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Abstract
A 3D reconstruction and mapping framework aided by nonlinear filter optimiza-
tion is introduced in this thesis project. A pipeline consisting of point cloud pre-
prossesing, followed by a robust and rapid non-feature-based normal distributions
transform (NDT) registration algorithm was developed for accurate mapping. An
unscented kalman filter (UKF) solution to fuse inertial measurement unit (IMU) and
global navigation satellite system (GNSS) measurements with augmented continuous
turn rate velocity (CTRV) magnitude model is considered to obtain continuous six
degree of freedom (6-DOF) pose estimation for accurate localization of the agent.
The primary motivation for developing a high-quality mapping and localization sys-
tem is because they play a key role in advancing towards an autonomous vehicle.
Due to the lack of synchronized public datasets with IMU, GNSS, and light detec-
tion and ranging (lidar) measurements, the initial implementation of the mapping
solution was tested over outdoor dataset from cars. The final phase of the project
development is aimed at testing and tuning the program for the custom maritime
dataset.
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1
Introduction

The surge of computational capacity in recent years has provided a solid foundation
for the development of autonomous driving. The perception, planning and con-
trol capabilities of autonomous vehicles (AVs) have all been greatly developed in
the past decade. Current assessments of the AVs suggest an annual growth rate of
63.1% within the next ten years [1]. This progress also affects the development of
autonomous solutions in many other areas, such as maritime, indoor, industrial, and
aerial, to mention a few. Decisions of AVs are based on the accurate understanding
of the surrounding environment. Therefore, accurate perception and localization
algorithms are the cornerstones of autonomous driving technology. With resources
from Revere who is at the forefront of developing self-driving vehicles, this project
aimed to implement a mapping algorithm. Compatibility and performance tests
in maritime environment are conducted using data collected by the Revere Seastar
research platform.

The lidar, global navigation satellite system (GNSS), and inertial measurement unit
(IMU) are used as primary sensors for the perception and localization system. Li-
dar is essential for the 3D mapping of the environment as they produce point cloud
data, which describes the depth information of the surroundings. A continuous pro-
cess of point cloud registration enables 3D reconstruction of the surroundings. The
GNSS provides 3D position estimations for the vehicle localization, which requires
uninterrupted communication with at least four satellites. Inevitably, interruption
of communication with GNNS satellite does occur in scenarios like in tunnels, under
bridges, and nearby dense vegetation or urban infrastructure. The GNSS measure-
ment frequency is lower than that of the IMU, while the IMU provides uninterrupted
measurements. The sensor fusion of GNSS and IMU utilizes the complementary
characteristics of sensors, which enables continuous accurate pose estimation at a
high frequency. In this project, the mapping algorithms were tested on the standard
datasets, such as the kitti dataset. Its performance on maritime environment will
also be tested after the data collection.

1.1 Objective
This thesis project aimed to develop a reliable mapping and 3D reconstruction sys-
tem for vehicles equipped with 3D lidar in a complex outdoor environment. The
goal was also to use limited computing resources to accurately detect surrounding
objects. Ultimately, the algorithm will be used on the racing car in 2021 Chalmers
Formula Student Driverless (CFSD21) and participate in the 2021 Formula Student
Czech Republic competition.
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Chapter 1. Introduction

1.2 Research questions
The research questions chosen to guide the thesis project are:

• How robust and accurate can a lidar-based SLAM be on a 6-DOF moving
vehicle?

• Can the maps generated by the SLAM solution be used for detecting objects
moving relative to the world frame?

1.3 Outline
Sects. 2 and 3 present the background and theory leading to the chosen method.
The fundamental methods and the state-of-the-art methods are introduced in Sect. 2
based on an extensive literature study in the field. This is followed by a description
of the interaction and the knowledge exchange between peer groups. Sects. 4 and 5
describe the implementation and results of the algorithm. The analysis and discus-
sion of the test results, as well as the follow-up summary and expectations for the
future work, are shown in Sects. 6 and 7.

2



2
Background

Mapping and localization are the essential elements in the field of AVs, as they
form the basis of simultaneous localization and mapping (SLAM), path planning
and vehicle control functions. 3D reconstruction can express spatial environment
information to enhance the AVs’ perception ability. An accurate 3D reconstructed
map serves in the object detection in the surrounding environment of the vehicles.
It also enables the vehicle to integrate different sensors to accurately estimate its
own pose. The reconstruction system also enables more accurate object tracking
and collision avoidance. Novel studies on behavioural predictions of pedestrians and
cyclists enables optimal decision making based on the situation.

There are various existing state-of-the-art methods of 3D mapping, which are LOAM
[2], LIO mapping [3] and HDL SLAM [4]. The difference between these methods lies
in the selection of the effective registration method and the extent of sensor fusion.
The 3D mapping methods can be broadly classified into feature-based and non-
feature-based methods. The prominent feature-based methods are lidar odometry
and mapping (LOAM) and Lidar inertial odometry and mapping (LIO mapping). It
is mainly composed of two algorithms, one is used for lidar odometry and the other
is used for mapping. An overview of the LOAM method is shown in Fig. 2.1.

Figure 2.1: Overview of the LOAM method.

The registration step extracts sets of edge and planar feature points meeting certain
criteria. The lidar odometry utilizes these feature points form lidar scans to obtain
a geometric relation between them and to estimate the motion of the vehicle. The
lidar mapping then uses the odoemtry information to register the point cloud to a
submap obtained from the previous iteration. LIO mapping is an improved version
of LOAM by using IMU measurements for pose estimation, which also improves the
lidar odometry on the original LOAM. The feature based methods are computation-
ally expensive and thus have lower mapping frequency. Using GNSS measurements
to improve the mapping is also not considered in these algorithms. Therefore, this
project considers the robust estimation of dynamics in all six degrees of freedom
(6-DOF) and is suitable for the accurate mapping. An accurate pose estimation

3



Chapter 2. Background

system with the sensor fusion of GNSS and IMU is considered to enhance the speed
and reliability of the 3D reconstruction system.

The point cloud containing noise and dynamic objects hinders the accurate transfor-
mation matrix estimation during the point cloud registration. So the preprocessing
and object detection are the necessary steps in the mapping and 3D reconstruction
process. Preprocessing is divided into two main directions, one is to reduce the point
cloud density, and the other is to reduce the interference of the noise points. The
point cloud features need to be preserved as much as possible in the preprocessing,
so as to make the object recognition and 3D reconstruction more accurate. The
detection and segmentation of the surrounding objects are essential for constructing
consistent maps, obstacle detection, and path planning in the autonomous driving
scenarios [5]. Object detection relies on the accurate point cloud clustering and ob-
ject classification algorithms. The key to the segmentation is to extract the smallest
bounding boxes from the clustered point clouds. The modern object recognition and
segmentation methods are usually based on machine learning. The typical method is
the classification method using deep neural network developed by Zdzislaw Kowal-
czuk and Karol Szymanski. This is a model-based deep learning method, which
trains a model based on the PointNet architecture to detect and classify objects in
the point cloud data [6]. It requires a lot of preliminary data preparation and model
training, but it has high accuracy and fast speed under the guarantee of computing
performance. Since this project does not have a very powerful computer platform,
the method based on deep learning is not suitable.

Furthermore, since multiple functions need to work at different frequencies at the
same time, containerizing the functions is a necessary operation. Docker is the most
commonly used containerization technology. The Docker containers are isolated
from each other and have their own software, libraries and configuration files. They
can communicate with each other through well-defined channels [7]. The use of
Docker also allows the system to achieve continuous integration and deployment,
which makes the system to be able to be test on different platforms.

4



3
Theory

The theory used in this project is described in this section. Sects. 3.1, 3.2 and
3.3 introduce the sensor setup. Then, the coordinate system and transformation
are explained in Sect. 3.4. Lastly, the theory behind localization and point cloud
processing is shown in Sects. 3.5 to 3.7.

