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Evolutionary voting games
CARL FREDRIKSSON
Department of Space, Earth and Environment
Chalmers University of Technology

Abstract

A voting game is a cooperative game that can be used as a model for political
elections. In such a model the players are political parties that have different amount
of votes, and the goal is to form a coalition that has a majority of all votes. The
winning coalition receives a budget to divide freely between its members, and the
players’ payoff is the amount of the budget they get. Players want to know how
much payoff they will receive before agreeing to join a coalition. This could lead
to an endless bargaining process, which is why I have formalized a simple process
that limits the actions of players. The goal of this thesis is to model an evolutionary
development of strategies for a voting game with a limited bargaining process, and
to analyze the results. Having a limited bargaining process makes it possible to also
model the game as a non-cooperative game, which allows the results to be analyzed
using solution concepts from both cooperative and non-cooperative game theory.

In the evolutionary development, long term stability of strategies is often observed.
In some of those cases a Nash equilibrium has formed, and we can predict that the
stability will last indefinitely. In the other cases there exists at least one better
strategy that eventually would be found and break the stability. When averaging
several resulting top strategies for the different player positions, we observe a vector
that resembles the Shapley values for those positions.

Keywords: Game theory, Cooperative game theory, Evolutionary game theory, Vot-
ing game, Replicator dynamics
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1

Introduction

1.1 Background

Game theory has two major sub fields called non-cooperative game theory and
cooperative game theory. The most studied sub field is non-cooperative game theory,
where one considers the individual actions of players who has no ability to form
binding contracts with other players. Cooperation can still occur, but has to be a
product of the players’ self interest. For example, in the infinitely iterated Prisoner’s
dilemma game, it is mutually beneficial for the two players to play strategies that
will result in both cooperating most of the time. Non-cooperative game theory
focuses on predicting the actions and resulting payoffs for individual players, as well
as analyzing Nash equilibria [3].

In cooperative game theory players can form binding contracts, which results in
coalitions of players. Coalitions will get payoffs depending on what members they
contain. The payoff can be freely divided between the members of the coalition.
Players normally want to know about the division of payoff before agreeing to enter
a coalition. The main objects of study in cooperative game theory are the formation
of coalitions and the possible payoff divisions. Instead of analyzing Nash equilibria,
other solution concepts such as the core and the Shapley value are studied. There
are many types of cooperative games, one of which are voting games. Voting games
can be used to model political parties that want to form a coalition that receives the
majority of the votes in an election. The winning coalition get to decide on how to
divide the a budget of money, and the other coalitions get nothing. The objective
for each player (political party) is to get as much of the payoff (budget) as possible.
Each party has a different amount of votes, and it is natural to assume that a party
that brings more votes to the coalition should get a bigger part of the payoff. The
notion that players who bring more value to coalition is one of the driving principles
for the cooperative solution concepts mentioned above [1],[3].

Evolutionary game theory is an application of game theory, where strategies are
treated as individuals in a population governed by dynamics inspired by Darwinian
evolution. It originated in 1973 when John Maynard Smith and George R. Price
used computer simulations to explain conflicts between animals [8]. Just like normal
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game theory, it can be divided into cooperational and non-cooperational variants.
Evolutionary non-cooperative game theory has been studied in many different con-
texts, for example in [4] and [2]. Evolutionary cooperative game theory is more rare,
but has been studied in [7].

The aim of this thesis is to study evolutionary dynamics of strategies for voting
games with a simple bargaining process to formalize how coalitions are formed. The
formalization allows us to study the games through the lens of both cooperative and
non-cooperative evolutionary game theory.

1.2 Objectives

The primary goal of this thesis is to identify and characterize successful strategies
in voting games, by using an evolutionary approach in combination with a simple
bargaining process. I will compare results from computer simulations with theo-
retical solution concepts from both cooperative and non-cooperative game theory.
The coalitions that are formed and how the payoff is divided will be compared with
cooperative solution concepts. The proposals that are given and how the players
are voting will be compared with non-cooperative solution concepts.

1.3 Method

By formalizing a coalition forming procedure, a cooperative game can be turned into
a non-cooperative game. In this thesis I use a very simple bargaining process where
players take turns proposing coalitions with payoff splits, and the proposed players
get to vote yes or no on the proposal. If all proposed players vote yes the coalition
is formed, the payoff is split according to the proposed split, and the game is over.
Each player has a finite amount of individual actions she can perform at any given
point, such as what to propose when it is your turn or what to vote when proposed.
Thus the game can be modeled as a non-cooperative game. We can still analyze the
game from the perspective of cooperative game theory, to see what coalitions form
and how the payoff is divided. As mentioned above I will consider both perspectives.

I have created a simulation environment using the Python programming language
and scientific programming packages such as NumPy. The simulation environment
lets the user run a specified amount of evolutionary simulations. Each run contains
a strategy population for each position in the voting game. Each position could
model a political party as in the example above, and has a corresponding ”voting
power”. Voting power would model the amount of voters that party brings to a
coalition. Each run will run for a specified number of iterations where the positions’
strategy populations are governed by evolutionary dynamics. The evolutionary dy-
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namics has three major components: Replicator dynamics inspired by the paper
from Eriksson and Lindgren about the multi-person Prisoner’s dilemma [2], removal
of dying strategies, and strategy mutations. After a simulation run data is saved to
be compared later with theory.

The simulation is limited in many ways. I only consider one very simple bargaining
process and the strategy space could be made more complex. With this in mind, a
possible avenue for future research could be to extend the simulation to be able to
model more complex behaviour.
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2

Theory

2.1 Game theory

I will start by explaining the general concept of game theory. I will then give a
brief introduction to non-cooperative game theory, followed by cooperative game
theory and evolutionary game theory. Most of the content of this chapter is heavily
inspired by Leyton-Brown and Shoham’s excellent book ”Essentials of Game Theory:
A Concise, Multidisciplinary Introduction” [3].

”Game theory is the mathematical study of interaction among independent, self-
interested agents” [3]. Game theory was initially developed for application in eco-
nomics, but has now been used in a wide variety of fields, including biology, political
science, and many more. When applying game theory to a real world problem, agents
are modeled as players in a game representing the real world scenario. There are
different ways to represent games, which will be discussed later.

Agents are often assumed to be rational profit-maximizers, which means that they
choose actions for the sole purpose of maximizing some quantity, such as money,
for themselves. This rationality assumption can be dubious when trying to model
human behaviour, since evidence from cognitive psychology, anthropology, evolu-
tionary biology, and neurology have shown that consumers rarely are completely
rational [5]. Even though this might be the case, game theory can still be used to
model a wide range of real world applications. The rationality assumption can be
approximate or we can study systems from a higher level of abstraction where the
rationality assumption is more accurate, for example on the level of companies in
an economy.

2.2 Non-cooperative game theory

The non-cooperative sub-field of game theory models games where players can not
form binding coalitions with other players. Each player has a corresponding payoff
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function which takes the state of the game and maps to a real valued payoff. The
object for each player is to maximize that payoff. The name non-cooperative can be
misleading since cooperation can still occur, but it has to be an emergent feature of
the players’ self-interest, rather than a built in feature of the game studied.

2.2.1 Normal-form games

The most fundamental ways to represent a game is in normal form. There are other
representations, but most of them can be reduced to normal form.

The definition of a finite, n-person normal-form game is a tuple (N,A, p), where

• N is a finite set of n players, indexed by i

• A = A1 × · · · × An, where Ai is a finite set of actions available to player i.
Each vector a = (a1, . . . , an) ∈ A is called an action profile

• p = (p1, . . . , pn) where pi : A 7→ R is a real valued payoff function for player i

2.2.2 Prisoner’s dilemma

One of the most iconic normal form games studied in game theory is the Prisoner’s
dilemma game. I will use this as an example to illustrate what a normal-form game
can look like. One of the ways to represent a normal-form game is by a n dimensional
matrix. Usually in a two player game, each row corresponds to an action that player
1 can take, and each column corresponds to an action that player 2 can take. The
cells show the payoff vector for that action profile, with the first value being the
payoff for player 1 and the second for player 2. Below is a matrix representation of
the Prisoner’s dilemma game, given that c > a > d > b.

Table 2.1: Matrix representation of the Prisoner’s dilemma game
C D

C a,a b,c
D c,b d,d

With some values for a, b, c, d:

Table 2.2: Matrix representation of the Prisoner’s dilemma game
C D

C 3,3 0,5
D 5,0 1,1
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The ”C” action stands for cooperate, and the ”D” action stands for defect. If two
players play the game once, it is easily seen that regardless of what the other player
chooses, one should always play the defect action. If the other player cooperates,
you will gain a payoff of 5 which of course is greater than the 3 you would gain by
playing cooperate as well. If the other player defects, you will gain a payoff of 1
which of course is greater than the 0 you would gain by cooperating.

