excluding the B excitons is that
without including either spin flipping or intervalley processes we have no way for
them to decay to the ground state,which is what the rest of the thesis will be all
about. This is definitely something that could be worth looking into in the future
though.
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Figure 5.1: In this figure the total number of intralayer exciton densities can be
seen plotted against time for temperatures T = 300, 77 K. Here we can see how
most of the coherent densities dephase into incoherent ones at a rate that lessens
with the temperature. The missing number have been lost to radiative dephasing.
We can also see that an equilibrium is reached within a timescale of hundreds of fs.

In 5.1 we have have plotted the total number (normalized) of intralayer excitons
against time, separated into layers and coherency, for the temperatures T = 300, 77 K
and without the tunneling. We can see here that the system reaches an equilibrium
within a timespan of hundreds of fs. We can also see how the incoherent excitons
are created as the coherent ones disappear. The total number of incoherent excitons
do not match that of the coherent ones however. The missing number corresponds
to those that have decayed radiatively.

In Figure 5.2 we have a similar set of graphs. Here we have not integrated over
the momentum however, in order to see how the excitons’ momentum distribution
looks. We have left out the coherent excitons, since these are zero for Q 6= 0 with
the tunneling neglected. In these we can see that the exciton densities are centered
around Q = 0, decreasing with larger momenta. This can be easily explained by
looking at the electronic dispersion, since Q = 0 is the energetic minimum. We
can also see that the distribution becomes narrower for lower temperatures, which
can be explained by the phonon occupation decreasing making it harder to absorb
phonons (the terms containing nK) while not affecting the emission that much (the
terms containing 1 + nK).

The experiment we are trying to predict was performed at T = 4.5 K, a temperature
low enough that it is not a bad approximation to say that for the purpose of calcu-
lating the tunneling element all excitons can be assumed to lie at zero momentum.
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5. The exciton density equation

Figure 5.2: In this figure the incoherent intralayer exciton densities can be seen
plotted against time and momentum for temperatures T = 300, 77 K. Here we can
see that the densities increase with lower Q, and that the distribution gets narrower
for lower temperatures.

In other words we can reduce the effective element to∣∣∣T s1lh1 le1 lhleµ1µ
Q01 ,Q0

∣∣∣2 (δNµs1lhle
Q − δNµ1s1lh1 le1

Q1

)
δ
(
Eµs1lhle
Q − Eµ1s1lh1 le1

Q1

)
, (5.164)

where Q01 and Q0 are the lowest possible momenta that obey the energy conserva-
tion enforced by the delta function. By consequence one of them will be zero while
the other will be as low as it can be. These momenta will therefore be uniquely
determined by the spin, layer and energy level indices.

The part of the tunneling Hamiltonian that involves LC is given by

πL2
C(

1 + q2L2
C

2

) 3
2
. (5.165)

If we then look at the full element in the excitonic picture we can then see that this
q is precisely the difference between these two momenta, meaning that for a fixed
set of spin, layer and energy level indices this will be a constant. If we then assume
that q2L2

C

2 is significantly larger than 1 we can finally find

MT
πL2

C(
1 + q2L2

C

2

) 3
2
≈ MT

LC

2 2
3π

q3 , (5.166)

meaning that we can treat MT

LC
as a single parameter as long as LC is large enough.

The relevant momenta turn out to be a bit over 2 nm−1, meaning that a value as
small as LC = 2 nm does not give too bad of an approximation.
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Figure 5.3: In this figure the total number of exciton densities can be seen plotted
against time for temperatures T = 300, 77 K. Here we can see how the intralayer
densities eventually get transformed into interlayer densities (specifically the ener-
getically lower one) through tunneling, at a much larger timescale (about 100 ps)
than the one for the phonon scattering. We can also see another interesting detail.
For T = 77 K the intralayer excitons decay at similar rates, while the MoSe2 one
clearly decays faster for T = 300 K. This can be explained by looking at Figure
5.5. There we can see that while the WSe2 and interlayer dispersions have similar
curvatures, the one for MoSe2 is a bit lower. This means that for higher Q the
momentum transfer will be smaller, meaning that the tunnelling matrix element
will be larger. Since, as we can see in Figure 5.2, the states with higher momenta
are more populated for higher temperatures, this effect gets more pronounced for
T = 300 K than 77 K

The results for MT

LC
= 2 meV/nm can be seen in Figures 5.3 and 5.4. These have the

same structure as Figures 5.1 and 5.2, but now have the two interlayer densities
added as well. Unlike the previous case, we can now clearly see how the intralayer
densities decrease as the interlayer ones increase. It is however done at a much
slower pace than the phonon scattering, requiring a timescale in the order of 100 ps.

There is also an important asymmetry at work here. The tunneling element is
symmetric, but at equilibrium we have all excitons gathered at the energetically
lowest state, lower interlayer one. The reason for this is rather simple. While the
tunneling element is symmetric the phonon element is not. As we have seen in the
case where we did not include the tunneling, the excitons tend to gather at zero
momentum. We also know that the equilibration time due to phonon scattering is
much faster than the one due to tunneling, meaning that most excitons that have
tunneled from an energetically higher state will scatter to a momentum too low
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Figure 5.4: In this figure the incoherent exciton densities can be seen plotted
against time and momentum for temperatures T = 300, 77 K. Here we can see
how the interlayer densities slowly emerge through tunneling as the intralayer ones
vanish. Only the energetically lower one gets populated though, which is as expected.

to tunnel back. Therefore they will all eventually end up at the lowest possible
state in due time, provided that the temperature is not high enough to have a
significant population at the momenta required for tunneling. This process can be
seen illustrated in Figure 5.5.

5.3.1 Calculating the photoluminescence

We now want to use our solutions to both the Bloch and density equations to cal-
culate the photoluminescence of the system. The intensity intensity can be written
as

I(t) ∝
∑
a

∂

∂t
〈c†aca〉. (5.167)

In other words we wave one more equation of motion to calculate, the one for
the total photon density 〈c†1c2〉. This can be easily accomplished using (4.39) and
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Figure 5.5: This figure is meant to illustrate how the optically excited coherent
intralayer excitons end up in a specific incoherent interlayer exciton state. As the
figure on the left (which only contains the dispersion for the MoSe2 exciton) illus-
trates, the process starts with coherent excitons being excited optically, after which
they dephase. Some do this radiatively, but the ones that do it through phonon
scattering end up as incoherent densities. At this state there are practically only
intralayer densities, since the interlayer optical matrix element is relatively small.
The right figure (where the WSe2 and lower interlayer excitons have been added)
then shows how the newly formed incoherent excitons start decaying to energetically
lower states. The higher ones tunnel to lower ones, after which they quickly scatter
to lower momenta. This continues until they have all ended up in the lowest possi-
ble state, the WSe - MoSe interlayer one. During this time some zero momentum
excitons decay radiatively, but this is not shown to avoid the figure getting cluttered.
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(5.120), giving us

i~
∂

∂t
〈c†1c2〉 = 〈c†1

∂

∂t
c2〉 − 〈

(
∂

∂t
c1

)†
c2〉 (5.168)

= ~ω2〈c†1c2〉+
∑
a

Ma2〈Pac†1〉 (5.169)

− ~ω1〈c†1c2〉 −
∑
a

Ma1〈P †ac2〉 (5.170)

= (~ω2 − ~ω1)〈c†1c2〉+
∑
a

Ma2T̃a1 −
∑
a

Ma1T̃a2 (5.171)

≈ (~ω2 − ~ω1)〈c†1c2〉 (5.172)

