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Abstract
This thesis investigates questions in probability theory inspired by a model of dart
throwing. The deviation from where you aim is modelled as the distance to the dart
board times a random vector, and in this thesis we refer to such a random vector
as a dart. Points are then assigned by some bounded payoff function, and we study
how the choice of the payoff function as well as the distribution of the dart affect
the properties of the expected score when aiming in an optimal way.

Interestingly, it turns out that sometimes it can be better to move further away from
the dartboard before throwing, and the main focus of this thesis is to characterise
under what circumstances this is or isn’t the case. For a dart X and payoff function
f we call the pair (X, f) reasonable if it is always better to stand closer to the
dartboard, and a dart X is called reasonable if (X, f) is reasonable for all payoff
functions f .

We have found a large class of darts which are reasonable, namely those which have
so-called selfdecomposable distributions, which includes many well known distribu-
tions, such as the exponential distribution, the logistic distribution, and also all
stable distributions. Whether there exist reasonable darts that are not selfdecom-
posable remains an open question.

It turns out that when the payoff function is cosine, then reasonableness can be
characterised in terms of the characteristic function of the dart, from which many
different results follow. Furthermore, by studying functions of the form ecx cos(ωx),
we have found that no dart with compact support is reasonable.

We have also found several sufficient conditions for a dart to be non-reasonable with
respect to some continuous payoff function, one of which is the following. If a dart
has a point mass, but is not a constant, then it is non-reasonable with respect to
some continuous function.

Finally, we have investigated under what types of operations a set of reasonable darts
may be closed, and have found two results of this nature. Firstly any independent
sum of reasonable darts is reasonable. Secondly, for any f ∈ C0(Rn), the set of
darts which are reasonable with respect to f is closed with respect to convergence
in distribution.
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1. Introduction
In the game of darts, it is not always obvious where on the dart board one should
aim, or where one should stand. This could depend on the type of game (scoring
method) you play, and also on your level of skill. We study a model of the game
where the dart board is Rn, and there is some scoring- or payoff function f : Rn → R.
We always assume that you want to maximize your expected score.

1.1 A mathematical model of dart throwing
We make the following definition.

Definition 1.1. A payoff function f is a bounded measurable function from Rn

to R.

As a player you can aim wherever you want in Rn, and if you aim at a point a,
while standing at distance 1 from the target, then you will hit a + X, where X is
a random vector taking values in Rn. In this thesis we will refer to such a random
vector as a dart.

Definition 1.2. A dart is a random vector X taking values in Rn. A dart whose
law is equal to a single point mass is called degenerate.

We assume that the deviation from where you aim scales linearly with the distance
from the target. Thus if you stand at distance d > 0 and aim at a, you will hit
a+ dX and f(a+ dX) is then your payoff. It is interesting to look at Ef(a+ dX),
the expected score when standing at distance d and aiming at a using dart X, as
well as supaEf(a+ dX), and so we introduce the following definition.

Definition 1.3. Let X be a dart taking values in Rn and f be a payoff function on
Rn. The function g

X,f
(d) is defined for d > 0 to be

g
X,f

(d) := sup
a∈Rn

Ef(a+ dX). (1.1)

So g
X,f

(d) is the best you can achieve with dart X, standing at distance d with
payoff function f . Note that the supremum is not always assumed, so that it is
sometimes best to aim arbitrarily far away.

It is natural to think that the closer you stand to the target, the better you will do;
i.e., that g

X,f
(d) is a decreasing function of d. Interestingly, this is not necessarily

the case as the following simple example illustrates. Let n = 1, X be uniform on
[0, 2] and f be 1 on intervals of the form [2k, 2k + 1] and 0 on intervals of the form
(2k − 1, 2k) where k is an integer. It is then immediate to check that g

X,f
(1) = 1/2

(and it doesn’t matter where you aim) but g
X,f

(3/2) = 2/3 (aim e.g. at 1.5). We
will later see how this is related to a more general phenomenon where the behaviour
of the characteristic function of X will play a central role, see Theorem 3.1.
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1. Introduction

We introduce the following concept which captures those situations where standing
closer is in fact better.

Definition 1.4. The pair (X, f) is reasonable if g
X,f

(d) is decreasing in d. The
dart X is reasonable with respect to a family of payoff functions F if (X, f) is
reasonable for all f ∈ F . If (X, f) is reasonable for all payoff functions f , then X
is said to be reasonable. The payoff function f is reasonable with respect to a
family of darts X if (X, f) is reasonable for all X ∈ X . If (X, f) is reasonable for
all darts X, then f is said to be reasonable.

In some cases it is trivial to show whether a dart or payoff function is reasonable or
not with respect to some set, but often it is quite difficult. Investigating under what
conditions a pair (X, f) is reasonable or not is the main focus of this thesis, and
we have obtained various different interesting results which have given us a better
understanding of what it means to be reasonable.

Let us first note that rescaling and shifting darts and payoff functions should not
affect whether they are reasonable or not, and so we recall the following definition.

Definition 1.5. We say that the random vectors X and Y have the same type if
there exist ad > 0 and bd ∈ Rn such that Y and adX+ bd have the same distribution.
We say that the functions f and h have the same type if there exist ap, cp > 0,
bp ∈ Rn, and dp ∈ R such that h(x) = cpf(apx+ bp) + dp for all x.

If X and Y have the same type and f and h have the same type, then it will follow
from Proposition 2.1 that (X, f) is reasonable if and only if (Y, h) is.

It is not immediately obvious whether there exist reasonable payoff functions and
darts (other than the most trivial examples), but there are some interesting exam-
ples. We will now introduce a class of reasonable payoff functions which we choose
to call unimodal.

Definition 1.6. A function f : Rn → R is called unimodal if for all x ∈ Rn, f(rx)
is decreasing in r on [0,∞).

Proposition 2.3. If f is a unimodal payoff function, then f is reasonable.

Note that the preceding proposition is numbered based on in which section of the
main text it is restated and proved. We will treat all other propositions and theorems
in the introduction in the same way.

We now wish to introduce a large collections of darts which turn out to be reasonable,
and for this reason we recall the notion of selfdecomposable probability measures
(see [7]). However, we first need to recall what it means for a random vector to
divide another random vector.

Definition 1.7. We say a random vector X divides a random vector Y , written
X|Y if there exists a random vector Z so that if Z and X are independent, then
X + Z and Y have the same distribution.

Definition 1.8. A random vector X is selfdecomposable if for all d > 1, X|dX.

2



1. Introduction

Theorem 2.6. If X|dX, where d > 1, then g
X,f

(s) ≥ g
X,f

(ds) for all f and for all
s. In particular, if X is selfdecomposable, then X is reasonable.

The notion of selfdecomposability is not very well known, but there are common ex-
amples of selfdecomposable random vectors, such as those with stable distributions,
see Section 1.2.

Remark 1.9. It is easy to check that X|dX only depends on X’s type and hence
being selfdecomposable also only depends on the type of X.

Remark 1.10. It is easy to show that an independent sum of selfdecomposable
random variables is selfdecomposable (which is not true in general for stable distri-
butions). This yields a large collection of reasonable darts.

It turns out that when the payoff function is cosine, then there is an interesting
connection between g

X,f
and the characteristic function of X.

Theorem 3.1. Let X be any dart taking values in Rn with characteristic function
φX , and let f(x) = cos

(∑n
j=1 xj

)
. Then for any d > 0 we have that

Ef(a+ dX) = |φX(d~1)| cos
 n∑
j=1

aj + Arg(φX(d~1))
 , (1.2)

where ~1 = (1, 1, ..., 1). In particular this implies that if f(x) = cos
(∑n

j=1 xj
)
, then

g
X,f

(d) =
∣∣∣φX(d~1)

∣∣∣, so that (X, f) is reasonable if and only if
∣∣∣φX(d~1)

∣∣∣ is decreasing
in d > 0.

From this many other results follow, including the following, which yields a type of
phase transition.

Theorem 3.18. Let X1 be Bern(p) distributed and X2 be N(0,σ2) distributed. If
they are independent, then X := X1 +X2 is reasonable with respect to f(x) = cos(x)
if and only if

σ2d
(
p2 + (1− p)2 + 2(1− p)p cos(d)

)
+ (1− p)p sin(d) ≥ 0, ∀d ≥ 0. (1.3)

When p = 1/2, (X, cos(x)) is not reasonable for any σ. But for any p 6= 1/2 there
exists a σp ∈ (0,∞) such that for all σ ≥ σp, (X, cos(x)) is reasonable, and for any
σ < σp (X, cos(x)) isn’t reasonable. In addition, for p 6= 1/2, σp ≤ (1− p)p/(π|1−
2p|2).

Furthermore, we have found several sufficient conditions for a dart to not be reason-
able with respect to the set of continuous payoff functions. We have, among other
things, found that a non-degenerate reasonable dart does not have compact support,
and does not have point masses.

Theorem 3.21. Let X be a dart taking values in Rn. If there is an axis such that
X projected onto that axis is non-degenerate and has compact support, then there
exists a continuous payoff function h with compact support such that (X, h) is not
reasonable.

3



1. Introduction

In particular, if X is non-degenerate and has compact support, then there exists a
continuous payoff function h with compact support such that (X, h) is non-reasonable.

Theorem 4.1. If X is a non-degenerate dart taking values in Rn with a point
mass, then there exists a continuous payoff function f on Rn such that (X, f) is not
reasonable.

Finally, we have investigated under what types of operations a set of reasonable
darts may be closed, and have found that an independent sum of reasonable darts
is reasonable.

