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A Taxonomy of Browser Extensions

Researching metadata patterns of Chrome extensions related to security using Ran-
dom Forest and k-modes

Axel Arkheden

Fredrik Enetorp

Department of Computer Science and Engineering
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Abstract

Since the development of Google Chrome extensions is open to third party develop-
ers, there is an inherent risk of developers with malicious intents building extensions
to attack end users, for example through stealing their personal information or
exploiting their system resources. The sandbox system in place in Google Chrome
designed to prevent such actions through warnings during installation has previously
been deemed to be ineffective, consequently a new system of preventing malicious
behavior or communicating risk to users is needed.

In this thesis, we investigate the feasibility of using machine learning and an ex-
tension’s metadata, such as its permissions, file types, category, developer, rating,
etc, to assess the security risk of an extension without examining code or executing
the extension. The conclusions from our results are the following: (1) categories
are basically indistinguishable in terms of metadata, which prevents outlier analysis
using categories; (2) though strong feature relationships exists in the metadata, few
of them are deemed relevant to security; and (3) k-modes clustering proved to be an
effective way of detecting patterns in permission usage, detecting outliers and also
detecting malicious extensions.

Keywords: Computer science, thesis, taxonomy, extension, chrome, machine learn-
ing, random forest, k-modes, security, metadata.
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1

Introduction

Web-browser extensions are on the rise, and are most popular for the more widely
used browsers, such as Google Chrome and Mozilla Firefox [1]. Browser extensions
are small programs that can be installed in the browser and extends its functionality.
These applications, typically written in javascript, HTML and CSS, perform a wide
variety of tasks, for instance changing the appearance of the browser or changing
the content in a web page.

To achieve these capabilities, browser extensions can get access to several privi-
leged API:s, acquiring a great degree of control over the browser. For instance, ex-
tensions can modify the web content through the Document Object Model (DOM)
API, change HTTP headers or interact with sensitive data. These capabilities can
be abused by developers with malicious intents to steal sensitive information or
attack your computer [2].

Some malicious extensions are hard to detect, since they are engineered to only
trigger under certain conditions, easily avoiding many tests. Therefore, it is useful
to have another way of risk assessment when it comes to browser extensions, for
example looking at the metadata of an extension and putting a risk-value on it. That
is why in this project, a massive meta-data collection on browser extensions will be
performed, where the data will be analyzed and correlated to create a taxonomy of
browser extensions from a security and privacy point of view.

1.1 Problem Formulation

One of the main problems of browser extensions today, from a security point of view,
is the poor communication of risk of using extensions to the user. The extent to
which the security risk of installing an extension in Google Chrome is communicated
by stating its permissions in a pop-up window during installation, which has been
proven to be a poor method of preventing users from installing potentially mali-
cious extensions [3]. To a user uneducated in computer security, communicating the
permissions of an extension does not translate to what risks that entails, e.g. what
harm the extension could do using those permissions. After a while the permission-
information displayed during installation gets repetitive and monotonous, which
makes the user prone to automatically clicking "accept" without thinking about the
consequences of this action.
A massive metadata collection and analysis of browser extensions in Google Chrome

has, to the best of our knowledge, not been done. Such an analysis could give an
understanding of patterns in browser extension metadata, and help detect outliers
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in terms of those patterns. Outliers do of course not necessarily mean malicious
extensions or extensions vulnerable to attacks, but could instead be badly written
extensions, causing other problems such as having excessive file sizes or have bad
performance, making them undesirable for a user anyway. A large data collection
and analysis might also shine a light on problems and shortcomings in the security
system currently in place for Google Chrome Extensions, and perhaps provide us
with the tools to be able to suggest improvements to it.

1.2 Goal

The main goal of the project is to answer the question: Is there a good way to
assess risk of browser extensions — in terms of how likely they are to steal personal
information, take advantage of or inflict harm on the users hardware for example
— which does not include analyzing code, and communicating this risk in a clear
and intuitive way to a user? To answer that question properly, these are the most
important milestones for this work:

e Collect a large amount of metadata about browser extensions and save it in

a database for further studies. The data will be collected from both the Google

Chrome Store and the browser extension’s files.

o Perform a deep analysis of browser extensions based on more values than just

the privileges declared by the extension.

o Study the metadata and apply it to various machine learning algorithms, with

the goal of correlating the metadata to security risk and malicious intents.

« Gather a dataset of known malicious extensions to compare with our results.

1.3 Limitations

This project will be evaluating anomaly detection using K-modes only, a machine
learning algorithm which can be read about in section 2.4. Comparisons could be
done between different clustering algorithms to determine the most effective one,
but this is not the goal of the project. Analysis of source code won’t be performed
in this work, only metadata of extensions will be used to assess risk.

1.4 Related work

Previous work similar to ours has been done, most of which is applied to Android
applications where machine learning algorithms and other methods were used to
put risk scores on apps or improve the warning messages during installation. One of
these works are done by Peng et al. [4], where probabilistic classifiers were used to
give Android applications a risk score based on their declared permissions. The scor-
ing method used by them was to model the apps as vectors of independent Bernoulli
variables, where each variable represents a permission in the system. An app having
the value 1 on variable m means the app requests that permission, and a 0 that it
does not. The risk score for an app was then the probability of an app using its
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particular set of permissions. To ensure the property that requesting more permis-
sions leads to increasing the risk score — and decreasing the probability of the app’s
combination of permissions being declared — permissions used by more than 50%
of apps were removed. In their case, this only included the INTERNET permission,
which was the most popular one. The conclusions from their work were that Naive
Bayes with informative priors was the best method, since different permissions can
be differently weighted, making it possible for more dangerous permissions to raise
an app’s risk score more if requested than a less dangerous one. Dangerous in this
case refers to how severe the consequences would be if the permission was abused.
It also makes it possible to provide the developer with feedback of why the app has
gotten its particular score, and what that developer could do to lower the score.
What differs the most from this project to ours is that this method of risk scoring
looks at permissions in isolation from each other, while our work instead looks at
patterns in permission usage and which combinations of permissions are commonly
used.

