
Improving landfill monitoring programs
with the aid of geoelectrical - imaging techniques
and geographical information systems
Master’s Thesis in the Master Degree Programme, Civil Engineering

KEVIN HINE

Department of Civil and Environmental Engineering
Division of GeoEngineering
Engineering Geology Research Group
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2005
Master’s Thesis 2005:22

Distributed Web-Crawler
Master of Science Thesis in Computer Science: Algorithms,
Languages and Logic

Hans Bjerkander and Erik Karlsson

Department of Computer Science and Engineering
Chalmers University of Technology
Gothenburg, Sweden, 21/04/2013

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial pur-
pose make it accessible on the Internet. The Author warrants that he/she is the author
to the Work, and warrants that the Work does not contain text, pictures or other mate-
rial that violates copyright law.
The Author shall, when transferring the rights of the Work to a third party (for example
a publisher or a company), acknowledge the third party about this agreement. If the
Author has signed a copyright agreement with a third party regarding the Work, the
Author warrants hereby that he/she has obtained any necessary permission from this
third party to let Chalmers University of Technology and University of Gothenburg store
the Work electronically and make it accessible on the Internet.

Distributed Web-Crawler

HANS BJERKANDER
ERIK KARLSSON

©HANS BJERKANDER, October 26, 2013
©ERIK KARLSSON, October 26, 2013

Examiner: ERLAND HOLMSTRÖM

Chalmers University of Technology
Department of Computer Science & Engineering
SE-412 96 Göteborg
Sweden
Telephone +46 (0)31-772 1000

Cover: abstraction of the distributed workload

Deparment of Computer Science & Engineering
Göteborg, Sweden, October 26, 2013

Abstract

This thesis investigates possible improvements in distributed web-crawlers. Web-crawling
is the cornerstone of search-engines and a well defined part of Internet technology. Due
to the size of the Web, it is important that a web-crawler is fast and efficient, since a
web-crawler should be able to find the interesting sites before they change or disappear.
The thesis will focus on crawler distribution concerning modularity, fault-tolerance and
group membership services. The download order of crawlers will also be covered, since
this greatly influences the efficiency of a crawler. In addition to the theoretical basis of
the thesis, a prototype has been constructed in Java. The prototype is efficient, mod-
ular, fault-tolerant and configurable. The result from the thesis indicates that using a
membership service is a good way to distribute a crawler and conclusively, the thesis also
demonstrate a way to improve the crawling order compared to a breadth-first ordering.

Sammanfatting

Denna uppsats undersöker möjligheten för förbättringar i distribuerade web-crawlers (s̊a
kallade spindlar). Web-crawlers är en fundamental del av sökmotorer och är ett väl
utforskat omr̊ade inom internetteknologin. Eftersom storleken p̊a Internet är enorm är
det viktigt för web-crawlers att vara effektiva och snabba, detta för att hitta relevant
data innan data ändras eller försvinner. Uppsatsen fokuserar p̊a distribuering av en
web-crawler i fälten av modulärt, felt̊aligt och s̊a kallade group membership tjänster.
Uppsatsen fokuserar ocks̊a p̊a nerladdningsförloppet hos web-crawlers d̊a det har en stor
p̊averkan p̊a effektiviteten av web-crawlern. Utöver den teoretiska delen i den här upp-
satsen har en prototyp skrivits i programspr̊aket Java. Prototypen är effektiv, modulär,
felt̊alig och konfigurerbar. Resultatet av uppsatsen visar att användning av s̊a kallade
group membership tjänster är en bra metod för att distribuera en web-crawler. Slutligen
p̊avisar även uppsatsen en metod för att förbättra nerladdningsordningen.

Acknowledgments

The work was conducted in collaboration with Findwise AB and we would like to express
our gratitude to all Findwise employees and especially our supervisor Johan Sjöberg. We
would also like to thank our examiner Erland Holmström at Chalmers.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Goal & Purpose . 2
1.3 Limitations . 2

2 Analysis 3
2.1 Distribution architecture . 3
2.2 Group Membership Service . 4
2.3 Realization of the distribution . 7
2.4 Distribution of work . 9
2.5 Scalability of node members . 10
2.6 Filetypes . 11
2.7 Ordering . 13
2.8 Robot Exclusion Protocol . 14
2.9 Etiquette . 15
2.10 Database . 16
2.11 Indexing server . 16

3 System Overview 21

4 Benchmarking 29
4.1 Benchmark with multiple servers . 30
4.2 Ordering benchmark . 31

5 Results 33

6 Conclusion and further work 35

Bibliography 37

1
Introduction

1.1 Background

Crawling the web is an essential part for feeding search engines with web-pages, enabling
the engines to index the web-pages and making them searchable. Crawlers have been
the favorable approach since the birth of Altavista and their web-crawler in 1995.
Since then much has happened including the entry of Google and their crawler the
GoogleBot, which has changed how people regarded web-crawlers.
With the rise of cloud computing in the beginning of 2000, the need and want of dis-
tributed systems have increased[1]. Because web-crawlers handle a large set of data, the
workload is ideal to distribute over a group of computers. Data considered to be crawled
in the thesis are among others URL, HTML-pages and Sitemaps.
Findwise AB is a search-oriented company that realized that a distributed webcrawler
would be advantageous to use instead of their regular non-distributed crawler. But since
their regular crawler is part of a larger project it was more suitable to research a whole
new crawler instead of improving their old crawler.
The crawler has to decide how to determine which of the resources in the cluster of clients
should crawl what part of the data set. A crawler will also have to handle the issue of
instability of the network and what happens if a node leaves the cluster unexpectedly.
Distribution in computer systems is a well defined part of the discipline of computer
science and it has been a field of interest since the invention of the Ethernet in the
1970’s.
There are many ways to achieve distribution in a network. This thesis will focus on
a solution from a high level perspective. The approach of this thesis is the method of
multicasting and unicasting messages and formulates that the state of the network will
be the same for every member of it and no messages should be lost.

1

CHAPTER 1. INTRODUCTION

1.2 Goal & Purpose

The purpose of the thesis is to research and implement a distributed web-crawler that
will divide the workload of a regular crawler evenly over a number of nodes. The number
of nodes should be arbitrary and the presence of nodes should be dynamic i.e. individual
nodes should be able to be change its status back and forth between absent and present
in the environment at any time. The nodes should be other computer systems in the
same network. This will reveal the opportunity to use the nodes previously unused data
capacity with the goal of a faster and more efficient way of crawling the web. The crawler
should be viewed as one entity from a outside perspective, meaning it will only have one
connection for input and output. This is because the index server soley has to operate
with a black-box.
Other than producing a report, the goal is to develop a distributed web-crawler, called
FindDist. The software is to be configurable and effectively distributed over several
nodes. It will follow the robots.txt standard and be polite, so that requests to a web-
server is limited, thus not overburden the web-server.
FindDist is constructed in Java, therefore making it platform independent. The software
focuses on finding links in HTML documents and is coded in such a way that it is easy
to append new functions, for example a parser for a new file type.
The crawler should have an architecture sufficient for the thesis and that allows it to be
easy to follow the dataflow of exchanged and extracted data of the crawled items.
It is also essential that the distributed crawling of the thesis is more efficient than an
equal number of stand-alone crawlers over the same amount of nodes.

