
DF

Ray Casting DEM Simulation Data to
Characterize the Spray Coating of
Superquadric Particles
Master’s thesis in Engineering Mathematics and Computational Science

PONTUS ANDERSSON

Department of Mathematical Sciences
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2020

Master’s thesis 2020:59115

Ray Casting DEM Simulation Data to
Characterize the Spray Coating of

Superquadric Particles

PONTUS ANDERSSON

DF

Department of Mathematical Sciences
Division of Applied Mathematics and Statistics

Chalmers University of Technology
Gothenburg, Sweden 2020

Ray Casting DEM Simulation Data to Characterize the Spray Coating of Superquadric
Particles
PONTUS ANDERSSON

© PONTUS ANDERSSON, 2020.

Supervisors: Luis Martin de Juan & Johan Remmelglas, Modelling and Simulation,
Global Medicines Development, Pharmaceutical Technology & Development, Oper-
ations, AstraZeneca, Gothenburg, Sweden
Supervisor and Examiner: Alexey Geynts, Department of Mathematical Sciences,
Chalmers University of Technology, Gothenburg, Sweden

Master’s Thesis 2020:59115
Department of Mathematical Sciences
Division of Applied Mathematics and Statistics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Modelling and Simulation, Global Medicines Development, Pharmaceutical Tech-
nology & Development, Operations, AstraZeneca, Gothenburg, Sweden

Cover: Rays simulating the spray in a coating process.

Typeset in LATEX, template by David Frisk
Printed by Chalmers Reproservice
Gothenburg, Sweden 2020

iv

Ray Casting DEM Simulation Data to Characterize the Spray Coating of Superquadric
Particles
PONTUS ANDERSSON
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
Drum spray coating of tablets is a common unit operation in the pharmaceutical pro-
duction process. Increasingly, the Discrete Element Method (DEM) is being used to
study and optimize this process in order to improve the resulting tablet coating uni-
formity. Multi-spheres are a popular approach to shape approximation in DEM, but
have been shown to be insufficient at modeling the bulk kinematics of certain tablet
shapes. This work develops a method that enables the use of superquadrics in DEM
to study inter- and intra-tablet coating variability. Specifically, a standalone C++
program is developed that models the spray by casting rays on data exported from
DEM simulations. Acceleration techniques like spatial subdivision and bounding
volumes are used to reduce the runtime, and an efficient intra-particle representa-
tion is developed and used to compute the intra-tablet coating variability. The final
implementation is capable of processing a 180 second simulation containing 2 million
tablets in just a few hours on a conventional desktop computer. Key parameters
of the implementation are studied through benchmarks and suggestions of suitable
values are made. The tool is finally used to show that the blockiness of the DEM
shape representation has a significant impact on intra-tablet coating variability, but
further studies are needed to better understand this effect.

Keywords: Coating variability, DEM, Superquadric, Shape approximation, Ray
casting, Acceleration techniques

v

Acknowledgements
This work would not have been possible without the support of some key individuals.
I’d like to thank my supervisors Alexey, Luis and Johan for their guidance and many
insightful discussions over the course of the project. Many thanks also go out to
members of my family who served as enxhaustible sources of encouragement.

This project has been funded by AstraZeneca.

Pontus Andersson, Gothenburg, 2020

vii

Contents

List of Figures xi

List of Tables xv

1 Introduction 1
1.1 Previous Work . 2
1.2 Aims and Goals . 3

2 Theory 5
2.1 Superquadrics . 5
2.2 Ray Casting . 7

2.2.1 Ray-superquadric intersection 8
2.3 Spray Coating . 9

2.3.1 Single Visit Residence Time 9
2.3.2 Inter-tablet Variability . 9
2.3.3 Intra-tablet Variability . 9

3 Implementation 13
3.1 Spatial Subdivision . 13

3.1.1 Grid Construction . 14
3.1.2 Grid Traversal . 15

3.2 Ray-Particle Intersection . 16
3.2.1 Ray-Sphere Intersection . 16
3.2.2 Ray-Box Intersection . 17
3.2.3 Ray-Superquadric Intersection 17

3.2.3.1 Bisection Search . 18
3.2.3.2 Newton’s Method . 19
3.2.3.3 Intersection Algorithm 19

3.3 Ray Casting Algorithm . 21
3.4 Intra-particle Sampling . 22

3.4.1 Uniform Parametrization . 25
3.4.2 Uniform Sampling . 26
3.4.3 Cube Sampling . 27

4 Methods 31
4.1 Software . 31
4.2 DEM Simulation . 31

ix

Contents

4.2.1 Pharmaceutical Shapes . 32
4.2.2 Blockiness Variation . 32

4.3 Benchmarks . 34

5 Results and Discussion 35
5.1 Ray Casting . 35

5.1.1 Intersection tolerance . 35
5.1.2 Grid Spacing . 36
5.1.3 Sampling Convergence . 38
5.1.4 Runtimes . 40

5.2 Coating Variability . 44
5.2.1 Pharmaceutical Shapes . 44
5.2.2 Blockiness Variations . 44

6 Conclusion 49

Bibliography 51

x

List of Figures

2.1 Three superellipses for different values of ε with a = 1.5 and b = 1. . . 5
2.2 Examples of superquadrics. The sphere in (a) has parameters a =

b = c = 1 and n1 = n2 = 2. The ellipsoid in (b) has the same settings
as the sphere but adds c = 1.5. The cylinder in (c) adds n1 = 20 and
the cuboid in (d) adds n2 = 20. 7

2.3 An example that highlights the difference between CoVintra,bulk and
CoVintra,agg. Assume a population of 4 tablets, each divided into 2
panels. Two of the tablets have only received coating on side, and
the other two on the other side. For each individual tablet, σi > 0
and so CoVintra,bulk > 0. However, when the individidual coatings are
aggregated the coating becomes uniform and so CoVintra,agg = 0. . . . 11

3.1 A 2D example of adding a single particle to the grid cells. The quad-
rant, shown as a dotted line, enables immediate exclusion of five grid
cells (yellow). Then, for each remaining cell, the particles is added if
its bounding sphere overlaps the cell (green) or not if it doesn’t (red). 15

3.2 Example of a ray-superquadric intersection, showing both a render
of the ray passing through the superquadric particle and the corre-
sponding intersection function F (t). The sought roots of F (t) are
shown as green dots and dashed lines in the render and graph respec-
tively. Similarly, the box intersection points are shown in magenta.
The box intersection points determine the starting interval [l0, r0] and
the initial midpoint m0. In this case F (m0) < 0, and so the first root
must be in the interval [l0,m0], highlighted in yellow. Newton itera-
tions then start from l0. The first Newton iterate and corresponding
tangent line are shown in blue. 20

3.3 Example of a ray-superquadric intersection where the ray misses. The
initial search interval [l0, r0] and corresponding tangent line at a are
shown in red. Likewise, the two subsequent intervals and tangents at
b and c are shown in green and blue respectively. 21

3.4 Diagram of grid traversal and particle intersection for a single ray.
The cost of the checks inside the intersection loop are highlighted in
orange, with more color indicating a more expensive operation. 24

xi

List of Figures

3.5 A single ray cast showing the traversal and intersection checks. The
grid position is initialized given the ray origin in (a). The traversal
then starts, and the ray first passes through the two empty in (a)
and (b) before finding some particles in the third cell in (c). The
candidates in the final cell are highlighted in blue, and the hit particle
in green. 24

3.6 Uniform parametrization mesh and the resulting surface panels. . . . 26
3.7 Uniform step parameter mesh and the resulting surface panels. 28
3.8 Surface panels of the cube parametrization. 29

4.1 Setup used in the DEM simulations. Distances are shown in meters. . 32
4.2 The four shapes in 4.2, showing the panels used for intra-tablet vari-

ability estimation. 33
4.3 Profiles of Round4, Round6EV and Round10EV showing the varia-

tion in blockiness for different values of n1. 34

5.1 Runtime as a function of the grid spacing factor α for the Roundmedium
simulation. The runtimes are broken down into grid construction and
ray casting, both of which have been normalized using the values at
α = 3. The green curve shows the runtime given a balanced workload,
meaning that equal time is spent on grid construction and ray casting,
and the red curve in (c) shows a workload where 90% of the time is
spent on grid construction, and 10% on ray casting. 37

5.2 Indexing factor vs the grid spacing factor α. 38
5.3 CoV at the end of the 180 second Round simulation as a function of

the number of rays cast per time step, showing how many rays are
required for the different coefficients to converge. The values have
been normalized by the final value when 1M rays are cast. 39

5.4 Final values and convergence of CoVintra,bulk as a function of the num-
ber of rays cast per time step in the Round case. 40

5.5 Estimate of the asymptotic CoVintra,agg and CoVintra,agg,sym for the
Round shape as a function of the simulation length when a total of
100 million rays are cast. The dashed line shows the average of the
final values. 41

5.6 Surface densities of four pharmaceutical tablet shapes. The densities
have been symmetrically averaged and normalized by dividing by the
maximum density. 45

5.7 CoVinter and CoVintra,agg,sym for the four pharmaceutical tablet shapes.
The projections of the CoVinter are based on a theoretical t−0.5 fall-off
[1]. 45

5.8 Surface coating densities of the Round variations. The densities have
been symmetrically averaged and normalized by dividing by the max-
imum density. 46

xii

List of Figures

5.9 CoVinter and CoVintra,agg,sym for Round blockiness variation shapes.
The projections of the CoVinter are based on a theoretical t−0.5 fall-off
[1]. The intra-tablet coating uniformity increases with the blockiness.
The asymptotic prediction for Round4 is 3.82% while that of Round10
is 0.90%. 47

5.10 Distributions of tablet orientation and rotational speeds from the
Round4 and Round10 simulations. The orientations are sampled from
the spray zone, and the top angular speeds are those greater than the
corresponding 95th percentile in the Round4 simulation. The shift in
both histograms show that the Round10 tablets are facing their cap
towards the spray less and rotating faster in the free surface than the
Round4 tablets. 47

xiii

List of Figures

xiv

List of Tables

4.1 Simulation settings used in LIGGGHTS. 33
4.2 Parameters and properties of the pharmaceutical particle shapes. The

aspect ratio is computed as AR = 0.5(a+ b)/c (inverted for the Cap-
sule) and the maximum aspect ratio as ARmax = max(a, b, c)/min(a, b, c). 33

4.3 Parameters and properties of Round blockiness variation shapes. . . . 34

5.1 Ray casting runtimes for 180 seconds of data from different simu-
lations. All runs used a grid spacing factor of α = 3. Twall is the
elapsed wall-clock runtime and Tgrid and Tray are single-thread esti-
mates for grid construction and ray casting respectively based on av-
eraging across the 4 threads. The 180 second runtimes of Roundmedium
and Roundlarge have been extrapolated from runtimes of processing
12 simulation data files, and the number of panels in those cases were
reduced due to memory constraints. 42

5.2 Number of intersection checks per ray performed while processing the
data from the different simulations. Roundmedium and Roundlarge used
the Round shape. 43

xv

List of Tables

xvi

1
Introduction

Drum spray coating of tablets is a critical part of the pharmaceutical production
process, particularly for functional coatings whose uniformity impacts stability and
drug release. In recent years, improvements in computer performance have enabled
successful use of the Discrete Element Method (DEM) to simulate the interactions
between all individual tablets in the coating process [2, 3]. DEM simulations provide
rich information that can be used to tune process parameters.

Spheres are commonly used to represent particle shapes in DEM simulations because
of their rotational invariance and simple collision detection. However, few tablets are
spherical and several different methods have been developed to model non-spherical
shapes. Below are four popular approaches listed roughly in order of increasing
accuracy and computational complexity [4]:

1. Rolling friction models: Typically uses spheres to represent the particles
but adjusts the coefficient of rolling friction to approximate non-spherical be-
havior.

2. Multi-sphere: Approximates shapes by gluing multiple spheres together into
a single rigid shape. Retains the computational advantages of spheres, but
may require a large number of spheres to get sufficiently good approximations,
which increases computational cost.

3. Superquadrics: A compact parametric model that extends ellipsoids and
is capable of modeling certain symmetrical shapes like cylinders and cuboids.
The disadvantage is that the contact models become complicated and typically
require Newton iterations to solve.

