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Scene Change Detection

Comparison of self-supervised and supervised semantic change detection using the
contrastive learning approach

Siddhant Som
Swaathy Sambath
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
Scene Change Detection (SCD) identifies changes between the images taken at two
different times, using pixel-level or point cloud approaches in most cases. Training
a neural network for such a task requires a large number of images with annotated
changes. Annotating changes is a slow, costly and time-consuming process. The
state-of-the-art (SOTA) approach for SCD, like the DR-TANet paper, is based on
transfer learning from large ImageNet datasets. This is a supervised technique
and to overcome the challenges mentioned above, we introduce a self-supervised
pretraining method with unlabeled datasets based on a existing D-SSCD approach
that learns temporal-consistent representations of a pair of images. This project is an
investigation of these approaches that can train and evaluate on available datasets
through the use of a suitable loss function for the purpose of SCD. We compare
results for different percentages of labeled data from different models and benchmark
datasets such as Visual Localization CMU (VL_CMU_CD) and Panoramic change
detection (PCD) datasets.
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1
Introduction

1.1 Scene change detection
Scene Change Detection (SCD) compares images taken at two different times to
identify changes between them. SCD has various practical applications such as
self-driving cars, landscape change detection, medical diagnosis, urban landscape
detection, and visual surveillance. SCD is considered as one of the most important
problems in the field of computer vision. Convolutional Neural Networks (CNNs),
which have been widely used in computer vision applications perform well to satisfy
the objectives of SCD. ResNets and VGG are state-of-the-art (SOTA) CNNs that
extract great feature maps to identify critical parts of an image. Such CNNs can
also perform semantic segmentation to depict areas of change. For instance consider
Figure 1.1: the task is then to construct a SCD model using these two images to
show changed regions which is the top right image t1, different from the regions in
the top left image t0. The bottom row of the image represents the labelled ground
truth images and the result obtained. The challenges in SCD include coping with
the various levels of noise in images as well as accounting for changing levels of
illumination across images. Another major challenge is the labeling of data for
training a model, which is an expensive and time consuming process. For example,
on average to annotate each pair of image it takes around 20 minutes to 156 minutes
[1]. To address these issues, we introduced self-supervised pretraining approaches
that outperform supervised ImageNet pretraining under limited labeling.

Figure 1.1: SCD illustration the images in the top row are from two different
times. The bottom row compares the obtained result to the ground truth.

1



1. Introduction

1.2 Self-supervised learning
Self-Supervised Learning (SSL) is a method used to solve challenges faced by models
reliant on labeled data. SSL is a deep learning technique to train a model on data
without any labels. In this method, a model trains itself to understand various pat-
terns in the given dataset. For example, in a SCD dataset with no labels, the model
would try to ensure that similar images would have similar representations. This
self-supervised model can then be used for downstream tasks such as classification
or segmentation. The primary objective of this project is to study SSL for semantic
segmentation, which classifies each pixel in an image. The obvious advantage is the
reduction in reliance on labelled data, which is what we attempt to exploit in this
project. Annotation or labelling is a very expensive and time consuming process in
general, and a reduction reliance on annotation is highly valuable.

Figure 1.2: Self-supervised learning representation.

SSL pretrained models are not only useful for training on curated datasets like
ImageNet, but they are also great few shot learners, attaining 75.1 percent with
only 10% of ImageNet. On several downstream tasks, our model outperforms a
supervised model trained on ImageNet, proving the benefits of SSL pretraining,
even when applied on uncurated datasets [2].

1.3 Problem statement and purpose of the study
The application of this thesis is to develop a method to automate the process of
identifying foreign objects in a given picture or scene. Furthermore, public SCD
datasets are accessible for the experiments. The aim of the work is to answer or
address the following questions or tasks:

• Implementation of self-supervised methods on a SOTA SCD model on publicly
available datasets.

2



1. Introduction

• Can the results of a SOTA SCD model on benchmarked datasets such as PCD
and VL_CMU_CD be improved further, or is it possible to attain results of
considerable accuracy even with a reduction in supervision?

• Identifying a pretraining method which utilizes a suitable loss function, to re-
duce the number of annotations necessary for obtaining the desired levels of
accuracy or any other metrics used.

• Compare different pretraining methods that include pretrained ImageNet (DR-
TANet), self-supervised MOCO, self-supervised SimCLR, self-supervised MoCO
with pretrained ImageNet weights as starting point, self-supervised SimCLR
with pretrained ImageNet weights as starting point.

• Is there an improvement in results of SCD when a model is pretrained on large
datasets?

• Does the use of pretraining improve performance and reduce their cost of an-
notation?

The study’s major goal is to reduce the cost of annotation involved in labeling pairs
of images, used for SCD. This is beneficial for any semantic change detection and
our thesis specifically supports CEVT AB where we do our thesis, who use SCD
to automate the process of locating the missing object and identifying what the
missing object it is. The most significant challenge in training a model for SCD at
the moment is the cost of annotation needed in creating a desirable dataset. Finding
ways to mitigate said cost, is highly valuable.

1.4 Contribution of the study
Neural networks require huge amounts of labeled data for training [24]. Finding huge
amounts of labeled data is difficult, and labeling existing data is a time-consuming
and expensive process, especially in a domain such as SCD. The pretraining and
finetuning methods explored in this study perform well even with limited labeled
data, which is the main contribution of this study.

1.5 Structure of the paper
This paper consists of five chapters. While Chapter 1 introduced the problem and
had information on the purpose of the study, Chapter 2 gives an insight into the
background and surveys the literature concerning SCD. Chapter 3 explains our
approach. Chapter 4 shows the results obtained using our approach. Chapter 5 we
discuss about the study and concludes the report.