The game becomes more interesting if played for a number of rounds while accu-
mulating payoff. It is obviously mutually beneficial for the players to both choose
cooperate rather than both choosing defect, and when the game is played for more
than one round there is time for players to establish cooperation. Even if players
establish cooperation, it is very fragile since when a player expect another of co-
operating, he can of course be tempted to switch to defect in order to exploit the
other. These ideas will be explored in more detail in later sections.

2.2.3 Strategies

So far we have only discussed the actions that players can take. Strategies for how
to choose actions can be very simple or more complex, depending on the game. In
a game played once, the most simple strategy is just deciding on an action and
playing it. We call this kind of strategy a pure strategy. A strategy can also be
probabilistic, so that each available action has a given probability of being selected.
We call this kind of strategy a mixed strategy. A pure strategy is a special case
of a mixed strategy with the probability of choosing some action set to 100%. An
example of a normal-form game where it is intuitive to play a mixed strategy is
the classic rock-paper-scissors game. The game can be summarized by: rock beats
scissors, scissors beat paper, and paper beats rock. All actions draw vs themselves.
The game can be represented in matrix form as follows:

Table 2.3: Matrix representation of the Rock-paper-scissors game
Rock Paper Scissors

Rock 0,0 -1,1 1,-1
Paper 1,-1 0,0 -1,1
Scissors -1,1 1,-1 0,0

If more than one round is played a pure strategy is easily exploited, and most
people usually resort to using a mixed strategy (even if they do not have any exact
probabilities in mind). In fact all strategies that does not play each action with the
same probability 1/3 can be exploited. For example if an opponent plays rock with
probability 2/3 and the other actions with probability 1/6 each, then you can play
paper as a pure strategy and win 2/3 of the time, lose 1/6 of the time, and draw
1/6 of the time.

In an iterated game strategies can be more complex than in one round games. In
particular strategies can be a function of the action history for all players. A simple
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example of such as a strategy is the ”tit-for-tat” strategy in the iterated Prisoner’s
dilemma game. When playing this strategy the player starts off by cooperating, and
then continues by mirroring the opponent’s last action. This strategy attempts to
cooperate with the opponent while being quick to change if the opponent is trying
to exploit by defecting.

The set of all strategies available for player i is denoted Si. A vector of chosen
strategies for the n players s = (s1, . . . , sn) is usually called a strategy profile.

2.2.4 Nash equilibrium

The most influential solution concept in non-cooperative game theory is the Nash
equilibrium. Before we can properly define it I will introduce the concept of a
best response strategy. A best response strategy is a strategy that maximizes the
expected payoff for a player, given that the strategies for the other players are
known. More formally, if s−i is a strategy profile that contains strategies for all
players except player i, then a best response strategy for player i to s−i is a strategy
s∗i ∈ Si that satisfies:

pi(s
∗
i , s−i) ≥ pi(si, s−i), ∀si ∈ Si (2.1)

where pi(si, s−i) is the expected payoff for strategy si playing versus the strategy
profile s−i.

A Nash equilibrium is a strategy profile where no player would want to change
his action if he knew what strategies the others were playing. More formally s =
(s1, . . . , sn) is a Nash equilibrium if, for all players i, si is a best response strategy
to s−i. A Nash equilibrium is called strict if all best response strategies are unique,
and weak if this is not the case. Strict Nash equilibria are only possible when all
strategies in the strategy profile are pure strategies.

As an example I will start with the one round Prisoner’s dilemma game. In this
game the only Nash equilibrium is s = (D,D). We can confirm that this is a Nash
equilibrium by freezing player 2’s action as defect, and checking the utility for the
available actions for player 1. We only have two available actions to check and since
s = (C,D) will net a payoff of 0 to player 1, while s = (D,D) will give him a
payoff of 1 we can conclude that defect is the best response to defect. Since the pure
strategy profile space is very small we can try the other pure strategy profiles and
rule them out. In all other pure profiles one of the players is not playing his best
response strategy. There are no non-pure Nash equilibria since defect is the best
response to both cooperate and defect.

In the iterated Prisoner’s dilemma game it becomes more interesting. If the number
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of rounds is known and finite we still have only one Nash equilibrium characterized
by s = (D,D) in every round. This can be seen by a technique called backward
induction. Backward induction works by looking at the best responses for the last
round and working backwards. It is clearly mutually beneficial for both players to
cooperate the majority of the rounds, rather than both defecting. The problem is
that since the last round can be seen as a one round Prisoner’s dilemma game, it
is a better strategy to do some cooperation with your opponent except in the last
round. But since it is now known that both should play defect in the last round,
we can treat the next to last round the same. Stepping backwards we end up with
both players defecting for all rounds.

If the number of rounds is unknown or infinite we have many more Nash equilibria.
This is because backward induction no longer works since there is no last round to
start at. Then, s = (D,D) is still a Nash equilibrium, but now there are others
as well. For example the strategy profile where both players play the tit-for-tat
strategy described above.

Nash equilibria got their name from John Nash who made fundamental contributions
to game theory. One of his many important theorems, says that every game with a
finite number of players and action profiles has at least one Nash equilibrium. [6]

2.3 Cooperative game theory

In the cooperative sub-field of game theory we look at games from another level
of abstraction. Players can now form binding coalitions with each other, and each
coalition has a payoff associated with it. In this section I make the assumption that
payoffs can be freely distributed between coalition members. Players naturally want
to know how much of the payoff they are going to get before joining a coalition. In
cooperative game theory we mainly study how coalitions are formed and how they
divide their payoff, instead of the individual actions we study in non-cooperative
game theory. There seems to be some differences in naming cooperative game theory;
for example, some call it coalitional game theory instead [3].

2.3.1 Coalitional games

Similarly to how we have the normal-form representation of a game in non-cooperative
game theory, in the cooperative sub-field we have coalitional games which can be
defined as follows:

The definition of a coalitional game with transferable payoffs is a tuple (N, v), where:

• N is a finite set of n players, indexed by i

8



• v : 2N 7→ R maps each coalition S ⊆ N to a real valued payoff that can
be distributed between the coalition members. We call v(S) the payoff or
characteristic function and assume that v(∅) = 0.

2.3.2 Voting game

A voting game is a type of coalitional game where there is a subset of winning
coalitions W ⊆ 2N . Each winning coalition gets the same payoff P , which I call
the available payoff, and the other coalitions get no payoff. More formally v(S1) =
v(S2) = P for S1, S2 ∈ W and v(S) = 0 for S /∈ W . We also have that only
one winning coalition can be formed at a time, or more formally if S ∈ W then
N \ S /∈ W .

I will use political parties in an election as an example. Let there be four political
parties A, B, C, and D. The parties have 45, 25, 15, and 15 votes respectively, and
the goal is to create a coalition that gets a majority (at least 51) of the votes. The
winning coalition will get to decide how to spend a budget of P = 6 billion dollars.
I chose available payoff P = 6 since it is the smallest number divisible by 2 and
3, which is a property that makes for nice numbers in solution concepts later on.
Having a small P will be of great interest when the method is introduced, since it
reduces the available strategy space which in turn reduces computational time in
the evolutionary simulation.

To create a coalition with a majority you need either A plus at least one of the oth-
ers, or (B,C,D) together. Thus the winning coalitions are (A,B,C,D), (A,B,C),
(A,B,D), (A,C,D), (A,B), (A,C), (A,D), and (B,C,D). The structure of the
winning coalitions is visualized in figure 2.1.

Figure 2.1: Structure of the winning coalitions in the voting game

Notice that even though B brings more votes to a coalition than C or D, it has the
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same value in the sense you can swap it for either C or D and the resulting coalition
will still be winning or still be losing. This notion of a player’s value in terms of
how it can be swapped with other players will be important when defining solution
concepts later.

2.3.3 Analyzing coalitional games

As mentioned previously the topics of study in cooperative game theory are which
coalitions will form and how they divide their payoff. When analyzing coalitional
games it is common to assume that the grand coalition will form, which means the
coalition containing all players. The focus of analysis then becomes how the payoff
is divided within the grand coalition. One such payoff division can be called a payoff
profile. One of the reasons for the assumption that the grand coalition will form, is
that many of the most widely studied games are super-additive games.

A super-additive coalitional game has the property that for each S, T ⊂ N if S∩T =
∅, then v(S ∪ T ) ≥ v(S) + v(T ). Which means that the grand coalition will be the
coalition that receives the greatest payoff, and thus will likely be formed. This
reasoning does not hold for our voting game. The voting game that was defined
above is in fact super-additive, but v(S ∪ T ) ≥ v(S) + v(T ) can be changed to
v(S ∪ T ) = v(S) + v(T ). This means that the grand coalition will get the highest
payoff, but all smaller winning coalitions will get the same payoff. Since players are
self interested they will most likely prefer the smaller winning coalitions since this
would mean less players to share the payoff with.

The solution concepts that will be defined in sections below do assume that the
grand coalition will be formed. This might mean that they are less interesting for
the analysis of our voting game. Alternatively we might look at a smaller coalition
as the grand coalition, but with the players that is not in the coalition receiving
a payoff of zero. We will return to this discussion when analyzing results in later
chapters.

