

 Department of Space, Earth and Environment
 CHALMERS UNIVERSITY OF TECHNOLOGY
 Gothenburg, Sweden 2019
 Master’s Thesis 2019

Smart question and answering system
using recurrent neural networks
Master of Science in Complex Adaptive Systems

SELVIN CEPHUS JAYAKUMAR

MASTER’S THESIS 2019

Master of Science in Complex Adaptive Systems

SELVIN CEPHUS JAYAKUMAR

Department of Space, Earth and Environment

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2019

I

Smart question and answering system using recurrent neural networks
Master of Science in Complex Adaptive Systems

SELVIN CEPHUS JAYAKUMAR

© AUTHOR SELVIN CEPHUS JAYAKUMAR, 2019

Examensarbete 2019/ Institutionen för Rymd-, geo- och miljövetenskap,

Chalmers tekniska högskola 2019

Department of Space, Earth and Environment

Chalmers University of Technology

SE-412 96 Göteborg

Sweden

Telephone: + 46 (0)31-772 1000

Cover:

A diagrammatic representation of the RNN used in this these with English input and

SPARQL output. For more information see Figure 2.7 in Chapter 2.

 Göteborg, Sweden, 2019

I

Smart question and answering system using recurrent neural networks

Master’s thesis in Complex Adaptive Systems

SELVIN CEPHUS JAYAKUMAR

Department of Space, Earth and Environment

Chalmers University of Technology

ABSTRACT

Language translation using RNNs has been around for a long time. The
advancement in computer hardware has contributed to its adoption in our day-
to-day lives. So far, such translation techniques are used to translate one human
language to another. In this thesis we apply these techniques to translating
English questions to SPARQL queries. Earlier, similar attempts made focused on
achieving accurate translation on datasets consisting of questions from a specific
domain. This thesis looks at ways to train an RNN model which is more generic
and can learn features of translating an English question to a SPARQL query
regardless of the domain. We successfully demonstrate the ability of RNNs to
translate questions in English to SPARQL by training the network on tokenised
question answer pairs. This results in the reduction of the amount of data
required to train such systems as well improves deploying the network in
multiple domains after being trained on the tokenized dataset.

Keywords: Natural language processing, Recurrent neural networks, RDFs, SPARQL,

Neural machine translation, LSTM, GRU

CHALMERS, Space, Earth and Environment, Master’s Thesis 2019 II

Contents

1 BACKGROUND 1

1.1 Problem 3

1.2 Related work 3

1.3 Research question 3

2 RECURRENT NEURAL NETWORKS 4

2.1 Artificial neural networks 4

2.2 Recurrent neural networks 6
2.2.1 Unfolding RNN 6

2.3 Encoder-decoder sequence to sequence network 9

2.4 Long-short term memory unit 10

2.5 Gated recurrent unit 12

2.6 Encoder 12

2.7 Decoder 13

2.8 Attention decoder 13

3 METHOD 15

3.1 Data 15
3.1.1 QALD Dataset 15

3.1.2 Parsing 16
3.1.3 Cleaning 18

3.1.4 Final dataset 18

3.2 Training 19
3.2.1 Hyperparameters 19

3.2.2 Cross validation 19
3.2.3 Hardware 19

3.3 Evaluation 19

3.3.1 Evaluation criteria 20

4 RESULTS 21

4.1 Non-tokenized dataset 21
4.1.1 English to SPARQL sample results for non-tokenized dataset 22

4.2 Tokenized dataset 24
4.2.1 English to SPARQL sample results for tokenized dataset 25

5 DISCUSSION 26

6 FUTURE WORK 27

CHALMERS Space, Earth and Environment, Master’s Thesis 2019 III

7 REFERENCES 28

CHALMERS, Space, Earth and Environment, Master’s Thesis 2019 IV

CHALMERS Space, Earth and Environment, Master’s Thesis 2019 V

Acknowledgement

I would like to thank Semcon AB for giving me this opportunity and support during

my time working with them. Special thanks to Peter Nordin, Claes Andersson and the

AI team at Semcon for their guidance and supervision. Finally, I would like to thank

my family and friends who have supported and encouraged me to keep persevering.

Would also like to make a special mention to my first child whom we are expecting in

January,2020. Hope he’ll read this someday.

Göteborg September 2019

Selvin Cephus Jayakumar

CHALMERS, Space, Earth and Environment, Master’s Thesis 2019 VI

Notations

Acronyms

RNN Recurrent neural networks

NMT Neural machine translation

NLP Natural language processing

RDF Resource description format

SPARQL SPARQL Protocol and RDF query language

ANN Artificial neural network

ML Machine learning

VA Virtual assistant

AI Artificial intelligence

NLU Natural language understanding

LSTM Long short-term memory

GRU Gated recurrent unit

CHALMERS Space, Earth and Environment, Master’s Thesis 2019 1

1 BACKGROUND

Communication through language is a unique human tool developed to preserve

information over generations. According to Hurford, J.R., 1998, there are different

theories as to how language originated, some linguists theorize that language evolved

gradually along with human evolution and other theories consider the language

faculty to suddenly appear with a chance mutation around 100,000 years ago 1 2 .

