
Integrity and confidentiality for
web application code execution
in untrusted clients
Promoting a trust relation in web-applications

Master’s thesis in Computer Systems and Networks

Asier Rivera Fernandez

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2017

Master thesis 2017

Master Thesis Report

Integrity and confidentiality for web application code execution in
untrusted clients

ASIER RIVERA FERNANDEZ

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2017

Master Thesis Report
Integrity and confidentiality for web application code execution in untrusted clients
Asier Rivera Fernandez

© ASIER RIVERA FERNANDEZ, 2017.

Supervisor: Frank Piessens, Computer Science department at the KU Leuven
Supervisor: Neline van Ginkel, Computer Science department at the KU Leuven
Supervisor: Steven Van Acker, Computer Science and Engineering department at
Chalmers University of Technology
Supervisor: Magnus Almgren, Computer Science and Engineering department at
Chalmers University of Technology
Examiner: Tomas Olovsson, Computer Science and Engineering department at
Chalmers University of Technology

Master’s Thesis 2017
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2017

iv

Master Thesis Report
Integrity and confidentiality for web application code execution in untrusted clients
ASIER RIVERA FERNANDEZ
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
The world-wide used web application services are crucial in today’s life style and
economics. However, the lack of data and execution monitoring features in web
applications lead to a point in which the server can no longer trust the executions
done within the client-side device. To avoid risks, developers limit the execution
in the client-side devices which increases the work done by the servers. In order to
promote a trust relation, we propose a solution based on Intel’s SGX technology
that would allow the server to delegate the execution of web application functions
in the client-side device with strong security guarantees.

In order to do so, we developed a prototype called SecureJS that, first, is able
to interact with the web-page submitted by the server to make the delegated code
reach the native application that can run a SGX enclave, and second, is able to run
the delegated code within the enclave, which offers a secure and isolated execution
environment. In addition, the solution also provides remote attestation for both the
correctness of the code execution and the input and output data.

The results show that the prototype increases the execution time compared to
the actual state of art in JavaScript code execution, Google’s V8 engine. On the
other hand, the memory usage is reduced in the server side compared to the usage
of NodeJS and the delegated execution to the client-side device results in reasonable
memory consumption.

In conclusion, SecureJS can trigger a new area of possibilities within web
application services by increasing the security guarantees and balancing the actual
workload state.

Keywords: Secure javascript, web application security, Intel SGX, enclave, Chrome,
SecureJS.

v

Acknowledgements
I would like to start expressing my sincerest gratitude to Steven Van Acker, not
only for introducing me to Prof. Frank Piessens from KU Leuven, but also for being
involved and supporting me along the way. In a similar way, I would like to thank
Associate Professor Magnus Almgren for supporting me during the hard first part of
this thesis (the administrative tasks would have beaten me without your assistance),
and supervising the progress of the project. I also want to thank Associate professor
Tomas Olovsson for accepting being the examiner of this thesis and having huge
patience with all the obstacles faced because the thesis took place in a foreign
country.

On the side of the host university, I will always be grateful to Prof. Frank
Piessens for trusting me for accomplishing this thesis without knowing much about
me. Last but not least, I want to thank Neline van Ginkel for all the help provided
when the thesis did not seem to find the right way. It has been a pleasure to work
on this project and to be part of KU Leuven.

In addition, I would like to thank my friends, the ones that I carried when I
moved from Spain and the ones that made it difficult to move from Sweden. My
greatest gratitude to my girlfriend for her support and always motivating me to
carry on and improve and to her family for their priceless help.

Last, I would like to thank my family for their huge support. Unfortunately,
they do not speak English, therefore, I appreciate your comprehension of the fact
that I dedicate the following paragraph to them in Spanish.

Quiero dar las gracias a mi familia por apoyarme siempre. En especial a esas
dos importantes personas sin las cuales yo no estaría aquí. Mil gracias Félix Rivera
y Antonia Fernandez por vuestro apoyo, sacrificio y cariño.

Asier Rivera Fernandez, Gothenburg, July 2017

vii

Contents

List of Figures xiv

List of Tables xv

List of Listings xvii

1 Introduction 1
1.1 Goal of the project . 2
1.2 Attacker model . 2
1.3 Relevant work . 2
1.4 Contributions . 3
1.5 Structure of the thesis . 3

2 Background 5
2.1 The reality of web applications’ security 5
2.2 Trust situation in web applications 7
2.3 Goal of the project . 8
2.4 Intel SGX technology . 8

2.4.1 Remote attestation . 11
2.5 Chrome extensions . 11
2.6 Threat model and assumptions . 12

3 Related Work 15
3.1 Haven . 15
3.2 MiniBox . 16
3.3 Sancus . 16
3.4 TrustJS . 17
3.5 Other related works . 17

4 Design 21
4.1 SecureJS: the schematic representation 21
4.2 Chrome extension . 22
4.3 Host application . 23
4.4 SGX enclave . 23

4.4.1 Cryptographic feature . 24
4.4.2 Remote attestation feature . 24
4.4.3 JavaScript execution feature 25

ix

Contents

5 Implementation 27
5.1 SecureJS: the complete implementation 27
5.2 Chrome extension . 27
5.3 Host application . 29
5.4 SGX enclave . 29

5.4.1 Cryptographic component . 29
5.4.2 Remote attestation component 30
5.4.3 JavaScript component . 31

5.4.3.1 JSON allowed keywords 32
5.5 Extra implementations . 33

6 Evaluation 35
6.1 Performance evaluation . 35

6.1.1 Tests definition . 36
6.1.1.1 Encryption mode and signature mode setups 36
6.1.1.2 Server-side NodeJS setup 37
6.1.1.3 Client-side Chrome setup 37
6.1.1.4 MuJS setup . 37
6.1.1.5 JavaScript code for testing 37
6.1.1.6 Web-application server setup 38

6.1.2 Runtime performance . 38
6.1.2.1 Macro-benchmark results 38
6.1.2.2 Micro-benchmark results 38
6.1.2.3 SecureJS vs TrustJS 42

6.1.3 Memory performance . 42
6.2 Security evaluation: STRIDE . 44

6.2.1 STRIDE modeling for SecureJS 45
6.2.1.1 Threat Nº 1 . 46
6.2.1.2 Threat Nº 2 . 46
6.2.1.3 Threat Nº 3 . 46
6.2.1.4 Threat Nº 4 . 47
6.2.1.5 Threat Nº 5 . 47
6.2.1.6 Threat Nº 6 . 47
6.2.1.7 Threat Nº 7 . 48
6.2.1.8 Threat Nº 8 . 48
6.2.1.9 Threat Nº 9 . 48
6.2.1.10 Threat Nº 10 . 48
6.2.1.11 Threat Nº 11 . 49
6.2.1.12 Threat Nº 12 . 49

6.2.2 STRIDE outcome . 49

7 Discussion 51
7.1 Other approaches and limitations . 51
7.2 Discussion of the results . 52
7.3 Comparison between SecureJS and TrustJS 53
7.4 Sustainability . 53
7.5 Ethics . 54

x

Contents

7.6 Future work . 54

8 Conclusion 55

Bibliography 60

A Appendix I
A.1 Remote attestation extended . I

A.1.1 Setup for remote attestation II
A.1.2 Remote attestation process . IV

A.2 JSON for SecureJS . V

xi

Contents

xii

List of Figures

2.1 Percentage of web-applications not passing the security tests per in-
dustry. Values adapted from [18]. 6

2.2 Days required to find the vulnerability per industry. Values adapted
from [19]. 7

2.3 Days required to fix the vulnerability per industry. Values adapted
from [19]. 7

2.4 Runtime execution example with Intel SGX enclave. Image adapted
from [17]. 10

2.5 Representation of the roles in the threat model. 13

4.1 Schematic representation of the components and communications in
SecureJS. 22

4.2 SGX infrastructure for Enhanced Privacy Identifier (EPID) algorithm
with the extended functionality for SecureJS. 24

5.1 Schematic representation of the implemented components of SecureJS
and the extra implementations for simulation purposes. 28

6.1 Low level execution time macro-benchmarks of each setup. 39
6.2 Medium level execution time macro-benchmarks of each setup. 39
6.3 High level execution time macro-benchmarks of each setup. 39
6.4 Low level micro-benchmark results of SecureJS for encryption mode

and signature mode setups. 40
6.5 Medium level micro-benchmark results of SecureJS for encryption

mode and signature mode setups. 40
6.6 High level micro-benchmark results of SecureJS for encryption mode

and signature mode setups. 41
6.7 High level micro-benchmark results of the JavaScript component for

encryption mode and signature mode setups. 41
6.8 JavaScript code execution time results inside and outside an enclave. 42
6.9 Execution times comparison between SecureJS and TrustJS. 43
6.10 Results of the memory usage per execution. 43
6.11 Base memory usage of remote attestation server and NodeJS envi-

ronment. 43
6.12 Graphical representation of the data flow in SecureJS. 45

xiii

List of Figures

A.1 SGX infrastructure for Enhanced Privacy Identifier (EPID) algorithm.
Image adapted from [20]. III

A.2 SGX remote attestation communication schema (high level view). Im-
age adapted from [5]. IV

A.3 SGX remote attestation communication schema (low level view). Im-
age adapted from [5]. IV

xiv

List of Tables

6.1 Summary of threats reasoned via STRIDE threat modeling. 49

A.1 Extended list of allowed JSON keywords, description and usage. . . . VI

xv

List of Tables

xvi

List of Listings

5.1 JSON format message example for signature mode with two variables 32
5.2 JSON format message example for signature mode with no variables . 32
A.1 JSON format message example for encryption mode with two variables V
A.2 JSON format message example for encryption mode with no variables VI
A.3 JSON format response message example for signature mode VI
A.4 JSON format response message example for encryption mode VI
A.5 JSON format response error message example VI

xvii

List of Listings

xviii

1
Introduction

The expansion of the web services, such as cloud services and web applications, has
raised the necessity and expectations of security for client-server infrastructures.
This expansion leads to functional web applications that offer a big range of ser-
vices. Furthermore, these services require the usage and management of sensitive
information that must be secured.

In the current web-application infrastructure, the user of a web-application
trusts the web browser, the local operating system (OS), the local hardware, the
client-server connection, and the web server. On the other hand, the web application
provider only trusts the web server.

The reason for this lack of trust situation is that an untrusted system could
interfere with the execution within the client-side device. This way, an attacker could
modify or avoid the execution of Security-Sensitive Functions (SSF) and get access
to the secrets included in the functions. This situation becomes more important in
many web applications that offer SSF (i.e. validation and authentication) within very
sensitive services, such as online banking and online health-care services. Hence, the
server is forced to execute all the SSF.

Stepping away from the security concerns, and moving into performance con-
cerns, it is also true that the situation could be balanced. All companies, whether
they possess web servers that receive millions of requests everyday or only a few,
are forced to execute the majority of the code within their own devices in order to
guarantee the security of the data, which leads the servers to overwork in order to
provide web-application services. In a case in which the servers could securely del-
egate part of the work to the client-side devices, those servers would benefit from a
big reduction of their workload and, therefore, balance the situation. This case may
be of interest for the companies in order to reduce the costs of the web-application
services.

Gartner indicates that, the information security infrastructure does not sup-
port the fast changes and adaptation required by the fast-changing threat envi-
ronment [14]. Therefore, vendors are shifting the security focus from individual
hardware elements into software-based security. Software-based security offers a
more adaptable solution and has raised the expectations on this security related
area due to its flexibility. Hence, software-based security can provide solutions to
web application vulnerabilities and limitations.

Based on the potential of software-based security and the necessity to give a
solution to the distrust relationship, this project aims to provide an environment of
trust for the server in the actual web-application infrastructure.

1

1. Introduction

1.1 Goal of the project
This project focuses on a solution that would allow the server to delegate the exe-
cution of the SSF to the client-side devices. To achieve that, a secure process and
environment that ensures integrity and confidentiality for the execution of the code
and the results in the untrusted client-side device must be provided.

With these properties into consideration, the proposed solution, named Se-
cureJS, is based on the new Intel SGX technology’s enclaves [40] combined with
the most used web browser [3], Google Chrome. SecureJS must be able to inter-
act within Chrome with the code sent by the server, redirect the code towards the
application running a secure SGX enclave, and execute the code. Furthermore, the
solution must provide security guarantees through all the process without increasing
the attack surface.

1.2 Attacker model
For this project we consider one of the worst case scenarios: an adversary that has
control over almost the complete device. Our adversary has been able to control
every hardware component, such as I/O devices, memory. However, the attacker
has no control over the CPU. Therefore, the adversary is able to read and modify
any memory address, alter the input values introduced by the user, etc. In addition,
our adversary has also gained control over all the software implementations installed
inside the device, such as the BIOS, the Operating System, and any piece of appli-
cation logic on top of the Operating System. Meaning that the attacker is able to
execute sophisticated attacks, such as system call attacks (a.k.a. Iago attacks [25]),
and has access to any resource and execution carried out within the compromised
device.

1.3 Relevant work
The topic of securing executions within untrusted devices has been studied in various
research with different approaches. Some of those research are briefly introduced in
the following paragraphs.

One of them is the solution called Haven, proposed by A. Baumann et al.
in [22]. Haven focuses on offering a secure usage of the cloud services in situations
where the users do not trust the service provider’s remote infrastructure. In order
to do so, A. Baumann et al. use the same technology that is used for this project;
Intel’s SGX.

Focused on a local environment, Yanlin Li et al. try to give solution to another
problem of untrusted devices by introducing MiniBox [39]. In this case, MiniBox
focuses on offering a two-way sandbox protection for code execution where both,
the OS and the applications, get security guarantees for code execution when one
or both are untrusted.

Last, Noorman et al. propose another solution called Sancus in [42]. In this
case, Sancus proposes a solution for malware attacks in networked embedded devices.

2

1. Introduction

Briefly, Sancus provides remote attestation for the execution of application code in
the networked embedded devices, and message authentication for the communication
with the networked embedded devices.

More detailed information about related works can be found in Chapter 3.

1.4 Contributions
This report is of value for the research in web application security and provides the
following contributions:

• The description of the problem in web applications.
• The explanation of how Intel’s SGX technology and Chrome extensions sup-

port SecureJS.
• The research investigation into a proper design of the system.
• The presentation of a solution that will help reduce the security problem.
• The performance evaluation of SecureJS.
• The security evaluation of SecureJS.

1.5 Structure of the thesis
The report is structured as follows. Chapter 1 introduces the thesis and gives a
brief overview of the problem and research carried out. Chapter 2 explains con-
cepts the reader should be familiar with in order to understand the remainder of
this document. Chapter 3 describes other approaches used in research with similar
problem to the one studied in this project. Chapter 4 describes the design taken in
the project in order to solve or reduce the problem. Chapter 5 describes the imple-
mentation of the solution in detail. Chapter 6 introduces the tests and the results
of the security and performance evaluations run over the final solution. Chapter 7
discusses the possibility of extra implementations and improvements for the final
solution developed in this project. Last, Chapter 8 contains the conclusion for this
document.

3

1. Introduction

4

2
Background

The aim of this chapter is to ensure that the reader holds the required knowledge
to understand the remainder of this thesis. The information given in this chap-
ter is meant as a crash course, therefore, the reader is encouraged to consult more
specialized reading material for more information about the concepts. The follow-
ing sections contain information that demonstrate the importance of the project,
describe the goal of the project, give an overview of the technologies used during
the accomplishment of this project, and determine the adversary situation that the
project encounters. Those topics are ordered as follows; a description of the actual
situation of the security and trust relationship in web applications, the description
of the goal of this project, an explanation of Intel’s SGX technology and Chrome
extensions, and a definition of the threat model and assumptions taken for this
project.

2.1 The reality of web applications’ security
The growth of Internet users in the last years is a fact as reported by the International
Telecommunication Union (ITU) in their yearly Information and Communication
Technologies (ICT) publications [15]. This reality did not pass unnoticed for the
companies and governments around the world that realised the opportunity that the
Internet could offer in order to help their services reach those users.

This opportunity leads to an exponential increase on the development of web
applications in a short period of time. However, even if the Internet is a powerful
tool that can bring a lot of benefits, there are also risks if the development is not
properly evaluated in security terms. The main risk of this situation comes from
the high expectancy for new web applications and the short time periods allocated
for this development tasks, resulting in a lack of security evaluation and, by effect,
an increase in the security risks in the web applications.