In the following sections on solution concepts, let pi(N, v) be the payoff that player
i receives by the current payoff profile.

2.3.4 The Shapley value

The Shapley value is the result of trying to find a solution concept that captures
fairness. In this context we can define a notion of fairness by defining three axioms a
payoff profile should follow in order to be fair. Let us first start by defining the term
interchangeable. Two players i, j are said to be interchangable if for all coalitions
S that does not contain either i or j, v(S ∪ {i}) = v(S ∪ {j}). This is the case for
players C, B, and D in our voting game. Now for the three axioms:
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• Symmetry: All interchangeable players should receive the same payoff. More
formally, for any v, if i and j are interchangeable then pi(N, v) = pj(N, v).

• Dummy player: A player i is called a dummy player if i contributes the
same amount to any coalition as i could get alone. Which means, ∀S : i /∈ S,
v(S∪{i})−v(S) = v({i}). A Dummy player should receive a payoff of exactly
the amount he can get on his own. More formally, for any v, if i is a dummy
player then pi(N, v) = v({i}).

• Additivity: Consider two different coalitional games (N, v1), (N, v2) with two
different characteristic functions v1 and v2, but with the same set of players
N . If we use these games to create a new game where each coalition S gets
the payoff v1(S) + v2(S), then the players’ payoffs in each coalition should be
the sum of the payoffs they would have gotten in the separate games. More
formally, for any two v1 and v2, and for any player i we have pi(N, v1 + v2) =
pi(N, v1) + pi(N, v2).

If we accept these axioms then there exists a unique payoff profile which is called
the Shapley value. The Shapley value of player i is defined by:

pi(N, v) =
1

|N |!
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!
[
v(S ∪ {i})− v(S)

]
(2.2)

This expression can seem complicated at first glance. What it is doing is adding
the payoff contribution from player i, v(S ∪ {i}) − v(S), for all different sequences
we can create the grand coalition starting from an empty set. The factor |S|! is the
number of different ways we can order the set S. The factor (|N | − |S| − 1)! is the
number of different ways we can order the remaining players after player i has been
added. Dividing by the factor |N |!, which is the number of different ways we can
order the grand coalition, makes this the average marginal contribution for player i.

Let us compute the Shapley value for our voting game. Since we know that B,
C, and D are interchangeable, we can simplify the computations considerably. For
example, adding either B, C, or D first has the same result, so we can compute
for one of the cases and then multiply that term with 3. The same can be said for
(B,C), (B,D), and (C,D). Let us start by computing the Shapley value for player
A, who contributes the available 6 payoff to any coalition except (B,C,D) where it
contributes 0.
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pA =
1

4!

[
(3)1!(4− 1− 1)!(6− 0) + (3)2!(4− 2− 1)!(6− 0) + (1)3!(4− 3− 1)!(6− 6)

]
=

1

24

[
36 + 36 + 0

]
= 3

(2.3)

Now for players B, C, and D. Since they are interchangeable we only need to do the
computations for one of them. This time I ommit the terms where no contribution
is made.

pB =
1

4!

[
1!(4− 1− 1)!(6− 0) + 2!(4− 2− 1)!(6− 0)

]
=

1

24

[
12 + 12

]
= 1

(2.4)

Thus the Shapley values are (3, 1, 1, 1), which add up to the available 6 payoff. Let
us also compute the Shapley value for a version of the game where the majority
requirement is greater, with 80 votes required for a coalition to win. This version
of the game will be of special interest when the next solution concept is intro-
duced. The coalitions that achieve at least 80 votes are (A,B,C,D), (A,B,C), and
(A,B,D). Observe that both A and B are in all winning coalitions, making them
interchangeable in this version, while C and D are still interchangeable. Let us start
by computing the Shapley value for player A, who contributes the available 6 payoff
to the coalitions (B,C,D), (B,C), and (B,D).

pA =
1

4!

[
(2)2!(4− 2− 1)!(6− 0) + (1)3!(4− 3− 1)!(6− 0)

]
=

1

24

[
24 + 36

]
= 2.5

(2.5)

Since the players A and B are interchangeable the Shapley value for player B is
the same as for player A. Now let us compute the Shapley value for player C, who
contributes available 6 payoff to the coalition (A,B).

pC =
1

4!

[
(1)2!(4− 2− 1)!(6− 0)

]
=

1

24

[
12
]

= 0.5

(2.6)
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Since the players C and D are interchangeable the Shapley value for player D is the
same as for player C. Thus the Shapley values for the greater majority version of
the game are (2.5, 2.5, 0.5, 0.5) which of course also add up to the available 6 payoff.

2.3.5 The Core

The core is a solution concept that aims to capture stability, which the Shapley
value ignored in favor of fairness. Fairness might have no meaning to self-interested
players, and the grand coalition might never be formed. For example in the voting
game defined earlier, player A can form a coalition with anyone to create a winning
coalition. There is no motivation to include more players than needed to have a
winning coalition, since this would mean more players to share the payoff with.

There are games where self-interested players can be incentivized to form the grand
coalition, but it is always dependent on the payoff profile. The core is the set of
payoff profiles that makes players want to form the grand coalition. A payoff profile
is in the core if and only if there is no incentive for any sub-coalitions to break away
from the grand coalition. Which means that the sum of payoffs for any sub-coalition
S ⊆ N must be at least as big as what they could share among themselves if they
broke away from the grand coalition. In other words, a payoff profile p is in the core
of a coalitional game (N, v) if and only if

∑
i∈S

pi ≥ v(S) for ∀S ⊆ N (2.7)

Since the core is a solution concept that aims to capture stability in coalitional
games, it is similar to Nash equilibria in non-cooperative game theory. However
unlike the guaranteed existence of at least one mixed-strategy Nash equilibria in
normal-form games, there is no guarantee that the core is non-empty for coalitional
games. In our voting game where a majority of at least 51 votes is needed does have
an empty core. As we have discussed earlier, there is no incentive to form the grand
coalition since smaller winning coalitions get the same payoff with less players to
share it with. If (B,C,D) get less than all of the payoff they have an incentive to
break away from the grand coalition, and if A gets zero payoff then he can give the
least compensated of (B,C,D) more than he received previously to make him want
to join A instead. This back and forth can go on forever if the coalition forming is
not limited in some way, more on this later.

If the majority requirement is changed to 80 votes instead, the core is no longer
empty. Now the winning coalitions are (A,B,C,D), (A,B,C), and (A,B,D). Any
payoff profile that distributes all of the payoff between A and B is now in the core.
This is because both A and B are needed to form a winning coalition, and C and
D can do nothing on their own. It will be a race to the bottom for the payoffs of C
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and D since for any amount of payoff given to one of them, the other would bargain
for less in order to be the one chosen for the winning coalition.

2.4 Evolutionary game theory

As mentioned in the introduction, evolutionary game theory is an application of
game theory where strategies are treated as individuals in a population and are sub-
jected to evolutionary dynamics. The evolutionary dynamics aim to mimic evolution
in nature, where individuals that are well adapted to their environment has a larger
chance to spread their genes. We use fitness as a term for the measure of how well
an individual is adjusted to environment. The genes of individuals with low fitness
will eventually go extinct, and mutations bring new genes for nature to play with.
Mutations often result in worse genes, but every now and then a mutation occurs
that result in a gene which gives an individual a higher fitness than its surroundings.
This individual will then have a higher chance to spread the new gene, and this is
how nature creates species that are well adjusted to their environment.

In the context of game theory we can use evolutionary dynamics as a kind of op-
timization process. Strategies are often initialized randomly, and then we simulate
the dynamics that will eventually lead to better strategies. There is a fundamental
exploration versus exploitation trade-off in optimization which is also relevant in
this context. Exploitation comes from the higher chance of passing on genes for
strategies with high fitness. Exploration comes from the mutations that provide
new strategies. We can tinker with different parameters in order to influence this
trade-off in one way or the other. The focus of evolutionary game theory is often
on how prominent strategies change over time and not on only on the resulting
strategies when a simulation is finished.

2.4.1 Replicator dynamics

One way to model exploitation is with replicator dynamics. When using replicator
dynamics we do not model strategies as individuals, instead we have a population
of strategies with associated proportions. The proportion of a strategy is a real
number between 0 and 1 which denote how big a part of the population it is, and
the sum of all strategies’ proportions should always be 1. In order to use replicator
dynamics we have to define how to compute fitness for strategies. Let S be the
set of all strategies currently in the population indexed by i, and x the vector of
corresponding proportions. Replicator dynamics can be used with any normal-form
game with a finite amount of players, and let us use a two player game as an example.
Let pi(j) be the payoff strategy i gets when playing versus strategy j. We can then
define the fitness fi(S) for strategy i as follows:
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fi(S) =
∑
j∈S

xjpi(j) (2.8)

The equation can be modified for games with more players by summing over all
combinations of opposing strategies, exchanging xj for the probability of playing
against the current combination, and making pi a function of more variables. We
also need to compute the average fitness:

favg(S) =
∑
i∈S

xifi(S) (2.9)

We can then compute the growth rate for each strategy using the replicator equation:

dxi

dt
= rxi(fi(S)− favg(S)) (2.10)

Where r is a constant parameter. Strategy proportions are then updated using their
growth rates, and strategies with proportions that are too small gets removed.

