
Autoencoding As Regularization
A Neural Network Framework for Informative Data Represen-
tations

Master’s thesis in Complex Adaptive Systems

LUKAS W. MERICLE

Department of Physics
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

Master’s thesis 2019:NN

Autoencoding As Regularization

A Neural Network Framework for Informative Data Representations

LUKAS W. MERICLE

Department of Physics
Chalmers University of Technology

Gothenburg, Sweden 2019

Autoencoding As Regularization
A Neural Network Framework for Informative Data Representations
LUKAS W. MERICLE

© LUKAS W. MERICLE, 2019.

Supervisor: Dr. Robert Filman, PerformanceStar, LLC
Examiner: Professor Fabian Martin, Department of Electrical Engineering

Master’s Thesis 2019:NN
Department of Physics
Chalmers University of Technology
SE-412 96 Gothenburg

Typeset in LATEX
Gothenburg, Sweden 2019

iv

Autoencoding As Regularization
A Neural Network Framework for Informative Data Representations
LUKAS W. MERICLE
Department of Physics
Chalmers University of Technology

Abstract
Machine learning relies on developing models which represent data in informative
and simple ways. Taking inspiration from the subfield of multitask learning, we in-
vestigate the possibility of enhancing data representations at intermediate layers in
a neural network. Specifically, we add a decoder layer whose task is to reconstruct
the model’s input from the intermediate representation. Along with this contribu-
tion, we introduce a number of algorithms for anomaly detection and supervised
classification based on this framework and assess their performance. We find that
anomaly detection works best in this framework when formulated as a classification
problem between in-distribution and out-of-distribution data, and that supervised
classification works best when using the simplest formulation with a linear classifier.

Keywords: autoencoder, regularization, multitask, representation, information, com-
pression, anomaly detection

v

Acknowledgements
Thanks to Dr. Sukesh Patel for providing internship placement during the thesis
project and to Dr. Robert Filman for acting as supervisor. Thanks are also due to
Dr. Dominic Dotterer, Gabriel Kopito, and Joseph Fitch, all of whom participated in
fruitful discussion about the ideas presented in this thesis as well as thesis document
review. We acknowledge Prof. Fabian Martin for vetting and confirming that the
idea has potential in industry and encouraging the direction of the thesis. Finally,
thank you to my parents, James Mericle and Agnieszka Walczak, who provided me
with the runway to be introduced to the advanced concepts which have been the
focus of my studies and growth as a machine learning scientist.

LUKAS W. MERICLE, Santa Clara, CA, USA, July, 2019

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Motivation . 1

1.1.1 Thought Experiment . 1

2 Theory 3
2.1 Data Representation . 3

2.1.1 Neural Network Autoencoders 3
2.1.2 Information Content And Capacity In Neural Networks 4

2.2 Classification . 5
2.2.1 Neural Network Classifiers . 5

2.3 Multi-Task Learning (MTL) . 6

3 The learning system in detail 7
3.1 The System . 7
3.2 Approaches for Solving Problems with the System 10

3.2.1 Anomaly Detection . 10
3.2.2 Supervised Classification . 14

4 Evaluation 17
4.1 Anomaly Detection . 18

4.1.1 AD1-2 . 18
4.1.2 AD1-784 . 20
4.1.3 AD2-2 . 20
4.1.4 AD2-784 . 23
4.1.5 AD3-2 . 23
4.1.6 AD3-784 . 26
4.1.7 AD4-2 . 27
4.1.8 AD4-784 . 28

4.2 Supervised Classification . 28
4.2.1 SC1-2 . 28
4.2.2 SC1-784 . 31
4.2.3 SC2-2 . 32
4.2.4 SC2-784 . 33

ix

Contents

4.2.5 SC3-2 . 34
4.2.6 SC3-784 . 35
4.2.7 Quantitative Results . 35

5 Conclusion 37

Bibliography 39

A Implementation I

x

List of Figures

3.1 Multiple perspectives on system architecture 8
3.2 VQ Classifier visual aid . 9
3.3 AD2 visual aid . 11
3.4 AD3 visual aid . 12
3.5 AD4 visual aid . 13
3.6 SC3 visual aid . 15

4.1 MNIST dataset visualization . 18
4.2 AD1-2 results . 19
4.3 AD1-784 results . 21
4.4 AD2-2 results . 22
4.5 AD2-784 results . 24
4.6 AD3-2 results . 25
4.7 AD3-784 results . 26
4.8 AD4-2 results . 27
4.9 AD4-784 results . 29
4.10 SC1-2 results . 30
4.11 SC1-784 results . 31
4.12 SC2-2 results . 32
4.13 SC2-784 results . 33
4.14 SC3-2 results . 34
4.15 SC3-784 results . 36

A.1 Experimental architectures . II

xi

List of Figures

xii

List of Tables

4.1 SC1 to SC3 accuracy results . 35

xiii

List of Tables

xiv

1
Introduction

What makes machine learning tasks difficult is primarily the structure of the dataset
in its native (original) space: correctly separating different classes or learning a re-
gressor function over the space requires a model with highly complex structure for
nontrivial datasets. The field of machine learning, and in particular deep learning, is
largely concerned with learning models which are capable of transforming the data
so that it is easier to perform the defined task. In recent years, this transforma-
tional and representational capacity has been achieved through model depth, that
is, chaining many transformations together to achieve a final representation which
makes tasks easy. Once an efficient representation of the data is found, the final
step of classification or regression becomes likewise simple.

We seek to inform the optimization procedure for such models with the notion that
efficient representation of observations makes machine learning tasks trivial. This
will be the guiding principle of the following work: namely, that we train a model
to perform one or more tasks while encouraging the model to use a representation
which is as informative as possible. The latter goal is achieved by adding an au-
toencoding objective to the defined objective function, the former of which acts as a
regularization to force the representation of the data to contain information about
the dataset itself in addition to the task it must perform.

1.1 Motivation

The motivation behind this work is to design a system which efficiently represents
data for various tasks. To achieve this, we can explicitly augment the objective
function to discourage data representations which are lacking important information
about the data.

1.1.1 Thought Experiment

To justify this approach, we consider a simple thought experiment, meant to eluci-
date the reasons that data representation is an important part of pattern recognition.