4. Polyhedra: Uses connected vertices to form polygonal faces and can thereby
approximate any shape arbitrarily well. However, a lot of vertices are required
to approximate smooth curves which increases computational cost.

The hypothesis underlying this work is that accurate shape representation in DEM
plays a major role in making accurate coating predictions, particularly for the intra-
tablet coating variability. This is supported by findings that shape representation
has a significant impact on particle packing [5], as well as on the asymptotic intra-
tablet coating behavior [6]. Superquadrics can approximate certain symmetrical
tablet shapes very well and have been shown to keep computational costs down
compared to equivalent multi-sphere approximations [7]. Recently, an implementa-
tion of superquadrics was added to the open source DEM software LIGGGHTS [8, 9].

1

1. Introduction

These factors make superquadrics an interesting option for studying the impact of
tablet shape approximation on coating outcome.

There are two fundamentally different ways of extracting spray coating information
from DEM simulations. The first is to do it during runtime, that is to simulate
the spray simultaneously with everything else. This could for instance be done
by simulating the spray droplets in a coupled CFD-DEM fashion, which enables
modeling effects like capillary action and friction changes between sprayed tablets
[10]. The second approach is post-processing, which means to simulate the tablets
without any spraying, export the tablet positions and orientations and then apply
the spray on the exported data. One such post-processing approach is to model the
spray as a cone of rays, or half lines in space, and to intersect those rays with the
tablets to compute which particles were hit by the spray at each time step. This
approach makes a lot of simplifying assumptions, but it has the benefit of letting
the user try multiple different spray patterns and positions with the data from a
single simulation, which can save a lot of time for large simulations.

1.1 Previous Work

Toschkoff developed three different methods of extracting inter-tablet coating infor-
mation from DEM simulations of spherical particles [11]. The first approach defined
the spray zone as a bounding volume. The top layer of tablets was identified and
coating mass was applied proportional to the time spent in the spray zone. The
second approach simulated the spray droplets as spheres alongside the tablets, ap-
plying coating mass whenever a droplet hit a tablet. Both of these methods ran
during the simulation. The third approach instead post-processed the simulation
data by modeling the spray droplets as rays and intersecting them with the tablets.
They found that all methods gave agreeing results.

Freireich studied intra-tablet variability both theoretically and using DEM simula-
tions of multi-sphere particles [6, 12]. In one approach they tessellated the particle
surfaces and used a GPU to render images of the simulation data. Each triangle, or
panel, was assigned a unique color, and coating mass was added to each in panel in
proportion to the number of corresponding pixels. They found that the shadowing
effects from neighboring tablets had a significant impact on the intra-tablet coating
outcome, something that Toschkoff’s spray zone approach does not capture. This
indicates the importance of modeling spray droplet trajectories when estimating
intra-tablet coating variability.

Pei [13] followed up on the work of Freireich by studying the cap-to-band coating
ratio for a number of different multi-sphere shapes using both the render method
and a ray caster. They found that the cap-to-band coating ratio decreased with a
smaller horizontal spray angle, as well as a significant difference in coating outcome
between the cylindrical spray model of the render method and the conical spray
model of the ray caster.

2

1. Introduction

1.2 Aims and Goals

Previous work has been mostly focused on multi-sphere shape representations and
small lab coaters. Moving to superquadrics and increasing the simulation size will
increase computational complexity and necessitate an efficient computational ap-
proach.
The aim of this work is to develop a method to characterize inter- and intra-tablet
coating varability when the tablets are modelled using superquadrics. Software
should be developed that can process large amounts of DEM simulation data to
generate coating predictions. It is critical that the developed implementation has
a reasonably short runtime, as this enables researchers to more quickly iterate on
ideas. In line with this aim, the goals of this thesis project are to:

1. Develop a ray caster for superquadric particles that performs well when applied
to drum coating simulations

2. Develop a method to compute and visualize intra-tablet coating variability
when tablets are modeled using superquadrics

3. Validate and benchmark the ray caster, and provide a description of what can
be expected in different scenarios using different settings

4. Use the developed methods to assess the impact of shape representation on
the coating outcome

3

1. Introduction

4

2
Theory

2.1 Superquadrics

A superellipse can be defined either implicitly as

(
x

a

)2/ε
+
(
y

b

)2/ε
= 1 (2.1)

or explicitly as

x(θ) =
[
x
y

]
=
[
a cosε(θ)
b sinε(θ)

]
, −π ≤ θ ≤ π. (2.2)

The scale parameters a and b determine the width and height of the ellipse, and
the shape parameter ε alters its shape. A value of ε = 1 gives an ellipse, ε → 0
gives a more square shape and ε → ∞ a more concave shape. Figure 2.1 shows
examples of superellipses for different values of ε. Note that the powers in (2.2)
actually represent signed power functions

xp = sgn(x) |x|p =

|x|
p x ≥ 0

− |x|p x < 0.
(2.3)

−1 0 1
x

−1.0

−0.5

0.0

0.5

1.0

y

Superellipses

ε = 0.2

ε = 1

ε = 5

Figure 2.1: Three superellipses for different values of ε with a = 1.5 and b = 1.

5

2. Theory

The signed power function is necessary to avoid potentially complex results that
come from exponentiation with a negative base. All powers in superellipse expres-
sions that follow should be read as signed power functions.
Barr [14] extended the geometric family of quadric surfaces, which includes shapes
like ellipsoids and hyperbolic sheets, by constructing superquadrics as spherical prod-
ucts of superellipses. The spherical product of two parametric curves m(η) and h(ω)
in IR2 is given by

r(η, ω) = m(η)⊗ h(ω) =

m1(η)h1(ω)
m1(η)h2(ω)
m2(η)

 , ω0 ≤ ω ≤ ω1
η0 ≤ η ≤ η1

. (2.4)

When the two parametric curves are superellipses, i.e.

m(η) =
[

cosε1(η)
c sinε1(η)

]
, h(ω) =

[
a cosε2(ω)
b sinε2(ω)

]
(2.5)

their spherical product gives the explicit form of the superquadric

x(η, ω) =

xy
z

 = m(η)⊗ h(ω) =

a cosε1(η) cosε2(ω)
b cosε1(η) sinε2(ω)

c sinε1(η)

 . (2.6)

This explicit form can be transformed into a corresponding implicit form [15]. First,
rearrange the three equations in (2.6) and square them to get

(
x

a

)2
= cos2ε1(η) cos2ε2(ω) (2.7)(

y

b

)2
= cos2ε1(η) sin2ε2(ω) (2.8)(

z

c

)2
= c sin2ε1(η) (2.9)

Adding (2.7) and (2.8) together, raising both sides to 1/ε2 and cancelling the result-
ing cos2(ω) + sin2(ω) = 1 gives

(
x

a

)2/ε2
+
(
x

a

)2/ε2
= cos2ε1/ε2(η). (2.10)

In a similar fashion, raising (2.10) to ε2/ε1 and (2.9) to 1/ε1 respectively and adding
them together gives

f(x, y, z) :=
(∣∣∣∣xa

∣∣∣∣n2

+
∣∣∣∣yb
∣∣∣∣n2)n1/n2

+
∣∣∣∣zc
∣∣∣∣n1

− 1 = 0, n1, n2 ∈ (0,∞]. (2.11)

where we have introduced the blockiness parameters n1 = 2/ε1 and n2 = 2/ε2. The
equation in (2.11) is the implicit surface equation of the superquadric. The function

6

2. Theory

(a) Sphere. (b) Ellipsoid. (c) Cylinder. (d) Cuboid.

Figure 2.2: Examples of superquadrics. The sphere in (a) has parameters a = b =
c = 1 and n1 = n2 = 2. The ellipsoid in (b) has the same settings as the sphere but
adds c = 1.5. The cylinder in (c) adds n1 = 20 and the cuboid in (d) adds n2 = 20.

f is the so-called inside-outside function, because all points p satisfying f(p) < 0
are inside the superquadric, and those satisfying f(p) > 0 are outside. Examples of
superquadrics can be seen in Figure 2.2. The gradient of f will be of later use, and
it is

∇f =

n1
a

(∣∣∣x
a

∣∣∣n2 +
∣∣∣y
b

∣∣∣n2)n1/n2−1
sgn(x)

∣∣∣x
a

∣∣∣n2−1

n1
b

(∣∣∣x
a

∣∣∣n2 +
∣∣∣y
b

∣∣∣n2)n1/n2−1
sgn(y)

∣∣∣y
b

∣∣∣n2−1

n1
c

sgn(z)
∣∣∣ z
c

∣∣∣n1−1

 . (2.12)

2.2 Ray Casting

The fundamental ray casting problem is that of intersecting a ray with a collection of
geometrical objects distributed in 3D space. The collection of objects is commonly
referred to as a scene, and examples of common objects are spheres, planes, triangles
and cuboids. A ray is defined as the half-line

r(t) = O + Dt, t > 0 (2.13)

where O is the origin and D the normalized direction vector. A lot of the early work
on ray casting was done in the computer graphics field of rendering [16]. There the
idea is to let rays represent photons and to trace them as they bounce around the
scene hitting the objects and reflecting, refracting and getting absorbed. It’s a sim-
ple model that can yield very realistic results, but it also requires tracing a lot of
rays which quickly drives up the computational cost. Acceleration techniques in-
volving bounding volumes and spatial subdivision have been developed to speed
up ray tracing. Two of the main ways are to either reduce the cost of individual

7

2. Theory

ray-object intersection checks or to reduce the total amount of such checks per-
formed. The acceleration techniques considered in this work will be presented in the
implementation section.

2.2.1 Ray-superquadric intersection

Ray casting can be done on many different kinds of geometric objects, but implicit
surfaces like the one in (2.1) make for a particularly clean problem formulation.
Given the inside-outside equation in (2.1), where the points p on the surface are
those satisfying f(p) = 0, the ray casting problem becomes that of finding the roots
to the univariate function

F (t) = f(r(t)). (2.14)

This transforms the geometric problem of ray-superquadric intersection into the
analytical problem of finding the roots of F (t). In the case of a convex superquadric
with ε1, ε2 <= 2 this function turns out to be convex [17]. This can be shown by
setting a = b = c = 1, x, y, z >= 0 in (2.11) which gives

F (t) = f(r(t)) =
(
(O1 +D1t)2/ε2 + (O2 +D2t)2/ε2

)ε2/ε1 + (O3 +D3t)2/ε1 − 1.

Differentiating F with respect to t gives

dF

dt
= 2
ε1

(
x2/ε2 + y2/ε2

)ε2/ε1−1 (
D1x

2/ε2−1 +D2y
2/ε2−1

)
+ 2D3

ε1
z2/ε1−1 (2.15)

and

d2F

dt2
=2(2− ε1)

ε2
1

(
x2/ε2 + y2/ε2

)ε2/ε1−1 (
D1x

2/ε2−1 +D2y
2/ε2−1

)2
+

2D2
3(2− ε1)
ε2

1
z2(1/ε1−1)+

2(2− ε2)
ε1ε2

(
x2/ε2 + y2/ε2

)ε2/ε1−2 (
D1x

1/ε2−1y1/ε2 −D2x
1/ε2y1/ε2−1

)2
≥ 0.

(2.16)

All terms in (2.16) are greater than or equal to zero whenever 0 < ε1, ε2 < 2, which
means F (t) is a convex in those cases. This convexity will be of later use when
computing ray-superquadric intersections.

8

2. Theory

2.3 Spray Coating

Drum spray coating involves a rotating drum, typically with baffles, that is filled
with tablets. The rotation causes the tablets to flow around the drum and mix.
Inside the drum, sprays are pointed down toward the top layer of tablets at different
positions to coat the tablets as they pass by. After the tablets have been sprayed and
left these spray zones, hot air causes the solvent to evaporate and leave a solidified
coating behind. This process runs until the desired outcome is achieved, which for
instance could be measured by the overall mass gain or some prediction of coating
uniformity. Certain statistics are of particular interest as indicators of the quality of
the mixing, coating and subsequent end product. These statistics are the single visit
residence time distribution, inter-tablet coating variability and intra-tablet coating
variability. All these will be defined and described below.