Sarma et al. [5] worked on a method of communicating the risk of installing
Android apps to a user which — similarly to the current system in place on Android
and Google Chrome — tries to warn users during installation of risky apps. In their
work they recognized the shortcomings of prompting the user with similar warnings
on almost every install, and instead aimed to introduce risk signals triggering less
often and about less common and more relevant usages of permissions. The main
idea behind their method was to use the categories as a divider of the needs of apps
and only trigger a warning signal when an app uses one or several permissions not
commonly used within its category. They defined a signal called CRCP, meaning
Category-based Rare Critical Permission, working like the previously mentioned
signal except only for a subset of permissions defined by them as critical. They
defined three success criteria for their risk signals, being that the signals needed
to have simple semantic meaning and be easy to understand, being triggered only
by a small percentage of apps and being triggered by many malicious apps. The
third criteria was tested using a data set of known malware. They concluded the
project to be a success according to their defined criteria. Just like our work, this
project looks at detecting outliers in applications according to permission usage
deviating from the norm. Unlike us, they used categories as the measurement for
the norm, a possibility investigated in this project with Chrome extensions, explored
in sections 3.4 and 4.5.

In work done by Bloedorn et al. [6], K-means was used to detect patterns in
network connections and it was researched whether it could also be used to single
out connections with malicious intents. Classification was also used in an attempt to
be able to detect malicious connections. The results were really promising, showing a
detection rate of 91% for the classification and a false alarm rate of 13%. Anomalies
detected by the clustering — anomalies being deviations from the norm — were
compared to the set of the malicious connections, and it was concluded that 87.5
- 91.5% of detected anomalies were also malicious connections, and 1.8 - 6.75% of
connections detected as the norm were malicious. These results shows promise for
using this method of detecting malicious entities, perhaps even of other types than
network connections. The percentage intervals in the resulting detection rates were
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due to testing with different data sets. K-means clustering was therefore concluded
to be effective in detection of malicious connections, and from the results a strong
connection between anomalies and malicious connections could be observed.

As demonstrated by Liu et al. [7] with an extension they created, once an ex-
tension is installed on a browser it’s very easy for it to perform various malicious
activities such as email spamming, DDoS and phishing attacks. They show that
by having access to the 'tabs’ and ’<all urls>’" permissions — two very common
permissions — you can create a simple email spamming bot and perform DDoS
attacks. Even if you are wary of the '<all urls>" permission, by having access to
an arbitrary domain (e.g. using the "*://*.yahoo.com’ permission) the extension
can inject content scripts to it in order to send http requests to arbitrary domains,
without the need to make an explicit cross-site HTTP request (Chrome extensions
can be read about in section 2.1).
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Background

This chapter is intended to provide the background knowledge needed to follow the
idea and approach of the project properly. It starts off by explaining the architecture
of Chrome, the Chrome permissions API and the composition of Chrome extensions,
followed by the machine learning algorithms used in this project, namely Random
Forest regression and classification, K-means and K-modes. K-means is not used in
in the project, but still needs to be explained since K-modes is an extension of it.

2.1 Chrome

In this section we briefly describe some background about Chrome extensions in-
cluding their architecture and security model.

2.1.1 Architecture of Chrome

The Chrome browser is divided into multiple processes, where each tab is a separate
process plus one main background process that runs in privileged mode in order to
access system resources [8]. Each auxiliary process is run in a sandbox environment
and can only access system resources through the main process. This architecture
is meant to protect the user from websites with malicious javascripts, but does also
work well against malicious javascripts run on websites by extensions installed by
the user.

While websites are usually self contained and can make due in the sandbox en-
vironment, extensions often require additional privileges and system resources to
properly provide their services. For example, an extension may provide the func-
tionality of allowing the user to download online streamed videos to disk, requiring
privileges to escape the sandbox and write to disk. For this, Chrome allows auxiliary
processes to request access to system resources from the main process through an
API handled by permissions.

2.1.2 The Chrome Permissions API

Google Chrome has an API in place for browser extensions, which blocks function-
ality from an extension unless the user has approved that functionality for it [9].
Such permissions include geolocation, where an extension can access geographical
information of the device used, system.storage, which can grant information about
available storage devices, and fileSystem, which allows the extension to write to and
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read from the user’s local file system. To grant an extension these capabilities, the
developer needs to list them in the manifest file of the extension. If a permission is
requested by an extension, the user gets prompted when installing it in the browser,
and needs to accept the permissions to be able to install it. All permissions won’t
cause prompts however, the API only warns the user about a subset of all permis-
sions chosen by Google [10]. Some of the permissions fall under the same warning,
meaning that an extension can require multiple similar permissions and only giving
the user one warning.

The Chrome browser does things to prevent users from installing malicious exten-
sions by conveying risks of an extension before installing it (See section 2.1.2), but
doesn’t do much to protect the user from an exploitative extension once it’s been
installed. This system relies on Chrome providing relevant and useful information
to the user and the user’s ability to accurately judge the trustworthiness of an ex-
tension using this information. In practice however, users tend not to give these
warnings much thought. This is compounded by the fact that Chrome encourages
the development of extensions by third parties. The Google Chrome Store now has
over 60,000 extensions which — as suggested by Sruthi Bandhakavi el at. [11] re-
garding firefox extensions — makes it very hard to guarantee that none of them are
malicious.

2.1.3 Composition of Chrome Extensions

An extension is a small software program meant to enhance and customize the
browsing experience for the user. It modifies the Chrome functionality and behavior
and tailors it to the users needs. An extension is most often designed for a single, well
defined task or to solve a specific problem, and it can include multiple components
and a range of functionality, as long as everything contributes to perform that task
or solve that problem. They are built on simple and well known web technologies
such as javascript, CSS and HTML. These files are zipped into a single .crx package
which is made available on the Chrome Web Store for users to download and install.
This guarantees that Chrome extensions do not use content from the web in order
to not expose the user to unnecessary security risks.

In Chrome, extensions have three types of components: content scripts, extensions
cores and native libraries [12]. A content script is a javascript that’s injected into
websites when a page loads and is used to insert functionality to a web page the
user is using. It has direct access to the DOM of a web page, but have no privileges
other than communicating with the extension core. An extension core is a persistent
background web page written in HTML and/or javascript. It constitutes the main
portion of an extension and is run in the background of the web browser. It contains
most of the permissions privileges and can only communicate with web content by
XMLHttpRequests. Native libraries are gateways to the machine that can use all
of the users privileges on the local machine. Usage of these libraries are preferably
avoided since they introduce security risks [13]. An example of this is a native library
called Adobe Flash Player that’s known to have a lot of security flaws [14].