2.4.2 Mutations

Mutations are used in order to explore the strategy space. There are many ways to
do mutations. Usually a strategy is randomly selected with probabilities equal to
the strategy proportions. The selected strategy is then used as a starting point for
a new, slightly changed strategy that will be added to the population.
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3

Method

The aim of the thesis is to study evolutionary dynamics of strategies in the voting
game that has been described earlier in the thesis, with the addition of a limited
bargaining process. I will give a description of the game and the bargaining process
as a reminder. There are four players A, B, C, and D, that have 45, 25, 15, and
15 votes respectively. The objective of the game is to form a coalition that has at
least 51 of the votes. There can only be one winning coalition at a time, and the
possible winning coalitions are (A,B,C,D), (A,B,C), (A,B,D), (A,C,D), (A,B),
(A,C), (A,D), and (B,C,D). The winning coalition gets to divide a payoff of 6
freely between its members. The goal for any individual player is to be a part of the
winning coalition and get as much of the available payoff as possible. I have chosen
to study this voting game since it is a simple coalitional game with some interesting
dynamics described below. It is also quite easy to find real world scenarios where
this game is applicable. Maybe most naturally occurring in politics where different
parties tries to get a majority in an election.

3.1 Bargaining process

Players naturally want to know how much of the payoff they are going to get before
agreeing to join a coalition. This could lead to an infinite bargaining process. If B,
C, and D agree to some payoff split, then A can offer the least paid player more
than he would get before, and thus convince him to join A instead. Then the other
players could offer that player even more to convince him to come back, but then
player A can offer someone else more than they would get, and the cycle continues.
Thus there is a need to limit the bargaining process. For most real world scenarios
that this game could model, there are naturally occurring limiting factors such as
a limited amount of time before an election is held. Since different scenarios could
lead to model a bargaining process in very different ways I have decided to keep it
as simple as possible.

The bargaining process works as follows. Players take turns in proposing a winning
coalition and payoff split each, while the proposed players in that coalition gets to
vote on if they find their share of the payoff good enough. If all players vote yes,
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the bargaining process is over and no more proposals are given. If a proposal was
agreed upon then that coalition is formed and the players get their shares of the
payoff. If no proposal is agreed upon after all players have had a chance to propose,
then the available payoff is wasted and all players get nothing. After introducing
this bargaining process, the game can be analyzed using both cooperative and non-
cooperative game theory. Since the bargaining process limits each players actions the
game can be represented as a normal-form game. We can still keep the coalitional
game representation and forget about the bargaining process when analyzing the
game from a higher level of abstraction.

3.2 Evolutionary simulation

The game will be played in the context of an evolutionary process which I will
describe below. Some of the interesting questions are what kind of strategies will
be formed, what coalitions will be accepted, and if the population converges to any
long term stable strategies.

3.2.1 Strategies

There are two different aspects of the game that needs to be kept in mind when
modelling strategies: what to propose and what to vote on other players’ proposals.
These aspects could be modelled with more or less complexity. I decided on a pretty
simple approach to keep the computational complexity lower as well as making it
easier to analyze the results.

I chose to model the proposal part as a pair of two proposals, each with a cor-
responding probability. This is a simple way to allow for mixed strategies, albeit
limited mixed strategies. The probabilities must be made sure to always sum to
one, even when strategies are mutated. I limited the granularity of probabilities
to a single decimal point to once again limit the size of strategy space, this means
that 0.1 is the smallest non-zero probability associated with a proposal. Each pro-
posal contains a mapping from players to integer payoffs, where each player in the
mapping is a part of the proposed coalition. In my implementation proposals must
be of winning coalitions. I made this choice early to make the implementation eas-
ier and for the simulation to result in decent strategies quicker, since proposing a
non-winning coalition obviously is a sub-optimal strategy.

I chose to model the voting part as a single integer I call minimum payoff, which
is the least amount of payoff a player will vote yes on. Any amount that is equal
to or higher than the minimum payoff will always get a yes vote, and any lower
amount a no vote. Below is an example of a strategy with minimum payoff 2, and
two different proposals with probabilities 0.3 and 0.7 respectively. The proposal
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with 0.3 probability of being selected is {A : 4, B : 2}, which proposes to form
the winning coalition (A,B), with player A given 4 payoff, and player B given 2.
The proposal with 0.7 probability of being selected is {B : 2, C : 2, D : 2}, which
proposes to form the winning coalition (B,C,D), with each player given an equal
payoff of 2.

2, ({A : 4, B : 2}, {B : 2, C : 2, D : 2}), (0.3, 0.7)

I chose to work with only integers, both for proposals and minimum payoffs. The
biggest reasons are that it is easier to implement and it reduces the size of the
strategy space, but it is a limitation of the model. Another limitation is that I do
not take any proposal history into account. Both minimum payoffs and proposals
could be functions that take the history as an input, to allow for more complex
strategies. This change could be very interesting, especially when combined with a
more complex bargaining process.

Another choice I made was to separate strategy populations into different popula-
tions for each position A, B, C, and D. The strategy example above seems like a
reasonable strategy for a strategy playing as B. Both proposals gives B non-zero
payoff, and the proposed coalitions does not contain any unnecessary players for
them to be winning coalitions.

I did not start with separate strategy populations. Initially all strategies played for
all positions. The first version of a strategy model was a minimum payoff and a
single proposal. I quickly realized that this was inadequate when strategies played
for all positions, since a good strategy for playing as A is not a good strategy when
playing as B, C, or D. This lead me to make the strategy model more complicated.
Each strategy got a minimum payoff for each position, as well as a proposal for each
position. This meant that more reasonable strategies could be formed with different
proposals and minimum payoffs for different positions, but the results were hard to
analyze, since the evolutionary dynamics could make a strategy dominant in the
population even if the strategy contained irrational proposals or minimum payoffs
for one of the positions. One of the irrational types of proposals were proposals that
contained coalitions without the player itself. This could happen since the fitness of
a strategy was averaged over all positions.

This led me to separating the strategy populations, since now strategies gets much
more punished when playing irrationally, and can not rely on being good for other
positions. The first version of separated strategies did not allow for mixed strategies.
I decided to give strategies the option of being mixed, since mixed strategies are
prominent in most games. As mentioned in earlier every game is guaranteed to have
a mixed strategy Nash equilibria, but not guaranteed to have any pure strategy
equilibria. Strategies can still be pure, which is the case when one of the proposal
probabilities is 1, or when the proposals are identical.
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3.2.2 Size of strategy space

Knowing the size of the strategy space is of interest when evaluating whether some
functions are computationally feasible, as well as when analyzing results. This
subsection will be devoted to computing this size. Let us denote the strategy space
by S where |S| is the size of this space. Let us also denote the set of all minimum
payoffs by M , the set of all proposals by P , and the set of all proposal probabilities
by Q. Then we can compute |S| as follows:

|S| = |M ||P |2|Q| (3.1)

To make the computation simpler I divide the problem into smaller parts. Since
minimum payoffs are integers from 0 to 6 we have:

|M | = 7 (3.2)

The proposal probabilities must sum to 1, thus one of the proposal probabilities can
be inferred from the other. This fact combined with the knowledge that proposal
probabilities only increase or decrease in increments of 0.1 gives us:

|Q| = 11 (3.3)

The number of proposals is trickier to compute. Let us denote all proposals involving
two players by P2, three players by P3, and four players by P4. We can split the
computation into three parts to make it simpler:

|P | = |P2|+ |P3|+ |P4| (3.4)

Now let us denote the set of all winning coalitions involving two players by C2, three
players by C3, and four players by C4. Let us also denote the set of all ways to divide
the available payoff for coalitions involving two players by D2, three players by D3,
and four players by D4. Since only proposals of winning coalitions are allowed we
have:

|P2| = |C2||D2| = 3× 7 = 21

|P3| = |C3||D3| = 4× 28 = 112

|P4| = |C4||D4| = 1× 84 = 84

(3.5)

Thus:
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|P | = |P2|+ |P3|+ |P4| = 21 + 112 + 84 = 217 (3.6)

Bringing it all together:

|S| = |M ||P |2|Q| = 7× 2172 × 11 = 3625853 (3.7)

3.2.3 Initialization

The simulation has a number of different parameters that are initialized before it
starts:

• num iterations: The number of iterations the simulation is run before ter-
minating. A normal value is 100000.

• max num strategies: The maximum number of strategies that each po-
sition’s strategy population can contain. This parameter is used to lower
computational complexity. A normal value is 5.