2.3.1 Single Visit Residence Time

The single visit residence time distribution describes how much time tablets spend
during and between single visits to the spray zone. This information can be used
to asses mixing quality or build models that can be extrapolated into the future [1].
Such extrapolations are typically necessary for large coaters where it’s infeasible to
simulate the entire coating processes which might last for several hours.
At any given point in time, if a tablet has been recently hit by the spray it is in
the spray zone, and otherwise in the drum zone. Ketterhagen defined a visit to the
spray zone as an interval of time in which the tablet is hit by the spray at least
every 0.1 seconds [18].

2.3.2 Inter-tablet Variability

Inter-tablet coating mass variability is defined as the relative standard deviation of
accumulated coating mass between all tablets in the mixing process. It is one of the
most important factors when tuning a coating process [1].
Let mi denote the accumulated coating mass on tablet i and m the average accu-
mulated coating mass across all N tablets. The coefficient of inter-tablet variation,
is then defined as

CoVinter = 1
m

√√√√ 1
N − 1

N∑
i=1

(mi −m)2. (2.17)

2.3.3 Intra-tablet Variability

Intra-tablet coating mass variability is defined as the area-weighted relative stan-
dard deviation of coating density across the surface of a tablet. This uniformity is

9

2. Theory

especially important for functional coatings, meaning those that either contain the
active pharmaceutical ingredient or regulate the delivery of it.
To compute the intra-tablet variation the surface of each of the N tablets in the
coating simulation is divided into Np panels. Let A be the total surface area of a
tablet, Aj the area of the j:th panel and hij the coating thickness on the j:th panel
of the i:th tablet. There are many different ways to define this measure of variation,
and two will be presented below [12]. The first takes each individual mean

µi = 1
A

Np∑
j=1

hijAj (2.18)

and variance

σ2
i = 1

A

Np∑
j=1

(hij − µi)2Aj (2.19)

into account and defines the bulk intra-tablet coefficient of variation as

CoVintra,bulk =

√
1
N

∑N
i=1 σ

2
i

1
N

∑N
i=1 µi

. (2.20)

The second measure combines all the tablets into a single representative tablet by
first summing up the coating thickness across all panels

hj =
N∑
i=1

hij (2.21)

and then computing the mean µt and variance σt of these combined thicknesses as
in (2.18) and (2.19) to finally arrive at

CoVintra,agg =

√
σ2
t

µt
. (2.22)

These variability measures can also be symmetrically averaged across the particle
surface if the particle shape and panels allow it, which can drastically cut down on
the number of samples required to get a stable estimate. However, this is probably
most relevant for CoVintra,agg as CoVintra,bulk typically is used to measure the actual
variation which is not symmetrically averaged. Applying (2.22) to a symmetrically
averaged representative tablet would give the measure CoVintra,agg. Figure 2.3 shows
a simple example that highlights the difference between CoVintra,bulk and CoVintra,agg.

10

2. Theory

Figure 2.3: An example that highlights the difference between CoVintra,bulk and
CoVintra,agg. Assume a population of 4 tablets, each divided into 2 panels. Two of the
tablets have only received coating on side, and the other two on the other side. For
each individual tablet, σi > 0 and so CoVintra,bulk > 0. However, when the indivi-
didual coatings are aggregated the coating becomes uniform and so CoVintra,agg = 0.

11

2. Theory

12

3
Implementation

This section explains the steps taken to ray cast and extract relevant coating statis-
tics from the DEM simulation data. First, the main acceleration structure used to
speed up the ray casting is motivated and described. Then, the individual steps
taken by the ray caster and the complete ray casting algorithm are presented. Fi-
nally, the intra-particle representations used to summarize coating information are
motivated and described.

3.1 Spatial Subdivision

Ray casting can be sped up by reducing the amount of ray-particle intersection
checks performed. The naive approach of performing intersection checks between
all pairs of rays and particles has a computational complexity of O(PR), where P
is the number of particles and R the number of rays. By grouping objects into
hierarchies or subdividing space and then only intersecting each ray with a sub-
set of the particles, the complexity can be dramatically reduced to O(N + R) or
O(N log (N) +R) [19], which is much faster for large N and R.

Objects can be grouped in two fundamentally different ways. The first involves
clustering objects that are close together and creating a hierarchy of bounding vol-
umes. This procedure takes the positions and extents of all objects into account
which makes it adaptive, meaning it will typically be finer in regions of space that
are more densely packed with objects, and coarser in sparser regions. This is an ad-
vantage when the scene is non-homogeneous, meaning it contains objects of varying
scales spread out non-uniformly in space. The other approach ignores the objects
and instead just partitions space directly. This is obviously not adaptive which
becomes a problem if the scene is not homogeneous, but it has other advantages.
Fujimoto [20] found that spatial subdivision was an order of magnitude faster than
octrees, a hierarchical structure, in terms of time taken to build and traverse the
structure. The difference became even greater for homogeneous scenes.

The scene of a drum coater is very homogeneous because the tablets are all equal-
sized and tightly packed near the bottom of the drum. This is close to ideal for
spatial subdivision, which is why it was chosen as the main acceleration structure
in the final implementation. The construction and traversal of this structure will be
described in the following sections.

13

3. Implementation

3.1.1 Grid Construction

Before particles can be indexed, the grid cells must be defined and particles added
to all nearby grid cells. Before this can happen, the maximum extents of the grid
must be computed, and this requires the component-wise minimum and maximum
coordinates pmin and pmax across all tablets. The grid boundaries gmin and gmax are
then computed as

gmin = gs

⌊
pmin − rB

gs

⌋

gmax = gs

⌈
pmax + rB

gs

⌉
(3.1)

where gs is the grid spacing. This ensures that all particles are completely contained
within the grid. Next, particles are added to each grid cell that their bounding sphere
overlaps. The distance dbox from a particle centroid p to a grid cell, which is an
axis-aligned box with corners bmin and bmax, is computed as

dx = max(bmin,x − px, 0,px − bmax,x)
dy = max(bmin,y − py, 0,py − bmax,y)
dz = max(bmin,z − pz, 0,pz − bmax,z)
d2

box = dx2 + dy2 + dz2.

(3.2)

and so the overlap criterion becomes dbox < rB. This approximation is used be-
cause it is considerably cheaper than computing the exact intersection between the
superquadric and the cell.
Given the superquadric parameters a, b, c, n1 and n2, Podlozhnyuk [8] showed that
the bounding sphere radius rB can be computed using

α = (b/a)2/(n2−2)

γ = (1 + αn2)n1/n2−1

β = (γc2/a2)1/(n1−2)

x̃ = 1/
(
(1 + αn2)n1/n2 + βn1

)1/n1

r2
B = (ax̃)2 + (αbx̃)2 + (βcx̃)2.

(3.3)

If the grid spacing gs is chosen such that ≥≥ rB, the particle cannot extend across
more than one grid cell and can thus only reach the 27 cells in a 3x3x3 grid sur-
rounding the cell containing the centroid. Further, if gs ≥ 2rB the particle bounding
sphere can only reach the 8 cells in the 2x2x2 cell grid of the octant containing the
centroid. The equivalent 2D procedure is shown in Figure 3.1, where the equivalent
quadrant division is shown as a dotted line. In this example, the centroid lies in the
top-right octant, and so only the top-right 2x2 grid of cells need to be considered,

14

3. Implementation

0 1 2 3
x

0

1

2

3

y

Figure 3.1: A 2D example of adding a single particle to the grid cells. The
quadrant, shown as a dotted line, enables immediate exclusion of five grid cells
(yellow). Then, for each remaining cell, the particles is added if its bounding sphere
overlaps the cell (green) or not if it doesn’t (red).

and the others, shown in yellow, can be ignored. The distance dbox to all remaining
cells is computed and compared against rB. In this case, two cells, shown in green,
satisfied dbox < rB and so the particle is added to the candidate list of those two
cells.
There is a space-time trade-off in how cells store the particles they contain. Bench-
marks showed that storing a contiguous array of copies of all the particles in each
cell speeds up the ray casting, and was found to be significantly faster than storing
pointers to a unique set of the particle data. The ratio of the total number of copies
stored in the index to the total number of particles is called the indexing factor, and
it can significantly impact the runtime for large simulations.

3.1.2 Grid Traversal

Fujimoto [20] described how to efficiently traverse a uniform spatial grid using a
technique called 3D Digital Differential Analyzer, or 3DDDA. This approach ex-
ploits the regularity of the grid to traverse it using only incremental calculations,
meaning no multiplications or divisions which are generally slower. The grid traver-
sal procedure begins by intersecting the ray r(t) with the axis-aligned bounding box
that contains the entire grid, a procedure to be described later. If the ray origin is
already inside the grid, that will be the intersection point. Once the intersection
point tgrid is found it is converted to grid cell cordinates C via

c = O + Dtgrid − gmin
gs

(3.4)

and the step deltas are computed

15

3. Implementation

∆t = gs/ |D| (3.5)
∆c = sgn(D) (3.6)

where t = (tx, ty, tz) is a vector containing the ray t-values of the next grid cell
intersections along each respective axis, and c is the current grid cell coordinate.
After initializing t = P + ∆t, each subsequent step is taken by computing ψ =
arg min t and incrementing the corresponding components

tψ = tψ + ∆tψ (3.7)
cψ = cψ + ∆cψ. (3.8)

This traversal continues until the ray leaves the grid or until an intersection is found.

3.2 Ray-Particle Intersection

Computing the intersection between a ray and a superquadric can in general be quite
expensive, mainly due to the cost of computing exponentials. In order to reduce the
number of superquadric intersection checks, the ray is first intersected with a couple
of bounding volumes, namely the bounding sphere and the bounding box of the
superquadric. The ray is first intersected with the sphere, and if it hits the sphere
it is intersected with the bounding box, and only when it hits the bounding box is
it intersected with the superquadric surface. These three steps and the surrounding
considerations are detailed below.

3.2.1 Ray-Sphere Intersection

The points at which a ray intersects a sphere with radius rB and centroid c can be
expressed mathematically as

‖r(t)− c‖2 = ‖O + Dt− c‖2 = r2
B. (3.9)

Expanding the left-hand side gives

‖D‖2 t2 − 2 〈D,O− c〉 t+ ‖O− c‖2 − r2
B =: t2 + pt+ q = 0 (3.10)

where we have defined p = −2 〈D,O− c〉 and q = ‖O− c‖2 − r2
B. Note that

‖D‖2 = 1 since D is a normalized vector. The ray hits the sphere when this second
order polynomial has real solutions, which happens when the discriminant D is
positive

16

3. Implementation

D =
(
p

2

)2
− q = 〈D,O− c〉2 + r2

B − ‖O− c‖2 > 0. (3.11)

Given D > 0, the distance to the nearest intersection is t∗ = −p/2 +
√
D.

3.2.2 Ray-Box Intersection

Algorithm 1 shows how a ray is intersected with an axis-aligned box [16], which is
a box whose normal vectors are parallel to the coordinate axes. The algorithm is
based on intersecting the ray with slabs which are volumes enclosed by two parallel
planes [21]. In this case the planes are the box faces, and so the slabs end up parallel
to the coordinate axes which has computational advantages. Given a ray and the
bounds of the axis-aligned box, the t values at which the ray intersects each slab
are computed. This happens on line 6 of Algorithm 1 for the x-, y- and z-axis faces
respectively. The last entry tnear and first exit tfar from each of the slabs is recorded.
If after processing all three slabs tnear < tfar it means that the ray was inside all three
slabs simultaneously, or that it intersected the box. In that case the corresponding
entry and exit points are returned, otherwise a miss indicator is returned instead.
This algorithm forms the basis of the ray-box intersection, but the particles and
their bounding boxes typically have some orientation. To intersect such oriented
bounding boxes the ray is rotated into the local coordinate system of the particle
before Algorithm 1 is called. The ray is rotated rather than the particle because it
is less computationally expensive than doing the opposite [16]. Let R be the 3x3
rotation matrix and P the position vector that respectively rotate and translate the
particle from local coordinates to global coordinates. To intersect the ray (2.13) with
this particle, the ray origin and direction vectors, which are in global coordinates, are
transformed to the particle local coordinates by applying the corresponding inverse
transformations

O′ = R−1(O−P) (3.12)
D′ = R−1D (3.13)

where O′ and D′ are the origin and direction vectors of the transformed ray. These
transformed vectors are then passed into Algorithm 1 and the intersection points
are computed.