Theorem 5.1. Assume that X1, ..., Xm are independent darts taking values in Rn,
which are all reasonable with respect to a family of payoff functions F . If F is either
of the following sets

1. The set of all payoff functions

2. The set of all continuous payoff functions

3. The set of all payoff functions of the same type as cos(∑n
j=1 xj)

then for any d1, ..., dm, D1, ..., Dm ≥ 0 such that dj ≤ Dj for all j we have that

sup
a
Ef(a+

m∑
j=1

djXj) ≥ sup
a
Ef(a+

m∑
j=1

DjXj), ∀f ∈ F (1.4)

and in particular ∑m
j=1 Xj is reasonable with respect to F .

We have also found a type of closedness with respect to convergence in distribution.

Theorem 5.3. Let {Xj}∞j=1 be a sequence of darts taking values in Rn which
converges in distribution to some dart X. Then for any f ∈ C0(Rn), d > 0,
limj gXj,f (d) = g

X,f
(d). As a consequence, for any f ∈ C0(Rn) for which (Xj, f)

is reasonable for all j, we have that (X, f) is reasonable.

1.2 Background
In this section we will go through some of the background and definitions relevant
to the text.

Let us first note that the set of selfdecomposable darts mentioned in the previous
section is quite large, as it contains all darts with so-called stable distributions.

Definition 1.11. A random vector X has a stable distribution if for independent
copies X1 and X2 of X, and any a, b > 0, there exist constants c > 0 and d ∈ Rn

such that aX1 + bX2 is equal to cX + d in distribution.

Examples of stable distributions include the normal distribution and the Cauchy
distribution. [6]

Stable distributions can be best characterised in terms of their characteristic func-
tions.
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1. Introduction

Definition 1.12. Let X be a random vector taking values in Rn. The character-
istic function of X is a function φX : Rn → C defined by

φX(t) = Eexp(i · (t ·X)). (1.5)

For each stable distribution there is an associated parameter α ∈ (0, 2]. The value
α = 2 corresponds to a (multivariate) normal distribution with characteristic func-
tion

φX(~t) = exp
(
i~µ~t− 1

2
~t TΣ~t

)
(1.6)

where ~µ is a vector in Rn and Σ is a symmetric non-negative definite n× n matrix.
For α ∈ (0, 2) [6] provides the following characterisation of the characteristic function
(see p. 65).

Theorem 1.13. Let 0 < α < 2. Then a random vector X taking values in Rn has
an α-stable distribution if and only if there exists a finite measure Γ on the unit
sphere Sn of Rn, and some ~µ ∈ Rn such that

a) If α 6= 1

φX(~t) = exp
(
−
∫
Sn
|~t · ~s|α(1− i sign(~t · ~s) tan(πα2 ))Γ(d~s) + i~t · ~µ

)
(1.7)

b) If α = 1

φX(~t) = exp
(
−
∫
Sn
|~t · ~s|(1 + i

2
π

sign(~t · ~s) log(|~t · ~s|))Γ(d~s) + i~t · ~µ
)

(1.8)

Using this knowledge of the characteristic function we can provide a simple proof
that stable distributions with α 6= 1 are selfdecomposable. For a proof of the more
general statement that all stable distributions are selfdecomposable we refer to [7],
page 91.

Proposition 1.14. Any stable distribution with α 6= 1 is selfdecomposable.

Proof. Let X be a random vector taking values in Rn with a stable distribution with
α 6= 1. As being selfdecomposable only depends on the type of X we may assume
that ~µ = 0 in (1.6) and (1.7).

We have that
φX(~t) = exp(−h(~t)) (1.9)

where h is in the exponent of (1.6) and (1.7). It is easy to see that

φdX(t) = exp(−dαh(~t)), for any d > 0 (1.10)

and from this we get that if X2 is an independent copy of X, and d > 1, then

φX+(dα−1)1/αX2(~t) = φX(~t)φ(dα−1)1/αX2(~t) = exp(−h(~t))exp(−(dα − 1)h(~t))
= exp(−dαh(~t)) = φdX(~t)

(1.11)

so that X + (dα − 1)1/αX2 is equal to dX in distribution, thus proving that X is
selfdecomposable.
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1. Introduction

Let us now define the Bernoulli distribution as we will refer to it several times in
the text.

Definition 1.15. A random variable X is said to have a Bernoulli distribution
with parameter p ∈ [0, 1] if P (X = 1) = p and P (X = 0) = 1 − p, and we say that
X has a Bern(p) distribution.

Next we will recall the concept of infinitely divisible distributions.

Definition 1.16. A random vector X is said to have an infinitely divisible dis-
tribution if for all positive m ∈ N, there exist m independent identically distributed
random vectors Y1, ..., Ym such that ∑n

j=1 Yj has the same distribution as X.

It is known (see [7], p. 93) that all selfdecomposable distributions are infinitely
divisible and that on R (see [7], p. 177) all selfdecomposable distributions are
absolutely continuous as long as they are not degenerate.

The following is a concept which is used to construct examples of darts with desired
properties.

Definition 1.17. Let X and Y be darts taking values in Rn with laws µX and µY .
A dart Z taking values in Rn is a convex combination of X and Y if its law is
given as µZ = pµX + (1− p)µY for some p ∈ [0, 1]. If p ∈ (0, 1), then Z is called a
nontrivial convex combination of X and Y .

Let us now recall the concept of convergence in distribution, as we will investigate
questions regarding whether sets of darts that are reasonable with respect to some
family of payoff functions are closed with respect to convergence in distribution.
There exist several common equivalent definitions, and we will state two here which
will be useful in the proof of Theorem 5.3.

Definition 1.18. A sequence of random vectors {Xj}∞j=1 taking values in Rn con-
verges in distribution to a random vector X if for any continuous and bounded
function f : Rn → R we have that Ef(Xn)→ Ef(X).

Before stating the second definition, let us recall the concept of a continuity set.

Definition 1.19. Let X be a random vector in Rn, and let B ⊂ Rn be a Borel
set. Then B is called a continuity set of X if P (X ∈ ∂B) = 0, where ∂B is the
boundary of B.

Definition 1.20. A sequence of random vectors {Xj}∞j=1 taking values in Rn con-
verges in distribution to a random vector X if for any A ⊂ Rn, such that A is
a continuity set of X, we have that limj P (Xj ∈ A) = P (X ∈ A).

Finally, let us define two function spaces which will be used in some of our theorems.
We define Cc(Rn) and C0(Rn) by

Cc(Rn) :=
{
f : Rn → R| f is continuous and has compact support}

C0(Rn) :=
{
f : Rn → R| f is continuous and lim

||x||→∞
f(x) = 0

} (1.12)

Note that Cc(Rn) ⊂ C0(Rn).

6



2. Darts and payoff functions
In this section we will prove some of our more fundamental results. Let us begin by
stating some properties of g

X,f
(d).

2.1 Basic properties of gX ,f

Let us first recall the definition of g
X,f

. Let X be a dart taking values in Rn and let
f be a payoff function f : Rn → R. Then the function g

X,f
is defined as

g
X,f

(d) := sup
a∈Rn

Ef(a+ dX). (2.1)

Proposition 2.1. Let X and Y be two independent darts taking values in Rn, and
let f and h be two payoff functions on Rn. If ad, ap, cp > 0, dp ∈ R, and bd, bp ∈ Rn,
then the following statements hold

1. g
adX+bd,cpf(apx+bp)+dp

(d) = cpgX,f (adapd) + dp

2. g
X+Y,f (d) ≤ g

X,f
(d)

3. g
X,f+h(d) ≤ g

X,f
(d) + g

X,h
(d)

4. infx(f(x)) ≤ g
X,f

(d) ≤ supx(f(x))

Proof. This proof only requires some simple straightforward computations.

1) We compute

g
adX+bd,cpf(apx+bp)+dp

(d) = sup
a
E [cpf (ap(a+ d(adX + bd)) + bp) + dp]

= cp(sup
a
E [f ((apa+ apdbd + bp) + adapdX)]) + dp

= cp(sup
a
E [f (a+ adapdX)]) + dp = cpgX,f (adapd) + dp.

(2.2)
2) Due to the independence of X and Y we have that for any a ∈ Rn

Ef(a+ dX + dY ) =
∫
Ef(a+ dy + dX)dµY (y)

≤
∫

sup
a
Ef(a+ dX)dµY (y)

= sup
a
Ef(a+ dX) = g

X,f
(d)

(2.3)

and thus
g
X+Y,f (d) = sup

a
E (f(a+ dX + dY )) ≤ g

X,f
(d) (2.4)

That 3)-4) hold can easily be shown.

7



2. Darts and payoff functions

Remark 2.2. If we let Y = −X, then it is easy to see that the independence
assumption in Proposition 2.1 is necessary. Let for example X be uniform on [0, 1],
and let f(0) = 1, f(x) = 0 when x 6= 0. Now g

X−X,f (d) = 1 but g
X,f

(d) = 0.

Next we will demonstrate that there exist both reasonable f ’s and reasonable X’s by
providing some sufficient conditions for a payoff function or dart to be reasonable.

2.2 Reasonable payoff functions
Here we will prove that there are reasonable payoff functions. First we will show
that unimodal payoff functions are reasonable.

Proposition 2.3. If f is a unimodal payoff function, then f is reasonable.

Proof. Fix a dart X taking values in Rn. For any 0 < d1 < d2 we have by the
unimodality of f that

g
X,f

(d1) = sup
a
Ef(a+ d1X) = sup

a
Ef

(
d1a

d2
+ d1X

)

= sup
a
Ef

(
d1

d2
(a+ d2X)

)
≥ sup

a
Ef(a+ d2X) = g

X,f
(d2).

(2.5)

Remark 2.4. If f : Rn → R has the property that there exists y in Rn such that
f(rx+y) is decreasing in r, where r in [0,∞), for all x in Rn, then f is of the same
type as a unimodal function, and is thus reasonable.