Regardless of which theory one considers human language took anywhere from a

million to a hundred thousand years to develop to its current form. The different

languages and dialects can also be attributed to socio-cultural conditions and evolves

from one generation to another. One of the key features of language communication is

question and answering (QA) and it is just as complex as language itself. It is also the

most intuitive way humans get new information and give instructions. For example,

‘What is the temperature today? Do I need an umbrella?’, ‘Can you book an

appointment at 2 PM?’. These examples maybe seem familiar as these are some of the

most common questions, we ask virtual assistants (VA). VAs are software entities

which can perform computer-based tasks by taking natural (human) language as input

in the form of text or audio. It uses natural language processing (NLP) which is a

subfield of artificial intelligence (AI).

The breakthroughs in artificial intelligence and more specifically artificial neural

networks (ANN) has enabled us to teach computers to perform such tasks, albeit

simple tasks. ANN algorithms perform a set of calculations in a specific order to get a

result based on a specific input. By adjusting the parameters used in the calculations,

over a series of time steps one can tune to resulting model to respond with expected

answers to questions. Compared to how humans use the ability to ask and answer

questions, these approaches are not very flexible. Consider the example about the

temperature above, if it was modified to ‘I want to go out for a run today, do I need a

jacket?’. Here of course, we are not asking for fashion advise, rather we’d like to

know the weather conditions so I can make my run as smooth as possible. For a

human, this is a simple question but for a computer it is not. One major reason for this

is humans have also developed the ability to reason and extrapolate information from

things like context. This is also what distinguishes a VA’s ability to answer questions

from that of a human.

Teaching VAs to reason is also an active field of research today. More and more VAs

can use contextual information to answer questions. This can be because of the

approach to language learning is moving from an NLP approach, where language is

converted to spatial data and the algorithm learns patterns, to a natural language

understanding (NLU) approach. In NLU the systems are designed to understand

context in which a sentence is used. We try to explore the possibilities of teaching a

VA to answer more complex questions using context and reasoning.

The study of natural language in computing started around the 1950s. During this time

Alan Turing published a paper called ‘Computing Machinery and intelligence’ in

which he introduces the Turing’s test. To summarize, Turing tries to modify the

question, ‘can a machine think?’ to ‘is the machine indistinguishable from a human’.

1https://en.wikipedia.org/wiki/Origin_of_language
2 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4144795/

https://en.wikipedia.org/wiki/Origin_of_language
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4144795/

CHALMERS, Space, Earth and Environment, Master’s Thesis 2019 2

In our case, can a machine hear our question, think, and respond correctly and trick

the user in believing that the response is coming from a human. This idea that Turing

introduces is a good description of what AI today tries to achieve.

We, humans, have developed an ability to understand meaning and context from a

question. It is important to note that the meaning and context are not just a direct

derivative of the constituent words in a sentence, rather it is also a function of abstract

features like human experience and knowledge. Teaching a computer to understand

and respond appropriately to a natural language-based question is challenging because

of the above factors.

To build an algorithm to understand a sentence requires at the least the following

components,

• A lexicon of the language used to create the sentence

• A parser which can break a sentence into smaller phrases based on a set of

rules i.e. grammar

• An ontology which describes the relationships between the entities mentioned

in the sentence. It also defines the entities.

Building a good ontology is a key ingredient in building such systems and is a

laborious task. There are efforts under way to automate the creation of ontologies

from chunks of texts. One such tool is FRED [2], which can translate 48 different

languages in to linked data or ontologies. Once we can generate ontologies, we can

query these using a query language known as SPARQL, which stands for SPARQL

Protocol and RDF Query Language. The ontologies are stored in resource description

framework (RDF) format.

Expertise in SPARQL is limited to those working with the semantic web. And in

order to tap into the rich information stored in the RDFs one needs to be able to write

such queries. Luz et al. showed that an LSTM encoder-decoder model with attention

can be trained to translate natural language questions into SPARQL. This enables us

to build chatbots which can,

a. Take in user queries in natural language,

b. Convert it to SPARQL by passing it through the neural machine translation

(NMT) model,

c. Query an RDF database for the correct response,

d. Generate the response in a human readable format and present to the user.

SPARQL-RDF combination enables chatbots to parse more complicated questions.

For example, consider the sentence, ‘I want to buy a Tesla, can you help me find

some dealers nearby?’. Firstly, the system needs to understand that Tesla in this

context is a car, and not a person. And the that I am looking for a car dealer. Since

RDFs stores information such as, ‘Tesla is a car.’, ‘People can buy cars.’, ‘Car dealers

sell cars’, a SPARQL query can get us the correct information we are looking for in

this context.

One of the drawbacks of the models trained in [3] is that they are not generic. They

have been trained on a small Geo880 dataset. But it helps us see the potential of using

CHALMERS Space, Earth and Environment, Master’s Thesis 2019 3

NMT models that are generally used to translate one language to another in

translating a human language to a computer language. In our case, to SPARQL.

1.1 Problem

In our work we explore ways to make these models more generic. One approach is to

train an NMT model on templates of English-SPARQL pairs instead of entire

sentences. We begin by training a model on a set of English- SPARQL pairs without

omitting anything. Unlike in [3] we do not confine these questions to a specific

domain. The goal was to see if the model can learn certain salient features. Later, we

omit information like specific names and entities in sentence pairs in order to make

the dataset more generic in nature and observe the model’s performance to correctly

generate the SPARQL equivalent of an English question. The results show us that the

models indeed learn certain features which distinguishes one type of SPARQL query

from another. Generating syntactically correct queries was challenging as our dataset

was not large enough to create a generic English-SPARQL NMT model. Hence future

work in this direction can yield promising results.