Those risks are deeply researched and studied by associations, such as Open
Web Application Security Project (OWASP) andWhiteHat Security, and companies,
such as Veracode. These research aim to raise the awareness of the risks that actual
web applications services carry because of language related issues, among others.
Although these research cover the threats generated by exploitable code for web
application services in both client-side and server-side devices and this project aims
to solve those at the client-side device, these research offer a good overview of the
statistics for the actual risk state of web applications. The following Chapter 2.2
offers a more detailed overview of the situation in the client-side devices, the ones

5

2. Background

that are in the scope of the project.
The report “State of Software Security for 2016” published by Veracode [18],

shows alarming results. Around 60% of the web applications do not pass the pene-
tration tests done by Veracode based on OWASP policy compliance. As shown in
Figure 2.1, some of the industries that offer sensitive services, such as financial, gov-
ernment related and health care industries, involve a high probability of containing
a vulnerability within the services they offer via web applications.

Another problem related to the vulnerabilities is the time that those vulner-
abilities stay open, which states the time lapse until the vulnerabilities are found.
The results gathered in “Web Applications Security Statistics Report for 2016”,
published by WhiteHat Security [19], show that the industry that keeps their vul-
nerabilities open less time is the Energy related industry, with 274 days, while the
one with the highest number of days is the IT industry, with 875. This means,
that vulnerabilities stay open and accessible to attackers for between 1 and 3 years,
meaning plenty of time for attackers to design and execute their attacks. More
information of this statistics can be found in Figure 2.2.

In addition, the same publication shows statistics about the time required for
fixing the vulnerabilities once they are found. The results show that, once more,
the Energy industry has the shortest periods of time, with 104 days, and the IT
industry the largest, requiring 248 days to fix the vulnerability. This adds between
one half and a year more of time for the attacker to exploit the vulnerabilities. More
information around this statistics can be found in Figure 2.3.

In conclusion, researchers have shown the reality of the security risks in web
applications. These risks are spread and numerous which requires a lot of work
from the security experts. However, the development of new web applications and
new technologies related to them is not waiting for those security experts to finish
their research before being published, which means that it is generating more work.
Moreover, in some cases, such as the services involving sensitive information related
to health, financial, and personal data, the vulnerabilities imply a higher risk due
to the importance of the involved data.

59%

61%

61%

62%

62%

67%

75%

0% 25% 50% 75% 100%

Other

Financial Services

Manufacturing

Retail and Hospitality

Tech

Healthcare

Government

Percentage of not passed tests

In
d

u
st

ry

Security tests not passed

Figure 2.1: Percentage of web-applications not passing the security tests per in-
dustry. Values adapted from [18].

6

2. Background

274

295

359

365

406

417

460

875

0 200 400 600 800 1,000

Energy

Tech

Manufacturing

Financial Services

Healthcare

Food and Beverages

Education

IT

Number of days

In
d

u
st

ry
Days to find the vulnerability

Figure 2.2: Days required to find the vulnerability per industry. Values adapted
from [19].

104

118

129

133

160

208

219

248

0 50 100 150 200 250 300

Energy

Tech

Manufacturing

Education

Financial Services

Healthcare

Food and Beverages

IT

Number of days

In
d

u
st

ry

Days to fix the vulnerability

Figure 2.3: Days required to fix the vulnerability per industry. Values adapted
from [19].

2.2 Trust situation in web applications
The actual trust situation between the two parties being part of the web application
services, client and service provider, is unbalanced. Due to the trust relationship of
both sides, where the client trusts the service provider but this does not stand in
the other way, the service provider is forced to execute all the critical functions in
the servers and verify every input data sent by the client.

The client trusts the service provider every time that a web-page is accessed.
There exist mechanisms to ensure some guarantees for the client to trust the cor-
rectness and authenticity of the service provider, such as public key certificates [23],
however, the client also adds a part of blind trust in the service provider since, as
shown in Chapter 2.1, web-applications contain risks.

On the other hand, the service provider neither trusts the client-side device
nor the user. This fact makes sense when reasoning about the risks that involves
the delegation of execution to the client device. First, the client device state can not
be verified, therefore, it can be that the device is malfunctioning or has outdated

7

2. Background

functionalities that can result in an incorrect execution of the code. Second, the
client device can be compromised by an attacker or virus. The security guarantees
can not be ensured by the service provider, hence, the execution of arbitrary code
within the client device can be altered, which leads to a no trust situation. Third,
the user can be a malicious user that is trying to alter the normal execution within
its device (client device) in order to take advantage of possible vulnerabilities.

In conclusion, it is shown that the actual trust situation in web applications
is affected by real problems, due to the lack of security guarantees within the client
device.

2.3 Goal of the project
As has been appointed in Chapters 2.1 and 2.2, there exists a security problem
that leads to a no trust between both parties in web-applications. Therefore, this
project aims to solve that situation by providing security guarantees; integrity and
confidentiality, for JavaScript execution in an untrusted client device.

In order to achieve that, the solution proposed in this project, named SecureJS,
has to provide a secure implementation that is able to interact with web-page code,
transport the data to a secure environment, set a secure environment, execute the
code withing a secure environment, and return the results.

The implementation requires the usage of technologies that are further de-
scribed in the following sections. Therefore, the reader is encouraged to read those
sections carefully if the technologies are not familiar.

2.4 Intel SGX technology
Intel Software Guard extensions (SGX) is a new security architecture introduced for
the first time in the Intel’s Skylake CPU family. Intel SGX offers a new approach to
the widespread situation of compromised systems and security holes by introducing
a hardware assisted trusted execution environment. This new environment allows
the reduction of the attacker surface to the smallest possible, the CPU boundary.

In order to better understand the further explanation of Intel SGX, we intro-
duce the definition of some important expressions used to describe the new archi-
tecture.

Enclave. An enclave is a CPU-protected area that contains code and data
within an application. This is the main expression to refer to the protected and
isolated area of memory. All the data and code stored in the enclave is encrypted
with a unique key for each enclave and platform and the access is restricted.

Enclave mode. Intel SGX includes a new CPU mode to the Intel CPUs. The
enclave mode is a new unrestricted mode, similar to the already known privileged
mode. However, the access of a user in privileged mode to the enclave mode is
restricted. In addition, the enclave mode is the only one with access to the enclaves
and their resources.

Untrusted Code. Part of the application code that stays out of the enclave.
This code runs in a normal environment and its execution and data does not con-

8

2. Background

tain the security guarantees provided by Intel SGX. This part of the application
code is responsible for the untrusted functions and the creation, initialization and
destruction of the enclaves.

Trusted Code or Enclave Code. Part of the application code that stays
inside the enclave. This code runs in an enclave environment and its execution and
data does contain the security guarantees provided by Intel SGX. This part of the
application code is responsible for executing the trusted functions, which deal with
the security sensitive data.

Untrusted function. An untrusted function belongs to the untrusted code
and it is a function whose execution takes place outside the enclave. In other words,
a function executed in a normal environment without Intel SGX.

Trusted function. A trusted function belongs to the trusted code and it is
a function whose execution takes place inside the enclave.

ECALL. Enclave call. A bridge function between the untrusted and the
trusted code. ECALLs are divided into two types; public and private. The public
ones can be called by any untrusted code while the private ones can only be called
by the allowed untrusted functions defined in the configuration of the enclave.

OCALL. Outside call. A bridge function between the trusted and untrusted
code. When the code within the enclave calls an OCALL, the process exits the
enclave and returns the execution control to the normal environment.

Intel SGX provides the developers with a new secure environment for the
execution of the applications. However, this also requires extra actions and consid-
erations from the developers side. On the one hand, the developer must analyze the
application and determine the parts of code and the data that are required to be
executed within the enclave. On the other hand, the developer has to limit the usage
of the enclaves to an optimized balance due to the memory and resource limitations
of the enclaves. In addition, the developer must implement the code required for a
proper enclave creation, usage, and destruction, including all the enclave in and out
interactions done via the ECALLs and OCALLs.

A simple application runtime execution flow using an Intel SGX enclave is
shown in Figure 2.4. The execution of the application will reach the part where the
untrusted part creates the enclave and calls the trusted functions inside the enclave
via ECALLs. Once the enclave is responsible for the execution runtime, the trusted
functions will be executed. This process can contain a unique trusted function or a
combination of different trusted functions being called one to another, and as many
OCALL calls as needed to functions outside the enclave. Once the runtime execution
within the enclave has finished, the execution exits the enclave and returns to the
execution of the untrusted code, which can destroy the enclave or not (depending on
the application needs), and continues with the normal execution of the application.

The process of enclave design, creation and destruction contains a large number
of identity verifications, data verifications, functions, etc. that are not going to be
explained in this document. Therefore, the reader is encouraged to consult more
specialized reading material, such as in [40]. In addition, the ECALL and OCALL
functions often include data being sent in and out of the enclave, which also includes
different configuration possibilities for different types of variables supported by SGX.

The configuration related the enclave is defined in a special file named Enclave

9

2. Background

Figure 2.4: Runtime execution example with Intel SGX enclave. Image adapted
from [17].

Definition Language (EDL). The EDL file contains a declaration of all the ECALL
and OCALL functions available for the enclave as well as the properties of the data
to be sent in and out of the enclave. The properties of the data cover the data type,
the size of the data and the direction of the data (in or out of the enclave).

Using the new application-layer trusted execution environment, developers can
ensure various security properties for commonly used applications, such as secure
browsing, harden endpoint protection and secure secret storage or data protection.
However, these applications require extra functionalities rather than just executing
code in a secure way. Those functionalities can be local data storage, remote data
storage, data sharing within the application, etc. In order to achieve that, Intel
SGX provides the following functionalities:

Sealing. Intel SGX allows the secure storage of enclave secrets for persistent
storage. This secure storage is done via the encryption of the data inside the enclave,
using a unique Seal key for each particular platform and enclave, before the data is
written to the hard drive.

Local Attestation & Provision. Intel SGX allows an enclave to verify the
identity of other enclaves within the same device, and to securely exchange keys,
credentials, and other kind of sensitive data between the enclaves.

Remote Attestation & Provision. Intel SGX allows a remote party to
verify the identity of the enclave and to securely exchange keys, credentials, and
other sensitive data with the enclave.

This new security architecture introduced by Intel provides a variety of security
guarantees. First, SGX provides confidentiality and integrity for the application
execution and data within the enclave, even under the presence of privileged malware
at the OS, BIOS, VMM (Virtual Machine Monitor also known as hypervisor), or
SMM (System Management Mode) layers. SGX protects the secrets even when
the attacker has full control over the platform. Second, SGX offers prevention
against memory bus snooping, [38] and [41], memory tampering [44], and “cold

10

2. Background

boot” attacks [33] against memory images in the RAM. And third, SGX also provides
hardware based attestation capabilities to measure and verify the data and the code
inside the enclaves and also the platform used by the enclaves.

2.4.1 Remote attestation
The functionality of remote attestation requires further description since it is a key
component in this project. Attestation is the process of proving that an application
has been properly set and initialized on a device. In this specific situation, the Intel
SGX remote attestation allows a remote agent (the server in this project) to gain
confidence that the intended software is securely running within a platform.

Intel SGX has designed an algorithm named Enhanced Privacy Identifier (EPID),
based on the cryptographic primitive Direct Anonymous Attestation (DAA), that
can accomplish a remote attestation process while ensuring the client’s privacy. This
algorithm makes use of unique identifiers within the platform and the server to au-
thenticate both parties. In addition, the EPID algorithm accomplishes an Elliptic
Curve Diffie–Hellman secret key generation during the remote attestation process, so
that it provides a secure communication channel. More detailed information about
the remote attestation process is provided in the Appendix A.1.

After a successful remote attestation process, the client and the service provider
have been authenticated to each other and they share a symmetric key that can be
used for data provisioning. This secure communication channel is important for this
project as shown in the Chapter 5.

2.5 Chrome extensions
Chrome extensions are pieces of application logic, or small software programs, that
are developed to add or enhance functionalities from the web-browser. These func-
tionalities can be of a wide variety from the type that interferes with the actual
web-page the user is viewing, such as an advertisement blocking extension, to those
that give the user information about properties that are not related to the actual
web-page, such as an email notifier.

All extensions share the same programming languages, which also are the
most common used in the client-side browsers. Those programming languages are
JavaScript, for the functionality of the extension, HTML, for the structure of the
visual aspects of the extension, and CSS, for the graphical design of the extension.
In addition, the extensions contain configuration storage files, such as JSON files,
and can also contain: databases for local storage, functionalities for remote storage,
and resource files, such as image files.

The architecture of an extension is divided into three parts, as explained in
the Google’s developers guide web-page [2]. First, the background page runs in
an invisible manner (as the name suggests, in the background) and manages the
execution flow and the behavior of the extension. Second, the User Interface pages
(UI pages) contain the code required for the structure and design of the extension.
Third, the content scripts manage the interaction between the extension and the
web-page. And fourth, the manifest file contains the configuration of the extension.

11

2. Background

The Background page. This page is usually defined as a JavaScript file,
such as background.js, or as an HTML file, such as background.html. The HTML
file normally includes JavaScript code within the HTML file or imported from an
JavaScript file. The background page can be of two types: persistent or event page.
The persistent page, as the name suggests, are always running while the web-browser
is running. On the other hand, event pages are only invoked by the web-browser
when required by the call of an event. Therefore, it is important to consider when
the extension requires a page to be always loaded or not, in order to control the
resource consumption of the extension.

UI pages. This kind of pages contain ordinary HTML code that displays the
extension’s UI. For example, they are responsible for the options page, where the user
can change the behavior of the extension, and the popup page generated when the
user clicks on the extension icon, where the user can interact with the functionality of
the extension via buttons, input areas, etc. In addition, all the HTML files belonging
to the same extension have access to each other’s DOM (Document Object Model)
and, therefore, they can invoke functions from each other, including the functions
in the background page.

Content scripts. Many extensions’ functionalities may require some kind of
interaction with the web-page loaded in the web-browser and in order to achieve that,
those extensions require content scripts. These scripts contain JavaScript code that
is executed in the context of the web-page and not in the context of the extension.
Therefore, the content scripts can read details from the web-pages loaded in the web-
browser, and also modify the code of the web-page. However, the content scripts
are not completely isolated from the extension and they are capable of interacting
with the parent extension (in both directions) via a messaging functionality offered
by the Chrome-only APIs (often called chrome.* APIs).

Manifest file. This file contains the configuration of the extension structured
with a JSON file format. Properties such as the permission, trusted servers, name,
version, and script files of the extension are defined in this file.

Although the Chrome extensions run in the web-browser’s environment and
can only access the resources belonging to that environment, the extensions have
the possibility to interact with other native applications within the device. This
functionality offers the extensions a strong tool that allows starting new instances
of native applications and communicate with them. This functionality is achieved
via Native Messaging [1] included in the Chrome-only APIs. In order to achieve this
interaction schema, the Native Messaging functionality requires extra configuration
for the extension, the web-browser and the native application, as will be defined
later in the Chapter 5.

2.6 Threat model and assumptions
Every time a developer designs code that is going to be executed within an ex-
ternal device whose security guarantees are under the shadow of doubt, the trust
relationship is affected to its limit. As a result, the external device becomes an un-
trusted device. This project focuses on returning that trust over untrusted systems
by ensuring strong integrity and confidentiality guarantees for the specific no trust

12

2. Background

Web Server

Web application service

Client

Add

Adversary

User

Internet

Service Provider

Figure 2.5: Representation of the roles in the threat model.

situation present in web applications, in the area of JavaScript to be more precise.
Therefore, it is mandatory for this project to face the worst adversary possible, so
that a complete trust guarantee can be offered even under the worst case scenario.
A graphical representation of the roles in this situation is shown in Figure 2.5.

For this project, the adversary will affect almost the completeness of the un-
trusted device. We assume that the adversary has been able to gain access and
control over the target device to a level in which the only part of the device out
of the reach of the adversary is the Central Processing Unit (CPU). Therefore, the
adversary is able to read and edit any address related to any other piece of hardware,
such as ethernet controller, memory, I/O device, hard drive, and WiFi controller.
This means that the adversary has control over every piece of information within
the device and the information coming in and out of the device.

Additionally, the adversary has also reached to control every piece of software
stored within that hardware. Critical parts of the device, the BIOS and the Oper-
ating System (OS), have fallen into the control of the adversary. The same happens
with any piece of application logic running on top of the OS. Due to the control
level gained by the adversary, it is possible to alter the behavior of the OS via so-
phisticated System Call attacks (IAGO attacks [25]), even when the CPU is still
trustworthy.

In addition to the adversary, there are another two roles in the web application
situation that the project is built around, the web application user (referred to as
user in the future) and the web application server (referred to as server in the
future).