3
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2
Background and literature survey

2.1 Neural networks
Neural networks are models used in deep learning for tasks such as classification and
regression. They map an input to a desired output and thus serve as a mapping
function. A neural network generally consists of several layers, with each layer
consisting of smaller units called neurons, which transform an input value. A single
layer feed-forward network consists of an input layer and an output layer, while a
multi-layer feed-forward network consists of at least one layer called the hidden layer
between the input and output layer. Neurons in one layer are connected to neurons
in the next layer and any input fed into the neural network passes through all the
layers before an output is produced. Every neuron has an associated weight – an
indication of the importance of the output of that neuron – which is adjusted as the
network trains. Training a neural network is, in essence, finding the weights that
the network will correctly map the input to the desired output. The output of a
hidden layer is given as:

h = A(W Tx+ b) (2.1)
where W is a matrix of weights, x is the input vector, b is the bias vector and A is
the activation function. Layers in which every neuron is connected to every neuron
in the previous layer are called fully-connected layers. In Figure 2.1, the dimensions
of W would therefore be 4x5.
The training process of a neural network involves the use of a loss function, back-
propagation and an optimizer. These features are described in the following sections.

2.1.1 Loss functions
The output of a neural network is called a prediction. A loss function measures
the quality of the predictions by comparing the predicted output with the desired
output. A lower loss is an indication of a better prediction. As a model learns
more during the process of training, its parameters get updated and loss reduces.
Selecting a loss function depends on the application. A popular choice is the cross
entropy loss, which indicates the difference between two probability distributions.
It is given as:

H(P,Q) = −Ex∼P log(Q(x)) (2.2)
Where Q and P are two different probability distributions. Another popular choice
is the Negative log likelihood loss (NLLLoss) which is given as:

Li = − log(pyi
). (2.3)

5



2. Background and literature survey

Figure 2.1: A neural network with single hidden layer and each neuron in input
layer is connected to each of the five neurons in hidden layer. The outputs of
neurons pass through an activation function are combined in the output layers.

where pyi
represents the probability of the data point yi belonging to a particular

class and Li is called the negative log-likelihood.

2.1.2 Backpropagation
Backpropagation involves the computation of the partial derivatives of the loss with
respect to each of the parameters (weights and biases) in the neural network. It uti-
lizes the chain rule to compute the derivatives backward. The computed derivatives
are then used for optimization, by trying to minimize the difference between the
obtained output and the correct expected output, to adjust the parameter values
accordingly.

2.1.3 Optimization
An optimizer tries to find the parameters of the neural network which minimize
the loss function. The most popular optimizer is the Adam optimizer, which is an
extension to stochastic gradient descent and its equations are given as:

wt+1 = wt − αmt. (2.4)

6



2. Background and literature survey

where:
mt = βmt−1 + (1− β)

[
∂L

∂wt

]
. (2.5)

α is the learning rate,mt is the aggregate of gradients at time t,mt−1 is the aggregate
of gradients at time t − 1, wt represents the weights at time t, wt+1 represents the
weights at time t+ 1, L is the loss function and β is the moving average parameter
whose value is a constant and is usually kept at 0.9. Adam is different from classical
stochastic gradient descent. In stochastic gradient descent, the learning rate remains
the same for all the parameters. However, this is not the case with Adam, which
combines the benefits of two other optimization algorithms called Momentum and
RMSProp. It essentially adjusts the learning rate for each parameter separately.

2.1.4 Activation functions
An Activation Function influences whether or not a neuron is activated i.e whether
or not the neuron’s output contributes to the output of the network. It uses simpler
mathematical operations to determine whether the neuron’s input to the network
is essential or not throughout the prediction step and whether it needs to be trans-
formed. It is essentially a nonlinear mathematical function applied to the raw output
value of a neuron to give the final output. The purpose of an activation function is
to add non-linearity to the neural network. The simplest form of activation func-
tions are ones that do not transform the data at all. However, when such simple
functions are used, the model fails to learn complex mapping functions. This is why
non-linear activation functions are preferred as they enable the model to learn more
complex structures in the data. The most commonly used activation function is the
rectified linear unit (ReLU) activation function, which is given as:

f(x) =

0, if x < 0
x, otherwise

A huge advantage of ReLU is its simplicity. This makes it easier to optimize the
model. Another important advantage of ReLU is that models trained using it usu-
ally do not suffer from the problem of vanishing gradients, as the gradients remain
proportional to the activations of the neurons. Another popular activation function
is the sigmoid function given as:

f(x) = 1
1 + e−x

. (2.6)

It transforms a value to the range [0, 1].

2.2 Convolutional neural networks
Convolutional neural networks (CNN) are neural networks that can deal with image
data. A CNN can identify relevant features in an image and can classify it based
on those features. In a feed-forward neural network, every neuron in one layer was
connected to every neuron in the previous layer. However, this is not the case in a

7
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CNN and weights are shared between neurons leading to a reduction in the number
of parameters and complexity. Such layers where every neuron is not connected to
every neuron in the previous layer are called convolutional layers. An image is made
up of pixels and has several channels. Color images have three channels - RGB while
grayscale images only have a single channel. Each channel has pixel values, which
are used by a CNN to learn about the features in the image. Images are passed as
inputs in the form of tensors., which are essentially n-dimensional arrays. Images
are passed as 4-dimensional tensors, in the form of (batch size, channels, height
and width). A CNN reduces the images to a form that is easier to process without

Figure 2.2: A simple CNN architecture

losing features that are critical for getting a good prediction. Every convolutional
layer has many kernels or filters, which are essentially square matrices. Every kernel
performs the process of convolution – which is an element-wise matrix multiplication
and summation on the input channels. A single kernel convolves over each of the
channels of the input image, and then the corresponding values of the results are
added up. In other words, the pixel values in the image are transformed based
on the values in the filter. Therefore, the number of output channels of a layer is
equal to the number of kernels in the layer. Kernels are usually 3x3 or 5x5 and
result in the down sampling of the input. The size of the output from a convolution
operation depends on the number of positions on the input image, where the filter
can be placed. If the input image is denoted by h, and a filter is denoted by f, then
the process of convolution can be written mathematically as:

G[m,n] = (f ∗ h)[m,n] =
∑
j

∑
k

f [j, k]h[m− j, n− k]. (2.7)

where G is the resulting matrix and m, n mark its rows and columns. At the
boundary, the formula is slightly modified. Figure 2.1, as the input goes through
various convolutional layers, and more and more convolutions are performed on it,
the network learns the important features present in the image. The number of
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parameters p (without bias) in a convolutional layer with f filters, of dimensions
w · h receiving i channels as input, are computed as:

p = (w · h · i)f. (2.8)

Similar to convolutional layers, pooling layers reduce the spatial size of the convolved
feature to decrease the computational power required to process the data through
dimensionality reduction. There are two types of pooling operations - max pooling
and average pooling. Max Pooling returns the maximum value from the Kernel-
covered region of the picture. Average Pooling, on the other hand, returns the
average of all the values from the region of the picture covered by the Kernel.