3.1 Inertial measurement units
Inertial measurement units work on different principles depending on the margin of
accuracy of the intended application. Small size, cheap, and accurate inertial mea-
surements are obtained through micro-electro-mechanical systems (MEMS). There-
fore, MEMS IMU is the most common choice in autonomous driving applications.
For the applications requiring higher accuracy, such as boats, helicopters, and safety-
critical systems, high-precision IMU sensors are required. The Revere Seastar re-
search platform has an advanced IMU, which is KVH P-1775.

Figure 3.1: KVH P-1775 high-precision IMU.

3.1.1 Gyroscope
Gyroscopes based on MEMES estimate the Coriolis force generated by the resonating
mass. The Coriolis force is obtained by measuring the voltage across the capacitive
elements around the mass. The Coriolis forces are measured along the three axes to
produce rotational rates. The KVH P-1775 IMU with fibre optic gyroscope (FOG)
technology is used on the maritime platform to get high precision measurements.
The working principle of FOG is to measure the rotational rate based on the phase
shift difference of two laser beams emitted in opposite directions. This occurs due

5



Chapter 3. Theory

to the Sagnac effect, where three FOG sensors produce rotational rates on their
respective axes.

3.1.2 Accelerometer
The accelerometer measures the change in capacitance to estimate the acceleration
caused by the reaction force on the mechanical slider. The slider is a mass with
extended electrodes attached to a spring and moves between the electrodes on a
static frame in a specific direction. The difference in the distance between the
electrodes affects the capacitance change. The accelerometers on the three axes
measure the acceleration in their respective directions.

3.1.3 Magnetometer
Magnetometers are used to measure the magnetic forces based on various working
principles. Hall effect and magnetoresistance are the most commonly used work-
ing principles. The KVH P-1775 IMU uses the fluxgate magnetometer principle.
Two ferromagnetic elements generate equal and opposite magnetic fields through
currents in opposite directions to cancel each other. The external magnetic fields
are measured when it interferes with the balance between magnetic field, which is
captured by the secondary coils around the two ferromagnetic materials. The cal-
ibrated magnetometer measurements are used to find the true north and estimate
the heading of the vehicle [8]. However, due to the interference of the external
magnetic field caused by the circuit current, permanent magnets, or other ferrous
distortions, these sensors requires calibration to achieve accurate inertial navigation.
The advantages of magnetometers in inertial navigation are limited, and the mag-
netic interference from vehicle components may bring uncertainty. Therefore, the
magnetometer measurements are not used in this project [9].

3.2 Global navigation satellite system
The GNSS provides the geo-spatial position measurements of the receiver. It uses
the world geodetic system 1984 (WGS84) which depicts the oblate geometry of
the Earth [10]. The distance information of at least four satellites are needed to
accurately estimate the positions. Thus, GNSS cannot produce output in areas with
limited satellite signals, such as caves and tunnels. In the dense urban environment,
receiving the reflected GNSS signal will also cause multi-path errors and lead to
erroneous outputs.

3.3 Light detection and ranging
Lidar is a sensor that obtains the distance from the sensor to the object based on the
characteristics of light. The two widely used principles are the time of flight (ToF)
approach and the coherent detection principle. The main idea of ToF principle is
to calculate the time difference between emitting and receiving a lidar pulse. The
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Chapter 3. Theory

distance from the object to the sensor is obtained by calculating the half cycle of the
time difference. The frequency, working principle, power, and sensing elements of
the lidar system depend on the application scenarios. Lidar systems are integrated
on the platforms such as unmanned aerial vehicle (UAV) and airplanes to generate
the topographic maps, underwater topography or bathymetric surveys of the area.

3.3.1 3D laser lidar
3D laser lidar emits and receives eye-safe laser pulses with the wavelength of 905
nannometers to generate depth information of the surroundings, which is known
as the point cloud. The point cloud contains direct centimeter-level measurements
on the order of hundreds of thousand points. Lidars are robust to fluctuations or
absence of ambient lighting and weather conditions such as rain or fog. However,
the extreme fog condition still affects the range of the lidar. When comparing with
radar, the detailed depth map enables the collection of a higher amount of distinct
features and information of the surrounding objects.

Figure 3.2: Velodyne VLP-16 3D lidar.

3.4 Coordinate systems and transformation
The pose of the vehicle details its position and orientation and they differ based on
the coordinate system chosen. The pose in reference to another coordinate system
can be obtained from the transformation between the coordinate systems. 3D recon-
struction of the map relies on accurate estimation of the pose through sensor fusion
of measurements from sensors placed at different locations. Thus transformation
between sensors enables the representation of pose in a common coordinate system
and accurately estimate the pose of the vehicle.

3.4.1 ECEF and ENU coordinate system
The Earth centered Earth fixed (ECEF) is the most commonly used coordinate sys-
tem when converting WGS84 into a planimetric coordinate. It considers the origin
at the Earth’s centre. The intersection of the Greenwich line and the equator as the

7



Chapter 3. Theory

X-axis. The intersection of the Greenwich line and the Earth’s rotational axis is the
Z-axis, and Y-axis is orthogonal to the X, Y planes at the origin. The ECEF is then
converted to the planimetric east north up (ENU) coordinate system to capture the
local motion of the vehicle.

The ENU system considers the movement in the north, east, and up directions as
positive direction. The first global position estimation is considered as the origin.
The up direction is the line perpendicular to the tangent of the Earth’s surface
intersecting the Earth rotational axis. The oblate sphere is converted to a plane
using the standard Mercator projection system to represent the location in the widely
known Cartesian coordinate system [11].

Figure 3.3: ECEF and ENU coordinate systems.

3.4.2 Body coordinate system
The body coordinate system enables us to capture the vehicle motion in all 6-DOF.
Transformation and inverse transformation matrices from the body coordinates to
the lidar, GNSS, and IMU coordinates are considered to use a common coordinate
system. The IMU is usually placed close to the centre of gravity (COG) of the
vehicle, so the IMU coordinates is usually considered as the body coordinate. In a
general implementation, the origin of the global coordinate is the first GNSS readings
obtained from integrated GNSS and IMU system. For a non integrated GNSS and
IMU system, a transformation from the GNSS coordinate to the IMU coordinate
TG−I has to be carried out to capture vehicle motion accurately, as shown in Fig. 3.4.

8



Chapter 3. Theory

Figure 3.4: Transformation between global and sensor coordinates.

3.4.3 Lidar coordinate system
The point cloud data obtained from lidar considers the sensor position as its origin,
so the orientation of the sensor is necessary to coherently align the point cloud to
the global coordinate system. The orientation and position of the sensors on the
vehicle are essential for determining the transformation between different coordinate
systems. This transformation converts the map in the lidar coordinate into the body
coordinate to compare the lidar odometry with ground truth. As shown in Fig. 3.4,
the global coordinate is the ENU coordinate. The transformation from the global
coordinate to the lidar coordinate is obtained by the transformation TG−L and the
transformation from lidar to global is given by T−1

G−L.

3.4.4 Rigid body transformation
Moving the point cloud to different coordinates is usually done by applying an es-
timated 4 × 4 rigid body transformation matrix, which represents the geometric
translation and rotation transformation in a Euclidean space. In the rigid body
transformation, the length and included angle of the same vector in each coordinate
system remain unchanged. The coordinates of the same object P in the world coor-
dinate W and lidar coordinate C are different. This transformation is represented
by a rigid body transformation matrix T = [R t].

9



Chapter 3. Theory

Figure 3.5: Rigid body transformation between two coordinates.

When considering the rotation transformation, a unit orthogonal basis [e1 e2 e3]
becomes [e′1 e

′
2 e
′
3] after one rotation. For the same vector a, its coordinates in the

two coordinate systems are [a1 a2 a3] and [a′1 a
′
2 a

′]
3 respectively [12].