Now note that if f(x) = arctan(||x||), then it is easy to check that for any dart X,
g
X,f

(d) = supx f(x) for all d, so that (X, f) is reasonable. This is a simple example
of a second class of reasonable payoff functions, namely the set of payoff functions
f such that there are arbitrarily large balls in Rn where f(x) is arbitrarily close to
supx∈Rn f(x). Intuitively, this means that at any distance there is always somewhere
you can aim so that the expected value will be arbitrarily close to supx∈Rn f(x).

Open Question 2.5. Are there reasonable payoff functions other than unimodal
functions, and the ones that behave like arctan?

2.3 Selfdecomposability - a sufficient condition for
reasonableness

As was stated earlier, all selfdecomposable darts are reasonable. Some examples of
selfdecomposable darts are listed in 2.1.

Let us now prove that all selfdecomposable darts are reasonable.

Theorem 2.6. If X|dX, where d > 1, then g
X,f

(s) ≥ g
X,f

(ds) for all f and for all
s. In particular, if X is selfdecomposable, then X is reasonable.

8



2. Darts and payoff functions

Table 2.1: Table containing examples of selfdecomposable distributions.

Distribution stable
normal distribution yes
Cauchy distribution yes
Lévy distribution yes

Landau distribution yes
Holtsmark distribution yes
exponential distribution no
Laplace distribution no
Gamma distribution no
Pareto distribution no

F-distribution no
log-normal no

logistic distribution no

Proof. Fix f and s > 0. From X|dX it follows that sX|dsX. Choose a random
variable Z so that if Z and X are independent, then sX+Z and dsX have the same
distribution. By Proposition 2.1 we have that

g
X,f

(s) = g
sX,f

(1) ≥ g
sX+Z,f (1) = g

dsX,f
(1) = g

X,f
(ds). (2.6)

Remark 2.7. The point of X|dX is that you can then simulate being distance ds
when you are standing at distance s by randomising your target. Hence you can do
at least as well at distance s as at distance ds.

As all selfdecomposable distributions are infinitely divisible (see [7], p. 93), it is
natural to ask whether all darts that have infinitely divisible distributions are rea-
sonable, but this is not the case. It turns out that the Poisson distribution is not
reasonable, which will trivially follow from Theorem 4.1.

It is furthermore known that in the one-dimensional case, all selfdecomposable dis-
tributions are unimodal (see [7], p. 404), and that as long as they are not a single
point mass they are absolutely continuous (see [7], p. 177). With all this in mind it
is natural to ask the following questions.

Open Question 2.8. Is there an example of a reasonable dart which is not selfde-
composable?

Open Question 2.9. Is there an example of a reasonable one-dimensional dart
which is not unimodal?

Open Question 2.10. Is there an example of a reasonable dart which is not in-
finitely divisible?

Open Question 2.11. Is there an example of a reasonable non-degenerate one-
dimensional dart which is not absolutely continuous?

9



2. Darts and payoff functions

Note that if the answer to Question 2.9, 2.10, or 2.11 is yes, then this would imply
that the answer to Question 2.8 is also yes.

10



3. Trigonometric payoff
It turns out that using trigonometric functions for our payoff functions yields surpris-
ingly many interesting results. In this section we will first demonstrate a connection
between g

X,cos(x)(d) and the characteristic function of X, from which many other
results follow. Then we will look at functions of the form ecx cos(ωx), from which
we will construct payoff functions demonstrating that a dart with compact support
is non-reasonable. Note that this is not a bounded function if c is non-zero, and so
we will need to modify it to make it bounded.

3.1 Cosine payoff
Theorem 3.1. Let X be any dart taking values in Rn with characteristic function
φX , and let f(x) = cos

(∑n
j=1 xj

)
. Then for any d > 0 we have that

Ef(a+ dX) = |φX(d~1)| cos
 n∑
j=1

aj + Arg(φX(d~1))
 , (3.1)

where ~1 = (1, 1, ..., 1).

In particular this implies that if f(x) = cos
(∑n

j=1 xj
)
, then g

X,f
(d) =

∣∣∣φX(d~1)
∣∣∣, so

that (X, f) is reasonable if and only if
∣∣∣φX(d~1)

∣∣∣ is decreasing in d on (0,∞).

Proof. We have that

Ef(a+ dX) = E cos
 n∑
j=1

aj + d~1 ·X
 = Re

Eexp
i n∑

j=1
aj + id~1 ·X


= Re

(
ei
∑n

j=1 ajEeid
~1·X
)

= Re
(
ei
∑n

j=1 ajφX(d~1)
)

= Re
(
ei
∑n

j=1 aj |φX(d~1)|eiArg(φX(d~1))
)

= |φX(d~1)| cos
 n∑
j=1

aj + Arg(φX(d~1))


(3.2)

and thus
g
X,f

(d) = |φX(d~1)|. (3.3)

Remark 3.2. Note that all functions in the set {f : f(x) = cos
(
ω
∑n
j=1 xj + θ

)
, ω >

0, θ ∈ [0, 2π]} are of the same type, and thus if a dart X is reasonable with respect
to any function in this set, it is reasonable with respect to all functions in the set.
In particular in one dimension, if (X, cos(x)) is reasonable, then (X, sin(x)) is rea-
sonable.

11



3. Trigonometric payoff

Table 3.1: Table containing examples of characteristic functions and their absolute
values. All of the associated distributions are non-reasonable with respect to cos(x).

Distribution φX(t) |φX(t)|

Bernoulli Bern(p) 1− p+ peit (p2 + (1− p)2 + 2p(1− p) cos(t))1/2

Binomial B(n, p) (1− p+ peit)n (p2 + (1− p)2 + 2p(1− p) cos(t))n/2

Negative binomial NB(r, p)
(

1−p
1−pei t

)r (
|1−p|√

1−2p cos(t)+p2

)r
Poisson Pois(λ) eλ(eit−1) eλ(cos(t)−1)

Uniform U(a, b) eitb−eita
it(b−a)

√
2(1−cos(tb−ta))

(b−a)|t|
Geometric Gt(p) p

e−it−(1−p)
p√

1+(p−1)2+2(p−1) cos(t)

Theorem 3.1 gives us a powerful tool to study the behaviour of g
X,f

(d), and we can
immediately find several examples of common distributions that are not reasonable
with respect to cosine.

Example 3.3. The following distributions all have characteristic functions φX such
that |φX(d)| is not decreasing for d ∈ (0,∞), and thus by Theorem 3.1 are not
reasonable with respect to f(x) = cos(x). Their characteristic functions are listed in
Table 3.1.

• Bernoulli distribution

• Binomial distribution

• Negative binomial distribution

• Poisson distribution

• Uniform distribution

• Geometric distibution

Aside from giving us means to investigate reasonableness, Theorem 3.1 also implic-
itly tells us which a maximise E cos(a+ dX). Note that the points of maximisation
can move around in a discontinuous way, as the following example demonstrates.

Example 3.4. Let X be a dart taking values in R such that P (X = 1) = P (X =
−1) = 1/2. The characteristic function of X is φX(t) = cos(t), and by Theorem
3.1 we see that X isn’t reasonable. Furthermore, by the same theorem, Ef(a+ dX)
is always optimised at a = −Arg(φX(d)) + 2kπ, k ∈ Z, and so as d changes, the
optimal place to aim switches back and forth between 2kπ and π + 2kπ.

Remark 3.5. (i) Note that when d ≥ 2 the set of a’s which maximises (3.1) is very
large. For any fixed a1, ..., an−1, there are infinitely many an such that a = (a1, ..., an)
maximises Ef(a+ dX).
(ii) Theorem 3.1 implies that if φX(d~1) = 0, then it does not matter where we aim
when we are at distance d.

12



3. Trigonometric payoff

We will now give a number of corollaries to Theorem 3.1.

There are two simple ways of combining random variables, adding independent
copies, or taking convex combinations. We begin with the latter.

Corollary 3.6. Let f be the payoff function f(x) = cos
(∑n

j=1 xj
)
, and let X and Y

be darts taking values in Rn with characteristic functions φX and φY . If φX and φY
are real-valued, and both X and Y are reasonable with respect to f , then any convex
combination of X and Y is reasonable with respect to f .

In particular, if n = 1, and X and Y are symmetric darts that are reasonable with
respect to cos(x), then so is any convex combination of X and Y .

Proof. By Theorem 3.1, |φX(d~1)| and |φY (d~1)| are decreasing in d > 0. Since they
are real-valued, and all characteristic functions are continuous and equal to 1 at the
origin, this implies that φX(d~1), φY (d~1) ≥ 0. Now let Z be a convex combination of
X and Y , so that its characteristic function is given as

φZ(~t) = pφX(~t) + (1− p)φY (~t) (3.4)

for some p ∈ [0, 1]. As φX(d~1), φY (d~1) are decreasing, real-valued, and non-negative,
it follows that |φZ(d~1)| = φZ(d~1) is decreasing, and thus Z is reasonable with respect
to f by Theorem 3.1.

This corollary can be used to show that a dart X being reasonable with respect to
cosine does not imply that X is reasonable, as the following example demonstrates.

Example 3.7. Let X be a point mass and Y have a normal distribution, both
centred at zero. Then they are both reasonable and symmetric, so by Corollary 3.6
any convex combination of X and Y is reasonable with respect to cos(x). However,
as we will later see, no nontrivial convex combination of X and Y is reasonable, see
Theorem 4.1.

Remark 3.8. If X and Y from the previous example are instead chosen to have
different means, then no nontrivial convex combination of them is reasonable with
respect to cos(x).

Thanks to the properties of characteristic functions we can show that a sum of
independent darts, which are reasonable with respect to cosine, is also reasonable
with respect to cosine.

Corollary 3.9. Let X and Y be two independent darts taking values in Rn and let
f(x) = cos

(∑n
j=1 xj

)
. If (X, f) and (Y, f) are both reasonable, then (X + Y, f) is

also reasonable.