Chrome extensions follow the two security principles of least privilege and strong
isolation. For least privilege, Chrome defines a set of permissions (see section 2.1.2).

6
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An extension needs to declare what permissions it needs in the manifest file in order
to use their corresponding functionality. An example of a manifest file can be seen
in figure 2.1 [15]. Users then need to accept these permissions before they install the
extension. An extension also needs to declare the domains it intends to make use
of. By default, Chrome isolates different origins from each other, i.e it follows the
same-origin policy. Under this policy, a web browser will only permit a web page
to access data from another web page if both web pages have the same origin, e.i.
originates from the same Uniform Resource Identifier (most commonly, the Uniform
Resource Locator (URL) address). For an extension to access another origin it
has to declare that domain among the permissions in the manifest file. Doing so
allows the extension to send XMLHttpRequests and inject code into that domain.

Here it’s possible to list a range of domains using the wild card character *’ (e.g.
*:/ /* foo.com).
{
"manifest_version": 2,
"name": "My Awesome Extension",
"version": "0.1",
"background": {
"scripts": ["background.js"]
},
"content_scripts": [
{
"matches": ["*://*.foo.com"],
"js": ["content.js", "content2.js"]
}
1,
"permissions": [
"tabs", "notifications", "unlimitedStorage", "¥://*.foo.com"
1,
}

Figure 2.1: An example of the content of a manifest file for a simple extension.

2.2 Random Forest

Random Forest is a supervised machine learning algorithm developed by Leo Breiman
in 2001 [16], used for statistical analysis of relationships between different variables
(regression) or classification of data. The name forest refers to the use of multiple
decision trees in the algorithm, which together form a forest. When analyzing data,
each node in a decision tree asks a question about a property of the data, and each
branch to this node is an answer. The most common decision trees are binary, which
means that each node has up to two children. This makes each question asked at
each node a yes or no question with some criteria, where each child represents one
of the answers.

Decision trees are quite efficient and scale really well with larger data sets, they
are however quite volatile and deeper trees have a high probability of over-fitting
on the data. These problems are heavily reduced by the Random Forest approach,
where several trees are used and their answers are combined. For the classifier, this
means that each tree classifies the given data, and the final class is chosen by looking

7
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at the majority vote of the trees. For the regressor, each tree gives it’s estimator of
the value being predicted, and the final estimator of the combined forest is taken by
averaging the estimators of all the individual decision trees.

2.3 K-means

K-means is a common unsupervised machine learning algorithm, the idea behind
which was first introduced by Hugo Steinhaus in 1957 [17] and later reintroduced
by James MacQueen in 1967 [18] who also coined the term "K-means". It is used
for finding patterns in data and grouping similar objects together in clusters. It
works on data vectors with arbitrary size, where each entry in the vector is a real
number. If the data is represented by vectors of n values, the data points can be
represented as coordinates in an n-dimensional coordinate system. The algorithm
is run by initially choosing a value k, which is the number of clusters to split the
data into. k£ number of cluster center points are then initialized to random positions
within the data space, and each data vector (point in the coordinate system) is
assigned to the nearest cluster center. Distance is measured in euclidean distance in
n dimensions, where n is the size of the data vectors. After this the center points are
moved slightly towards the center of all their assigned data points, after which each
data point is reassigned to the nearest cluster once again. This is repeated until the
center points no longer move after data points are reassigned. The reason behind
the name K-means is that the algorithm creates k clusters in the data, where each
of the k center points is a mean value of all points in its cluster. This makes it so
that the algorithm only works for numerical data and not categorical.

2.4 K-modes

To be able to utilize the K-means algorithm for categorical data or mixed numerical
and categorical data, there had to be some changes to it. In 1998, Zhexue Huang
introduced K-modes [19], the extension for the K-means algorithm that was needed.
Instead of using the euclidean distance as a dissimilarity measure between two ob-
jects, the sum of categorical attributes with differing values is used instead. This
makes it so that the more similar the objects, the smaller the distance is between
them, just like for euclidean distance between numerical objects.
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Methods

This chapter is dedicated to describing the methods of our work and motivating the
usage of them. First, the way of downloading and storing the metadata is explained
after which the way the machine learning algorithms are used in the project are
described, starting off with Random Forest and finishing with K-modes.

3.1 Datasets

The extensions chosen for analysis were provided by our supervisor as a Comma-
Separated Values (CSV) file, generated in January 2018. This CSV-file called
extension_ids.txt contains the ID of each extension from the entire Chrome Web
Store (at the time), a link to their chrome web-store pages and download links to the
extension files, called CRX-files. Using this, a web crawler will be coded that down-
loads the metadata of all extensions and uploads it to an SQL-database. Extensions
considered malicious by trusted sources will be looked for, adding their metadata to
the database and marking them as malicious. This subset of the database will be
referred to as the malicious dataset.

The web crawler is to download the CRX-file for each extension, unzip it and
extract its metadata such as:

« Permissions: A list of permissions used by the extension (see section 2.1.2).
 Files: The number of files contained in the CRX-file / used by the extension.
o Size: The size of the entire extension, in bytes.

« File types: A list of all file types used in the extensions and how many of each.

The web crawler will also visit the store page for each extension and from it find
and extract its metadata such as:

o Rating: The rating, from 1 to 5, given to the extension by users.
o Users: The number of users who've downloaded the extension.

o Raters: The number of users that have rated the extension.

o Language: The language used by the extension.

o Category: The name of the category the extension belongs to.

o Developer: The name of the developer of the extension.
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3.2 Random Forest parameters

In this project, Random Forest regression is used to find strong variable correla-
tions, and Random Forest classification is used to determine if there is a connection
between extension categories and extension metadata. First, testing was done with
the goal to find the best parameter values for the Random Forest so that it could
produce the most accurate results possible while still being runnable on the available
hardware.

There were three major parameters of the forest which were tested, which were
the number of trees in the forest, the maximum depth of a tree, and the precision of
features. Precision is a parameter introduced by us to both save time on the Random
Forest tests and minimize the amount of irrelevant features. Precision controls the
amount of different values of the categorical variables language and permissions,
and also the amount of different file type variables used. The different values are
chosen by taking the p most popular values used by extensions, for example with
permissions it means the p permissions which are used the most according to the
statistics gathered from the database. A higher precision means more numerical and
categorical features, which also means increased running time. A too low precision
on the other hand could cause important relationships among file types, languages
and permissions which are not among the most used ones to be left out of the test
results.