In the case of the first role, the user, the situation in which the user is meant
to be malicious by exploiting code injection vulnerabilities in web applications has
already been well researched, i.e. in [34] and in [45]. Moreover, since the adversary
is already able to modify any friendly user input and any memory address for ma-
licious purposes, assuming a malicious user would not increase the attack surface

13

2. Background

of the actual case scenario. In addition, we also assume that the situation of users’
information leakage and loss is not considered, since the device, and hence, the
information within it, has already been exposed to the adversary.

In relation to the server, we enforce the trust relation by assuming a friendly
behavior of the service provider. This includes a friendly behavior on the code sent by
the server, but also a friendly behavior in the work balance for code execution. This
means that the server will not try to reduce workload in the server by overloading
the client device’s work stack. The situation of the work balance is further discussed
in the Chapter 7, later in the document.

In addition to the assumptions on the roles that take part in this situation, it is
also necessary to explain other facts that have influence. First, the control level that
the adversary has in this adversary model makes it impossible to avoid situations
in which the adversary interrupts or modifies the required communications within
SecureJS, with the objective of service denial. Therefore, those situations in which,
SecureJS does not offer the possibility to execute the provided JavaScript code,
due to the modifications done by the adversary (e.g. signature, code, encryption
modifications) are defined as good, as long as, SecureJS is able to react without
revealing any secret.

In fact, the aim of the project is to provide integrity and confidentiality to the
JavaScript code execution, and not JavaScript execution under any circumstances.
Therefore, the result of SecureJS being an error notification due to the incorrectness
of the given values, is defined as a good service.

Last, the input and output data of the user is not secured, neither trusted.
There exist some research around I/O protection, such as [46]. However, this project
is not focused on that aspect. This decision was made based on two reasons. The
user’s data is already compromised by the adversary, which means that there is no
point in providing security guarantees for integrity and confidentiality. Moreover,
the data can not be trusted since the adversary has the access to modify it into
malicious values. However, the offered solution does not check the user input via
sanitization nor validation functionalities.

The implementation of those functionalities is delegated to the web application
developer for two reasons; complexity and security. The web application developer
has the knowledge of what inputs are permitted for the executed code, therefore,
it is easier to delegate the development of those functionalities rather than adding
all the possible variations of those functionalities to SecureJS. For the same reason,
the fact that the web application developer has flexibility to design the required
code, can add more security to the functionalities since the design can be situation
dependent.

14

3
Related Work

The following sections contain information about related work. Some of those works
and the project described in this report (SecureJS) share some similarities in the
problem and the approach taken for the accomplishment of the projects: Haven,
Sancus, MiniBox, and TrustJS. The first four sections in this chapter contain the
description of those related works that share the most relevant similarities with this
project, while those works that share less similar properties with this project are
summarized in Chapter 3.5.

3.1 Haven
Researchers such as Baumann et al. have already worked around the problem of not
trusting the other side’s infrastructure for web services. In this case, they focused
on Cloud Services and they propose a solution called Haven [22] in order to provide
security guarantees for code execution within untrusted Cloud Services providers.
They exposed the problem of not having full guarantees for an integral and con-
fidential usage of the Cloud Services, such as information leakage and execution
changes.

In their research, Baumann et al. assume the provider has taken the required
security implementations in order to protect the provider’s infrastructure against
untrusted applications. However, Haven also provides protection in this area via
the Drawbridge LibOS (a version of Windows 8 rebuilt to be executed as libraries in
picoprocesses) and picoprocesses [11]. Together, the picoprocesses and LibOS enable
sandboxing for untrusted applications with similar security to virtual machines.
Hence, this combination provides protection to the host (i.e., the cloud provider)
from a potentially-malicious guest.

For the implementation of Haven, Baumann et al. propose the usage of a tech-
nology developed by Intel called Software Guard extensions (SGX) [40]. SGX offers
confidentiality and integrity for code execution even in the presence of privileged
malware via the usage of enclaves.

This project aims to solve a situation that shares some similarities with Haven’s
research, although the approach is taken from the opposite point of view. Haven
focuses on a situation where the client does not trust the server. On the other hand,
this project focuses on the case where the server does not trust the client.

15

3. Related Work

3.2 MiniBox
Li et al. identify the necessity of protecting not only the application from untrusted
OS but, also the other way around, protecting the OS from untrusted applications.
In order to try reduce the problem, Li et al. propose MiniBox [39], a two-way
sandboxing solution that provides a two-way trust situation between the application
and the OS. This project is focused on trust within one device and, therefore, it does
not support any specific focus on web services or any other kind of network related
applications.

To achieve the expected secure environment, Minibox’s structure is based on a
hypervisor named TrustVisor that isolates parts of application logics from the rest
of the system. This guarantees efficient and trustworthy computing environment
isolated from the OS environment.

In order to fulfill the necessity for securing the OS from the application, Mini-
box makes use of Google Native Client (NaCl) [47], which is a sandbox for x86
native code. NaCl offers sandboxing guarantees, which ensures the the absence of
privileged x86 instructions within the native code. To achieve that, NaCl incorpo-
rates a validator that reliably disassembles the application logic and validates the
disassembled instructions as being safe to execute.

This structure happens to be really similar to the structure proposed by Intel
SGX, as a matter of a fact, Li et al. mention the possibility for improving their
solution by making use of Intel SGX in the Limitations and Future Work section of
their paper.

3.3 Sancus
One of the required property for this project is remote attestation. The solution must
guarantee the server that the code is executed in an uncompromised environment
and that the authentic data generated from the uncompromised execution is the one
that reaches the destination server with security guarantees. A similar problem is
researched by Noorman et al. [42].

In a networked embedded devices infrastructure, the threat of malware is a
reality introduced by the combination of the connectivity and software extensibility
properties offered by the infrastructure’s nature.

Noorman et al. propose Sancus, which supports extensibility for remote soft-
ware (even third-party software) installation on networked devices while ensuring
security guarantees. Precisely, Sancus offers two properties; first, remote attestation
to ensure that a specific software module is running uncompromised, and second,
message authentication for the messages sent by the software module.

The problem described in Sancus’s paper is very similar to the one faced during
this project and gives a useful overview of both the problem and the approach taken
for the solution. This information can be used to determine the necessity for remote
attestation in this project. Note that, the property of remote attestation is offered
by Intel SGX and it is one of the key properties in this project.

16

3. Related Work

3.4 TrustJS
During the accomplishment of this project, another paper was published called
TrustJS [31]. In this publication, Goltzsche et al. introduce a solution for the same
problem as the one researched in this project. They also focused on providing the
possibility to execute JavaScript code in an untrusted device under strong security
guarantees.

In order to achieve their goal, they also made use of Intel’s new technol-
ogy, SGX, as it is done in this project. However, they selected another approach.
Goltzsche et al. decided to use Mozilla’s Firefox as the web-browser (instead of
Chrome) to implement their solution and offered a different API for the web de-
velopers to make use of their solution and another enclave management within the
solution.

The API for TrustJS is based on the usage of specific tags within the HTML
code, so that their add-on is able to gather the data defined with the tag. This
approach requires the add-on to read every web-page the client is accessing looking
for those specific tags. On the other hand, the approach taken in this project offers
the web developer two bridge functions that can be used in order to submit and
receive the data from the solution. This way, the extension only reads the relevant
data without checking every web-page, offering less workload to the device and more
privacy to the client.

In addition, Goltzsche et al. designed a solution in which a pool of enclaves
is created and initialized every time the web-browser is used. They developed their
solution so that one enclave is assigned to each new tab opened in the web-browser.
This design requires the creation of a number of processes for the enclaves that may
not be used. This leads to a constant usage of memory in the client-side device. In
this project, the enclave process is created and destroyed every time the solution
functionality is required by the web-page. This may lead to a relatively slower
performance in execution time, but it will ensure a more optimized resource usage
by limiting the solution process to those situation in which it is really required.

In conclusion, both TrustJS and this project focus on solving the same problem.
However, as described before, two different approaches have been selected for the
solution.

3.5 Other related works
This section will contain brief summaries of other publications that can provide
useful information for this project.

TaLoS. [21] Aublin, et. al. introduce a drop-in replacement for the existing
TLS (Transport Layer Security) libraries. TaLoS moves the functionalities of the
actual TLS to a secure environment inside an SGX enclave. This way, the TLS
libraries run with all the security guarantees provided by Intel SGX.

The ghost in the browser analysis of web-based malware. [43] Provos
et al. present the actual situation of malware on the Web and evidence of the im-
portance of this rising threat. They carried out their research on a large quantity

17

3. Related Work

of the biggest web domains, in which they try to find how many of those domains
contain any malware. The results are alarming, since a large number of those do-
mains contain web-pages that were engaging in drive-by-downloads in order to send
malware to the client-side device.

Iago attacks. [25] Checkoway, et. al. describe a new attack vector against
the kernel. They show that it is possible to manipulate a sequence of integer return
values to Linux system calls in order to alter the kernel’s normal behavior. This
shows that the task of protecting applications from malicious kernels is harder than
it was once thought.

Ironclad App. [35] Hawblitzel, et. al. propose a tool that allows end-to-end
security, plus full-system verification. Ironclad App allows the secure transmission of
data to a remote machine with guarantees on the right execution of the application
logic in the remote machine. Therefore, in addition to eliminating implementation
vulnerabilities, such as buffer overflows, parsing errors, or data leaks, Ironclad App
also monitors the behavior of the application at all times.

Virtual Ghost. [27] Criswell, et. al. developed a new system, called Virtual
Ghost, that aims to protect applications from compromised, and even hostile, OS.
This system makes use of compiler instrumentation and run-time checks on the OS
in order to create memory areas (ghost memory). This ghost memory is out of the
reach of the OS, which can not read or write that memory.

SecureME. [26] The fact that computing systems are becoming more dis-
tributed via mobile phones, distributed systems and cloud computing, increases the
risk of an adversary obtaining physical access to those systems through theft. At-
tempting to solve that, Chabra et al. suggest SecureMe as a mechanism to defend
applications from hardware attacks via memory cloaking, permission paging, and
system call protection.

A hypervisor-based system for protecting software runtime memory
and persistent storage. [28] Dewan, et. al. introduce an approach against sophis-
ticated malware via hardware techniques. They protect the runtime memory of an
application by using virtual machine monitor technologies to create a hypervisor. As
a result, the runtime memory is hidden from the privileged OS without modifying
the actual OS.

InkTag. [36] Hofmann et al. developed a hypervisor that aims to protect
application logic from malicious or compromised OS. In this case, they make use of
an attribute-based access control system that adds an extra access protection layer to
the application resources. This way, the access control is decentralized from the OS
and the application can create access control policies in order to avoid a malicious
OS to access the application resources.

To sum up, as shown in the previous related works, some related works de-
scribed in this chapter, such as Ironclad and TaLoS, refer to functionalities that
could be used in some parts of the solution since they offer security guarantees for
communications.

Other researchers have worked in the area of untrusted devices for similar
problems but almost none of them for the specific problem of JavaScript execution
within an untrusted client. The only one that focused on the same situation is
TrustJS, which provides a solution with the same aim as this project. However,

18

3. Related Work

they used a different approach by using Firefox as the web-browser (for this project
Chrome is used) and they decided to offer and API that gathers the data directly
from the HTML page based on special tags created for the project while this project
provides two bridge functions to interact with the HTML code.

Last, some articles refer to attacks that must be considered during the devel-
opment of the solution provided in this project. Those attacks are considered to be
viable for the attacker within the attacker model described in Chapter 2.6.

19

3. Related Work

20

4
Design

This chapter discusses the general requirements of the project and the approach
taken to fulfill them. The goal of this chapter is to provide the reader with an
overview of the features of the solution. The following section, SecureJS: the
schematic representation, provides a description of the approach taken to design
complete solution. In addition, this chapter contains three more sections: Chrome
extension, Host application, and SGX enclave, each of which provides detailed ex-
planation of the functionalities of one part of the complete solution.

4.1 SecureJS: the schematic representation
The solution has to provide all the features required to achieve the main goal of the
project, provide integrity and confidentiality for web application code execution in
untrusted devices. In order to achieve that, the designed solution has to include the
following features with strong security guarantees (see Chapter 6.2); transmission of
data from the web-page to the secure environment, demonstration of the correctness
and authentication of the platform, management of the data sent by the web-page,
execution of JavaScript code within a secure environment, and transmission of the
result value to the web-page. Figure 4.1 shows the graphical representation of the
solution. The solution requires a feature that can demonstrate to the service provider
the correctness of the secure environment and can authenticate the parties, so that
the proposed solution can be trusted. This is an important feature of the solution,
since, without a trust relation, the problematic of this project could not be solved. In
order to achieve this feature, the solution makes use of the Intel’s remote attestation
algorithm (EPID), which allows the solution to demonstrate the correctness of the
platform and authenticates both parties.

In addition, during the reasoning of the solution, two situations were defined
based on the confidentiality level required. The first situation focuses on those web
developers that require the complete security guarantee techniques provided by the
solution, integrity and confidentiality. Some situations will require the JavaScript
code and the result value to be confidential. In this cases, the web developer will
make use of the solution’s encryption mode. In this mode, both the JavaScript code
and the result value are exchanged via sending the encryption and signature of the
data, so that confidentiality and integrity are supported. This mode requires the
usage of a public key pair for the signing process and a private key (symmetric key)
for the encryption process.

21

4. Design

Client

Add

• I/O communication

• Perform remote attestation (Keys)
• Get data (Keys, JavaScript and Inputs)
• Decrypt and verify data (Keys and

JavaScript)
• Setup JavaScript interpreter (JavaScript)
• Run JavaScript (JavaScript and Inputs)
• Sign/Encrypt result
• Send (Result + Signature) or

(Encrypted result + Signature)

Host application
• Important data (JavaScript, Keys and

Result) comes in/out signed/encrypted
• User Inputs come in/out

JavaScript code
signed/encrypted

public key /
symmetric key

Remote
attestation and
elliptical curve

Diffie-Hellman for
authenticated and

secure channel

Server

Web application service

Remote attestation service

User inputs

Legend

Communication

Mandatory

Optional

SGX enclave

Chrome extension

JavaScript result
signed/encrypted

public key /
symmetric key

Figure 4.1: Schematic representation of the components and communications in
SecureJS.

On the other hand, the process of encryption and decryption supposes the
usage of computer execution time and resources, which may not be necessary in every
case. Therefore, an extra mode has been defined, the signature mode. This mode
is provided for situations in which web developers decide that it is not necessary to
hide the data exchanged. In the signature mode, the JavaScript code and the result
value exchange will be done via sending the plain text of the data coupled with its
signature. This way, the signature mode only provides integrity to the solution and
only requires the usage of a public key pair.

In order to simplify the description of the design, the solution is divided into
three parts; Chrome extension, host application, and SGX enclave. Each of the
sections below refers to the description of one part.

4.2 Chrome extension
The main goal of the design of the Chrome extension is to make the extension as
simple as possible since it is a bridge functionality. The main goal of the extension
is to provide a two way communication channel in order to exchange data between
the code of the web-page and the host application. Therefore, the requirements for
this part of the solution are, first, provide a two way communication link between
the web-page and the extension and, second, another two way communication link
between the extension and the host application.

Following the data flow in the process, the extension will provide a bridge

22

4. Design

function that the web developer’s code will be able to call once all the required data
has been gathered. Once the provided bridge function has been called, the extension
must provide a link to the host application and send the data trough that channel.
Upon the reception of the result data from the host application, the extension will
be responsible for calling back the web-page in order to submit the result value.

4.3 Host application
The functionality of the host application is relatively similar to the one of the Chrome
extension. In this case, the host application is required to provide a two way commu-
nication link between the Chrome extension and the host application (similar to the
Chrome extension). In addition, this part has another two responsibilities; manage
the creation, usage and destruction of the SGX enclave, and start and manage the
connection for the remote attestation process.

For the first requisite, the host application should provide the functionality
of receiving and sending data to the Chrome extension. This one is a simple func-
tionality, this part of the host application can be described as a bridge between
the Chrome extension and the enclave. This bridge functionality, coupled with
the Chrome extension’s bridge functionality, offers the complete bridge between the
web-page and the enclave.

The second requisite forces the host application to become a more complex
process. In this case, the host application will be responsible of creating, calling,
listening and destroying the enclave. This requisites can easily be described by fol-
lowing the data flow. Given the reception of the data sent by the Chrome extension,
the host application is required to, first, create the enclave environment. Second,
the host application must call the enclave ECALL function related to the remote at-
testation. Third, it has to call the ECALL bridge function focused on the execution
of the JavaScript code within the enclave and provide the data sent by the Chrome
extension. Fourth, upon the reception of the output results from the JavaScript
executing enclave, the host application hast to make use of the communication link
to transmit the result to the Chrome extension.