2.3 Transformer
The transformer is a neural network architecture which was proposed in the paper
"Attention is all you need" by Vaswani et al [12]. It is considered to be a state-of-
the-art model in the field of natural language processing. However, the structure
followed by a transformer can also be used for other applications, as was done in
the case of scene change detection. A transformer consists of 2 parts – an encoder
and a decoder.

2.3.1 Encoder
The encoder first converts the input into a form which can be processed by a com-
puter. A computer can only work with vectors and matrices. This is referred to as
the embedding of the input. Then the embedding is processed further before being
passed into the decoder. In the case of scene change detection, the input images
are converted into vectors and matrices, which are then processed by the neural
network.

2.3.2 Decoder
The embedding may be further processed in the decoder before being converted
into the output form. If the problem is one of natural language processing, then
the output will be the output word or sentence. During scene change detection,
the embedded vectors and matrices of the original images are converted into change
detection masks indicating regions of change.

2.4 Related work

2.4.1 Semantic scene change detection
The SCD process involves a series of steps, such as the selection of training data,
image pre-processing, image feature extraction, construction of the SCD algorithm,
and evaluation of the model performance. Detecting regions of change has always
been of interest to computer-vision researchers. Given two images, SCD identifies
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semantic changes between the different times. Early SCD methods mostly utilize the
difference between feature maps, with the aid of statistics and probability theory
[3]. With the development and progress in the field of deep learning, the most
popular choices generally involve the use of CNNs. CNNs are neural networks that
can deal with image data, extract important information from images and perform
various tasks. SOTA models generally follow an encoder-decoder architecture, with
the encoder being a SOTA CNN such as VGG or ResNet, which are then used
for tasks such as image classification or semantic segmentation [4] [5]. Throughout
the encoder, paired images are downsampled into feature maps of different scales.
The extracted features use information from the paired images. Siamese Networks
are neural networks that compute changes between a pair of inputs. Guo et al [6],
introduce the convolutional siamese metric network (CosimNet) which can deal with
noisy changes across the images, as well as changes in illumination. They use the
idea of contrastive loss. Sakurada et al [7], introduce the CDNet which is based
on U-Net and accounts for differences in camera viewpoints during SCD [8] . Since
supervision for SCD is expensive, Sakurada et al [7], introduce a novel semantic SCD
method that involves only weak supervision. They propose an architecture mitigates
the issue of difference in camera angles in SCD by using Siamese networks [9]. Chen
et al [10], then introduce the dynamic receptive temporal attention network (DR-
TANet) which is both lightweight and efficient and guarantees excellent performance
with fewer parameters. DR-TANet will be explained in further detail in the following
section. Since a model for SCD generally involves the use of a CNN as an encoder,
it is also possible to use CNNs that have been pretrained on a large dataset such
as ImageNet with millions of images. Raghavan et al [11], introduce a novel self-
supervised pretraining method for SCD, which solves the issue of domain shift that
occurs when SCD methods use transfer learning from ImageNet datasets. Their
method is called Difference Street Scene Change Detection (D-SSCD) and it utilizes
absolute feature differencing. D-SSCD learns important features in an image while
separating them from the redundant ones.

2.4.2 Correlation of features

Correlation maps present the similarity between a region of the image at time t0
and a fixed square search area around the same position at time t1. The correla-
tion mechanism can obtain a relatively good performance, but there is still room
for improvement. In the field of natural language processing, the mechanism of
self-attention – introduced by Vaswani et al [12], is used widely in transformer ar-
chitecture. Self-attention helps to learn large-scale dependencies. Mathematically,
self-attention is described as:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (2.9)
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where Q,K and V represent the query, key and value vectors.

Q = WQX,

K = WKX,

V = WVX.

(2.10)

X represents the input embedding, which is a vectorial representation of the input.

Huang et al.[13] introduce and apply criss-cross attention in a semantic segmenta-
tion task, which is an efficient method to harvest contextual information. Zhang
et al [14] propose a new feature extractor that is built with self-attention to inte-
grate the inferred compositional structure among visual elements in a local area.
Ramachandran et al [15] show that self-attention can be a useful replacement for
spatial convolutions due to its fewer parameters and floating-point operations.

2.5 Dynamic Receptive Temporal Attention Net-
work

Chen et al [10] then introduce the concept of temporal attention in the DR-TANet
paper, which is more computationally efficient than self-attention. This paper also
explores the impact of the dependency scope size on the performance of the model,
introduces the temporal attention module (TAM) to utilize the idea of temporal
attention and then further improves upon TAM to introduce the dynamic receptive
temporal attention module (DRTAM), which is more lightweight and efficient.

2.5.1 Architecture
DR-TANet is a highly efficient and lightweight SOTA model for SCD. It has an
encoder-decoder architecture, including a dynamic receptive temporal attention
module (DRTAM), which will be described in the following subsection. The encoder
in the architecture is ResNet18, which has 18 layers. Since a scene change detection
model has two images to compare, the encoder is split into two channels – one for
time t0 and the other for time t1 – to perform the extraction of features. These ex-
tracted features are then passed into the DRTAM to find similarities between them
at corresponding positions. Then the attention maps generated are passed into the
decoder to perform upsampling and create a change mask that indicates the regions
of change.