[e1, e2, e3]

 a1
a2
a3

 = [e′1, e′2, e′3]

 a′1
a′2
a′3

 (3.1)

The rotation matrix R is a 3× 3 orthogonal matrix composed of the inner product
between two sets of basis. The coordinate transformation relationship of the same
vector before and after rotation can be described as: a1

a2
a3

 =

 eT1 e′1 eT1 e′2 eT1 e′3
eT2 e′1 eT2 e′2 eT2 e′3
eT3 e′1 eT3 e′2 eT3 e′3


 a′1
a′2
a′3

 , Ra′ (3.2)

The translation matrix t is a three-dimensional vector, which is added on the rotated
coordinates. So the complete rigid body transformation can be described as:

a′ = Ra+ t (3.3)

3.4.5 Euler angle
The rotation matrix in 3D space has nine elements. However, one rotation only has
three degrees of freedom, so that any rotation can be represented by a rotation axis
and a rotation angle. Euler angle is introduced to represent the rotation around
the XY Z axes. Roll represents the rotation around the X axis of the object and is
represented by φ. Pitch represents the rotation around the Y axis of the object and
is represented by θ. Yaw represents the rotation around the Z axis of the object
and is represented by ψ.
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Figure 3.6: X-Y-Z Euler angle.

3.4.6 Quaternion
Quaternion is a compact and non-singular extended complex number, which can
be used to describe 3D rotation with higher accuracy and solve the ‘gimbal lock’
problem of the Euler angle rotation. When the vehicle transforms its attitude and
position, the transformation can be equivalent to rotations and translation trans-
formations around its three axes. Therefore, the transformation matrix can use
the quaternion to find the relationship between the two states. Quaternion q is
composed of one real part and three imaginary parts, which is represented as:

q = q0 + q1i+ q2j + q3k (3.4)

where i, j, k are the imaginary parts and should satisfy:
i2 = j2 = k2 = −1
ij = k, ji = −k
jk = i, kj = −i
ki = j, ik = −j

(3.5)

The rotation matrix can be constructed by a given unit quaternion, which is used
to calculate the posture of the vehicle:

R(q) =

 1− 2q2
2 − 2q2

3 2q1q2 − 2q3q0 2q1q3 + 2q2q0
2q1q2 + 2q3q0 1− 2q2

1 − 2q2
3 2q2q3 − 2q1q0

2q1q3 − 2q2q0 2q2q3 + 2q1q0 1− 2q2
1 − 2q2

2

 (3.6)

Similarly, the quaternion can be also obtained by Euler angles [13]:

q =


q0
q1
q2
q3

 =


cos(ϕ/2) cos(θ/2) cos(ψ/2) + sin(ϕ/2) sin(θ/2) sin(ψ/2)
sin(ϕ/2) cos(θ/2) cos(ψ/2)− cos(ϕ/2) sin(θ/2) sin(ψ/2)
cos(ϕ/2) sin(θ/2) cos(ψ/2) + sin(ϕ/2) cos(θ/2) sin(ψ/2)
cos(ϕ/2) cos(θ/2) sin(ψ/2)− sin(ϕ/2) sin(θ/2) cos(ψ/2)

 (3.7)
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3.5 GNSS-aided inertial navigation system
GNSS-aided inertial navigation system (GNSS + INS) plays a vital role in the vehi-
cle localization. The characteristics of IMU and GNSS are complementary and the
integration of the two sensors is suitable for dead reckoning in GNSS denied areas.
However, the integration errors from the navigation equation result in the drift of
estimated orientation from the IMU. Whereas, GNSS works at a lower frequency of
10Hz but can provide highly accurate position measurements.

An integrated GNSS + INS system is based on either the open-loop architecture or
the closed-loop architecture. The closed-loop GNSS + INS rectify the errors through
the feedback of state estimations and GNSS clock drift estimation [14]. Nevertheless,
it has the drawback of accumulating errors during the linearization step of a Kalman
filter due to the elimination of higher-order terms of the navigation equations. Since
an advanced FOG IMU is used in this project, an open-loop system with unscented
Kalman filter (UKF) can provide continuous and accurate state estimation [15] [16].

3.5.1 Extended Kalman filter
Extended Kalman filter is the most traditional nonlinear filtering method, which
assumes that the noise in the system is Gaussian noise. It uses Gaussian priors to
predict the states by linearizing the motion model. Thus, it involves computation of
the complicated Jacobians for the system dynamics to predict the state uncertainties.
Kalman gains and the cross covariances are computed based on the uncertainties of
the motion model and measurements. Predictions are updated periodically on the
availability of new measurements, and the new estimations are considered as prior
for the next iteration. A brief architecture of the EKF is shown in Fig. 3.7.

Figure 3.7: Brief architecture of EKF.

3.5.2 Unscented Kalman filter
Unscented Kalman filter proposed by Julier and Uhlmann is the most popular vari-
ant of sigma point methods in nonlinear filtering [17] [18]. The basic framework of
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the UKF algorithm is shown in Fig. 3.8

The EKF linearizes the prediction model, so it’s not as robust as the UKF in ap-
proximating nonlinear models. Although UKF is slightly more computationally
demanding, it is not prone to errors due to the linearization. Therefore, the UKF
is more suitable for nonlinear motion models such as the error state total transition
model [19], constant velocity (CV) model [20] or constant turn rate velocity (CTRV)
model [21] [22].

Figure 3.8: Brief architecture of the UKF.

3.6 Object detection and segmentation
It is necessary for the AVs to detect all the surrounding moving and fixed obstacles,
so as to avoid collisions and dangers. At the same time, the effective segmentation of
the drivable area can also significantly improve the accuracy of autonomous driving
route planning and reduce the amount of point cloud registration calculations.

3.6.1 K–d tree
K–d tree is a binary search tree with other constraints, which is very useful for in-
terval and nearest neighbour searches. When processing the point clouds, the k–d
tree is three-dimensional. The construction of the k–d tree is a step-by-step recur-
sive process. The tree has multiple nodes to store elements, and there are certain
connections between the nodes. The upper node is called root node, the lower node
is called child node, and the node without child nodes is called leaf node, which is
shown in Fig. 3.9.

When each level is expanded, a hyperplane perpendicular to the corresponding axis
is used to divide the remaining datasets along a specific dimension. The subtree on
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the left of the node represents the point on the left of the hyperplane, and the same
on the right side [23].

Figure 3.9: K–d tree space division.

Data searching in the k–d tree is an important part of feature matching, which is
to find the point closest to the query point. The following formula determines the
distance between two points in a N − dimensional Cartesian space [24]:

d =
√

(x1 − y1)2 + (x2 − y2)2 + ...+ (xn − yn)2 (3.8)

A leaf node needs to be found which contains the target point in the k–d tree. Start-
ing from the root node, the algorithm recursively searches the k–d tree downwards
to find the closest point. If the current coordinates of the target point are less than
the coordinates of the split point, move to the left child node, otherwise move to
the right child node until the child node is a leaf node. With this leaf node as the
current closest point, the search process is repeated upwards and backwards until
the root node is returned.

3.6.2 Plane segmentation
In order to achieve speed and accuracy improvements on the limited hardware,
the removal of ground point clouds is particularly important. The point cloud on
the ground will also easily affect the clustering of obstacles causing an inability to
identify objects accurately. In the space coordinate system, a three-dimensional
linear equation with x, y, z can be used to express any plane:

ax+ by + cz + d = 0 (3.9)

Random sample consensus (RANSAC) is an iterative algorithm that can estimate
the parameters a, b, c, d of a plane mathematical model from the input point cloud.
The RANSAC method scores the sample set according to the interior points within
the threshold. The process is repeated N iterations and the guess with the highest
interior point score is retained.

However, due to the difference in angle and height on the ground, there is no perfectly
flat plane that a simple model can represent. Therefore, sorting and segmenting the
input point cloud by height and area to optimize the input point cloud will result
in better plane segmentation.
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3.7 Point cloud registration
Point cloud registration can be understood as integrating point cloud from differ-
ent perspectives into a unified coordinate system through rigid body coordinate
transformation. The transformation matrix is obtained by minimising the transla-
tion and rotation error between transformed and target point cloud. The registered
point cloud can be used for the 3D reconstruction and object detection. Point cloud
registration can be divided into rough registration and refine registration according
to the initial conditions and accuracy.