3.2.3 Ray-Superquadric Intersection

The difficulty of intersecting a ray with an implicit surface depends heavily on the
surface. For completely general surfaces Kalra [22] developed a method guaranteed
to give the correct results while using early termination criteria based on Lipschitz
constants to keep down computational costs. Mitchell [23] introduced interval arith-
metic to solve the same problem. Since only convex superquadrics are of interest in
this work, a simpler approach can be used, but the principles remain the same.

17

3. Implementation

Algorithm 1: Intersecting a ray with an axis-aligned box.
Input:

O,D: Ray origin and direction
bmin,bmax: Bounds of an axis-aligned box

Output:
(tnear, tfar): The two intersection points, or void if no intersection

1 tnear ← -∞
2 tfar ← ∞
3 for ψ in {x, y, z} do
4 if Dψ = 0 and (Oψ < bmin,ψ or Oψ > bmax,ψ) then
5 return void
6 tψ ← ((bmin,ψ −Oψ)/Dψ, (bmax,ψ −Oψ)/Dψ)
7 tenter ← min(tψ)
8 texit ← max(tψ)
9 if tenter > tnear then

10 tnear ← tenter
11 if texit < tfar then
12 tfar ← texit

13 if tnear <= tfar and tfar >= 0 then
14 return (max (tnear, 0), tfar)
15 else
16 return void

The problem of finding the roots of F (t) from (2.14) and the corresponding inter-
section points, can be divided into two steps. The first is to isolate intervals of t
where only a single root of F can occur, and for this an interval search method is
used. The second is to refine the isolated roots to within a desired tolerance, and
here Newton’s method is used.

3.2.3.1 Bisection Search

Bisection search, shown in Algorithm 2, is used to find a point inside the su-
perquadric between the bounding box intersection points. Given a starting interval
[l0, r0], the midpoint m0 = (l + r)/2 and corresponding function values F (m0) and
derivative F ′(m0) are computed. If F (m0) > 0, the sign of F ′(m0) determines which
of the two sub-intervals [l0,m0] and [r0,m0] contains the root, and the same proce-
dure is then recursively applied to that subinterval. Because the function is convex
the curve always lies above its tangent lines, so if the tangent line at the point mk

intersects the x-axis outside [lk, rk], then f can’t have any roots in [lk, rk] and the
algorithm can be safely terminated before reaching the tolerance.

18

3. Implementation

Algorithm 2: Bisection search for root isolation.
Input:
f : Continuous convex function
[l, r]: Interval to be searched
tol: Tolerance

Output: An interval [lout, rout] containing a single root
1 while (r − l) > tol do
2 m← (l + r)/2
3 if f(m) < 0 then return [l,m]
4 p← m− f(m)/f ′(m)
5 if p < l or p > r then return void
6 if f ′(m) < 0 then l← m
7 else r ← m

8 return m

3.2.3.2 Newton’s Method

Taking the dot product between ∇f from (2.12) and the ray direction vector D
gives the derivative F ′(t) of F (t) from (2.2.1), which can then be used to compute
the Newton iterations

tn+1 = tn −
F (tn)
F ′(tn) . (3.14)

The gradient ∇f can be computed without computing any extra exponentials by
making use of the already computed values of f in (2.11). This saves considerable
time, especially for non-integer exponents. When benchmarked this was found to
be almost as fast as only computing the function values, which is why Newton’s
method was favoured over derivative-free alternatives that have worse convergence
rates.

3.2.3.3 Intersection Algorithm

The intersection algorithm takes as starting interval the two points from the bound-
ing box intersection. It then uses bisection search to find a point inside the su-
perquadric. Finally, if an interior point is found, Newton’s method is used to refine
the root inside the corresponding interval to get an accurate estimate of the inter-
section point.
Figure 3.2 shows the graph of F (t) alongside a render of the corresponding inter-
section showing the ray, bounding box and superquadric. In this case, given the
starting interval [l0.r0], the algorithm starts by evaluating F (m0) < 0 and finds that
m0 is inside the superquadric. Finding a point inside on the first iteration happens
around 80% of the time in practice. Once an interior point has been found, Newton
iterations start from the left-most endpoint of the current interval, which in this case

19

3. Implementation

0 5 10 15
t

0

2

4

6
f

(r
(t

))

l0 r0m0

Figure 3.2: Example of a ray-superquadric intersection, showing both a render of
the ray passing through the superquadric particle and the corresponding intersection
function F (t). The sought roots of F (t) are shown as green dots and dashed lines in
the render and graph respectively. Similarly, the box intersection points are shown
in magenta. The box intersection points determine the starting interval [l0, r0] and
the initial midpoint m0. In this case F (m0) < 0, and so the first root must be in the
interval [l0,m0], highlighted in yellow. Newton iterations then start from l0. The
first Newton iterate and corresponding tangent line are shown in blue.

is l0. The Newton iterations continue until the step length is less than the desired
tolerance. The convexity of F (t) guarantees that the Newton iterations will always
converge.

Figure 3.3 shows an example of an intersection check where the ray misses. The box
intersection points determine the starting interval [l0, r0] and the initial midpoint
m0 = a. Since F (m0) > 0 and F ′(m0) < 0 the next interval [l1, r1] becomes [m0, r0].
Further, because the tangent intersection point corresponding to m0 falls inside
[l0, r0], the procedure does not terminate. Next, the midpoint m1 = b of [l1, r1] is
computed and a similar argument gives the next interval [l2, r2] = [l1,m1], where
once again the tangent intersection point falls inside the corresponding interval.
Finally, the midpoint m2 = c of [l2, r2] is still not inside the superquadric, but the
tangent intersection point now falls outside of the corresponding interval and the
procedure correctly terminates since there can be no root in [l2, r2].

20

3. Implementation

0 2 4 6 8 10
t

0.00

0.05

0.10

0.15

f
(r

(t
))

l0 r0a bc

Ray-Superquadric Miss

Figure 3.3: Example of a ray-superquadric intersection where the ray misses. The
initial search interval [l0, r0] and corresponding tangent line at a are shown in red.
Likewise, the two subsequent intervals and tangents at b and c are shown in green
and blue respectively.

3.3 Ray Casting Algorithm

The entire ray casting procedure can now be assembled from all the parts described
above. A diagram of the procedure carried out for a single ray is in Figure 3.4, a more
detailed description in Algorithm 3, and a visualization in Figure 3.5. Following the
diagram in Figure 3.4, as the ray enters a cell, the corresponding list of particles is
retrieved. Each candidate in the list is intersected following the procedure inside the
dashed box, which begins with a sphere intersection check, followed by a bounding
box intersection check in case of a sphere hit, and finally a superquadric intersection
check in case of a box hit. These intersection checks get progressively more expen-
sive, so it is important to abort and go to the next candidate at the first miss. The
procedure terminates when the nearest particle has been hit.

Algorithm 3 shows more details than the diagram, particularly when it comes to
mailboxing and the termination criteria. Firstly, the mailbox is simply a set of the
IDs of all the particles whose bounding boxes and superquadrics have been checked
for intersection with the current ray. This set is checked before doing any box
or superquadric intersection checks to avoid performing the same expensive checks
multiple times. Secondly, the termination criteria makes use of the distances to the
bounding spheres. All sphere intersection checks are done and the distances to each
hit sphere are stored. Then, these distances are sorted in ascending order and the
remaining candidates are intersected in the sorted order. As soon as the distance to
the bounding sphere is greater than the currently closest superquadric hit, a closer
hit is impossible since that distance bounds the distance to the superquadric from
below, and the algorithm terminates.

21

3. Implementation

Each particle has its own set of three counters that keep track of
• The total number of times the particle has been hit by a ray
• The last time the particle was hit
• The last time the particle entered the spray zone

These counters are updated whenever the particle is hit by a ray, as shown on line
8 of algorithm 4. More specifically, when the particle is it, if the time since last hit
exceeds the spray zone threshold of 0.1 seconds the particle has now re-entered the
spray zone after leaving it. The duration of spray and drum zone visits can then
be added to the corresponding distributions. The sequential nature of the residence
times slightly hinders a fully concurrent implementation, which would otherwise
be quite straightforward. Still, because the grid is rebuilt for each time step, the
concurrent implementation of having the threads work on separate files and pooling
the computed results still gives a very good speed-up for both the grid construction
and the ray tracing compared to a single-threaded implementation.
The spray is modelled as an elliptical cone [11]. Random samples ρ ∈ [0, 1] and
α ∈ [0, 2π] are used to angle samples (θ, ϕ) from an ellipse with width and height
(a, b)

x = ρua cos(α)
y = ρub sin(α)

(3.15)

where u is a uniformity factor. Using u = 0.5 gives uniform samples from the
ellipse, whereas u > 0.5 and u < 0.5 concentrates the samples more toward the
center and edges respectively. Once the samples have been drawn, the final ray
directions are computed by rotating the spray axis using x and y as Euler angles in
the horizontal and vertical direction respectively. Once the cone of rays has been
generated, they are sorted by the Dz. This is done to improve cache-coherency since
rays closer together will take more similar paths through the grid and perform the
same intersection checks.

3.4 Intra-particle Sampling

In order to quantify intra-particle variability the particle surface was divided into
panels. This discretization of the surface may not be strictly necessary, but it
provides a way to summarize the potentially huge amounts of data generated by the
ray casting. Desirable qualities of a panel parametrization include

• Uniform distribution of panel sizes: If some panels are very small the corre-
sponding density estimates will have a large variance.

• Computationally efficient inversion: The intersection points returned by the
ray caster need to be mapped to the correct panels, and this must be done for
every ray, which means it should be fast.

22

3. Implementation

Algorithm 3: Single ray casting.
Input: A ray and a grid index of particles
Output: A ray-particle intersection

1 if ray misses grid then return null
2 Initialize coordinate inside the grid
3 Initialize hit to INF
4 while true do
5 Get candidates at coordinate
6 for each candidate do
7 Intersect ray with bounding sphere
8 if ray hits then store candidate and distance to sphere
9 Sort remaining candidates by ascending sphere distance

10 for each candidate do
11 if candidate sphere distance is further than hit then break
12 if candidate in mailbox then continue
13 Store candidate in mailbox
14 Intersect ray with bounding box
15 if ray misses then continue
16 Intersect ray with superquadric
17 if ray hits and the hit is closer then store new hit

18 if a closer hit is impossible then break
19 Step into next grid cell and update coordinate
20 if coordinate is outside the grid then break
21 return hit

Algorithm 4: Batch file ray casting.
Input: Ray casting settings and input data files

1 Set up rays and output data structures
2 for each input file do
3 Compute grid index for the particles in file
4 for each ray do
5 Intersect the ray with all the particles in grid
6 if the ray hits a particle then
7 Store information about the hit
8 Update counters for the hit particle

9 Compute and export all relevant information
10 return

23

3. Implementation

Initialize position in grid

Get next candidate in cell

Bounding sphere

Bounding box

Superquadric

Store hit

Step into next cell

Done

Intersect

Hit

Miss No more
candidates

Retrieve
list of

candidates

Found nearest hit

Figure 3.4: Diagram of grid traversal and particle intersection for a single ray. The
cost of the checks inside the intersection loop are highlighted in orange, with more
color indicating a more expensive operation.

(a) Step 1. (b) Step 2. (c) Step 3.

Figure 3.5: A single ray cast showing the traversal and intersection checks. The
grid position is initialized given the ray origin in (a). The traversal then starts,
and the ray first passes through the two empty in (a) and (b) before finding some
particles in the third cell in (c). The candidates in the final cell are highlighted in
blue, and the hit particle in green.

24

3. Implementation

• Eightfold symmetry across octants: So that CoVintra,agg,sym can be computed,
which can reduce the required number of samples.

• Smooth function of the shape parameters: Small changes to shape parameters
should produce small changes to the panel distribution.

Below follow descriptions of some different parametrizations.

3.4.1 Uniform Parametrization

A straightforward way to create panels is to uniformly sample η and ω in the su-
perquadric parametrization (2.6), that is to set

ηi = −π2 + πi

Nη − 1 , i = 0, . . . , Nη − 1

ωj = −π + 2πj
Nω − 1 , j = 0, . . . , Nω − 1.