− π

i~
∑
ab

Ma2Mb1Nbaδ(Eb − ~ω1)− π

i~
∑
a

Ma1Mb2Nbaδ(Eb − ~ω2),

(5.173)

or in our case with 1 = 2 and Nab = Naδab,

∂

∂t
〈c†1c1〉 = π

~2

∑
a

Ma1Ma1Naδ(Ea − ~ω1) + π

~2

∑
a

Ma1Ma1Naδ(Ea − ~ω1) (5.174)

= 2π
~2

∑
a

|Ma1|2Naδ(Ea − ~ω1) (5.175)

= 2π
~2

∑
a

|Ma1|2(|pa|2 + δNa)δ(Ea − ~ω1). (5.176)

We can now finally obtain our intensity by inserting this into (5.167), resulting in

I(t) ∝ 2π
~2

∑
ab

|Mab|2(|pa|2 + δNa)δ(Ea − ~ωb) (5.177)

= 2π
~2

∑
QKσlhle

|M lhleσ
Q |2(|plhleQ (t)|2 + δN lhle

Q (t))δ(Elhle
Q − ~ωσK)δQ,K‖ . (5.178)

This is however not the form of the intensity we are after. Since this form contains
a sum over the photon momentum, which is related to it’s energy through the
dispersion relation hωK = ~c|K| we can express the sum as a sum over frequency
instead. By then choosing to examine the integrand we obtain the time resolved
photoluminescence,

I(t, ω) ∝
∑
Qσlhle

|M lhleσ
Q |2(|plhleQ (t)|2 + δN lhle

Q (t))δ(Elhle
Q − ~ωσ)δQ,K(ω)‖ . (5.179)

We then use that the photon momentum is relatively small and perform the same
approximation as before, leading to

I(t, ω) ∝
∑
lhle

γ
lh1 le1
rad (|plhle0 (t)|2 + δN lhle

0 (t))δ(Elhle
0 − ~ω). (5.180)

By integrating this over time we then obtain the time integrated photoluminescence,

I(ω) ∝
∫ t

0

∑
lhle

γ
lh1 le1
rad (|plhle0 (t)|2 + δN lhle

0 (t))δ(Elhle
0 − ~ω) dt . (5.181)
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Figure 5.6: The left figure shows the calculated photoluminescence at 77 K for
MT

LC
= 2 meV/nm, in which the interlayer peak can not be seen. For the right one an

approximate form of tunneling assisted emission with LC = 2 nm has been applied,
managing to give the interlayer peak a boost big enough to approximately replicate
the amplitude difference seen in Figure 1.1. Note that the linewidth used is purely
phenomenological. The one computed by this model was much too small, but that
is also to be expected since various processes that would have contributed to it (such
as the experimentally measurement time dependent redshift of the peak position [1]
and intervalley coupling) have not been included.

In both cases the δ functions will be treated as Lorentzians with appropriate linewidths.

As we have stated before, the goal has been to try to recreate Figure 1.1. However,
the code used turned out to be unstable for temperatures that low. For that reason
we had to settle for T = 77 K a temperature that has been shown to give stable
results in the past [15]. This means that our approximation of viewing MT and LC
as a single parameter is not as valid as it could have optimally been, but it will still
have to do for now. As we will see soon, it is not the only approximation we have
had to make. For the same value as before (MT

LC
= 2 meV/nm) the spectrum shown in

the left part of 5.6. As we can see the interlayer peak is completely overshadowed
by the intralayer one. The plan was to then increase MT

LC
until it appeared and see

if the resulting value seemed physical or not. However, the code once again turned
unstable. More specifically, the solution from the Runge-Kutta method started
diverging for larger values.

Instead our attention was turned towards a different direction. When doing inter-
valley physics it is possible for a phonon moving an exciton from a dark state (a
state that can not decay radiatively) to a bright one before decaying in a process
called phonon-assisted emission. In loose term this makes the emission depend on
|gMbright|2 instead of |Mdark|2 ≈ 0. Similarly, one possible way to increase the inter-
layer photoluminescence would be to introduce tunneling-assisted emission, where
the exciton tunnels to an intralayer state before decaying. To test this possibility
we let γRad,inter → |T0,0|2γRad,intra. For low momenta the MT

LC
approximation does not

work however. Instead we end up with MTL
2
C = MT

LC
L3
C , meaning that we have to

choose a value for LC . We decided to go with LC = 2, meaning that the correspond-
ing value for MT would be 4 meV. Whether these are physically plausible or not is
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hard to tell at the moment, but we can still make some inferences.

In the paper we got the LC model from, [14], they they examined values from
LC = 2 nm to 10 nm. They meant for actual values to come from experiment, but
if they were somewhat accurate in their guesses then this value works, if a bit low.
As for MT it is harder to say. At the very least we can probably assume that it is
not too large however, since it is an interlayer integral.

Anyway, using these values the right part of Figure 5.6 was computed. As we can
see, the amplitude ratio in Figure 1.1 was able to be approximately replicated. The
linewidth is however much smaller than the experiment shows (the one used in the
figure is purely phenomenological). One possible reason for this is that they in
the time resolved photoluminescence observe a significant redshift over time, which
would broaden the peak in the spectrum. They hypothesize that this is due to the
excitons interacting with each other. This interaction is something that we neglected
when we ignored most of the Coulomb interaction and treated the excitons as pure
bosons, meaning that investigating these aspects further might give new insight into
this phenomenon. The fact that we have not included intervalley coupling could be
a contributing factor as well.

Note that this result should not be taken as definite. Aside from the linewidth,
there are a few too many uncertainties in the way it was computed to take as
absolute. One way to get a more precise result would be to reduce the number of
parameters by obtaining an approximate value for MT , for example using DFT. A
proper investigation into the tunneling-assisted emission is needed too, since the
current form is nothing but an estimation of what it might look like. Finally it
would be good if the stability of the code would be improved for lower temperatures,
since what applies for 77 K may not be at all applicable for 4.5 K. If this can not
be accomplished another idea could be to calculate for example the peak amplitude
ratio for a variety if temperatures and see if a curve can be fit to the results, allowing
us to extrapolate to lower temperatures. The results do however show that the model
is very much capable of reproducing the experiment, even if the details remain to
be sorted out.
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6
Conclusions

The purpose of this thesis was to propose a theoretical model for interlayer coupling
to recreate the results found in [1], specifically Figure 1.1. To this end a tunneling
Hamiltonian based on [14] was implemented, along with terms for free, carrier-
field, carrier-photon- carrier-phonon and carrier-carrier interaction. Normally the
equations of motion would be derived in the electron-hole picture and then projected
onto the excitonic basis. Here we chose the relatively new approach of projecting the
Hamiltonian itself onto that basis instead. While this made the coupling elements
more complicated it greatly simplified the deriving of the equations, since the number
of operators get reduced. Everything related to the Wannier equation gets absorbed
into the elements as well. Later on it was discovered however that treating the
excitons as bosons may have neglected dynamics needed to explain the results. It is
possible to construct the excitonic Hamiltonian without using this approximation,
but the commutation relations get so complicated that the advantages of using this
formalism may get overshadowed. Looking further into using this formalism may
therefore be needed.

As for the actual results, the densities looked promising. We could observe how
the intralayer densities slowly decreased as the energetically lower interlayer one
increased when the tunneling was applied. The actual photoluminescence was not
as successful though. The observed peak amplitude ratio was able to be replicated,
but an approximation of how tunneling assisted emission might look had to be
implemented to accomplish this, along with having two free parameters to vary. On
top of this the parameters and temperature could not be varied to the extent we
had intended due to computational difficulties. Thus no definitive statements can
be said about the results at the moment.