Proof. The characteristic function φX+Y (d~1) can due to independence be calculated
as

φX+Y (d~1) = E(eid~1·(X+Y )) = E(eid~1·Xeid~1·Y )
= E(eid~1·X)E(eid~1·Y ) = φX(d~1)φY (d~1).

(3.5)

13



3. Trigonometric payoff

By Theorem 3.1 a dart Z is reasonable if and only if |φZ(d~1)| is decreasing in d, and
thus (X + Y, f) is reasonable.

Corollary 3.9 actually turns out to be a special case of a more general theorem, see
Theorem 5.1.

Remark 3.10. There exist (non-independent) darts X, Y taking values in R such
that (X, cos(x)) and (Y, cos(x)) are reasonable, but (X + Y, cos(x)) isn’t reasonable,
see Corollary 3.19.

Remark 3.11. There exist darts X, Y taking values in R such that (X, cos(x))
is reasonable, (Y, cos(x)) isn’t reasonable, but an independent sum of X and Y is
reasonable with respect to cos(x), see Proposition 3.18.

Now we will give a corollary about continuous darts taking values in R. Note that
by continuous, we simply mean no atoms; we do not mean absolutely continuous.

Corollary 3.12. Let X be a continuous dart taking values in R, with a characteristic
function φX . If φX(t) does not go to zero as t goes to infinity, then X isn’t reasonable
with respect to cos(x).

Proof. Assume that X is reasonable with respect to cos(x). Then by Theorem 3.1
|φX(t)| must be decreasing in t. However, by [1] (Theorem 6.2.5, p. 164) we have
that

lim
T→∞

1
2T

∫ T

−T
|φX(t)|2dt =

∑
x∈R

µX({x})2, (3.6)

where µX is the law of X. As X is continuous and |φX(t)| is decreasing this implies
that φX(t) goes to zero, which gives us a contradiction. Thus X is not reasonable
with respect to cos(x).

Corollary 3.13. If X is a 1-dimensional dart, whose characteristic function is
analytic (for example, if X is compactly supported) and has a zero, then (X, cosx)
is not reasonable.

Remark 3.14. Analyticity in Corollary 3.13 is necessary since there is a dart whose
characteristic function has a zero but such that (X, cosx) is reasonable. Namely, it
is well known (see [2]) that if X has density function 1−cosx

πx2 , then its characteristic
function is given by the tent function max{1−|t|, 0}. By Proposition 3.1, (X, cosx)
is reasonable.

If we make certain symmetry assumptions on X, we obtain a proposition similar to
Theorem 3.1 but with a different payoff function.

Proposition 3.15. Let X be a dart taking values in Rn such that its law is invariant
under reflections with respect to the coordinate axes, and let f(x) = ∏n

j=1 cos (xj).
Then for any d > 0, g

X,f
(d) = |φX(d~1)|, where φX is the characteristic function for

X. In particular, (X, f) is reasonable if and only if |φX(d~1)| is decreasing in d > 0.

14



3. Trigonometric payoff

Proof. Using the symmetry of X we get that

φX(d~1) =
∫

cos(d
n∑
n=1

yj)dµX(y) + i
∫

sin(d
n∑
n=1

yj)dµX(y) =
∫

cos(d
n∑
n=1

yj)dµX(y)

=
∫ cos(dy1) cos(d

n∑
j=2

yj)− sin(dy1) sin(d
n∑
j=2

yj)
 dµX(y).

(3.7)
Note that the term sin(dy1) sin(d∑n

j=2 yj) switches sign under the transform (y1, ..., yn)→
(−y1, y2, ..., yn), and combining this with the symmetry properties of X this gives
us that the integral over this term is zero. By continuing in this fashion for each
variable we get

φX(d~1) =
∫ n∏

j=1
cos(dyj)dµX(y). (3.8)

We will now show how this relates to g
X,f

(d). We have that

Ef(a+ dX) =
∫ n∏

j=1
cos(aj + dyj)dµX(y)

=
∫ n∏

j=1
(cos(aj) cos(dyj)− sin(aj) sin(dyj)) dµX(y).

(3.9)

Again using that sin(dyj) switches sign under (y1, ..., yj, ..., yn)→ (y1, ...,−yj, ..., yn)
we get

Ef(a+ dX) =
∫ n∏

j=1
cos(aj) cos(dyj)dµX(y) =

n∏
j=1

cos(aj)
∫ n∏

m=1
cos(dym)dµX(y)

(3.10)
and thus g

X,f
(d) = |φX(d~1)|.

Remark 3.16. Note that Theorem 3.1 together with Proposition 3.15 implies that
for every dart X whose law is invariant under reflections with respect to the coordi-
nate axes, we have that X is reasonable with respect to f1(x) = cos(∑n

j=1 xj) if and
only if X is reasonable with respect to f2(x) = ∏n

j=1 cos(xj).

Corollary 3.17. Let X and Y be two independent darts taking values in Rn such
that their laws are invariant under reflections across the coordinate axes and let
f(x) = ∏n

j=1 cos (xj). Then if (X, f) and (Y, f) are both reasonable, then (X +Y, f)
is also reasonable.

Proof. The proof of this is essentially the same as the proof of corollary 3.9.

3.1.1 An example with a phase transition
It turns out that even though a Bernoulli distributed random variable isn’t reason-
able with respect to cos(x), an independent sum of a Bernoulli distributed random
variable and a normally distributed random variable can in some cases be reasonable
with respect to cos(x). The following exhibits an interesting phase transition.
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3. Trigonometric payoff

Theorem 3.18. Let X1 be Bern(p) distributed and X2 be N(0,σ2) distributed. If
they are independent, then X := X1 +X2 is reasonable with respect to f(x) = cos(x)
if and only if

σ2d
(
p2 + (1− p)2 + 2(1− p)p cos(d)

)
+ (1− p)p sin(d) ≥ 0, ∀d ≥ 0. (3.11)

When p = 1/2, (X, cos(x)) is not reasonable for any σ. But for any p 6= 1/2 there
exists a σp ∈ (0,∞) such that for all σ ≥ σp, (X, cos(x)) is reasonable, and for any
σ < σp (X, cos(x)) isn’t reasonable. In addition, for p 6= 1/2, σp ≤ (1− p)p/(π|1−
2p|2).

Proof. By Theorem 3.1 X is reasonable with respect to f if and only if |φX(d)| is
decreasing in d, d > 0. Due to independence, the characteristic function of X is

φX(d) = φX1(d)φX2(d) = (1− p+ peid)exp(−σ2d2/2). (3.12)

The absolute value of this is decreasing if and only if

|φX(d)|2 =
(
p2 + (1− p)2 + 2(1− p)p cos(d)

)
exp(−σ2d2) (3.13)

is decreasing. This in turn is decreasing if and only if its derivative with respect to
d is non-positive on [0,∞). We have that

d
dd
(
|φX(d)|2

)
= −2exp(−σ2d2)

[
σ2d

(
p2+(1−p)2+2(1−p)p cos(d)

)
+(1−p)p sin(d)

]
(3.14)

and thus X is reasonable with respect to f if and only if

σ2d
(
p2 + (1− p)2 + 2(1− p)p cos(d)

)
+ (1− p)p sin(d) ≥ 0, ∀d > 0. (3.15)

Note that if p = 1/2, then it is easy to see that |φX(π+2mπ)| = 0 for all m ∈ N, but
the characteristic function is still not identically zero, and is thus not decreasing.
Now assume that p 6= 1/2. We have that

p2 + (1− p)2 + 2(1− p)p cos(d) = |1− p+ peid|2 ≥ |1− 2p|2 > 0, ∀d. (3.16)

Thus

σ2d
(
p2 +(1−p)2 +2(1−p)p cos(d)

)
+(1−p)p sin(d) ≥ σ2d|1−2p|2 +(1−p)p sin(d).

(3.17)
As sin(d) ≥ 0 for d ∈ [0, π], it is easy to see that if σ2π|1− 2p|2 ≥ (1− p)p then

σ2d
(
p2 + (1− p)2 + 2(1− p)p cos(d)

)
+ (1− p)p sin(d) ≥ 0, ∀d ≥ 0. (3.18)

Thus p 6= 1/2 and σ2 ≥ (1 − p)p/(π|1 − 2p|2) is a sufficient condition for X to be
reasonable with respect to f .

Corollary 3.19. There exist (dependent) darts X, Y such that (X, cos(x)) and
(Y, cos(X)) are reasonable, but (X + Y, cos(x)) is not reasonable.
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3. Trigonometric payoff

Proof. Let X1 and X2 be independent random variables such that X1 is Bern(p)
distributed, and X2 is N(0,σ2) distributed. By Theorem 3.18 we may assume that
σ and p are chosen so that (X1 +X2, cos(x)) is reasonable and p 6= 0, 1. Now define
X = −X2 and Y = X1 +X2. As X has a normal distribution, it is reasonable.

Thus (X, cos(x)) and (Y, cos(x)) are reasonable, but X + Y = X1, which is not
reasonable with respect to cos(x), since |φX1(d)| is not decreasing as a function of
d > 0.

We have seen that an independent sum of a Bernoulli distribution and a normal
distribution can in some cases be reasonable with respect to cosine. The following
proposition demonstrates that this is not the case for a convex combination.

Proposition 3.20. Let X be a Bern(p) distributed random variable and let Y be
an absolutely continuous random variable. Then no nontrivial convex combination
of X and Y is reasonable with respect to cos(x).