2.5.2 Temporal Attention Module
The idea of temporal attention is to calculate the dependency of a pixel in the t1
channel, with pixels in the t0 channel, in a given scope. One can use self-attention
to compute the dependency of a pixel in the t1 channel with every pixel in the t0
channel. However this is computationally expensive and not representative of the
relation between pixels and therefore it is more useful to compute dependencies in
a given range or scope. This implies that an example pixel (i, j) of the feature maps
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Figure 2.3: DR-TANet architecture

at channel t1 will be dependent only on a fixed scope of files in channel t0. The
fixed scope size could be 1x1, 3x3, 5x5 or so on. Multi-head temporal attention is
used where the feature maps are divided into groups and temporal attention will be
performed on each group.

Figure 2.4: Fixed scope size

Formally temporal attention is defined as:

qij = WqXij
t0 ,

kij = WkXij
t1 ,

vij = WvXij
t1

(2.11)

Aij =
∑

a,b∈N(i,j)
softmaxab(qTij(kij + eab))νab (2.12)
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where Wq,Wk,Wv are the weight matrices for generating the query, key and values
at pixel position (i,j). N(i,j) represents dependency scope-size. ea,b is the relative
positional encoding and the query calculates the inner product with the sum of
key and positional encoding. Based on temporal attention, the temporal attention
module (TAM) is constructed, which consists of four layers where each layer takes
feature maps at two temporal channels as input and derives the attention map
based on the temporal attention mechanism. The former calculated attention maps
are downsampled and concatenated with the subsequent attention maps. every
attention map will be inserted once more into the decoder through skip connections.
This prevents information loss during the whole upsampling feature flow.

2.5.3 Dynamic Receptive Temporal Attention Module
TAM has a fixed dependency scope throughout the 4 layers. The only difference in
DRTAM is that the dependency scopes are reduced from layer to layer, leading to a
reduction in the number of parameters. In the vision models, during the downsam-
pling path of the encoder, feature maps first identify the low-level properties (color,
edges, etc.) and then gradually the high-level properties (texture, shapes, objects,
etc.) will gain more focus. When feature maps gather the low-level features, at the
initial temporal attention layer, the dependency-scope size is 7x7, then it reduces to
5x5, 3x3 and 1x1 in the following layers. Mathematically, it is given as:

Figure 2.5: Dependency scope size varying from the first till the fourth layer.

TAab = softmaxab(qTij(kij + eab))νab

A1
ij =

a,b∈N1(i,j)∑
N1(i,j)=7×7

TAa,b, A
2
ij =

(N2(i,j) is 5×5)∑
a,b∈N2(i,j)

TAa,b

A3
ij =

a,b∈N3(i,j)∑
N3(i,j)=3×3

TAa,b, A
4
ij =

a,b∈N4(i,j)∑
N4(i,j)=1×1

TAa,b (2.13)
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2.6 Difference Street Scene Change Detection
This section describes an effective pretraining strategy - an alternative to the stan-
dard ImageNet pretraining technique - where a network is trained with a suitable
loss function, and then parameters of the backbone of the said network are trans-
ferred to the backbone of DR-TANet. This is done to give the DR-TANet encoder
a better starting point for the training process and to reduce its dependence on
annotated data.

2.6.1 Architecture
The network used is the Simple Framework for Contrastive Learning of Visual Rep-
resentations (SimCLR) architecture which was introduced by Chen et al [10]. The
framework aims to learn effective representations for visual inputs without any su-
pervision. It consists of an encoder and a projection head – which is essentially a
feed-forward neural network. The input images are augmented before being passed
into the framework. The encoder is chosen to be ResNet18 for simplicity. It ex-
tracts representations from the augmented images and then the projection head
maps those representations to the desired latent space. When the two images are
treated as augmentations of each other and passed into the framework, the technique
is called self-supervised pretraining for change detection. The framework learns the
changed region by maximizing cross-correlation between the two images. The other
variation is the difference self-supervised pretraining for change detection, where ab-
solute feature-differencing is used to learn the changed region directly. Figures 2.6
and 2.7 illustrate the two methods. The loss function used is called Barlow-twins,
which is described in the following subsection. The images at t0 and t1 are con-

Figure 2.6: In Street Scene Change Detection (SSCD), the framework learns by
maximising correlation between two images

sidered to be augmented versions of each other since they are images of the same
scene at two different times. They are first passed through the encoder fθ to get
the feature vectors f ′0 and f ′1. These feature vectors are then passed through the
projection head gθ to be projected into the desired dimensions and obtain z′0 and
z′1. Finally, they are passed into the loss function. D-SSCD involves the creation of
two random augmentations for each of the input images. The augmentations may
include Gaussian blur, color distortions, rotations and so on. Thus, the model gets
a total of four images after augmentations – T ′0, T ′′0 , T ′1 and T ′′1 . All four images are
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Figure 2.7: In D-SSCD model, the framework learns by absolute feature
differencing.

then passed through the framework to finally obtain the latent representations z′0,
z′′0 , z′1 and z′′1 . The difference representations are computed as:

d1 = z′0 − z′1 (2.14)

d2 = z′′0 − z′′1 (2.15)
The differences d1 and d2 are then passed into the loss function.