1.3 Limitations

Since the goal with the FindDist crawler is to increase the efficiency in crawling by
using several computer systems in a network, it will not have resources for processing
the actual data that is found by the crawling. This means that it will disregard the
indexation aspect of web-crawling. This because the indexation aspect is a different
scope than the actual crawling. The FindDist crawler should only try and gather more
input for a index-system to handle.

2

2
Analysis

This section describes some of the problems and solutions of a distributed web-crawler.
It is assumed that the reader has some basic understanding of what a web-crawler is and
how it works.

2.1 Distribution architecture

Distributed systems are present in most modern computer systems today. Since distri-
bution can be achieved on different levels of systems and on different parts, we need to
describe some of the various ways the distribution is accomplished.
There are several different architectures of distributed systems, two of the most common
architectures are examined below.

Client-server

Client-Server distribution is one of the most common architectures of distributed systems
and it is often used for making a great quantity of requests to a server. In most cases, the
server is static and stateless, making the interaction between client and server mostly the
same for different clients. Client-Server design is elegant since it separates what would
be considered client computing and server computing[2]. The most common relationship
between clients and server is that the clients make requests to the server and the server
fetches data for the client to use. The aim is to have a server with better and stronger
hardware, so the server can handle lot of requests and do all the heavy computations,
which enables the clients to be made of low end systems.
It is also designed with the presumption that client-server relations do not change and
that a client will never change status. This creates a static relationship environment,
meaning that it would not be very fault tolerant if the server would unseemingly crash.
Taking into account the restrictions mentioned above, this approach do not seem feasible
in a distributed crawler. Since it would be desirable for the server to also perform a large
part of the clients task, this would mean that it would be no clear distinction between a
client and a server. If the server would crash, a client could be able to assume the role
of the server, which is a sought-after trait of a network.

3

CHAPTER 2. ANALYSIS

Peer-to-Peer

Another approach is to use a peer-to-peer architecture. A peer would be a computer
system of roughly the same configuration as all other peers. Peer-to-peer architecture has
gained much popularity in the last couple of years, since the introduction of modern peer-
to-peer systems [2]. This approach offers several benefits since a peer-to-peer architecture
is designed with all ”peers” in the network being more or less on the same level of
computing power. In a peer-to-peer network peers should interact between each other in
a direct fashion with no intermediate manipulation. As peers can often acts as a client
or server, this property makes a peer-to-peer network very robust for unseen changes in
the membership of the peers. If a server would crash or otherwise not able to handle its
function properly, another peer will be able to step up to the task and act as coordinator.
The coordinator would act like a server and handle computations that does not concern
the actual crawling e.g. which node that should crawl what etc. The difference between
a server and a coordinator is that while the server is a predefined part of the network,
any node should be able to act as the coordinator, thus making the membership between
nodes dynamic.
This property makes it very suitable for a highly fault tolerant distributed crawler, seeing
that if the coordinator node should crash or leave the network, another node could replace
it. The peer-to-peers architecture property of autonomous joining and leaving [2], makes
it possible for the network to achieve a dynamic membership where the efficiency of the
crawler would be linear with number of nodes in the network.

2.2 Group Membership Service

Group membership service is a service in a distributed system where processes might
join or leave at any time. A group membership service is often supervised by an observer
that handles ”join” and ”leave” requests.
Fault tolerance is a property of high regard in the network of nodes, where the nodes
should achieve autonomcy. This creates the need for a dynamic environment where
the nodes can interact, detect changes and make exchanges with each other. It is of
most importance that the nodes can exchange messages with statuses in the dynamic
environment. A group membership service covers these needs and the service would
dictate how these properties are implemented. This kind of service would have to define
a concept for message passing between nodes and how discovery of nodes are done etc.
Since the environment is dynamic, the communication should be synchronous, as it
dictates a shared view of the network. Coordination is paramount, so the service will
also have to implement a method for selecting a coordinator to handle a view of nodes
and state of the network.

4

CHAPTER 2. ANALYSIS

Discovery service

Since it is desirable for the network to be dynamic, it needs a discovery service to find
existing groups of nodes or new nodes that are trying to join a group. If the network
has a centralized server, it is common to use a protocol such as DNS for discovery of
nodes. This because it stores the addresses of the nodes and a new node only has to ask
the DNS server for their address. But when a distributed system is wanted, this kind
of entity cannot exist[3]. This means that a server needs to implement another way of
discovering new nodes with less effort. Suitable approaches of the server should be based
on multicasting messages of acknowledgment[4]. There are two main approaches of this,
pushing and pulling[3].
Pushing methodology is centered around the idea that nodes consistently advertises
their position by multicasting it over the network in intervals. If a new node entering
the network does not get the message in time, it will form a group with itself as the only
member. This creates several problems as for example choosing an interval for sending
messages. A too short interval would put too much weight on the network but a too
long interval would create a too big a delay for a new node to find the existing ones.
The pulling methodology is basically an opposite solution that uses pulling to find the
position of existing nodes. Pulling has a predefined address to which the nodes can
subscribe. A new node then sends a message to the address that get multicasted to the
nodes subscribing to the same address, in this way they can then respond to the new
node. If a new node does not get any response, it will form a new group with itself as
the only member.

Message handling

Message passing is well defined section of distributed systems and group services. Or-
dering is necessary for distributed systems since it indicates if there has been illegitimate
use of the network. Ethernet in itself does not offer any kind of ordering structure. Or-
dering gives messages structure and it enables the determination of the order in which
the messages has been broadcasted and in what order they should be delivered. There
are several ways to handle messages propagating through the network, Défago, Schiper
and Urbán in [5] gives the following definitions:

� FIFO ordering: Orders message in first-in/first-out fashion. If process p1 sends
a message m before it sends message m’ then a correct process will deliver m before
they delivers m’.

� Casual ordering: Uses the happened-before relation[6] denote by→ . Where the
relation m → m’ holds true no correct process will deliver message m’ before they
have delivered message m.

� Source ordering: Source ordering is a special case of FIFO ordering that take into
account the messages origin, this form of ordering can only ensure total ordering
if messages are broadcast from a single source.

5

CHAPTER 2. ANALYSIS

� Total ordering: Guarantees that all correct processes receive all messages in the
same order. If a process p1 delivers message m before message m’ then process p2
will deliver message m’ if and only if it has delivered message m before.

These are the typical definitions of message ordering in distributed systems. Source
ordering will not be considered as a viable way of ordering messages since it is not
applicable on the kind of network that the FindDist crawler aims to occupy.
The happened-before relation is defined by Leslie Lamport[6] as the following binary
relation:

1. If a and b are events in the same process, and a comes before b, then a → b.

2. If a is the sending of a message by one process and b is the receipt of the same
message by another process, then a → b.

3. If a → b and b → c then a → c. Two distinct events a and b are said to be
concurrent if a 9 b and b 9 a.

Both ”FIFO” and ”casual ordering” is not reliable for ordering messages, because the
system has to be certain that every node has perceived that all messages have happened
in the same order. As shown in [3, 5] there are several cases of this. Therefore it can be
concluded that ”total ordering” is the most suitable solution in the group membership
service to synchronize message in the network. ”Total ordering” is a more strict ordering
than the other presented examples and it also make sure that every member of the
dynamic group perceives that every message is in the same order.