1.2 Related work

In this thesis work the focus has been on exploring ways to make NL-SPARQL
translation generic i.e. not domain specific. Earlier work has mostly focused on
achieving accurate results on selected datasets from narrowed knowledge areas.

Luz et al. uses LSTM encoder-decoder model with attention to translate NL-
SPARQL pairs from a Geo880 dataset. They concluded that the approach yields
good results but further tests on a variety of dataset is required.

Yin et al. followed up this work by evaluating eight different NMT models for NL-
SPARQL translation. Their work highlighted the need for larger and high-quality
datasets for training and CNN based architecture performed the best.

1.3 Research question

“Can we train a recurrent neural network on templates of natural language and
SPARQL pairs and create a more generic translation system that is capable of
translating NL to SPARQL regardless of the knowledge domain of the question.”

CHALMERS, Space, Earth and Environment, Master’s Thesis 2019 4

2 Recurrent neural networks

RNNs are a family of artificial neural networks which process sequential data i.e.,

𝑥(1), … , 𝑥(𝑇). It was a result of the work of Rumelhart et al., 1986. Compared to
non-recurrent networks like feedforward ANNs, RNNs are capable of processing
longer sequences of data. Another feature which makes it useful in tasks like
language translation is its ability to process variable length sequences. In
language translation the source language and its translation in a target language
aren’t always of similar lengths and RNNs like LSTMs are widely used in this
application.

This section describes some important concepts and theory used in this work.

2.1 Artificial neural networks

ANNs are computing systems that is made up of computational units called
neurons. They are inspired from the biological functioning of the animal brain.
The neuron in an ANN is a simplified mathematical model of a biological neuron.
Just as in biological neurons the dendrites receive input from other neurons and
pass it through the axons on to other neurons, in ANNs the input data is fed to
the node as input and the node operates on the input based on a predefined
function called activation function and if the result is above a certain threshold it
activates the neuron.

Figure 2.1: Biological neuron3

3 https://commons.wikimedia.org/wiki/File:Neuron_Hand-tuned.svg

CHALMERS Space, Earth and Environment, Master’s Thesis 2019 5

A simple model of the artificial neuron was introduced by Warren S. McCulloch
and Walter H. Pitts commonly known as McCulloch-Pitts neuron or less
commonly as linear threshold gate.

Figure 2.2: McCulloch-Pitts neuron. 𝒙 is the input vector. W denotes the weights
that are multiplied with the input. 𝑺 is the weighted sum of the inputs. 𝒇 is the
activation function and in this case the linear threshold gate; 𝒚 is the output
which is 0 or 1 in the case of the McCulloch-Pitts neuron.

It is known as a linear threshold gate as the 𝒇 in Figure 2.2 is a linear threshold
function(Figure 2.3) which takes a value of 1 or 0 based on whether 𝑺 is above or
below a given threshold.

Figure 2.3: Linear threshold function

CHALMERS, Space, Earth and Environment, Master’s Thesis 2019 6

The McCulloch-Pitts neuron is denoted by the Equation 2.1 and Equation 2.2.

𝑺 = ∑ 𝑾𝑖

𝑵
𝒊=𝟏 𝒙𝑖 (2.1)

𝒚 = 𝒇(𝑺) (2.2)

ANNs like perceptron which is a type of feedforward neural network which is
made of neuron units which is a modification of the McCulloch-Pitts neuron. In
this case the data is only passed forward from the input to the output and no
internal state or memory exists. In contrast RNNs can use their internal state to
process a sequence of input where one part of the sequence is dependent on a
different part of the sequence.

2.2 Recurrent neural networks

A key difference between a multilayer feedforward network such as a perceptron
and a recurrent neural network is that RNNs share parameters across different
parts of the model. This makes it possible to generalise RNN models to different
lengths.

In applications like natural language processing this is a very useful feature.
Consider the sentences, “Sweden celebrates midsummer in June” and “In June,
Sweden celebrates midsummer”. When we train a neural network on these
examples, we’d like the network to identify June as the month when midsummer
is celebrated irrespective of where in the sentence the word June occurs. In
contrast a feedforward network would learn separate parameters for each word
in the sequence and therefore needs to learn the language grammar at each
index of the sentence. RNNs shares the same parameters across several time
steps.

2.2.1 Unfolding RNN

Consider the following dynamical system:

𝑠(𝑡) = 𝑓(𝑠(𝑡−1); 𝜃) (2.3)

where 𝑠(𝑡) is called the state of the system.

The system is recurrent since its current state depends on its previous state at
𝑡 − 1. We can unfold this system for a finite number of time steps, 𝜏. For example,
let 𝜏 = 3, we can expand Equation 2.3 recursively as follows,

𝑠(3) = 𝑓(𝑠(2); 𝜃)

 = 𝑓(𝑓(𝑠(1); 𝜃); 𝜃)

Example 2.1: Recursively expanding Equation 2.3 for 𝜏 = 3.

CHALMERS Space, Earth and Environment, Master’s Thesis 2019 7

The Equation 2.3 can be represented as a directed cyclic computational graph.

𝐹𝑖𝑔𝑢𝑟𝑒 2.4: 𝐷𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑐𝑦𝑐𝑙𝑖𝑐 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑔𝑟𝑎𝑝ℎ 𝑑𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑 𝑖𝑛 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.3.