1

1. Introduction

Description

A demon is the arbiter of a dataset D = {(x, y) | x ∈ X , y ∈ Y} and so knows which
labels y correspond to which features x. This information is unavailable a priori
to the experimenter. The experimenter wishes to accurately perform a task on the
data she observes. Assume the demon can only communicate a set of features, i.e.,
can send neither the explicit labels nor a function f : X → Y to the experimenter
to fulfill her wish.

In general, it is not safe to assume that X is of sufficiently simple structure for the
experimenter to learn accurate labels for the dataset. The demon must consider the
experimenter’s capacity for interpreting data, and the experimenter is constrained in
the complexity of the function they can express. Therefore it is prudent to represent
the data in as simple a way as possible for the experimenter.

Then the demon shall create a function g : X → Z which maps the original feature
set into a compressed and informative representation Z. The demon knows how
the experimenter is likely to interpret the data and so defines g accordingly. In
particular, the demon wants to organize the data such that i) the experimenter has
no trouble partitioning the data according to their true labels, ii) the locations of the
partition boundaries are obvious to the experimenter, and iii) relationships between
points in Z reflect the relationships between corresponding points in X . Without
the last condition, the function would be trivial, mapping all data corresponding to
label y to a single point z. With the last condition in place, the demon is forced to
define a function which can generalize so that unseen data is treated appropriately
in Z and the partition boundaries remain valid without adjustment.

In general, data is easier to work with when it has fewer dimensions; this is the
inverse statement of the one characterizing the curse of dimensionality [1]. For the
sake of the experimenter, it is prudent to define g such that |z| << |x|.

If the demon has done its job correctly, the function h : Z → Y subsequently defined
by the experimenter can be almost arbitrarily simple and her wish is fulfilled with
little effort.

Interpretation

In the thought experiment above, the demon plays the role of an optimal informative
embedding function which organizes the data into some embedding space to make
the task easy. The experimenter is then a subsequent network with enough capacity
to perform its task using the embedding space but not the original space as its input.

Optimization of the embedding function proceeds by minimizing a loss functional
containing information about the quality of the representation. The demon’s knowl-
edge of the capacity and skill of the experimenter may then correspond to augment-
ing the loss functional with an additional objective that encourages desirable proper-
ties of the representation with respect to the experimenter’s classification accuracy.
We can achieve this in practice by optimizing both objectives simultaneously.

2

2
Theory

2.1 Data Representation

2.1.1 Neural Network Autoencoders

Autoencoders are systems which learn the identity function, x 7→ x. To create
an autoencoder using neural networks, we define two networks, φ : X → Z and
ψ : Z → X , named the encoder and decoder networks respectively, such that
(ψ ◦ φ)(x) ≈ x ∀x ∈ X . The output of the encoder can be interpreted as a code or
representation vector which carries information about the input to the decoder for
subsequent reconstruction [2].

Typically, regularization is applied to the autoencoder either through the architec-
ture of the network or through additional terms in the objective function. In the
case of undercomplete autoencoders, the code layer (the layer between the encoder
and decoder) has fewer nodes than the input, so learning the identity function is
nontrivial because in general the input data cannot be losslessly represented by
a smaller vector. The code layer then becomes a representation of the data in a
smaller space, and the autoencoder can be said to perform nonlinear dimensional-
ity reduction. If the encoder or decoder networks have excessive capacity, then the
network will not learn the patterns which are indicative of the data’s underlying
distribution. Instead the network will overfit and will only reconstruct unseen data
poorly, so constraining the network’s architecture is an effective method of learning
nontrivial, generalizable functions [3].
Definition 1. The encoder half of an autoencoder should obey the condition

x ≈ y → φ(x) ≈ φ(y) (2.1)

To encourage representations of the data which retain some meaning and generaliz-
ability, we usually require that the encoder constitutes a continuous mapping from
the original space to the representative space.

The above condition defined by Definition 1 is required for appropriate inference
on unseen data, because if this condition is not fulfilled, small changes in the input
can propagate through the network, leading to an inconsistent notion of “locality”
in the embedding space. Without this locality, we cannot rely on the embedding to

3

2. Theory

remain faithful to the original data.

We enforce continuity in the embedding by explicitly enforcing continuity in the
encoder function, which amounts to restricting our choice of activation functions
to those which are at least C0-continuous. In fact, all of the typical choices for
activation function fit this requirement. Although C0-continuity is sufficient, better
approximation is achieved with Ck-continuous functions in the limit as k →∞ [4].
Examples of activation functions which are C∞-continuous are the sigmoid, hyper-
bolic tangent, and softplus functions.

2.1.2 Information Content And Capacity In Neural Net-
works

We can be more rigorous about the quality of the representation by interpreting it
in terms of its information content. Specifically, we are interested in the mutual
information between layers in the network, with the input and output layers being
of prime importance. In the context of autoencoders, we are also interested in the
mutual information between input and code layers, and perhaps also the mutual
information between code and output layers.

Mutual information is the Kullback-Leibler divergence between a probability distri-
bution and the product of its marginal distributions. This means that mutual infor-
mation represents the information gain when considering a probability distribution
over the random variables of interest, relative to treating the random variables as
completely independent. This implies non-negligible “structure” in the probability
distribution that is not accounted for by the marginal distributions of each random
variable alone.

We start with the data processing inequality (DPI) [5, 6], which states that, for a
probabilistic graphical model specified by X → Z → Y ,

I(X;Y) ≤ I(X;Z) (2.2)

where I(X;Y) is the mutual information between random variables X and Y . Put
another way, the DPI states that information is irrecoverable once it is lost during
the transitions through the graph.

Considering this result in the context of autoencoders, this says that the mutual in-
formation between the input and code layers is bounded from below by that between
the input and output layers.

When training an autoencoder, convergence is achieved when reconstruction error
is minimized. The theoretical global minimum of the reconstruction error is zero,
when the outputs of the network correlate perfectly with the inputs. Then there is
no information loss between input and output, and following the inequality in 2.2
we conclude that the autoencoder performs lossless compression at the code layer !
Thus, the global optimum is the same for the objectives of maximizing mutual
information and minimizing reconstruction error.