Proof. Let Z be a convex combination of X and Y . We have that the characteristic
function of Z satisfies

φZ(d) = pφX(d) + (1− p)φY (d) (3.19)

for some p ∈ [0, 1]. By the triangle inequality we have that

p|φX(d)| − (1− p)|φY (d)| ≤ |φZ(d)| ≤ p|φX(d)|+ (1− p)|φY (d)|. (3.20)

As Y is absolutely continuous, its characteristic function is the fourier transform
of a function which is L1 integrable on R, which by the Riemann–Lebesgue lemma
implies that limk→∞ |φY (d)| = 0

However, as |φX(d)| is a periodic function oscillating between two different values,
this implies that |φZ(d)| isn’t decreasing. Thus by Theorem 3.1, (Z, cos(x)) isn’t
reasonable.

3.2 Compact darts
It turns out that no non-degenerate dart with compact support is reasonable. In
fact, we will see that an even stronger claim holds.

Theorem 3.21. Let X be a dart taking values in Rn. If there is an axis such that
X projected onto that axis is non-degenerate and has compact support, then there
exists a continuous payoff function h with compact support such that (X, h) is not
reasonable.

In particular, if X is non-degenerate and has compact support, then there exists a
continuous payoff function h with compact support such that (X, h) is non-reasonable.

In order to prove that this theorem holds in more than one dimension, we will first
need the following proposition.
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Proposition 3.22. Let X be a dart taking values in Rn, and let Y be a random
variable which is the projection of X onto an axis. If there is an f on R such that
(Y, f) is non-reasonable, then there exists an f ′ on Rn such that (X, f ′) is non-
reasonable. If f is continuous, then f ′ can be chosen to be continuous, if f has
compact support then f ′ can be chosen to have compact support, and if f is in Cc(R)
then f ′ can be chosen to be in Cc(Rn).

Proof. Let f be a payoff function from R to R such that (Y, f) is non-reasonable.
Now assume that we chose our basis in Rn so that Y = X1, and define the payoff
function f ′ : Rn → R by

f ′(x) = f(x1). (3.21)
It is easy to see that (X, f ′) is non-reasonable, and that if f is continuous, then so
is f ′.

Now assume that f has compact support. Note that (Y, f) is reasonable if and only
if (Y, f + a) is reasonable, where a ∈ R, and so we may assume f ≥ 0. Now define
a payoff function fB : Rn → R by

fB(x) = f(x1)
n∏
j=2

hB(xj), (3.22)

where B > 0, and hB is the continuous function on R such that hB(y) = 1 for
|y| ≤ B, hB(y) = 0 for B + 1 ≤ |y|, and in between hB is a straight line. Note that
if f is continuous, then so is fB, and if f has compact support, then so does fB.

We now have that for all a = (a1, ...an) in Rn

EfB(a+ dX) ≤ Ef(a1 + dY ) (3.23)

so that
g
X,fB

(d) ≤ g
Y,f

(d), ∀B, d > 0. (3.24)
As (Y, f) is non-reasonable there exists 0 < d1 < d2 such that g

Y,f
(d1) < g

Y,f
(d2).

By the monotone convergence theorem, we have that for any a ∈ Rn, d > 0

lim
B→∞

EfB(a+ dX) = Ef(a1 + dY ) (3.25)

and so for any a such that Ef(a1 + d2Y ) > g
Y,f

(d1) this implies that for any suffi-
ciently large B

EfB(a+ d2X) > g
Y,f

(d1). (3.26)
Thus g

X,fB
(d2) > g

Y,f
(d1) ≥ g

X,fB
(d1), and so (X, fB) is non-reasonable.

Now let us prove Theorem 3.21.

Proof of Theorem 3.21. By Proposition 3.22 it suffices to show that this theorem
holds in one dimension.

By [4] (see Theorem 7.2.3, p. 202) we have that the characteristic function of X,
φX , is an entire function with infinitely many zeros. Let z0 be any zero of φX . As
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the characteristic function is entire, all of its zeros are isolated, and thus there exists
a d0 > 1 such that φX(d0z0) 6= 0.

Now let c, ω ∈ R be defined so that

z0 = ω − ic, (3.27)

and define the function f : R→ R by

f(x) = ecx cos(ωx) = Re
(
e(c+iω)x

)
= Re

(
eiz0x

)
. (3.28)

Note that this is not a payoff function as it is not bounded. For any d > 0 and
a ∈ R we have that

Ef(a+ dX) = ecaRe
(
eiωaEeiz0dX

)
= ecaRe

(
eiωaφX(dz0)

)
(3.29)

and so by taking d = 1 we get

Ef(a+X) = 0, ∀a. (3.30)

Furthermore, for a0 = −Arg (φX(d0z0)) /ω this gives us

Ef (a0 + d0X) = exp
(
−cArg (φX(d0z0))

ω

)
|φX(d0z0)| > 0 (3.31)

Since d0 > 1, this gives us the type of non-reasonable behaviour we are after. We now
however have to modify f so that it is bounded while maintaining this behaviour.

AsX is bounded, there is aB > 0 such that P (d0|X| ≤ B) = 1. Now let us define the
payoff function h by h(x) = f(x) for |x| ≤ |a0|+ B, h(x) = − sup|y|≤|a0|+10B(|f(y)|)
for |a0|+ 2B ≤ |x|, and for |a0|+B ≤ |x| ≤ |a0|+ 2B it is defined as

h(x) = |x| − (|a0|+B)
B

(
−f(x)− sup

|y|≤|a0|+10B
(|f(y)|)

)
+ f(x). (3.32)

Note that h is continuous and that
h(x) ≤ f(x), |x| ≤ |a0|+ 10B
h(x) ≤ 0, |a0|+ 2B ≤ |x|.

(3.33)

To see the first of these inequalities, note that for |a0| + B ≤ |x| ≤ |a0| + 2B, h(x)
is equal to f(x) plus a non-positive term.

With this definition we will have that

Eh(a0 + d0X) = Ef(a0 + d0X) > 0 (3.34)

and
Eh(a+X) ≤ Ef(a+X) = 0, 0 ≤ |a| ≤ |a0|+ 9B
Eh(a+X) ≤ 0, |a0|+ 9B ≤ |a|.

(3.35)

Thus g
X,h

(1) ≤ 0, g
X,h

(d0) > 0, so that (X, h) isn’t reasonable. Finally, since h is
constant outside a finite region, we can clearly add a constant to it so that is has
compact support, and this will not affect whether it is reasonable with respect to
X.
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Remark 3.23. Note that in (3.29), if c and φX(dz0) are non-zero, then one can
make Ef(a+ dX) arbitrarily large by choosing a appropriately. Thus if we allowed
for unbounded payoff functions, we would have that g

X,f
(d) ∈ {0,∞} for all d > 0.

Now that we know that compact support implies non-reasonableness, it is interesting
to note that this gives us an example of an absolutely continuous dart which is non-
reasonable, but which is reasonable with respect to cos(x).

In [8] it is proven that there exists f ∈ C∞ which is real, non-negative, symmet-
ric, supported on [−1, 1], and not identically equal to zero, such that its fourier
transform f̂(d) is monotone decreasing for d ≥ 0 (and hence non-negative). After
possibly rescaling, any such f is the probability density function of some absolutely
continuous random variable, which by Theorem 3.1 is reasonable with respect to
cos(x), but by Theorem 3.21 isn’t reasonable.
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4. Continuous payoff functions
This section aims to further characterise reasonableness by providing examples of
dart properties which imply that a dart isn’t reasonable with respect to the family
of continuous payoff functions.

Let X be a dart taking values in Rn with law µX , and characteristic function φX .
If any of the following statements hold, then there is a continuous payoff function f
such that (X, f) isn’t reasonable.

• |φX(d~1)| is not decreasing as a function of d ∈ (0,∞).

• The projection ofX onto some axis is non-degenerate and has compact support

• X is non-degenerate and has a point mass.

• µX is absolutely continuous, and X isn’t reasonable with respect to some (not
necessarily continuous) payoff function.

• There exists a payoff function h such that (X, h) isn’t reasonable, and h has
at most countably many discontinuities.

The first two of these statements come from Theorem 3.1 and 3.21 respectively. The
fact that the rest also imply the existence of a continuous f such that (X, f) isn’t
reasonable will be proven in the rest of this section.

4.1 Non-degenerate darts with point masses
In this section we wish to show that no non-degenerate dart with a point mass is
reasonable with respect to the set of continuous payoff functions. The proof of this
is rather technical, but if we only wanted to show that such a dart is not reasonable
with respect to some (not necessarily continuous) payoff function, then we could
provide a much simpler proof. Let us sketch the proof of this simpler case, as the
more technical proof will be easier to understand after having seen an easier version
with the same basic idea behind it.

Let X be a non-degenerate dart taking values in Rn with at least one point mass. As
being reasonable only depends on type, we may assume that P (X = x) is maximised
at x = 0. Now define the payoff function

f(x) =


1, x = 0
0, 0 < ||x|| < 1
q, 1 ≤ ||x||,

(4.1)

for some 1 > q > 0. If q is chosen to be sufficiently small, it is always best for any
distance d to aim so that one of the larger point masses can hit 0, i.e. it is optimal
to choose an a ∈ Rn so that a + dX has one of its largest point masses at 0. It
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4. Continuous payoff functions

can be shown that if q is chosen appropriately, then limd→0 gX,f (d) = P (X = 0),
whereas limd→∞ gX,f (d) = P (X = 0) + q(1 − P (X = 0)), which then implies that
(X, f) is not reasonable. The intuition behind this is the following. For small values
of d, most of the law of dX is focused within a ball with a really small radius, and
so if you aim so that one of the larger point masses can hit 0, then almost all of
the probability mass of a+ dX will be focused in the region where ||x|| < 1, and so
Ef(a + dX) ≈ P (a + dX = 0) ≤ P (X = 0). But by making d large, it is possible
to hit 0 with one of the larger point masses, while having almost no probability
mass focused inside the region where 0 < ||x|| < 1, and so for a = 0 we get that
Ef(dX) ≈ P (X = 0) + q(1− P (X = 0)).