Management of nodes

The number of nodes in a dynamic environment should be arbitrary, therefore the net-
work should handle the loss of nodes without any faults. Faults that can happened when
a sudden loss of a node occurs, are for example that messages may be lost or that dead-
locks may appear. This can put the network in an unexpected state which it can not
handle. A example of this is when Amazon.com cloud (Amazon S3) went down because
of corrupt messages[7].
There are several defined methods for improving the tolerance of node loss. For example
the Byzantine fault tolerance algorithms or ACID message propagation. The network
also have to achieve synchronous communication and one of the simplest way to accom-
plish this, is using Birman and Joseph theorem of virtual synchronization. For every
sent message, an acknowledgment response will be received by the sender, the response
containing information indicating if the message succeeded or failed its task. Birman
and Joseph’s approach is not really feasible if the goal is to detect node loss though.

6

CHAPTER 2. ANALYSIS

This because if a node crashes, it will not send a message stating that it has done so.
The handling of node loss might be expensive for the network, and it has been agreed
that just disregarding failed nodes and assume that they have crashed is simpler, more
scalable and more efficient[3, 8].
There is only one case of node loss that needs to be accounted for and that is the loss
of the coordinator node. Since the network needs to be coordinated, it can be assumed
that there will be a coordinator and if the coordinator crashes there has to be a new
determination/election of another node that should act as the coordinator.

2.3 Realization of the distribution

To implement the distribution as group membership service, there are several backbone
frameworks which can be used for the realization of the distribution, such as CORBA,
Zookeeper and JGroups.
The CORBA standard is an older defined standard for distribution between computer
systems. The standard was set by the OMG group[9]. CORBA’s biggest advantage
is that it enables communication between systems by using different OS and different
implementation languages, e.g. an Unix system with a client written in C should have
no problem communicating with a Windows system with a client written in Java. But
even though CORBA is implemented in Java, it is not fully realized and additional work
has to be done. CORBA does not have a native group service available and this have to
be implemented manually.
Zookeeper is a framework for Java developed by ”Yahoo! Inc” [10]. Zookeeper offers
group service but is dependent on a set of predefined servers to act as a coordinator-
service. This makes the service robust but it is not the behavior the FindDist crawler
is striving for, since FindDist aims to achieve self-reliance, to be able to start without
knowledge of the nodes in the network beforehand.
JGroups is a framework developed by Bela Ban, that offers reliable multicasting[11]. The
framework offers an easy way to send message between nodes and is very configurable.
Using JGroups with UDP protocol for multicasting a node’s presence will contribute to
make the system autonomous, since it does not need any predefined data to make itself
known to other nodes. JGroups also implements ”total ordering” for the structuring
of messages, which is needed to ensuring that every node perceives that messages are
received in the same order.
Because of its advantages over the other systems considered, the JGroups framework is
chosen as provider of the group membership service to the FIndDist crawler.

7

CHAPTER 2. ANALYSIS

Using JGroups for Group Membership

Group membership is used for the purpose of equalizing every node except the coordina-
tor. This will create a controlled environment for the different parts of the node cluster,
enabling it to be certain of which of the messages are passed between the nodes. Mul-
ticasting should be used for the discovery within the group, so that all nodes will know
of the coordinator’s presence. Therefore, it is essential that the multicasting service is
reliable. JGroups offers an easy way for selecting the coordinator, since it uses a list of
all the visible nodes that is multicasted and the nodes with index ’0’ is the coordinator.
That means that even without any calculating, there is always a coordinator. With this
in mind, the algorithm for joining the group is as following:

Look for cluster with same clustername as me

If not found

Create cluster and set myself as COORDINATOR.

Record MY STATE as the GLOBAL STATE.

Else

Request JOIN from COORDINATOR.

JOIN the cluster.

Acquire the GLOBAL STATE from COORDINATOR.

When a new node joins the group, the coordinator will record a new global state and
the client nodes will acquire it. This will minimize the problem with sudden node loss in
the group. The global state will ensure that the nodes within a group always have the
same ordering. It will also guarantee the view of other nodes, this to avoid that messages
get passed to the wrong node. Messages containing data on what to crawl and what
already have been crawl goes through the coordinator to keep the interaction between
client nodes to a minimum. All nodes have software to send data between them, but
this software is only accessible while being the coordinator. If the coordinator leaves
the group in any way, the new coordinator will be the next node on the list. The node
that gets assigned as the new coordinator will then activate the coordinator software
and there will be almost no loss of message as long there is a node with index ’0’ in the
list.

Workload distribution

The task to crawl specific data sets is distributed in a fashion ensuring that the coor-
dinator calculates which node should take on which task. When starting the crawling
with a fresh database, the coordinator will initiate the crawling and the client nodes will
wait until the coordinator assigns them a path to be crawled. When a node has finished
crawling a path, it will send a message back informing that the task is done. The coor-
dinator will store all found data in a database and when it gets a ’task done’ message
from a node, it will modify the database accordingly and send the data to index server.

8

CHAPTER 2. ANALYSIS

Data is divided between the nodes by the coordinator, who will select a node based on
its index in the node list in the global state. The selection is done by computing the
hash of the data then modulus it by the number of nodes, thus getting the index of the
node that should process the data. This gives an even distribution of work on every node.

Client(s) Coordinator

(1)finds new link

and sends the link to coordinator

(2)receives link

(3)inserts the link in the database

(4)calculates which node should

handle the link

(5)sends link to the client

who should handle it

(6)crawls the link and

extract new links

(7)sends back the new links and

a check message with original link

(8)calculates which nodes should

handle the new links

(9)receives check message and

modifies the database accordingly

(10)sends the finished page

to the index server

Table 2.1: This table shows the exchange of messages between a client and the coordinator

The coordinator is the only node that communicates with the database and the index
server. In case the coordinator leaves the group, the addresses to the database and the
index server are stored in the global state so that the new coordinator can fully take on
the role of coordinator.

2.4 Distribution of work

There are several ways for distributing work across a distributed system. The crawler
will only aim to crawl URLs, sitemaps and RSS and therefore the distribution will only
take into account these file-formats. Most distributed crawlers soley distribute work

9

CHAPTER 2. ANALYSIS

over multiple threads, and so does the FindDist crawler, which aims for distribution
over several different computer systems in a network to work as one. Even though
the FindDist Crawler distributes over several computer systems, the systems will also
distribute over multiple threads in a thread safe way.
The distributing of the URLs can be done in many ways, as assigning one node to
a specific domain or subdomain. Though if this is done, it will create some native
problems as for example how to calculate which node should handle which domain or
how to scale with dynamic membership of nodes in the network.
Consequently, this approach is not a satisfactory solution. In addition, there is a high
probability that the new links found will be located at the same domain, since the
crawling is done in a breadth-first fashion. This may create starvation on nodes that are
not assigned to a selected domain, since the domains may not be evenly distributed over
the nodes. This might lead the crawler to a non effective use of all the resources in the
network and therefore not satisfying the objective of the thesis.
Disregarding what domain or subdomain the URL belongs to while simultaneously dis-
tributing every URL as unique URL and setting aside any relation with similar URLs,
will prove to be a better solution. This way, every URL needs to be distributed and
calculations for finding a node to handle the URL has to be done. This creates a greater
number of calculations and more transactions between nodes. Even though this process
creates more work, the calculations are relative lightweight, thus it will not weigh down
the system’s performance. The extra network flow is also negligible since the message
going back to the coordinator still has to be sent. This creates a more robust system,
since if a node would suddenly die, the only data lost would be the specific URL cur-
rently being crawled. The workload will also be more evenly distributed. For example,
if one domain is overrepresented in the crawling, one node may be doing most of the
work irrespective of the number of nodes in the network.