4

2. Theory

An idea closely related to the DPI is the Infomax principle [7], which states that
a learning system undergoing optimization moves toward a state where the mu-
tual information between input and output is maximized. Tishby et al. took this
idea further with the “information bottleneck” hypothesis [8] which interprets neural
network optimization as a tradeoff made at each layer in the network between repre-
sentation complexity versus the input and retained information about the expected
(true) output. This framework admits a natural interpretation where information
content at the output of the network corresponds to the level to which the model
can represent the necessary information about the training dataset.

2.2 Classification

The problem of classification is to segment the input domain into a number of regions
– potentially overlapping and not necessarily simply connected – each corresponding
to a unique class, such that all locations in a region represent inputs which belong
to or are assigned a label corresponding to that class.

In the case of non-overlapping regions, i.e., a partition over the input space, the task
is called multi-class classification, whereas when the regions are allowed to overlap,
the task is multi-label classification. The former corresponds to mutually exclusive
labels, while the latter does not impose that constraint.

2.2.1 Neural Network Classifiers

The function implemented by a classifier built from a neural network will inherit
the following useful properties of neural networks:

• it is defined over the entirety of the input domain

• its output is deterministic, meaning also that any boundaries defined by the
output are a deterministic function of the network’s parameters

• the activation function at the last layer can be chosen to model appropriate
probability distributions

The last property warrants further discussion. The choice of activation function
at the last layer in a neural network is constrained by the task that the network is
assigned. For classification, we predict soft class assignments, so that all assignments
can be interpreted as probabilities. The reason for this is twofold: first, hard class
assignments provide no gradient information for cases where we want to optimize the
network with a gradient descent algorithm; second, interpreting the neural network
as a probabilistic model allows for powerful theory and analysis [2].

For multi-class classification, the softmax function is applied since it can model
a draw from a multinomial distribution, corresponding to mutually exclusive out-
comes. For multi-label classification, the sigmoid activation function can be used to

5

2. Theory

model a set of independent, simultaneous Bernoulli draws, corresponding instead to
independent assignments for each class.

2.3 Multi-Task Learning (MTL)

The objective of MTL is to use a common, shared data representation to solve
multiple tasks simultaneously [9]. MTL reduces model complexity by encouraging
an informative representation that generalizes across disparate tasks. Requiring
good performance on all the tasks can be seen as a form of regularization which
adapts its influence based on the associated tasks.

Attempts to explicitly regularize the representation layer of the model, i.e., by
adding a regularization term to the loss function, are also present in the litera-
ture [10, 11, 12] and are usually formulated to induce sparsity in the features used
for each task, to encourage the model to better separate shared features from un-
shared ones.

6

3
The learning system in detail

3.1 The System

There are a few equivalent perspectives to take on the proposed machine learning
system, visualized in Figure 3.1. The first is of an autoencoder with additional
task(s) such as classification being performed on the representation at the code layer.
Another is as a vanilla classifier network with an additional autoencoder objective
at a bottleneck layer in the network. Yet a third is as a multi-task learning system,
where the shared body of the subnetworks is the encoder half of an autoencoder,
and one head is the decoder half while the rest of the heads can pursue other tasks.

In all cases, a shared representation of the input data is learned at the interface
between all the subnetworks, and this representation must support all the tasks
which the networks have been assigned, most importantly being the autoencoding
objective, which is given in the form

LAE[fθ] = 1
N

∑
i

‖fθ(~xi)− ~xi‖2
2 (3.1)

where fθ(~x) = (ψ ◦ φ)θ(~x) and N is the cardinality of the minibatch of data {~x}i.
This loss functional represents the usual mean-square error.

Assume we are developing a multi-task learning system with M subnetworks, each
with an assigned task, excluding the autoencoding task. Let Lk(θ) be the loss
function for each subnetwork indexed by k. Then the total loss function can be
described as

L[fθ] =
M∑
k=1

Lk[fθ] + λLAE[fθ] (3.2)

where λ is a hyperparameter scaling the influence of the autoencoding objective on
the whole optimization process. Equation (3.2) takes the form of a regularized loss
function, with the autoencoding objective acting as the regularizer. This perspec-
tive admits an interpretation where decoding the representation at some point in
the network constrains the network to encourage informative representations there.
Unlike other typical regularization methods, however, this regularization requires
additional layers to be defined in the network and so increases the number of pa-
rameters being trained.

7

3. The learning system in detail

(a) Autoencoder plus classification ob-
jective

(b) Classifier plus autoencoding objective

(c) Multi-task learning system: classifier & autoen-
coder

Figure 3.1: The multiple perspectives on the addition of an autoencoding objective
to a typical machine learning system. Here φ is the encoder half of the autoencoder,
ψ is the decoder half, and C is the classification network. The input layer is at the
bottom of each diagram. Gray boxes represent the data’s features, and yellow boxes
represent the data’s labels. The blue box is the shared (bottleneck) layer.

Components Of The System

Although we frame the system as a neural network with an additional autoencoding
objective, for the purpose of implementation it is more prudent to frame the system
as an autoencoder with additional tasks being performed on the representation of
the data at the code layer. That is, we define the architecture of the autoencoder
separately from the tasks performed on the representation of the data at its code
layer.

The autoencoder is defined to be as simple as possible, meaning its architecture is

8

3. The learning system in detail

symmetric about the code layer. We also construct the autoencoder simply, only
specifying the number of hidden layers in each half of the autoencoder, the number
of nodes in each hidden layer (being the same in all hidden layers), and the number
of nodes in the code layer.

Then the tasks are each performed by simple neural networks, described by the
number of layers and number of nodes per layer.

Later, in Section 3.2, we describe ways to use the code layer directly for anomaly
detection, clustering, and classification, and evaluate these methods in Chapter 4.

The Vector-Quantization (VQ) Classifier

Figure 3.2: The VQ classifier classifies data based on whether it falls inside a
decision radius, depicted here as dashed lines. The decision radius can be any
positive value and specifies the radius of the associated label’s decision sphere. The
intersection of multiple decision spheres demarcates a region which is quantized into
a class assignment vector.