The last requirement is related to the remote attestation process message ex-
change. Since the SGX enclaves do not support any I/O functions, the message
exchange between the platform and the service provider has to be done out of the
enclave. This task is delegated to the host application. Therefore, it must provide
a communication service for the message exchanges.

4.4 SGX enclave
The SGX enclave is a key part of SecureJS. The usage of the SGX technology
provides the required secure environment in order to offer strong security guarantees
on the usage of SecureJS. In order to create a complete solution, the SGX enclave
must provide the following features: cryptographic techniques, remote attestation,
and JavaScript execution. These features are further described in the following
sections.

23

4. Design

Quoting
Enclave

Application
Enclave

Client
Application

Service Provider
Remote Attestation

Service

Intel
Attestation

Service

Server sends challenge

Get extended GID

Send extended GID (msg0)

Initiate
Attestation

Get GID

Send Sigma s1[GID, …] (msg1)

Get SigRL

Send Sigma s2[SPID, SigRL, …] (msg2)

Get Quote

Send Sigma s3[Quote, …] (msg3)

Verify Quote

Provide secret (msg4)

Client request service

Respond (abort/success)

Provide secret (msg5)

Figure 4.2: SGX infrastructure for Enhanced Privacy Identifier (EPID) algorithm
with the extended functionality for SecureJS.

4.4.1 Cryptographic feature
The functionalities related to cryptography, the execution of functions, such as en-
cryption, verification, and the resources, such as keys and hash values, are security
sensitive, which makes the cryptographic techniques critical and must be secured.
The design of SecureJS locates the cryptography related functionalities in the SGX
enclave in order to offer security guarantees to the solution, since the SGX technol-
ogy provides a secure environment out of the reach of the adversary.

As the security evaluation demonstrates (Chapter 6.2), the data exchanged
in SecureJS must be protected via cryptographic techniques. Therefore, the SGX
enclave must be able to hash, encrypt, decrypt, sign and verify the protected data.
The protected data is composed by the JavaScript code generated by the service
provider, the result value generated by SecureJS, and the data exchanged during
the remote attestation process. In addition, the cryptographic techniques make use
of keys that have to be generated, exchanged and protected.

4.4.2 Remote attestation feature
The objective of the remote attestation feature is, as the name indicates, to accom-
plish the critical task of remote attestation in order to authenticate and demonstrate
the correctness of the platform to the service provider by exchanging identification
values. During the remote attestation process based on the EPID algorithm de-
signed by Intel, the service provider can send a secret in the fourth message of the
protocol, see Figure 4.2.

In this project the fourth message is used for the service provider to send the
keys needed to recover and verify the data sent via the web-page. However, for the

24

4. Design

correct performance of the solution, it is required that the remote attestation part
carries out an extra task in addition to the one that focuses on the common remote
attestation designed by Intel.

The EPID protocol message exchange is shown in Figure 4.2 and the extra
task is denoted by the addition of the orange arrow that represents an extra com-
munication message. Since the service provider is meant to decrypt and verify the
result values generated from the JavaScript code executed within the JavaScript en-
clave, the service provider must also receive the cryptographic keys that allow those
processes. Therefore, the design created by Intel for remote attestation has been
extended by adding an extra step: one last message sent by the platform. Hence,
the remote attestation component is responsible of implementing the necessary code
to submit extra secrets to the service provider.

4.4.3 JavaScript execution feature
The main aim of the JavaScript execution feature is the execution of JavaScript code
within the enclave. However, in order to achieve that goal, the enclave is required
to add some extra intermediate steps related to the data gathered from the web-
page. If the solution aims to offer strong security guarantees, the data sent via the
web-page must be secured with cryptographic techniques as mentioned in Chapter
4.4.1. Hence, the data received from the web-page can not be directly passed to the
JavaScript interpreter.

First, the JavaScript enclave has to be able to decrypt the data received. Sec-
ond, it hast to verify the integrity of the data. Third, given a successful verification,
the JavaScript enclave must input the data in the JavaScript interpreter. Last, it
has to submit the result returned by the JavaScript interpreter to the host appli-
cation. However, due to the reasons that will be shown in the security evaluation
(Chapter 6.2), the result has to be secured by encryption and signature techniques.

In conclusion, the goals of the JavaScript component are summarized in, de-
crypt and verify the received data, set, run and listen the JavaScript interpreter,
and encrypt, sign and take out from the enclave the result value.

25

4. Design

26

5
Implementation

This chapter explains the implementation of the implementation of SecureJS. The
aim is to describe the techniques and technologies used or developed so that the
solution is able to provide the required features. The following sections provide
a description of the complete SecureJS implementation and the limitations (Se-
cureJS: the complete implementation) and the important parts that compose Se-
cureJS: Chrome extension, Host application, SGX enclave, and Extra implemen-
tations. Each section is focused on the description of important implementation
features of one part of the complete solution. Note that, the full code will not be
covered in this document. Therefore, the reader is encouraged to access the available
code in the git repository of the project [30].

5.1 SecureJS: the complete implementation
SecureJS is the proposed proof of concept for this thesis. SecureJS is able to interact
with the web-page when required by the web-developer and offer a secure environ-
ment to execute arbitrary JavaScript code in the client-side device. A schematic
representation of the implemented solution is shown in Figure 5.1. The image shows
the communications and components implemented for SecureJS and the extra im-
plementations for simulation purposes.

As a result, SecureJS fulfills the goal described in Chapter 2.3. SecureJS is
composed by three components that provide different features required for the full
final product. The following sections describe more in depth the implementation
required for the parts that compose SecureJS: Chrome extension, Host application,
and SGX enclave.

5.2 Chrome extension
The Chrome extension connects with the host application and the web-page. For
the two communication requirements (web-page to Chrome Extention and Chrome
extension to host application), Chrome extension’s chrome.runtime API provides all
the functions required for the message passing process [8]. First, the web-developers
are provided with a function that can be used in order to initiate and send the
required data to the Chrome extension. Second, the implementation also provides
an asynchronous return connection, so that the extension is able to respond to the
web-page once the result value of the JavaScript code is received.

27

5. Implementation

SecureJS

Add

• I/O communication

Host application
• I/O communication
• Enclave management

JavaScript code

Remote
attestation

User inputs

Legend

Communication

Mandatory

Optional

SGX enclave

Chrome extension

JavaScript result

Extra
implementatio

ns
Encryption tools

• Encrypt data
• Decrypt data

Remote attestation server
• Perform Intel’s EPID protocol
• Manage the exchanged keys

Signature tools
• Sign data
• Verify data

JavaScript
component

Cryptographic
component

Remote attestation
component

Figure 5.1: Schematic representation of the implemented components of SecureJS
and the extra implementations for simulation purposes.

Additionally, the message passing feature between the web-page and the ex-
tension requires that the web-page is included in a list of allowed servers. This is
done by adding the address of the trusted service providers in the configuration file
of the extension (the manifest file, described in Chapter 2.5). This way, Chrome
avoids a not permitted web-page from trying communicate with the extension. The
solution only requires a unique extension and the allowed servers can be all added
in the same manifest file. In the case that a new service provider wants to make use
of SecureJS, the manifest file of the Chrome extension has to be updated in order
to include the new allowed server.

On the other hand, the connection between the Chrome extension and the
host application uses functions related to the Native messaging functionality also
provided by chrome.runtime API [1]. Native messaging requires an additional con-
figuration file (different to the manifest file of the extension) in order to know the
path to the executable of the host application. This file is stored in the configuration
directory of the web-browser and allows Chrome to check whether the extension is
allowed to call the host application and know the path to the host application.

With the connectivity functionalities described above, all the requisites for
the extension’s connectivity are fulfilled and the data can be transmitted from the
web-page to the host application.

28

5. Implementation

5.3 Host application
The host application can be divided in two parts based on the features. The first part
is related to the communication with the Chrome extension, which is a common I/O
connection via the standard input and output streams. Therefore, this document
does not provide a specific description of this part. The second part is related to
the enclave management and services. This second part is extended below.

The enclave process management is simple: load an enclave, call the necessary
ECALL and OCALL functions, and last destroy the enclave. This is the same for
any program making use of the SGX technology as described in Chapter 2.

In this project, the host application initiates the remote attestation process
and transmits the messages during the process. The developed code is based on the
example code provided by Intel [5]. This code provides the required Untrusted and
Trusted code (the trusted code is used in the remote attestation component) for a
remote attestation process based on EPID. However, the example does not separate
the service provider from the platform and simulates the networking parts of the
remote attestation.

In order to add a real case scenario, the service provider has been completely
separated from the platform and real networking functionality has been developed
in between both sides. Note that, the SGX technology does not support any I/O
related feature, therefore, the message exchange must be done outside the enclave.
Hence, a simple socket I/O functionality has been added to the host application.

In addition, the host application is also responsible of calling the JavaScript
component. Once the JavaScript component has finished, the result value generated
from the JavaScript code execution is returned. This way, the host application
can retrieve the result and send it via the communication channel to the Chrome
extension.

With the implementation of this part, the full solution is able to receive data
from the Chrome extension and transfer it to the secure environment (the enclave),
start the Attestation Process, call the JavaScript component and return the result
value to the Chrome extension.

5.4 SGX enclave
This section contains the description of the implementation regarding the SGX en-
clave. SecureJS contains three different components that run within a unique en-
clave: Cryptographic component, Remote attestation component, and JavaScript
component. A further explanation of these components can be found in the follow-
ing sections.

5.4.1 Cryptographic component
In order to simplify the tasks related to cryptography, the implementation includes
an extra component, the Cryptographic component. The Cryptographic component
is responsible for the storage and management of service provider and platform keys
and provides the required services related to cryptography, such as data encryption

29

5. Implementation

and signature verification. The services of the Cryptographic component are used
by both the remote attestation component and the JavaScript component.

The implementation of Cryptographic component makes use of the Crypto
library provided by Intel. This library includes functions related to cryptographic
protocols that are used for the retrieval, protection and verification of the data
exchanged. In addition, the Cryptographic component also manages the keys of the
full process, such as service provider’s public key, symmetric key, and public key of
SecureJS.

In conclusion, Crypto provides an interface for all cryptographic operations
that JavaScript and remote attestation components require.

5.4.2 Remote attestation component
As mentioned before, the remote attestation component is responsible for the gen-
eration and verification and storage of the data required for the remote attestation
process, such as platform correctness resources, such as QUOTE (Appendix A.1),
ECDH key generation, verification of the service provider. As happens with the
host application, this part also makes use of the example code provided by Intel [5]
and adds some extra features to it. The features provided by Intel’s example cover
the normal EPID protocol process mentioned in Chapter 2 and extended in Ap-
pendix A.1. Additionally, the added features are related to the management of the
secrets exchanged during the process and the extra message exchanged, as defined
in Chapter 4.

The first extra feature added to the remote attestation component is related to
the management of the secret sent by the service provider. The remote attestation
component is responsible of decrypting and verifying the received secret. Once the
secret is recovered, the secret may contain the public key of the service provider if
the mode selected is Signature mode and the public key plus an extra symmetric
key if the mode selected is the Encryption mode (Chapter 4.1). Those keys are then
stored for common use by the Cryptographic component, also running within the
enclave.

The last extra feature of the remote attestation component is to initialize the
generation of the platform’s secrets, such as the public and symmetric keys, that are
sent to the service provider in order to be able to retrieve and verify the results of the
JavaScript execution. Therefore, the remote attestation component uses the service
provided by Crypto to generate and gather the required keys. Upon the creation
of the required keys, the remote attestation component encrypts the keys with the
ECDH key generated during the remote attestation process. The cipher containing
the keys is returned to the host application and sent to the service provider as part
of the extra message added to the EPID protocol for SecureJS (Chapter 4.4.2).

In conclusion, the remote attestation component consists of the already ex-
isting remote attestation example provided by Intel and provides extra features
required for this specific project. Once these features are implemented, the solution
is able to perform a secure remote attestation and secret provisioning process.

30

5. Implementation

5.4.3 JavaScript component
As mentioned in the Chapter 4, the JavaScript component has to interpret the data
related to the JavaScript code, received from the web-page via Chrome extension
and host application, in order to retrieve the contents. The message is a string in
JSON format. This way, the solution is able to exchange arbitrary values in a flexible
manner. Therefore, a JSON based message encoding and decoding feature has been
implemented within the the JavaScript component. This type of formatting uses
keywords in order to structure the content of the JSON string.

Those keywords and the sample messages are described in Chapter 5.4.3.1.
In order to increase the security properties of the solution, the JSON decoding
feature is strict and limited to a small list of allowed keywords. Usually, JSON
decoders offers a big flexibility by recognizing any keyword added to the message.
However, in order to avoid giving the adversary the possibility to make use of the
flexibility provided by JSON decoders, a specific and restricted JSON decoder has
been implemented. The implemented decoder stops the process and sends an error
message upon the reception of an unexpected value, such as a disallowed keyword,
a missing mandatory keyword for the selected mode, and an allowed keyword not
belonging to the selected mode.

The second feature related to the JavaScript component is the ability to re-
trieve and verify the received data. To achieve that, the JavaScript component uses
the functions provided by Crypto to decrypt (if necessary) and verify the received
data. The SecureJS process stops and returns an error message if the decryption or
verification processes fail.

The last and main feature that the JavaScript component provides is the ability
to execute JavaScript code within the enclave. For this purpose, the solutions require
the implementation of a JavaScript interpreter. SecureJS uses MuJS, a lightweight
JavaScript interpreter. MuJS is small, portable, embeddable, and secure [9] and is
compatible to version ES5 of the ECMA-262 standard for JavaScript [29].

The security property is important for this project. Hence, the fact that the
default setup of MuJS is sandboxed with very restricted access to resources makes
it a good option as a JavaScript interpreter. Moreover, the size of the MuJS (10,000
lines of code), the portability and ability to be embedded in other applications makes
it a good candidate to be integrated inside an enclave.

As mentioned before, I/O is not supported inside the enclave, which means
that the code has to be checked so that it does not contain any unsupported function.
Therefore, the code implemented in MuJS has been checked and the unsupported
functions have been removed or modified to use supported similar functions. The
main cutout from the MuJS implementation is related to time functionalities, which
are not supported by SGX and have been completely removed and are not supported
by the solution.

In terms of usage complexity, MuJS provides simple interface functions that
easily allow the setup of an environment, the input of JavaScript code and variables,
and the execution of that code.

In conclusion, the implementation of the JavaScript component allows Se-
cureJS to retrieve the JavaScript code sent by the web-page, execute the JavaScript
code in a SGX enclave, and return the result value.

31

5. Implementation

5.4.3.1 JSON allowed keywords

For the message exchange features, the flexible string based JSON format has been
used [6]. This format is well known for being used worldwide as an alternative to
the XML format. JSON is a subset of the literal notations of JavaScript objects
based on keywords to differentiate the values exchanged. This format was selected
based on the possibilities that it offers to an arbitrary data exchange process. This
feature is important for this project since the data exchanged can differ from one
situation to other. In addition, this format is supported by the chrome.runtime API
for the message exchanging features used for this project.

In order to allow a correct data exchange and retrieval in the solution proposed
in the thesis, a number of keywords have been defined to be used for the different
values exchanged through all the solution, such as code for the JavaScript code,
mainfunction for the name of the main function in the JavaScript code, signa-
ture for the signature of a plain text value, and encryption for the encryption
of a plain text value. Those keywords are further described in the Table A.1 in Ap-
pendix A.2. With these keywords, the web application developer can easily define
and exchange data with SecureJS.

Listings 5.1 and 5.2 show an example of the JSON format message for the sig-
nature mode with and without input variables. On the other hand, listings A.1 and
A.2, in Appendix A.2, show an example of the JSON format message for the encryp-
tion mode with and without input variables. As can be noticed, the construction
of the messages does not require a long learning neither implementation process.
However, the developer must make sure the correct keywords are used according to
the mode selected.