2.6.2 Barlow twins loss function
The central idea of this function is to separate the important features in an image
from the redundant ones and also make the network invariant to distortions. It
is based on the redundancy-reduction principle, first proposed by neuro-scientist
Horace Barlow, and was introduced by Zbontar et al [17],
The input representations passed in are used to compute a correlation matrix, which
gives an idea of the correlation of the various features. If two features are highly
correlated, it means that one of them is redundant. Mathematically the loss is given
as :

LBT =
∑
i

(1− Cii)2 + λ
∑
i 6=j

C2
ij (2.16)

where,

Cij =
∑
b z

A
b,iz

B
b,j√∑

b(zAb,i)2
√∑

b(zBb,j)2
(2.17)

The first term in the objective function LBT is called the invariance term and the
second term is called redundancy reduction term. The objective function has to be
ultimately minimized. The invariance term is minimized when Cii is maximized,
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which means that the same features across both the images are highly correlated,
making the framework invariant to distortions. The redundancy reduction term is
minimized when Cij is minimized indicating minimal correlation between different
features and consequently a redundancy reduction. Thus by learning to minimize
this loss function, the framework learns to ignore distortions, while also differenti-
ating between the important features and redundant ones.
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3
Methods

The method in this project was inspired by a recent SCD study, where the pre-
training method was based on the self-supervised D-SSCD approach[11], with a few
modifications and finetuning was based on the idea of using different percentages
of labeled data, in the approach using DR-TANet approach[10]. The pretraining
method based on Barlow twins loss function uses the SimCLR architecture, which is
a framework designed by Google for SSL with a possible modification to the MoCO
framework. Evaluation was done on test datasets and the f1-scores were computed,
indicating how well the changed regions were learned by the model. The results of
the models with self-supervised pretraining and the models with self-supervised pre-
training with pretrained ImageNet weights as a starting point were finally compared
with DR-TANet with pretrained ImageNet weights, which was treated as the base-
line. The performance of each of the models was evaluated on various percentages
of labeled data.

3.1 Experimental setup

3.1.1 Image data representation
In computers, images are represented as arrays of numbers. One such representation
uses a 3-dimensional array where the dimensions refer to the three color channels
red, green, and blue (RGB)[16]. Each number in an array representing an image has
a value ranging from 0 to 255. This experiment uses the publicly available change
detection datasets VL_CMU_CD, PCD and ImageNet datasets.

3.1.1.1 VL_CMU_CD dataset

The VL_CMU_CD dataset contains complex and diverse scene pairs captured at
various angles and light conditions as shown in Figure 3.1. It contains 11 different
classes of images including construction-maintenance, traffic cones on the road, bins
on the pavement, new sign boards and cars. There are 152 image sequences of
distinct scene changes amounting to 1362 RGB image pairs. Each image sequence
category has a minimum of 2 to a maximum of 41 image pairs. This dataset was
taken from the city of Pittsburgh, Pennsylvania, USA, over a period of one year.
Each image has dimensions of 1024 × 768 pixels. In this project, the dataset was
modified and has 3732 image pairs for training the model. 429 pairs of images
without any data preprocessing were kept aside for evaluating the model. Only
images belonging to the training set without labels were used to pretrain the model.
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During pretraining, these image pairs are resized to a resolution of 256×256. The
Figure 3.1 below in which the first image is t0 taken at first time frame and it is
compared with the image t1 taken at second time frame. Finally the last image is
the image with ground-truth mask.

(a) Image t0 (b) Image t0 (c) Ground truth

Figure 3.1: An illustration of VL_CMU_CD dataset of image t0, t1 and labeled
mask.

3.1.1.2 PCD dataset

The PCD dataset developed by Sakurata and Okatani [22], consists of two smaller
datasets – ’TSUNAMI’ and ’GSV’, each of which has 100 pairs of images - each of
dimensions 224 × 1024 pixels - with the manually labeled change masks. The images
in the TSUNAMI dataset are from tsunami-affected areas in Japan and those from
the GSV dataset are from Google street view. The images contain scene changes
identified as 2D modifications of object surfaces (e.g., changes in the advertising
board) and 3D structure changes (e.g., vanishing of buildings and vehicles). Changes
caused by differences in lighting and photography conditions, as well as those caused
by the weather are excluded, as are changes caused by reflection on building windows
and changes in cloud and signs on the road surface. When comparing GSV dataset
the TSUNAMI dataset is less affected by noise. During pretraining, these image
pairs are also resized into 256×256 resolution.

(a) Image t0 (b) Image t0 (c) Ground truth

Figure 3.2: An illustration of Tsunami dataset of image t0, t1 and labeled mask.

3.1.1.3 ImageNet dataset

ImageNet is a large publicly available dataset that is frequently utilized in many
fields of research. The total dataset contains millions of annotated images from a
variety of categories, including animals, fruits, and flowers. Each of these categories
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(a) Image t0 (b) Image t0 (c) Ground truth

Figure 3.3: An illustration of GSV dataset of image t0, t1 and labeled mask.

is further subdivided into sub-categories. The ImageNet dataset is utilized as the
training set for the pretraining model in this master’s thesis. This type of pretraining
set, known as ImageNet-1K, has a total of 1,281,167 pictures for training and 1000
distinct classes. These ImageNet pretraining weights are also publicly available and
it can be directly used for finetuning the supervised models.

3.1.2 Data preprocessing
The VL_CMU_CD original dataset has 1349 image pairs and during pretraining
using 80:20 train_test_split we got 933 image pairs of VL_CMU_CD dataset that
were resized to a resolution of 256×256 and 3 rotated augmentations of each image
pairs were created. This resulted in 3732 image pairs to be used for pretraining
(without masks) and different fraction of 3732 image pairs (with masks) were used
for finetuning. The remaining 416 test pairs of images without preprocessing were
the used for evaluation. The PCD dataset originally had 200 image pairs. Again the
similar 80:20 train_test_split and we got 160 image pairs that were preprocessed
into 9600 image pairs and its chosen for pretraining (without masks) along with
the VL_CMU_CD dataset and different fraction of 9600 image pairs (with masks)
were used for finetuning. In PCD dataset 160 of each image pair is extended into 60
patches with a 224x224 resolution by moving 56 pixels in width and data augmen-
tation of plane rotation and that generates the 9600 image pairs. In 200 image pairs
of original PCD dataset the remaining 40 test image pairs without preprocessing
were used for evaluation.