 𝒔𝒕 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑎𝑡 𝑡𝑖𝑚𝑒 𝒕. 𝑇ℎ𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝒇 𝑚𝑎𝑝𝑠 𝑡ℎ𝑒
 𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒𝑠. 𝑇ℎ𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑜𝑓 𝒇 𝑖𝑠 𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦 𝜽 𝑎𝑛𝑑 𝑖𝑠

𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝𝑠 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑖𝑔𝑢𝑟𝑒.

Adding an external signal to drive the Equation 2.3 and replacing 𝑠 with ℎ we get
the classical equation that represents the update equation for the hidden state of
an RNN.

ℎ(𝑡) = 𝑓(ℎ(𝑡−1), 𝑥𝑡; 𝜃) (2.4)

Unfolding Equation 2.4 results in the following,

Figure 2.5: Graph representation of a simple recurrent neural network. Where h
is the hidden state and 𝒙 is the input sequence. 𝒇 maps one hidden state to the
next and is parameterised by 𝜽.

CHALMERS, Space, Earth and Environment, Master’s Thesis 2019 8

2.2.1.1 RNN learning

Training an RNN starts by assigning an initial state, 𝒉(𝟎). The forward pass is
done by the Equations 2.5 to Equation 2.8.

The input sequence can be used as the initial state or can be connected to the
hidden units at each time step for the sequence.

𝒂(𝑡) = 𝒃 + 𝑾𝒉(𝑡−1) + 𝑼𝒙
(𝑡)

 (2.5)

𝒉(𝑡) = tanh(𝒂(𝒕)) (2.6)

𝒐(𝑡) = 𝑪 + 𝑽𝒉(𝑡) (2.7)

�̂�(𝑡) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝒐(𝒕)) (2.8)

𝐿({𝒙(1), … , 𝒙(𝜏)}, {𝒚(1), … , 𝒚(𝜏)})

= ∑ 𝑳(𝑡)

𝑡
 (2.9)

Where, b, c are bias vectors
U - weight vector from input to hidden layer
V - Weight vector from hidden layer to output
W - Weight vector from one hidden layer to the next hidden layer
L – Training loss

The Figure 2.5 represents an RNN which processes input and generates output of
the same length. The loss is calculated as a sum of losses over all time steps for a
given input(𝒙), output(𝒚) sequence, represented by Equation 2.9. The gradient of
the RNN required for training can be calculated by using the backpropagation
through time(BPTT) on the unrolled computational graph using the training loss
L.

CHALMERS Space, Earth and Environment, Master’s Thesis 2019 9

Figure 2.6: The RNN representation which shows how the training loss L is
calculated based on the output o of the network and target output y. 4

2.3 Encoder-decoder sequence to sequence network

RNNs can map an input sequence to a fixed size vector and can also map a fixed
size vector to a sequence. This enables us to build encoder-decoder networks or
simply seq2seq networks which can be used to map variable size input sequence
to another variable size output sequence using the fixed vector as a common
reference. Let us explore this with an example from natural language
translation. Consider a task to convert sentences from English to Hindi. The
encoder processes the English sentence and converts it into a fixed length vector
representation. Next, the decoder takes in the vector and converts it in the
output sequence in Hindi. By training such a network on English-Hindi sentence
pairs we can solve the task using the resulting RNN. Cho et al., Sutskever et al.
demonstrated its ability to outperform all other methods used for language
translation.

The fixed length vector is called context and is denoted by 𝑪. Context is
considered as the input to the RNN. A limitation of this network architecture is
when C has too small a dimension to encode a large input sequence with enough
resolution to decode it correctly. Bahdanau et al. proposed a variable length C
and also introduced an attention mechanism that learns to associate elements of
the context vector with the elements of the output sequence.

4 Deep learning(2017) by Ian Goodfellow, Yoshua Bengio, and Aaron Courville.

CHALMERS, Space, Earth and Environment, Master’s Thesis 2019 10

Another fundamental problem faced by RNN is the vanishing gradient. When
learning long term dependencies gradient tends to either vanish or explode over
time as the gradient is carried over many stages or time steps of the RNN. To
solve this problem gated RNNs like LSTM and GRU were introduced. We use GRU
based RNN in this work.

Figure 2.7: An illustration to show how an English to SPARQL translation. The
previous input which is at the bottom gives rise to the next input and so on. This
thereby generates a single component of the sequence at each node.

2.4 Long-short term memory unit

Long-short term memory networks or LSTMS can successfully handle long term
dependencies, thereby solving the vanishing gradient problem with regular
RNNs. They were introduced by Hochreiter and Schmidhuber in 1997.

Regular RNNs comprises of a single neural network repeating in a chain like
formation. On the other hand, LSTMs have four neural networks that interact
with each other in a specific manner. The main output from an LSTM unit is the
cell state or context, which is the information passed through the time. The
context is updated during each time step by two linear computations. LSTM can
decide what information to pass through for each time step using gates. Gates are
sigmoid activated neural network layer with a pointwise multiplication operator.
This neural network outputs a value of 0 or 1 which in turns controls how much
of the gates input is let through. A value of 0 lets nothing through and 1 lets the
everything through.

CHALMERS Space, Earth and Environment, Master’s Thesis 2019 11

Figure 2.8: An LSTM gate. Illustration is courtesy of Colah’s blog on LSTM. 5

In LSTMs three such gates are used to control how much of the input , 𝒙(𝒕), and
the previous hidden state, 𝒉(𝒕−𝟏), influence the current context 𝑪(𝒕). The three
gates are denoted by 𝒇𝒕 or also known as forget gate, 𝒊𝒕 and 𝒐𝑡 or simple input
and output gates respectively.