To prove that X is not reasonable with respect to some continuous function we
will use a similar payoff function, but there will be some crucial differences. We
will still get a situation where limd→∞ gX,f (d) = P (X = 0) + q(1 − P (X = 0)),
but it can be shown that for any dart X and any continuous payoff function f ,
limd→0 gX,f (d) = supx f(x) = supd gX,f (d), and so we cannot use exactly the same
argument. Instead f will be constructed in such a way so that g

X,f
(1) ≈ P (X = 0)

and limd→∞ gX,f (d) = P (X = 0) + q(1 − P (X = 0)) for some q > 0, and so (X, f)
will not be reasonable.

Theorem 4.1. If X is a non-degenerate dart taking values in Rn with a point
mass, then there exists a continuous payoff function f on Rn such that (X, f) is not
reasonable.

To prove this theorem we will need the following lemma, which will also be used in
the proof of Theorem 4.4.

Lemma 4.2. If µ is a finite measure on (Rn, B(Rn)), where B(Rn) is the Borel
σ-algebra on Rn, then for any ε > 0 there exists a δ > 0 such that

µ ({y ∈ Rn : ||x− y|| < δ}) < ε+ max
y

µ({y}), ∀x ∈ Rn. (4.2)

Proof. Let us first prove the statement for the case where µ is continuous.

Assume that the statement is false. Then there exists an ε > 0 and a sequence
{xm}∞m=1 such that

µ
(
{y ∈ Rn : ||xm − y|| <

1
m
}
)
≥ ε, ∀m. (4.3)

Now note that since limm→∞ µ(Rn\{y : ||y|| ≤ m}) = 0 we must have that the
sequence {xm}∞m=1 lies in some compact set, and thus there exists a convergent
subsequence {xmk}∞k=1. Denote the limit by x = limk xmk . We will now show that
µ(x) ≥ ε, thus giving us a contradiction, by first showing that for any δ > 0 we
have that µ ({y ∈ Rn : ||x− y|| < δ}) ≥ ε. Fix δ > 0. As lim xmk = x, there exists
a K > 0 such that ||x− xmk || < δ/2 for all k ≥ K. Now if we choose s > 0 so that
s > K and 1/ms < δ/2 we get that {y ∈ Rn : ||xms − y|| < 1/ms} ⊆ {y ∈ Rn :
||x− y|| < δ} so that

µ ({y ∈ Rn : ||x− y|| < δ}) ≥ µ ({y ∈ Rn : ||xms − y|| < 1/ms}) ≥ ε. (4.4)
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4. Continuous payoff functions

And since this can be done for any δ > 0, we must have that µ(x) ≥ ε, which
gives us our contradiction, and so we have proven the lemma for the case where µ
is continuous.

It is now trivial to extend this argument from the continuous case to the case where
µ has exactly one point mass, and so let us assume that µ has more than one point
mass. Fix ε > 0, and divide µ into its discrete and continuous parts, µd and µc. By
what we have already shown, there exists a δ1 > 0 such that

µc ({y ∈ Rn : ||x− y|| < δ1}) <
ε

2 , ∀x ∈ Rn. (4.5)

Now let {xj}Nj=1 be points in Rn corresponding to the N largest point masses of µ,
ordered so that µ({x1}) ≥ µ({xj}) for all j, with N > 1 chosen so that

µd(Rn)−
N∑
j=1

µd({xj}) <
ε

2 . (4.6)

Now for any δ2 > 0 such that

δ2 < min
({
||xi − xj||

2 : i, j ∈ {1, ..., N}, i 6= j

})
(4.7)

we have that

µd ({y ∈ Rn : ||x− y|| < δ2}) <
ε

2 + µ({x1}), ∀x ∈ Rn. (4.8)

Thus if we choose δ ≤ min(δ1, δ2) we get

µ ({y ∈ Rn : ||x− y|| < δ}) < ε+ max
y

µ({y}), ∀x ∈ Rn. (4.9)

as desired.

We now give a proof of Theorem 4.1.

Proof of Theorem 4.1. As being reasonable only depends on type, we may assume
that P (X = x) is maximised at x = 0.

Now let us look at continuous payoff functions of the form

f(x) =


(1− 1

δ
||x||), ||x|| < δ

0, δ ≤ ||x|| ≤ S

q( 1
S
||x|| − 1), S ≤ ||x|| ≤ 2S

q, 2S ≤ ||x||

(4.10)

where δ, q, S > 0. Our goal is to show that if we choose these parameters appro-
priately, then g

X,f
(d) − g

X,f
(1) will be positive for all d sufficiently large, and thus

(X, f) is non-reasonable. We will choose these parameters in the following order,
first q, then δ, and finally S. We begin by choosing

q < P (X = 0). (4.11)
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4. Continuous payoff functions

Now note that

Ef(a+X) ≤ qP (||a+X|| > S)+P (||a+X|| < δ) ≤ q+P (||a||−δ < ||X||) (4.12)

and since

lim
||a||→∞

P (||a|| − δ < ||X||) = 0 (4.13)

this implies that there is a D > 0 such that

Ef(a+X) < P (X = 0), ∀ ||a|| ≥ D. (4.14)

As g
X,f

(1) ≥ Ef(X) ≥ P (X = 0), this implies that g
X,f

(1) = sup||a||<D Ef(a + X).
Thus

g
X,f

(1) ≤ sup
||a||<D

(qP (||a+X|| > S) + P (||a+X|| < δ)) . (4.15)

By Lemma 4.2 we can choose δ so that

P (||a+X|| < δ) ≤ P (X = 0) + q(1− P (X = 0))
4 , ∀ a ∈ Rn. (4.16)

Furthermore, for any ||a|| < D we have that P (||a+X|| > S) ≤ P (||X|| > S −D),
which goes to zero as S goes to infinity, and so we can then choose S so that

P (||a+X|| > S) < 1− P (X = 0)
4 , ∀ ||a|| < D (4.17)

and now we get

g
X,f

(1) ≤ P (X = 0) + q(1− P (X = 0))
2

(4.18)

Now let us look at g
X,f

(d). We have that

g
X,f

(d) ≥ Ef(dX) ≥ P (X = 0) + qP (||dX|| > 2S)

≥ P (X = 0) + qP
(
||X|| > 2S

d

)
.

(4.19)

Thus

g
X,f

(d)− g
X,f

(1) ≥ qP
(
||X|| > 2S

d

)
− q(1− P (X = 0))

2
(4.20)
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and since

lim
d→∞

qP
(
||X|| > 2S

d

)
= q(1− P (X = 0)) (4.21)

and we know that X is non-degenerate, this implies that (X, f) isn’t reasonable.

4.2 Absolutely continuous darts
It turns out that for absolutely continuous darts, being reasonable is equivalent to
being reasonable with respect to the set of continuous payoff functions. The proof
of this is a bit difficult and somewhat technical, and requires some knowledge of
measure theory. The basic idea is the following.

Let X be an absolutely continuous dart which is not reasonable with respect to
some payoff function f . If f is vanishing outside of a set of finite Lebesgue measure,
then we can use Lusin’s Theorem to approximate f with some continuous payoff
function in a way which preserves the non-reasonableness. To extend this result to
any payoff function f we will also need the Tietze extension theorem.

Theorem 4.3. Assume that X is a dart taking values in Rn with an absolutely con-
tinuous law µX , and f is a payoff function on Rn such that (X, f) isn’t reasonable.
Then there exists a continuous payoff function h on Rn such that (X, h) isn’t rea-
sonable. Furthermore, if f vanishes outside of a set of finite Lebesgue measure (but
does not necessarily have compact support), then h can be chosen to have compact
support.

Proof. Let us first assume that f vanishes outside of a set of finite Lebesgue measure.

Let m denote Lebesgue measure. By Lusin’s Theorem (see [3], p. 217), for any
ε > 0 there exists a measurable set A ⊆ Rn and a continuous hε ∈ Cc(Rn), such that
f = hε on A, m(Ac) < ε, and supx |hε(x)| ≤ supx |f(x)|.

For any d > 0 we have that

|Ef(a+ dX)− Ehε(a+ dX)| ≤
∫
{x:a+dx∈Ac}

|f(a+ dx)− hε(a+ dx)|dµX(x)

≤ 2 sup
y
|f(y)|µX({x : a+ dx ∈ Ac})

(4.22)
and thus

g
X,hε

(d) ≤ sup
a

(
Ef(a+ dX) + 2 sup

y
|f(y)|µX({x : a+ dx ∈ Ac})

)

g
X,hε

(d) ≥ sup
a

(
Ef(a+ dX)− 2 sup

y
|f(y)|µX({x : a+ dx ∈ Ac})

) (4.23)

If (X, f) isn’t reasonable, then there exist d1, d2 > 0 such that d1 < d2 and gX,f (d1) <
g
X,f

(d2). As µX is an absolutely continuous finite measure there exists a δ > 0 such
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4. Continuous payoff functions

that for any measurable set E with m(E) < δ, we have that

µX(E) <
g
X,f

(d2)− g
X,f

(d1)
8 supy |f(y)| . (4.24)

Now note that by the properties of Lebesgue measure, m({x : a + dx ∈ Ac}) =
m((Ac − a)/d) = m(Ac)/dn < ε/dn, and now choose ε > 0 so that ε/dn1 < δ. For all
d ≥ d1 we now get

g
X,hε

(d) ≤ sup
a

(
Ef(a+ dX) + 2 sup

y
|f(y)|

g
X,f

(d2)− g
X,f

(d1)
8 supy |f(y)|

)

= g
X,f

(d) +
g
X,f

(d2)− g
X,f

(d1)
4

(4.25)

and

g
X,hε

(d) ≥ sup
a

(
Ef(a+ dX)− 2 sup

y
|f(y)|

g
X,f

(d2)− g
X,f

(d1)
8 supy |f(y)|

)

= g
X,f

(d)−
g
X,f

(d2)− g
X,f

(d1)
4

(4.26)

We now get that

g
X,hε

(d2)− g
X,hε

(d1) ≥ g
X,f

(d2)− g
X,f

(d1)−
g
X,f

(d2)− g
X,f

(d1)
2

=
g
X,f

(d2)− g
X,f

(d1)
2 > 0

(4.27)

and thus (X, hε) isn’t reasonable.