Figure 3.10: Point cloud registration process.

Rough registration is a fast estimation process to obtain the transformation matrix
when the relative positions are unknown between the source point cloud and the
target point cloud. Both the accuracy and reliability of the output results can be
balanced. Common methods for rough registration include methods based on local
feature descriptions and methods using statistical probabilities. Refine registration
uses the known initial transformation matrix obtained from rough registration to
calculate a more accurate transformation matrix. Therefore, the spatial position
difference between the point clouds can be minimized.

Fast point feature histograms (FPFH) registration is a method based on the feature
description. It extracts the neighbourhood geometric features of source and tar-
get and quickly determines the corresponding relationship between two point sets
through geometric features. Finally, the transformation matrix is obtained through
this relationship.

Normal distribution transform (NDT) registration is a method based on probability
distributions. The algorithm will grid the target and reference point cloud sets,
and count the normal distribution of each grid. Based on the probability density
in the transformed grid, the registration accuracy can be estimated to obtain the
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transformation matrix quickly.

Iterative closest point (ICP) is an optimal registration method based on the least
square method, which pays more attention to the relationship between points. By
selecting the corresponding point pairs, the optimal rigid body transformation is
calculated until the convergence accuracy requirement is met.

In order to select a better registration method, different point cloud registration
methods and method combinations are used to test the same pair of point cloud
sets. The accuracy and speed comparison is obtained, which is shown in Tab. 3.1.
The NDT registration shows its speed advantage but is less precise. The feature
based method FPFH achieves higher accuracy. However, the feature acquisition
process involves a lot of calculation, so the speed is slower than other registration
methods. It is clear from Tab. 3.1 that the combination of NDT and ICP registration
achieved a better balance of speed and precision. The ICP registration was not able
to converge during the test, which proved the importance of rough registration to
reduce the probability of mapping failure.

Registration type Registration accuracy
(Convergence accuracy) Registration speed [s]

NDT 0.368704 0.661719
FPFH 0.185613 6.5235
ICP 177.007 0.178124
NDT + ICP 0.0528088 1.096469
FPFH + ICP 0.0528029 6.958273

Table 3.1: Registration speed and accuracy comparison with 3,897 input points.
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4
Methods

This section describes the methods used in this project. Sect. 4.1 explains the
UKF working principle. The detailed preprocessing is described in Sects. 4.2 and
4.3. Sects. 4.4 to 4.6 describe the critical methods used to investigate the research
questions. The complete software framework is shown in Sect. 4.7.

4.1 Unscented Kalman filter
Considering the advantages of the UKF, it is implemented to achieve accurate track-
ing of all 6-DOF of the vehicle at a constant frequency. The performance of the filter
primarily depends on the prediction and the update step. An accurate motion model
capturing all aspects of the vehicle dynamics is necessary for the prediction step. In
the update step, the UKF used in this project accommodates two different motion
models and two measurement models.

4.1.1 Initialization
The UKF is initialized where the means of states (X, Y, φ, v) are set to the first
measurement from the GNSS, and the other states are initialized to zero as priors.
In contrast, the state covariance matrix Px represents the uncertainty, which is
initialized to a large value. The prediction step is then carried out on the prior
followed by the update step to provide the filtered output.

4.1.2 Prediction step
The key elements of the prediction step are the state transition based on the motion
model f(x) and the uncertainty associated with the predicted state Q. Regular
CTRV or CVmodel captures the dynamics for only three degrees of motion (X, Y, ψ).
Therefore, the augmented models are considered in this project to capture all 6-DOF
and process noise for the implementation. The prediction is carried out through an
augmented CTRV model when the turn rate is above the threshold. Otherwise, an
augmented CV model is used. The models in detail are presented in the Appx .1.

~xt+1 = ~xt +
∫ t+dt

t


ṗX(t)
ṗY (t)
v̇(t)
ψ̇(t)
ψ̈(t)

 dt+ ~ν

︸ ︷︷ ︸
f(~xk,~νk)

(4.1)
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The augmented system consists of three position states, one velocity, three Euler
angles and its rates. The remaining augmented states are the noise of acceleration
in the longitudinal direction νaL, angular rate of pitch, roll and yaw νθ̇ νφ̇ νψ̇, and
acceleration νaz in Z axis. Thus, the number of states of the augmented system
is fifteen (NS = 15). The system noise covariance matrix is given by Q and the
augmented system noise covariance matrix is given by PS.

~x = (X, Y, Z, v, θ, φ, ψ, θ̇, φ̇, ψ̇, νaL, νθ̈, νφ̈, νψ̈, νaz) (4.2)

Q = diag(νaL, νθ̈, νφ̈, νψ̈, νaz) (4.3)
PS = diag(Px, Q) (4.4)

The magnitude of the elements in process noise covariance is determined by uncer-
tainties associated with the extent of propagation of the state.

Px = diag(σ2
aL, σ

2
aL, σ

2
az, σ

2
v , σ

2
θ̇ , σ

2
φ̇, σ

2
ψ̇σ

2
θ̇ , σ

2
φ̇, σ

2
ψ̇) (4.5)

The prediction step starts with the generation of sigma points and the number of
sigma points is decided by the size of the state vector. The scaling factor λ is a
tuning parameter that decides how far away the sigma points are with respect to
each other. The sigma points are then passed through the motion model. The
mean and the covariance are recomputed to obtain the predicted mean x̂t+1|t and
the uncertainty Pt+1|t,. The predicted mean is computed based on the weighted sum
of the sigma points. The predicted covariance is computed from the weighted square
difference of the predicted mean and sigma points with the same logic.

x̂t+1|t =
nσ∑
i=1

Wi · xt+1|t (4.6)

Pt+1|t =
nσ∑
i=1

Wi

(
xt+1|t,i − x̂t+1|t

) (
xt+1|t,i − x̂t+1|t

)>
(4.7)

4.1.3 Update step
The key elements of the update step are the measurement models h(x), Kalman
Gain K, and the uncertainty associated with the measurement given by covariance
matrix R. The method is initialized by generating sigma pointsXσ,t+1|t from the pre-
dicted mean and covariance. The sigma points are then used to obtain the mean of
expected measurement ẑt+1|t by computing the weighted sum of transformed sigma
points Zt+1|t through the measurement model. The covariance of expected mea-
surements St+1|t is computed as weighted square difference of the predicted mean
ẑt+1|t and sigma points Zt+1|t. Since the IMU and GNSS output data at different
frequencies, the measurement model varies for different sensors.

The IMU measurement model updates the rotation rate obtained from the gyro-
scope. The covariance matrix for the model RG is determined by the random angle
walk specification obtained from the datasheet for the sensor.

h(x)I = [θ̇, φ̇, ψ̇] (4.8)
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RG = diag[σθ̇, σφ̇, σψ̇] (4.9)

While the GNSS and IMU measurement model uses GNSS measurements that di-
rectly provide the position, velocity and heading. It is also appended by the IMU
model to capture the turn rates of pitch, roll and yaw. Velocity and heading are used
without transformation. The covariance matrix for the model RIG is determined by
the standard deviation of the positional error and the root mean squared (RMS)
error of heading obtained from the sensor datasheet.

h(x)IG = [XGNSS, YGNSS, v, ψ, θ̇, φ̇, ψ̇] (4.10)

RIG = diag[σGNSS, σGNSS, σv, σψ, σθ̇, σφ̇, σψ̇] (4.11)

The Kalman gain K is computed through the cross-correlation matrix Tk+1|k and
expected measurement covariance St+1|t, which is dependent on R. The updated
state vector mean x̂t+1|t+1 is computed by taking the difference in expected and
actual measurements weighted by the K for the measurement model, while the
updated covariance Pt+1|t+1 is obtained from St+1|t and K.

x̂t+1|t+1 = t̂+1|t +Kt+1|t
(
ẑt+1 − ẑt+1|t

)
(4.12)

Pt+1|t+1 = Pt+1|t −Kt+1|tSt+1|tK
>
t+1|t (4.13)

4.2 Point cloud preprocessing
3D laser lidar produces around 1.2 million points per second, which brings tremen-
dous pressure on the limited computing resources. Therefore, the preprocessing step
to reduce the point cloud density is essential for the point cloud registration and
object detection.