(3.16)

This creates a uniform mesh in parameter space, shown in Figure 3.6a, where each
rectangle with corners (ωj, ηi), (ωj+1, ηi), (ωj+1, ηi+1) and (ωj, ηi+1) corresponds to
a panel on the superquadric surface. Given an estimate of the ray-superquadric
intersection point h, the panel it belongs to can be estimated by inverting (2.6)

η∗ = arcsin
(

sgn(z)
(∣∣∣c−1z

∣∣∣)1/ε1
)

ω∗ = arctan2
(
sgn(y) |ay|1/ε2 , sgn(x) |bx|1/ε2

)
.

(3.17)

Here, arctan2 is the function that returns the inverse tangent in the range [−π, π]
using the signs of its two arguments. The signed power functions have been written
out for clarity. Note however that due to the approximate intersection and finite
precision floating point calculations, h may be far enough from the superquadric
surface to cause significant distortions in the coordinates returned by (3.17). This
can be remedied by rescaling h so that it lies on the surface. Specifically, let β >= 0
be the scale factor such that hs = βh is on the superquadric surface, or equivalently
f(hs) = 0 where f is the inside-outside function from (2.11). Plugging hs into f

f(hs) =
(∣∣∣∣∣βhxa

∣∣∣∣∣
n2

+
∣∣∣∣∣βhyb

∣∣∣∣∣
n2)n1/n2

+
∣∣∣∣∣βhzc

∣∣∣∣∣
n1

− 1 = 0 (3.18)

and solving for β gives

β = (f(h) + 1)−1/n1 . (3.19)

Now, given the approximate intersection point h, it is scaled by β to get hs which in
turn is used to compute η∗ and ω∗ using (3.17). Finally, the corresponding panel is

25

3. Implementation

−2 0 2
ω

−1

0

1
η

Uniform Parameter Mesh

(a) Parameter mesh. (b) Surface panels.

Figure 3.6: Uniform parametrization mesh and the resulting surface panels.

be retrieved by rounding η∗ and ω∗ to the sampled values ηi and ωj which uniquely
identify the panel.

With this approach the parametrization points on the surface tend to concentrate
around poles and areas of high curvature as can be seen in Figure 3.6b. This non-
uniformity gets worse as the values of the blockiness parameters increase, and so
this parametrization was deemed unfit for the task of summarizing intra-particle
coating variability.

3.4.2 Uniform Sampling

A more uniform set of panels can be created by sampling superellipses at roughly
equal arc length. Pilu [24] proposed such a sampling approach based on first order
Taylor approximations. Given the superellipse parametrization x(θ) from (2.2), the
arc length between the two points x(θ) and x(θ + ∆(θ)) can for small values of the
function ∆(θ) be approximated by the distance between the two points

D2 = ‖x(θ + ∆(θ))− x(θ)‖2 . (3.20)

Applying a first order Taylor approximation

D2 ≈
∥∥∥∥∥∂x
∂θ

∆(θ)
∥∥∥∥∥

2

=
∥∥∥∥∥
[
aε cosε−1(θ)(− sin(θ))∆(θ)
bε sinε−1(θ) cos(θ)∆(θ)

]∥∥∥∥∥
2

(3.21)

and solving for ∆(θ) gives

∆(θ) = D

ε

√√√√ cos2(θ) sin2(θ)
a2 cos2ε(θ) sin4(θ) + b2 sin2ε(θ) cos4(θ) . (3.22)

26

3. Implementation

This ∆(θ) does not work for θ close to 0 and π/2. In the prior case we have that
sin(θ) ≈ θ and cos(θ) ≈ 1 and so the superellipse parametrization (2.6) can be
simplified to

x0(θ) =
[
a
bθε

]
. (3.23)

Using the corresponding formulas in the latter case and a Taylor approximation to
solve for ∆(θ) as before in (3.21) and (3.22) gives, respectively

∆0(θ) =
(
D

b
+ θε

)1/ε
− θ (3.24)

∆π(θ) =
(
D

a
+ (π2 − θ

ε)
)1/ε
− (π2 − θ) (3.25)

A threshold τ is used to switch between (3.22), (3.24) and (3.25) depending on the
value of θ. The iterative sampling is done starting from both ends of the part of the
superellipse inside the first quadrant

θi = θi−1 + ∆(θi−1) , θ0 = 0
θj = θj−1 −∆(θj−1) , θ0 = π/2.

(3.26)

The sampling scheme in (3.26) continues until θi > θj. The final samples in the
middle will typically not be a distance D apart, but this can be corrected by first
sampling with the desired distanceD, adjusting it depending on the resulting middle
distance to get D̃, and then resampling with the adjusted value.
To uniformly sample a superquadric with scale parameters a, b and c and shape
parameters ε1 and ε2, the two superellipses (0.5(a + b), c, ε1) and (a, b, ε2) are uni-
formly sampled using the method described above. Taking their spherical product
(2.4) then gives the desired surface parametrization.
This parametrization a significant improvement over the uniform sampling and re-
tains the rotational symmetry. An example of the parameter mesh and the resulting
panels can be seen in Figure 3.7. However, the panel size uniformity is still far from
perfect since sampled points still concentrate around the poles. On top of this, the
threshold parameter τ generally needs to be tuned after the superquadric parameters
to get consistent results.

3.4.3 Cube Sampling

There are many different methods to generate quasi-uniform samples on a sphere,
and some of those methods turn to work quite well also for superquadrics. One of
those methods is the cube-sphere [25], where the idea is to create a mesh on the unit

27

3. Implementation

−2 0 2
ω

−1

0

1
η

Uniform Step Mesh

(a) Parameter mesh. (b) Surface panels.

Figure 3.7: Uniform step parameter mesh and the resulting surface panels.

cube and then project that mesh onto the circumscribed sphere. More specifically,
given a parametrization along each coordinate axis

xi, yj, zk ∈ [−1, 1],
i = 0, . . . , Nx

j = 0, . . . , Ny

k = 0, . . . , Nz

(3.27)

and a transformation that improves the area-preservation of the projection

g(x) = tan
(
π

4x
)

(3.28)

vectors that correspond to mesh points on each of the 6 faces of the cube can be
defined. For instance, the vector families of the faces orthogonal to the x-axis, call
them the +X and −X faces, are given by

v1(yj, zk) =

 1
g(yj)
g(zk)

 , v2(yj, zk) =

 −1
g(yj)
g(zk)

 . (3.29)

In a similar way, the vector families v3, v4, v5 and v6 are set up for the +Y , −Y , +Z
and −Z faces respectively. To generate points on the superquadric, these vectors
are first scaled onto the normalized superquadric surface, that is with ã = b̃ = c̃ = 1,
using (3.18). Then they are scaled to the actual values of a, b and c, which gives
the surface panels seen in Figure 3.8. Because the number of samples along each
axis can be changed independently in (3.27), uniform grids can be achieved even on
particles with very large aspect ratios.
Inverting this parametrization starts by rescaling the vector h

v =

hx/ahy/b
hz/c

 (3.30)

28

3. Implementation

Figure 3.8: Surface panels of the cube parametrization.

and then finding the dominant axis

ψ = arg max{|vx| , |vy| , |vz|}. (3.31)

Together, ψ and sgn(vψ) determine which face h belongs to. If for example ψ = 1
and sgn(vψ) = +1, the face is +X and the cube vector is recovered using

w =

 1
vy/ |vx|
vz/ |vx|

 (3.32)

and the panel index in that case is found by binary searching for wy and wz in yj
and zk respectively.
The cube parametrization can create much more uniform sets of panels than the
previous approaches. This is partly because it doesn’t have any singularities at
the poles and partly because the number of panels along each axis can be inde-
pendently changed to fit particles of varying aspect ratio. The downside is that
it lacks rotational symmetry which sometimes causes panels to wrap around sharp
corners in unappealing ways. This downside was however outweighed by the other
desirable qualities, and so the cube parametrization was selected and used for the
intra-particle analysis.

29

3. Implementation

30

4
Methods

DEM simulations were carried out to generate data for validating and benchmarking
the rays caster, as well as to study the impact of particle shape on the resulting
coating outcome. The software, simulations and methodologies used to implement,
validate and test the ray caster are motivated and described below.

4.1 Software

ParaView [26] was used to visualize the coater, tablets, rays and surface coating
densities, and LIGGGHTS [9] was used to run the DEM simulations, the details of
which are given in the next section.
The ray caster was implemented as a standalone program in C++ using only stan-
dard library components. There were two main reasons for choosing C++. The
first is performance. An initial prototype of the ray caster was written in Python,
but early benchmarks found that C++ was orders of magnitude faster. C++ is
a compiled low-level language that can provide very fast execution times, and the
speed is critical to making the ray caster a useful tool in practice. The second reason
for choosing C++ is that LIGGGHTS is implemented in C++, and writing the ray
caster in the same language with minimal dependencies would simplify potential
future integration with LIGGGHTS.

4.2 DEM Simulation

The simulations were carried out using a model of a lab-scale rotating drum coater.
Figure 4.1 shows a side-view of the drum and a top-view that shows the spray zone.
The coater has four baffles, a radial diameter of 145 mm and an axial depth of
175 mm. The spray was positioned at an offset of 20 mm from the center of the
drum and angled downward 50 degrees from the horizontal plane so as to be roughly
perpendicular to the tablet bed. The ray direction vectors representing the spray
were uniformly sampled from an elliptical cone with angles 40 and 20 degrees for the
major and minor axes respectively, that is with uniformity factor u = 0.5 in (3.15).
This resulted in a spray-to-bed distance of around 50 mm and an elliptical spray
zone of size 90 mm by 50 mm in the spanwise and streamwise directions respectively.

31

4. Methods

(a) Side view. (b) Top view.

Figure 4.1: Setup used in the DEM simulations. Distances are shown in meters.

The simulation procedure starts by dropping all the tablets into the drum over the
course of 2 seconds. Then, a pre-run period of 5 seconds enables the system to
reach a state of dynamic equilibrium before the main part of the simulation starts.
The main part then runs for 180 seconds, during which data containing particle
positions and orientations are written to text files on disk every 0.02 seconds using
the LIGGGHTS command dump.

4.2.1 Pharmaceutical Shapes

A set of typical pharmaceutical particle shapes was simulated and studied in order to
validate and benchmark the ray caster and to compare the results to previous work.
The shapes and the intra-particle panels are shown in Figure 4.2, and the parameters
and properties are given Table 4.2. Two larger simulations of the Round shape were
also used to assess the ray casting performance at scale. These simulations will be
referred to as Roundmedium and Roundlarge, and they contained 650 thousand and 2
million tablets respectively.

4.2.2 Blockiness Variation

The other set of shapes are variations of the Round shape. The purpose of these
variations was to study the impact of blockiness on the coating outcome. Their
parameters are shown in Table 4.3 and Figure 4.3 shows a side-view highlighting the
different levels of blockiness. The shapes were made increasingly blocky by raising
the value of n1. Round4 served as the baseline with n1 = 4. Round6 and Round10

32

4. Methods

Table 4.1: Simulation settings used in LIGGGHTS.

Parameter Value
Pan rotational speed 22 RPM
Pan loading 1.5 kg
Number of particles 3K-15K
Particle mass 93-505 mg
Contact force model Hertz-Mindlin
Particle Poisson’s ratio 0.25
Wall Poisson’s ratio 0.30
Particle density 1500 kg/m3

Wall density 7500 kg/m3

Coef. of static friction (particle-particle) 0.5
Coef. of static friction (particle-wall) 0.5
Coef. of rolling friction 0.0
Coef. of restitution 0.5
Total simulation time 180 s
Simulation time step 1.7-3.5 10−5

Sampling interval 0.02 s

Table 4.2: Parameters and properties of the pharmaceutical particle shapes. The
aspect ratio is computed as AR = 0.5(a + b)/c (inverted for the Capsule) and the
maximum aspect ratio as ARmax = max(a, b, c)/min(a, b, c).

Particle
Shape

a
(mm)

b
(mm)

c
(mm)

n1 n2 Volume
(mm3)

Npanels AR ARmax

Round 5.0 5.0 2.25 4.0 2.0 309 2024 2.22 2.22
Oval 7.0 3.5 2.5 4.0 2.0 336 2064 2.10 2.80
Caplet 8.0 3.0 2.25 4.0 2.5 319 2000 2.44 3.56
Capsule 1.5 1.5 5.0 4.0 2.0 62 2072 3.33 3.33

(a) Round. (b) Oval. (c) Caplet. (d) Capsule.