Between test runs, a new value was chosen for one of the three parameters with
the others remaining static. This was done with the purpose of seeing the effect on
the result, and try to find a good combination of parameter values giving as small
of a mean squared error as possible. Testing a larger amount of parameters and the
combination of them can be rather complex and is not the main point of the project,
which meant only the most impactful parameters were chosen to be experimented
with.

With an increasing number of trees in the forest, a higher accuracy in variable
prediction can be achieved, but this also increases the running time of the algorithm
significantly. Due to a lack of powerful hardware and this task not being one of
the main prioritized ones, finding a parameter value large enough to keep the mean
squared error down in a reasonable range while minimizing running time of the
algorithm were the primary goals.

Similarly to the number of trees, the maximum tree depth is a parameter which
can be used to balance the accuracy of the algorithm and its running time. Letting
the maximum depth be too high a value can also introduce a large amount of over-
fitting, which could of course worsen the prediction of features, although increasing
the number of trees could mitigate this overfitting. Testing of this parameter was
once again done by running the algorithm with different maximum tree depths and
comparing the running times and the mean squared errors of the results.

10
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3.3 Testing feature relationships

A metadata outlier can be defined in several different ways. One of these ways
is in variable correlations, which means deviations from the norm in how certain
variables are related to each other. Random Forest regression was used to test and
measure variable correlations in extensions, where each variable was predicted and
the importance measure of each other variable was denoted. For each category of
extensions, each metadata feature is tested in the Random Forest regressor by fitting
the decision trees to the metadata followed by running the forest trying to predict
the tested feature. In each test, the data set is split into a training set and an
evaluation set where 85% of the data is chosen for the training set, and 15% for
the evaluation set. The entries in each set are chosen at random each time. Each
feature is tested a number of times and the importance of each other feature is
denoted for each test, along with the mean-squared error for each test. For features
in the metadata that are non-numerical, for instance the different permissions used,
categorical variables are created. A CSV-file is created, where each row is one test,
and each column is either the tested feature, the test number, the mean squared
error of the test, or the importance of one other feature. A summary text file is also
created for each category-run, which averages the importance of each feature over
all tests, and lists them in order of most important to least important.

3.4 Testing the connection between categories and
metadata

The point of this test is to investigate if there is any difference in extension metadata
between categories, to see if the categories can be used for outlier analysis. For
this task Random Forest classification is used, where each entry is fetched from
the database and all extensions are split into a training and an evaluation set with
categories used as labels. After training, the category of each entry in the evaluation
set is predicted by the forest and classification error rate of all predictions is saved.
Categorical features such as permissions and language are converted to categorical
variables just as when using regression. For the splitting of the data set into a
training and an evaluation set, 85% of the entries are put into the training set and
15% into the evaluation set. The entries in the sets are chosen at random each
time. Two files are saved from the tests. The first one is a CSV-file containing
all the tests, and the second one is a text-file containing a summary of the highest
average importances among features over all the tests. Each row in the CSV-file is
one test run, and each column is either the test number, the classification error or
the importance of one feature.

11
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3.5 Investigating patterns in permission usage us-
ing K-modes

K-modes clustering is used in this project in an attempt to detect patterns in per-
mission usage among extensions, and to evaluate if these patterns relate to security
risk. The algorithm was chosen due to it being well known, simple and efficient on
huge amounts of data. As stated by Huang [19]: "The K-means algorithm is well
known for its efficiency in clustering large data sets", which also applies to K-modes
since it is K-means with slight changes made to it.

To solve this task, each extension in our database is converted into a vector
of categorical variables, where each variable represents a single permission. Each
variable has 2 possible values, 1 if the permission is used, and 0 if it is not. There
are 113 different permissions in total. After each clustering, information about each
cluster is stored in a text file, more precisely the amount of extensions in each cluster,
the amount of extensions from the known malicious data set in each cluster and the
amount of extensions using each permission in each cluster. The K-modes algorithm
is run on all data vectors several times, each with a different k-value to determine
which value of k is most appropriate. An appropriate k-value is a natural number
as small as possible where the value above it does not create a new set of clusters
distinctly different from the current set and where most of the malicious extensions
are are concentrated in one or a few clusters if possible.
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Results and Analysis

The results of the work performed in this project are displayed in this section. The
results of each test will be explained in separate sections with an analysis of each
result at the end of its respective section.

4.1 Datasets

The download was performed the 1st of March 2018 where 60228 out of the 63214
extensions from the extension ids.txt file were successfully downloaded. Most
of the missing extensions were not downloaded due to having been taken down.
Along with these were some extensions with formatting errors due to mis-parsing
the html-source of the web store page, but since these were very few in numbers we
decided to let them slide.

Some of the metadata was gathered by parsing sequences of text from each exten-
sions” web page in the Google Chrome Store. One problem was encountered with
this method when extracting the parameter language, more precisely when the ex-
tension supported more than one language. This was the case since the languages
were inserted with a javascript into the webpage instead of being included in the
HTML page. To solve this problem, a new method of extracting the extension data
would have been needed, hence it was decided to instead create a new language
called multiple languages, assigned to each extension supporting more than one
language.

Finding malicious extensions to test the clusterings with is difficult since Google
removes them from the Chrome Web Store database upon discovery. Thus our
method for downloading them were to first download all extensions from the Chrome
Web Store and then at a later date mark extensions in our database as malicious
based on report from Google highlighting removed extensions. This netted us 40
extensions in our database considered malicious by Google — an amount not even
equal to 0.1% of our total number of extensions — meaning that our results won’t
be as statistically significant as we’'d like. However, since another paper, namely
Sarma et al. [5] that have done similar research with Androis apps, worked with a
comparable ratio of malicious apps we don’t see this as too large of an issue.

There’s also a problem of diversity since these extensions were found within a very
limited time frame of 3 months. In particular, the batch of extensions reported by
Google was mostly focused on extensions "which have all been observed injecting
click-fraud malware after installation" [20], meaning that all these malicious exten-
sions may have ended up in the same group due to them doing similar things. There
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were a few extensions gathered outside of this batch reported by Andrey Meshkov,
all of which being malicious copies of ad-block software [21].