1 {
2 "CODE": " function add(var a, var b) { return a+b;}",
3 " MAINFUNCTION ": "add",
4 " SIGNATURE ": " Signature of the CODE; MAINFUNCTION in hexadecimal

format ",
5 " VARIABLE ": [
6 {"TYPE":"int","ORDER":"0","VALUE":"1"},
7 {"TYPE":"int","ORDER":"1","VALUE":"2"}
8]
9 }

Listing 5.1: JSON format message example for signature mode with two variables

1 {
2 "CODE": " function getName () { return 'Name ';}",
3 " MAINFUNCTION ": " getName ",
4 " SIGNATURE ": " Signature of the CODE; MAINFUNCTION in hexadecimal

format "
5 }

Listing 5.2: JSON format message example for signature mode with no variables

MuJS requires the name of the main function to be called in order to work
properly, therefore, SecureJS is required to know the name of the main function that
initiates the JavaScript code execution.

32

5. Implementation

On the one hand, the Signature mode fulfills this requirement by using the
mainfunction JSON value. In order to provide integrity guarantees to the main-
function the value has to be signed. That integrity guarantee is provided by the
signature parameter, which is the result of signing the JavaScript code and the
name of the main function separated by a semicolon (;) character (Equation 5.1).
As a result, the signature parameter provides integrity for both the JavaScript
code and the name of the main function.

On the other hand, the Encryption mode does not use the mainfunction key-
word, to not provide the adversary information about the encrypted value. There-
fore, the encryption parameter must contain the encryption of the JavaScript code
coupled with the name of the main function separated by a semicolon (;) character
(Equation 5.2). In addition, the encryption mode also requires the usage of the
signature parameter (Equation 5.1) to provide integrity over the decrypted value
from the encryption parameter.

signature = S(private key){JavaScriptCode; MainFunction} (5.1)

encryption = E(symmetric key){JavaScriptCode; MainFunction} (5.2)

Listing 5.1 shows the usage of the JSON keyword type, which is used to
determine the type of the variable, inside the array VARIABLE. The variable types
allowed by SecureJS and their keywords are: str for string type, int for numerical
type, and bool for the boolean type. However, more types can be added since MuJS
supports the addition of user defined variables.

Last, the three possible JSON format messages that the web-page can receive
from the solution are shown in the following listings A.3, A.4, and A.5 in Appendix
A.2. This way, the web application developer can easily handle the received message
and act according to it, i.e. send the values to the server or start a new process
upon an error message.

5.5 Extra implementations
Extra pieces of logic have been developed for testing purposes. Those applica-
tions are focused on the simulation and verification of the solution. First, a service
provider’s remote attestation server, that implements Intel’s EPID protocol, has
been implemented. Second, a signature generation and signature verification util-
ities have been developed. And third, encryption and decryption tools have also
been created. The first program is based in the example code provided by Intel.
The other two tools used for encryption and decryption purposes make use of the
functionalities provided by Intel SGX for cryptography purposes, similarly to the
implementation done in the Cryptographic component.

In conclusion, the extra implementations are used in order to accomplish a
full simulation of the process of JavaScript execution when using SecureJS. These
simulations are used for performance evaluation purposes later in Chapter 6.1.

33

5. Implementation

34

6
Evaluation

This chapter contains the description of the tests performed and the results gathered
from those tests. The tests are related to the performance, in terms of resource
consumption, and to the security levels of SecureJS. The following sections are
divided into performance related tests and security evaluation. Chapter 6.1 describes
the resource consumption tests and presents the results. Chapter 6.2 is focused on
the security evaluation accomplished over SecureJS.

6.1 Performance evaluation
SecureJS’s main goal is to provide the features needed to solve the problem described
in Chapter 2. However, it is also important that the usage of SecureJS is reasonable
in terms of resource consumption. Therefore, SecureJS has been tested in order to
check the performance.

The web-browser Chrome is able to run JavaScript code thanks to Google’s
JavaScript interpreter named V8 [13]. This interpreter offers high performance in
code compilation and execution and it can be embedded into other applications,
which makes it the selected choice in many projects, such as Chromium, NodeJS,
and other applications. In conclusion, V8 is the current "state of art" JavaScript
interpreter.

NodeJS is a cross-platform JavaScript runtime environment based on the V8
interpreter that provides the possibility to execute JavaScript code in the server-side
device [10]. This environment has been used in the tests in order to compare its
performance to the one of the proposed solution.

As described in Chapter 3.4, during the accomplishment of the thesis David
Goltzsche et al. published a paper in which they introduced TrustJS [31]. TrustJS
focuses on solving the same problem as SecureJS with a different approach. There-
fore, TrustJS is meant to be the direct opponent for SecureJS. As a result, the
performance results presented in the TrustJS paper are used for comparison against
SecureJS.

The tests developed for this project aim to gather data that allow the com-
parison of the performances of a web-application service between the currently used
setups (JavaScript execution in Chrome and NodeJS), TrustJS, and SecureJS. In
order to do so, a number of tests levels and setups have been defined as described
in Chapter 6.1.1.

35

6. Evaluation

6.1.1 Tests definition
In order to analyze SecureJS’s performance properly, five setups have been devel-
oped. Those setups provide information of different situations, which some make
use of the proposed solution and others do not. This way, SecureJS can be compared
against real implementations that are nowadays used worldwide. The list of tests
designed is the following:

1. JavaScript execution in encryption mode.
2. JavaScript execution in signature mode.
3. JavaScript execution in NodeJS (server-side device).
4. JavaScript execution in Chrome (client-side device).
5. Extra: JavaScript execution in MuJS.

The first two setups are meant to provide performance data about SecureJS. This
data can be opposed to the results gathered in the third and third test setups.
Last, the MuJS setup aims to provide a comparison between the performance of the
MuJS interpreter in a normal environment and in an SGX enclave. Each of the tests
provide execution time results for the complete setup (named as macro-benchmarks
in advance) and, in some cases, also the execution time values of internal parts are
gathered (named as micro-benchmarks in advance). In addition, the test setups
provide data in terms of memory consumption for the main applications used in
each setup.

The macro-benchmark results are a result of generating timestamps before
and after the execution of the complete setup, from the moment in which the server
generates the page to answer the request of the client until the reception of the
result data in the server. In addition, some components of SecureJS also include
the generation of timestamps during the execution for micro-benchmark results. As
a result, the micro-benchmark results show a deeper insight of specific parts of a
component, such as the host application and the JavaScript component inside the
SGX enclave.

The memory consumption is measured by Linux’s command time [7]. Time
command allows the monitoring and result output of a number of resources con-
sumed by the given process, such as CPU usage, memory usage, and number of
signals delivered to the process. The following paragraphs provide further descrip-
tion of the test setups.

6.1.1.1 Encryption mode and signature mode setups

Encryption mode and signature mode setups aim to test the encryption mode
and the signature mode, respectively, of SecureJS. Both setups also include micro-
benchmark results for the runtime of a number of parts within SecureJS: Chrome
extension, host application, remote attestation component, and JavaScript compo-
nent. Moreover, the JavaScript component also offers deeper insights of the runtime
execution within the component, such as JavaScript code execution time, variable
load time, data signing time, and data decryption time. In reference to the mem-
ory consumption, the setups offer results for the host application and the remote
attestation service that is run by the service provider.

36

6. Evaluation

6.1.1.2 Server-side NodeJS setup

The NodeJS setup aims to gather information of a real situation where the code
execution is delegated to the server-side device. In this setup, the JavaScript code
is executed in the NodeJS environment that is requested by the web-application. In
addition, no micro-benchmark results are gathered, however, the memory consump-
tion generated by the execution of the JavaScript code inside NodeJS is measured.

6.1.1.3 Client-side Chrome setup

The Chrome setup tests a simulation accomplished in a current Chrome browser.
This setup does not include the usage of SecureJS and simply executes the given
JavaScript code in Chrome as any current web-page. The Chrome setup does not
provide any data regarding micro-benchmark results nor the memory consumption
generated for the execution of the JavaScript code. This setup focuses on offering a
base line to evaluate SecureJS.

6.1.1.4 MuJS setup

The MuJS setup is an extra setup that focuses on the measurements of a MuJS
implementation for JavaScript execution in a normal non-protected environment.
The goal is to compare the runtime performance of MuJS inside and outside an
SGX enclave. In order to achieve that, MuJS setup provides the time consumption
results from the execution of JavaScript code outside of an enclave. These results
can be compared to the results obtained from the Encryption Mode and Signature
Mode setups: the micro-benchmark results regarding the embedded version of MuJS
in the JavaScript component of SecureJS.

6.1.1.5 JavaScript code for testing

Each of the tests executes the same JavaScript code. For instance, the code selected
is a simple implementation of a prime finder function that looks for all the existing
prime numbers within a given range of numbers by iterating over all the possible
divisors in order to determine whether a number is prime. Optimized versions of this
type of function exist, such as the Sieve of Eratosthenes algorithm [32]. However,
the aim is to test the performance of SecureJS and, therefore, the optimization of
the code is not important.

In addition, this code allows the addition of different levels to the tests by
simply increasing the range of numbers given to the function. This increase affects
the iterations run by the code in an quadratic way, which allows us to test higher
resource consuming executions, in terms of execution time and memory usage. This
option has been used to test every setup in three different levels based on the resource
consumption; low, medium and high. Each of the levels takes a different range; 1K,
10K and 100K, respectively. Last, each of test setups in each level has been run for
a number of repetitions in order to gather more data; 100, 100 and 10, respectively.
The reason for reducing the high level tests to 10 repetitions has been the fact that
the high level execution required a long time for each repetition, see the results of
related to high level tests in Chapter 6.1.2.

37

6. Evaluation

6.1.1.6 Web-application server setup

As mentioned in Chapter 5, SecureJS implements a real networked connection for
the remote attestation process. Moreover, the web application service is deployed
in an Apache server and, therefore, it is also a real networked situation. However,
both client and server side services were deployed in the same device. This means
that the execution times related to the communication process may be lower in this
scenario rather than in a real world situation, were the server usually is far from
the client and the connection may be slower. Additionally, the setups in which the
data is generated in the client-side device (first three setups in the list above) send
the data generated to the server. Hence, the communication times related to the
web-application service are affected by the quantity of data generated.

The following sections contain the results for the tests defined above and the
resultant conclusions.

6.1.2 Runtime performance
This section shows the results gathered during the accomplishment of the tests de-
scribed in Chapter 6.1.1. The following sections are divided based on the benchmark
level; macro and micro. Each of the sections refer to the group of figures that be-
long to macro or micro-benchmarks and define the data represented by each of the
figures.

6.1.2.1 Macro-benchmark results

Figures 6.1, 6.2, and 6.3 represent the data for the macro-benchmark results for the
low, medium, and high level tests respectively. The results represent the execution
times required by each of the setups to accomplish a complete simulation of a web-
page request that contains the execution of the JavaScript code defined above. These
representations can be used for the performance comparison between the current
web-application setup and the setup of SecureJS.

6.1.2.2 Micro-benchmark results

In order to offer a better understanding of the performance of SecureJS, micro-
benchmarks have been set. The results of those tests are shown in Figures 6.4, 6.5,
and 6.6 for each of the test levels; low, medium, and high respectively. These results
may help determine which of the parts within SecureJS affect the performance of
the complete solution, which can be useful to determine the areas that should be
optimized.

Figure 6.7 shows the results gathered over the micro-benchmarks for the JavaScript
component in Encryption and Signature Modes. These results give information
about the time required by the tasks that JavaScript component carries out. Ad-
ditionally, Figure 6.8 shows the micro-benchmark resulting from the execution of
the high level JavaScript code of the Encryption Mode, Signature Mode and MuJS
setups.

38

6. Evaluation

00:00.831
00:00.910

00:00.051
00:00.013

00:00.000

00:00.250

00:00.500

00:00.750

00:01.000

Encryption mode Signature mode NodeJS Chrome

Ex
ec

u
ti

o
n

 t
im

e
(m

in
:s

.m
s)

Low level execution runtime macro-benchmark

Figure 6.1: Low level execution time macro-benchmarks of each setup.

00:02.190 00:02.239

00:00.042 00:00.073
00:00.000

00:00.250

00:00.500

00:00.750

00:01.000

00:01.250

00:01.500

00:01.750

00:02.000

00:02.250

Encryption mode Signature mode NodeJS Chrome

Ex
ec

u
ti

o
n

 t
im

e
(m

in
:s

.m
s)

Medium level execution runtime macro-benchmark

Figure 6.2: Medium level execution time macro-benchmarks of each setup.

01:48.010 01:47.830

00:00.043 00:02.005
00:00.000

00:20.000

00:40.000

01:00.000

01:20.000

01:40.000

02:00.000

Encryption mode Signature mode NodeJS Chrome

Ex
ec

u
ti

o
n

 t
im

e
 (

m
in

:s
.m

s)

High level execution runtime macro-benchmark

Figure 6.3: High level execution time macro-benchmarks of each setup.

39

6. Evaluation

Encryption mode Signature mode

Server ↔ Client communication 00:00.325 00:00.383

Extension ↔ Host application communication 00:00.065 00:00.086

Enclave management 00:00.330 00:00.331

Remote attestation component 00:00.086 00:00.087

JavaScript component 00:00.025 00:00.024

Total time 00:00.831 00:00.910

00:00.000

00:00.250

00:00.500

00:00.750

00:01.000

Ex
ec

u
ti

o
n

 t
im

e
 (

m
in

:s
.m

s)

Low level execution - Micro-benchmarks
SecureJS

Figure 6.4: Low level micro-benchmark results of SecureJS for encryption mode
and signature mode setups.

Encryption mode Signature mode

Server ↔ Client communication 00:00.315 00:00.355

Extension ↔ Host application communication 00:00.065 00:00.073

Enclave management 00:00.331 00:00.332

Remote attestation component 00:00.086 00:00.086

JavaScript component 00:01.392 00:01.392

Total time 00:02.190 00:02.239

00:00.000

00:01.000

00:02.000

00:03.000

Ex
ec

u
ti

o
n

 t
im

e
(m

in
:s

.m
s)

Medium level execution - Micro-benchmarks
SecureJS

Figure 6.5: Medium level micro-benchmark results of SecureJS for encryption
mode and signature mode setups.

40

6. Evaluation

Encryption mode Signature mode

Server ↔ Client communication 00:00.197 00:00.282

Extension ↔ Host application communication 00:00.196 00:00.012

Enclave management 00:00.327 00:00.330

Remote attestation component 00:00.086 00:00.086

JavaScript component 01:47.204 01:47.120

Total time 01:48.010 01:47.830

00:00.000

00:20.000

00:40.000

01:00.000

01:20.000

01:40.000

02:00.000

Ex
e

cu
ti

o
n

 t
im

e
 (

m
in

:s
.m

s)

High level execution - Micro-benchmarks
SecureJS

Figure 6.6: High level micro-benchmark results of SecureJS for encryption mode
and signature mode setups.

Encryption mode Signature mode

Code cipher decryption 00:00.000

Code signature verification 00:00.000 00:00.000

Time to load the code 00:00.001 00:00.000

Time to load the variables 00:00.000 00:00.000

Time to execute the code 01:47.195 01:47.119

Result signature 00:00.001 00:00.001

Result encryption 00:00.007

Total time 01:47.204 01:47.120

00:00.000

00:20.000

00:40.000

01:00.000

01:20.000

01:40.000

02:00.000

Ex
e

cu
ti

o
n

 t
im

e
 (

m
in

:s
.m

s)

High level execution - Micro-benchmarks
JavaScript component

Figure 6.7: High level micro-benchmark results of the JavaScript component for
encryption mode and signature mode setups.

41

6. Evaluation

01:47.195 01:47.119

01:07.591

00:00.000

00:20.000

00:40.000

01:00.000

01:20.000

01:40.000

02:00.000

JavaScript execution
encryption mode

JavaScript execution
signature mode

 MuJS
(no SGX technology)

Ex
ec

u
ti

o
n

 t
im

e
 (

m
in

:s
.m

s)
JavaScript code execution inside and outside an enclave

Figure 6.8: JavaScript code execution time results inside and outside an enclave.

6.1.2.3 SecureJS vs TrustJS

David Goltzsche et al. show the results of their performance evaluation in [31].
However, the test designed for TrustJS are different from the ones designed for the
thesis. In the case of TrustJS, the JavaScript code selected has been an empty loop
that iterates for 5000 rounds. The complexity of the code of TrustJS is lower than
the code used for the low level tests run in the thesis. However, we use the results
gathered from the low level tests for comparison between TrustJS and SecureJS.

Figure 6.9 shows the results taken from the paper of TrustJS [31] in comparison
with the values gathered from the low level tests for SecureJS, both in Encryption
and Signature Modes. These results coupled with the micro-benchmark results
shown in Figure 6.4 are useful for discussing the differences in performance between
both solutions. This discussion can be found later in Chapter 7.