First we define a new classifier architecture which classifies data points based on
proximity to a class’s exemplar. A visual aid is presented in Figure 3.2. The classifier
assigns a label to the data by performing logistic regression on the norm of the
vector difference between the data point and the exemplar. The logistic regression
is parametrized by only two parameters, the decision radius b and the sharpness of
the decision boundary w, and the prediction is governed by

ŷc = σ(−w‖~x− ~c‖2 + b) = 1
1 + exp (w‖~x− ~c‖2 − b)

(3.3)

where ŷc is the predicted probability that the data represented by ~x is associated
with the label represented by the exemplar ~c.

9

3. The learning system in detail

We write Equation (3.3) in that form and add the constraint that w and b remains
positive so that the decision boundary exists and the predicted value is greater than
1/2 when inside the decision boundary. With these conditions the VQ classifier only
represents viable clusters and the predictions it generates are sensible with respect
to the clusters created.

In practice, we can achieve this by learning w′ and b′ as unconstrained free param-
eters and computing w = exp(w′) and b = exp(b′) at prediction time. As usual, we
optimize with cross-entropy loss.

This classifier inherits its name from vector quantization, which is a technique for
summarizing a distribution of points in a vector space by means of a small number of
prototype vectors. This technique induces a map from each point to the prototype
which best represents it, akin to unsupervised clustering. Notable examples of vector
quantization in machine learning are the k-means and k-medoids algorithms, where
each data point is represented by the centroid of its associated cluster.

3.2 Approaches for Solving Problems with the Sys-
tem

3.2.1 Anomaly Detection

Anomaly detection is a task characterized by a large collection of unlabeled data,
and whose objective is to identify outliers or anomalous data points for review
and, if necessary, subsequent action. Examples of problem domains for anomaly
detection are: cybersecurity, to identify uncommon usage patterns and malicious
activity; disasters, e.g., earthquake prediction, to detect precursors to catastrophic
events; manufacturing, to predict if a machine is behaving abnormally and requires
maintenance; etc.

AD1

As a baseline, we perform anomaly detection using a simple technique which uses
reconstruction error as a metric for anomalousness. The process is simple: train an
autoencoder on the data, and define (or learn, if the labels are available) a threshold
of reconstruction error above which the data is considered anomalous.

AD2

For the next method, depicted in Figure 3.3, we assume that when data is mapped
closer to a cluster’s center, the patterns expressed in that data are more common,
since it is on average close to all the other data. To this end, we optimize the
network by using the usual autoencoder objective, but with an additional penalty

10

3. The learning system in detail

corresponding to the square of the vector norm of the data,

L[fθ] = 1
N

N∑
i=1
‖φθ(~xi)‖2 + λLAE[fθ] (3.4)

The hope is that over time, the data representing more common patterns will be
pushed toward the center while the data representing less common, i.e., more anoma-
lous, patterns will be further away. Then we can compute the anomaly score using
the Mahalanobis distance of the data’s embedding vector to the mean of the dataset’s
embedding vectors.

Figure 3.3: Visual representation of the gradients associated with an update using
the AD2 method. Examples are depicted as dots, and the gradient vectors are
depicted as arrows. The origin is depicted as ‘x’.

AD3

Here we leverage the smoothness of the embedding function φθ(~x) to “pull” anoma-
lous data away from the origin. We achieve this by feeding in fake data and penal-
izing it more when it is closer to the origin, while encouraging real data to remain
near the origin,

L[fθ] = 1
N

N∑
i=1
‖φθ(~xi)‖2 + 1

N

N∑
i=1
‖φθ(~wi)‖−2 + λLAE[fθ] (3.5)

where ~w represents the fake data (sampled from an assumed prior probability distri-
bution). The anomaly score is computed as the Mahalanobis distance of the data’s
embedding vector to the mean of the dataset’s embedding vectors.

11

3. The learning system in detail

From Definition 1 it follows that anomalous data will be mapped closer to random
inputs than data representing nominal behavior at the code layer of a trained au-
toencoder. By this we mean that as training progresses, the autoencoder will learn
to map fake data far away from the origin and real data closer to it. Data whose
characteristics are observed less often will be more poorly represented in the autoen-
coder than data which exhibits more common behavior. If the real, but anomalous,
data looks more like fake data, its location in the code space should be closer to
the fake data, i.e., further from the origin. We can exploit this property in anomaly
detection by encouraging more-common patterns to be mapped to locations near
the origin and less-common patterns to be mapped further away from the origin.

A visual aid is provided in Figure 3.4.

Figure 3.4: Visual representation of the gradients associated with an update using
the AD3 method. Real examples are depicted as green dots, fake data as gray dots,
and the gradient vectors are depicted as arrows. The origin is depicted as ‘x’.

AD4

Here we pose anomaly detection as a classification problem between the real data
and fake, generated data. The classification is performed by our VQ classifier, and
the exemplar vector is fixed to be the origin. We add a penalty onto the magnitude
of the radius of the VQ classifier to ensure that the data’s representation remains
compact and near the origin. See Figure 3.5 for a visual aid.

12

3. The learning system in detail

Figure 3.5: Visual representation of a good minimum using the AD4 method.
Real examples are depicted as green dots and fake data as gray dots. The origin is
depicted as ‘x’ and the decision radius as a dashed line. The hypothesis justifying
this method states that real data near the decision radius are more anomalous since
they are closer to fake generated data than to the bulk of the real data.

13

3. The learning system in detail

Evaluation Of Approaches

Because there is usually no ground truth label specifying the level of anomalousness
of the data, we will compare the two approaches instead by assessing how the two
“anomaly scores” correlate when trained on the same dataset, and assess some of
the high-scoring data points qualitatively to evaluate their anomalousness.

3.2.2 Supervised Classification

Supervised classification is a task wherein we are asked to predict which label(s)
should be assigned to which data point, given a set of ground truth data-label
associations. Using the training data, we should be able to train a model which
accurately predicts labels for previously unseen data.

SC1

As before, we choose a method which is as simple as possible for the first approach.
For this case, we are only interested in the classification performance of a classifier
which predicts labels based on the data’s representation at the code layer. Here we
will use a vanilla neural network classifier at the code layer.

SC2

This method is exactly like SC1 except it uses the VQ classifier.

SC3

The final approach we evaluate for supervised classification is reminiscent of the
second approach for unsupervised clustering. As before, we compute the pairwise
distances for each data point’s code representation between itself and all exemplars,
then apply a kernel to the pairwise distances and then apply a softmax layer. This
time our objective is to minimize the cross-entropy between the softmax predictions
and the one-hot vector indicating the true label. See Figure 3.6 for a visual aid.