2.5 Scalability of node members

The goal is a efficiently distributed workload over the number of nodes in the cluster. To
achieve this, the cluster needs to attain a form of scalability. Scalability is not only about
operating more processes but doing so efficiently[12]. The application of scalability can
be put in use on several parts of the distribution and crawling.

List indexation

The straightforward approach to achieve scalability over the nodes joining and leaving
the cluster, is to ignore which node is which. This can be accomplished with a list of the
nodes and classifying them by the index of the list and ignoring what index is pointing
to which physical node, only noting how many nodes there are present. Consequently,
there will be no need to make corrections if a node leaves when distributing work, except
if the node that is about to receive work is the last on the list. This creates a dynamic
relation between the nodes and it will not burden the computations with what nodes are

10

CHAPTER 2. ANALYSIS

in the cluster. This would work best if all messages converged at the coordinator, since
else the membership list may differ between the nodes.

2.6 Filetypes

This section contains descriptions of different file types that FindDist can parse and it
focuses on how links are represented in each file-type. The different file types presented
was selected due to their high usage on the Web and that they usually contains a high
amount of links.

HTML

Hyper Text Markup Language (HTML) is a major building block of the Web and it is
the major markup language for web-pages. One of the more important functions of a
web-browser is to be able to parse and translate a HTML-document into human read-
able format. HTML is composed of elements of tags enclosed in angle brackets(〈 〉). A
link in a HTML document consist of an anchor element with the attribute href and the
value of href decides what the link will point to. For a webmaster, it can sometimes
be necessary to disallow crawlers from following links and indexing certain pages. By
adding the attribute ”rel” with the value ”nofollow” to the anchor element, the crawler
will be forbidden to follow a specific link. A more general way is to define a behavior,
that will apply for the whole document. It can be done by adding a meta tag with
attribute ”name” with value ”robots” and a content attribute with the value of a com-
bination of ”noindex”,”index”,”nofollow” and ”follow”. ”nofollow” and ”follow” tells the
visiting crawlers if they are allowed to follow links in the document or not. ”index” and
”noindex”, allows or disallows indexation of the page.

<html>

<head>

<meta name="robots" content="index, nofollow">

</head>

<body>

..

Normal link<a>

nofollow link<a>

..

</body>

</html>

Figure 2.1: HTML example

11

CHAPTER 2. ANALYSIS

Sitemaps

Sitemaps is an easy way to inform web-crawlers and search engines about the content of
a domain. They are usually linked in robots.txt or in a link to it sent to search engines.
A Sitemap is a XML-document that list URLs and possible meta-data for each URL.
The meta-data contains information about when the page was last updated, how often
it is changed and how important it is, i.e its priority to be indexed relative to the other
URLs on the domain.

<?xml version="1.0" encoding="UTF-8"?>

<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">

...

<url>

<loc>http://www.aftonbladet.se/debatt/article10250770.ab</loc>

<lastmod>2011-03-08T06:53:23+01:00</lastmod>

<changefreq>daily</changefreq>

</url>

...

</urlset>

Figure 2.2: Sitemap example

A Sitemap is not allowed to contain more than 50,000 URLs and be larger then 10MB
and it can be compressed in the gzip format to be able to fit more data. If there is a need
for a larger Sitemap, it can be done by a Sitemap index, which can list several Sitemaps
in a file. The Sitemaps index syntax is similar to Sitemaps but using Sitemap elements
instead of url elements[13].

<?xml version="1.0" encoding="UTF-8"?>

<sitemapindex xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">

...

<sitemap>

<loc>http://www.aftonbladet.se/svn/sitemap/2001/12.xml.gz</loc>

<lastmod>2012-05-04T16:11:28+02:00</lastmod>

</sitemap>

...

</sitemapindex>

Figure 2.3: Sitemap index example

12

CHAPTER 2. ANALYSIS

RSS

RDF Site Summary or Really Simple Syndication is a easy way to publish a web-feed
of frequently updated pages and is often used by blogs and news headlines. The RSS
file is a XML-document describing a channel and its items. It can be seen as a Sitemap
specialized on a small part of the domain with a high frequency of update.

<?xml version="1.0" encoding="UTF-8"?>

<rss xmlns:dc="http://purl.org/dc/elements/1.1/">

<channel>

<link>http://www.dn.se/m/rss/senaste-nytt</link>

<title><DN.se - Nyheter - Senaste nytt></title>

<description><DN.se - Nyheter - Senaste nytt></description>

<ex:version>1.0</ex:version>

...

<item>

<title><Sommaren närmar sig med stormsteg></title>

<link>http://www.dn.se/nyheter/sverige/sommaren-narmar-sig-med-stormsteg</link>

<pubDate>Fri, 18 May 2012 13:18:00 GMT</pubDate>

</item>

...

</channel>

</rss>

Figure 2.4: RSS example

2.7 Ordering

A big part of web-crawling is deciding in which order the newly found links should be
downloaded. Due to the size of the Web and its volatile nature, there is a high risk that
the crawler will not be able to find all pages before they are changed or removed[14].
New pages can be created and disappearing faster then a crawler can find and process
them, if a ineffective ordering is chosen [15] [16].
Depending on what data is going to be crawled, several different strategies can be applied
when deciding the crawling order. Examined below are some of the major ones.

Focused crawling

The explore order of the links is decided by an algorithm, which is based on the metric
of the links. A well known ranking algorithm is pageRank, invented by the founders of
Google, Sergey Brin and Lawrence Page. Each page is given a pageRank value depend-
ing on the pageRank of other pages pointing to it and the number of outbounds link it
have [17]. This way a site with many inbound links usually gets a high pageRank. The

13

CHAPTER 2. ANALYSIS

pageRank is defined by the equation 2.1.

PR(A) = (1− d) + d ∗
∑
l∈BA

PR(l)
L(l) (2.1)

PR is the pageRank value, d is a value for scaling the values, BA is a set containing
all inbound links to the page A and L is the number of outbound links from l. The
pageRank algorithm is fairly easy to compute but with the size of the Web, it could
led to a hefty constraints on the web-crawler. Additionally, to be able to compute the
final value of each page, most of the Web must be known, which given a web-crawler is
usually not the case. Therefore the page-rank algorithm is mostly used for re-crawling
data. Another way can be to prioritize the links by sorting them on how many times
they have been found in downloaded pages. When crawling for a specific type of data,
such as audio-files, it would be simpler to give links priorities depending on the number
of times it is found on pages with audio-files.

Breadth-first crawling

Breadth-first crawling is the simplest and most straightforward way of crawling. Starting
with a small set of links and exploring links from them as they come, thus following
the links in a ”breadth-first” fashion [18]. According to [19] bread-first ordering yields
high pageRank values for the pages found during the early stages of the crawl. As the
crawl continues the page qualities deteriorates. This could be due to pages with high
quality has many pages linking to them and therefore is easily found fast but smaller
and important sites is harder to find.

Random crawling

Random crawling is as indicated, crawling carried out in a random fashion. There has
been some usage of random crawl orders with good result Bennouas and de Montgolfier
in [20] shows that it is possible for a random order to achieve just as good results as
breadth-first ordering. If the links to be crawled are spread on many different web-
servers, the selected links will also be spread. This makes it possible to minimize the
need to often connect to the same web-servers.