Figure 4.2: The four shapes in 4.2, showing the panels used for intra-tablet vari-
ability estimation.

33

4. Methods

Table 4.3: Parameters and properties of Round blockiness variation shapes.

Particle
Shape

a
(mm)

b
(mm)

c
(mm)

n1 n2 Volume
(mm3)

Round4 5.0 5.0 2.25 4.0 2.0 309
Round6 5.0 5.0 2.25 6.0 2.0 330
Round6EV 5.0 5.0 2.1 6.0 2.0 308
Round10 5.0 5.0 2.25 10.0 2.0 343
Round10EV 5.0 5.0 2.0 10.0 2.0 306

Figure 4.3: Profiles of Round4, Round6EV and Round10EV showing the variation
in blockiness for different values of n1.

used n1 = 6 and n1 = 10 respectively and the same thickness c = 2.25 as Round4,
making their volumes slightly larger. Round6EV and Round10EV also used n1 = 6
and n1 = 10 respectively but with slightly smaller tablet thicknesses to keep the
volume constant. The same panel dimensions were used across all Round shapes.

4.3 Benchmarks

Relevant parts of the code were timed using the C++ class chrono::high_resolution_clock.
The runtime benchmark that used all 180 seconds of simulation data showed no sig-
nificant variation between multiple runs, so only single benchmarks were performed
in those cases. For all other benchmarks the minimum runtimes of 3 runs was
recorded. All benchmarks were run on a conventional desktop computer using an
Intel Core i5-2500K 3.30 GHz CPU.

34

5
Results and Discussion

Two main sets of results will be presented below. The first set gives performance
measures of the implemented algorithm, which provide insight into the process of
implementing and using a ray caster in a DEM context. The second set compares
the intra-tablet coating variability to previous studies and shows the effects of using
superquadrics for DEM shape approximation in the context of drum coating.

5.1 Ray Casting

The ray caster has a number of parameters that need to be set, like the intersection
tolerance, the number of rays and the grid spacing. The results below will shed
some light on reasonable values, and what kind of runtimes can be expected for
some different coating simulations.

5.1.1 Intersection tolerance

The ray-superquadric intersection method used in this work is exact, meaning it
will never misclassify ray hits and misses, given infinite machine precision. However,
because computers use finite precision this will never be achieved in practice. Two
validation tests were used to assess the impact of finite precision. In the first, a
single superquadric particle was placed at the origin, and 100 million rays were cast
from uniformly randomly sampled points on a large sphere surrounding the particle
towards points on the particle surface, meaning all rays were hitting. The proportion
of rays that hit was recorded, and for all superquadric shapes and a sufficiently small
tolerances τ , a perfect hit rate of 1 was achieved. In the second test, in order to
estimate a tolerance that would be sufficient in practice, 100 million rays modeling
the spray were cast on data from the different simulations. The tolerance value
was initially set to τ = min(a, b, c)/10 and then lowered in small steps until the
number of superquadric intersection checks stopped changing. No differences in
intersection outcome was observed for tolerances below τ = min(a, b, c)/1000, and
so this tolerance was used in all subsequent analyses.

35

5. Results and Discussion

5.1.2 Grid Spacing

The impact of grid spacing on the runtime was studied by running benchmarks
for different grid spacings. Figure 5.1 shows how the runtime, broken down into
grid construction and ray casting, depends on the grid spacing factor in the Round,
Capsule and Roundmedium cases. Given the grid spacing factor α, the grid spacing
is computed as gs = αrB, where rB is the radius of the minimum bounding sphere
of the superquadric particle.
Figures 5.1a and 5.1b show that the ray casting runtime is minimized for grid spac-
ings factors α = 2.5 and α = 2 respectively. The ray casting slows down for smaller
grid spacings because the ray has to traverse more grid cells and access more memory
locations, as well as for larger grid spacings where the cells contain more particles
which mean more sphere intersection checks have to be performed. In the latter
case, the increase in runtime is substantial despite the relatively cheap cost per ray
of sphere intersection checks because the amount of checks increases with the vol-
ume of the grid cells. This effect is greater for the longer Capsule shape since its
bounding spheres are packed more tightly than in the Round case.
Whereas the ray casting runtime increases with increasing grid spacing, the opposite
is true for the grid construction runtime, and this is mainly due to the indexing
factor shown in Figure 5.2. The indexing factor is the ratio of the number of copies
of particles stored in the index to the total number of particles. In the extreme
case of using a grid spacing factor of α = 1, an average of 20 copies of each particle
are stored in the index, which increases memory usage and runtime proportionally.
Another important factor is the octant method which is used for grid spacings
gs ≥ 2rB. It significantly reduces the runtime by decreasing the amount of sphere-
box distance checks in the grid construction by a factor of almost 4, since only 8 of
the 27 surrounding grid cells need to be checked.
The total runtime under a balanced workload in the Round case is basically the same
for grid spacings α ≥ 2, because the increase in ray casting runtime is cancelled
out by the decrease in grid construction runtime. In the Capsule case, an equal
workload balance attains a clearer minimum runtime around α = 3 because of the
much greater slow-down in ray casting for larger grid spacings. Still, even using a
the worst grid spacing factor of α = 6 in that case is only about 25% slower than
the optimal grid spacing.
Figure 5.1c shows the impact of grid spacing on runtime for a larger simulation,
namely the Roundmedium case with 650K tablets of Round shape. Its balanced
workload graph attains a couple of minima in the range α ∈ [3, 5]. An additional
graph corresponding to a heavy grid construction workload is shown as well. As
simulations are scaled up, the workload balance will shift in the direction of more
grid construction. As the amount of data increases, so does the time to construct
the index. In the Roundmedium case, the runtime under the heavy grid construction
workload is minimized for a grid spacing factor around α = 8. The curve is however
quite flat, and the relative difference in runtime for α ∈ [2, 15] stays within about
25%, showing that the choice of grid spacing factor in that case has a modest impact
on the final runtime.

36

5. Results and Discussion

2 4 6
Grid Spacing Factor (Nradii)

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

T
im

e

Runtime vs Grid Spacing
Grid

Ray

Balanced

(a) Round, 3K tablets.

2 4 6
Grid Spacing Factor (Nradii)

1.00

1.25

1.50

1.75

2.00

N
or

m
al

iz
ed

T
im

e

Runtime vs Grid Spacing
Grid

Ray

Balanced

(b) Capsule, 16K tablets.

5 10 15
Grid Spacing Factor (Nradii)

0.75

1.00

1.25

1.50

1.75

N
or

m
al

iz
ed

T
im

e

Runtime vs Grid Spacing
Grid

Ray

Balanced

Mostly Grid

(c) Roundmedium, 650K tablets.

Figure 5.1: Runtime as a function of the grid spacing factor α for the Roundmedium
simulation. The runtimes are broken down into grid construction and ray casting,
both of which have been normalized using the values at α = 3. The green curve
shows the runtime given a balanced workload, meaning that equal time is spent on
grid construction and ray casting, and the red curve in (c) shows a workload where
90% of the time is spent on grid construction, and 10% on ray casting.

37

5. Results and Discussion

2 4 6
Grid Spacing Factor (Nradii)

5

10

15

20

In
d

ex
F

ac
to

r

Index Factor vs Grid Spacing

Figure 5.2: Indexing factor vs the grid spacing factor α.

The grid spacing that minimizes the overall runtime depends on tablet shape as
well as workload balance, which in turn depends on the number of tablets and rays.
However, grid spacing factors in the range α ∈ [2, 5] worked well for all cases shown
here, and changes within this interval had a modest impact on the total runtime,
with relative differences staying well within 25%. For this reason, and because it
eliminates a variable, α = 3 will be used for all runs in the following sections.

5.1.3 Sampling Convergence

Each ray provides a single sample for the coating variability estimate, which means
the accurary and variance of the estimate will depend on the number of rays cast.
Figure 5.3 shows how the convergence of CoVinter, CoVintra,bulk, CoVintra,agg and
CoVintra,agg,sym depend on the number of rays cast per time step in the Round case,
which has about 150 tablets in the spray zone and 3000 tablets in total, each divided
into 2000 panels. The graphs show that both CoVinter and CoVintra,agg,sym do not
benefit much from more than 1K rays per time step. This result for CoVinter is similar
to that found by Toschkoff for a similar spray zone area and tablet size [11]. The
non-symmetrical CoVintra,agg behaves just like its symmetrical counterpart, except
that it lags behind by a factor of 8, requiring around 10K rays per time step to
converge in this case. Compared to the others, CoVintra,bulk requires significantly
more samples to converge, since its final value changes even when going from 100K
to 1M rays per time step.

The reason the sample requirements differ by several orders of magnitude for the
different coefficients is that they are estimating fundamentally different quantities.
CoVinter only counts hits per tablet while ignoring the intra-tablet panels, so its ray
requirement only depends on the amount of tablets in the spray zone. Similarly, the
representative tablet approach of CoVintra,agg,sym means that its ray requirement only

38

5. Results and Discussion

102 104 106

Nrays

100

101
N

or
m

al
iz

ed
C

oV

Final CoV vs Nrays

CoVinter

CoVintra,bulk

CoVintra,agg

CoVintra,agg,sym

Figure 5.3: CoV at the end of the 180 second Round simulation as a function of
the number of rays cast per time step, showing how many rays are required for the
different coefficients to converge. The values have been normalized by the final value
when 1M rays are cast.

depends on the number of panels, and not on the number of tablets. CoVintra,bulk
depends on both, or more specifically on the average number of unique panels in the
spray zone. Figure 5.4a helps explain this dependency. It shows the ray requirement
of CoVintra,bulk in three different cases, namely Round with 2000 panels, Round with
256 panels, and Capsule. Compared to the Round case with 2000 panels, in the
Round case with 256 panels, the number of tablets remains the same while the
number of panels is reduced, so the ray requirement drops because there are fewer
unique panels in the spray zone. Conversely, in the Capsule case the number of
panels remains the same while the amount of tablets in the spray increases, so the
ray requirement goes up. Increasing the spray zone area would have a similar effect.
As shown, CoVintra,bulk requires significantly more samples than the other estimates.
However, the linear nature of the graphs in Figure 5.4b hint that an extrapolation
procedure, similar to inverse power law used to extrapolate CoVinter [1], could be
applicable. In that case, it would be enough to cast a large number of rays only for
a few seconds of simulation time, and thereby drastically reduce the total amount
of rays that need to be cast. Note however that the same power law does not
actually apply to CoVintra,bulk over long periods of time, because in general it will
reach a non-zero asymptote [6]. However, the extrapolation could perhaps provide a
rough estimate of how quickly the tablets in the coating process will reach a certain
uniformity.
Sampling time is another factor to consider. Figure 5.5 shows how the convergence of
CoVintra,agg and CoVintra,agg,sym depend on the length of the simulation when a large,
fixed number of rays are cast. This gives an idea of how many independent coating
trials are needed to get a stable estimate of the asymptotic intra-tablet coating
variability. After only 10 seconds of simulation data, the symmetrical CoVintra,agg,sym

39

5. Results and Discussion

102 104 106

Nrays

100

101

C
oV

Final CoVintra,bulk vs Nrays

Round

Fewer panels

Capsule

(a) CoVintra,bulk.

100 101 102

Time (s)

100

101

102

C
oV

CoVintra,bulk vs Nrays

N=10

N=100

N=1K

N=10K

N=100K

N=1M

(b) CoVintra,bulk.

Figure 5.4: Final values and convergence of CoVintra,bulk as a function of the number
of rays cast per time step in the Round case.

has converged to within 10% of the final value, showing that most of the information
about asymptotical intra-tablet coating variability can be extracted from simulations
as short as 10 seconds. The non-symmetrical CoVintra,agg lags behind, but after about
80 seconds it becomes indistinguishable from CoVintra,agg,sym.