They do however show that the model allows for a potential recreation of the ex-
periment in the future. Further investigation is definitely needed, but it is not
unreasonable to conclude that promising results may be reached later on.
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A
The correlation expansion

When doing multiparticle physics it is not unusual to encounter expectation values
of multiple operators. We will here use the notation

〈n〉 ≡ 〈A1A2 . . . An〉, (A.1)

where A1,...,n are arbitrary operators, making 〈n〉 an n-operator quantity. A common
method for evaluating this is by performing a correlation expansion. It is possible
to express this expectation value as

〈n〉 = 〈n〉Σ + (〈n− 2〉Σδ〈2〉)Σ + . . .+ (〈1〉δ〈n− 1〉)Σ + δ〈n〉, (A.2)

where the Σ index indicates a summation over all possible permutations and δ〈n〉
is an n-particle correlation function. For example we could express a three-operator
quantity as

〈3〉 = 〈3〉Σ + (〈1〉δ〈2〉)Σ + δ〈3〉 (A.3)
= 〈A1A2〉〈A3〉+ 〈A1A3〉〈A2〉+ 〈A2A3〉〈A1〉+ 〈A1〉〈A2〉〈A3〉 (A.4)
+ 〈A1〉δ〈A2A3〉+ 〈A2〉δ〈A1A3〉+ 〈A3〉δ〈A1A2〉 (A.5)
+ δ〈A1A2A3〉. (A.6)

This may look overly complicated, but it is often necessary if expressions for quan-
tities of lower number are not known but not for higher. It can also be used as an
approximation if certain terms can be neglected. Finally it can be used to separate
quantities into coherent and incoherent terms. For example, a density 〈a†a〉 where
a(†) is a general annihilation (creation) operator can be written as

〈a†a〉 = 〈a†〉〈a〉+ δ〈a†a〉. (A.7)

Here the two terms can be interpreted as the coherent and incoherent parts of the
density.
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B
The Markov approximation

A differential equation on the form

∂

∂t
f(t) = i

~
Eff(t) + g(t) (B.1)

can be solved using formal integration as

f(t) =
∫ t

−∞
dt′g(t′)e i~Ef (t−t′), (B.2)

which using the variable transformation s ≡ t− t′ becomes

f(t) =
∫ ∞

0
dsg(t− s)e i~Ef s. (B.3)

By then using a rotating wave approximation to write g(t) as

g(t) = gslow(t)e i~Egt (B.4)

where gslow(t) is the slowly oscillating part of g(t) we obtain

f(t) = eiEgt
∫ ∞

0
dsgslow(t− s)e i~ (Ef−Eg)s. (B.5)

We now perform the final step, the actual Markov approximation, and say that since
gslow(t) changes slowly relative to the exponential function we can extract it from
the integral. Doing this then finally results in

f(t) ≈ gslow(t)eiEgt
∫ ∞

0
dse

i
~ (Ef−Eg)s (B.6)

= g(t)πδ(Ef − Eg). (B.7)
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C
Classical electrodynamics

The dynamics of an electric wave propagating through a medium is given by the
telegrapher’s equation,(

∇2 − n2

c2
∂2

∂t2

)
E(r, t) = µ0σ

∂

∂t
E(r, t) (C.1)

where n = n(ω) is the refractive index and σ the conductivity. By assuming a plane
wave solution on the form E0e

i(kz−ωt) we then obtain the dispersion relation

k2 = ω2

c2

(
n+ i

σ

ε0ω

)
≡ ω2

c2 ε̃
2, (C.2)

where ε̃ ≡ ε′ + iε′′ is a complex relative permitivity. Since this quantity is complex
the wave vector k ≡ k′+ ik′′ has to be complex as well. Inserting this into the above
expression and using the assumptions ε′ � ε′′ and n ≈

√
ε′ then yields

k′ = ω

c

√
ε′ (C.3)

k′′ = ω

c

ε′′

2
√
ε′
. (C.4)

By using the Beer-Lambert law for the intensity I(z) along with the definition of
the absorption coefficient α(ω) we then obtain

I(z) = |E(z)|2 = E0e
−2k′′z ≡ E0e

−α(ω)z, (C.5)

meaning that we now have an expression for the absorption coefficient,

α(ω) = ω

c

ε′′(ω)√
ε′(ω)

. (C.6)

We now assume a weak ω-dependency in ε′(ω) meaning that we can treat it as
constant, giving

α(ω) ∝ ωε′′(ω) = ω Im(ε̃). (C.7)
We now need an alternative way of expressing ε′′, which we will find by examining
the relationship between the electric field E, the displacement field P and the
macroscopic polarization P which is given by

D = ε0E + P . (C.8)
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If we assume the material to be linear, homogeneous and isotropic we can write D
in the frequency domain as

D(ω) = ε̃(ω)ε0E(ω). (C.9)

In other words the polarization becomes parallel to the electric field, and we get

P (ω) = ε0(ε̃(ω)− 1)E(ω) ≡ ε0χ(ω)E(ω), (C.10)

where χ(ω) is the optical susceptibility. By solving for χ and expressing it in terms
of the current j and vector potential A using the relations j = ∂tP and E = ∂tA
(in the Coulomb gauge) we then obtain

χ(ω) = j(ω)
ε0ω2A(ω) . (C.11)

Using this we can finally obtain a working expression for the absorption coefficient,

α(ω) ∝ ω Im(χ(ω)) ∝ Im
(
j(ω)
ωA(ω)

)
. (C.12)

This will be needed for later, when we calculate the absorption spectra for different
heterostructures.

We still have one more quantity that we want to calculate however. By assuming a
linear relation j = σE and that E propagates in the z direction we can transform
(C.1) into (

∂2

∂z2 −
n2

c2
∂2

∂t2

)
E(z, t) = µ0

∂

∂t
j(z, t), (C.13)

and by looking at a specific polarization we can find the solution

E(t) = E0

(
t− z

c

)
− cµ0

2 j

(
t− |z − z0|

c

)
. (C.14)

Here E0 is the incident field (the homogenous solution), j the resulting current
(inhomogenous solution) and z0 the z coordinate of the surface of the medium. If
we now once again use that E = ∂tA and perform a Fourier transform we then
finally end up with

A(ω) = A0(ω) + cµ0

2 j(ω). (C.15)
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D
Computing the matrix elements

This section contains calculations of some of the matrix elements from 3, specifically
the ones that were deemed too long to keep in the main text.

D.1 Electronic dispersion

To calculate the electronic band structure we start by inserting our wave function
into the Schrödinger equation, obtaining

H
M,X∑
i

Ca
i |Ψa

i 〉 − εa
M,X∑
i

Ca
i |Ψa

i 〉 = 0. (D.1)

If we then proceed to move H into the sum and multiply with 〈Ψa
M | from the left

we end up with

(〈Ψa
M |H|Ψa

M〉 − εa〈Ψa
M |Ψa

M〉)Ca
M + (〈Ψa

M |H|Ψa
X〉 − εa〈Ψa

M |Ψa
X〉)Ca

X = 0, (D.2)

and if we instead use 〈Ψa
X | we get

(〈Ψa
X |H|Ψa

M〉 − εa〈Ψa
X |Ψa

M〉)Ca
M + (〈Ψa

X |H|Ψa
X〉 − εa〈Ψa

X |Ψa
X〉)Ca

X = 0. (D.3)

If we use the notation

Hij ≡ 〈Ψi|H|Ψj〉, Sij ≡ 〈Ψi|Ψj〉 (D.4)

(surpressing the a indices for the moment) we can then express these equations as
a single matrix equation(

HMM − εSMM HMX − εSMX

HXM − εSXM HXX − εSXX

)(
CM
CX

)
= 0. (D.5)