4.2 Data analysis

An analysis has been performed on the metadata stored in the database, which
informs us of the most popular permissions, the largest extension categories, the
popularity of different file types and more.

As seen in figure 4.1, the most popular permission declared by Chrome extensions
is tabs, closely followed by all urls. The tabs permissions gives the extension
access to the chrome.tabs API, which lets your extension access information about
the tabs, communicate with the content scripts in web pages, or inject scripts into
web pages, among other things.

Extension permissions

all_urls 30359
storage 22350
activeTab [ 10769
contextMenus 9237

notifications 8916

webRequest 7464
cookies 6241

webRequestBlocking 5929
unlimitedStorage : 0
0 5000 10000 15000 20000 25000 30000 35000

Number of extensions using this permission

Figure 4.1: Bar chart of top 10 most used permissions

The all _urls permission lets an extension interact with the content of any web
page, inject scripts, and send XMLHttp-requests to any web page, which makes
this permission an extensive one. The fact that its the second most popular one
seems worrying, since probably far from all extensions that declare this permission
needs to be able to communicate and interact with all web pages. Interacting with
the content of any web page seems very useful and probably necessary to a lot of
extensions, but sending information to any web page on the other hand seems less
useful. Especially combining these two functionalities under one permission seems
unnecessary, since it also gives the extensions the ability to capture information
about every different web page and send it to other web pages.

If the extension has declared both the tabs and the all urls permissions, it
also gets access to the captureVisibleTab functionality in the tabs API, which
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can take a screen shot of the visible content in the current active tab. In figure 4.1
we can also see that these two permissions are very close to each other in terms of
usage, which probably means most extensions using one of these permissions are
also using the other. Perhaps getting access to captureVisibleTab isn’t the sole
or biggest reason for so many extensions declaring both these permissions, but it
seems like their usage numbers are too similar not to suspect it. Also, the reason
behind needing to screen capture the visited websites is not clear to us.

ActiveTab is another popular permission and is a safer version of all_urls, where
the extension declaring this permission is given the same rights as with all urls
except only when it’s needed, in which case it prompts the user. This permission
is clearly a much more user friendly version of all_urls which gives the user more
insight in what the extension does and when it does it. It also prevents an extension
from accessing important information and communicating with unwanted web pages
without the users knowledge.

There are 11 different categories with varying popularity, which can be seen in
figure 4.2. Some of the classes — especially some of the larger ones — are rather
vague, like productivity, accessibility or fun. This is probably one of the
reasons the categories are difficult to use in finding patterns in permissions and
other metadata. The most supported languages can be seen in figure 4.3, where
English is the most dominating one followed by multiple languages. The most
widely used file types are displayed in figure 4.4, where the results are not very
surprising either.

Extension Categories

Productivity r 20331
Fun 9924
Communication 6920
Web Development [ 5785
Accessibility 5270
Search Tools 3485
Shopping 2693
Photos 2140
News 1847
Blogging 1041
Sports 792
0 2500 5000 7500 10000 12500 15000 17500 20000 22500

Number of extensions in the category

Figure 4.2: Bar chart of the different extension categories
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Extension languages

English 29740
English (U.S) 10759
Multiple Languages 6499
English (UK) [ 1975
Chinese (Simplified) 1952
Russian [ 1944
Japanese 946
Portuguese (Brazil) 941
French 895

Spanish (Latin America) 573

0 5000 10000 15000 20000 25000 30000 35000

Number of extensions supporting this language

Figure 4.3: Bar chart of top 10 most supported languages

File types
is 1096516
png 678718
json 317796
html | 137676
css | | 132071
svg | | 91529
ipg 70697
md 60777
gif 43497
No file extension 40346
0 200000 400000 600000 800000 1000000 1200000

Number of total files with this type over all extensions

Figure 4.4: Bar chart of top 10 most used file types

4.3 Random Forest parameters

From visual inspection of the results, we concluded that the best parameters were a
maximum tree depth of 16, a precision of 20 and 20 trees. With deeper trees than
16, there were no longer a notable drop in Mean Squared Error (MSE) from the
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earlier tests, and the same holds true for more than 20 trees. There was also a dip
in MSE for several features between 10 and 20 precision, but it also leveled out for
precisions above that.

4.4 'Testing feature relationships

For most categories, we can see in table 4.1 that the total size of the extension
is on average the most important feature in trying to predict the other features,
which means it’s the one that correlates the most to the other features. Another
observation is that there seems to be no big differences in what features are important
between the different category tests, which might suggest that feature relationships
over different categories are rather similar and that testing the features by category
is not necessary for outlier detection. As mentioned in section 4.3, tests were made
with different values on the tree max depth, and what could be observed was when
the trees grew deeper, size gained more importance, as some of the other features
lost importance.

Category Feature / Feature / Feature / Feature / Feature /
Importance (%) | Importance (%) | Importance (%) | Importance (%) | Importance (%)
Productivity Files / 9.5 Size / 9.5 Users / 6.4 js /5.5 Raters / 5.2
Fun Size / 9.7 Files / 8.4 gs /71 Users / 6.0 .png / 5.1
Communication Size / 11.0 Files / 8.6 Users / 6.8 js / 6.6 Raters / 6.0
Web Development Size / 10.8 Files / 7.7 Users / 7.5 js /5.8 .png / 5.5
Accessibility Size / 10.6 Files / 8.7 Users / 6.9 js /5.6 Raters / 5.6
Search Tools Size / 10.0 Files / 7.8 js /6.9 Users / 6.8 png / 4.2
Shopping Size / 10.5 Files / 9.4 Users / 7.1 Raters / 5.7 js /5.5
Photos Size / 7.5 Files / 6.6 .png / 5.9 js /54 jpg / 4.8
News Size / 10.2 Files / 8.9 Users / 6.9 js /5.9 Raters / 5.7
Blogging Size / 9.7 Files / 8.6 Users / 8.1 js /6.4 Raters / 5.5
Sports Size / 9.2 Files / 8.6 Raters / 6.0 Users / 5.4 js /5.3

Table 4.1: The features with the highest average importance in Random Forest
regressor tests in each category.