Figure 2.9: LSTM architecture. Illustration is courtesy of Colah’s blog on LSTM. 3

Where,

 𝒇𝒕 = 𝝈(𝑾𝒇 ∙ [𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝒇)

 𝒊𝒕 = 𝝈(𝑾𝒊 ∙ [𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝒊)
 𝒐𝒕 = 𝝈(𝑾𝒐 ∙ [𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝒐)

 �̂�𝒕 = 𝐭𝐚𝐧 𝐡(𝑾𝑪 ∙ [𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝑪)
 𝑪𝒕 = 𝒇𝒕 ∗ 𝑪𝒕−𝟏 + 𝒊𝒕 ∗ �̂�𝒕

W denotes the weights of each gate network.

Finally, the current hidden state is calculated using,

𝒉𝒕 = 𝒐𝒕 ∗ 𝐭𝐚𝐧𝐡(𝑪𝒕)

5 http://colah.github.io/posts/2015-08-Understanding-LSTMs/

CHALMERS, Space, Earth and Environment, Master’s Thesis 2019 12

2.5 Gated recurrent unit

Following the creation of LSTMs other variants have also been introduced. One
such variation is the gated recurrent unit or GRU. It was introduced by Cho, et al.
in 2014. It is considered a simpler variant as it combined the forget gate and the
input gate into a single update gate. Furthermore, the cell state is merged with
the hidden state. In this work we use this variant of the LSTM neural network for
training.

Figure 2.10: GRU architecture. Illustration is courtesy of Colah’s blog on LSTM. 3
Where h denotes the hidden state, x denotes the input, r and z are output from the
gate networks.

2.6 Encoder

An encoder is a GRU based RNN that takes as input the input sequence, in our
case the English language questions and embeds or encodes it into a fixed length
vector.

Figure 2.11: GRU based encoder network.6

6 https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

CHALMERS Space, Earth and Environment, Master’s Thesis 2019 13

2.7 Decoder

The decoder is also a GRU based RNN that takes the vector, also known as
context vector, generated by the encoder, and generates the output sequence in
the target language, in our case SPARQL. The decoder is given an input and a
hidden state for each time step. The initial hidden state of the decoder RNN is the
last hidden state of the encoder, which is the context vector. And the initial input
is the start of sentence tag or <SOS>.

Figure 2.12: GRU based decoder network.4

2.8 Attention decoder

The attention decoder is a sophisticated version of the decoder in Figure 2.5. The
length of the input sequences can be very large. And if the context vector
generated by the encoder does not capture enough information from the input
sequence, it might be harder to train longer input-output pairs. Here an attention
decoder enables the decoder to focus on other parts of the encoder’s output at
each time step of the decoder’s outputs.

CHALMERS, Space, Earth and Environment, Master’s Thesis 2019 14

Figure 2.13: Decoder RNN with attention.4

CHALMERS Space, Earth and Environment, Master’s Thesis 2019 15

3 METHOD

Our goal was to teach a computer writing SPARQL given a question in English.
Rather than simply train the RNN models on a large dataset and see how it
performed, we set out to observe what features is the model learning. For
example, a question which starts with ‘How many…’ usually has a SPARQL which
has the keyword ‘COUNT’. We wanted to see if our models can learn such
fundamental building blocks of SPARQL. We later set out to design an input
dataset which omits any unnecessary information to the model which did not
contribute to the above objective. The resulting dataset consists of NL-SPARQL
pairs where the nouns were replaced by tokens, thereby generating a dataset of
templates. Finally, we trained and evaluated the models on this dataset and drew
conclusions from the results.

 This chapter presents the method used to achieve the above goal. Section
2.1 describes the RNN architecture. In section 2.2 we describe the dataset and
the different stages of preparing it. Next, in 2.3 we describe the experimental
setup which include the RNN architecture, training and evaluation. Finally, we
describe the different software components written to achieve the results.

3.1 Data

This section describes the stages in the gathering and pre-processing of the
dataset used in training.

3.1.1 QALD Dataset

The base dataset used in this work is the LC-QuAD v.678 which is in the Question
Answering over Linked Data(QALD) [10] format. QALD is a series of challenges
on creating question and answer datasets. The challenge is to convert
information available online to the QALD format which enables the use of
semantic web query tools like SPARQL to access this information.

A sample of this dataset can be seen in Figure 3.1.

7 https://figshare.com/articles/LC-QuAD_QALDformat/5818452
8 http://qald.aksw.org/

https://figshare.com/articles/LC-QuAD_QALDformat/5818452
http://qald.aksw.org/

CHALMERS, Space, Earth and Environment, Master’s Thesis 2019 16

3.1.2 Parsing

The training data used for deep learning tasks is in the input-output format. In
our case, our inputs are questions in English, and the output is it’s SPARQL
equivalent.

Our original dataset is not available in this format and consists information we
do not need. Hence, we parse the dataset using a python script to extract only the
question in English and it’s equivalent SPARQL query. The result looks like the
example pair in Table 3.1.