Evaluation Of Approaches

Evaluation of the supervised classification task proceeds like normal, namely com-
puting some metric of accuracy (e.g., precision, recall, or F1-score) of the predictions
after training.

14

3. The learning system in detail

Figure 3.6: Visual representation of the gradients associated with an update using
the SC3 method. Green dots and orange dots are examples belonging to two different
classes. Each exemplar vector is represented as ‘x’ and the gradients are shown as
arrows.

15

3. The learning system in detail

16

4
Evaluation

We assess the performance of each method in Section 3.2 on a random subset of
the MNIST handwritten digits dataset, where the data is flattened into 1D vectors,
z-normalized, and ingested into the system. Then we train the system and compute
metrics indicating the success of the system to learn to perform the associated task.
We also evaluate the training process using task-specific means.

We define two architectures which differ primarily in the width of the code layer so
that we can also evaluate the effect of the “information bottleneck” induced by it
versus the autoencoder objective. All details of the experimental setup can be found
in Appendix A, but for clarity and brevity we will mention here that the primary
axes along which we evaluate the system are the hyperparameter associated with
the autoencoder term in the objective (here denoted λ) and the width of the code
layer.

Throughout this section, shorthand is used to refer to the various experiments. The
format is simple: AA-BB where AA specifies the method used and BB indicates the
width of the code layer.

High-Dimensional Visualization

For all figures for which we must visualize a high-dimensional space, we first apply
nonlinear dimensionality reduction using the UMAP algorithm [13].

The Original MNIST Data Space

A dimensionality-reduced visualization of the MNIST dataset in its original space
is found in Figure 4.1.

17

4. Evaluation

Figure 4.1: Distribution of the MNIST dataset in the original space, visualized
using UMAP. Class label information is deliberately eschewed to emphasize the
structure. Even without labels, the data exhibits clusters which are readily recog-
nized.

4.1 Anomaly Detection

Data Corruption

The data is initially z-normalized, meaning the whole dataset undergoes an affine
transformation so that the mean of each feature is zero and the variance of each
feature is one. This puts a standard Gaussian prior probability distribution on the
data, if we are considering it in a Bayesian context. To corrupt the data, we add
Gaussian noise with a specific standard deviation. For these experiments we vary
the magnitude of the Gaussian noise smoothly from 10−3 to 1, which corresponds
to a signal-to-noise ratio (SNR) which ranges from 1000 to 1. In real terms, this
means we corrupt each element of the test dataset with some value between this
range and assess the system for its ability to reliably score data higher when it is
more corrupted.

When assessing the below methods, we use the unedited test set for visualizing the
code layer and scores, and only use the corrupted dataset to study the response to
data corruption.

4.1.1 AD1-2

All values of λ will produce similar results for this method as the only term in the
objective function is the autoencoder term. Different values for λ will only change
the effective step size during training, which can be accounted for by correspondingly

18

4. Evaluation

AD1-2 Results

(a) Representation of the test set
at the code layer. Color indicates
anomaly score.

(b) Comparison between pairwise
distances in the original and em-
bedding spaces for λ = 1.

(c) A histogram of score assign-
ments for training and test sets.

(d) No response to corrupted data.

Figure 4.2: Characterizing the performance and representation at the code layer
of the AD1 method with code layer width 2.

19

4. Evaluation

changing the learning rate. For these reasons we only test this method for λ = 1.
The results are found in Figure 4.2.

To human eyes, the representation of the data at the code layer (see Figure 4.2a)
seems to be surprisingly uninformative. The data which are poorly reconstructed
are also in unexpected locations relative to the rest of the data, although perhaps
that is not so surprising since the data may not “belong” in that location in the
code layer in the first place.

The pairwise distances between data in both spaces, while relatively highly corre-
lated, still exhibits unconventional patterns. Most notable is that there are distinct
“echelons” in the distances in the original space indicated by the vertical stripes on
the right side of the plot in Figure 4.2b.

The histogram of score assignments in Figure 4.2c is useful in this and the next
analyses for inferring appropriate anomaly thresholds and investigating the gen-
eralization capacity of the method to unseen data. Insights gleaned from these
histograms would inform the training process and interpretation of the scores. In
the case of AD1, we see that a large majority of data points are given very low
scores, indicating nominal behavior, and only a very few deviate from that distri-
bution, in keeping with how we usually interpret anomalies as extreme events. The
distribution of scores for the training set is surprisingly wider than that of the test
set, which we would expect to receive higher scores on average since they are not
guaranteed to be “in distribution”.

The assigned scores are almost completely independent of the corruption level, with
a very slight positive trend for just a couple data points. It is possible that the
points which are scored highly are true anomalies, not just because of the artificial
corruption process, but without ground truth labels we cannot assess this objectively.

4.1.2 AD1-784

The results depicted in Figure 4.3 indicate that the performance of AD1 does not
significantly change as code layer width is increased. The response to corrupted data
has a very slight positive trend but does not indicate reliable anomaly detection.
The biggest difference between the two conditions is that the pairwise distances
are much more highly correlated, likely due to the fact that in the absence of any
incentive to compress the data meaningfully, all the layers in the autoencoder will
eventually learn to approximate the identity function, and the correlation of pairwise
distances approaches 1.

4.1.3 AD2-2

For this method, we do not test λ = 0 because we would achieve a trivial solution
where every data point is mapped to the origin in the code layer.

20

4. Evaluation

AD1-784 Results

(a) Representation of the test set
at the code layer. Color indicates
anomaly score.

(b) Comparison between pairwise
distances in the original and em-
bedding spaces for λ = 1.

(c) A histogram of score assign-
ments for training and test sets.

(d) No response to corrupted data.

Figure 4.3: Characterizing the performance and representation at the code layer
of the AD1 method with code layer width 784.

21

4. Evaluation

AD2-2 Results

(a) Representation of the test set at the code layer. Color
indicates anomaly score.

(b) Comparison between pairwise distances in the original and
embedding spaces for varying λ.

(c) A histogram of score assignments for training and test sets.

(d) Slight response to corrupted data.

Figure 4.4: Characterizing the performance and representation at the code layer
of the AD2 method with code layer width 2.