Reasoning about the amount of tablets, panels and unique panels in the spray zone
can help to roughly estimate the amount of rays required to get convergence in
CoVinter, CoVintra,agg,sym and CoVintra,bulk respectively. But it also depends on spray
zone area, sample rate and average single visit residence time in the spray zone.
Given a number of rays that is known to give convergence, scaling can be quite
straightforward. For instance, if the total spray zone area doubles with all else equal,
both CoVinter and CoVintra,bulk will require twice as many rays as they did previously,
whereas the requirement of CoVintra,agg,sym will be largely unaffected. Similar rules
of thumb can also be used to arrive at initial estimates of ray requirements. In the
Round case above, there were around 150 tablets in the spray zone and the average
single visit residence time was 5 time steps. The estimate of CoVinter converged with
1K rays per time step, which indicates that an average of about 30 rays per tablet
and spray zone visit may be sufficient for this shape. Ultimately however, as shall
be seen in the next section, it is not very costly to run a quick test on a small subset
of the data to see how many rays are required to estimate a certain coefficient.

5.1.4 Runtimes

Benchmarks were run by ray casting the DEM data from the different simulations.
To better explore the performance of the ray caster, the simulations were split into
two different use cases. A grid spacing factor of 3 was used in both, as discussed in
the grid spacing section, and the number of rays cast will be motivated below.

The first use case was to asses inter-tablet and asymptotical intra-tablet variability

40

5. Results and Discussion

100 101 102

Time (s)

0.04

0.05

0.06

0.07

0.08

C
oV

CoVintra,agg vs Sampling Time

CoVintra,agg

CoVintra,agg,sym

Figure 5.5: Estimate of the asymptotic CoVintra,agg and CoVintra,agg,sym for the
Round shape as a function of the simulation length when a total of 100 million rays
are cast. The dashed line shows the average of the final values.

for the small simulations of pharmaceutical shapes. This has a much lower ray
requirement than estimating CoVintra,bulk. In the Round case, CoVinter required 1K
rays per time step to converge, but Capsule has about 5 times more tablets, so
the requirement should be around 5K in that case. However, even with 5K rays,
the symmetrical surface densities were still not quite as smooth as desired, so the
amount of rays was doubled to 10K.
The second use case was to estimate CoVintra,bulk for the two larger simulations,
Roundmedium and Roundlarge. Due to memory constraints, the number of panels was
reduced to 256. For the Round case with 256 panels, shown in Figure 5.4a, 100K
rays per time step was enough to get decent convergence. Since the number of panels
is the same, the only difference that impacts the ray requirement of CoVintra,bulk is
the spray zone area, which is roughly 5 and 10 times larger in Roundmedium and
Roundlarge respectively. Therefore, 500K and 1M rays were cast per time step in
Roundmedium and Roundlarge respectively.
Table 5.1 shows runtimes for processing the data from the different simulations.
Using 4 threads on a conventional desktop computer, the wall-clock runtimes range
from around 1 to 2 minutes for the smaller coaters, up to around 180 minutes for
the largest one. The workload balance shifts as the size of the simulation increases:
The ray casting runtime dominates for the smaller simulations, but a more even
workload is seen for the larger ones. It is interesting to note however that the time
spent per ray does not increase much from the small Round simulations to the larger
ones, the biggest difference being from 0.37 µs for Round to 0.45 µs for Roundmedium.
The fact that the time spent per ray does not increase much with the size of the
simulations shows the effectiveness of the acceleration structures in reducing the
amount intersection checks.
The grid construction is a significant bottleneck for the largest simulation Roundlarge.

41

5. Results and Discussion

Table 5.1: Ray casting runtimes for 180 seconds of data from different simulations.
All runs used a grid spacing factor of α = 3. Twall is the elapsed wall-clock runtime
and Tgrid and Tray are single-thread estimates for grid construction and ray casting
respectively based on averaging across the 4 threads. The 180 second runtimes of
Roundmedium and Roundlarge have been extrapolated from runtimes of processing 12
simulation data files, and the number of panels in those cases were reduced due to
memory constraints.

Simulation Ntablet Npanel Nray Twall Tgrid Tray Tray/Nray
Round* 3237 2024 90M 157.5 s 16.0 s 121.2 s 1.35 µs
Round 3237 2024 90M 43.8 s 4.4 s 33.6 s 0.37 µs
Round10EV 3270 2024 90M 49.4 s 4.5 s 39.2 s 0.44 µs
Oval 2973 2064 90M 53.6 s 4.0 s 44.2 s 0.49 µs
Caplet 4834 2000 90M 103.0 s 11.2 s 85.1 s 0.95 µs
Capsule 16186 2072 90M 121.5 s 39.4 s 64.5 s 0.72 µs
Roundmedium

* 650K 256 4.5B 190.6 m 58.9 m 122.8 m 1.64 µs
Roundmedium 650K 256 4.5B 64.5 m 17.6 m 33.6 m 0.45 µs
Roundlarge

* 2M 256 9.0B 509.4 m 264.4 m 220.7 m 1.47 µs
Roundlarge 2M 256 9.0B 179.4 m 96.6 m 61.8 m 0.41 µs

* Single-threaded.

The speed-up in grid construction when going from 1 to 4 threads in that case is
not almost 4 like it is for Round and Roundmedium, but is instead closer to 2.5. This
is because the simulation data files are so large that the program hits the data read
limit of the hard drive. This could however be remedied to some extent. The time
to process files could be reduced by storing them in a binary format rather than
text, and the file sizes could be significantly reduced by subsampling to only dump
information about tablets near a priori known spray zone locations.
The increase in ray casting runtime in the Oval case compared to the Round case,
despite the number of tablets decreasing, is partly due to the larger maximum as-
pect ratio of the Oval tablets. This lowers the superquadric to bounding sphere
volume ratio and means that bounding spheres on average extend further than the
superquadric in the ray direction. This in turn means that more intersection checks
have to be performed before the ray casting algorithm can be safely terminated based
on the sphere distance criterion. Ultimately this increases the average amount of
intersection checks per ray as shown in Table 5.2. The table shows that from the
Round to the Oval case, the average number of sphere intersection checks per ray
doubles, and the average number of superquadric intersection checks goes from 1.14
to 1.42. Caplet and Capsule have even larger maximum aspect ratios than Oval
and perform an average of 1.77 and 1.71 superquadric intersection checks per ray
respectively. Without mailboxing these numbers grow to 2.58 and 2.59, which shows
the importance of mailboxing.
The difference in ray casting runtimes between Caplet and Capsule is however not
explained by maximum aspect ratio, but by shape parameters. The Caplet is the
only shape with n2 = 2.5, and this drives up the ray casting runtime considerably,

42

5. Results and Discussion

Table 5.2: Number of intersection checks per ray performed while processing the
data from the different simulations. Roundmedium and Roundlarge used the Round
shape.

Simulation Isphere Ibox Isq
Round 14.21 1.22 1.14
Round10EV 14.91 1.24 1.11
Oval 30.62 2.08 1.42
Caplet 55.99 3.19 1.77
Capsule 54.20 3.42 1.71
Roundmedium 58.99 1.20 1.13
Roundlarge 62.57 1.23 1.14

as the power functions can no longer be computed using multiplication. If possible,
blockiness parameters should be rounded to integer values to reduce this cost. The
time spent intersecting each bounding volume was measured, and it was found that
sphere intersections on average take 30-60 clock cycles, box intersections 150-300
cycles and superquadrics 1200-3000 cycles. The longest average intersection cost for
superquadrics was for the Caplet shape. This shows the value in minimizing the
number of ray-superquadric intersection checks performed.

In conclusion, the runtime depends mostly on these key factors:

• Intersection tolerance: Smaller tolerance requires more Newton iterations
and takes more time. The tolerance can be increased, or the intersection
refinement step bypassed entirely if only inter-tablet variation is of interest, to
dramatically speed up the ray casting.

• Number of rays and tablets: The time spent constructing the grid and ray
casting grows roughly linearly with the number of tablets and rays respectively.
However, the time spent per ray increases very little with the number of tablets,
showing that the ray casting is scaling well to larger simulations.

• Grid spacing: The grid spacing can be tuned to trade off between grid
construction and ray casting runtimes. A larger grid spacing makes for fewer
grid cells and a quicker grid construction at the cost of increased ray casting
runtime. However, the grid spacing was found to have a relatively modest
impact on the final runtime, and a grid spacing factor of α = 3 was found to
work okay in all cases studied.

• Shape parameters: Shapes with larger maximum aspect ratios and thereby
larger bounding spheres to particle volume ratios require more sphere inter-
section checks which increases the runtime. Additionally, computing large or
non-integer exponents is more costly than small integers which can be com-
puted using multiplication. Therefore, if the workload is heavy in ray casting,
the blockiness parameters could if possible be rounded to nearby integer values
to reduce this cost.

43

5. Results and Discussion

5.2 Coating Variability

In the following two sections, the coating variability statistics extracted from the
two simulations sets are analyzed.

5.2.1 Pharmaceutical Shapes

Figure 5.6 shows surface densities of the four pharmaceutical tablet shapes that were
considered. Shapes similar to the Round and Oval seen here were also studied by
Freireich [12], and overall they report similar results. However note that the shapes
are not equal, only similar, and they also used multi-sphere shape approximation
which might affect the simulated tablet flow and thereby the results. Similarities
between those results and the ones seen here are, more specifically, for the Round
shape, they report a higher coating density on the cap than on the band, and
a slightly thicker coating towards the edge of the cap, just as in Figure 5.6a. The
Oval shape also shows a similar overall coating distribution, including a lower coating
density in areas of low radius of curvature at the ends of the tablet. However, their
Oval shape shows a varying density along the cap, with the highest density in the
center. This difference is likely due to their Oval shape having a rounded cap whereas
the cap in Figure 5.6b is basically flat which results in a more uniform coating. This
difference in cap geometry means this comparison should be taken with a grain of
salt, but the overall agreement still lends credibility to the approach used in this
work.
The predicted time for CoVinter of the four pharmaceutical tablets to hit 5% was
around 60 minutes. The prediction is based on the theoretical t−0.5 power law trend
[1]. There is variation between the different shapes as seen in Figure 5.7a. The
prediction for the Oval is 44 minutes, whereas that of the Caplet is 64 minutes. In
terms of intra-tablet variability, Figure 5.7b shows that CoVintra,agg,sym is lowest for
the Round shape and largest for the Caplet and Capsule shapes, which correlates well
with the sphericity of the tablets as observed in previous work [18]. The graph also
shows that it takes a longer time for CoVintra,agg to converge when the asymptotic
value is lower, which should be taken into consideration when choosing the amount
of rays to cast.

5.2.2 Blockiness Variations

Figure 5.8 shows the effect of varying n1 on the intra-tablet coating density. As
the blockiness increases, the coating distribution shifts from the cap to the band,
which in this case increases the coating uniformity since Round4 has a higher coat-
ing density on the cap than on the band. The shift is most notable for Round10
in Figure 5.8d where the ratio flips to the band having a higher coating density
than the cap. There is little to no difference in inter-tablet variability between the
Round variations, as can be seen in Figure 5.9a. However, as indicated by the
densities, the intra-tablet coating uniformity increases with blockiness, and this is

44

5. Results and Discussion

(a) Round. (b) Oval.

(c) Caplet. (d) Capsule.

Figure 5.6: Surface densities of four pharmaceutical tablet shapes. The densities
have been symmetrically averaged and normalized by dividing by the maximum
density.

100 102

Time (s)

10−1

100

101

C
oV

CoVinter

Round

Oval

Caplet

Capsule

(a) CoVinter.

100 101 102

Time (s)

0.04

0.05

0.06

0.07

C
oV

CoVintra,agg,sym

Round

Oval

Caplet

Capsule

(b) CoVintra,agg,sym.

Figure 5.7: CoVinter and CoVintra,agg,sym for the four pharmaceutical tablet shapes.
The projections of the CoVinter are based on a theoretical t−0.5 fall-off [1].

45

5. Results and Discussion

(a) Round4.

(b) Round6.

(c) Round6EV.

(d) Round10.

(e) Round10EV.

Figure 5.8: Surface coating densities of the Round variations. The densities have
been symmetrically averaged and normalized by dividing by the maximum density.

further confirmed by the asymptotic CoVintra,agg,sym predictions in Figure 5.9b. The
CoVintra,agg,sym of Round4 and Round10 are predicted to reach 3.82% and 0.90%
respectively.