Since we want this equation to have a non-trivial solution we need the matrix to
have a determinant of 0, giving us the condition

(HMM − εSMM)(HXX − εSXX)− (HXM − εSXM)(HMX − εSMX) = 0, (D.6)
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which has the solution

ε = −A2 ±
√
A2

4 −B (D.7)

where
A = HMMSXX +HXXSMM − 2 Re(HMXSXM)

|SMX |2 − SMMSXX
(D.8)

and
B = |HMX |2 −HMMHXX

|SMX |2 − SMMSXX
. (D.9)

We now need to evaluate the overlap integrals. By using the tight binding approxi-
mation we find

HMX = 1
V

∑
RM ,RX

eik·(RX−RM )〈ΦM(r −RM)|H|ΦX(r −RX)〉. (D.10)

By then using a nearest neighbour approximation we can write RX = RM + bi,
where the bi vectors are defined in 2.1, we find

HMX = 1
V

∑
RM ,bi

eik·bi〈ΦM(r −RM)|H|ΦX(r −RM − bi)〉, (D.11)

which after a r → r +RM shift reduces to

HMX = N

V

∑
bi

eik·bi〈ΦM(r)|H|ΦX(r − bi)〉 (D.12)

where N is the number of M atoms. If we separate the parts that depend on k and
the ones that don’t we can define

e(k) ≡
∑
bi

eik·bi (D.13)

and
t = N

V
〈ΦM(r)|H|ΦX(r − bi)〉 (D.14)

to write Ha
MX as

HMX(k) = e(k)t, (D.15)
where we have neglected any differences in what bi is used for t. By doing the same
for the rest of the integrals and assuming that the Ψi wave functions are orthonormal
we then end up with

HXM = HMX = e(k)t (D.16)

HMM = N

V
〈ΦM |H|ΦM〉 ≡ α0 (D.17)

HXX = N

V
〈ΦX |H|ΦX〉 ≡ β0 (D.18)

SMM = SXX = 1 (D.19)
SMX = SXM = 0. (D.20)

VIII



D. Computing the matrix elements

Inserting these into our definitions of A and B then leads to

A = −(α0 + β0) (D.21)

and
B = α2

0β
2
0 − |e(k)|2|t|2, (D.22)

which gives the band structure the form

εa(k) = αa0 + βa0
2 ±

√
(αa0 − βa0 )2

4 + |e(k)|2|ta|2 (D.23)

≡ Ea
0 ±

√√√√(∆Ea

2

)2

+ |e(k)|2|ta|2. (D.24)

We now do a Taylor expansion around the K/K ′ points to lowest non-zero order
in k, which results in

εa(k) = Ea
0 ±

∆Ea

2 + 3|ta|2
4∆Ea

(
k

aa0

)2
 , (D.25)

which if we expand our a index into band λ, spin s and layer l can be expressed as

ελsl(k) = Eλsl
0 ±

∆Eλsl

2 + 3|tλsl|2
4∆Eλsl

(
k

al0

)2
 (D.26)

We can now finally start interpreting this expression. First we can see that this is
a parabolic approximation of the band structure, meaning that we can define an
effective mass mλsl that fulfills

~2k2

2mλsl
= 3|tλsl|2

4∆Eλsl

(
k

al0

)2

. (D.27)

By taking this effective mass from either experiment or DFT we can therefore elim-
inate the need for computing the tλsl integrals. Using this approximation we can
also easily see that the + and − corresponds to the conduction and valence bands,
meaning that we can write the dispersion as

ελsl(k) = Eλsl
0 + (−1)δλ,v

(
∆Eλsl

2 + ~2k2

2mλsl

)
. (D.28)

Since the sign is now λ dependent we can now absorb Eλsl
0 into ∆Eλsl, leaving us

with our final expression

ελsl(k) = (−1)δλ,v
(

∆Eλsl

2 + ~2k2

2mλsl

)
. (D.29)

Now we only have ∆Eλsl left, which can be interpreted as the band gap energy.
Giving an exact value for this isn’t that easy though, since the band gap depends on
the properties of both the valence and conduction bands. What we can do is make
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use of the fact that constant energy offsets don’t contribute to dynamics. We are
therefore only interested in energy differences, meaning that we can define

Escsvlclv
G ≡ ∆Ecsclc −∆Evsvlv , (D.30)

which is something we can take from experiment. The spin dependency is easy to
find an expression for. Going by Figure 2.3, we can see that it can be written as

∆Eλsl = ∆El
0 ± Eλl

soc, (D.31)

where Eλsl
soc is the offset due to spin-orbit coupling and the sign depends on the spin

and valley (K or K ′ point).

Now that the dispersion has been evaluated we can move on to find expressions
for the tight binding coefficients. By inserting (D.29) into (D.5) and solving it we
obtain the expressions

Ca
M(k) = Ca

S(k)ga(k), (D.32)

Ca
S(k) = (−1)δλ,v√

1 + |ga(k)|2
, (D.33)

ga(k) = taea(k)
∆Ea

2 − εa(k)
. (D.34)

D.2 Optical matrix element

Using the tight binding approximation and the fact that the spin dependent parts
of the wave functions are orthonormal we can write the optical matrix element as

M ab = −i~e0

m0
〈Ψa|∇|Ψb〉 (D.35)

= −i~e0

m0

1
V

M,X∑
i,j

Ca
i C

b
j

∑
Ri,Rj

ei(kb·Rj−ka·Ri)〈Φa
i (r −Ri)|∇|Φb

j(r −Rj)〉δsa,sb .

(D.36)

After performing a variable transformation Rj → Ri + T and shifting r → r +Ri

we can rewrite it as

M ab = −i~e0

m0

1
V

M,X∑
i,j

Ca
i C

b
j

∑
Ri,T

eiRi(kb−ka)eikb·T 〈Φa
i (r)|∇|Φb

j(r − T )〉δsa,sb . (D.37)

Part of this expression can be written as∑
Ri

eiRi·(kb−ka) = N
∑
G

δG,kb−ka , (D.38)
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where the inclusion of the reciprocal lattice vectors comes from the periodicity of
the lattice. We will however only consider the case where G = 0, leading to

M ab = −i~e0

m0

N

V

M,X∑
i,j

Ca
i C

b
j

∑
T

eikb·T 〈Φa
i (r)|∇|Φb

j(r − T )〉δsa,sbδka,kb . (D.39)

As we can see, this physically means that we neglect any momentum transfer from
the exciting field, which is reasonable since the photon momenta for the frequencies
used are much smaller than the relevant electron momenta.

It is now time to expand our compound indices. First we shorten our notation by
defining

Mλaλbsalalb
ka

≡Mλaλbsasblalb
kakb

δsasbδka,kb (D.40)

We then neglect intraband transitions. We therefore only need to calculate

M vcsll
ka = −i~e0

m0

1
Ωl

(
Cvsl
M Ccsl

M

∑
T

eikb·T 〈Φvl
M(r)|∇|Φcl

M(r − T )〉 (D.41)

+ Cvsl
M Ccsl

X

∑
T

eikb·T 〈Φvl
M(r)|∇|Φcl

X(r − T )〉 (D.42)

+ Cvsl
X Ccsl

M

∑
T

eikb·T 〈Φvl
X(r)|∇|Φcl

M(r − T )〉 (D.43)

+ Cvsl
X Ccsl

X

∑
T

eikb·T 〈Φvl
X(r)|∇|Φcl

X(r − T )〉
)
δsasbδka,kb (D.44)

where Ω = V
N

is the volume (area) of a single unit cell.