3.1.3 Self-supervised pretraining on unlabeled images
Transfer learning outperforms building a new model from scratch in pretraining.
As the backbone, the base encoder employed by the authors of the SimCLR paper
is ResNet50 but we used the standard ResNet18 architecture due to limited GPU
memory and longer training time. The loss function used is the Barlow Twins loss
function, which was previously described. SimCLR, which is explained in the next
section, was utilized as the framework. To generate two pairs of augmented images,
random transformations such as color distortions and Gaussian blur are applied to
the images. To generate feature representations, these augmented image pairs are
sent into the encoder and projection head. The feature differencing is done across
the projection outputs to learn the representation of the changing features between
the two images (t0, t1). Once the pretraining is done the parameters of the encoder
as shown is the Figure 3.4 are transferred to the downstream process of finetuning
change detection.
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Figure 3.4: An experimental setup of pretraining (unlabeled images) followed by
finetuning (labeled images).

3.1.3.1 SimCLR framework

The SimCLR is a framework proposed by Chen et al [19] to effectively learn visual
representations using contrastive learning. It learns representations by maximis-
ing the agreement between augmented views of the same image (positive pairs),
and minimising the agreement between augmentations of different images (negative
pairs). It begins with a data augmentation module, which adds augmentations to
the input images progressively. It creates two random augmentations per image.
Once the augmentations are created, it applies three further augmentations on each
of the augmented versions of the images, which are random cropping and resizing,
random color distortions and random Gaussian blur. According to the authors, ran-
dom crop and color distortions are important for boosting the performance. Now,
in order to create representations for each of the two augmentations, SimCLR em-
ploys a base encoder f and a projection head g. The base encoder employed by
the authors of the SimCLR paper is ResNet50. The projection head is a group of
linear layers to map representations to a space where contrastive loss functions are
applied. However, the loss function used by us is the Barlow Twins loss function, as
employed in the D-SSCD paper [11].

3.1.4 Finetuning on limited labeled data
One of the major difficulties we face is the manual labeling of our unlabeled data.
To train a good model, we often need to prepare a large amount of labeled data.
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Figure 3.5: SimCLR architecture.

In this case, we may utilize the pretrained model from the labeled public dataset
which is ImageNet or develop a pretrained model that learns temporal-consistent
representations for the downstream task of supervised finetuning on limited labeled
data.

The same ResNet18 which was used for pretraining was used as the backbone for
finetuning so that pretraining parameters could be carried across. The paired input
images (t0, t1) are passed to the encoder path, where they are divided into two
channels for feature extraction as shown in Figure 3.5. They are then sent into the
temporal attention to determine the similarity between the images in the given scope.
The retrieved feature maps are then sent into the decoder, where the change mask is
created. Different percentages of labeled data (1%, 10%, 50%, 100%) are sampled for
the training split of VL_CMU_CD, PCD datasets. The model training converges
after 100 epochs.

3.1.5 Evaluation on different percentages of labeled data
Evaluation is performed based on finetuning the SOTA SCD model with five sets
of pretraining strategies on PCD and VL_CMU_CD datasets. (1) Supervised Im-
ageNet pretraining (DR-TANet mode), (2) self-supervised pretraining SimCLR, (3)
Self-supervised pretraining MoCO, (4) Self-supervised SimCLR pretraining with pre-
trained ImageNet weights as starting point and (5) Self-supervised MoCO pretrain-
ing with pretrained ImageNet weights as starting point. These different models eval-
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uated on the PCD dataset which has 40 test case image pairs and VL_CMU_CD
which has 429 test case image pairs. The pretraining followed by finetuning helped
to achieve better results.

f1_changed_region = 2 · Precision ·Recall
Precision + Recall (3.1)

f1_unchanged_region = 2 · Precision ·Recall
Precision + Recall (3.2)

f1_score = f1_changed_region + f1_unchanged_region
2 (3.3)

The f1-score metric of equation (3.3) is used to evaluate the performance of change
detection after finetuning. The f1-score is calculated separately for changed regions
and unchanged changed regions. Finally, a mean for metrics of change and no change
is calculated. The f1-score has a value between 0 and 1. The better the accuracy
and recall, the higher the f1-score. Overall, the evaluation on VL_CMU_CD and
PCD datasets shows that our suggested approaches for pretraining on unlabeled
data (MoCO D-SSCD and SimCLR D-SSCD) can outperform the commonly used
ImageNet pretraining, which uses over a million labeled images.

3.2 Baseline method
The methods described in the DR-TANet paper is chosen as the baseline methods.
Authors of the DR-TANet and D-SSCD paper used ResNet50 as the backbone for
both pretraining and finetuning. However, due to memory issues, we had to use
ResNet18, which has fewer parameters and fits the available resources. The re-
sults achieved by our thesis outperforms the results that mentioned by our baseline
methods. The architecture, hyper-parameters, augmentations, training and testing
procedures were followed as mentioned in the papers. All models were trained for
100 epochs with batch size set to 16. The Tesla K80 GPU was used as default GPU
for all the experiments.

3.3 Model extensions
In this section, additional methods that were implemented to improve on the base-
line method, which is self-supervised SimCLR with pretrained ImageNet weights as
starting point. The model was further extended using different pretraining strate-
gies. MoCO was chosen due to its performance on many object detection tasks.
MoCO uses memory queue and does not require large batch sizes, thereby solving
memory issues.

3.3.1 MoCO framework
MoCO [20] manages to show an improvement in performance compared to SimCLR.
Contrastive learning involves a comparison between positive and negative samples,
so one optimization method is the use of more negative samples. For a particular
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image, a negative counterpart would be any other image in the batch. If a batch
contains N images, then after applying augmentations our model gets two repre-
sentations per image, resulting in a total of 2N representations. For a particular
representation x, there is only one other representation that forms a positive pair
with it. This leaves us with (2N - 2) negative pairs involving x. In the case of
SimCLR, a large number of negative samples can only be obtained with large batch
size. This in turn leads to higher requirements in computational power. This is
where MoCO comes in and provides an alternate approach to generating negative
samples.