2.8 Robot Exclusion Protocol

The Robot Exclusion Protocol or robots.txt is a standard method since 1994. It is a
rather simple way of specifying to web-crawlers what they are allowed to do on a do-
main. It is important to remember that the standard is voluntary and only well-behaved
crawlers will follow it. The robots.txt file, placed in the root-level, provides different

14

CHAPTER 2. ANALYSIS

access policies for different crawlers with the user-agent term. A user-agent with name
* denotes all crawlers. A number of directives can be followed after a user-agent, the
most common ones are Allowed and Disallowed, which denotes what the crawler are al-
lowed and not allowed to access on the domain[21]. A unofficial rule is the Crawl-delay,
which specifies the allowed frequency of requests to the domain [22]. Another rule is the
Sitemap which specifies where a Sitemap for the domain can be found. The directive is
not associated with a user-agent and is usually placed in the beginning of the file [13].
Lines starting with # are treated as a comment.

80legs

User-agent: 008

Disallow: /

MSNBot

User-Agent: msnbot

Crawl-Delay: 20

User-Agent: *

Disallow: /*.json

Figure 2.5: robots.txt example

In the example above, the robots.txt specifies that the crawler with name 008 is not
allowed to access anything on the domain, the crawler with name msnbot must limit its
visits to the domain to one in every 20 seconds and that no crawler are allowed to access
files ending with .json.

2.9 Etiquette

One of the more important part of web-crawling is to not overburden the web-servers
which are crawled. By sending too many request in a short interval, the server might
interpret the crawlers requests as a denial-of-service attack. Usually web-crawlers decides
the delay themself but some domains specifies a minimum delay between requests in their
robots.txt. For a non-distributed web-crawler, it is not too complicated to be polite. For
each sent request, save the time it happened and make sure that next request to same
web-server happens after the delay. When a crawler is distributed, it could become a
problem to share the policy over several nodes with ”the last request time”, since it would
not be very effective. To keep using a local policy in a distribution system, the URLs
have to be distributed only on its domain part, thus making sure that only one node
contacts a specific web-server [14]. A downside to this system would be risk of uneven
distribution of the data, for example one node could get only small domains with not
much to crawl while another node could get large domains. Another method could to

15

CHAPTER 2. ANALYSIS

be to use local policies but with multiplying each delay with the number of nodes. Thus
over time being polite, but with a good and even distribution of the URLs. Instead of
using static delays, the delay could be decided on the servers capabilities. This could
be done by measuring the time it took to download a page and then using a delay, for
instance 10 times that value. This would limit the number of request to servers according
to its status and only burden the server when it can handle it [14].

2.10 Database

A record of each link crawled needs to be kept somewhere to make sure that the crawler
only downloads the same page once. Since FindDist will be able to crawl millions of
links, is it practical to save this information in a database. The data to be saved is
only an URL and a value indicating if it is downloaded or not, so there is no need to
use a graph database, since it is specialized on data with many relationships[23]. The
data must be queryable to ensure that the links which has not been fetched yet will
be found. Key value stores has no native support for this but it could be implemented
in the application[23]. But with increased risk for bugs and the slowing down of the
system, it would be better to use a document or a family column store. The majority
of all operations on the database would be of the insert type. Therefore it is essential
that the database should be able to handle small and fast writes. Due to the fact that
the coordinator node is the only node connected to the database, there is no need for
concurrency. The worst that could happened is that a fetched link is resaved in the
databases as not fetched. The consequence would be that the node would be refetched
in the future. This is very rare and the risk is worth taking for a write big speed boost.
Since the web-crawler is implemented in Java, the database should have a good Java
API or good java bindings. it is also important that the database should be developer
friendly in that sense that it should be easy to use and setup. The database chosen
was the document store database MongoDB. Due to that its concurrency strategy is
last-update wins, it has fast writes [23]. It is also easy to query, has a great Java API
and is easily scalable horizontally [24].

2.11 Indexing server

This section contains information on how an indexing server works. This is outside the
scope of our thesis but is included to give a better understanding of what the output
from the web-crawler is used for.

16

CHAPTER 2. ANALYSIS

Figure 2.6: A simple abstraction of a typical search engine

A search engine consists of three major parts: a feeder, an indexer and a search front end.
The feeder is the mechanics that provides the indexer with the content and most often,
the feeder is a web-crawler. The search front end is the user interface of the search engine
and compares user queries against indexed content provided by the index server. The
indexers purpose is to generate a so called index for each document, which then can be
used to find relevant documents easier. This process can be seen as making unstructured
data into structured and categorized data. The index depends on the implementation of
the indexing server, but the purpose is to optimize the data for fast and accurate look-
ups. Without indexing, the search engine would need to scan all data for the answer to
the query, which would require substantial processing power and time.
A computer can not understand the structure of a natural language and therefore not
automatically understand what part is words and sentences in a text. A text must
therefore be split into words before being indexed. Such a program is usually called
tokenizer, lexer or parser. The tokenizer can also discover entities, such as telephone
numbers, email address and URLs, which is not regular words in a natural language.
There is also the possibility to save additional data for each found token, such as sentence
number, sentence position and lexical category(noun or verb). Some documents contains
only data for the purpose of describing the document to a search engine, this type of
data is called meta-data.
With HTML it is possible with the meta-tag to provide meta-data. The tags are useful
to provide information about the site, but can easily be abused to get in the top findings
of many search results, by so called keyword spamming. Though search engines have
become more intelligent over the years and are now able to handle this. In an internal
system, meta-tags are very useful due to the lack of interest to abuse it.
In order to give a good result of a query, the documents needs to be ranked depending
on how relevant their terms are to the search queries terms. There are many different
ways of doing this ranking, one of the more common methods is a combination of Term
Frequency(TF) and Inverse Document Frequency(IDF). TF is the number of times a
term occurs in a document. In itself, it is bad to use as ranking, words that occurs
often in a text will get a heavy weight but the word itself is not taking into account.
For example, in the query ”the blue horse”, ”the” and ”blue” will probably get a heavy

17

CHAPTER 2. ANALYSIS

weight compared to ”horse”, due to their higher frequency in the English language. This
could make the result skewed with many results lacking the most relevant word, ”horse”.
IDF is based on counting the number of documents in the collection containing the term
in question. A term which occurs in many documents is not a good discriminator and
should be given less weight to a term found in less documents. There’s many different
versions of IDF but the most common form is in equation 2.2.

IDF (Ti) = log2
N

ni
(2.2)

Where N is the number of documents in the collection and the term Ti occurs in ni
documents. The weights are computed for each document and term pair, by taking the
product of the TF and the IDF [25].

Wt,d = TFt,d ∗ IDFt (2.3)

Where W is the weight, t the term and d the document, the weights can then be used
to calculate the relevance of documents for a specific query.
A good model is the vector space model. Each document represents a vector, where
each dimension correspond to a different term and the document vector’s value is the
weight of that term. Create a vector Q representing the query, in which the dimensions
corresponds to the same terms as in the document vectors, with the weight of that term,
using the search query as document. Then the result with the smallest degree between
itself and Q is the most relevant document [26]. The simplest way is computing the
cosine with the equation 2.4:

sim(dj ,q) =

∑t
i=1wi,j ∗ wi,q√∑t

i=1w
2
i,j ∗

√∑t
i=1w

2
i,q

(2.4)

18

CHAPTER 2. ANALYSIS

Figure 2.7: Example with two documents and a query for the terms blue and horse, where
the document 1 is most similar to the query.