We will now proceed to make a nearest neighbour approximation, which means that
we will need to treat the intra and interlayer case somewhat differently. If we start
with the intralayer case we can eliminate the on site T = 0 case for parity reasons,
leaving us with T = ±bi and the MX and XM terms. In other words we get

M vcsll
k = −i~e0

m0

1
Ω

Cvsl
M Ccsl

X

∑
bi

eik·bi〈Φvl
M(r)|∇|Φcl

X(r − bi)〉 (D.45)

+ Cvsl
X Ccsl

M

∑
bi

e−ik·bi〈Φvl
X(r)|∇|Φcl

M(r + bi)〉
 δsasbδka,kb . (D.46)

We now need to find a way to evaluate the integrals. It is possible to show that for
graphene they can be expressed as

〈Φvl
M(r)|∇|Φcl

X(r ∓ bi)〉 = ± bi
|bi|

M ll (D.47)

due to the xy rotational symmetry and z antisymmetry of the relevant 2pz orbitals.
In TMD’s this doesn’t really work anymore however, since different orbitals with
different symmetries are involved. They are however similar enough that it can be
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used as an approximation, which leads us to

M vcsll
k = −i~e0

m0

1
Ω

Cvsl
M Ccsl

X

∑
bi

eik·bi
bi
|bi|

M ll − Cvsl
X Ccsl

M

∑
bi

e−ik·bi
bi
|bi|

M ll

 δsasbδka,kb
(D.48)

= −i~e0

m0

1
Ω

1
|b|
M ll

∑
bi

(
eik·biCvsl

M Ccsl
X − e−ik·biCvsl

X Ccsl
M

)
biδsasbδka,kb , (D.49)

where |b| refers to the size of any of the bi vectors. We then rewrite the tight binding
coefficients as

CM(k) = CX(k)g(k) ≡ CX(k)α(k)
∑
bi

eik·bi , (D.50)

giving us

M vcsll
k (D.51)

= −i~e0

m0

1
Ω

1
|b|
M ll

∑
bi,bj

(
Cvsl
X Ccsl

X αvsleik·(bi−bj) − Cvsl
X Ccsl

X αcsleik·(bj−bi)
)
biδsasbδka,kb .

(D.52)

By looking at our expressions for the tight binding coefficients we can see that
|αc| � |αv|, meaning that we can throw away the first term. We then perform a
Taylor expansion around the K/K ′ points to end up with

M vcsll
k = i~e0

m0

1
Ω

1
|b|
M llCvsl

X Ccsl
X αcsl

∑
bi,bj

eiK/K
′·(bj−bi)(ik · bj − ik · bi)biδsasbδka,kb ,

(D.53)
which after inserting the actual expressions for bi and K/K ′ results in

M vcsll
k |K = ~e0

m0

1
Ωl

1
|b|
M ll 3

√
3

4al0
Cvsl
X Ccsl

X αcsl(kx − iky)(x̂+ iŷ)δsasbδka,kb (D.54)

= ~e0

m0

1
Ωl

1
|b|
M ll 3

√
3

4al0
Cvsl
X Ccsl

X αcslke−iϕk
(

1
i

)
δsasbδka,kb , (D.55)

M vcsll
k |K′ = ~e0

m0

1
Ωl

1
|b|
M ll 3

√
3

4al0
Cvsl
X Ccsl

X αcsl(kx + iky)(x̂− iŷ)δsasbδka,kb (D.56)

= ~e0

m0

1
Ωl

1
|b|
M ll 3

√
3

4al0
Cvsl
X Ccsl

X αcslkeiϕk
(

1
−i

)
δsasbδka,kb (D.57)

where we for the second lines have expressed k in complex polar coordinates. It is
known from experiment that TMD’s absorb around 10% of incoming light, meaning
that all of the prefactors can be absorbed into M ll which is then chosen to fit this
number.

For the interlayer case the situation is a bit more complicated since we now need to
consider the displacement in the z direction. While it should be possible to make
a similar but more extensive analysis for this case, what we decided to do instead
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was to request external help in calculating the matrix element itself using DFT. By
then assuming a similar shape as the one for the interlayer case we could find an
estimate for M ll′ , l 6= l′ as

M ll′ ≈ 10−3M ll.

D.3 Coulomb matrix element

Using the Fourier transform
V (r) =

∑
q

Vqe
iq·r (D.58)

where V (r) and Vq are the Coulomb potentials in real and Fourier space we can
express the Coulomb matrix element as

V ab
cd = 〈Ψa(r)Ψb(r′)|V (r − r′)|Ψc(r)Ψd(r′)〉 (D.59)

=
∑
q

Vq〈Ψa|eiq·r|Ψc〉〈Ψb|e−iq·r|Ψd〉 (D.60)

≡
∑
q

VqΓac(q)Γbd(−q). (D.61)

Using the same steps as for the optical matrix element (use the orthonormality of the
spin wave functions, make a tight binding approximation and rewrite Rj → Ri+T )
we can then express the overlap integrals as

Γac(q) = 1
V

M,X∑
i,j

Ca
i C

c
j

∑
Ri,T

eiRi·(kc−ka)eikc·T 〈Φa
i (r −Ri)|eiq·r|Φc

j(r −Ri − T )〉δsa,sc

(D.62)

= 1
V

M,X∑
i,j

Ca
i C

c
j

∑
Ri,T

eiRi·(kc−ka+q)eikc·T 〈Φa
i (r)|eiq·r|Φc

j(r − T )〉δsa,sc . (D.63)

We once again identify the δ function as∑
Ri

eiRi·(kc−ka+q) =
∑
G

δG,kc−ka+q (D.64)

and neglect any contributions from G 6= 0, leading to

Γac(q) = 1
Ω

M,X∑
i,j

Ca
i C

c
j

∑
T

eikc·T 〈Φa
i (r)|eiq·r|Φc

j(r − T )〉δsa,scδka,kc+q. (D.65)

We now Taylor expand the eiq·r exponential to first order and examine the two terms
separately. The first one is a simple overlap integral,

Γ0
ac(q) = 1

Ω

M,X∑
i,j

Ca
i C

c
j

∑
T

eikc·T 〈Φa
i (r)|Φc

j(r − T )〉δsa,scδka,kc+q. (D.66)
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Using a nearest neighbour approximation (with the nearest neighbour here being
the on-site (at least in the in-plane meaning) interaction T = 0, i = j) we end up
with

Γ0
ac(q)|intra = 1

Ω

M,X∑
i

Ca
i C

c
i 〈Φa

i |Φc
i〉δla,lcδsa,scδka,kc+q (D.67)

= 1
Ω

M,X∑
i

Ca
i C

c
i δλa,λcδla,lcδsa,scδka,kc+q (D.68)

and

Γ0
ac(q)|inter = 1

Ωe
ikc·R

M,X∑
i

Ca
i C

c
i 〈Φa

i (r)|Φc
i/̄i(r −R)〉δla,l̄cδsa,scδka,kc+q, (D.69)

where δla,l̄c is meant to signify that la 6= lc, i/̄i means that one type of atom couples
to either the same type or a different type depending on stacking and R = Rẑ is
the vector connecting the two layers.