22

4. Evaluation

The code layer looks pretty much as expected, distributed roughly Gaussian or
Laplacian about the mean for lower values of λ. The exception is when the autoen-
coder objective dominates at λ = 10, where the data starts to resemble the code
layer from AD1 more.

One thing to notice is that the magnitudes of the scores change drastically as λ varies
under AD2. This is because without sufficient pressure to distinguish between data
points, they will collapse to very near the origin.

The histogram depicts a roughly exponential distribution of scores with no clear
boundary between what may be considered nominal versus anomalous. It would be
difficult to act on this information without labelled data to select a decent alarm
threshold.

We can see a very slight response to the corrupted data for corruption level > 20%,
but there is not enough to assume that it will reliably detect known anomalies.

4.1.4 AD2-784

Compared to having a code layer width of 2, this method exhibits a strong response
to corrupted data. However, there are also a number of false positives that disqualify
this method from being considered for an efficient anomaly detection application.

Typically, data which is out-of-distribution with respect to the training data should
receive higher scores as it fits “worse” to the distribution learned by the model.
However, in this case the test data received lower scores on average than the training
data, defying the intuition about anomaly detection algorithms.

Recall that the training regimen specified a small number of training epochs, mean-
ing that the model may not have converged to its stationary state. Increasing the
number of training epochs may eventually remove most or all the false positives.

4.1.5 AD3-2

The differences between code layer representations for varying λ are surprisingly
small. The exception is λ = 10 where something clearly went awry during training.
The leading hypothesis is that during training, some “fake” data points were gener-
ated very near the origin, resulting in massive gradients. The update step then took
a massive step and momentum carried the data points’ representations away from
the origin. When the momentum finally dissipated, there was not sufficient time in
the training or strength of gradients to pull those points back toward the origin.

The score distribution takes on an interesting shape that evolves as λ varies. Below
λ = 1, the distribution of scores is smooth and there seems to be one contiguous
body of scores, meaning it is hard to set a threshold for the anomaly alarm. However,
at λ = 1 and above, some of the data points separate from the main mass and two
distinct clusters emerge, making threshold choice easier.

23

4. Evaluation

AD2-784 Results

(a) Representation of the test set at the code layer. Color
indicates anomaly score.

(b) Comparison between pairwise distances in the original and
embedding spaces for varying λ.

(c) A histogram of score assignments for training and test sets.

(d) Slight response to corrupted data.

Figure 4.5: Characterizing the performance and representation at the code layer
of the AD2 method with code layer width 784.

24

4. Evaluation

AD3-2 Results

(a) Representation of the test set at the code layer. Color
indicates anomaly score.

(b) Comparison between pairwise distances in the original and
embedding spaces for varying λ.

(c) A histogram of score assignments for training and test sets.

(d) Response to corrupted data.

Figure 4.6: Characterizing the performance and representation at the code layer
of the AD3 method with code layer width 2.

25

4. Evaluation

Unfortunately, there is no perceptible response to corrupted data.

4.1.6 AD3-784

AD3-784 Results

(a) Representation of the test set at the code layer. Color
indicates anomaly score.

(b) Comparison between pairwise distances in the original and
embedding spaces for varying λ.

(c) A histogram of score assignments for training and test sets.

(d) Response to corrupted data.

Figure 4.7: Characterizing the performance and representation at the code layer
of the AD3 method with code layer width 784.

The differences between code layer widths 2 and 784 for this method reflect those for
AD2. We see concerning behavior in that the test scores are lower than the training
scores and the number of false positives remains high.

For this method, because we are generating fake data at every training iteration,
there may not exist a proper stationary state, instead achieving some “quasi-stationary”

26

4. Evaluation

distribution which is regularly perturbed by fake data which is arbitrarily close to
the distribution of the real data. So even though the results indicate the training
process may look similar to that of AD2, it may be the case that training longer will
not achieve the desired results. For this reason we consider AD3 to be worse than
AD2.

Curiously, there is very little difference in results across varying λ.

4.1.7 AD4-2

AD4-2 Results

(a) Representation of the test set at the code layer. Color
indicates anomaly score.

(b) Comparison between pairwise distances in the original and
embedding spaces for varying λ.

(c) A histogram of score assignments for training and test sets.

(d) Response to corrupted data.

Figure 4.8: Characterizing the performance and representation at the code layer
of the AD4 method with code layer width 2.

27

4. Evaluation

Of all the methods studied in this thesis, this one is the most promising for practical
use and represents the main novelty and contribution to the field.

The code layer is as we might expect, given the description of the method: a dense
cluster near the origin with a smattering of points outside.

The pairwise distance comparison is also very informative, and indicates that this
method is promising for anomaly detection as well as preserving relationships be-
tween data for e.g. nearest neighbor search. Note the distinct clusters of points
visible in these comparisons: this indicates that relationships between points are
upheld and the latent structure of the dataset is preserved to a high degree for these
distinct clusters.

It is easy to interpret the score histograms as mixture distributions: one component
distribution being very tightly distributed near zero, and the other distributed more
uniformly over a much wider range, à la the ‘spike-and-slab’ model [14]. Further-
more, we can derive a principled first candidate for an anomaly threshold directly
from the trained model by using the decision radius of the employed classifier, which
provides additional interpretability of the resulting distribution of the data in the
code layer.

We see a strong response to the artificial anomalies as well. Starting at a corruption
level of about 10%, the assigned score increases with increasing corruption up to near
the maximum assigned score among all points. This is a strong result and shows
that, at least in the case of Gaussian noise, this detector is reasonably reliable.

4.1.8 AD4-784

The differences between narrow and wide code layers for this method are minor, how-
ever there is a more consistent response to corrupted data. For large λ, the number
of false positives increases significantly, and the score distribution histogram loses
its beneficial “spike-and-slab” structure so that determining the alarm threshold is
not as straightforward.

4.2 Supervised Classification

4.2.1 SC1-2

As λ varies, the representation of the data at the code layer undergoes only minor
changes. As λ grows, the organization of the code layer becomes more “noisy” with
respect to the classification task and the clusters become more spread out.