4.2.1 Voxelgrid downsampling
Voxelgrid downsampling is performed by dividing the point cloud into uniform grids,
which is called voxels. The points inside the voxels are averaged by computing their
centroid to generate a point for each voxel. The grid size of the voxel is controlled
to obtain a uniformly sampled cloud with the required density for the subsequent
processes. The downsampled point cloud preserves the original features, so it can
reduce the amount of calculation for the registration and object detection while
ensuring the accuracy. The comparison of down sampled point cloud to the original
point cloud scan is shown in the Fig. 4.1
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Figure 4.1: Original point cloud (left) and Voxelgrid downsampled point cloud
(right).

4.2.2 Box cropping filter
The box cropping filter is used to retain the points that fall inside the region of
interest (ROI). The points outside of the ROI are filtered out by defining the mini-
mum and maximum boundaries for all points from the input point cloud.

This filter is primarily used to filter out points that are far away from the vehicle.
These points are usually much noisier due to the long-distance environmental inter-
ference and may lead to poor registration. At the same time, points far higher than
the vehicle are also not needed for the further process. These points will bring a
lot of unnecessary calculations, thereby reducing the performance of the mapping
algorithm. Box crop filter is also used to filter the redundant points caused by the
sensors installed around the lidar. The removal of fixed noise points can significantly
reduce the amount of data for the subsequent filtering process.

4.2.3 Pass-through filter
The pass-through filter is important for the selection of points within a certain range
in a particular dimension. It is performed by sorting the indices of the points along
a particular axis and consider the points exceeding a set threshold as outliers.

Pass-through filter is used to remove the points below the ground plane due to
the measurement errors, so these fixed points will not interfere with the calculation,
especially during the plane segmentation process. By reducing the redundant points,
this filter can also help to increase the processing speed.
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4.2.4 Statistical outlier filter
Noise points caused by the lidar errors, environmental interference, or object reflec-
tion characteristics will cause much interference in the subsequent processing. So
the removal of outlier is imperative in the preprocessing. The main principle of this
filter is to assume that the average distance between all points in the point cloud
and its nearest k neighbour points meets the Gaussian distribution. The threshold
of the filter is determined based on the mean and variance. When the average dis-
tance between a point and its nearest k points is greater than this threshold, the
point is judged to be an outlier. This filter eliminates points that are not closely
associated with objects resulting from measurement errors. The detailed algorithm
is explained in App. E.

4.3 Ground plane segmentation
The accuracy of ground plane segmentation determines the accuracy and speed of
point cloud registration. The two-level plane segmentation method composed of
rough ground extraction and ground plane fitting ensures the segmentation and
removal of the uneven ground.

4.3.1 Rough ground extraction
Since all the points on the plane have similar upward normal vectors, points with
messy normal vectors can be found and removed. The normal vector of the point
cloud surface is obtained by solving the normal of the approximate plane tangent.
The eigenvectors and eigenvalues of a covariance matrix created from the nearest
neighbours of the query point are used to solve the normal estimation problem. The
covariance matrix is represented as:

C = 1
k

k∑
i=1
· (pi − p) · (pi − p)T , C · vj = λj · vj, j ∈ {0, 1, 2} (4.14)

where k is the number of the neighbour points of pi, p is the 3D centroid of the
nearest neighbors, and v are eigenvalues and eigenvectors respectively [25].

Denoising is achieved by traversing all points in a fixed range and selecting points
based on the requirements. This point set is used to calculate the plane model from
the input point cloud.
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Figure 4.2: Rough ground point extraction process.

4.3.2 Ground plane fitting
Since the rough plane extraction has pre-extracted the point cloud, the accurate
plane extraction can be achieved by finding the smallest feature value. To achieve
the plane fitting equation, it is necessary to calculate the covariance matrix of the
input point cloud and perform SVD decomposition to obtain the eigenvalues and
eigenvectors. The two points p1(x1, y1, z1) and p2(x2, y2, z2) are assumed to belong
to the same plane, which is ax+ by + cz = d. Then, the relation between them can
be expressed as:

ax1 + by1 + cz1 = d

ax2 + by2 + cz2 = d
⇒

[
(x1 − x2) (y1 − y2) (z1 − z2)

]  a
b
c

 = 0 (4.15)

where N =

 a
b
c

 is the normal vector of the plane. By traversing all the points of

the input point cloud to find the mean point p̄ = (x̄, ȳ, z̄), the plane model turns
out to be:

AN =


x1 − x̄ y1 − ȳ z1 − z̄
x2 − x̄ y2 − ȳ z2 − z̄
· · · · · · · · ·

xn − x̄ yn − ȳ zn − z̄


 a
b
c

 = 0 (4.16)

The normal vector N can be solved through the covariance matrix C:

C =
∑
i=1:|p|

(pi − p̄) (pi − p̄)T , (4.17)

By calculating this covariance matrix C and performing singular value decomposition
(SVD) on it, each component of the normal vector is obtained [26]. The vector
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corresponding to the smallest singular value is the ground normal vectorN =

 A
B
C

.
Points belonging to the ground plane are described as:

Axi +Byi + Czi +D ± δ ≈ 0
⇒Axi +Byi + Czi ∈ (−D − δ,−D + δ)

(4.18)

where δ is the error threshold.

4.4 Euclidean clustering and extraction
In order to identify the objects, the ground-removed point cloud needs to be clus-
tered and segmented before doing object classification. Euclidean clustering is a
clustering algorithm based on the Euclidean distance metric, which is used for clus-
tering and segmentation of point clouds.

Euclidean distance d(x, y) is the straight-line distance between two points x and y
in the Euclidean space, which is calculated as [27]:

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2 (4.19)

For a certain point x in the space, the k–d tree nearest neighbor searching is per-
formed to find the closest point p which also meets the threshold range, and store
it in the point set Q. The algorithm terminates when the number of points in Q
doesn’t increase. Otherwise, points other than point p in the set Q must be selected
to repeat the current process.

Figure 4.3: Process of Euclidean clustering.

The small clustered point clouds are filtered out by constraining the number of
points. This can provide a better search range for the subsequent target detection
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and improve the detection speed.

After point cloud clustering, by solving the optimal enclosing space of the discrete
point set, the smallest bounding box can be obtained to replace the complex and
irregular point cloud. The three main directions of the point cloud, centroid and
covariance can be obtained by principal component analysis (PCA) [28]. After cal-
culating the eigenvalues and specialty vectors of the covariance matrix, the main
direction of the input point cloud is obtained and subsequently the width, length
and height can be obtained.

4.5 Point cloud registration
In order to achieve fast and accurate point cloud registration, the NDT method
is chosen as the rough registration, and the ICP method is selected as the refine
registration.

4.5.1 Rough registration
NDT registration pays more attention to the probability density distribution of the
target point cloud and the transformed source point cloud rather than the slight
difference between point pairs. It is more suitable as a rough registration method
especially in the situation without a guess of the initial transformation.

NDT registration process can be decomposed into:
1) Grid the source point cloud Ps and calculate the normal distribution parame-

ters of each grid.
2) Use the transformation matrix T to transform the source point cloud Ps and

calculate the probability density distribution of the transformed point in the
grids of the target point cloud Pt.