Before we approach the first order term we first need to bring up something called
the p-r relations. Using the fact that the optical component of the Hamiltonian can
be expressed both in terms ofM ·A and d ·E it is possible to find the relationship

〈Φa
i (r)|r|Φc

j(r − T )〉 = ~
m0

1
∆ωca 〈Φ

a
i (r)|∇|Φc

j(r − T )〉, (D.70)

where ∆ωca ≡ ωc − ωa is the transition frequency between the two states. Using
this relationship we can now express the first order term as

Γ1
ac(q) (D.71)

= 1
Ω

M,X∑
i,j

Ca
i C

c
j

∑
T

eikc·T 〈Φa
i (r)|iq · r|Φc

j(r − T )〉δsa,scδka,kc+q (D.72)

= 1
∆ωca

−1
e0
q ·

(−i~e0

m0

)
1
Ω

M,X∑
i,j

Ca
i C

c
j

∑
T

eikc·T 〈Φa
i (r)|∇|Φc

j(r − T )〉δsa,scδka,kc+q


(D.73)

= − 1
e0∆ωcaq ·M

λaλcsasclalc
ka,kc+q , (D.74)
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meaning that in the end we get

V ab
cd (D.75)

=
∑
q

Vq (D.76)

·

 1
Ω

M,X∑
i

Ca
i C

c
i (δλa,λcδla,lc + 〈Φa

i (r)|Φc
i/̄i(r −R)〉δla,l̄c)−

1
e0∆ωcaq ·M

λaλcsasclalc
ka,kc+q


(D.77)

·

 1
Ω

M,X∑
j

Cb
jC

d
j (δλb,λdδlb,ld + 〈Φa

j (r)|Φc
j/j̄(r −R)〉δlb,l̄d) + 1

e0∆ωbdq ·M
λbλdsbsdlbld
kb,kd−q


(D.78)

· δsb,sdsa,scδka,kc+qδkb,kd−q. (D.79)

Here we can see that for the intralayer case we can neglect the first order term in
the case of intraband transitions. For the purposes of this thesis those are the only
types of transitions we will consider, because interband transitions requires larger
energies than those of typical Coulomb interactions due to the large band gap.

As usual the situation is more complex for the interlayer case. On one hand we know
that the optical matrix elements are really small, but on the other hand we need
to calculate the 〈Φa

i (r)|Φc
i/̄i(r −R)〉 overlap integral to be able to compare them.

This could be done using DFT, but since we need external help with that anyway
we might as well calculate the whole of 〈Φa

i (r)|eiq·r|Φc
i/̄i(r−R)〉 instead. Using this

input we then in this approach end up with

V ab
cd = 1

Ω2

∑
q

Vq

M,X∑
i,j

Ca
i C

c
iC

b
jC

d
j (D.80)

· (δla,lc + 〈Φa
i (r)|eiq·r|Φc

i/̄i(r −R)〉δla,l̄c)(δlb,ld + 〈Φa
j (r)|eiq·r|Φc

j/j̄(r −R)〉δlb,l̄d)
(D.81)

· δλb,λdλa,λc
δsb,sdsa,scδka,kc+qδkb,kd−q. (D.82)
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D.3.1 Going to the pair operator picture

To convert the Coulomb Hamiltonian to the pair operator picture we start off by
rearranging the terms as

Hc−c = 1
2

∑
kek
′
eqses

′
elalblcld

V
ccses′elalblcld
ke,k

′
e,q

c†selake+qc
†s′elb
k′e−q

c
s′eld
k′e

cselcke
(D.83)

+ 1
2

∑
khk

′
hqshs

′
h
lalblcld

V
vvshs

′
hlalblcld

kh,k
′
h,q

v†shlakh+qv
†s′hlb
k′h−q

v
s′hld
k′h

vshlckh
(D.84)

+
∑

kek
′
hqses

′
h
lalblcld

V
cvses′hlalblcld
ke,k

′
h,q

c†selake+qv
†s′hlb
k′h−q

v
s′hld
k′h

cselcke
(D.85)

= −1
2

∑
keqselalbld

V ccseselalblbld
ke,ke+q,q c†selake+qc

seld
ke+q (D.86)

+ 1
2

∑
kek
′
eqses

′
elalblcld

V
ccses′elalblcld
ke,k

′
e,q

c†selake+qc
selc
ke
c
†s′elb
k′e−q

c
s′eld
k′e

(D.87)

− 1
2

∑
khqshlalbld

V vvshshlalblbld
kh,kh+q,q v†shlakh+qv

shld
kh+q (D.88)

+ 1
2

∑
khk

′
hqshs

′
h
lalblcld

V
vvshs

′
hlalblcld

kh,k
′
h,q

v†shlakh+qv
shlc
kh

v
†s′hlb
k′h−q

v
s′hld
k′h

(D.89)

+
∑

kek
′
hses

′
h
lalblc

V
cvses′hlalblclb
ke,k

′
h,0

c†selake
cselcke

(D.90)

−
∑

kek
′
hqses

′
h
lalblcld

V
cvses′hlalblcld
ke,k

′
h,q

c†selake+qc
selc
ke
v
s′hld
k′h

v
†s′hlb
k′h−q

(D.91)

= −1
2

∑
keqselalbld

V ccseselalblbld
ke−q,ke,q c†selake

cseldke
(D.92)

− 1
2

∑
khqshlalbld

V vvshshlalblbld
kh−q,kh,q v†shlakh

vshldkh
(D.93)

+
∑

kek
′
hses

′
h
lalblc

V
cvses′hlalblclb
ke,k

′
h,0

c†selake
cselcke

(D.94)

+ 1
2

∑
kek
′
eqses

′
elalblcld

V
ccses′elalblcld
ke,k

′
e,q

c†selake+qc
selc
ke
c
†s′elb
k′e−q

c
s′eld
k′e

(D.95)

+ 1
2

∑
khk

′
hqshs

′
h
lalblcld

V
vvshs

′
hlalblcld

kh,k
′
h,q

v†shlakh+qv
shlc
kh

v
†s′hlb
k′h−q

v
s′hld
k′h

(D.96)

−
∑

kek
′
hqses

′
h
lalblcld

V
cvses′hlalblcld
ke,k

′
h,q

c†selake+qc
selc
ke
v
s′hld
k′h

v
†s′hlb
k′h−q

(D.97)

The first three terms are all of the form ∑
a ε̃aa

†
aaa, meaning that all they do is

renormalize the band structure. However, since we are going to be using experi-
mental values for quantities like the band gap they will automatically be included
there, meaning that we can simply ignore them. We then proceed by inserting our
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conservation laws for the electron-electron interaction,

He−e = 1
2

∑
kek
′
eqses

′
elalblcld

V
ccses′elalblcld
ke,k

′
e,q

c†selake+qc
selc
ke
c
†s′elb
k′e−q

c
s′eld
k′e

(D.98)

= 1
2

∑
khk

′
hkek

′
eqshs

′
h
ses′elalblcldlhl

′
h

V
ccses′elalblcld
ke,k

′
e,q

P †shlhselakh,ke+q P
shlhselc
kh,ke

P
†s′hl

′
hs
′
elb

k′h,k
′
e−q

P
s′hl
′
hs
′
eld

k′h,k
′
e

(D.99)

= 1
2

∑
khkeqshselalbldlh

V ccseselalblbld
ke−q,ke,q P †shlhselakh,ke

P shlhseld
kh,ke

(D.100)

+ 1
2

∑
khk

′
hkek

′
eqshs

′
h
ses′elalblcldlhl

′
h

V
ccses′elalblcld
ke,k

′
e,q

P †shlhselakh,ke+q P
†s′hl

′
hs
′
elb

k′h,k
′
e−q

P
s′hl
′
hs
′
eld

k′h,k
′
e

P shlhselc
kh,ke

.

(D.101)

The first term can now be thrown away for the same reason as before, leaving us
with

He−e = 1
2

∑
khk

′
hkek

′
eqshs

′
h
ses′elalblcldlhl

′
h

V
ccses′elalblcld
ke,k

′
e,q

P †shlhselakh,ke+q P
†s′hl

′
hs
′
elb

k′h,k
′
e−q

P
s′hl
′
hs
′
eld

k′h,k
′
e

P shlhselc
kh,ke

.