• num starting strategies: The number of random strategies that are initial-
ized for each position’s strategy population. This parameter must be lower
than or equal to max num strategies. A normal value is 5.

• r: This is the constant parameter used in the replicator equation (equation
2.10). A normal value is 0.2.

• min proportion: The lowest proportion of a strategy before it is removed.
This parameter set to a small value greater than zero. Removing strategies
when their proportions are less than or equal to zero can cause removal of
low fitness strategies to be very slow. This is because the replicator equation
(equation 2.10) contains a proportion factor. A normal value is 0.005.

• num mutations per iteration: The number of mutations that occur in each
strategy population every iteration. A normal value is 1.

• new mutation proportion: How much proportion should mutated strate-
gies start with. A normal value is 0.01.

• available payoff : It is the payoff a winning coalition gets to divide between
its members. As in the description of the voting game, I have used 6.

• voting powers: The number of votes the players (A,B,C,D) bring to a
coalition. As in the description of the voting game, I have used (45, 25, 15, 15).
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• voting power needed: The number of votes (voting power) needed for a
coalition to be winning. I have used 51 and 80.

After the parameters are loaded the four strategy populations are initialized with
random strategies. Random strategies have random minimum payoffs, random pro-
posals, and random proposal probabilities. A random minimum payoff is simply a
random integer between 0 and 6. A random proposal is created by first selecting one
of the winning coalitions at random, then randomizing a valid payoff split between
the players in that coalition. The first random proposal probability is created by
generating a random integer between 0 and 10 and dividing that number by 10. The
second proposal probability is simply the result of subtracting the number 1 with
the first probability.

3.2.4 Computing fitness

After the initialization steps the simulation starts the iterating process. What hap-
pens first in each iteration is the computation of fitness values for each strategy, as
well as computing the average fitness. The fitness values are computed by iterating
over every combination of strategies from the different populations. For every such
combination every combination of proposal indices iterated through, and one game
is played with the current strategy combination and proposal indices combination.
By proposal indices I mean a vector containing ones and zeros that denote which of
the two proposals will be selected by each position.

One game being played means that strategies go through the bargaining process for
each proposal order, and payoffs are accumulated and averaged over the number
of such orders. There could be that no coalition gets accepted. In that case no
payoffs are accumulated. Resulting payoffs from a game is not added to the fitness
immediately. Instead the payoff of a strategy is multiplied by the probability of
facing the current opposing strategies. This probability is the multiplied proportions
of the opponents. Since all combinations of proposal indices are played, we have to
also multiply with the probability of seeing the current proposal index combination.
This probability is the multiplied proposal probabilities associated with the proposal
indices.

Let SB, SC , and SD be the sets of strategies currently in populations B, C, and D.
Let C be the set of all combinations of proposal indices and P (c) the probability
of combination c. Let xj, xk, and xl be the proportions of strategies j, k, l, and
pi,A(j, k, l) the payoff received by strategy i when playing position A versus strategies
j, k, l in positions B,C,D. Then the fitness for a strategy i in population A can be
computed by:

fi,A =
∑
j∈SB

∑
k∈SC

∑
l∈SD

∑
c∈C

xjxkxlP (c)pi,A(j, k, l) (3.8)
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I realize that this description might be hard to follow, and I will provide a simplified
pseudo code implementation of the fitness computing function to hopefully make it
clearer. The strategies given as data to the algorithm is a vector of four vectors, one
for each position. This means that strategies[0] is the strategy population vector
for position A, strategies[1] is the strategy population vector for position B, and
so on. Similarly, the proportions given as data is a vector of vectors with the same
dimensions as strategies. Every element in proportions is the proportion for the
corresponding strategy in strategies.
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Algorithm 1: Compute Fitness

Data: strategies, proportions
Result: Fitness vector of vectors with the same dimensions as strategies, and

average fitness vector of dimension 4
Initialize fitness and average fitness zeros for all elements
Initialize proposal index permutations to all binary strings of length 4
for strategy i in strategies[0] (population A) do

for strategy j in strategies[1] (population B) do
for strategy k in strategies[2] (population C) do

for strategy l in strategies[3] (population D) do
players = (strategies[0][i], strategies[1][j], strategies[2][k],
strategies[3][l])

for proposal indices in proposal index permutations do
compute proposal indices probability
if proposal indices probability 6= 0 then

payoffs = play game(players)

proportion product = proportions[0][i] * proportions[1][j] *
proportions[2][k] * proportions[3][l]

fitness[0][i] += payoffs[0] * (proportion product /
proportions[0][i]) * proposal indices probability

fitness[1][j] += payoffs[1] * (proportion product /
proportions[1][j]) * proposal indices probability

fitness[2][k] += payoffs[2] * (proportion product /
proportions[2][k]) * proposal indices probability

fitness[3][l] += payoffs[3] * (proportion product /
proportions[3][l]) * proposal indices probability

end

end

end

end

end

end
for positions p do

average fitness[p] = dot product(fitness[p], proportions[p])
end

An important implementation detail is that results from games are stored, which
leads to greatly reducing computational complexity. This is one of the implementa-
tion details that is not shown in the pseudo code above.
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3.2.5 Replicator dynamics

After the fitness is computed for all strategies, it is used for the replicator dynamics.
The replicator dynamics affect the strategy populations separately, but in the same
way. The proportion growth rates are computed for each strategy according to the
replicator equation (equation 2.10). The proportions are then updated by addition
with their respective growth rates. After updating the proportions all strategies that
have less proportion than the parameter min proportion are removed. The propor-
tions can sum to a number different from one, thus the last step of the replicator
dynamics is to normalize the proportions by simply dividing element wise with the
sum of the proportions.

3.2.6 Mutations

After the replicator dynamics has affected strategy populations, it is time for muta-
tions to give populations new strategies to work with. Mutations are done separately
for the different populations, just like the replicator dynamics. Each population
does a number num mutations per iteration of mutations each iteration, which is
normally set to one. There are two cases before a mutation is performed. Either the
strategy population is at its limit, meaning that the number of strategies is equal
to the parameter max num strategies, or there is space for new strategies.

If the number of strategies is less than max num strategies, then a strategy is ran-
domly selected, weighted by proportion. In other words, if there are two strategies
in a population, one with 0.8 proportion and the other with 0.2 proportion, then
the first strategy would be selected 80% of the time, and the other 20% of the time.
The selected strategy will then be mutated and the new strategy will be given a
proportion equal to the parameter new mutation proportion, which is subtracted
from the selected strategy’s proportion.

If the number of strategies is equal to max num strategies, then the strategy with the
least amount of proportion will be automatically selected. The selected strategy will
then be mutated, and the result of the mutation will replace the selected strategy,
completely taking over its proportion.

Now I will explain how a mutation works. First a property of the selected strategy
is randomly selected. This is done by uniform random selection between mutating
the minimum payoff, the proposals, or the proposal probabilities.

If the minimum payoff is selected there are a few cases to consider. If the minimum
payoff is zero then it is automatically changed to one. If it is equal to the available
payoff it is automatically changed to the available payoff minus one. If none of these
conditions hold, the minimum payoff gets changed by either adding or subtracting
one, which is selected randomly with equal probability.
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If the proposals are selected then one of the proposals is randomly selected with
equal probability. The selected proposal has its payoff split mutated, or is replaced
by a completely new random proposal with equal probability. If the payoff split is
selected then two players of the proposed coalition are randomly selected and one
payoff is given from one player to another. If one of the players gets all of the
available payoff, then that player automatically is the one giving. Otherwise the
giving player is randomly selected with equal probability.

If the proposal probabilities are selected then 0.1 probability is taken from one of the
proposals and given to the other. Similarly to mutating the payoff split of a proposal,
if one of the probabilities is one, then that probability automatically gives to the
other. Otherwise the giving player is randomly selected with equal probability.

3.2.7 Note on randomness

The model underwent many iterations, and one of aspects that changed the most
is how fitness is calculated. I started out with sampling, where a number of games
were played with randomly selected strategies. This made fitness vary significantly
between calculations, even with relatively large sample sizes. Strategies were ran-
domly selected weighted by their proportions, thus the fitness for strategies with
small proportions varied the most.

Having fitness values vary from randomness leads to replicator dynamics affecting
proportions in the wrong way. This leads to problems when analyzing population
statistics over time, since it is hard to know if oscillations come from evolutionary
dynamics or randomness in fitness values. This lead to computing fitness by playing
all combinations of strategies instead.

Even after playing all combination of strategies there were still some randomness in
fitness calculations. One of the issues were that proposal orders were randomized
instead of playing all of them and averaging. Another issue was that when mixed
strategies first were implemented, the proposals were selected randomly, weighted
by their proposal probability. I eventually removed all randomness from fitness
calculations, which lead to larger computational complexity. This made it important
to optimize the code in different ways, such as storing game results. In the end it
provided a big benefit, since one can now be certain that oscillations in strategy
populations comes from randomness in the evolutionary dynamics and not from
varying fitness values.