3) Update g and H according to the result, and calculate the new step length.
4) Determine whether to end or not by converging or reaching the number of

iterations. Otherwise, proceed to steps 2-4.
NDT registration expresses the reference point cloud as a set of local normal dis-
tributions through gridding. The points in the cells are represented as {xi}i=1,...,n
and the probability of a point in the grid is modelled by the normal distribution
N(q,∑). The probability p is described as:

p(x) = 1
(2π) 3

2

√
|Σ|

e−
(x−q)TΣ−1(x−q)

2 (4.20)

where q = 1
n

∑
i xi is the mean and Σ = 1

n

∑
i (xi − q) (xi − q)T is the covariance

matrix for the cell [29].

The goal of NDT registration is to find the pose of the current source point to
maximize the possibility that the current source point is located on the surface of
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the target point cloud. The sum of the scores of all points in the scan is called the
NDT point-to-distribution cost [30], which is expressed as:

Ψ =
n∑
i=1

p (T (p, xi)) (4.21)

In order to solve for the minimum cost, Newton’s method is used to solve the optimal
search step size, which is used to calculate the parameters of the new transformation
matrix. The key to the Newton’s method is to solve the step size ∆p through the
gradient matrix g and the Hessian matrix H:

H∆~p = −~g
~p← ~p+ ∆~p (4.22)

When the NDT cost reaches the minimum value, the optimal transformation matrix
Ti of the current iteration is obtained.

4.5.2 Refine registration
The transformation matrix TNDT = (RNDT , tNDT ) obtained from rough registration
is used as the initial transformation of the refine registration. A more accurate
transformation matrix can be obtained with this optimization. The most widely
used refine registration algorithm is the ICP registration, which can achieve a good
balance between speed and accuracy. The working principle of the ICP registration
is to find an optimal transformation matrix T ∗ = (R∗, t∗) between source point
cloud Ps and target point cloud Pt to minimize the error function, which is shown
in Eq. 4.23 [31]:

R∗, t∗ = arg min
R,t

1
|Ps|

|Ps|∑
i=1

∥∥∥pit − (R · pis + t
)∥∥∥2

(4.23)

As shown in Fig. 4.4, this process can also be considered as reducing the distance d
between the point Pt and the transformed point Ps as much as possible.

Figure 4.4: Point cloud registration distance metrics.

The initial transformation RNDT , tNDT from NDT registration are used to transform
the source point cloud to obtain a temporary transformed point cloud. This point
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cloud is compared with the target point cloud to find the nearest neighbor of each
point in the source point cloud. When the point-to-point distance is less than a
certain threshold, it is considered that the corresponding point is found, and there
is no need to traverse the entire point set. The process of ICP point cloud registration
is shown in the Fig. 4.5.

Figure 4.5: ICP registration process.

4.6 Lidar odometry evaluation
Since the IMU and lidar are located at different positions on the vehicle, coordinate
system conversion is a necessary step to compare the lidar odometry with the inte-
grated GNSS + IMU filtered odometry.
The initial heading of the vehicle is the orientation of the vehicle with respect to the
ENU coordinates, which is considered as the ground truth coordinate system for the
project. In order to obtain the lidar odometry in the ENU coordinate, the global
transformation has to be initialized with the origin GTL−[0]. Subsequently, it is
transformed by the initial heading of the vehicle TVI along with the transformation
from GNSS + IMU to lidar TI−L.

GTL−[0] = TI−L · TVI · I (4.24)

The global transformation of subsequent frames is obtained by multiplying the cur-
rent global transformation with the local transformation obtained from the point
cloud registration.

GTL−[i] = TL−[i−1,i] ·GTL−[i−1] (4.25)
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In order to evaluate the accuracy of 3D reconstruction, the transformation from the
global lidar coordinate system to the integrated GNSS + IMU coordinate system
GTCL−[i] is carried out on each frame.

GTCL−[i] = T−1
I−L ·GTL−[i] (4.26)

The rigid transformation matrix is converted to their state vector form for compar-
ision. The sensor placement in the kitti dataset is shown in Fig. 4.6.

Figure 4.6: Kitti sensor setup.

4.7 Software framework
A containerized software framework is introduced to realize the mapping and 3D
reconstruction with the assistance of UKF. The whole framework is divided into
six different microservices based on the function requirements. The communication
between microservices is based on the OpenDLV, which is a modern open source
software environment to support the development and testing of autonomous ve-
hicles. Different OpenDLV-based microservices are grouped in the user datagram
protocol (UDP) multicast sessions, so that they can communicate with each other.
Shared memory is used to store and disperse preprocessed point cloud data, since
the size of these data is much larger than the size that UDP can share. Fig. 4.7
shows the structure of the entire system.
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Figure 4.7: Implemented software architecture.
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5
Results

The test results based on the kitti dataset are shown in this chapter. Preprocessing,
localization, mapping and 3D reconstruction, and object detection are described in
Sects. 5.1, 5.2, 5.3 and 5.4 separately.

5.1 Preprocessing
The output point cloud of the Velodyne VLP-16 has up to 130,000 points per frame.
After a series of preprocessing including downsampling, outlier removal and ground
plane removal, the point cloud density was reduced to around 6,000 points. The
original and preprocessed point clouds are shown in Fig. 5.1. The ground plane
indicated by the yellow points is effectively removed. The features of the point
cloud were preserved, but the density was greatly reduced.

Figure 5.1: Original and preprocessed point cloud.

Registration of the preprocessed point cloud was faster in comparison to the original
point cloud. However, fewer points also resulted in a decrease in the registration
accuracy score. The influence of preprocessing on the point cloud registration in
different scenarios is shown in the table below.
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Influence of preprocessing on point cloud registration
Dataset Preprocessed Convergence accuracy Registration time(s)
0005 0.5259 1.330095
0005 X 0.953334 0.197751
0093 0.677781 1.513680
0093 X 1.493130 0.252758
0096 0.723640 0.960391
0096 X 1.901210 0.122831
00117 0.682991 1.846660
00117 X 0.887143 0.180213

Table 5.1: Influence of preprocessing on point cloud registration.

5.2 UKF performance
The UKF was used to obtain the localization estimations on the IMU and GNSS
measurements from the raw kitti dataset. The following table lists its performance
on the four sample datasets. The root mean squared error (RMSE) describes the
extent of deviation of the filtered output from the ground truth. The minimum
error (min) and maximum error (max) are used to describe the best case and worst
case for the dataset. The units of the min, max errors in the following table are in
meters.

Performance of UKF odometry
Dataset X RMSE Y RMSE X min Y min X max Y max
0005 0.1916 0.5064 0.0017 0.0216 0.3543 1.1275
0093 46.007 16.112 0.0203 0.1800 88.3591 30.703
0117 0.5413 0.5862 0.0026 0.0143 1.9940 1.1935
0096 0.9270 0.7435 0.019 0.0017 2.8424 2.2651

Table 5.2: UKF performance test in different scenarios.

The kitti dataset 0005 was chosen to represent the performance of tracking the
vehicle’s yaw state due to the roundabout with a large arc. The comparison of
estimation and ground truth is shown in Fig. 5.2.
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Figure 5.2: Position estimation against ground truth on dataset 0005.

Figure 5.3: Position estimation against ground truth on dataset 0096 and 0117.

Noticeably, the filter performed poorly on the dataset 0093, but this was attributed
to the inaccurate GNSS measurements. The Fig. 5.4 shows the performance of the
UKF filter and lidar odometry in the case of inaccurate GNSS measurements. The
UKF filter couldn’t output accurate position and orientation estimation.

Figure 5.4: UKF performance on dataset 0093.
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The residual plot shows the extent of bias due to the motion and measurement model
and tune the UKF. The residuals of the states are obtained by the difference between
the actual measurement values and the predicted measurements. An ideal residual
plot should contain characteristics of a Gaussian distribution with zero mean for
zero bias which can be only achieved with the ideal tuning settings and an ideal
prediction model for the UKF. The dataset 0005 was chosen to describe the filter’s
performance through analysis of residuals, since it has distinct dynamics in all X,
Y, and yaw states.

r = Zm(t) − h(Xp(t+1|t)) (5.1)

Figure 5.5: Residual plot of the X, Y and yaw estimation on dataset 0005.