Table 3.1 English-SPARQL pair
English question Which comic characters are painted by Bill Finger?
SPARQL SELECT DISTINCT ?uri WHERE

{
 ?uri http://dbpedia.org/ontology/creator
<http://dbpedia.org/resource/Bill_Finger> .
 ?uri <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
http://dbpedia.org/ontology/ComicsCharacter
}

Processed SPARQL SELECT DISTINCT ?uri WHERE
 {
 ?uri dbo:creator dbr:Bill_Finger .
 ?uri rdf:type dbo:ComicsCharacter
}

CHALMERS Space, Earth and Environment, Master’s Thesis 2019 17

{
"dataset": {
"id": "lcquad-v1"
},
"questions": [
{
"hybrid": "false",
"question": [
{
"string": "Which comic characters are painted by Bill Finger?",
"language": "en"
}
],
"onlydbo": true,
"query": {
"sparql": "SELECT DISTINCT ?uri WHERE {?uri <http://dbpedia.org/ontology/creator>
<http://dbpedia.org/resource/Bill_Finger> . ?uri <http://www.w3.org/1999/02/22-rdf-
syntax-ns#type> <http://dbpedia.org/ontology/ComicsCharacter>}"
},
"answers": [
{
"head": {
"vars": [
"uri"
]
},
"results": {
"bindings": [
{
"uri": {
"type": "uri",
"value": "http://dbpedia.org/resource/Batman"
}
},
{
"uri": {
"type": "uri",
"value": "http://dbpedia.org/resource/Alfred_Pennyworth"
}
}

 Figure 3.1 Sample QALD dataset

CHALMERS, Space, Earth and Environment, Master’s Thesis 2019 18

3.1.3 Cleaning

Cleaning a dataset for training is perhaps the most important step in data
preparation. Providing appropriate information for training determines what the
network is likely to learn. We processed the data in a way that emphasizes the
format of the SPARQL query. This enables the reconstruction of the query after
being generated by the RNN model.

SPARQL queries have links to entities and each entity has a type known as RDF-
type. These types can be replaced with shorter keywords which are directly
translatable by some SPARQL endpoints. See Table 3.2 for a list of keywords
used.

Table 3.2 List of SPARQL tokens
Token URI

dbo http://dbpedia.org/ontology/creator

dbr http://dbpedia.org/resource

rdf:type http://www.w3.org/1999/02/22-rdf-

syntax-ns#type

dbp http://dbpedia.org/property

3.1.4 Final dataset

The final dataset is a tab separated question-SPARQL pair. Some examples are
shown in Table 3.3. This dataset has also been made more generic by replacing
the nouns with tokens as in Table 3.4

Table 3.3 Final dataset: Non-tokenized
English Which comic characters are painted by

Bill Finger?
SPARQL SELECT DISTINCT ?uri WHERE

{
?uri dbo:creator dbr:Bill_Finger .
?uri rdf:type dbo:ComicsCharacter
}

Table 3.4 Final dataset: Tokenized
English Which comic characters are painted by

token?
SPARQL SELECT DISTINCT ?uri WHERE

{
?uri dbo:creator dbr:token .
?uri rdf:type dbo:ComicsCharacter
}

CHALMERS Space, Earth and Environment, Master’s Thesis 2019 19

3.2 Training

This section describes the settings used for training. The actual values of
parameters are found in the results section.

3.2.1 Hyperparameters

The following hyperparameters were used in training but only a few of them
were modified to achieve better network accuracy.

• Learning rate

• Teacher forcing ratio

• Hidden size

• Number of epochs

• Iterations per epoch

• Total English-SPARQL pairs

• Training-test pairs ratio

• Max sentence length

3.2.2 Cross validation

During each epoch, the order of the dataset was randomized and split into
training and test sets at 90% and 10% respectively.

3.2.3 Hardware

At the beginning of the work where the dataset size and epoch run lengths were
smaller, a desktop PC equipped with the following specifications was used. CPU:
Core i5 3470, 16GB DDR3 RAM, NVIDIA GTX 1070Ti GPU.

During the later stages which had runs which ran for more than 8 hours on the
above configuration, I used the free quota available on google cloud platforms
compute engine with single GPU configuration. The performance was
significantly better.

3.3 Evaluation

The models were evaluated on their ability to generate syntactically correct
SPARQL queries for a given question in English. A query was considered
syntactically correct if it did not return an error on querying an RDF database
endpoint. The Virtuoso SPARQL endpoint9 was used to evaluate the queries.
Also, queries which we nearly correct and with a minor manual correction can be
made error free were also considered as syntactically correct. This was only in
cases where a bracket or a dot was missing.

9 https://dbpedia.org/sparql

CHALMERS, Space, Earth and Environment, Master’s Thesis 2019 20

3.3.1 Evaluation criteria

The models were trained on the two datasets mentioned in Table 2.3 and Table
2.4. The metric used to evaluate the model was syntactical error.

Accuracy: It is the ratio of queries that are translated correctly in a grammatical
sense to the total queries in the test set. Here grammar pertains to the structure
of the SPARQL queries. This of course does not necessarily mean that the
SPARQL will execute without any error. Hence, we have another metric called
syntactical error.
Syntactical error: It is the ratio of queries that a syntactically correct to the total
queries in the test set.

𝑆𝑦𝑛𝑡𝑎𝑐𝑡𝑖𝑐𝑎𝑙 𝑒𝑟𝑟𝑜𝑟 =
𝑇𝑜𝑡𝑎𝑙 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 − 𝑆𝑦𝑛𝑡𝑎𝑐𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑞𝑢𝑒𝑟𝑖𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑞𝑢𝑒𝑟𝑖𝑒𝑠

CHALMERS Space, Earth and Environment, Master’s Thesis 2019 21

4 RESULTS

Through the duration of this work each observation has given a clearer picture of
what makes a good SPARQL generator. Interestingly the number of samples in
the training samples was not the only important factor. Of course, this isn’t to say
that a large dataset is not important but given that creating a lot of English-
SPARQL pairs is a laborious task and finding a way to train an ANN on a smaller
dataset and achieve a good deal of generalisation. To avoid writing millions of
SPARQL queries for millions of human language questions.