6.1.3 Memory performance
The memory consumption values gathered during the performance of the tests are
shown in Figure 6.10. That figure shows the memory consumption of the three
applications (host application, remote attestation Server, and NodeJS server) used
during the testing for each of the test levels described above. Note that, the con-
sumption is related to a unique user and per execution request. In addition, Figure
6.11 shows the base memory usage of the the host application server and the NodeJS
environment.

42

6. Evaluation

00:00.831
00:00.910

00:00.475

00:00.000

00:00.250

00:00.500

00:00.750

00:01.000

Encryption mode Signature mode TrustJS

Ex
e

cu
ti

o
n

 t
im

e
 (

m
in

:s
.m

s)

SecureJS vs TrustJS

Figure 6.9: Execution times comparison between SecureJS and TrustJS.

5175 5257
5785

1036 1020 744

2532
2988 3116

0

2000

4000

6000

Low Medium High

M
e

m
o

ry
 u

sa
ge

 (
kB

)

Memory usage per execution

Host application Remote attestation service NodeJS

Figure 6.10: Results of the memory usage per execution.

4528

22252

0 5000 10000 15000 20000 25000

Memory usage (kB)

Base memory usage

NodeJS

Remote attestation service

Figure 6.11: Base memory usage of remote attestation server and NodeJS envi-
ronment.

43

6. Evaluation

6.2 Security evaluation: STRIDE
The STRIDE model was created by Microsoft as part of the process of threat mod-
eling [12]. STRIDE helps security experts reason and find threats to a system.
During the modeling process, a graphical model of the target system is used as as-
sistance. This graphical model of the target system can be constructed in parallel
to the STRIDE modeling process and includes a full breakdown of the processes,
data storage technologies, data flows and trust boundaries.

STRIDE provides short and direct descriptions of security threats divided in
six categories:

• Spoofing identity. An example of identity spoofing is illegally accessing and
then using another user’s authentication information, such as username and
password.

• Tampering with data. Data tampering involves the malicious modification
of data.

• Repudiation. Repudiation threats are associated with users who deny per-
forming an action without other parties having any way to prove otherwise.

• Information disclosure. Information disclosure threats involve the exposure
of information to individuals who are not supposed to have access to it.

• Denial of service. Denial of service (DoS) attacks deny service to valid users.
• Elevation of privilege. In this type of threat, an unprivileged user gains

privileged access and thereby has sufficient access to compromise or destroy
the entire system.

All the six categories are considered by the experts while reasoning about the possible
threats. In order to ensure that no step of the modeling is missed, the STRIDE threat
modeling process is divided in simple steps. This makes it easier for the experts to
follow the process without missing any critical portion. The threat modeling process
is structured as follows:

1. Identify the known threats to the system.
2. Rank the threats in order by decreasing risk.
3. Determine how to respond to the threats.
4. Identify techniques that mitigate the threats.
5. Choose the appropriate technologies from the identified techniques.

As can be seen in the list above, step 2 focuses on the ranking of the threats. In
order to rank the threats, there exists a evaluation and calculation process to give
a numerical value to each of the threats. This process is shown in the list below.

1. Evaluate the chance of a threat to happen: chance = [1,10] (high to low
chance).

2. Evaluate the damage if a threat occurs: damage = [1,10] (low to high damage).
3. Calculate the risk of a threat: risk = damage / chance

The step 4 of the threat modeling process structure, requires the identification and
selection of the appropriate mitigation techniques. Therefore, the experts can make
use of different techniques, such as Authentication, Authorization, Hashing, and

44

6. Evaluation

Digital Signatures, to mitigate threats for each of the six threat categories defined
in STRIDE.

6.2.1 STRIDE modeling for SecureJS
For the evaluation of SecureJS developed in this project, a STRIDE modeling was
carried out. As mentioned before, this process requires of a graphical model that
will help to reason and find threats in the system. The graphical model used for
this project can be seen in Figure 6.12. In the figure, the red line defines the
trust boundary, the data flow, data storage and processes inside the red line is
defined as the untrusted area while the areas outside the red delimiter are meant
to be trustworthy. Before starting reasoning and finding threats in SecureJS, it is
necessary to define the assumptions that affect this project.

A
d
v
e
r
s
a
r
y

Client

Add

• I/O communication

• Perform remote attestation (Keys)
• Get data (Keys, JavaScript and Inputs)
• Setup JavaScript interpreter (JavaScript)
• Run JavaScript (JavaScript and Inputs)
• Send (Result)

Host application
• Important data (JavaScript, Keys and

Result) comes in/out
• User Inputs come in/out

JavaScript code

Remote
attestation

Server

Web application service

Remote attestation service

User inputs

Legend

Communication

Mandatory

Optional

SGX enclave

Chrome extension

JavaScript result

1

3

4

2

Figure 6.12: Graphical representation of the data flow in SecureJS.

First, as mentioned in Chapter 2, any Denial of Service (DoS) attack done by
the adversary in the platform is negligible due to its high privilege level.

Second, the elevation of privilege threats within the client-side platform are
also negligible since the adversary already has the highest privilege level in the
platform (it is assumed that the enclave mode is not accessible for the adversary).

Third, the possible threats against the remote attestation service provided
by the service provider are not going to be reasoned in this STRIDE modeling
procedure. This decision is based on the assumption that the service provider rely
on security experts that ensure security guarantees for the services provided by the
service provider in order to avoid any known threat.

45

6. Evaluation

Fourth, the possibility of the adversary to spoof the identity of the service
provider’s web application services is assumed to be mitigated by the state of art of
web application authentication techniques, such as certificates [23].

The following paragraphs represent each of the threats reasoned and found
during the accomplishment of the STRIDE modeling process. Each paragraph will
describe the threat, show the ranking evaluation reasoning, and define the security
techniques used to avoid the threat.

6.2.1.1 Threat Nº 1

Definition. The adversary can tamper with the JavaScript code sent by the service
provider (in the Figure 6.12 denoted as 1) once the code is in the client-side device
and before it reaches the enclave.
Risk 10. The chance for this threat to happen is 1 (very high) since it would be
easy and attractive for the adversary to change the code into a malicious one. The
damage generated by this attack is 10 (very high) since this attack is breaking one
of the main goals of SecureJS, the integral execution of a given code.
Mitigation. In order to mitigate this threat, the service provider is required to send
the code and its signature (generated by hashing the code and then signing the hash
value) for the Signature Mode. While in the Encryption Mode, the service provider
is meant to send the encryption and GCM MAC value of the code in addition to
the signature (hash and sign the code).

6.2.1.2 Threat Nº 2

Definition. The JavaScript code sent by the service provider (1) can be exposed
to the adversary once the code reaches the client-side device and before it is sent to
the enclave.
Risk 10. The chance for this threat to happens is 1 (very high) since it would be
easy and attractive for the adversary to access the code and get knowledge about it.
The damage generated by this attack is 10 (very high) since this attack is breaking
one of the main goals of SecureJS, the confidential execution of a given code.
Mitigation. This threat only affects the Encryption Mode. In this mode, this
threat is mitigated by using the same techniques as in Threat Nº 1. The service
provider is meant to send the encryption and GCM MAC value of the code in
addition to the signature (hash and sign the code).

6.2.1.3 Threat Nº 3

Definition. The secrets sent during the remotte attestation process (3) can be
tampered with malicious values by the adversary.
Risk 10. The chance for this threat to happens is 1 (very high) since it would be
easy and attractive for the adversary to modify the values of the messages exchanged
to its own benefit. The damage generated by this attack is 10 (very high) since this
attack would allow the adversary to be the MITM (Man In The Middle) and manage
the keys exchanged, the result is breaking both main goals of SecureJS, the integrity
and confidentiality of SecureJS.

46

6. Evaluation

Mitigation. In order to mitigate this threat, the the process makes use of the
EPID protocol designed by Intel, which makes use of a hash, a MAC and encryption
techniques to protect the secret. In addition, once transmitted, the secrets are stored
in the enclave, which protects them from the adversary.

6.2.1.4 Threat Nº 4

Definition. The secrets sent during the remote attestation process (3) can be
exposed to the adversary.
Risk 10. The chance for this threat to happens is 1 (very high) since it would be
easy and attractive for the adversary to read the messages sent during the remote
attestation process. The damage generated by this attack is 10 (very high) since
this attack exposes critical secrets, such as the signature and encryption keys, for
the security guarantees provided by SecureJS.
Mitigation. In order to mitigate this threat, the process makes use of the EPID
protocol designed by Intel, which makes use of a hash and MAC techniques to protect
the secret. In addition, once transmitted, the secrets are stored in the enclave, which
protects them from the adversary.

6.2.1.5 Threat Nº 5

Definition. The result value from the JavaScript execution (4) that is sent by
the platform to the service provider can be tampered with malicious values by the
adversary once the value exits the enclave and before it is sent to the service provider.
Risk 10. The chance for this threat to happen is 1 (very high) since it would be
easy and attractive for the adversary to change the value into values of interest. The
damage generated by this attack is 10 (very high) since this attack is breaking one
of the main goals of SecureJS, the integral execution of a given code.
Mitigation. In order to mitigate this threat, the process makes use of the EPID
protocol designed by Intel, which makes use of a hash, a MAC and encryption
techniques to protect the secret. In addition, once transmitted, the secrets are
stored in the enclave, which protects them from the adversary.

6.2.1.6 Threat Nº 6

Definition. The result value from the JavaScript execution (4) that is sent by
the platform to the service provider can be exposed to the adversary once the value
exits the enclave and before it is sent to the service provider.
Risk 10. The chance for this threat to happens is 1 (very high) since it would be
easy and attractive for the adversary to access the code and get knowledge about it.
The damage generated by this attack is 10 (very high) since this attack is breaking
one of the main goals of SecureJS, the confidential submission of the result value.
Mitigation. This threat only affects the the Encryption Mode. In this mode, this
threat is mitigated by using the same techniques as in Threat Nº 1, the service
provider is meant to send the encryption and GCM MAC value of the result value
in addition to the signature (hash and sign the result value)

47

6. Evaluation

6.2.1.7 Threat Nº 7

Definition. The adversary can spoof the identity of the service provider’s remote
attestation service (3), which would allow the adversary to control the remote
attestation process.
Risk 5. The chance for this threat to happens is 2 (very high) since it would be a
bit more difficult for the adversary to develop the required service but still attractive
to control the values of the messages exchanged to his own benefit. The damage
generated by this attack is 10 (very high) since this attack would allow the adversary
to be the MITM (Man In The Middle) and manage the keys exchanged, the result
is breaking both of the main goals of SecureJS, the integrity and confidentiality.
Mitigation. In order to mitigate this threat, the process makes use of the EPID
protocol designed by Intel, which makes use of a hash, a MAC and encryption
techniques to protect the secret. In addition, once transmitted, the secrets are
stored in the enclave, which protects them from the adversary.

6.2.1.8 Threat Nº 8

Definition. The user input (2) can be tampered with malicious values by the
adversary in order to modify it into malicious code that would alter the JavaScript
code execution.
Risk 3. The chance for this threat to happen is 3 (high) since it would be really
easy for the adversary to modify the values of the user input, however, finding the
necessary malicious values to achieve the goal makes it more complicated. The
damage generated by this attack is 9 (very high) since this attack would allow the
adversary to alter the execution and the result is breaking one of the main goals of
SecureJS, the integrity.
Mitigation. In order to mitigate this threat, SecureJS requires the web application
developers to build tamper-resistant functions and apply validation functionalities
to the code.

6.2.1.9 Threat Nº 9

Definition. The service provider can repudiate the JavaScript related data (1)
sent to the client platform.
Risk 1. The chance for this threat to happens is 7 (low) since during the accom-
plishment of this project it is assumed the good will of the service provider and it
can be assumed that the chances for the service provider to repudiate his own data
is low. The damage generated by this attack is 7 (medium) since this threat could
result into a problem, for example in the case that the JavaScript code affected the
state of the client platform.
Mitigation. In order to mitigate this threat, SecureJS requires the service provider
to sign the JavaScript related data sent to the client platform.

6.2.1.10 Threat Nº 10

Definition. The service provider can repudiate the remote attestation related data
(3) sent to the client platform.

48

6. Evaluation

Risk 1. The chance for this threat to happens is 7 (low) since during the accom-
plishment of this project it is assumed the good willing of the service provider, it
can be assumed that the chances for the service provider to repudiate its own data
is low. The damage generated by this attack is 7 (medium) since this threat could
result into a problem, for example in the case that the remote attestation data af-
fected the state of the client platform.
Mitigation. In order to mitigate this threat, the EPID protocol requires the service
provider to sign the remote attestation related data sent and authenticate to the
client platform.

6.2.1.11 Threat Nº 11

Definition. The client platform can repudiate the remote attestation related data
(3) sent to the service provider.
Risk 1. The chance for this threat to happens is 7 (low) since it is assumed that
the SGX technology guarantees security and fairness. The damage generated by
this attack is 7 (medium) since the data affect in a insecure manner, i.e. the remote
attestation related data affects the correctness of the service provider’s device.
Mitigation. In order to mitigate this threat, the EPID protocol requires the SGX
technology to sign the remote attestation data sent and authenticate to the service
provider.

6.2.1.12 Threat Nº 12

Definition. The SGX technology can repudiate the result value (4) sent to the
service provider.
Risk 1. The chance for this threat to happens is 7 (low) since it is assumed that
the SGX technology guarantees security and fairness. The damage generated by
this attack is 7 (medium) since this threat can become a problem, for example in
the case that the result value affected the state of the service provider’s device.
Mitigation. In order to mitigate this threat, SecureJS requires the SGX technology
to sign the result value sent to the client platform.

6.2.2 STRIDE outcome
After applying STRIDE, the necessity of security techniques was obvious. Therefore,
the design shown in Figure 6.12 was affected resulting in the graphical design shown
earlier the thesis in Chapter 4 in Figure 4.1. Table 6.1 shows a summarized list with
the threats described before, their risk level and whether they have been mitigated.

Table 6.1: Summary of threats reasoned via STRIDE threat modeling.

Threat number Damage Chance Risk Mitigation
1-7 10 1 10 Implemented
8 9 3 3 Implemented

9-12 7 7 1 Implemented

49

6. Evaluation

50

7
Discussion

This chapter includes the discussion resulting from the completion of the project.
First, a number of facts and topics that were generated during the performance of
the project are discussed. These discussions involve other approaches considered for
the development of SecureJS (Chapter 7.1), the reasoning of the results generated
by the tests (Chapter 7.2), and the comparisson between SecureJS and its direct
opponent TrustJS (Chapter 7.3).

After that, three more sections are included; Chapter 7.4 contains the reasoning
carried out around SecureJS in terms of sustainability, Chapter 7.5 describes the
thoughts generated during the design of the project from an ethical point of view,
and Chapter 7.6 gathers the ideas arose in order to continue the research done in
this project or to improve the solution proposed, SecureJS.

7.1 Other approaches and limitations
During this project, two options have been considered as JavaScript interpreters;
Chrome’s V8 JavaScript engine [13] and MuJS JavaScript interpreter [9]. As ex-
plained in Chapter 5, MuJS has been the final selection for SecureJS. Nevertheless,
V8 was considered since it is a sophisticated, optimized, and powerful interpreter
capable of a great performance. V8 is a well known interpreter used by the Chrome
web browser to execute JavaScript code. It also fulfills the newest standards for
JavaScript execution. On the other hand, all those features require of a large amount
of lines of code. This fact in combination with the restrictions of Intel SGX for I/O
functionalities results in a situation of high complexity for embedding the V8 inter-
preter in an enclave.

A quick search for the SGX non-supported functions over the code files of both
interpreters showed a large difference of positive matches (around 190,000 matches
in V8 vs around 450 in MuJS). As mentioned in Chapter 5.4.3, the code of the
interpreter has been modified in order to achieve an embeddable version than can
work with the SGX technology. Therefore, the high number of matches that V8
contains and the limited time available for the implementation of this project, made
the selection of the V8 engine as part of SecureJS impossible, due to the amount of
work time required for adapting V8 to the SGX technology.

Another approach taken during the design of SecureJS included the usage of
Graphene library OS [4]. Graphene is a lightweight guest operating system, similar
to virtual machines, with virtualization benefits such as guest customization, plat-
form independence and migration. Graphene can run applications in an isolated

51

7. Discussion

environment and it also supports the execution of applications in an SGX enclave.
However, after some testing, it was found out that Graphene does not provide sup-
port for the remote attestation process designed by Intel, which is a key feature of
SecureJS. Therefore, the usage of Graphene for SecureJS was dismissed.