There were some notable feature relationships in testing with the Random Forest
regressor, which are displayed in table 4.2. There is a connection between users and
raters which can be seen in figure 4.5, where extensions with fewer users usually have
fewer raters, which seem rather intuitive. The strongest connection is for raters
when predicting rating, which is displayed in figure 4.6. This connection is not at all
as strong the other way around, this since users were more important than rating.
Several of the top variable connections are rather trivial, which is why they are
not displayed in figures, but they will be mentioned. Permissions webRequest and
webRequestBlocking are only used by a vast minority of extensions of which most
declare both, only a few declare just webRequest, and very few to none declare only
webRequestBlocking. This is visualized in figure 4.7. webRequest is a permission
used by extensions which desire to analyze traffic, intercept or modify requests.
webRequestBlocking is used to also be able to block requests.
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Predicted feature

Highest importance feature

Average importance (%)

rating raters 98.7
permission_ webRequestBlocking permission_ webRequest 94.2
permission_ webRequest permission_ webRequestBlocking 93.5
.woff .eot 78.7
.eot .woff 78.4
permission__proxy .pac 77.3
Multiple_ languages json 74.8
.pac permission__proxy 74.2
phps php 74.0
permission__browser permission__certificateProvider 73.0
permission__clipboard Write permission_ clipboardRead 72.1
.dec size 72.0
permission__ identity permission__gcm 71.6
.Articles .Assist 71.0
users raters 68.4
permission__gcm permission__identity 68.1
permission__dataReductionProxy | permission_ preferencesPrivate 68.0
permission_ certificateProvider permission__browser 66.0
English (U.S) English 65.9
.becmap .properties 65.2
Table 4.2: The 20 strongest average feature relationships
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Figure 4.5: The relationship between users and raters.
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Figure 4.6: The relationship between rating and raters.
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Figure 4.7: The relationship between permissions webRequest and webRequest-

Blocking.

As can be seen in figure 4.8, there is partly a linear relationship between the file
types .woff and .eot. Both file types are font files which are used by different
browsers, eot is a font file format developed by Microsoft and primarily used by
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Internet Explorer. woff is a fairly new font format which is recommended by the
World Wide Web Consortium [22] and is used by Mozilla Firefox and Google Chrome
among others. The seemingly linear relationship between them seems fairly obvious,
for a web page to support the use of different browsers, both file formats needs to
be available.

40
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.woff

Figure 4.8: The relationship between file types .woff and .eot

There is a somewhat noteworthy relationship between the language multiple
languages and the file type . json, which can be seen in figure 4.9. What can be
noted is that extensions not declaring multiple languages have a larger spread of
how many . json files they include, where those that do declare multiple languages
are more concentrated around a lower amount of . json files. The reason behind this
relationship is not known, and its relevance is uncertain, but since the connection is
among the stronger ones and there is something to be noted from visual inspection,
it was included as a figure.
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Figure 4.9: The relationship between the language multiple languages and the
amount of .json files in an extension.

The rest of the feature relationships listed in table 4.2, not shown in plots or
bar charts in this section, are excluded for being very obvious or not really dis-
playing anything useful. To give some examples, the permissions browser and
certificateProvider are almost never used, and the same goes for dataReductionProxy
and preferencesPrivate. The plots of permission_proxy and .pac, and .Articles
and .Assist displayed no clear patterns from visual inspection and it was difficult
to even extract any relevant information from the plots which is why they were left
out.

Since many of the feature relationships are fairly obvious and not very closely
related to security, it seems clear to us that for example finding an extension outlier
in terms of the relationship between different font file types is not very effective for
finding security risks. There are however a few relationships which could provide the
user with relevant information. An example of this could be rating and raters.
According to figure 4.6, an extension having many raters and a low rating would
be considered an outlier and would probably also be unusual in a negative way,
which could warn the user not to install it. An outlier could also be an extension
with fairly high rating and very many raters which could be either positive or
negative, either a well liked extension by many users or a developer with malicious
intents faking reviews to get more downloads. These things could contribute to the
user making a more informed decision.
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4.5 Testing the connection between categories and
metadata

The Random Forest classification was run 10 times with the categories as labels.
For each of the tests, the classification error was between 56% and 58%. These
results further strengthens the claim in section 4.4, which is that classes are almost
indistinguishable from metadata alone. It is obvious that the idea behind the cate-
gories is not grouping extensions together based on close relations in metadata, but
instead after their usage areas. The categories being very similar in terms of meta-
data makes finding outliers in a specific category difficult. Instead, finding outliers
in terms of variable correlations seems more useful, since there are multiple strong
correlations. The counterpoint to this however would again be that many of the
strongest variable correlations does not have strong parallels to security.

4.6 Investigating patterns in permission usage us-
ing K-modes

Table 4.3 shows the resulting groups and distribution of extensions for the K-modes
algorithm run with k-values from 5 to 10 where one of these groupings, namely
the result with a k-value of 7, is shown in greater detail in table 4.4. The result
shows that 85% or more of all malicious extensions are, with the K-modes algorithm,
consistently put into one or two groups with a total group size of less than 10% of
the total amount of extensions (k-values of 6 and 7 puts the malicious extensions
in group 2 and other k-values divides them up into two groups, a larger one and
a smaller one. This suggests that there exists a common pattern most malicious
extensions in our dataset adhere to.

k-value: 5 6 7 8 9 10
Group 0: | 21384 (0) | 44771 (1) | 32943 (0) | 24351 (1) | 37614 (0) | 28160 (0)
Group 1: | 14352 (1) | 7370 (0) | 7458 (0) | 20690 (0) | 7364 (0) | 10038 (0)
Group 2: | 12266 (23) | 4402 (37) | 6764 (40) | 7468 (0) | 4904 (0) | 9460 (0)
Group 3: | 7422 (0) 1812 (1) | 6519 (0) | 2850 (9) | 3682 (28) | 3217 (34)
Group 4: | 4804 (16) | 1227 (1) | 4086 (0) | 2399 (25) | 1519 (0) | 2213 (1)
Group 5: - 646 (0) 1720 (0) | 1510 (5) | 1388 (0) | 2170 (0)
Group 6: - - 738 (0) 646 (0) | 1346 (10) | 1666 (5)
Group T7: - - - 314 (0) | 1213 (2) | 1472 (0)
Group 8: - - - - 1198 (0) | 1158 (0)
Group 9: - - - - - 674 (0)