Let us now deal with the case where f isn’t vanishing outside of a set of finite
Lebesgue measure. For any ε > 0 we can chose a sequence of positive numbers
{rm}∞m=1 such that rm < 1 for all m and

m({y : m < ||y|| < m+ rm}) <
ε

2m+1 , m ∈ N. (4.28)

Now define the sets

C0 := {y : ||y|| ≤ 1}
Cm := {y : m+ rm ≤ ||y|| ≤ m+ 1}, m ∈ N.

(4.29)

The Cm’s cover almost all of space in that

m((
∞⋃
m=0

Cm)c) = m(
∞⋃
m=1
{y : m < ||y|| < m+ rm}) =

∞∑
m=1

ε

2m+1 = ε

2 . (4.30)

Now we define a sequence of payoff functions {fm}∞m=0 by

fm(x) := f(x)χ
Cm

(x), m = 0, 1, 2... (4.31)

where χ
Cm

is the indicator function of Cm.
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By Lusin’s Theorem we have that for each fm there exists a continuous function
hm and a measurable set Am such that fm = hm on Am, m(Acm) < ε/2m+2, and
supx |hm(x)| ≤ supx |fm(x)| ≤ supx |f(x)|.

Now define the function hε : ⋃∞m=0 Cm → Rn as hε(x) = ∑∞
m=0 hm(x)χ

Cm
(x). Now

hε is a continuous function on the closed set ⋃∞m=0 Cm, and it satisfies supx |hε(x)| ≤
supx |f(x)|, and so by the Tietze extension theorem there exists a continuous map
h′ε : Rn → R such that hε = h′ε on

⋃∞
m=0 Cm and supx |h′ε(x)| ≤ supx |f(x)|.

We now have that h′ε is equal to f everywhere except on a subset of( ∞⋃
m=0

Acm

)⋃( ∞⋃
m=0

Cm

)c
, (4.32)

which has a total Lebesgue measure less than or equal to ε. With this we are in the
same situation as we were at the beginning of the proof in the case where f was
vanishing outside of a set of finite Lebesgue measure, except that the function we
have found this time does not necessarily have compact support. As the compact
support was not used in any of the remaining steps, the rest of this proof proceeds
in the same way as in the first case.

4.3 Countably discontinuous payoff
In this section we will prove a result which is similar to the result in the previous
section, but which does not make any assumptions on the dart. For all darts X,
being reasonable with respect to the set of continuous payoff functions is equivalent
to being reasonable with respect to the set of payoff functions with at most countably
many discontinuities. The proof of this is a bit difficult, and we will again make use
of the Tietze extension theorem. The basic idea of the proof is the following.

Given a dart X and a payoff function f with at most a countable number of disconti-
nuities, we can use Lemma 4.2 to show the following. For any ε > 0 and d0 > 0, there
is an open set A such that f is continuous outside of A, and µX({x : a+dX ∈ A}) < ε
for all d ≥ d0 and a ∈ Rn. Using the Tietze extension theorem we can then find
a continuous payoff function hε which is equal to f on Ac. Now if g

X,f
(d) is non-

decreasing on [d′,∞) for some d′ > 0, then by setting d0 = d′ and choosing ε to be
small enough, we will get that g

X,hε
(d) is non-decreasing on [d′,∞).

Theorem 4.4. Assume that X is a dart taking values in Rn and f is a payoff
function on Rn such that (X, f) isn’t reasonable. Then if f has at most a countable
number of discontinuities, then there exists a continuous payoff function h on Rn

such that (X, h) isn’t reasonable.

Proof. X cannot be degenerate, as it would then be reasonable with respect to all
functions. If X is non-degenerate and has a point mass, then by Proposition 4.1
there is a continuous payoff function h such that (X, h) isn’t reasonable.

Assume now instead that µX is continuous (but not necessarily absolutely continu-
ous). Let {xm}∞m=1 be the discontinuity points of f .
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As (X, f) isn’t reasonable, there exists d1, d2 ≥ 0 such that d1 < d2 and g
X,f

(d1) <
g
X,f

(d2). By Lemma 4.2 for any ε > 0 there exists a sequence of positive numbers
{δm}∞m=1 such that for all m we have

µX

(
{y ∈ Rn : ||x− y|| < δm

d1
}
)
<

ε

2m , ∀x ∈ Rn. (4.33)

Now define the set
A =

∞⋃
m=1
{z ∈ Rn : ||xm − z|| < δm}. (4.34)

Note that A is an open set which contains all the discontinuities of f . Thus f is
continuous on the closed set Ac, and by the Tietze extension theorem there exists
a continuous function hε on Rn such that hε is equal to f on Ac and supx |hε(x)| ≤
supx |f(x)|.

Let us now look at

|Ef(a+ dX)− Ehε(a+ dX)| =
∫
{x:a+dx∈A}

|f(a+ dx)− hε(a+ dx)|dµX(x)

≤ 2 sup
y
|f(y)|µX({x : a+ dx ∈ A})

≤ 2 sup
y
|f(y)|

∞∑
m=1

µX({x : a+ dx ∈ {z ∈ Rn : ||xm − z|| < δm}})

≤ 2 sup
y
|f(y)|

∞∑
m=1

µX

(
{x ∈ Rn : ||xm − a

d
− x|| < δm

d
}
)
.

Equation (4.33) now gives us that for all d ≥ d1

|Ef(a+ dX)− Ehε(a+ dX)| ≤ 2 sup
y
|f(y)|ε. (4.35)

From this we get that for all d ≥ d1

g
X,hε

(d) ≤ g
X,f

(d) + 2 sup
y
|f(y)|ε

g
X,hε

(d) ≥ g
X,f

(d)− 2 sup
y
|f(y)|ε

(4.36)

which implies

g
X,hε

(d2)− g
X,hε

(d1) ≥ g
X,f

(d2)− g
X,f

(d1)− 4 sup
y
|f(y)|ε. (4.37)

Thus if we choose
ε <

g
X,f

(d2)− g
X,f

(d1)
4 supy |f(y)| (4.38)

then we see that (X, hε) is not reasonable.

Open Question 4.5. Is there a dart which is reasonable w.r.t. all continuous payoff
functions, but not all payoff functions?
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It is interesting to ask whether the sets of reasonable/non-reasonable darts/payoff
functions are closed under various operations and limiting procedures. In this section
we demonstrate two results of this nature.

5.1 Independent sum of reasonable darts
Let F be some set of payoff functions, and let XF be the set of darts which are
reasonable with respect to F . It is natural to ask whether X + Y ∈ XF for any
independent X, Y ∈ XF , and we will see that this at least holds for certain specific
F .

The proof of this uses the fact that for some sets of payoff functions F we have that{
h : Rn → R | h(x) = Ef(x+

n∑
i=1

diXi), di ≥ 0 ∀i, f ∈ F
}
⊆ F , (5.1)

for any independent darts X1, ...., Xm. As this is not true for all F , this proof can
only be used for certain specific sets of payoff functions, for example the set of all
payoff functions. As a result of this, any independent sum of reasonable darts is
reasonable.

Theorem 5.1. Assume that X1, ..., Xm are independent darts taking values in Rn,
which are all reasonable with respect to a family of payoff functions F . If F is either
of the following sets

1. The set of all payoff functions

2. The set of all continuous payoff functions

3. The set of all payoff functions of the same type as cos(∑n
j=1 xj),

then for any d1, ..., dm, D1, ..., Dm ≥ 0 such that dj ≤ Dj for all j we have that

sup
a
Ef(a+

m∑
j=1

djXj) ≥ sup
a
Ef(a+

m∑
j=1

DjXj), ∀f ∈ F (5.2)

and in particular ∑m
j=1 Xj is reasonable with respect to F .

Proof. We begin by showing that this holds for m = 2. Let X, Y be independent
darts which are reasonable with respect to one of the three F ’s above. Fix an f ∈ F ,
and choose d1, d2, D1, D2 ≥ 0 such that d1 ≤ D1, d2 ≤ D2 and define the function

h(x) = Ef(x+ d1X). (5.3)

It can be shown that h ∈ F , so that we have that Y is reasonable with respect to
h, and thus

sup
a
Eh(a+ d2Y ) ≥ sup

a
Eh(a+D2Y ) (5.4)
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and from this we get, using the independence of X and Y , that

sup
a
Ef(a+ d1X + d2Y ) = sup

a

∫
Ef(a+ d1X + d2y)dµY (y)

= sup
a

∫
h(a+ d2y)dµY (y) = sup

a
Eh(a+ d2Y )

≥ sup
a
Eh(a+D2Y ) = sup

a

∫
h(a+D2y)dµY (y)

= sup
a

∫
Ef(a+ d1X +D2y)dµY (y)

= sup
a
Ef(a+ d1X +D2Y ).

(5.5)

And by using the same argument again it follows that

sup
a
Ef(a+ d1X + d2Y ) ≥ sup

a
Ef(a+D1X +D2Y ) (5.6)

as desired. This clearly implies that X + Y is reasonable with respect to F . The
more general statement follows by induction.

Open Question 5.2. Are there independent darts X, Y and a payoff function f ,
such that (X, f) and (Y, f) are both reasonable, but (X + Y, f) is not reasonable?