As opposed to SimCLR, MoCO works with two encoders and uses the concept of
dynamic dictionaries. One of the encoders is a query encoder and the other is a key
encoder. If a certain query matches a key, a positive pair is generated. This match
occurs when the query and key come from the same image. For the negative pairs,
it maintains a large dictionary that contains encoded keys from previous batches,
which serve as negative samples to the query in question. This dictionary is in the
form of a queue of batches. The latest batch is added to the queue, while the oldest
batch is removed from it. The number of negative samples is dependent on the size
of this queue. The key encoder is implemented as momentum-based moving average

Figure 3.6: MoCO architecture.
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of the query encoder, meaning that the parameters of the key encoder are updated
as follow:

θk ←− mθk + (1−m)θq (3.4)

where m is generally close to 1.

3.3.2 Data augmentation
Performing data augmentation in SCD is important since it helps to reduce overfit-
ting and improves performance of the model. It also helps in learning the model for
good representations. The noise introduced allows the model to learn noise invariant
representations. It has been shown that stronger augmentations lead to better rep-
resentations [12] and these augmentations have also led to improvement in MoCO
and SimCLR as well [13]. In our experiments, we used the same set of data aug-
mentations as in MoCO and SimCLR. These include cropping, color jittering, color
distortion, and Gaussian blur. The illustration of an original image and augmented
image is shown below.

Figure 3.7: The instance of an original image and augmented image.

Random cropping and resizing: Random crop and resizing are used to crop and
resize images into the desired sizes for the input images of self-supervised pretrain-
ing. Random crops are not considered for this preprocessing and only the input
image are resized to 256 × 256 along with normalization.

Random color distortions: The random color distortions are applied for images
to change the brightness, contrast, saturation and hue of an image. Color distortions
for images are applied to resized images with a 50% probability of color jitter and a
20% probability of gray scale.

Random Gaussian blur: Blurs the image with Gaussian blur of 50% probability.
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Figure 3.8: Random cropping and resizing.

Figure 3.9: Random color distortion.

Figure 3.10: Random Gaussian blur.
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4
Results

The first subsection describes the results of our baseline supervised ImageNet model
(DR-TANet model). The second subsection describes the results of self-supervised
MoCO and self-supervised SimCLR, and the third subsection compares the outcomes
of self-supervised MoCO with pretrained ImageNet weights as starting point and self-
supervised SimCLR with pretrained ImageNet weights as starting point. Finally,
the models’ performances are compared. In each case, the Barlow twins loss function
was used for pretraining, and the f1-score was used as the metric for performance
evaluation. ResNet18 served as the backbone encoder for all of our models. All
models were evaluated for 100 epochs with a batch size of 16. On average, each
pretraining process took about 72 hours to complete and was followed by a finetuning
process with different percentages of labeled data. Based on the desired percentage
of labeled data, a random selection was done on both VL_CMU_CD and PCD
datasets. Five different fractions of supervised labeled SCD images using ImageNet
4.1 were created for each dataset and then evaluated upon as a baseline for all the
experiments. The random selection of dataset for every fraction of performance in
the models was fresh each time.

4.1 Performance analysis

4.1.1 Supervised labeled SCD images using ImageNet

Table 4.1: Performance (f1-score) of DR-TANet model trained on different
datasets.

Dataset
Label fraction

1% 10% 20% 50% 100%

VL_CMU_CD 0.630 0.834 0.801 0.825 0.813

PCD 0.653 0.754 0.778 0.770 0.770

The commonly used ImageNet dataset has millions of images. Models pretrained
on ImageNet dataset weights and then using the resulting weights have often had
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major gains in performance when used for other similar datasets. Models with
pretrained ImageNet weights are widely and publicly available with no additional
cost. Finetuning a model using the already available ImageNet pretrained weights
makes the model parameters converge quicker than from scratch. The Table 4.1
above shows the performance of the DR-TANet model (SOTA) trained on different
datasets using supervised ImageNet.

(a) 1% (b) 10%

(c) 20% (d) 50%

(e) 100%

Figure 4.1: Comparison of different fraction of labeled VL_CMU_CD dataset of
Supervised ImageNet. The top row of each image illustrates scenes from two
different times. The bottom row compares the obtained result to the ground truth.

As shown in Table 4.1 above, the model’s performance fluctuated. When evaluated
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on VL_CMU_CD dataset, the f1-score grew when 10% of the data was used for
training and then fell for 20%, improved again for 50% and finally fell again for
100% of the data. Similarly, in case of the PCD dataset the performance saturated
when 20% of the labeled data was used and did not improve beyond that. The
performance of these models using pretrained ImageNet weights was considered as
the baseline. It was then compared with two other categories of models. The first
category had models which were pretrained from scratch using the Barlow Twins
loss function. The second category also had models which were pretrained using the
Barlow twins loss function, however, the pretraining did not start from scratch and
instead pretrained ImageNet weights were used as the starting point.

1% 10% 20% 50% 100%
Fraction of VL_CMU_CD dataset

0.625

0.650

0.675

0.700

0.725
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0.775

0.800
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f1
-s
co
re

f1-score of supervised DR-TANet model using pretrained ImageNet

No augmentations

Figure 4.2: Performance (f1-score) of DR-TANet model (SOTA), trained on
VL_CMU_CD dataset, using supervised ImageNet weights.

According to figure 4.2, accuracy and f1-score are higher in the case where 10% of
the data is used, despite a significant difference in performance between the cases
with 1% and 10% labeled data. Similarly, as shown in figure 4.5, the performance is
higher when 20% of the labeled data is used, and there is a significant performance
difference when compared with 1% labeled data.
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(a) 1%

(b) 10%

(c) 20%

(d) 50%

(e) 100%

Figure 4.3: Comparison of different fraction of labeled TSUNAMI dataset of Su-
pervised ImageNet. The top row of each image illustrates scenes from two differ-
ent times. The bottom row compares the obtained result to the ground truth.
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(a) 1%

(b) 10%

(c) 20%

(d) 50%

(e) 100%

Figure 4.4: Comparison of different fraction of labeled GSV dataset of Supervised
ImageNet. The top row of each image illustrates scenes from two different times.
The bottom row of each image compares the obtained result to the ground truth.
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1% 10% 20% 50% 100%
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Figure 4.5: Performance (f1-score) of DR-TANet model (SOTA) trained on PCD
dataset using supervised ImageNet weights.