The QALD dataset [9] used was pre-processed in two ways. Generating two
different datasets,

• Non-tokenized

• Tokenized

 which was used to perform the train and test the RNN. The tests have revealed
some interesting observations, which we discuss in detail in this section.

The dataset is split into training and validation sets with a 90% to 10% split
during each epoch i.e. during each epoch the dataset is randomly shuffled and
split in 90% training pairs and 10% validation pairs.

4.1 Non-tokenized dataset

This dataset contains all 5000 pairs from the final dataset in Chapter 1. This can
be considered a brute force approach of training a network to see if the RNN is
indeed able to generate accurate sequences of SPARQL queries for a question in
English. After some trial and error on the following hyperparameters,

• Hidden size

• Duration of training(iterations/epochs)

• Learning rate

the network managed to achieve really good performance. See Figure 4.1.

Table 4.1: Hyperparameters for best results for non-tokenized dataset
Parameter Value
Learning rate(average loss > 0.9) 0.01
Learning rate(average loss < 0.9) 0.001
Hidden size(vector size) 1024
Input size(size of English vocab) 8315
Output size(size of SPARQL vocab) 4916
Epochs 10
Iterations/epoch 5000
Total pairs 5000
Training pairs/epoch 4500
Validation pairs/epoch 500
Max length of sentences 30

CHALMERS, Space, Earth and Environment, Master’s Thesis 2019 22

4.1.1 English to SPARQL sample results for non-tokenized dataset

The following results were generated by our network that was trained on the
non-tokenized dataset. As we can observe even when we change the name of the
person or place, we are enquiring about the network generates a query based on
its closest semantic understanding of the input. Therefore, questions like “Does
the west Thurrock come under Essex county?” and “Does Newark come under
Essex county?” generate the same SPARQL. This is since the network has not
seen examples related to the place called Newark and it only recognizes West
Thurrock.

This result motivated us to investigate ways to make the network agnostic of
specific information like this and rather train the network to find the closest
SPARQL template as we can see in the Section 4.2.

English - Which comic characters are painted by Bill Finger?
SPARQL - SELECT DISTINCT ?uri WHERE
{
 ?uri dbo:creator dbr:Bill_Finger .
 ?uri rdf:type dbo:ComicsCharacter
}

English – Was Kevin Jonas a part of Jonas brothers?
SPARQL - ASK WHERE
{

dbr:Jonas_Brothers dbo:formerBandMember dbr:Kevin_Jonas
}

English - Was Nick Jonas a part of Jonas brothers ?
SPARQL - ASK WHERE
{

dbr:Jonas_Brothers dbo:formerBandMember dbr:Kevin_Jonas
}

English - Does the west thurrock come under Essex county ?
SPARQL - ASK WHERE
{

 dbr:West_Thurrock dbo:ceremonialCounty dbr:Essex
}

input - Does the Newark come under Essex county ?
SPARQL – ASK WHERE
{

dbr:West_Thurrock dbo:ceremonialCounty dbr:Essex
}

CHALMERS Space, Earth and Environment, Master’s Thesis 2019 23

Figure 4.1: Loss graph for hyperparameters in Table 4.2

The model seemed to have associated certain types of question formats to
certain SPARQL keywords. For example, questions that started with ‘How
many…’ included the keyword COUNT in the SPARQL output. And questions
which started with ‘What is…’ included the keyword WHERE.

One of the drawbacks of training the RNN model on this dataset was it learned
very specific information rather than just SPARQL syntax. Consider the example,
‘How many types of RNNs are there?’ . After training the network on this example,
we can get an accurate response for a question regarding types of RNNs. But if
one wanted to know how many types of cars there are the network with still give
a SPARQL response to query types of RNNs. This can be handled by having a
postprocessing step to replace ‘RNNs’ with ‘cars’ but this approach will not scale
well.

CHALMERS, Space, Earth and Environment, Master’s Thesis 2019 24

4.2 Tokenized dataset

In order to make the network generate queries which are generic, we can train
the RNNs on a tokenized dataset. Consider the same example as in Section 3.1.
‘How many types of RNNs are there?’ , we can replace RNNs with a reserved
keyword called token. Now our example can be rewritten as, ‘How many types of
token are there?’. This will ensure that any question which is like the example
would generate a query with the keyword token in it. And in the postprocessing
step we can replace token with cars and generate the desired response.

Table 4.1: Hyperparameters for best results for tokenized dataset
Parameter Value
Learning rate(average loss > 0.9) 0.01
Learning rate(average loss < 0.9) 0.001
Hidden size(vector size) 256
Input size(size of English vocab) 280
Output size(size of SPARQL vocab) 218
Epochs 10
Iterations/epoch 750
Total pairs 134
Training pairs/epoch 120
Validation pairs/epoch 14
Max length of sentences 15
Syntactical error 0.52

CHALMERS Space, Earth and Environment, Master’s Thesis 2019 25

The syntactical error of 0.52 means that out of the 100 test questions the
network generated 48 correct SPARQL queries.