Table 4.3: The result of the K-modes algorithm runs with k-values from 5 to 10.
Each cell shows the number of extensions in each group for each k-value with the
number of malicious extensions in the parenthesis.
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Group Number: 0 1 2 3 4 5 6
Number of Extensions: | 32943 | 7458 | 6764 | 6519 | 4086 | 1720 | 738
Malicious Extensions: 0 0 40 0 0 0 0

tabs 11423 | 7458 | 5667 | 1622 | 2887 | 1531 | 95
<all__urls> 1618 | 1475 | 2822 | 518 | 435 | 404 | 18
storage 4472 | 7458 | 4912 | 1601 | 2743 | 1087 | 16
activeTab 0 1891 | 1203 | 6519 | 677 | 459 0
contextMenus 2915 | 1487 | 2309 | 774 0 1720 | 7
notifications 927 0 2025 | 108 | 4086 | 1720 | 6
webRequest 124 0 6749 | 187 | 242 | 142 6
cookies 974 | 1136 | 2734 | 285 | 555 | 539 3
webRequestBlocking 1 0 5859 | 47 6 5 5
unlimitedStorage 582 598 | 2257 | 119 | 310 | 388 3
webNavigation 529 619 | 2371 | 172 | 228 | 193 4
management 519 396 | 1711 | 46 244 | 168 7
alarms 424 423 | 633 | 107 | 653 | 185 1
background 595 321 | 381 | 164 | 499 | 191 4
topSites 260 155 | 1223 | 26 36 67 0
identity 261 315 | 366 | 155 | 527 | 134 0
bookmarks 582 258 | 568 75 97 98 0
clipboard Write 499 264 | 241 | 191 | 115 | 220 3
downloads 319 231 | 341 | 134 | 106 | 102 1
history 344 224 | 404 49 80 79 0
desktopCapture 0 69 41 57 48 21 738
nativeMessaging 337 69 324 46 33 35 6
geolocation 229 75 254 49 79 45 1
idle 96 58 248 16 137 | 142 3
gcm 8 16 97 8 457 | 100 0

Table 4.4: The result of the K-modes algorithm run with 113 different permissions
and a k-value of 7, where only the top 25 permissions are shown in this table.

There are a few observations to be made and a few conclusions to be drawn from
these results. Examples for this analysis will be drawn from the clustering of the
data with a k-value of 7 — the results of which can be seen in table 4.4 — unless
stated otherwise. First off, the clusters are of varying sizes, the largest one about
the size of half of all the extensions in the database. The rest of the clusters are
rather close to each other in size, all being significantly smaller than a third of the
largest cluster. The argument can therefore be made the largest cluster represents
the norm of permission usage among extensions, and the smaller groups various
outliers from that norm. The same pattern can be seen from the clusterings with
other k-values in table 4.3, where one or two clusters are significantly larger than the
rest. According to the results of the studies from Bloedorn et al. [6] which studied
internet connections, it was concluded that most of the time malicious connections
were also outliers. Using this argument, extensions placed in smaller clusters pose
a larger threat of the reason that they are deviating from the norm.

An interesting observation from table 4.4 is that 99% of all extensions using the
webRequestBlocking permission — a very suspicious permission that allows the
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extension to block http-requests sent by the user — is put in the group with all
the malicious extensions. This could suggest that the K-modes algorithm found a
clear divide between safe and potentially malicious extensions with this permission
being a great main identifier for them. However, an article written by Chia et al.
[23] concludes that "we regard all Chrome permissions to be both dangerous and
dangerous-and-information-relevant, except the permission ‘Your tabs and browsing
activity’" suggesting that it’s the specific combination of multiple permissions that
defines the group rather than a specific permission. This would also explain why
there isn’t any other obvious permission distributions in our results, but the correla-
tion is certainly striking. The permissions tabs, <all_urls>, storage and cookies
are usually among the most popular as well in that high risk group. The only other
one is the heavy distribution of the desktopCapture permission — a permission
that allows an extension to capture content of the screen, individual windows or
tabs — into one group, suggesting for there to be another high-risk group. This
group has no malicious extensions put in it, but that might be a result of the issue
discussed in section 4.1. Also, outside desktopCapture the permission usage in this
group is extremely low, making the potential risks of these extensions very narrow.
The largest risk considered by us for this group is an extension spying on a user,
capturing the content of their computer and their actions. Without the permissions
of accessing arbitrary web servers though, the ability to take screen shots and send-
ing them to an attackers server is non-existent without help of outside applications
or other extensions, minimizing the risk of these extensions in a vacuum.

There are differences in permission usage between clusters, both in terms of which
permissions are being used the most and the rate of how often they are used among
extensions. Looking at the results from clusterings of all the different k-values,
extensions in the largest cluster tends to use permissions less often than in most
others, and since according to Chia et al. [23] most permissions can be considered
at a similar level of risk, using more permissions implies a higher risk.
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Discussion

In this chapter we discuss some issues with the methods used and assumptions
made. We also talk generally about other methods of possibly improving security
of browser extensions in Chrome or the communication with a user.

5.1 Correlation bias

One thing that might have skewed the result in our Random Forest tests, is the
phenomenon described by Tolosi and Lengauer [24] which they call correlation bias.
This is when doing regression analysis and looking for variable importance, smaller
groups of variables that correlate to the main variable get favored over larger groups
that have equal correlation. This effect could to an extent explain the high average
importance of the single value variables over all category tests, and the low average
importance for the larger categorical variables.

5.2 QOutliers compared to malicious extensions

There is the question about how malicious extensions compare to outliers, and how
big of an overlap these two sets have. It is not clear exactly how effective the
method of finding outliers to also find dangerous extensions is, and to know for
certain, the project would have needed access to a larger set of known malicious
extensions. In that case, the results from the outlier analysis using K-modes could
have been compared to the known malicious extensions more reliably than in the
current analysis. What the outlier analysis does well however, is inform a user of
irregularities in a certain extension, and what makes it differ from the norm. This
helps the user make a more informed decision about installing odd extensions, which
use more permissions than they might need to or are larger in size than what they
probably need to be.