25



4

Results

In this chapter I am going to show results from the evolutionary simulation, and
compare those results with some of the theory. I have run simulations with many
different parameter settings, but I will focus on simulations with two different sets
of parameters. The sets share every parameter setting except voting power needed,
which will take on the values 51 and 80. I choose to try different values for this
parameter as it affects the theoretical solution concepts in an interesting way. The
parameter settings that I have used are:

• num iterations: 100000.

• max num strategies: 5.

• num starting strategies: 5.

• r: 0.2.

• min proportion: 0.005.

• num mutations per iteration: 1.

• new mutation proportion: 0.01.

• available payoff : 6.

• voting powers: (45, 25, 15, 15).

• voting power needed: 51 or 80, which will be specified.

I chose these parameter values based on trial and error, where I looked for reasonable
running time, and how long it took to converge to relatively stable populations.

In almost all of the simulations the populations eventually converged to pure strate-
gies. A reasonable explanation for this phenomenon is that mixed, non-pure strate-
gies are mostly used in games in order to avoid getting exploited by opponents.
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Because of its cooperative structure there is no real way of exploiting others in the
voting game, instead there is incentive to find cooperation with a sub-set of the
other players. Cooperation is established in the form of aligning ones minimum
payoff with others’ proposals, and vice versa.

There are different ways to visualize the results of a simulation. One of the ways
is to plot the percentage of wins each feasible coalition gets over time. Feasible
coalitions are the set of coalitions that can result from playing a game. This means
that it is the set including all coalitions that result in a majority with the empty
coalition also included. I will use these plots to visualize simulation results often,
since it is a good way to characterize the prominent strategies of the populations. A
limitation of this type of plot is that it captures what proposals are accepted, but it
does not show the minimum payoffs or payoff splits by its own. To get more details
I will combine the plots with text data that describes the strategies fully.

4.1 Simple majority (voting power needed = 51)

In this section I show results from simulations where a winning coalition needs to
have at least 51% of the votes (which is the same as having 51 voting power).

The results can be divided into two different categories, one where a stable state of
winning coalitions are found and lasts for the rest of the simulation, and another
where this is not the case. In the latter category, periods of stability are observed,
but there are multiple different stable periods in the same simulation. Between these
periods there are big changes that usually happens quickly. In all simulations, after
a small amount of iterations, a game never results in the empty coalition. In other
words all games result in some proposal getting all yes votes after a short amount
of evolutionary iterations. A sort of cooperation is observed, were minimum payoffs
and proposals for different positions align in a way such that most proposals get
accepted immediately.

4.1.1 Stable states

There are different types of stable states the simulation can end up in. I am going
to show two of them in this subsection. The divisions of coalition wins that are
shown in the examples below are not sufficient requirements for stability, but when
stability is observed these are two of a low number of possibilities.
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First example

The first example is a state where one coalition wins 1/2 of the games and two other
coalitions both win 1/4 of the games. A plot of a simulation where such a stable
state is established can be seen in figure 4.1, where coalition (A,C) wins 1/2 of the
time, (A,B) wins 1/4 of the time and (B,C,D) wins the remaining 1/4 of the time.

Figure 4.1: Plot of proportion of wins for each coalition over time, for a simulation
that ends up in a stable state.

All of the coalitions without unnecessary players, which is (A,B), (A,C), (A,D),
and (B,C,D), can be a part of the trio of stable winning coalitions. It is typical that
the prominent strategies in position A proposes a coalition that include itself and one
of the other positions, and the prominent strategies for that position reciprocate by
proposing the same coalition. The payoff splits and minimum payoffs are such that
both proposals gets immediately accepted, which leads to that coalition winning 1/2
of the games, since player A or the other player are the first to propose in 1/2 of
the games.

The other positions has strategies that propose coalitions including itself and either
position A or the other positions in coalition (B,C,D). The payoff splits and mini-
mum payoffs are such that the proposals immediately gets accepted, leading to the
respective coalitions winning 1/4 of the time each.

In figure 4.1 we can see that (A,C) wins 1/2 of the time, thus we can deduce that
both positions A and C has strategies that propose this coalition. We can also see
that (A,B) and (B,C,D) wins 1/4 of the games each, which means that position
B has strategies that propose (A,B), and position D has strategies that propose
(B,C,D).
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To give a more detailed view into the strategies for each position, I will display the
resulting strategies after the final iteration of the simulation that produced the plot
in figure 4.1:

Table 4.1: Position A
Min Payoff Proposal1 Proposal2 Prob1 Prob2 Proportion Fitness
4 A:1, B:3, C:2 A:5, C:1 0.0 1.0 0.48285 3.27484
4 A:1, B:2, C:3 A:5, C:1 0.0 1.0 0.42234 3.27484
4 A:4, B:2 A:5, C:1 0.0 1.0 0.07292 3.27484
2 A:1, B:3, C:2 A:5, C:1 0.0 1.0 0.01381 3.27484
4 A:0, B:3, C:3 A:5, C:1 0.0 1.0 0.00808 3.27484

Table 4.2: Position B
Min Payoff Proposal1 Proposal2 Prob1 Prob2 Proportion Fitness
2 A:0, B:2, D:4 A:4, B:2 0.0 1.0 0.53885 0.99792
2 A:0, B:1, D:5 A:4, B:2 0.0 1.0 0.40760 0.99792
2 A:1, B:2, D:3 A:4, B:2 0.0 1.0 0.03651 0.99792
2 A:6, B:0 A:4, B:2 0.0 1.0 0.01176 0.99792
3 A:0, B:1, D:5 A:4, B:2 0.0 1.0 0.00527 0.67224

Table 4.3: Position C
Min Payoff Proposal1 Proposal2 Prob1 Prob2 Proportion Fitness
1 A:0, B:2, C:2, D:2 A:4, C:2 0.0 1.0 0.85648 0.99999
1 A:3, B:1, C:2, D:0 A:4, C:2 0.0 1.0 0.07561 0.99999
1 A:4, D:3 A:4, C:2 0.0 1.0 0.04255 0.99999
3 A:3, B:3, C:0, D:0 A:4, C:2 0.0 1.0 0.01671 0.99999
1 B:1, C:3, D:2 A:4, C:2 0.0 1.0 0.00865 0.99999

Table 4.4: Position D
Min Payoff Proposal1 Proposal2 Prob1 Prob2 Proportion Fitness
2 B:2, C:1, D:3 A:5, C:1 1.0 0.0 0.69576 0.73357
2 B:2, C:1, D:3 A:0, B:2, C:4 1.0 0.0 0.19002 0.73357
2 B:2, C:1, D:3 A:5, B:0, C:1 1.0 0.0 0.05617 0.73357
2 B:2, C:1, D:3 A:5, B:0, C:1 1.0 0.0 0.05170 0.73357
3 B:3, C:0, D:3 A:0, B:2, C:4 1.0 0.0 0.00635 0.00000

Notice that each position has evolved to playing essentially one strategy. There are
tiny deviations that does not affect fitness, except for a few outliers that affect fitness
very little. Every position has only pure strategies since the proposal probabilities
are either zero or one. This means that only one of the proposals are relevant when it
comes to computing fitness. Thus most strategies for a given position are essentially
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the same strategy. For example look at table 4.1, which displays strategies for
position A. We can see that the second proposal is the only one that is proposed,
and each strategy has the same second proposal. Thus the differences in the first
proposal does not matter for the current fitness calculations, and the only currently
relevant difference between strategies is that the fourth strategy has a different
minimum payoff than the others. This strategy still has the same fitness as the
others, since there are no relevant proposals from other positions that allocates less
than 4 payoff to A.

We can see that a sort of cooperation between positions is established. Notice
that the relevant proposal from position A, (A : 5, C : 1), is aligned with the
minimum payoffs for position C which is 1 for all strategies except for one strategy
with very low proportion. The relevant proposal from position C, (A : 4, C : 2),
is aligned with the minimum payoffs for position A. Similar alignment between
proposals and minimum payoffs can be seen for the other positions. Position B
proposes (A : 4, B : 2) which gives A exactly the minimum payoffs most of position
A demands. Position D proposes (B : 2, C : 1, D : 3) which aligns with the minimum
payoffs for both positions B and C.

Second example

Another type of stable state is a state where the four coalitions that does not contain
unnecessary players ((A,B), (A,C), (A,D), and (B,C,D)), win the game equally
often, and no other coalition ever wins. In other words, 1/4 of the games result in
one of the four coalitions, 1/4 of the games in another, and so on. An example of
such a state can be seen in figure 4.2.

Figure 4.2: Plot of proportion of wins for each coalition over time, for a simulation
that ends up in a stable state.