7.2 Discussion of the results
In relation to the tests results, the graph in Figure 6.10 shows that the memory usage
of the solution (note that SecureJS requires the usage of the Client application and
the remote attestation Server) is higher than the one of the NodeJS server. However,
the comparison between the parts delegated to the service provider, NodeJS and
remote attestation Server, which is not an optimized version, show that the remote
attestation Server has lower memory usage. This fact can support the decision of
the service providers to make use of SecureJS as an alternative, in order to reduce
the memory needs of the web application services.

In addition, both NodeJS server and the remote attestation Server have a base
memory usage that must also be cosidered. Figure 6.11 show that NodeJS requires a
higher base memory in order to work. However, many of the current web-application
servers world-wide already have a NodeJS environemnte deployed and this memory
usage is negligible in those cases.

Note that the tests were performed with individual clients making use of the
web application in a serial setup (one request at a time). Hence, the memory usage of
the NodeJS and the remote attestation Server can be affected by the increase of the
number of clients requesting the services of the web application server at the same
time. Nonetheless, the NodeJS server uses a higher quantity of memory compared
to the remote attestation server (note that the last can be optimized). In contrast,
the memory usage for the client-side devices stays stable per request for the client-
side device no matter the number of clients connecting to the server. This way, the
memory usage balance can be moved from the server and distributed among the
clients, resulting in a substantial reduction for the server and a permissible increase
in each client device.

In addition, all three macro-benchmark results represented in the Figures 6.1,
6.2, and 6.3 show that SecureJS requires of more time to execute JavaScript code
compared to the commonly used setups (Chrome and NodeJS). This difference can
be admissible in the low computational level code, however, it becomes a problem
with high resource consumption code. Focusing on the results shown by Figure 6.6,
it can be seen that most of the time consumed by SecureJS is used for the JavaScript
component. Moreover, as shown in Figure 6.8, the fact that the JavaScript inter-
preter is embedded in an enclave does affect the performance since the execution
time is higher to the simulations performed in a normal environment.

Note that, the time differences between the SecureJS mode and the normal
environment simulations do not seem to be generated from the encryption and ver-
ification features that the JavaScript component has to carry out before and after
the JavaScript execution. As Figure 6.7 shows, even when the data exchanged is
large (a list of all prime numbers between 2 and 100K), the time required for signing,
decryption (around 1 millisecond) and encrypting (around 7 milliseconds) are low.

52

7. Discussion

7.3 Comparison between SecureJS and TrustJS
The comparison between SecureJS and TrustJS seems to be balanced towards the
TrustJS implementation. If the results in Figure 6.9 are analyzed, it can be seen
that there exits a time difference of around 400 milliseconds between both imple-
mentations. Looking to Figure 6.4, it can be determined that this difference can be
due to the fact that SecureJS manages the creation and destruction of an enclave
(Enclave Management is around 330 milliseconds) and accomplishes a remote at-
testation process (Remote Attestation component requires around 86 milliseconds)
every time SecureJS is used.

On the other hand, as explained before in Chapter 3.4, David Goltzsche et
al. designed an approach were a pool of enclaves is initialized at the start of the
web-browser and an unique enclave is assigned per each tab opened by the user. In
addition, a simplified version of the remote attestation process (the QUOTE is sent
to the server via HTTP request) is done once right after assigning an enclave to a
new tab. Therefore, the performance results for TrustJS [31] are not affected by the
enclave management nor the remote attestation process.

In addition, David Goltzsche et al. also show the results gathered from per-
formance tests carried out with TrustJS in terms of CPU usage. TrustJS seems to
reduce the CPU load of the server significantly [31]. This resource has not been
analyzed during this thesis, however, in the same manner as TrustJS does, it seems
possible that SecureJS can also reduce the CPU load of the server-side device. Nev-
ertheless, some performance tests are required in order to confirm this conjecture.
This can lead to a future work that focuses on a deeper analysis of SecureJS.

7.4 Sustainability
SecureJS offers the developers a secure environment for code execution that can lead
to better and more efficient services. The time used by the code developers to ensure
the security aspects of their code can now be used to improve the efficiency and
performance of the web services. Moreover, these efficient services can be accessed
world-wide via the internet and, therefore, any person connected to the internet can
take advantage of those benefits.

In addition, the possibility of workload distribution, that SecureJS promotes,
allows the reduction of the dimension of the server parks owned by the server
providers. This fact means a reduction in the costs for the service providers since
less computational resources such as, CPU and memory, are needed in order to offer
web-application services to the clients. This reduction in computational resources
also means a reduction in the usage of the natural resources, such as metals and
petroleum. Every piece of hardware component makes use of a large number of
different finite natural resources. Moreover, the manufacturing of those natural re-
sources into a useful product also produces contamination. Therefore, a reduction
of the usage of these finite natural resources is key for a future sustainable world.

53

7. Discussion

7.5 Ethics
The privacy of the parties taking part in a web-application structure, client and
service provider, has been an important feature that has been supported during the
design and implementation of SecureJS. In order to keep the privacy of the parties,
SecureJS does not store nor analyze any of the data generated during the usage of
SecureJS, such as web-pages accessed by the client, or data provided to SecureJS,
such as JavaScript code sent by the service provider.

Last, as mentioned in Chapter 2.6, the service provided by SecureJS can be
used by the service provider in order to make use of the execution power in the
client-side device without any prior notification to the user. This situation has been
assumed as impossible during the project by assuming an honest service provider.
However, this problem exists and can be used by not that honest service providers.
As a result of the reasoning done around this topic, a number of ideas that can be
added to SecureJS were triggered.

The first approach is to notify the user every time a web-page is trying to
make use of SecureJS. This way, the user can decide whether it is necessary or not
to use the service provided by SecureJS. A similar approach is by adding a feature
of white-listing, which defines the list of service providers that are allowed by the
user to request the usage of SecureJS. A more complex approach is to implement
a resource consumption management feature that can limit the execution resources
allocated by the service provider to execute the JavaScript code.

7.6 Future work
As mentioned above, the main drawback of SecureJS is the time consumption in
comparison with TrustJS and setups that make use of the V8 engine. Therefore,
applying the enclave pool approach from TrustJS or modifying the V8 engine into a
version supported by the SGX technology can be a good improvement for SecureJS.
As a result, the enclave management time can be reduced or the code execution
time can be improved.

In relation to Graphene, the developers have expressed their intentions of
adding the feature of Intel’s remote attestation process to their product. This fact
would make Graphene become a viable option to be included in the design of an
improved version of SecureJS. Moreover, the usage of Graphene can help with the
embedding process of the V8 engine into an SGX enclave since many of the SGX
non-supported I/O functions are handled and adapted to SGX by Graphene. Hence,
the time work required for the adaption of V8 can be reduced.

Last, the approach taken in SecureJS can be used in other environments that
hold a similar lack of trust problem. For example, Sancus [42] can make use of
the SGX technology in the embedded devices. Additionally, other applications that
provide data exchange services, such as email services and FTP services, can also use
the approach taken to implement an integral and confidential service. The solution
can also be improved by adding other language interpreters and can be used in
applications that require secure remote execution of code.

54

8
Conclusion

In the current web-application infrastructure, there exists a lack of trust for the
execution of JavaScript code in client-side devices (Chapter 2). This problem is
a result of the absence of process monitoring and attestation technologies in web-
applications. Therefore, the server-side device is forced to validate and verify every
value generated in the client-side device.

To mitigate this problem, we introduce SecureJS, a proof of concept imple-
mentation that aims to provide integrity and confidentiality for JavaScript code
execution and result output in the client-side device for Chrome web-browser users
(Chapter 4).

SecureJS promotes a trust relation for web-application services that require the
execution of JavaScript code. SecureJS is able to provide secure guarantees for the
code execution (Chapter 5). Moreover, the proof of concept also provides security
guarantees for the data exchanged between the server-side device and SecureJS.
We demonstrate the correctness of SecureJS by accomplishing a case study through
simulations of real world web-applications and security evaluations carried out for
SecureJS (Chapter 6).

To sum up, SecureJS offers a light and secure environment for web-application
services. A new branch of implementation possibilities are provided for web develop-
ers that were limited by the no-trust relation between the client-side and server-side
devices. Furthermore, the possibilities are not only related to the area of security.
SecureJS also provides the opportunity of expanding the area of resource consump-
tion efficiency by providing a flexible way to balance the work load.

55

8. Conclusion

56

Bibliography

[1] Chrome extensions - Native Messaging. https://developer.chrome.com/
extensions/nativeMessaging [Accessed: February 2017].

[2] Chrome extensions - Overview. https://developer.chrome.com/
extensions/overview [Accessed: February 2017].

[3] Desktop Browser Version Market Share. https://www.netmarketshare.
com/browser-market-share.aspx?qprid=2&qpcustomd=0 [Accessed: Febru-
ary 2017].

[4] Graphene library OS. https://github.comsecureJSGit/oscarlab/
graphene/wiki [Accessed: February 2017].

[5] Intel Software Guard Extensions Remote Attestation End-to-
End Example. https://software.intel.com/en-us/articles/
intel-software-guard-extensions-remote-attestation-end-to-end-example
[Accessed: April 2017].

[6] Introducing JSON. http://www.json.org/ [Accessed: April 2017].
[7] Linux’s manual page for command: TIME. http://man7.org/linux/

man-pages/man1/time.1.html [Accessed: June 2017].
[8] Message Passing. https://developer.chrome.com/extensions/messaging

[Accessed: February 2017].
[9] MuJS, lightweight implementation of the Javascript language in a library .

https://mujs.com/ [Accessed: March 2017].
[10] Node.js is a JavaScript runtime built on Chrome’s V8 JavaScript engine. https:

//nodejs.org/en/about/ [Accessed: June 2017].
[11] Pico Process Overview. https://blogs.msdn.microsoft.com/wsl/2016/05/

23/pico-process-overview/ [Accessed: March 2017].
[12] Threat Risk Modeling: STRIDE. https://www.owasp.org/index.php/

Threat_Risk_Modeling#STRIDE [Accessed: February 2017].
[13] V8, Google’s high performance, open source, JavaScript engine., date = 2017.

https://developers.google.com/v8/ [Accessed: March 2017].
[14] Hype Cycle for Infrastructure Strategies, 2016. Technical report, Gartner,

Stamford, USA, 2016.
[15] ICT Facts and Figures 2016. Technical Report 1, International Telecommuni-

cation Union, Geneva, Switzerland, 2016.
[16] Intel® Software Guard Extensions: EPID Provisioning and Attestation Ser-

vices. Technical report, Intel Corporation, 2016.
[17] Protect Application Code, Data, and Secrets from Attack. Technical report,

Intel Corporation, 2016.

57

https://developer.chrome.com/extensions/nativeMessaging
https://developer.chrome.com/extensions/nativeMessaging
https://developer.chrome.com/extensions/overview
https://developer.chrome.com/extensions/overview
https://www.netmarketshare.com/browser-market-share.aspx?qprid=2&qpcustomd=0
https://www.netmarketshare.com/browser-market-share.aspx?qprid=2&qpcustomd=0
https://github.comsecureJSGit/oscarlab/graphene/wiki
https://github.comsecureJSGit/oscarlab/graphene/wiki
https://software.intel.com/en-us/articles/intel-software-guard-extensions-remote-attestation-end-to-end-example
https://software.intel.com/en-us/articles/intel-software-guard-extensions-remote-attestation-end-to-end-example
http://www.json.org/
http://man7.org/linux/man-pages/man1/time.1.html
http://man7.org/linux/man-pages/man1/time.1.html
https://developer.chrome.com/extensions/messaging
https://mujs.com/
https://nodejs.org/en/about/
https://nodejs.org/en/about/
https://blogs.msdn.microsoft.com/wsl/2016/05/23/pico-process-overview/
https://blogs.msdn.microsoft.com/wsl/2016/05/23/pico-process-overview/
https://www.owasp.org/index.php/Threat_Risk_Modeling#STRIDE
https://www.owasp.org/index.php/Threat_Risk_Modeling#STRIDE
https://developers.google.com/v8/

Bibliography

[18] State of software security 2016. Technical report, Veracode, Burlington, Mas-
sachusetts, USA, 2016.

[19] Web applications security statistics report 2016. Technical report, WhiteHat
Security, Santa Clara, California, USA, 2016.

[20] I. Anati, S. Gueron, S. P. Johnson, and V. R. Scarlata. Innovative Technology
for CPU Based Attestation and Sealing.

[21] P.-L. Aublin, F. Kelbert, D. O’Keeffe, D. Muthukumaran, C. Priebe, J. Lind,
R. Krahn, C. Fetzer, D. Eyers, and P. Pietzuch. TaLoS: Secure and Transparent
TLS Termination inside SGX Enclaves. Technical Report 2017/5, Imperial
College London, March 2017.

[22] A. Baumann, M. Peinado, and G. Hunt. Shielding Applications from an Un-
trusted Cloud with Haven. ACM Trans. Comput. Syst., 33(3):8:1–8:26, Aug.
2015.

[23] S. A. Brands. Rethinking Public Key Infrastructures and Digital Certificates:
Building in Privacy. MIT Press, Cambridge, MA, USA, 2000.

[24] E. Brickell, J. Camenisch, and L. Chen. Direct Anonymous Attestation. In
Proceedings of the 11th ACM Conference on Computer and Communications
Security, CCS ’04, pages 132–145, New York, NY, USA, 2004. ACM.

[25] S. Checkoway and H. Shacham. Iago Attacks: Why the System Call API is a
Bad Untrusted RPC Interface. SIGPLAN Not., 48(4):253–264, Mar. 2013.

[26] S. Chhabra, B. Rogers, Y. Solihin, and M. Prvulovic. SecureME: A Hardware-
software Approach to Full System Security. In Proceedings of the International
Conference on Supercomputing, ICS ’11, pages 108–119, New York, NY, USA,
2011. ACM.

[27] J. Criswell, N. Dautenhahn, and V. Adve. Virtual Ghost: Protecting Appli-
cations from Hostile Operating Systems. SIGPLAN Not., 49(4):81–96, Feb.
2014.

[28] P. Dewan, D. Durham, H. Khosravi, M. Long, and G. Nagabhushan. A
Hypervisor-based System for Protecting Software Runtime Memory and Per-
sistent Storage. In Proceedings of the 2008 Spring Simulation Multiconference,
SpringSim ’08, pages 828–835, San Diego, CA, USA, 2008. Society for Com-
puter Simulation International.

[29] ECMA International. Standard ECMA-262 - ECMAScript Language Specifica-
tion. 5.1 edition, June 2011.

[30] A. R. Fernandez. SecureJS git repository. https://github.com/AsierRF/
SecureJS.git.

[31] D. Goltzsche, C. Wulf, D. Muthukumaran, K. Rieck, P. Pietzuch, and
R. Kapitza. TrustJS: Trusted Client-side Execution of JavaScript. In Proceed-
ings of the 10th European Workshop on Systems Security, EuroSec’17, pages
7:1–7:6, New York, NY, USA, 2017. ACM.

[32] D. Gries and J. Misra. A Linear Sieve Algorithm for Finding Prime Numbers.
Commun. ACM, 21(12):999–1003, Dec. 1978.

[33] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A.
Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest We Remem-
ber: Cold-boot Attacks on Encryption Keys. Commun. ACM, 52(5):91–98,
May 2009.

58

https://github.com/AsierRF/SecureJS.git
https://github.com/AsierRF/SecureJS.git

Bibliography

[34] W. G. J. Halfond and A. Orso. AMNESIA: Analysis and Monitoring for NEu-
tralizing SQL-injection Attacks. In Proceedings of the 20th IEEE/ACM In-
ternational Conference on Automated Software Engineering, ASE ’05, pages
174–183, New York, NY, USA, 2005. ACM.

[35] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno, D. Zhang, and
B. Zill. Ironclad Apps: End-to-end Security via Automated Full-system Verifi-
cation. In Proceedings of the 11th USENIX Conference on Operating Systems
Design and Implementation, OSDI’14, pages 165–181, Berkeley, CA, USA, 2014.
USENIX Association.

[36] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel. InkTag: Secure
Applications on an Untrusted Operating System. SIGPLAN Not., 48(4):265–
278, Mar. 2013.

[37] H. Krawczyk. "SIGMA: The ‘SIGn-and-MAc’ Approach to Authenticated Diffie-
Hellman and Its Use in the IKE Protocols", pages 400–425. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2003.