The shift in coating distribution indicates that the preferred orientation of tablets
in the spray zone is changing, and this is backed up by the orientation distribution
in Figure 5.10a. The orientation of a tablet was measured by first detecting it in the
spray zone through ray casting and then measuring the angle between the vector
pointing from the tablet toward the spray and the vector orthogonal to the tablet
cap. An angle of 0◦ therefore means that the cap is pointing straight towards the
spray. The shift in orientation from Round4 to Round10 shows clearly that the
Round10 tablets have a higher tendency to face their caps away from the spray.
This shift also correlated with an increase in top rotational speed, as shown in
Figure 5.10b, which indicates that tablets are flowing a bit more erratically. One
possible explanation for this change in bulk flow behavior could be that the blockier
particles in some sense have smaller effective aspect ratio since their bands are
slightly flatter and taller. This would then also be true for both Round6EV and
Round10EV despite them having a lower thickness c than Round4 and thereby a
lower aspect ratio. Further work will be necessary to understand the connection
between increased blockiness, tablet flow and resulting coating variability.

One downside of the cube parametrization is that it creates cubical artifacts on the
surface, as can been seen in the densities of Figure 5.8. The boundary between the
cap and the band on the Round tablet is axisymmetrical, but the cube parametriza-

46

5. Results and Discussion

10−1 100 101 102

Time (s)

100C
oV

CoVinter

Round4

Round6

Round6EV

Round10

Round10EV

(a) CoVinter.

100 101 102

Time (s)

0.00

0.02

0.04

0.06

C
oV

CoVintra,agg,sym

Round4

Round6

Round6EV

Round10

Round10EV

(b) CoVintra,agg,sym.

Figure 5.9: CoVinter and CoVintra,agg,sym for Round blockiness variation shapes.
The projections of the CoVinter are based on a theoretical t−0.5 fall-off [1]. The intra-
tablet coating uniformity increases with the blockiness. The asymptotic prediction
for Round4 is 3.82% while that of Round10 is 0.90%.

0 20 40 60 80
Angle (°)

0.000

0.005

0.010

0.015

D
en

si
ty

Tablet Orientation in Spray Zone
Round4

Round10

(a) Orientation.

50 75 100 125 150
Angular Speed (rad/s)

0.00

0.02

0.04

D
en

si
ty

Angular Top Speed Distribution
Round4

Round10

(b) Top angular speed.

Figure 5.10: Distributions of tablet orientation and rotational speeds from the
Round4 and Round10 simulations. The orientations are sampled from the spray
zone, and the top angular speeds are those greater than the corresponding 95th
percentile in the Round4 simulation. The shift in both histograms show that the
Round10 tablets are facing their cap towards the spray less and rotating faster in
the free surface than the Round4 tablets.

47

5. Results and Discussion

tion obscures this symmetry. It also creates the illusion of a smoother transition in
density between cap and band, like in Figure 5.8e where a stripe of orange panels
can be seen between the red ring of the cap and the blue band. On other parts
of the same tablet there are neighboring red and blue panels, indicating that this
density transition is likely much sharper than the orange panels make it seem. This
effect not only makes it more difficult to interpret the surface density, but it will also
result in a smaller estimate of CoVintra,agg, especially when using fewer panels. This
needs to be kept in mind when comparing variability between shape representations
that use different numbers of panels, both in terms of CoVintra,agg and in terms of
the appearance of the surface density.

48

6
Conclusion

An efficient ray casting algorithm to model the spray in drum coating processes and
a corresponding C++ implementation were developed and described in detail. The
method was able to generate inter- and intra-tablet coating predictions by post-
processing data from DEM simulations where tablet shapes were modeled using
superquadrics. To achieve good performance, a spatial subdivision index and par-
ticle bounding volumes were used to reduce the number of ray intersection checks
performed, and the convexity of the superquadrics was exploited to efficiently com-
pute the intersection points. The intersection accuracy was shown to only be limited
by the tolerance, and a value of a thousandth of the smallest tablet dimension was
found to give negligable errors practice.
Simulations of varying size and tablet shape were benchmarked, and the largest one,
containing 2 million tablets, was processed in less than 3 hours on a conventional
desktop computer. The multi-threaded implementation scaled well and significantly
reduced the runtime for all simulations, but when processing the largest one, the
size and format of the simulation data files were found to be a bottleneck for the
index construction. Switching to a binary file format and subsampling the exported
data could alleviate this problem.
An invertible cube projection was used to divide the superquadric surface into a
uniform set of panels that were used to compute and visualize intra-tablet coating
variability. While it had many advantages over the other parametrizations con-
sidered, the lack of axisymmetry caused cubical artifacts on the surface. Further,
for certain tablet shapes, the visualizations revealed that some panels straddled
the boundary between cap and band. This will reduce the estimated coefficient of
intra-tablet variability, especially when using a small number of panels.
Finally, the developed spray method was applied to two sets of tablet shapes. In the
first set of common pharmaceutical shapes, the coating variability results showed
overall good agreement with previous work based on multi-spheres. The second set
contained round tablets of varying blockiness and was meant to study the impact of
blockiness on coating outcome, an analysis that would have been more difficult to
do using multi-spheres. The results showed that blockiness had a significant impact
on the intra-tablet coating, even when tablet thickness was reduced to keep an equal
volume. The coating density was shown to shift from cap to band, and an analysis
of tablet orientation in the spray zone confirmed that the blockier tablets had a
higher tendency to face their caps away from the spray. However, further work will
be necessary to explore the cause of this change in bulk flow behavior.

49

6. Conclusion

50

Bibliography

[1] G. Toschkoff and J. G. Khinast, “Mathematical modeling of the coating pro-
cess,” International Journal of Pharmaceutics, vol. 457, no. 2, pp. 407–422,
2013.

[2] P. A. Cundall and O. D. L. Strack, “A discrete numerical model for granular
assemblies,” Géotechnique, vol. 29, no. 1, pp. 47–65, 1979.

[3] W. R. Ketterhagen, M. T. am Ende, and B. C. Hancock, “Process modeling
in the pharmaceutical industry using the discrete element method,” Journal of
Pharmaceutical Sciences, vol. 98, no. 2, pp. 442–470, 2009.

[4] M. Alizadeh Behjani, A. Hassanpour, M. Martín, and m. pasha, Introduction
to Software for Chemical Engineers, Second Edition. USA: CRC Press, Inc., 08
2019.

[5] R. Cabiscol, J. H. Finke, and A. Kwade, “Calibration and interpretation of dem
parameters for simulations of cylindrical tablets with multi-sphere approach,”
Powder Technology, vol. 327, pp. 232 – 245, 2018.

[6] B. Freireich, W. R. Ketterhagen, and C. Wassgren, “Intra-tablet coating vari-
ability for several pharmaceutical tablet shapes,” Chemical Engineering Sci-
ence, vol. 66, no. 12, pp. 2535–2544, 2011.

[7] B. Soltanbeigi, A. Podlozhnyuk, S.-A. Papanicolopulos, C. Kloss, S. Pirker,
and J. Y. Ooi, “Dem study of mechanical characteristics of multi-spherical and
superquadric particles at micro and macro scales,” Powder Technology, vol. 329,
no. nil, pp. 288–303, 2018.

[8] A. Podlozhnyuk, S. Pirker, and C. Kloss, “Efficient implementation of su-
perquadric particles in discrete element method within an open-source frame-
work,” Computational Particle Mechanics, vol. 4, pp. 101–118, Jan 2017.

[9] C. Kloss, C. Goniva, A. Hager, S. Amberger, and S. Pirker, “Models, algorithms
and validation for opensource dem and cfd-dem,” Progress in Computational
Fluid Dynamics, vol. 12, pp. 140 – 152, 06 2012.

[10] L. Fries, S. Antonyuk, S. Heinrich, and S. Palzer, “Dem–cfd modeling of a
fluidized bed spray granulator,” Chemical Engineering Science, vol. 66, no. 11,
pp. 2340 – 2355, 2011.

[11] G. Toschkoff, S. Just, A. Funke, D. Djuric, K. Knop, P. Kleinebudde, G. Schar-
rer, and J. G. Khinast, “Spray models for discrete element simulations of parti-

51

Bibliography

cle coating processes,” Chemical Engineering Science, vol. 101, no. nil, pp. 603–
614, 2013.

[12] B. Freireich, R. Kumar, W. Ketterhagen, K. Su, C. Wassgren, and J. A. Zeitler,
“Comparisons of intra-tablet coating variability using dem simulations, asymp-
totic limit models, and experiments,” Chemical Engineering Science, vol. 131,
no. nil, pp. 197–212, 2015.

[13] C. Pei and J. A. Elliott, “Asymptotic limits on tablet coating variability based
on cap-to-band thickness distributions: A discrete element model (dem) study,”
Chemical Engineering Science, vol. 172, pp. 286 – 296, 2017.

[14] A. H. Barr, “Superquadrics and angle-preserving transformations,” IEEE Com-
puter Graphics and Applications, vol. 1, p. 11–23, Jan. 1981.

[15] A. Jaklic, A. Leonardis, and F. Solina, Segmentation and Recovery of Su-
perquadrics, vol. 20 of Computational imaging and vision. Dordrecth: Kluwer,
2000. ISBN 0-7923-6601-8.

[16] A. S. Glassner, ed., An Introduction to Ray Tracing. GBR: Academic Press
Ltd., 1989.

[17] J. Zhu, S. Zhao, Y. Ye, and G. Wang, “Computed tomography simulation with
superquadrics,” Medical Physics, vol. 32, no. 10, pp. 3136–3143, 2005.

[18] W. R. Ketterhagen, “Modeling the motion and orientation of various pharma-
ceutical tablet shapes in a film coating pan using dem,” International Journal
of Pharmaceutics, vol. 409, no. 1-2, pp. 137–149, 2011.

[19] I. Wald and V. Havran, “On building fast kd-trees for ray tracing, and on
doing that in o(n log n),” in 2006 IEEE Symposium on Interactive Ray Tracing,
pp. 61–69, 2006.

[20] A. Fujimoto, T. Tanaka, and K. Iwata, “Arts: Accelerated ray-tracing system,”
IEEE Computer Graphics and Applications, vol. 6, no. 4, pp. 16–26, 1986.

[21] T. L. Kay and J. T. Kajiya, “Ray tracing complex scenes,” SIGGRAPH Com-
put. Graph., vol. 20, p. 269–278, Aug. 1986.

[22] D. Kalra and A. H. Barr, “Guaranteed ray intersections with implicit surfaces,”
SIGGRAPH Comput. Graph., vol. 23, p. 297–306, July 1989.

[23] D. P. Mitchell, “Robust ray intersection with interval arithmetic,” in Proceed-
ings on Graphics Interface ’90, (CAN), p. 68–74, Canadian Information Pro-
cessing Society, 1990.

[24] M. Pilu and R. B. Fisher, “Equal-distance sampling of superellipse models,” in
BMVC, 08 1995.

[25] C. Ronchi, R. Iacono, and P. Paolucci, “The “cubed sphere”: A new method
for the solution of partial differential equations in spherical geometry,” Journal
of Computational Physics, vol. 124, no. 1, pp. 93 – 114, 1996.

[26] J. P. Ahrens, B. Geveci, and C. C. W. Law, “Paraview: An end-user tool for
large-data visualization,” in The Visualization Handbook, 2005.

52

	List of Figures
	List of Tables
	Introduction
	Previous Work
	Aims and Goals

	Theory
	Superquadrics
	Ray Casting
	Ray-superquadric intersection

	Spray Coating
	Single Visit Residence Time
	Inter-tablet Variability
	Intra-tablet Variability

	Implementation
	Spatial Subdivision
	Grid Construction
	Grid Traversal

	Ray-Particle Intersection
	Ray-Sphere Intersection
	Ray-Box Intersection
	Ray-Superquadric Intersection
	Bisection Search
	Newton's Method
	Intersection Algorithm

	Ray Casting Algorithm
	Intra-particle Sampling
	Uniform Parametrization
	Uniform Sampling
	Cube Sampling

	Methods
	Software
	DEM Simulation
	Pharmaceutical Shapes
	Blockiness Variation

	Benchmarks

	Results and Discussion
	Ray Casting
	Intersection tolerance
	Grid Spacing
	Sampling Convergence
	Runtimes

	Coating Variability
	Pharmaceutical Shapes
	Blockiness Variations

	Conclusion
	Bibliography