30



I will display the resulting strategies after the final iteration of the simulation that
produced the plot in figure 4.2:

Table 4.5: Position A
Min Payoff Proposal1 Proposal2 Prob1 Prob2 Proportion Fitness
4 A:5, C:1 A:5, C:1 0.8 0.2 0.79309 3.25835
4 A:5, C:1 A:5, C:1 0.6 0.4 0.11239 3.25835
4 A:5, C:1 A:5, C:1 0.7 0.3 0.05697 3.25835
3 A:5, C:1 A:5, C:1 0.6 0.4 0.03130 3.25835
4 A:6, C:0 A:5, C:1 0.8 0.2 0.00625 2.79296

Table 4.6: Position B
Min Payoff Proposal1 Proposal2 Prob1 Prob2 Proportion Fitness
1 A:3, B:3 A:4, B:2 0.0 1.0 0.80358 0.75060
1 A:2, B:4 A:4, B:2 0.0 1.0 0.08465 0.75060
0 A:3, B:3 A:4, B:2 0.0 1.0 0.07517 0.75060
1 A:5, D:1 A:4, B:2 0.0 1.0 0.02773 0.75060
0 A:3, B:3 A:4, B:2 0.1 0.9 0.00888 0.71079

Table 4.7: Position C
Min Payoff Proposal1 Proposal2 Prob1 Prob2 Proportion Fitness
1 A:2, B:3, C:1 B:1, C:2, D:3 0.0 1.0 0.79285 0.74651
1 A:2, B:4, C:0 B:1, C:2, D:3 0.0 1.0 0.16416 0.74651
1 A:2, C:4 B:1, C:2, D:3 0.0 1.0 0.02273 0.74651
1 A:5, B:1, C:0, D:0 B:1, C:2, D:3 0.0 1.0 0.01358 0.74651
1 A:3, B:2, C:1 B:1, C:2, D:3 0.0 1.0 0.00668 0.74651

Table 4.8: Position D
Min Payoff Proposal1 Proposal2 Prob1 Prob2 Proportion Fitness
3 A:4, D:2 A:3, C:3 1.0 0.0 0.75801 1.25246
2 A:4, D:2 A:3, C:3 1.0 0.0 0.10631 1.25246
3 A:4, D:2 A:2, C:4 1.0 0.0 0.08956 1.25246
3 A:4, D:2 A:3, C:1, D:2 1.0 0.0 0.03824 1.25246
4 A:4, D:2 A:3, C:3 1.0 0.0 0.00788 0.66863

Again we can see that the strategy populations has evolved to essentially a single
pure strategy per position. Even though the proposal probabilities for position A
are not ones and zeros, the proposals are the same so the probabilities does not
matter. There is a strategy for each position that differs from the rest in fitness, but
those strategies all have less fitness than the others and are about to get replaced.
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Notice that again the proposals and minimum payoffs are aligned between positions,
such that every proposal immediately gets accepted. Since every position proposes
a different coalition, we can see that this leads to 1/4 of games resulting in those
coalitions winning, as seen in figure 4.2.

4.1.2 Unstable states

Some of the simulations does not settle into stable states that holds for the remainder
of the iterations. An example of such a simulation produced the plot in figure 4.3.

Figure 4.3: Plot of proportion of wins for each coalition over time, for a simulation
that does not end up in a stable state.

Observe that there are long periods of stability, but that in the end there is a big
change. The coalitions are moving towards 1/2, 1/4, and 1/4 of wins each similarly
to the first example of a stable state, and might have stayed there if the simulation
continued. I will show the final strategies of the simulation:

Table 4.9: Position A
Min Payoff Proposal1 Proposal2 Prob1 Prob2 Proportion Fitness
4 A:0, D:6 A:4, D:2 0.0 1.0 0.81773 3.99992
4 A:3, B:2, C:1 A:4, D:2 0.0 1.0 0.11625 3.99992
4 B:4, C:0, D:2 A:4, D:2 0.0 1.0 0.03174 3.99992
3 A:0, D:6 A:4, D:2 0.0 1.0 0.02689 3.99986
5 A:0, D:6 A:4, D:2 0.0 1.0 0.00739 3.99992
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Table 4.10: Position B
Min Payoff Proposal1 Proposal2 Prob1 Prob2 Proportion Fitness
4 A:0, C:6 A:4, B:2 0.0 1.0 0.65520 0.51220
1 B:5, C:1, D:0 A:4, B:2 0.0 1.0 0.25641 0.51221
5 A:0, C:6 A:4, B:2 0.0 1.0 0.05098 0.51220
2 A:0, C:6 A:4, B:2 0.0 1.0 0.03196 0.51221
4 A:0, C:6 A:4, B:2 0.1 0.9 0.00545 0.51220

Table 4.11: Position C
Min Payoff Proposal1 Proposal2 Prob1 Prob2 Proportion Fitness
4 A:4, C:2 A:5, D:1 0.9 0.1 0.86005 0.44679
4 A:4, C:2 A:5, D:1 1.0 0.0 0.08312 0.49643
4 A:4, C:2 A:5, D:1 0.8 0.2 0.03578 0.39714
5 A:4, C:2 A:5, D:1 0.9 0.1 0.01270 0.44679
3 A:4, C:2 A:5, D:1 0.9 0.1 0.00834 0.44679

Table 4.12: Position D
Min Payoff Proposal1 Proposal2 Prob1 Prob2 Proportion Fitness
2 A:4, D:2 A:3, B:2, D:1 1.0 0.0 0.70879 1.03890
2 A:4, D:2 A:3, B:3 1.0 0.0 0.25627 1.03890
2 A:4, D:2 A:2, B:4, C:0 1.0 0.0 0.01655 1.03890
2 A:4, D:2 A:1, D:5 1.0 0.0 0.01044 1.03890
2 A:4, D:2 A:3, B:3 0.9 0.1 0.00794 1.00567

Notice that fitness values are largely the same within positions as seen in the stable
examples, this time however there are significant differences for position C. This
difference in fitness leads to changes in proportions, which in turn explains the
instability in coalition wins we observe in figure 4.3.

The fact that the simulation had long periods of stability that eventually changed,
opens up the question of the actual long term stability of the examples of stable
states in the previous subsection. This is one of the questions that will be discussed
in the next subsection.

4.1.3 Comparison with theory

Cooperative game theory

I will start by comparing the results with solution concepts from cooperative game
theory. The core is empty so of course we cannot observe any results relevant to
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this concept. The Shapley value is not observed as a proposal in any results. This
is natural since the Shapley value aims to capture fairness, which is a concept that
the the fitness maximizing evolutionary dynamics does not explicitly care about. As
mentioned earlier, strategies have no incentive to involve more players than necessary
in proposals, which leads to the grand coalition never forming.

However, when the final fitness values are averaged over simulations an interesting
result is observed. I accumulated the final fitness values of 30 simulations for the
top strategy of each position and normalized. The result was

(3.85218, 0.70165, 0.71548, 0.73550) (4.1)

for the positions (A,B,C,D), which we can compare to the Shapley value (3, 1, 1, 1).
It is natural that we observe greater fitness values for position A, since it is a part
of more winning coalitions. It is also natural that fitness values for positions B, C,
and D are approximately the same, since the positions are interchangeable when
it comes to forming winning coalitions. It is reasonable to assume that the values
for B, C, and D would get even closer to each other if we averaged over a greater
number of simulations. The reason for not running more simulations is that they
take a long time to finish.

Non-cooperative game theory

I have raised the question about the actual long term stability of the examples of
seemingly stable states. To answer this question non-cooperative game theory is of
greater relevance, more specifically the solution concept Nash equilibrium. If the
prevalent strategies for every population is forming a Nash equilibrium then none of
these strategies has any incentive to change, since it means that they can not get a
higher fitness than they currently have. In other words, no mutation can occur that
has a higher fitness, which means that no mutation can take over and become the
prevalent strategy in a population.

Note that populations could be stable for a long time even if the prevalent strategies
does not form a Nash equilibrium. There might be very few better strategies, or
mutations might not be able to create the better strategies, since it might take many
mutations on the way to the better strategy and the mutations might not survive
on the way. Considering how mutations work and the size of the strategy space, the
vast majority of possible strategies will never be tried.

To check if the populations are in a Nash equilibrium, I will test all possible strategies
for every position, one at a time, while the strategies for the other positions remains
the same. If a strategy is found that gets a higher fitness than any of the current
strategies, then we can conclude that the prevalent strategies does not form a Nash
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equilibrium. If no such strategy is found we can conclude that they do form a Nash
equilibrium and predict that populations will be stable in the long run.

Let us start with the first example of a stable state, where the final strategies
resulted from the simulation that produced the plot in figure 4.1. I found that not
all positions played strategies that were best response strategies. Position B should
switch to a strategy that proposes (B : 3, C : 1, D : 2) as a pure strategy instead of
the current proposal (A : 4, B : 2). The new proposal will not always be accepted
since some of the strategies for positions C and D have minimum payoffs that are too
high, but those strategies have a very small proportion, and the new proposal will
be accepted enough of the time to make the better payoff split worth it. If position
B changed to this proposal its fitness would be 1.22131 which is better than the
fitness of the current prevalent strategies 0.99792. Thus the prevalent strategies are
not forming a Nash equilibrium, and the populations would lose their stability as
soon as position B got a mutation with the proposal (B : 3, C : 1, D : 2) with a
sufficiently high corresponding proposal probability.