19

3
System Overview

Figure 3.1: Abstract overview of FindDist

This section gives an overview of FindDist, an abstract view is shown in figure 3. The
figure is simplified and its arrows represent the flow of data, not any dependencies. To
avoid too much details, the overview is composed of several different components with
similar functionality. The system is started by a call to the Crawler Manager which
initiates the Crawler Head, which then starts the rest of the system. The system then

21

CHAPTER 3. SYSTEM OVERVIEW

continues till the stop function in Crawler Manager is called. The Downloader requests
a link from the Download Queue, then downloads the associated page and adds the
page to the page queue via a callback to the Crawler Head. The Extractor requests a
page from the page queue, extracts links from the page and then sends them to the link
router. If the node is not the coordinator, the page with the found links are sent to the
coordinator for processing. The Link Router checks which found links are unique and
saves them in the database. For each newly found unique link, the owner is computed
and sent to be downloaded.

Crawler Manager

The Crawler Manager together with the Crawler Head is the Main crawler component
in the figure 3. This since both of them are rather small and handle the start and stop
of the application. The Crawler Manager is responsible for handling the communication
with the crawler. It can initiate the crawler and its components and starts and stops the
application. The manager functions as an interface to the crawler and makes it easy to
append a GUI.

Crawler Head

The Crawler Head is the component of the crawler that keeps everything in the crawler
connected. It implements several interfaces and can therefore be used to callback from
other components in the crawler. The Crawler Head can be seen as a data hub, where
the data is received and directed to the right component. It also contains the page queue,
where the downloaded pages are stored before being parsed for links.

22

CHAPTER 3. SYSTEM OVERVIEW

Downloader

Figure 3.2: Downloader

The Downloader is the component of the crawler responsible for handling the download-
ing of web-pages in a polite manner. It is composed of several different classes, for a
simpler overview it is combined in two separate parts: a manager and a download task.
The manager fetches links from the download queue, via a callback to the Crawler Head,
and creates tasks, that downloads the page pointed to by the link. Each task is run
on a separate thread and there is a limit to the number of threads that the download
manager is allowed to run at the same time. The number is configurable and makes the
crawler effective in scaling vertical on both low and high end systems. Before a task is
created, the links web-server is checked to ensure that not too many threads are down-
loading from the same web-server. If there are more than half of the maximum number
of threads downloading from the same web-server, the fetched link is put back and a new
one is fetched. The tasks consists of downloading a page and if it succeeds, it adds it to
the page queue through a callback to the Crawl Head. If the download of the page fails,
the task first checks how many times it has failed before. If the error count is more than
a configurable number, the task drops the link and removes it from the database. If the
error count is less than the configurable number, the link is added back to the download
queue and will eventually be downloaded again. The downloading is done with help of
Apache httpclient, an efficient and feature rich client-side http-package [27]. Before a
download starts, it has to first check if it is polite to start the download. It is polite
to begin the download when a specified time has passed since the web-server associated
with the link, was last called. The polite time is specified either by the web-servers
roobots.txt or by a configurable default value. The default value should not be to low,

23

CHAPTER 3. SYSTEM OVERVIEW

else it risks that the crawler will be mistaken for a denial-of-service attack.

Download Queue

The download queue is a ordinary First-In-First-Out queue with some modifications. To
ease the burden on the underlying system memory, the queue has a fixed maximum size.
When the download queue reaches a quarter of its maximum size, the queue asks the
database for new undownloaded links, so the queue becomes full. Due to the fact that
the database keeps its content sorted by the contents hash-value, the fetched links from
the database becomes almost randomly chosen. If the database contains many links from
different domains and web-servers, the new links will likely have the same spread as in
the database. When the links are downloaded, they will not create many waiting periods
due to politeness constraints. After found links have passed the validation, they are sent
to the download queue. First they are checked against the database to verify if they
have been found before, those who are unique are saved in the database and marked as
not downloaded. Then all the unique links which the queue has space for, are added to
the queue while the rest are dropped. With the use of this type of queue, the download
ordering becomes a mixture of breadth-first and random ordering. Breadth first for the
links that are added on the end of the queue, but sometimes the queue will be filled with
randomly chosen links from the database. The queue size is an indication of how much
FindDist is breadth-first and how random it is. A queue with unlimited size will be pure
breadth-first, a queue with size 1 will be pure random. As shown in the section 4 this
kind of ordering yields a good result compared to a pure breadth-first ordering.

24

CHAPTER 3. SYSTEM OVERVIEW

Extractor

Figure 3.3: Extractor

The extractor is responsible for the extraction of links from downloaded pages. It is
structured as the Downloader component, with essentially a manager and tasks running
on threads. The manager fetches pages from the page queue and creates a task, responsi-
ble for extracting links from the page. As with the Downloaders manager, the extractor
manager has a maximum number of allowed threads running at the same time, to be able
effectively scale the crawler. The tasks is to parse a page, collect all URLs from it and
send each valid link to the LinkRouter. The validation is done by first making the found
URL absolute, e.g. to convert /index.html to http://www.findwise.com/index.html.
The second step is to check if the URL follows the configurable rules, such as a maxi-
mum link depth and that the URL has a allowed protocol. The last step is to compare
the URL against the associated web-servers robots.txt, if there are any. If the page is
discovered to be corrupt during the process, the page is dropped. The page will even-
tually be redownloaded due to that its source link is still marked as undownloaded in
the database. When an extraction is done, all valid links and the page are sent to the
LinkRouter. In the present situation, FindDist contains adapters that can parse file
types of HTML, Sitemaps, Sitemap index and RSS. These file-types is described in more
detail in section 2.6.

25

/index.html
http://www.findwise.com/index.html

CHAPTER 3. SYSTEM OVERVIEW

LinkRouter

The Linkrouters main function is to implement the distribution part of the crawler. As
the distribution of the crawler covers several areas, the LinkRouter also have several
functions. The tasks that the LinkRouter execute are: delegation of links, receiving and
transmitting messages, handling links back to the crawler. The LinkRouter needs an
interface to send the links it receives, it also implements an interface that a receiver
part uses i.e. the actual receiving is done by a different part (called MessageReceiver)
that parses the message so it can determine what kind of message it is. The JGroups
framework is used for communication calls and message propagation.
When the coordinator gets or finds a new link, the link is sent to the LinkRouter, so it
can calculate which node that should handle it. When a node has finished crawling a link,
the LinkRouter will send it back to the coordinator. The coordinators MessageReciver
will parse the message as a message containing a crawled link and the links found on
that page. The Linkrouter will then send the links to the interface RouterHandler,
which the crawler implements so it can handle these new found links accordingly. If a
node is a coordinator, it can also initiate its LinkRouter to send a kill message to one
or more nodes in the network ordering them to shut down. The LinkRouter will also
acquire the state of the network or set depending if the node is coordinator or not. If
the MessageReceiver receives a message that is not of a specified type, the message is
simply discarded.
The messages propagating through the network has several different uses. The distri-
bution service of the crawler uses five different types of messages for invoking different
aspects of the nodes. The types of messages that the crawler has defined are:

� CRAWLLINKREQUEST - A message containing a link that is sent from the
coordinator to a node. The message dictates the node that it should crawl and the
link that is contained in the message.

� CRAWLLINKRESULT - A message containing a page that had has its links
extracted, that is sent from a node to the coordinator. The message informs the
coordinator that the node has finished crawling a link and sends the new found
links back to the coordinator so they can be delegated.

� QUIT - Sent from a node to the coordinator when a node requests to leave the
network.