5.3 Mapping and 3D reconstruction
Various tests have been performed to determine the optimal parameters of the NDT
registration, which play a crucial role in achieving accurate 3D reconstruction. The
quality of the map and the accuracy of the lidar odometry against filtered estimations
for the datasets by using the guess from UKF for the NDT are shown in Fig. 5.6,
Fig. 5.7 and Fig. 5.8. As dataset 0093 is compared with GNSS for ground-truth the
deviation is expected due to factors mentioned previously. When GNSS and IMU
can provide accurate measurements, the reconstruction system performs well and
can generate accurate dense point clouds of the surroundings.
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Figure 5.6: Point cloud map and odometry evaluation on dataset 0005.

Figure 5.7: Point cloud map and odometry evaluation on dataset 0117.

Figure 5.8: Point cloud map and odometry evaluation on dataset 0096.
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The quality and accuracy of the map obtained can be inferred from lidar odometry
obtained through registration. The lidar odometry with initial guess as the identity
matrix for NDT registration is compared against the filtered output of the UKF,
which are shown in the Tab. 5.3. The RMSE, maximum deviation, minimum de-
viation, and the deviation of the final state over the total travelling distance were
considered in the evaluation of the 3D reconstruction. The units of the min, max
errors in the following table are in meters.

Registration performance with identity matrix as initial guess.
Data X RMSE Y RMSE X min Y min X max Y max %final
0005 1.0117 0.9803 0.0146 0.1047 1.4540 1.7168 3.1477
0093 126.6641 37.1244 0.0711 0.1720 230.4530 72.535 25.04
0117 2.7839 3.5074 0.0035 1.4031 4.7290 6.4310 1.8404
0096 3.3919 1.5384 0.1662 0.0127 6.5643 3.2954 1.3689

Table 5.3: Performance with identity matrix as initial guess for NDT.

NDT registration performs better with accurate rotation estimation as the initial
guess. Thus, mapping and localization performance with initial guess from only the
orientation estimation of the UKF is tabulated below.

Registration performance with orientation as initial guess
Data X RMSE Y RMSE X min Y min X max Y max % final
0005 0.6401 0.9841 0.0163 0.0322 1.2397 1.5194 2.3642
0093 124.7118 36.4962 1.4660 0.1053 228.3960 72.5454 24.623
0117 2.7665 2.938 0.0069 0.0048 4.9868 11.039 2.6332
0096 3.3543 1.1188 0.0115 0.1764 6.2183 2.9761 1.7241

Table 5.4: Registration performance with orientation estimation as initial guess.

The mapping and localization accuracy with better initial guess of orientation is
higher, but is inconsistent for the 0093 dataset as mentioned above. An initial guess
with position estimations along with orientation was tested on the NDT registration.
The evaluation results on different datasets are tabulated below.

Registration performance with position and orientation as initial guess
Data X RMSE Y RMSE X min Y min X max Y max % final
0005 0.3379 0.9292 0.0056 0.1352 0.3379 0.9292 2.4375
0093 114.2617 33.1179 1.3984 0.1389 189.0074 59.751 29.574
0117 1.5274 2.3951 0.0306 0.0023 3.2505 7.1213 1.4663
0096 7.7982 1.7974 0.0594 0.0554 14.8305 3.4108 3.6508

Table 5.5: Registration performance with position and orientation estimation as
initial guess.

After the registration with the initial guess of position and orientation, the details
are still reserved. It can be seen from the Fig. 5.9 that the characteristics of the car
are still clearly visible.

34



Chapter 5. Results

Figure 5.9: Details reserved after registration.

When the position estimation used for initial guess is poor due to the incorrect
GNSS measurements for the 0093 dataset, it adversely affects the performance of
the 3D reconstruction and lidar odometery. The inconstancy in the map generated
with a UKF initialized guess is shown in Fig. 5.10.

Figure 5.10: Registration failed when the GNSS measurement was wrong on the
dataset 0093.

5.4 Object detection
By limiting the geometric form and Euclidean distance of the clustered point cloud,
abnormal point clouds of incorrect clustering were removed, such as the walls and
environmental interference. However, the clustered point cloud could not be classi-
fied, so some stationary objects were also identified by mistake, which is shown in
the figure below.

35



Chapter 5. Results

Figure 5.11: Real-time object clustering and bounding boxes.

Due to the movement of surrounding objects during the registration process, a large
continuous point cloud were generated, which is called smear phenomenon. This
can be seen in Fig. 5.12.

Figure 5.12: Smear phenomenon after registration.
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When the registered point cloud was post-processed, the volume of the clustered
point cloud was restricted to remove the outlying bounding boxes. By selecting a
more precise ROI area, non-road point clouds such as walls were also filtered out,
which made the post object detection more accurate.

Figure 5.13: Object clustering after post prostprocessing.
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6
Discussion

The performance and potential improvement of UKF are discussed in Sect. 6.1.
Further, the mapping and 3D reconstruction and object detection are discussed in
Sects. 6.2 and 6.3. Finally, the performance optimization applied in this project
and the future work are discussed in Sects. 6.4 and 6.5.

6.1 UKF performance
The current motion model was quite optimized for tracking the 6-DOF motion of
vehicles such as cars. Good tuning of the process noise covariance and measurement
noise covariance of the UKF ensured accurate 6-DOF state estimation. The UKF
could maintain sub-meter accuracy for most of the datasets. Further tuning would
only lead to marginal improvement in filter performance, so these tuning parameters
were maintained across the datasets. The current motion model assumed the motion
in Z axis as a random walk process, which could lead to poor estimation of motion in
Z axis and other states. Thus better approximated model for the motion in Z along
with velocity in Z axis could potentially improve the filtered 6-DOF estimation.
The UKF was not robust to the long-term inaccurate measurements, which can
be observed from the test result of 0093 dataset. Therefore, high-precision and
reliable sensors are needed to ensure accurate filter estimations. As shown in the
residual plot in Fig. 5.5, the residuals were close to the mean of the X and yaw
states, but slightly deviated from the Y state. However, the residuals still had the
characteristics of Gaussian distribution close to the mean values of zero. The UKF
performance can be further improved when it is operated at a higher frequency with
an advanced IMU.

6.2 Mapping and 3D reconstruction
The mapping and 3D reconstruction accuracy is mainly affected by the point cloud
registration process, which also describes the movement of the vehicle. The lidar
odometry described the mapping quality compared with the ground truth.

In the stage of rough point cloud registration, well tuned NDT resulted in better
performance in terms of accuracy and speed. A more reliable rough registration was
achieved with the help of the initial guess of the position and orientation obtained
from the UKF. The performance improvement is noticed from the lower root mean
square error in the test result. As observed from Fig. 5.10, using wrong UKF esti-
mation for NDT registration resulted in the failure of lidar odometry. Using only
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the accurate orientation estimation obtained by the IMU as part of the initial guess
can effectively help continuous mapping. Thus, it is necessary to track the sensor
status to indicate the potential UKF failure.

The resolution of the map was mainly impacted by the preprocessing and lidar
measurement update frequency. In order to ensure the balance between speed and
resolution, 2.5 Hz was the best lidar measurement update frequency under the cur-
rent hardware conditions. Non-UKF-assisted 3D reconstruction could be used as an
alternative method during sensor failure, or to detect possible GNSS interruptions,
as shown in the test on dataset 0093 in Fig. 5.4. Initial guess from UKF with better
motion model for dynamics in Z axis could also potentially improve the reliability
and accuracy of mapping and 3D reconstruction.

6.3 Object detection
As shown in Fig. 5.11, point cloud clustering and bounding box extraction realized
the basic object detection function. However, due to the lack of object classifica-
tion algorithms, moving objects could not be effectively distinguished. Some static
walls and obstacles were incorrectly identified especially in the crowded street en-
vironment. The fixed ROI setting and clustering tuning parameters also made the
algorithm unsuitable for all the sceneries.