5.2 Convergence in distribution
It turns out that the set of darts which are reasonable with respect to C0(Rn) is
closed with respect to convergence in distribution. The proof of this is a bit difficult,
and uses two equivalent definitions of convergence in distribution (see Section 1.2).

Theorem 5.3. Let {Xj}∞j=1 be a sequence of darts taking values in Rn which con-
verges in distribution to some dart X. Then for any f ∈ C0(Rn), d > 0, limj gXj,f (d) =
g
X,f

(d). As a consequence, for any f ∈ C0(Rn) for which (Xj, f) is reasonable for
all j, we have that (X, f) is reasonable.

Proof. Let f ∈ C0(Rn) and fix d > 0. We will begin by showing that lim infj→∞ gXj,f (d) ≥
g
X,f

(d). Fix a. Then

lim inf
j→∞

g
Xj,f

(d) ≥ lim inf
j→∞

Ef(a+ dXj) = Ef(a+ dX) (5.7)

Since this is true for every a, we have

lim inf
j→∞

g
Xj,f

(d) ≥ g
X,f

(d) (5.8)

Now assume that g
Xj,f

(d) does not go to g
X,f

(d). Then there must exist some ε > 0
and some subsequence g

Xjk
,f

(d) such that

g
Xjk

,f
(d)− g

X,f
(d) > ε for all k. (5.9)
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As {g
Xjk

,f
(d)}∞j=1 is bounded, we may furthermore assume that our subsequence was

chosen so that it has a limit.

As f ∈ C0(Rn) we have that for any ε′ > 0 there is a D such that |f(x)| < ε′ when
||x|| > D, and so for any dart Z we have that

|Ef(a+ dZ)| ≤ ε′P (||a+ dZ|| > D) + sup
x
|f(x)|P (||a+ dZ|| ≤ D)

≤ ε′ + sup
x
|f(x)|P

(
||a|| −D

d
≤ ||Z||

)
.

(5.10)

As the final term goes to zero when ||a|| → ∞, this implies that g
Z,f

(d) ≥ 0, and
that if g

Z,f
(d) > 0, then there must exist a bounded sequence {a

Z ,j} such that
limj Ef(a

Z ,j + dZ) = g
Z,f

(d). For any subsequence converging to some a
Z ,∞, the

fact that f ∈ C0(Rn) implies that Ef(a
Z ,∞ + dZ) = g

Z,f
(d). Hence the optimum is

always achieved.

Thus by (5.9), g
Xjk

,f
(d) ≥ ε for all k, and there exists a sequence {ajk}∞k=1 such

that g
Xjk

,f
(d) = Ef(ajk + dXjk) for all k. We will now show that {ajk}∞k=1 must be

bounded. Assume that {ajk}∞k=1 isn’t bounded, and choose a subsequence {ajkt}
∞
t=1

such that limt ||ajkt || =∞. For any D′ > 0 such that |f(x)| < ε/4 for all ||x|| > D′

we have that

Ef(ajkt + dXjkt
) ≤ ε

4 + sup
x
|f(x)|P

(
||ajkt || −D

′

d
≤ ||Xjkt

||
)
. (5.11)

Now choose D′′ > 0 so that

P

(
D′′ −D′

d
≤ ||X||

)
<

ε

4 supx |f(x)| (5.12)

and so that {x : D′′−D′
d
≤ ||x||} is a continuity set for the law of X. As limt ||ajkt || =

∞, for any sufficiently large t we have that

Ef(ajkt + dXjkt
) ≤ ε

4 + sup
x
|f(x)|P

(
D′′ −D′

d
≤ ||Xjkt

||
)
. (5.13)

As the right hand side converges to something less than or equal to ε/2, this gives
us a contradiction, as Ef(ajkt +dXjkt

) = g
Xjkt

,f
(d) ≥ ε for all t. Thus {ajk}∞k=1 must

be bounded, and so there exists a subsequence {ajkt}
∞
t=1 which converges to some

a∞ ∈ Rn.

Since f is in C0(Rn), it is uniformly continuous, so there exists a δ > 0 such that
|f(x) − f(y)| < ε/2 for all ||x − y|| < δ. As ajkt → a∞, there is a T > 0 such that
||ajkt − a∞|| < δ for all t > T , and so we have that for any t > T

g
Xjkt

,f
(d) = Ef(ajkt + dXjkt

) ≤ Ef(a∞ + dXjkt
) + ε

2 . (5.14)

Taking the limit now gives us

lim
t→∞

g
Xjkt

,f
(d) ≤ lim

t→∞
Ef(a∞+dXjkt

)+ ε

2 = Ef(a∞+dX)+ ε

2 ≤ g
X,f

(d)+ ε

2 . (5.15)
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5. Closure properties

which contradicts (5.9). Thus g
Xj,f

(d) does converge to g
X,f

(d).

If (Xj, f) is reasonable for all j, then g
X,f

is the limit of a sequence of decreasing
functions, and is therefore also decreasing, which implies that (X, f) is reasonable.
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6. Discussion
We have found many results which partially characterise reasonableness, but there
is still much which is unknown. Here we will try to summarise and discuss some
interesting remaining open questions.

One of our main results is that all selfdecomposable darts are reasonable, and so it is
natural to ask whether there exists a reasonable dart which is not selfdecomposable.
In one dimension it is known that, except in the degenerate case, a selfdecomposable
dart is unimodal and absolutely continuous. We are therefore interested in looking
for reasonable darts among the random variables which do not exhibit both of these
properties.

We know that a non-degenerate reasonable dart cannot have point masses, but we
still do not know whether it can have a singular component. In one dimension,
we know that a reasonable continuous dart must have a characteristic function
φX(t) which goes to zero as t goes to infinity (see Corollary 3.12), which rules out
many singular measures. However, there do exist singular random variables whose
characteristic function goes to zero, see [5], and so it is feasible that a dart with such
a component may be reasonable.

As for unimodalness, we do not yet know whether it is a necessary condition for
a dart to be reasonable, but it seems likely that it is, especially for absolutely
continuous darts. Let fX be a bounded probability density function of some one-
dimensional dart X, and study whether (X, fX) is reasonable. For distance 1 it
can be shown that g

X,fX
(1) is equal to the L2 norm of fX , but for 1 ≈ d < 1 it

seems plausible that fX and fdX will not match as well as for distance 1, so that
g
X,fX

(d) < g
X,fX

(1). Whether this argument holds, in general or in certain specific
situations, is yet to be investigated, but it does provide us with some intuition on
this subject.

As for payoff functions, we know that unimodalness is a sufficient but not a necessary
condition for reasonableness. It might however still be the case that given certain
conditions on the payoff function, unimodalness is necessary. The examples we know
of which are reasonable but not unimodal all have the property that one can make
Ef(a + dX) arbitrarily close to supx f(x) for any d by aiming arbitrarily far away,
and so it might be worth further investigating what happens when this is not the
case. For example, we could look at continuous payoff functions f for which there
is a D > 0 such that sup||x||>D f(x) < supx f(x). It is conceivable for such functions
that unimodalness is a necessary condition for reasonableness. If we restrict ourselves
even further to payoff functions f which are of the same type as some probability
density function fX , then we can again study whether (X, fX) is reasonable, and
from this try to gain insight regarding f .

We have characterised reasonableness with respect to cos(x) in terms of the absolute
value of the characteristic function. For this reason it is interesting to study exactly
under what conditions the absolute value of the characteristic function is or isn’t
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6. Discussion

decreasing on the positive part of R. As the concept of characteristic functions
is very well studied, it seems likely that there exist more known results that are
relevant which we have not yet found.

One result which we expect holds, but have yet not shown, is the following. In one
dimension, is a dart with more than one point mass not reasonable with respect
to cos(x)? The intuition behind this is as follows. We divide the law of the dart
into a discrete and a continuous part, and then by (3.6), the contribution to the
characteristic function from the continuous part should not matter “on average” for
large distances, whereas we expect the contribution from the discrete part to not
converge to anything. For certain arrangements of the point masses, the contribution
from the discrete part will be periodic, which simplifies the analysis, but this does
not hold in general.

We have showed that non-degenerate compact darts are non-reasonable. A related
result which we tried to show is that any dart such that its characteristic function
is entire and has a zero is non-reasonable. The proof of Theorem 3.21 demonstrates
that this is the case if we allow for unbounded payoff functions. For the case where
the dart is compact we managed to modify the function f(x) = ecx cos(ωx) to be
bounded, while maintaining the non-reasonableness, but we don’t know if this is
possibly to do in general.

We have found that if (X, f) is non-reasonable, and it is the case thatX is absolutely
continuous, or that f has at most a countable number of discontinuities, then there
is a continuous h such that (X, h) is non-reasonable. It is now interesting to ask
whether there exists a dart X which is non-reasonable, but which is reasonable
with respect to all continuous payoff functions. Even if there are such examples, it
might be difficult to find one. By Theorem 4.1, 4.3, and 4.4, X would have to be
continuous but not absolutely continuous, be reasonable with respect to all payoff
functions with at most countably many discontinuities, but still not be reasonable
with respect to some payoff function.

As for closure properties, we have found some interesting results, but much remains
yet unknown. One of the more interesting questions of this nature is whether there
exist independent darts X, Y and a payoff function f such that (X, f) and (Y, f) is
reasonable, but (X + Y, f) is not reasonable.

We have demonstrated that if f ∈ C0(Rn), {Xj} converges in distribution to some
X, and (Xj, f) is reasonable for all j, then (X, f) is also reasonable. It would be
interesting to see if this holds for some larger set than C0(Rn), for example if it holds
for any continuous payoff function. It would also be interesting to find examples
where it does not hold.

In summary, we have found many different results related to the concept of reason-
ableness, but there are still a great number of open questions remaining.
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