The work done by Bloedorn et al. [6] — previously mentioned in section 1.4—
was performed on network connections and showed that a vast majority of malicious
connections were also detected as anomalies by the clustering algorithm K-means.
Although network connections are not the same as browser extension metadata, this
still gives some weight to the argument that malicious entities, for example network
connections or browser extensions, usually deviate from the norm in some or several
ways.
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5.3 Improving security in browser extensions

There are other approaches to securing the browser from malware extensions other
than statistical analysis, with varying degrees of complexity and effectiveness. An-
alyzing code is one of them, which means searching source code for dangerous code
snippets. This is a method used in popular anti virus software [25] and it is much
more accurate in detecting known exploits and potentially dangerous code than
statistical analysis. One large flaw of this method however is that its effectiveness
decreases over time, along with new exploits being discovered and potentially new
flaws being introduced as the way of coding and software in general change and
evolve. To be effective in detecting a certain flaw or exploit, the exploit needs to be
known by anti virus software developers, which usually happens an arbitrary amount
of time after it is discovered by an attacker. These reasons put code analysis always
a step behind attackers, and in constant need of updating to not lose effectiveness.

Risk-ranking permissions and displaying a risk score for an extension to the user
at install time is an approach that seems natural and effective, but has been proven
to be quite the contrary. In work done by Felt et al. [26] which analyzed permis-
sions used by Android applications and Chrome extensions, it was found that most
applications and extensions trigger similar warnings at install time, which makes
the warnings lose their effectiveness rather fast. This suggests assessing risk of an
application in comparison to other applications is a more effective method, since it
causes fewer prompts and gives a relative risk assessment.

Recognizing dangerous behaviour from extensions and blocking it or alerting the
user could be a method of preventing extensions from performing malicious tasks.
This could be an extension trying to perform a risky sequence of actions, for example
access sensitive information such as cookies and then sending information to an
untrusted server. This method in combination with a system of marking trusted
web-sites which you trust with your data for example, could form a powerful tool
in preventing extensions doing dangerous things with the amount of pop-ups to the
user minimized. Rules could be defined of such dangerous action combinations which
when performed by extensions, needs the users permission to do so and could be
given for example in a pop-up window. This approach suffers from some of the same
problems as analyzing code, which is that the exploits needs to be publicly known to
be able to protect the browser from them, and also that the countermeasures needs
to constantly be updated to not lose effectiveness.

Something which could help users gain insight into the need for applications to
declare certain permissions is if it was explained by the developer in some manner
why their application is in need of the declared permissions. An example of this
could be natural language motivations in the manifest file for the applications next
to each permission, which could be displayed to the user at install time. A missing
or poor motivation would alert the user that the app is over-privileged or that the
developer is trying to get away with something suspicious. The downside to this
approach is that installing an application might require reading a lot of text, which
is commonly something most users are not willing to do, a good example of this
being long terms and conditions when using an internet service. It is most likely
also a lot less useful for users with low technical knowledge, since they might not
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have enough insight into how the system works and if the developers motivations
makes sense. Developers also still have the possibility of being dishonest about their
intention of their permission-usage, and ill-intended developers with high creativity
and imagination wouldn’t suffer very large consequences from such a system.
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Conclusion

This project has analyzed metadata of browser extensions in Google Chrome in a
few distinct steps. First, all extensions in the Google Chrome store were down-
loaded, metadata was extracted from them and stored in a database. Some statistic
analysis was performed on the metadata, researching the most popular categories,
permissions, file types and more. Random forest regression was used to find strong
feature relationships, and Random forest classification was used to determine the
differences between the categories in terms of metadata. K-modes clustering was
finally run on the permissions used by extensions, in an attempt to find patterns in
permission usage and use those patterns to assess the risk of installing particular
extensions.

As results in section 4.4 shows, average variable importances over all the different
categories when doing regression testing of features were very similar, introducing
the idea that in regards to metadata, there is no huge difference in variable rela-
tionships between the categories. This was further backed by the results found in
classification testing between categories, which can be found in section 4.5. These
tests displays a very large classification error between the categories, again suggest-
ing that the difference in metadata between them are minimal. It was also noted
in both the regression and classification tests that permissions were generally low in
importance, meaning that what rather ineffective predictions could be made about
features or the category of extensions, the permissions used by them were not very
influential of the result. This might not be very surprising, due to extension cat-
egories not being a product of grouping with respect to security risk ranking or
similar metadata patterns, but rather use cases of the extensions. However, the fact
that categories have little to no connection to security level and that the prompting
of permissions used at install time being a poor method of risk communication, we
find a new system would need to be put in place if users being under-informed about
security risks in this area is seen as a problem.

The results from the K-modes clustering on extensions based on permissions
showed promise that security categories for extensions based on this clustering would
be a good idea when it comes to communicating risk to a user. The K-modes al-
gorithm managed to detect clear patterns in permission usage among extensions
and even managed to consistently put the vast majority of the extensions from our
known malicious extensions data set into one or two clusters for k-values of 5 and
above. As mentioned in section 4.1 however, our malicious data set is very small
in comparison to all extensions tested and the set lacks diversity, so this result in
particular is unfortunately not statistically significant for malicious extensions in
general. Ignoring the malicious data set, the created clusters shows consistent pat-
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terns over k-values above 5, where different clusters can be assessed to be on different
levels of risk as shown in section 4.6. Communicating this risk of extensions relative
to other extensions in the form of a fairly low number of security groups, each group
with a rather distinct pattern in permission usage, we believe to be both a clear
and effective way to alert a user of the implications of installing an extension, where
extensive technical knowledge is not needed.

6.1 Future Work

Our work has some notable flaws which could be improved on in future work, largely
caused by a lack of resources. One of the major ones is not enough quantity and di-
versity within the set of known malicious extensions. The results from the K-modes
clustering shows the existence of clear patterns in permission usage between these
extensions and that grouping the malicious extensions together with unsupervised
learning is both possible and highly probable. Because of the previously mentioned
shortcomings however, these results can not be expected to represent potential clus-
tering results of all malicious extensions. It would therefore be very insightful to
do a similar study with a more extensive data set of known malicious extensions to
more extensively evaluate this method in assessing risk and how accurate it is when
it comes to predicting bad extensions.

The introduction of the precision parameter into our scripts was a method of
improving the performance of the scripts, making them runnable on our machines
within a reasonable time span while trying to lose minimal precision in our tests.
With better hardware the same tests could probably be run without cutting out any
features. Seeing if that change increases the precision of results or instead increases
over-fitting would be both useful and interesting.
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