During the registration process, the smear phenomenon occurred due to the moving
objects, which can be seen in Fig. 5.12. The smear phenomenon generated huge
objects that actually didn’t exist in the map. These large smear point clouds were
detected by the large bounding box size and then removed in the generated map. In
the post processing, the abnormal point clouds of incorrect clustering were removed
by limiting the geometric form and Euclidean distance of the clustered point cloud.
By considering the bounding boxes with unconventional shapes as wrong detections,
the recognition of large stationary objects such as walls was greatly reduced. A
quantitative assessment of the object detection could not be made for the current
implementation due to the lack of datasets with annotations of moving and static
objects for the lidar measurements.

6.4 Performance optimization
A series of optimization operations helped the system to achieve a stable 2.5 Hz
mapping and 3D reconstruction in this project. After the point cloud preprocessing,
the size of point clouds was greatly reduced while retaining the features, which is
shown in Fig. 5.1. As a result, the subsequent processing speed was increased by
nearly nine times. The decrease in the registration accuracy caused by the fewer
points was within the acceptable range and did not have a big impact on the overall
reconstruction. As shown in Fig. 5.9, the surrounding details were accurately re-
tained in the reconstructed 3D map, which is very important for various point cloud
processing in the later stage.
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With the help of the multi-thread processing, a nearly three-times increase in speed
of point cloud registration was achieved. Due to the limitation of experimental
conditions, we were not able to use a higher specification computer to test whether
the mapping and reconstruction system can be faster or more accurate.

6.5 Future work
Because of the time constraints, although the project has fulfilled the requirements
of the research problem, there are still several parts that can be optimized and im-
proved.

In order to make the UKF more robust to the vehicle’s dynamic characteristics, a
more general tracking model can be used, such as the total state model referenced
in the discussion. These methods were constructed with the intention to test the
performance of the filter over the maritime platform in order to verify the feasibility
of the algorithm on different vehicle platforms. The filters can be further improved
by implementing and improving novel techniques of adaptive tuning of the noise co-
variance matrices of the process and measurements.Mapping can be improved with
better orientation guess from a Madgwick orientation filter [32] microservice, which
uses all nine axis of the IMU to obtain continuous orientation estimations. This
makes mapping and 3D reconstruction no longer overly dependent on accurate sen-
sor readings.

A SLAM problem can be accurately solved by adding additional components to the
current mapping and localization framework. General SLAM architecture includes
active loop closing techniques along with a conditional triggered pose optimizer. The
transformation of global mapping is optimized through the alignment of a specific
set of local maps. In order to completely solve the SLAM problem, two more mi-
croservices are required. Firstly, a microservice which detects loops using the point
cloud features has to be implemented. And the other microsrevice to recalculate
optimized poses upon loop closure detection.

For the detection of moving objects, point cloud clustering is used to recognize mov-
ing objects. The object classification function is not realized. In the later stage,
machine learning is expected to be used to detect and classify the objects in the
bounding boxes, so as to realize different reactions to different moving objects dur-
ing the mapping and 3D reconstruction process. By identifying and removing the
point cloud generated by moving objects close to the vehicle, the smear problem in
the reconstruction process can also be solved.

Due to the lack of sufficient data samples, the robustness and reliability of the system
in different sceneries could not be verified as it requires testing over other datasets.
Thus future work on datasets across different platforms from Chalmers and other
research labs can be used to verify the robustness of the proposed method and build
reliable maps for autonomous systems.
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7
Conclusion

After testing in various scenarios using the kitti dataset, the mapping and 3D re-
construction system has been proven to be accurate and reliable. This system could
update the map at a frequency of 2.5 Hz and use a nonlinear filter to provide accurate
6-DOF state estimations. After adjusting the parameters for different sensor com-
binations, the nonlinear filter could provide residuals with close to Gaussian char-
acteristics, which reflected the reliability of filter estimation. By using the filtered
6-DOF state estimations as initial transformation for the reconstruction, mapping of
the dataset with unstable measurements was greatly enhanced. For a dataset with
reliable sensor measurements, the final localization errors between the results of li-
dar mapping and nonlinear filter were within five percent of the total travel distance.

It also turns out that the system which used filtered estimation to improve the
mapping was counterproductive for datasets with sensor failures. The sensor’s fail-
ure caused the measurements to exceed the tolerance range of the nonlinear filter,
thereby affecting the speed and effect of 3D reconstruction. However, when the
GNSS sensor failed, the mapping system was robust enough to be considered a sta-
ble alternate localization mechanism. In the subsequent development, this feature
can also be used to cross-validate the reliability of the sensor system.

The current map obtained was proven to detect objects in different scenarios quickly
and reliably. However, due to the time constraints, the object classification and
tracking could not be achieved, which resulted in the framework not being able
to distinguish between moving or static objects well. In some complex scenes, the
recognition system could not give accurate bounding boxes and position information
of the objects. The novel trend of using machine learning techniques to realize
object recognition and classification can be explored to reveal the effectiveness of
the method but also the limits and advantages between the methods in different
environments.
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Appendices

A CTRV motion model
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∆t · νφ̈,t
∆t · νψ̈,t



(.1)

B CV motion model

~xt+1 = ~xt +



vt (cos (ψt∆t))
vt (sin (ψt∆t))

0
0

θ̇t∆t
φ̇t∆t
ψ̇t∆t

0
0
0



+



1
2∆t2 cos (ψt) · νa,t
1
2∆t2 sin (ψt) · νa,t

∆t · νaz,t
∆t · νax,t
1
2∆t2 · νθ,t
1
2∆t2 · νφ,t
1
2∆t2 · νψ,t
∆t · νθ̈,t
∆t · νφ̈,t
∆t · νψ̈,t



(.2)

I
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C UKF prediction step algorithm

Algorithm 1: Prediction step
Result: Predicted mean and covariance
Data: Prior mean xt|t and covriance Pt|t
Compute Sigma Points from prior Xσ,t|t ;
for i=1 to ∀ prior Sigma Points do

Transform through motion model {
if ω̇ > ε then

Xσ,t|t
f(x,ν)=CTRV−−−−−−−−→ Xσ,t+1|t ;

else
Xσ,t|t

f(x,ν)=CV−−−−−−→ Xσ,t+1|t ;
end
}

end
Compute predicted mean x̂t+1|t and covariance Pt+1|t
return Predicted mean and covariance

D UKF update step algorithm

Algorithm 2: Update step
Result: Updated mean and covariance
Data: Predicted mean xt+1|t and covriance Pt+1|t
Compute Sigma Points from prior Xσ,t|t ;
for i=1 to ∀ prior Sigma Points do

Transform through motion model {
if ∆GNSS > 0 then

Xσ,t+1|t
h(x)=GNSS+IMU−−−−−−−−−−−→ Zσ,t+1|t ;

else
Xσ,t+1|t

h(x)=IMU−−−−−−→ Zσ,t+1|t ;
end
}

end
Compute Updated mean x̂t+1|t+1
Compute expected measurement covariance St+1|t
Compute cross-correlation matrix Tk+1|k
Compute Kalman gain K
Compute Updated covariance Pt+1|t+1
return Updated mean and covariance
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Appendix A. Appendix

E Statistical outlier filter algorithm

Algorithm 3: Statistical Outlier Filter algorithm
Result: Inlier Point Cloud Set
Data: Point clouds: P1 = pi, n = nneighbours, s = σ
for i=1 to ∀ points in P1 do

Find the N nearest neighbour preferably through KD-Tree searching for the
point i ;
for j=1 to N points do

Compute average distance di from the point i to its nearest neighbours
end
Compute mean of the distances [µd = ∑N

j=1
dj
N

];
Compute standard deviation of the distances;
Compute the threshold T = µd + σd for j=1 to N points do

if dj > T then
outlier=Delete point;

else
inlier=Save index in the inlier set;

end
end

end
return Only inlier point cloud set
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