� RESPONSE - Response from the coordinator to a node that has requested to
leave the network.

� SHUTDOWN - Sent to a node from the coordinator, saying that the node should
shutdown.

26

CHAPTER 3. SYSTEM OVERVIEW

Database Interface

The Database Interface handles the connection to a database and with the help of dif-
ferent classes, a specific database type can be chosen. The data that will be saved in
the database will only be links. From each link a URL, a value representing if the link
has been downloaded and some meta-data will be stored. As described in the Download
Queue, the database sorts its content after the contents hash-value.

27

4
Benchmarking

As the system is intended to be able to replace an existing crawler, there is a need to
know how effective FindDist is. Two comprehensive benchmarks was done. In order not
to burden the system to much, FindDist was set to use a low end configuration. Which
meant that the crawler was using 8 download threads and 4 extractor threads which
made the average CPU load to be under 10%. The first benchmarks tested how effective
FindDists distribution is. The test was done with 1,2 and 4 computers of the computer
type 1 in table 4.1. The second benchmark tested how how effective FindDist ordering
is, with a compression to how the FindDist perform with its download order and with a
pure breadth-first ordering.

All crawling started from http://www.findwise.com and was run on computers de-
scribed in table 4.1. The database used was located close by to the other computers, so
latency was mostly around 1ms and did not affect the result.

Name Computer 1 Computer 2

CPU Family Intel Pentium B960 Dual Core Intel Core Duo E8400

CPU freq. 2.2GHz 3GHz

Memory 4GB 4GB

OS 64bit Ubuntu 12.04 Red Hat 5.6

Table 4.1: Different computers used in the benchmarks

A problem with running benchmark against the Web is that the Web is not static and
changes over time. Even if the web-pages are the same, the time to access them will
differ from time to time. A solution could be to take a small copy of the Web and
perform the test against the copy. But that would take too much time and resources, as
many different local web-servers needs to be created. FindDist is made for the purpose
of crawling the Web, with its advantages and disadvantages, so benchmarking a static
copy would remove some parts of the test, such as delays.

29

http://www.findwise.com

CHAPTER 4. BENCHMARKING

4.1 Benchmark with multiple servers

An important reason for doing this benchmark is to get numbers on how effective Find-
Dist is using its distribution. A distributed node will never be able to work at the same
speed as a non distributed node, due to delays in the network and extra computation
time needed for knowing how to share the workload. All delays are relatively small but
will add up and slow down the nodes. In this benchmark, it is examined how FindDist
perform with 1,2,4 and 8 nodes and how well it scales.

1 Node 2 Nodes 4 Nodes 8 Nodes

Found links 989426 1054445 1610383 3314431

Downloaded links 23985 34162 34911 57813

Found links/Node 989426 527222.5 402595.75 414303.875

Table 4.2: Benchmark of multiple nodes on FindDist

The data from the benchmark is shown in the table 4.2 and demonstrates how many links
that was found, downloaded and in average how many links that each node found. One
important observation is that the small difference between how many links were found
when using one and two nodes. Two nodes finds only a small amount of more links.
It could be explained by that by using only one node, the network part of FindDist is
not used and therefore lot of delays are removed. Looking at the number of links found,
it can be seen that the number of links are increased in a linear fashion and can be
described with the equation 4.1. The equation is shown with the the data from table 4.2
in the graph 4.1.

α+ 0.44α ∗ nrClientNodes
α = 792787

(4.1)

30

CHAPTER 4. BENCHMARKING

Figure 4.1: Graph with equation 4.1 and the data from table 4.2. The X-axis represent
the number of client nodes and the Y-axis the number of found links.

An interesting fact is that a node in a distribution only find around 44% of the amount
of links that a single node without a distribution finds. This is due to that without any
distribution, a lot of the calculations are not needed and are therefore not done.

4.2 Ordering benchmark

As described in section 3, FindDist uses a modified breadth-first ordering when deciding
which links to download. Breadth-first ordering is simple to implement and does not
use much of the systems resources. FindDist uses a modified version which focuses on
spreading out its request to several different web-servers.
In this benchmark, the performance of the crawler is implemented in a pure breadth-first
fashion.
The benchmark was done on the computer 1, in table 4.1 and with FindDist ordering
with a maximum queue of size 20. As is was most interesting to know how many domains
FindDist finds and how much the download task has to wait due to etiquette, the server
was used with a low-end configuration. This means that only 12 download threads and
8 extractor threads was used. The most interesting data is how much time was spent
waiting to download a link.

31

CHAPTER 4. BENCHMARKING

FindDist Ordering Pure Ordering

Time 22:46:45 22:15:50

Found links 2 446 507 1 331 280

Different domains 32 032 14 785

Downloaded links 42119 30910

Wait time 32998s 26580s

Wait time per downloaded link 0.78s 0.86s

Table 4.3: Benchmark of orderings on FindDist

The resulting values from the test can be found in the table 4.3. The table shows how
long the crawl lasted and how many different domains was found, which is a good value
to see how breadth the crawl was. The wait-time is the sum of the time each thread
spent waiting to access a web-server. The final and most important result in the table,
is the wait-time per downloaded link and it shows how much time was spent on waiting
before starting the downloading of a link. In average, FindDist with pure ordering had
to spend 10% more time waiting before starting to download a link then FindDist with
its original ordering.

32

5
Results

This thesis is concerned with the performance of a distributed web-crawler, due to the
scope of the thesis, only some specific problems were targeted, for example how to ef-
ficiently distribute the data in an evenly fashion and minimizing the delay between
downloads due to politeness constraints. The proposed improvements and features by
this thesis will show how to increase the effectiveness of a distributed web-crawler. Two
tests were also done to justify the improvements see chapter 4.

The first test shows the effectiveness of the distribution of the system and how much
a new node contributes to the whole system. The benchmark showed that the number
of found links increases in a linear fashion as the number of nodes increases. From the
data a linear equation was extracted, the equation itself is not that interesting but with
the equation, it is possible to get a number on how much more performance is gained by
adding a new node. From the equation we get that a new node adds around 44% more
links than what a single node finds.

The second test examined how the download order might be improved. The goal was
to reduce the time needed to enforce politeness policies given by different web-servers
without adding too much extra computations to the web-crawler. FindDist uses a variant
of the breadth-first ordering with some traits from random ordering. The benchmark
compared in average how much waiting time was spent for each downloaded link. In
average FindDist with pure breadth-first ordering had to spend 10% more time waiting
before starting to download a link then FindDist with its original ordering. When
crawling through millions of links, this yields a really good result, decreasing the crawling
time significantly.
The thesis has also shown and described how to efficiently use a group membership
service to distribute the workload of a web crawler. The prototype FindDist is very
fault-tolerant and it can collectively handle crashes of nodes in a controlled way. When
the coordinator node crashes, another node will take over the responsibility. If the
contact between nodes is lost, the crawler will split into several parts for each group of
nodes which still have contact. When the contact is restored, the group will be reform
and continue as before.

33

6
Conclusion and further work

There are several ways to implement an efficient distributed web-crawler, this thesis
demonstrates how to overcome several obstacles and shows some improvements that can
be applied. A prototype was made that is fast, has a good distribution and it proves
that with a dynamic distribution it is possible to make a robust and fault-tolerant system.