The training loss acts approximately as expected for such a training task. However,
the validation loss exhibits interesting behavior: the validation loss first drops very
quickly and then rises again, with a sharp transition between the two behaviors. This

28

4. Evaluation

AD4-784 Results

(a) Representation of the test set at the code layer. Color
indicates anomaly score.

(b) Comparison between pairwise distances in the original and
embedding spaces for varying λ.

(c) A histogram of score assignments for training and test sets.

(d) Response to corrupted data.

Figure 4.9: Characterizing the performance and representation at the code layer
of the AD4 method with code layer width 784.

29

4. Evaluation

SC1-2 Results

(a) Representation of the test set at the code layer. Color in-
dicates class labels: predicted label on the top row and ground
truth label on the bottom row.

(b) Training and validation loss histories over the course of
training.

Figure 4.10: Characterizing the performance and representation at the code layer
of the SC1 method with code layer width 2.

30

4. Evaluation

is true for most values of λ, however as it grows to near λ = 10 the validation loss
shows more erratic behavior. In this case we see that the model has not yet reached
a stationary state and continues to “bounce” as the autoencoding and classification
objectives compete. Further tests are necessary to determine the long-term behavior.

4.2.2 SC1-784

SC1-784 Results

(a) Representation of the test set at the code layer. Color in-
dicates class labels: predicted label on the top row and ground
truth label on the bottom row.

(b) Training and validation loss histories over the course of
training.

Figure 4.11: Characterizing the performance and representation at the code layer
of the SC1 method with code layer width 784.

In contrast to having a code layer of width 2, the wide code layer allows for much
more separation between labelled clusters. As indicated by the loss curve for λ = 0,
training loss approaches zero and the clusters are properly labelled. However, the
validation curve very quickly transitions from decreasing to increasing, and does so
before the model converges with respect to the training data. This may indicate that

31

4. Evaluation

more training epochs are necessary to achieve a true convergence to a generalizable
classification model.

The exception again is λ = 10, where the losses only decrease. Presumably this
is because the autoencoder objective has not yet reached a minimum and is still
optimizing after the training epochs.

4.2.3 SC2-2

SC2-2 Results

(a) Representation of the test set at the code layer. Color in-
dicates class labels: predicted label on the top row and ground
truth label on the bottom row.

(b) Training and validation loss histories over the course of
training.

Figure 4.12: Characterizing the performance and representation at the code layer
of the SC2 method with code layer width 2.

The autoencoder objective exhibits the same behavior as before, spreading out the
data in the code layer. In general, though, the conclusions made about SC1 also
apply here. Clearly the training will take a long time to converge, but it is less

32

4. Evaluation

clear how the performance will change as the autoencoder objective in particular
converges.

4.2.4 SC2-784

SC2-784 Results

(a) Representation of the test set at the code layer. Color in-
dicates class labels: predicted label on the top row and ground
truth label on the bottom row.

(b) Training and validation loss histories over the course of
training.

Figure 4.13: Characterizing the performance and representation at the code layer
of the SC2 method with code layer width 784.

As before, the clusters become less distinct as λ grows. The conclusions that can be
drawn from these results are tenuous, but they may indicate that in the absence of
an autoencoder objective, the system already has sufficient capacity to meaningfully
separate the clusters.

33

4. Evaluation

4.2.5 SC3-2

SC3-2 Results

(a) Representation of the test set at the code layer. Color in-
dicates class labels: predicted label on the top row and ground
truth label on the bottom row.

(b) Training and validation loss histories over the course of
training.

Figure 4.14: Characterizing the performance and representation at the code layer
of the SC3 method with code layer width 2.

The clusters here are much closer together and more mixed with each other than
previous methods. This indicates that the gradients associated with the form of
loss function used for these experiments are not very strong compared to the other

34

4. Evaluation

methods. The representation at the code layer for the λ = 10 case is to be expected
based on our experience with the previous methods.

We also see more typical validation loss curves, which drop quickly (initial train-
ing) before plateauing (quasi-convergence) and beginning to rise slowly (overfitting).
However, the training loss curves indicate that training to convergence will take a
long time and so this method may be unsuitable for larger models and datasets due
to computational resource and time restrictions.

4.2.6 SC3-784

The results of this experiment indicate once again that the gradients are not so
strong for this method as compared to other methods, seen here by inspecting the
representation at the code layer and noting the clusters corresponding to class labels
are still mixed with each other. This reinforces the conclusion that this method
does not train so quickly compared to others and more epochs will be necessary to
converge. This is in general a negative result because we would like models which
converge quickly to good performance on the related task(s).

4.2.7 Quantitative Results

Task Code Layer Width λ = 0.00 λ = 0.10 λ = 1.00 λ = 10.0

SC1 2 0.897 0.900 0.889 0.890
784 0.939 0.939 0.938 0.931

SC2 2 0.889 0.891 0.875 0.884
784 0.937 0.937 0.934 0.922

SC3 2 ∅ 0.881 0.881 0.859
784 ∅ 0.098 0.098 0.098

Table 4.1: Accuracy results for all supervised classification experiments. Best
performance per task is highlighted in bold.

Table 4.1 shows the accuracy results for every experiment performed on the MNIST
dataset. The entries for SC3 with λ = 0 are omitted because the minimum of the
loss function is a trivial representation, so these experiments were not performed.

35

4. Evaluation

SC3-784 Results

(a) Representation of the test set at the code layer. Color in-
dicates class labels: predicted label on the top row and ground
truth label on the bottom row.

(b) Training and validation loss histories over the course of
training.

Figure 4.15: Characterizing the performance and representation at the code layer
of the SC3 method with code layer width 784.

36

5
Conclusion

The framework presented in this thesis has the stated objective of improving perfor-
mance on typical tasks performed by neural networks using an augmented objective
function. This objective function includes an additional term corresponding to re-
construction of the input given the representation of the data at some intermediate
bottleneck layer in the network, referred to in this document as the “autoencoder
objective”.

For the purposes of anomaly detection, four different methods were explored. These
methods differ in complexity and the gradients associated with the training proce-
dure, and each also invites different interpretations of the resulting representation
for the purposes of anomaly scoring and raising alarms. Of all the methods, AD4
was the most promising for detecting true out-of-distribution examples and scored
examples proportionally to the level of added noise in the data.

For supervised classification, three methods were explored and evaluated according
to the usual metrics. The best was the simplest method, SC1, which uses only a
linear classifier at the code layer of the autoencoder.