(D.102)
Now we proceed to do the same for the hole-hole interaction,

Hh−h (D.103)

= 1
2

∑
khk

′
hqshs

′
h
lalblcld

V vvshlalblcld
kh,k

′
h,q

v†shlakh+qv
shlc
kh

v
†s′hlb
k′h−q

v
s′hld
k′h

(D.104)

= 1
2

∑
khk

′
hqshs

′
h
lalblcld

V
vvshs

′
hlalblcld

kh,k
′
h,q

(D.105)

·

δlalcshsh
δkh+q,kh −

∑
kesele

P †shlcselekhke
P shlasele
kh+q,ke

 (D.106)

·

δlblds′
h
s′
h
δk′h−q,k′h −

∑
k′es
′
el
′
e

P
†s′hlds

′
el
′
e

k′hk
′
e

P
s′hlbs

′
el
′
e

k′h−q,k
′
e

 (D.107)

= 1
2

∑
khk

′
hshs

′
h
lalb

V
vvshs

′
hlalblalb

kh,k
′
h,0

(D.108)

− 1
2

∑
k′ekhk

′
hshs

′
h
s′elalbldl

′
e

V
vvshs

′
hlalblald

kh,k
′
h,0

P
†s′hlds

′
el
′
e

k′hk
′
e

P
s′hlbs

′
el
′
e

k′h,k
′
e

(D.109)

− 1
2

∑
kekhk

′
hseshs

′
h
lalblcle

V
vvshs

′
hlalblclb

kh,k
′
h,0

P †shlcselekhke
P shlasele
kh,ke

(D.110)

+ 1
2

∑
khk

′
hkek

′
eqshs

′
h
ses′elalblcldlel

′
e

V
vvshs

′
hlalblcld

kh,k
′
h,q

P †shlcselekh,ke
P shlasele
kh+q,keP

†s′hlds
′
el
′
e

k′h,k
′
e

P
s′hlbs

′
el
′
e

k′h−q,k
′
e
.

(D.111)
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As usual we ignore the constant and energy renormalizing terms and continue with

Hh−h = 1
2

∑
khk

′
hkek

′
eqshs

′
h
ses′elalblcldlel

′
e

V
vvshs

′
hlalblcld

kh,k
′
h,q

P †shlcselekh,ke
P shlasele
kh+q,keP

†s′hlds
′
el
′
e

k′h,k
′
e

P
s′hlbs

′
el
′
e

k′h−q,k
′
e

(D.112)

= 1
2

∑
khk

′
hkeshselalblcle

V
vvshs

′
hlalblcla

kh,kh+q,q P †shlcselekh,ke
P shlbsele
kh,ke

(D.113)

+ 1
2

∑
khk

′
hkek

′
eqshs

′
h
ses′elalblcldlel

′
e

V
vvshs

′
hlalblcld

kh,k
′
h,q

P †shlcselekh,ke
P
†s′hlds

′
el
′
e

k′h,k
′
e

P
s′hlbs

′
el
′
e

k′h−q,k
′
e
P shlasele
kh+q,ke .

(D.114)

After once again throwing away the first term and shifting the indices kh → kh−q,
k′h → k′h + q, la ↔ lc, lb ↔ ld for convenience we finally end up with

Hh−h = 1
2

∑
khk

′
hkek

′
eqshs

′
h
ses′elalblcldlel

′
e

V
vvshs

′
hlcldlalb

kh−q,k′h+q,q P
†shlasele
kh−q,ke P

†s′hlbs
′
el
′
e

k′h+q,k′e
P
s′hlds

′
el
′
e

k′h,k
′
e
P shlcsele
kh,ke

.

(D.115)
Now for the final term, the electron-hole interaction

He−h = −
∑

kek
′
hqses

′
h
lalblcld

V
cvses′hlalblcld
ke,k

′
h,q

c†selake+qc
selc
ke
v
s′hld
k′h

v
†s′hlb
k′h−q

(D.116)

= −
∑

kek
′
ekhk

′
hqses

′
eshs

′
h
lalblcldlhl′e

V
cvses′hlalblcld
ke,k

′
h,q

P †shlhselakh,ke+q P
shlhselc
khke

P
†s′hlds

′
el
′
e

k′h,k
′
e

P
s′hlbs

′
el
′
e

k′h−q,k
′
e

(D.117)
= −

∑
kekhqseshlalblcld

V cvseshlalblcld
ke,kh,q

P †shlcselakh,ke+q P
shlbseld
kh−q,ke (D.118)

−
∑

kek
′
ekhk

′
hqses

′
eshs

′
h
lalblcldlhl′e

V
cvses′hlalblcld
ke,k

′
h,q

P †shlhselakh,ke+q P
†s′hlds

′
el
′
e

k′h,k
′
e

P
s′hlbs

′
el
′
e

k′h−q,k
′
e
P shlhselc
khke

.

(D.119)

This time we can see that the first term does more than simply renormalize the
energy. We will cover what it does in more detail later on, but for now we will
simply shift the index kh → kh + q, call it

H0
e−h ≡ −

∑
kekhqseshlalblcld

V cvseshlalblcld
ke,kh+q,q P †shlcselakh+q,ke+qP

shlbseld
kh,ke

(D.120)

and move on. For the remaining term we will perform the same index shift (but for
k′h) as well as lb ↔ ld to find

He−h =
∑

kek
′
ekhk

′
hqses

′
eshs

′
h
lalblcldlhl′e

V
cvses′hlaldlclb
ke,k

′
h+q,q P †shlhselakh,ke+q P

†s′hlbs
′
el
′
e

k′h+q,k′e
P
s′hlds

′
el
′
e

k′h,k
′
e
P shlhselc
khke

.

(D.121)
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D.3.2 Going to the excitonic picture

It is now finally time to convert the Coulomb element to the excitonic picture (the
H0
e−h element excluded since it is handled in the main text). Taking the terms one

at a time we get

He−e (D.122)

= 1
2

∑
khkek

′
hk
′
eKshses

′
h
s′elalblcldlhl

′
h

V
ccses′elalblcld
ke,k

′
e,K

(D.123)

· P †shlhselaαkh+β(ke+K),ke+q−khP
†s′hl

′
hs
′
elb

αk′h+β(k′e−K),k′e−K−k′h
P
s′hl
′
hs
′
eld

αk′h+βk′e,k′e−k′h
P shlhselc
αkh+βke,ke−kh (D.124)

= 1
2

∑
qq′QQ′Kshses

′
h
s′elalblcldlhlh

V
ccses′elalblcld
q+αQ,q′+αQ′,K (D.125)

· P †shlhselaq+βK,Q+KP
†s′hl

′
hs
′
elb

q′−βK,Q′−KP
s′hl
′
hs
′
eld

q′,Q′ P shlhselc
q,Q (D.126)

= 1
2

∑
qq′QQ′Kshses

′
h
s′elalblcldlhl

′
h
µµ′νν′

V
ccses′elalblcld
q+αQ,q′+αQ′,K (D.127)

· ϕµshlhselaq+βK ϕ
µ′s′hl

′
hs
′
elb

q′−βK ϕ
ν′s′hl

′
hs
′
eld

q′ ϕνshlhselcq (D.128)

· P †µshlhselaQ+K P
†µ′s′hl

′
hs
′
elb

Q′−K P
ν′s′hl

′
hs
′
eld

Q′ P νshlhselc
Q (D.129)