Now let us analyze the second example of a stable state, where the final strategies
resulted from the simulation that produced the plot in figure 4.2. Once again there
is no Nash equilibrium. Position D should switch to a strategy that proposes (B :
1, C : 1, D : 4) as a pure strategy. This proposal will always get accepted since the
minimum payoffs are either 0 or 1 for the strategies in positions B and C. Changing
to this proposal would result in a fitness value of 1.75344, instead of the old value
1.25246.

4.2 Greater majority (voting power needed = 80)

In this section I show results from simulations where a winning coalition needs to
have at least 80% of the votes (which is the same as having 80 voting power).

For this version of the game there are only three coalitions that achieve a suffi-
cient majority. Those coalitions are (A,B,C), (A,B,D), and (A,B,C,D). As one
might expect the coalition (A,B,C,D) is never observed in the results, just like
the coalitions with unnecessary players in the simple majority game version. The
empty coalition also does not win a significant amount of games after a few evo-
lutionary iterations. This leaves the coalitions (A,B,C), and (A,B,D) which all
results involve.

The majority of simulations end up with 1/2 of all games being won by (A,B,C)
and the other 1/2 by (A,B,D). A plot of such a simulation can be seen in figure
4.4.
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Figure 4.4: Plot of proportion of wins for each coalition over time, for a simulation
with a greater majority requirement.

I will show the final strategies for the simulation that produced the plot in figure
4.4:

Table 4.13: Position A
Min Payoff Proposal1 Proposal2 Prob1 Prob2 Proportion Fitness
4 A:5, B:1, C:0, D:0 A:5, B:1, C:0 0.3 0.7 0.90692 3.99996
4 A:4, B:1, C:0, D:1 A:5, B:1, C:0 0.3 0.7 0.04275 3.99996
4 A:5, B:1, C:0, D:0 A:5, B:1, C:0 0.4 0.6 0.02823 3.99996
4 A:5, B:1, C:0, D:0 A:5, B:1, C:0 0.2 0.8 0.01210 3.99996
5 A:5, B:1, C:0, D:0 A:5, B:1, C:0 0.2 0.8 0.01000 0.00000

Table 4.14: Position B
Min Payoff Proposal1 Proposal2 Prob1 Prob2 Proportion Fitness
1 A:3, B:3, C:0, D:0 A:3, B:2, D:1 0.3 0.7 0.53134 0.98999
1 A:5, B:1, C:0 A:4, B:2, D:0 0.2 0.8 0.28182 0.98999
1 A:3, B:3, C:0, D:0 A:4, B:2, D:0 0.3 0.7 0.09901 0.98999
1 A:3, B:3, C:0, D:0 A:4, B:2, D:0 0.2 0.8 0.08140 0.98999
1 A:5, B:1, C:0, D:0 A:3, B:2, D:1 0.3 0.7 0.00643 0.98999
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Table 4.15: Position C
Min Payoff Proposal1 Proposal2 Prob1 Prob2 Proportion Fitness
1 A:4, B:1, C:1 A:1, B:4, C:0, D:1 1.0 0.0 0.86605 0.49500
4 A:4, B:1, C:1 A:3, B:2, D:1 1.0 0.0 0.06488 0.49500
2 A:4, B:1, C:1 A:1, B:4, C:0, D:1 1.0 0.0 0.04803 0.49500
1 A:4, B:1, C:1 A:5, B:0, C:1, D:0 1.0 0.0 0.01203 0.49500
1 A:4, B:1, C:1 A:0, B:4, C:1, D:1 1.0 0.0 0.00901 0.49500

Table 4.16: Position D
Min Payoff Proposal1 Proposal2 Prob1 Prob2 Proportion Fitness
1 A:4, B:1, D:1 A:4, B:1, D:1 0.4 0.6 0.40166 0.49500
1 A:4, B:1, D:1 A:4, B:1, D:1 0.2 0.8 0.31420 0.49500
1 A:4, B:1, D:1 A:4, B:1, D:1 0.3 0.7 0.23461 0.49500
2 A:4, B:1, D:1 A:4, B:1, D:1 0.4 0.6 0.04352 0.49500
1 A:4, B:1, D:1 A:4, B:1, D:1 0.1 0.9 0.00600 0.49500

Observe that no proposals from positions A or B are accepted, but that the proposals
from positions C and D are immediately accepted. This phenomenon is observed
in almost all simulations, with position C always proposing the coalition (A,B,C),
and position D the coalition (A,B,D). The positions C and D always proposes
to give themselves 1 of the payoff, with A and B getting the rest. All possible
splits between A and B of the remaining 5 payoff are observed. Thus (A,B,C) and
(A,B,D) gets accepted approximately 1/2 of the games each, with positions C and
D both receiving approximately 0.5 fitness. Fitness for positions A and B take on
values between 1 and 4.

A plausible explanation for the phenomenon of simulations resulting in proposals
from A and B that never are accepted, is that since players A and B is a part of every
winning coalition, it is not as important for them to have their proposals accepted.
They can simply wait for players C and D to give proposals, since C and D have a
great incentive to form proposals that will get accepted with themselves included.
Thus it is less important what players A and B proposes, and more important for
them to have a minimum payoff that is as large as possible, but small enough such
that they accept the proposals from C and D.

4.2.1 Comparison with theory

Cooperative game theory

For this version of the game the core is not empty, but still no accepted proposals are
in the core. There is a reasonable explanation for this. I believe that the reason is
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the proposals are limited to integer payoff splits in my model. There is no incentive
for players C or D to accept proposals that give them 0 payoff, since this would give
them the same fitness as not being part of any coalition. Remember that the reason
for players C and D to receive zero payoff in the core, is that they are interchangeable
and only one of them is needed to form a winning coalition. This leads to a race
to the bottom where C and D will try to accept a little less payoff than the other
in order to be a part of the winning coalition. Since the smallest non zero payoff is
1 in this model, this is where they end up. If real numbers where allowed I believe
that the race to bottom would continue and the players would try to get less and
less payoff for every iteration of the simulation. Their payoffs would get closer and
closer to zero but never exactly zero.

The Shapley value is not observed in any accepted proposals for the same reasons
as in the simple majority version. I averaged final fitness values of 30 simulations
for the top strategies of each position, as I did for the simple majority version. The
result was

(2.19685, 2.75991, 0.49972, 0.53202) (4.2)

for the positions (A,B,C,D), which does resemble the Shapley value (2.5, 2.5, 0.5, 0.5).
I believe that the average fitness values for the interchangeable positions would get
even closer as the number of simulations is increased.

Non-cooperative game theory

I used the same method as for the simple majority version in order to check whether
the resulting prevalent strategies forms a Nash equilibrium, for the simulation that
produced the plot in figure 4.4. This time I found that all prevalent strategies where
best response strategies to each other. Thus the prevalent strategies for each position
does form a Nash equilibrium, and we can predict that the observed stability will
last in the long term.
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5

Conclusion

5.1 Summary

During the course of this thesis I have studied different aspects of game theory,
modelled and built an evolutionary simulation for a voting game, and analyzed
results from running the simulation.

In the analysis I focused on two different versions of the game, with simple and
greater majority requirements. In all simulations a form of cooperation occurred,
where strategies aligned their minimum payoffs to other positions proposals and vice
versa. Even though mixed strategies were allowed, strategies eventually converged
to playing pure strategies.

Stable states that lasted until the end of the simulation were found in the majority
of simulations. Some of those states could be guaranteed to continue by noting
that the prevalent strategies for each population formed a Nash equilibrium. Other
stable states could still last a long time when a very specific mutation was needed
to break the stability, since the strategy space is large.

None of the described cooperative solution concepts could be seen in proposals.
However when averaging the final fitness values for the top strategies of each position,
a vector that resembled the Shapley value emerged. The resemblance was stronger
in the greater majority version than in the simple majority version of the game.

5.2 Future research

The model has many limitations. One limitation is that only integer values are
allowed in proposals and minimum payoffs. Another is the limited granularity of
proposal probabilities. Removing some of the limitations and expanding the model
could be interesting. The bargaining process could be made more complex in order
to better fit some real world scenario. The minimum payoff could be changed to an
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arbitrarily complex voting function that determines whether to accept a proposal
or not.

It would be interesting to build a similar, but probably more complex model, tailored
to some real world scenario in order to explore if such a model could be used to
predict behaviour in the real world. In many relevant real world scenarios the
players do not only concern themselves with how much of the available payoff they
receive. In political elections the ideologies of the parties is also factor. This could
be modelled by letting players have more complex payoff and voting functions that
take both coalitions and payoff splits as input.
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