We find that, across all tasks, when the code layer width is too restricted, the
performance is generally worse. That is, the code layer acts as a bottleneck whose
impact on the performance dominates over the autoencoder objective. In the case
of anomaly detection, this corresponds to more false positives and negatives, and
for classification, this means lower classification accuracy. The primary issue here
is that of insufficient flexibility in the code space to organize the data efficiently for
the associated task—a full-width code layer is most likely excessive, and a balance
can be achieved in code layer width which is optimal in this context, compromising
between code space flexibility and model complexity.

We also find that increasing the influence of the autoencoder objective tends to
decrease the task performance, presumably because the gradients associated with the
autoencoder objective are too strong and bring the model away from configurations
which result in good performance. This assessment should only be restricted to the
architectures used in these experiments, mainly because the networks were defined
such that both the encoder and decoder halves have sufficient “capacity” to efficiently
separate the classes by the time the data reaches the code layer. Perhaps for networks
which are too small (too narrow or too shallow), the autoencoder objective may
improve the performance, but we may also see that the upper bound on accuracy is

37

5. Conclusion

lower for such small networks.

All experiments were performed with a minimum of training time for expediency
and to “stress-test” the various methods in this thesis. The motivation for this is to
evaluate how quickly each method reaches a reasonable solution, not necessarily to
produce the networks with the best performance overall. In future experiments, it
would be fruitful to explore the most promising methods and architectures and train
them to convergence in case the long-term behavior diverges from what is observed
in earlier stages of training.

Future work on the framework introduced in this thesis could explore: the effect
of different activation functions such as ReLU on the performance of the various
methods; extensions to other network architectures such as CNNs and RNNs; use
of more sophisticated “fake data” generation methods such as GANs or Gaussian
processes for the anomaly detection methods which require them; further inspection
of the structure of the code space, in particular the results of decoding learned
exemplar vectors to understand what they represent; or more details on integration
into existing data analysis pipeline.

38

Bibliography

[1] R. Bellman, Rand Corporation, and Karreman Mathematics Research Collec-
tion. Dynamic Programming. Rand Corporation research study. Princeton
University Press, 1957.

[2] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[3] Y. Bengio, A. Courville, and P. Vincent. Representation Learning: A Review
and New Perspectives. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(8):1798–1828, aug 2013.

[4] H. N. Mhaskar and C. A. Micchelli. How to choose an activation function, 1993.

[5] Normand J. Beaudry and Renato Renner. An intuitive proof of the data pro-
cessing inequality. jul 2011.

[6] Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using
linear classifier probes. oct 2016.

[7] R. Linsker. Self-organization in a perceptual network. Computer, 21(3):105–
117, mar 1988.

[8] Naftali Tishby and Noga Zaslavsky. Deep learning and the information bot-
tleneck principle. In 2015 IEEE Information Theory Workshop (ITW), pages
1–5. IEEE, apr 2015.

[9] Rich Caruana. Multitask Learning. Machine Learning, 28(1):41–75, 1997.

[10] Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Convex
multi-task feature learning. Machine Learning, 73(3):243–272, dec 2008.

[11] Minmin Chen, Kilian Q. Weinberger, and John C. Blitzer. Co-training for
domain adaptation. Neural Information Processing Systems, 2012.

[12] Bernardino Romera Paredes, Andreas Argyriou, Nadia Berthouze, and Massi-
miliano Pontil. Exploiting Unrelated Tasks in Multi-Task Learning, mar 2012.

[13] Leland McInnes, John Healy, and James Melville. UMAP: Uniform Manifold
Approximation and Projection for Dimension Reduction. feb 2018.

[14] T. J. Mitchell and J. J. Beauchamp. Bayesian Variable Selection in Linear

39

http://www.deeplearningbook.org

Bibliography

Regression. Journal of the American Statistical Association, 83(404):1023–1032,
dec 1988.

[15] GradientBased Learning Applied to Document Recognition. In Intelligent Sig-
nal Processing. IEEE, 2009.

40

A
Implementation

All implementation and experiments were done using Python 3.5.2. Besides the
built-in libraries, development proceeded with the following libraries:

• NumPy

• Pandas

• Matplotlib

• PyTorch

All of the following experiments were performed with the following optimization
hyperparameters:

• Learning rate: η = 1× 10−3

• Momentum: α = 0.9

• Batch size: B = 16

• Epochs: NE = 128

The dataset used is the MNIST handwritten digits dataset [15], which contains
images of handwritten digits at a resolution of 28×28. For the purposes of this
thesis, each example was flattened into a 1D vector of length 784.

Two architectures are tested: the first is intended to test the performance of an
extremely-bottlenecked architecture, and the other to test the performance of a full-
width autoencoder. Each architecture is depicted in Figure A.1. For testing the VQ
classifier, the specified architecture for the classifier is entirely replaced by the VQ
classifier.

The regularization hyperparameter values tested are λ ∈ {0, 0.1, 1, 10}. We consider
these the most important variables to test as they represent respectively no, mild,
regular, and extreme regularization.

I

A. Implementation

(a) Extreme-bottleneck architecture. (b) Full-width architecture.

Figure A.1: The two architectures employed for these experiments. Blue boxes
represent the layers relevant to the autoencoder, and yellow boxes represent the
classifier being used at the code layer of the autoencoder. There are either 1 or
10 outputs on the classifier depending on whether the task is anomaly detection or
supervised classification, respectively.

II

	List of Figures
	List of Tables
	Introduction
	Motivation
	Thought Experiment

	Theory
	Data Representation
	Neural Network Autoencoders
	Information Content And Capacity In Neural Networks

	Classification
	Neural Network Classifiers

	Multi-Task Learning (MTL)

	The learning system in detail
	The System
	Approaches for Solving Problems with the System
	Anomaly Detection
	Supervised Classification

	Evaluation
	Anomaly Detection
	AD1-2
	AD1-784
	AD2-2
	AD2-784
	AD3-2
	AD3-784
	AD4-2
	AD4-784

	Supervised Classification
	SC1-2
	SC1-784
	SC2-2
	SC2-784
	SC3-2
	SC3-784
	Quantitative Results

	Conclusion
	Bibliography
	Implementation