[38] H. Lee, H. Moon, D. Jang, K. Kim, J. Lee, Y. Paek, and B. B. Kang. KI-
Mon: A Hardware-assisted Event-triggered Monitoring Platform for Mutable
Kernel Object. In Presented as part of the 22nd USENIX Security Symposium
(USENIX Security 13), pages 511–526, Washington, D.C., 2013. USENIX.

[39] Y. Li, J. McCune, J. Newsome, A. Perrig, B. Baker, and W. Drewry. MiniBox:
A Two-way Sandbox for x86 Native Code. In Proceedings of the 2014 USENIX
Conference on USENIX Annual Technical Conference, USENIX ATC’14, pages
409–420, Berkeley, CA, USA, 2014. USENIX Association.

[40] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar. Innovative Instructions and Soft-
ware Model for Isolated Execution. In Proceedings of the 2Nd International
Workshop on Hardware and Architectural Support for Security and Privacy,
HASP ’13, pages 10:1–10:1, New York, NY, USA, 2013. ACM.

[41] H. Moon, H. Lee, J. Lee, K. Kim, Y. Paek, and B. B. Kang. Vigilare: To-
ward Snoop-based Kernel Integrity Monitor. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security, CCS ’12, pages 28–37,
New York, NY, USA, 2012. ACM.

[42] J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege, C. Huygens,
B. Preneel, I. Verbauwhede, and F. Piessens. Sancus: Low-cost Trustworthy
Extensible Networked Devices with a Zero-software Trusted Computing Base.
In Proceedings of the 22Nd USENIX Conference on Security, SEC’13, pages
479–494, Berkeley, CA, USA, 2013. USENIX Association.

[43] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and N. Modadugu. The
Ghost in the Browser Analysis of Web-based Malware. In Proceedings of the
First Conference on First Workshop on Hot Topics in Understanding Botnets,
HotBots’07, pages 4–4, Berkeley, CA, USA, 2007. USENIX Association.

[44] P. Stewin and I. Bystrov. "Understanding DMA Malware", pages 21–41.
Springer, Berlin, Heidelberg, 2013.

[45] B. Stock, S. Lekies, T. Mueller, P. Spiegel, and M. Johns. Precise Client-
side Protection against DOM-based Cross-Site Scripting. In 23rd USENIX

59

Bibliography

Security Symposium (USENIX Security 14), pages 655–670, San Diego, CA,
2014. USENIX Association.

[46] S. Weiser and M. Werner. SGXIO: Generic Trusted I/O Path for Intel SGX.
CoRR, abs/1701.01061, 2017.

[47] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka,
N. Narula, and N. Fullagar. Native Client: A Sandbox for Portable, Untrusted
x86 Native Code. Communications of the ACM, 53(1):91–99, 2010.

60

A
Appendix

This appendix contains all the additional information related to the thesis. The aim
of this chapter is to provide extra information that can be interesting for the reader
but is not necessary to comprehend the document. The following sections provide
more information related to topics mentioned in the document.

A.1 Remote attestation extended
The functionality of remote attestation is provided by the Intel SGX technology to
ensure the trust over a platform (platform will be used within this section to refer
to the device making use of the SGX software) running this technology. This is
an important feature for the actual situation of computers, where the exchange of
data and service provision over a network is important. Before explaining the full
process of remote attestation it is necessary to understand some relevant definitions
and setup requisites.

Root Provisioning Keys. Keys generated and stored by Intel used for
provisioning purposes. These keys are unique for each platform and are hardcoded
in the microprocessor during the fabrication process.

Root Sealing Keys. Keys generated but not stored by Intel used for seal-
ing purposes. These keys are unique for each platform and are hardcoded in the
microprocessor during the fabrication process.

Trusted Computing Base. The TCB is composed by the CPU and the
content inside its packages (hardware logic, microcode, registers, cache memory)
and some special SGX software components, such as the ones used for attestation,
quoting enclave and provisioning enclave.

Enhanced Privacy Identifier (EPID). EPID is the algorithm designed by
Intel for SGX attestations.

EPID Group Master Key. Key used by the Provisioning Service and the
platform in order to generate the Attestation key.

EPID Group Public Key. Key used by the Attestation Service in order to
verify the quote’s data.

Provisioning Service. Service offered by Intel in order to exchange the
information related to the remote attestation (Attestation key, TCB correctness
demonstration, etc.).

Attestation Service. Service offered by Intel in order to verify the Quote.
Attestation key. A cryptographic asymmetric private key used by the Quot-

ing enclave to sign the Quote.

I

A. Appendix

Report. The report is a structure that contains the two identities of the
enclave, attributes associated with the enclave, the trustworthiness of the hardware
TCB, a Message Authentication Code (MAC) tag and some additional and optional
information.

Quote. The quote is a similar structure as the Report that, instead of a
MAC value, contains a signature of the structure. This signature is done within the
Quoting enclave using the Attestation key.

Quoting enclave. A special SGX enclave completely focused to remote at-
testation. This enclave is the only one that has access to the Attestation key and
includes the required functionalities to generate the Quote from the Report.

Provisioning enclave. A special SGX enclave that focuses on the provision-
ing process.

The EPID algorithm is based on the Direct Anonymous Attestation (DAA)
algorithm [24]. It shares the privacy enhancing properties of DAA and adds a
revocation mode in order to avoid the usage of compromised keys and signatures.
This algorithm requires Intel to provide a full architecture of servers as explained
in [20]. Figure A.1 shows a representation of that architecture.

In this architecture, the Offline Key Generation facility is responsible for cre-
ating and storing the Root Provisioning Keys and the generation of the TCB verifi-
cation data and the EPID Master Keys that are passed to the Provisioning Service
for attestation purposes and the EPID Group Public Key that are passed to the At-
testation Service for verification purposes. The High Volume Manufacturing facility
is responsible for generating the Root Sealing Keys and hardcoding both, the Root
Provisioning Key and the Root Sealing Key into the Intel microprocessors.

A.1.1 Setup for remote attestation
The architecture created by Intel provides two services, Provisioning Service and
Attestation Service. In addition, it makes use of pairs of asymmetric keys (EPID
Group Master Key and EPID Group Public Key) divided into groups. Before any
remote attestation process can be performed, it is required that the SGX software is
setup for remote attestation. Therefore, the first time the SGX software is deployed
in the platform, the platform communicates with the Provisioning Service in order
to demonstrate that it is executing inside an enclave on an Intel platform with a
particular TCB. During the same process, the Attestation key is generated by the
Provisioning enclave in cooperation with the Provisioning Service as a derivation of
an EPID Group Master Key.

As a result, the data signed by the Attestation key can be verified by the
Attestation Service via the EPID Group Public Key of that particular group. The
reason for Intel to separate the master keys in groups is to allow the verification of
the data while ensuring the privacy of the platform. This means that the Attestation
Service is able to verify the Quote signed by the Attestation key using the particular
group’s EPID Group Public Key but is not able to link that data to a specific
member of the group.

On the other side of the remote attestation schema, the third party (named as
Service Provider in advance) that is willing to verify the correctness of the platform

II

A. Appendix

Figure A.1: SGX infrastructure for Enhanced Privacy Identifier (EPID) algorithm.
Image adapted from [20].

(the web application server in this project) has to obtain a signed certificate from
a recognized certificate authority and register it in order to get a service provider
ID (SPID) from Intel. This way, the service provider will be allowed to make use
of the Attestation Service provided by Intel. In addition to that, the third party
needs to deploy an attestation service that is able to follow the attestation process
as explained in the following Chapter A.1.2.

The remote attestation protocol is based on the Sigma protocol with small
differences. The Sigma protocol [37] that is used in Internet Key Exchange (IKE)
v1 and v2 makes use of Public Key Infrastructure (PKI) in both the client and
server side devices for authentication. On the other hand, Intel’s protocol keeps
the PKI in the service provider, while uses EPID for the authentication of the
platform. In addition, the service provider changes the RSA algorithm for the
Elliptic Curve Digital Signature Algorithm (ECDSA) to generate the key pair used
in the authentication part of the protocol and Elliptic Curve Diffie–Hellman (ECDH)
for the actual key exchange.

The architecture developed by Intel is a complex sum of parts that aims to pro-
vide the required security resources (keys, signatures, etc.) while providing privacy
and fairness. A complete explanation of each part would require a large explana-
tion. However, this report contains a simplified description of the EPID architecture
that provides the required information to properly understand the following content.
Therefore, the reader is encouraged to consult more specialized resources, such as [20]
and [16], in order to get more information about SGX.

III

A. Appendix

A.1.2 Remote attestation process
Once the SGX software is properly setup and the third party has fulfilled the reg-
istration and service deployment requisites, the resultant communication schema
looks like shown in Figure A.2. With all the parts that take place in the process,
the remote attestation process can be accomplished as follows.

Client Application

Enclave
Service Provider

Intel
Attestation

Service

Authenticated
channel

Verify
Enclave

Figure A.2: SGX remote attestation communication schema (high level view).
Image adapted from [5].

Remote Attestation makes use of a modified Sigma protocol to facilitate a
Diffie-Hellman Key Exchange (DHKE) protocol between the client and the server.
The shared key obtained from this exchange can be used to encrypt secrets to be
provisioned to the enclave. The client enclave would then be able to retrieve the
same key and use it to decrypt the secret. In order to achieve that and the platform
correctness verification, the communication schema shown in Figure A.3 should be
followed.

Quoting
Enclave

Application
Enclave

Client
Application

Service Provider
Remote Attestation

Service

Intel
Attestation

Service

Server sends challenge

Get extended GID

Send extended GID (msg0)

Initiate
Attestation

Get GID

Send Sigma s1[GID, …] (msg1)

Get SigRL

Send Sigma s2[SPID, SigRL, …] (msg2)

Get Quote

Send Sigma s3[Quote, …] (msg3)

Verify Quote

Provide secret (msg4)

Client request service

Respond (abort/success)

Figure A.3: SGX remote attestation communication schema (low level view).
Image adapted from [5].

First, the client starts the communication process with the service provider by
sending a service request message. To which, the service provider answers with a
challenge. At this point, the communications for the remote attestation process is
started and the following messages can be exchanged.

IV

A. Appendix

MSG0. In response to the challenge request, the client performs some steps to
build the content of the initial message in the remote attestation process. First, the
client initializes the Quoting Enclave, which accepts the service provider’s challenge
and initializes a DHKE protocol for the coming messages. Second, it requests the
Extended Group ID (GID) of the EPID to the Quoting Enclave. Third, the client
generates the body of the msg0 including the Extended GID. Last, it sends the msg0
to the service provider. Note: The format of the response to msg0 is delegated to
the service provider. Nevertheless, the service provider should verify the Extended
GID received and send an abort or success response based on the output of that
verification. The Attestation service only supports the value of zero for the EGID.

MSG1. Upon a success response from the service provider, the client initiates
the attestation process within the platform enclave. First, the enclave requests the
GID value to the Quoting enclave and makes use of the SGX functionalities to safely
calculate the client’s public key for the DHKE. Second, the enclave puts the GID
and the public key for the DHKE in the body of msg1. Last, the client sends the
msg1 to the service provider.

MSG2. Given the reception of msg1 from the client, the service provider per-
forms a number of tasks. First, it checks the values in the body of msg1. Second,
the service provider generates its own DHKE parameter. Third, it sends a query
to the Attestation Service to gather the Signature Revocation List (SigRL is a list
related to the signature based revocation mode added by Intel to the DAA algo-
rithm). Fourth, the service provider adds the DHKE parameter and the SigRL to
the body of msg2. Last, sends msg2 to the client.

MSG3. Once the client receives the msg2, the following tasks are performed.
First, it checks the SigRL and the signature of the service provider. Second, the
client gathers the Quote from the Quoting enclave. Third, ti adds the Quote to the
body of msg3. Last, the client sends msg3 to the service provider.

MSG4. Upon receiving msg3 from the client, the service provider first checks
the DHKE parameters and the enclave specific parameters embedded in the Quote.
Second, it forwards the Quote and signature to the Attestation Service for verifica-
tion. Third, upon a successful verification response from the Attestation Service, the
service provider builds the body of msg4 by adding the attestation status and some
optional values, such as a secret value. At this point, the DHKE protocol is finished
and both sides share a symmetric key, which allows the msg4 to be encrypted.

A.2 JSON for SecureJS
The following Table A.1 contains the list of allowed JSON keywords. In addition, the
table describes the functionality of each keyword and denotes the SecureJS modes in
which the keyword can be used. Listings A.1, A.2, A.3, A.4, and A.5 show examples
of the messages exchanged between the web-page and SecureJS.

1 {
2 " ENCRYPTION ": " Encryption of { JavaScript code;Main function } in

hexadecimal format ",
3 " SIGNATURE ": " Signature of { JavaScript code;Main function } in

hexadecimal format ",

V

A. Appendix

4 " VARIABLE ": [
5 {"TYPE":"int","ORDER":"0","VALUE":"User input variable 1"},
6 {"TYPE":"int","ORDER":"1","VALUE":"User input variable 2"}
7]
8 }

Listing A.1: JSON format message example for encryption mode with two
variables

1 {
2 " ENCRYPTION ": " Encryption of { JavaScript code;Main function } in

hexadecimal format ",
3 " SIGNATURE ": " Signature of { JavaScript code;Main function } in

hexadecimal format "
4 }

Listing A.2: JSON format message example for encryption mode with no variables

1 {
2 "VALUE": " Result value generated from the JavaScript execution in

plaintext format ",
3 " SIGNATURE ": " Signature of VALUE in hexadecimal format "
4 }

Listing A.3: JSON format response message example for signature mode

1 {
2 " ENCRYPTION ": " Encryption of the result value generated from the

JavaScript execution in hexadecimal format ",
3 " SIGNATURE ": " Signature of the result value (VALUE in singatue

mode) in hexadecimal format "
4 }

Listing A.4: JSON format response message example for encryption mode

1 {
2 "ERROR": "Error text"
3 }

Listing A.5: JSON format response error message example

Table A.1: Extended list of allowed JSON keywords, description and usage.
JSON keyword Reference Mode

VARIABLE The array that contains the variables Both modes (optional value)
CODE JavaScript code in plaintext Signature mode

SIGNATURE Signature of the CODE in hexadecimal format Both modes
or the signature of the result value from the JavaScript code

MAINFUNCTION Name of the main function of the CODE for the signature mode Signature mode
ENCRYPTION Encryption of the CODE in hexadecimal format Encryption mode

or the encryption of the result value from the JavaScript code
TYPE Type of a variable within the VARIABLE array Both modes

(mandatory if VARIABLE included)
ORDER Order of a variable within the VARIABLE array Both modes

(mandatory if VARIABLE included)
VALUE Value of a variable within the VARIABLE array Both modes

or the result value from the JavaScript code (mandatory if VARIABLE included)
ERROR Error message sent by the solution Both modes

VI

	List of Figures
	List of Tables
	List of Listings
	Introduction
	Goal of the project
	Attacker model
	Relevant work
	Contributions
	Structure of the thesis

	Background
	The reality of web applications' security
	Trust situation in web applications
	Goal of the project
	Intel SGX technology
	Remote attestation

	Chrome extensions
	Threat model and assumptions

	Related Work
	Haven
	MiniBox
	Sancus
	TrustJS
	Other related works

	Design
	SecureJS: the schematic representation
	Chrome extension
	Host application
	SGX enclave
	Cryptographic feature
	Remote attestation feature
	JavaScript execution feature

	Implementation
	SecureJS: the complete implementation
	Chrome extension
	Host application
	SGX enclave
	Cryptographic component
	Remote attestation component
	JavaScript component
	JSON allowed keywords

	Extra implementations

	Evaluation
	Performance evaluation
	Tests definition
	Encryption mode and signature mode setups
	Server-side NodeJS setup
	Client-side Chrome setup
	MuJS setup
	JavaScript code for testing
	Web-application server setup

	Runtime performance
	Macro-benchmark results
	Micro-benchmark results
	SecureJS vs TrustJS

	Memory performance

	Security evaluation: STRIDE
	STRIDE modeling for SecureJS
	Threat Nº 1
	Threat Nº 2
	Threat Nº 3
	Threat Nº 4
	Threat Nº 5
	Threat Nº 6
	Threat Nº 7
	Threat Nº 8
	Threat Nº 9
	Threat Nº 10
	Threat Nº 11
	Threat Nº 12

	STRIDE outcome

	Discussion
	Other approaches and limitations
	Discussion of the results
	Comparison between SecureJS and TrustJS
	Sustainability
	Ethics
	Future work

	Conclusion
	Bibliography
	Appendix
	Remote attestation extended
	Setup for remote attestation
	Remote attestation process

	JSON for SecureJS