A problem with web-crawling is to follow etiquette rules when downloading pages. This
thesis has shown how to implement a simple download order that reduces the waiting
period and yields good results. A benchmark was made that compared how well Find-
Dist download order performed with a breadth-first ordering. The test concluded that
the breadth-first ordering had to wait 10% more than the FindDists combination of
breadth-first and random ordering. When crawling through millions of links this result
would save lot of time. The value of 10% should not be taken as a absolute value but
more as a pointer that FindDist reduces the waiting time compared to breadth-first or-
dering. To get a more precise value more tests have to be performed. Still the FindDist
download order creates a lot of waiting time. A different solution could be to trans-
verse all links to be download and pick the first one with a web-server that could be
access directly without any waiting time. This would probably work well when crawl-
ing with a few download threads, since it would not be too long before a good link is
found. With many download threads, probably more time would be used to find a good
link than just waiting, specially since most of the links is stored externally on a database.

The thesis proves that for each new node added to the FindDist crawler, around 44%
more links can be found compared to what a single node finds. In a perfect case the
number would be 100% but lot of computation power is lost due to the transfer of data
between the coordinator and the nodes. A possible improvement to this could be to
change the number of links each node is allowed to handle at a time, as of now it is a
static number decided by the coordinator. A better result would probably be given if
the node would decide the number of links itself, depending on its hardware and network
connection. Another possible refinement could be that each node ask for data to crawl
instead as of now it being decided by the coordinator. If all the nodes were given the
ability to access the database the crawling could be more effective, but then an interface

35

CHAPTER 6. CONCLUSION AND FURTHER WORK

for the database must be created to handle all the request for the nodes. This would
have the possibility to create concurrency problems, which today FindDist does not need
to handle.

The distribution of FindDist is robust and fault-tolerant, much do to the membership
service. It was also found that if the coordinator node would to suddenly disappear or
crash, the crawler would assign a new coordinator without fault and minimum data loss.
The distribution creates some overhead that probably could be reduced, which probably
would speed up the crawling.

The best way to continue improving the web-crawler would to do more test, to be able
to pinpoint a good number of the size of the download queue. The authors of this thesis
recommend to continue to work with JGroups, since it offers options for fault tolerance
and modular design.

To conclude, there are ways to improve the state of a distributed web crawler. As shown
in this thesis, one way is with a robust membership service and with a new download
order.

36

Bibliography

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee,
D. A. Patterson, A. Rabkin, I. Stoica, and et al., “Above the clouds: A berkeley view
of cloud computing,”EECS Department University of California Berkeley Tech Rep
UCBEECS200928, no. UCB/EECS-2009-28, pp. 1–23, 2009.

[2] A. S. Tanenbaum and M. V. Steen, Distributed Systems: Principles and Paradigms.
Upper Saddle River, NJ, USA: Prentice Hall PTR, 1st ed., 2001.

[3] J. Sjöberg and S. Svensson, “Distributed document processing: Search index opti-
mization by data preprocessing and workload distribution,” 2009.

[4] R. Lass, D. Nguyen, D. Millar, W. Regli, J. Macker, and R. Adamson, “An eval-
uation of serverless group chat,” in MILITARY COMMUNICATIONS CONFER-
ENCE, 2011 - MILCOM 2011, pp. 1639 –1644, nov. 2011.

[5] X. Défago, A. Schiper, and P. Urbán, “Total order broadcast and multicast algo-
rithms: Taxonomy and survey,” ACM Computing Surveys (CSUR), vol. 36, no. 4,
pp. 372–421, 2004.

[6] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,”
Communications of the ACM, vol. 21, no. 7, pp. 558–565, 1978.

[7] The Amazon S3 Team, “Amazon s3 availability event: July 20, 2008,” June 2012.

[8] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, “Grid information ser-
vices for distributed resource sharing,” in High Performance Distributed Comput-
ing, 2001. Proceedings. 10th IEEE International Symposium on, pp. 181–194, IEEE,
2001.

[9] Object Management Group Inc., “Documents associated with corba,” June 2012.

[10] The Apache Software Foundation., “Apache zookeeper,” June 2012.

[11] B. Ban, “Jgroups - the jgroups project,” May 2012.

[12] P. Jogalekar and M. Woodside, “Evaluating the scalability of distributed systems,”
IEEE Transactions on Parallel and Distributed Systems, vol. 11, pp. 589–603, 2000.

37

BIBLIOGRAPHY

[13] U. Schonfeld and N. Shivakumar, “Sitemaps: above and beyond the crawl of duty,”
in Proceedings of the 18th international conference on World wide web, WWW ’09,
(New York, NY, USA), pp. 991–1000, ACM, 2009.

[14] C. Olston and M. Najork, “Web crawling,”Foundations and Trends in Information
Retrieval, vol. 4, no. 3, pp. 175–246, 2010.

[15] A. Ntoulas, J. Cho, and C. Olston, “What’s new on the web?: the evolution of
the web from a search engine perspective,” in Proceedings of the 13th international
conference on World Wide Web, WWW ’04, (New York, NY, USA), pp. 1–12, ACM,
2004.

[16] A. Dasgupta, A. Ghosh, R. Kumar, C. Olston, S. Pandey, and A. Tomkins, “The
discoverability of the web,” in Proceedings of the 16th international conference on
World Wide Web, WWW ’07, (New York, NY, USA), pp. 421–430, ACM, 2007.

[17] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search engine,”
Comput. Netw. ISDN Syst., vol. 30, pp. 107–117, Apr. 1998.

[18] V. Shkapenyuk and T. Suel, “Design and implementation of a high-performance
distributed web crawler,” in In Proc. of the Int. Conf. on Data Engineering, pp. 357–
368, 2002.

[19] M. Najork and J. L. Wiener, “Breadth-first crawling yields high-quality pages,” in
Proceedings of the 10th international conference on World Wide Web, WWW ’01,
(New York, NY, USA), pp. 114–118, ACM, 2001.

[20] T. Bennouas and F. de Montgolfier, “Random web crawls,” in WWW, pp. 451–460,
2007.

[21] C. M. Drott, “Indexing aids at corporate websites: the use of robots.txt and meta
tags,” Inf. Process. Manage., vol. 38, pp. 209–219, Mar. 2002.

[22] Y. Sun, I. G. Councill, and C. L. Giles, “Botseer: An automated information system
for analyzing web robots.”

[23] R. Hecht and S. Jablonski, “Nosql evaluation: A use case oriented survey,” Cloud
and Service Computing, International Conference on, vol. 0, pp. 336–341, 2011.

[24] 10gen, Inc, “Mongodb.” http://www.mongodb.org/, May 2012.

[25] S. Robertson, “Understanding inverse document frequency: On theoretical argu-
ments for idf,” in Journal of Documentation, vol. 60, pp. 503–520, 2004.

[26] R. A. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1999.

[27] The Apache Software Foundation, “Httpcomponents httpclient overview.” http:

//hc.apache.org/httpcomponents-client-ga/, May 2012.

38

 http://www.mongodb.org/
 http://hc.apache.org/httpcomponents-client-ga/
 http://hc.apache.org/httpcomponents-client-ga/

	Introduction
	Background
	Goal & Purpose
	Limitations

	Analysis
	Distribution architecture
	Group Membership Service
	Realization of the distribution
	Distribution of work
	Scalability of node members
	Filetypes
	Ordering
	Robot Exclusion Protocol
	Etiquette
	Database
	Indexing server

	System Overview
	Benchmarking
	Benchmark with multiple servers
	Ordering benchmark

	Results
	Conclusion and further work
	Bibliography