≡ 1
2

∑
qq′QQ′Kshses

′
h
s′elalblcldlhl

′
h
µµ′νν′

V
µµ′νν′shses

′
hs
′
elalblcld

e−e,Q,Q′,K (D.130)

· P †µshlhselaQ+K P
†µ′s′hl

′
hs
′
elb

Q′−K P
ν′s′hl

′
hs
′
eld

Q′ P νshlhselc
Q , (D.131)

Hh−h (D.132)

= 1
2

∑
khkek

′
hk
′
eKsh,ses

′
h
s′elhlel

′
h
l′e

V
vv,shs

′
hlcldlalb

kh−K,k′h+K,K (D.133)

· P †shlhselaα(kh−K)+βke,ke−kh+KP
†s′hl

′
hs
′
elb

α(k′h+K)+βk′e,k′e−k′h−K
P
s′hl
′
hs
′
eld

αk′h+βk′e,k′e−k′h
P shlhselc
αkh+βke,ke−kh (D.134)

= 1
2

∑
qq′QQ′Kshses

′
h
s′elalblcldlel

′
e

V
vv,shs

′
hlcldlalb

q−βQ−K,q′−βQ′+K,K (D.135)

· P †shlhselaq−αK,Q+KP
†s′hl

′
hs
′
elb

q′+αK,Q′−KP
s′hl
′
hs
′
eld

q′,Q′ P shlhselc
q,Q (D.136)

= 1
2

∑
qq′QQ′Kshses

′
h
s′elalblcldlel

′
eµµ
′νν′

V
vv,shs

′
hlcldlalb

q−βQ−K,q′−βQ′+K,K (D.137)

· ϕµshlhselaq−αK ϕ
µ′s′hl

′
hs
′
elb

q′+αK ϕ
ν′s′hl

′
hs
′
eld

q′ ϕνshlhselcq (D.138)

· P †µshlhselaQ+K P
†µ′s′hl

′
hs
′
elb

Q′−K P
ν′s′hl

′
hs
′
eld

Q′ P νshlhselc
Q (D.139)

≡ 1
2

∑
qq′QQ′Kshses

′
h
s′elalblcldleleµµ

′νν′

V
µµ′νν′shses

′
hs
′
elhlel

′
hl
′
e

h−h,Q,Q′,K (D.140)

· P †µshlhselaQ+K P
†µ′s′hl

′
hs
′
elb

Q′−K P
ν′s′hl

′
hs
′
eld

Q′ P νshlhselc
Q (D.141)
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and

He−h (D.142)

= −
∑

khkek
′
hk
′
eKshses

′
h
s′elalblcldlhl

′
e

V
cvses′hs

′
hlaldlclb

ke,k
′
h+K,K (D.143)

· P †shlhselaαkh+β(ke+K),ke+K−khP
†s′hl

′
hs
′
elb

α(k′h+K)+βk′e,k′e−k′h−K
P
s′hl
′
hs
′
eld

αk′h+βk′e,k′e−k′h
P shlhselc
αkh+βke,ke−kh (D.144)

= −
∑

qq′QQ′Kshses
′
h
s′elalblcldlhl

′
e

V
cvses′hs

′
hlaldlclb

q+αQ,q′−βQ′+K,K (D.145)

· P †shlhselaq+βK,Q+KP
†s′hl

′
hs
′
elb

q′+αK,Q′−KP
s′hl
′
hs
′
eld

q′,Q′ P shlhselc
q,Q (D.146)

= −
∑

qq′QQ′Kshses
′
h
s′elalblcldlhl

′
eµµ
′νν′

V
cvses′hs

′
hlaldlclb

q+αQ,q′−βQ′+K,K (D.147)

· ϕµshlhselaq+βK ϕ
µ′s′hl

′
hs
′
elb

q′+αK ϕ
ν′s′hl

′
hs
′
eld

q′ ϕνshlhselcq (D.148)

· P †µshlhselaQ+K P
†µ′s′hl

′
hs
′
elb

Q′−K P
ν′s′hl

′
hs
′
eld

Q′ P νshlhselc
Q (D.149)

≡ −1
2

∑
QQ′Kshses

′
h
s′elalblcldlhl

′
eµµ
′νν′

V
µµ′νν′shses

′
hs
′
elhlel

′
hl
′
e

e−h,Q,Q′,K (D.150)

· P †µshlhselaQ+K P
†µ′s′hl

′
hs
′
elb

Q′−K P
ν′s′hl

′
hs
′
eld

Q′ P νshlhselc
Q . (D.151)

We therefore get

Hc−c =
∑

QQ′shses
′
h
s′el

a
h
lb
h
lc
h
ld
h
lae l
b
el
c
el
d
eKµµ

′νν′

V
µµ′νν′shses

′
hs
′
el
a
hl
b
hl
c
hl
d
hl
a
e l
b
el
c
el
d
e

Q,Q′,K (D.152)

· P †µshl
a
hsel

a
e

Q+K P
†µ′s′hl

b
hs
′
el
b
e

Q′−K P
ν′s′hl

d
hs
′
el
d
e

Q′ P
νshl

c
hsel

c
e

Q , (D.153)

where

V
µµ′νν′shses

′
hs
′
el
a
hl
b
hl
c
hl
d
hl
a
e l
b
el
c
el
d
e

Q,Q′,K ≡ 1
4V

µµ′νν′shses
′
hs
′
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′
el
a
hl
b
hl
c
hl
d
hl
a
e l
b
el
c
el
d
e

e−e,Q,Q′,K (D.154)

+ 1
4V

µµ′νν′shses
′
hs
′
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′
el
a
hl
b
hl
c
hl
d
hl
a
e l
b
el
c
el
d
e

h−h,Q,Q′,K (D.155)

− 1
2V

µµ′νν′shses
′
hs
′
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′
el
a
hl
b
hl
c
hl
d
hl
a
e l
b
el
c
el
d
e

e−h,Q,Q′,K (D.156)

and

V
µµ′νν′shses

′
hs
′
es
′
el
a
hl
b
hl
c
hl
d
hl
a
e l
b
el
c
el
d
e

e−e,Q,Q′,K (D.157)

≡
∑
qq′
V
cc,ses′elalblcld
q+αQ,q′+αQ′,Kϕ

µshl
a
hsel

a
e

q+βK ϕ
µ′s′hl

b
hs
′
el
b
e

q′−βK′ ϕ
ν′s′hl

b
hs
′
el
d
e

q′ ϕ
νshl

a
hsel

c
e

q δla
h
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h
δlb
h
ld
h
, (D.158)

V
µµ′νν′shses

′
hs
′
es
′
el
a
hl
b
hl
c
hl
d
hl
a
e l
b
el
c
el
d
e

h−h,Q,Q′,K (D.159)

≡
∑
qq′
V
vv,ses′elcldlalb
q−βQ−K,q′−βQ′+K,Kϕ

µshlasel
a
e

q−αK ϕ
µ′s′hlbs

′
el
b
e

q′+αK′ ϕ
ν′s′hlds

′
el
b
e

q′ ϕνshlcsel
a
e

q δlae lceδlbelde , (D.160)

V
µµ′νν′shses

′
hs
′
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′
el
a
hl
b
hl
c
hl
d
hl
a
e l
b
el
c
el
d
e

e−h,Q,Q′,K (D.161)

≡
∑
qq′
V
cv,ses′hlaldlclb
q+αQ,q′−βQ′+K,Kϕ

µshl
a
hsel

a
e

q+βK ϕ
µ′s′hl

b
hs
′
el
b
e

q′+αK′ ϕ
ν′s′hl

d
hs
′
el
b
e

q′ ϕ
νshl

a
hsel

c
e

q δla
h
lc
h
δlbelde . (D.162)
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