4.2.1 English to SPARQL sample results for tokenized dataset

In contrast to the results in Section 4.1.1 here we see that the network generates
SPARQL templates for similar questions rather than gives us a query for a wrong
person or place as in case with the network trained on non-tokenized dataset.

4.2.1.1 Expected:

English - Was Kevin Jonas a part of Jonas brothers?
SPARQL - ASK WHERE { dbr:Jonas_Brothers dbo:formerBandMember
dbr:Kevin_Jonas }

English - Does the west thurrock come under Essex county?
SPARQL - ASK WHERE { dbr:West_Thurrock dbo:ceremonialCounty dbr:Essex }

English - Is Ombla originate in Croatia?
SPARQL - ASK WHERE { dbr:Ombla dbo:sourceMountain dbr:Croatia }

English - Was Ganymede discovered by Galileo Galilei?
SPARQL - ASK WHERE { dbr:Ganymede_(moon) dbp:discoverer
dbr:Galileo_Galilei }

English - Was Reza Amrollahi born in Iran?
SPARQL - ASK WHERE { dbr:Reza_Amrollahi dbp:birthplace dbr:Iran }

4.2.1.2 RNN generated:

English - Was Kevin Jonas a part of Jonas brothers ?
SPARQL - ASK WHERE { dbr:Jonas_Brothers dbo:formerBandMember dbr:token}

English - Does the west thurrock come under Essex county ?
SPARQL - ASK WHERE { dbr:token dbo:ceremonialCounty dbr:Essex }

English - Is Ombla originate in Croatia ?
SPARQL - ASK WHERE { dbr:token dbo:sourceMountain dbr:Croatia }

English - Was Ganymede discovered by Galileo Galilei ?
SPARQL - ASK WHERE { dbr:token dbp:discoverer dbr:Galileo_Galilei }

English - Was Reza Amrollahi born in Iran ?
SPARQL - ASK WHERE { dbr:token dbo:assembly dbr:Ethiopia }

CHALMERS, Space, Earth and Environment, Master’s Thesis 2019 26

5 DISCUSSION

SPARQL along with RDF databases enables us to teach VAs to answer questions
that would generally require human reasoning and contextual awareness. This is
an alternative to writing all possible question and answer pairs, storing it on a
large enough storage and matching a user question to an entry in the database.
Compared to the later brute force approach, SPARQL and RDF approach provides
a lot more flexibility in asking a question with significantly less information.

But writing SPARQL queries is a laborious task and requires expert knowledge.
Hence automating this task would further help developers to train VA on the
required task of question answering rather than writing SPARQL queries. One
way to automate this task is what was dealt and discussed through this work. As
we have seen in numerous cases from the field of language translation, RNNs are
good at learning long term dependencies that are required to translate long
sequences from one language to another. Similarly, we have applied the
principles used in translating one natural language to another, example English
to Swedish, using RNNs such as LSTM and GRU to translating English to a
computer query language, SPARQL.

We have furthermore explored ways on how to minimize the amount of data
required to train such a neural network that generates SPARQL based on an
English question. We have seen promising results in generalising the RNN to
generating SPARQL while being trained on a smaller dataset. This dataset
consisted of tokenised English-SPARQL pairs which was discussed in detail in
Section 3.1.

CHALMERS Space, Earth and Environment, Master’s Thesis 2019 27

6 Future work

We were able to establish the ability of RNN networks to learn complex patterns
in English to SPARQL translation task. Extending the tokenized dataset for
training would result in better generalising capability of the network. In our
evaluation we tokenized a small portion of the QALD dataset. Extending this to
the entire dataset would result in a network capable of covering many more
examples of English questions. The tokenization of the dataset was done
manually, automating this process would go a long way in achieving bigger and
better training dataset.

In our work we limited the tokenization to a single token per training example.
Introducing advanced tokenization methods could help standardise this process
and enable further research in the area of tokenization. To improve the
performance of the RNN, we also recommend experimenting with various cross-
validation methods in order to achieve lower training error.

CHALMERS, Space, Earth and Environment, Master’s Thesis 2019 28

7 References

Hurford, J.R., 1998. The evolution of language and languages. In The evolution
of culture. Edinburgh University Press.

Gangemi, A., Presutti, V., Reforgiato Recupero, D., Nuzzolese, A.G., Draicchio, F.
and Mongiovì, M., 2017. Semantic web machine reading with FRED. Semantic
Web, 8(6), pp.873-893.

Luz, F.F. and Finger, M., 2018. Semantic parsing natural language into sparql:
improving target language representation with neural attention. arXiv
preprint arXiv:1803.04329.

Turing, A.M., 2009. Computing machinery and intelligence. In Parsing the
Turing Test (pp. 23-65). Springer, Dordrecht.

Yin, X., Gromann, D. and Rudolph, S., 2019. Neural Machine Translating from
Natural Language to SPARQL. arXiv preprint arXiv:1906.09302.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,
Schwenk, H. and Bengio, Y., 2014. Learning phrase representations using
RNN encoder-decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078.

 Rumelhart, D., Hinton, G., and Williams, R. (1986). Learning representations
by back-propagating errors. Nature, 323, 533-536.

Sutskever, I., Vinyals, O. and Le, Q.V., 2014. Sequence to sequence learning
with neural networks. In Advances in neural information processing systems
(pp. 3104-3112).

Bahdanau, D., Cho, K. and Bengio, Y., 2014. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

Hochreiter, S. and Schmidhuber, J., 1997. Long short-term memory. Neural
computation, 9(8), pp.1735-1780.