4.1.2 Self-supervised unlabeled SCD images in pretraining

Table 4.2: Performance (f1-score) of self-supervised pretraining methods when
model is evaluated on VL_CMU_CD dataset with augmentations.

Pretraining methods
Label Fraction

1% 10% 20% 50% 100%

SimCLR 0.780 0.823 0.806 0.833 0.814

MoCO 0.801 0.853 0.844 0.862 0.864

Due to the high cost involved in acquiring manual annotations, the availability of a
large amount of labeled data is a significant challenge in SCD. A good SCD model
performs well even when labeled data is limited. Tables 4.2 and 4.3 display the
results of VL_CMU_CD and PCD datasets finetuned with five different fractions.
From the VL_CMU_CD and PCD datasets, different percentages of labeled data
- 1%, 10%, 50%, and 100% - were picked at random for finetuning. In all the
limited labels cases, the proposed SOTA pretraining approaches involving SimCLR
and MOCO outperform the commonly used pretrained ImageNet weights by a small
margin.
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(a) 1% (b) 10%

(c) 20% (d) 50%

(e) 100%

Figure 4.6: Comparison of different fraction of labeled VL_CMU_CD dataset of
self-supervised SimCLR model. The top row of each image illustrates scenes
from two different times. The bottom row compares the obtained result to the
ground truth.

33



4. Results

(a) 1% (b) 10%

(c) 20% (d) 50%

(e) 100%

Figure 4.7: Comparison of different fraction of labeled VL_CMU_CD dataset of
self-supervised MoCO model. The top row of each image illustrates scenes from
two different times. The bottom row compares the obtained result to the ground
truth.
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1% 10% 20% 50% 100%
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Figure 4.8: Performance (f1-score) of self-supervised model finetuned on fraction
of labeled VL_CMU_CD dataset with augmentations.

As shown in tables 4.2 and 4.3 above, the self-supervised pretrained models outper-
form the supervised pretrained models by achieving higher gains on smaller datasets.
As proven by this approach, self-supervised learning methods aid in learning from
smaller datasets more efficiently. As shown in figure 4.8 and 4.13, where the per-
formance of SimCLR and MoCO is compared, MoCO performs better for smaller
datasets, although there appears to be no change between the models in the case
where 20% of the labelled data is used. Therefore, inspite of some differences there
is no statistically significant difference in performance (f1-score) between the models
SimCLR and MoCO.

Table 4.3: Performance (f1-score) of self-supervised pretraining methods when
model is evaluated on PCD dataset with augmentations.

Pretraining methods
Label Fraction

1% 10% 20% 50% 100%

SimCLR 0.694 0.749 0.781 0.788 0.722

MoCO 0.679 0.770 0.780 0.778 0.774

The baseline method chosen in this study is training with pretrained ImageNet
weights as a starting point. This is further compared with self-supervised and the
combination of self-supervised model with supervised ImageNet. As shown in Figure
4.22, an average performance of 20% outperforms other labeled fractions, and the
same in Figure 4.23.
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(a) 1%

(b) 10%

(c) 20%

(d) 50%

(e) 100%

Figure 4.9: Comparison of different fractions of labeled TSUNAMI dataset of self-
supervised SimCLR model. The top row of each image illustrates scenes from
two different times. The bottom row compares the obtained result to the ground
truth.
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(a) 1%

(b) 10%

(c) 20%

(d) 50%

(e) 100%

Figure 4.10: Comparison of different fractions of labeled GSV dataset of self-
supervised SimCLR model. The top row of each image illustrates scenes from
two different times. The bottom row compares the obtained result to the ground
truth.
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(a) 1%

(b) 10%

(c) 20%

(d) 50%

(e) 100%

Figure 4.11: Comparison of different fractions of labeled TSUNAMI dataset of
self-supervised MoCO model. The top row of each image illustrates scenes from
two different times. The bottom row compares the obtained result to the ground
truth.
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(a) 1%

(b) 10%

(c) 20%

(d) 50%

(e) 100%

Figure 4.12: Comparison of different fractions of labeled GSV dataset of self-
supervised MoCO model. The top row of each image illustrates scenes from two
different times. The bottom row compares the obtained result to the ground truth.
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Figure 4.13: Performance (f1-score) of self-supervised model finetuned on
fractions of labeled PCD dataset with augmentations.

4.1.3 Self-supervised pretraining using pretrained ImageNet
weights as starting point

As stated previously, the availability of large amounts of labeled data is a significant
challenge in SCD. This issue was addressed by conducting additional experiments
with a two-stage pretraining approach. The proposed self-supervised pretraining
models were initialized with supervised ImageNet weights as starting point (SimCLR
+ supervised ImageNet and MoCO + supervised ImageNet) and finetuned with
different percentages of labeled data of 1%, 10%, 50%, and 100%.

Table 4.4: Performance (f1-score) of two stage pretraining methods when model is
evaluated on VL_CMU_CD dataset with augmentations.

Pretraining methods
Label Fraction

1% 10% 20% 50% 100%

SimCLR (Sup-Im weights as starting point) 0.819 0.844 0.861 0.861 0.861

MOCO (Sup-Im weights as starting point) 0.808 0.840 0.855 0.845 0.863
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(a) 1% (b) 10%

(c) 20% (d) 50%

(e) 100%

Figure 4.14: Comparison of different fraction of labeled VL_CMU_CD dataset
combination of SimCLR with pretrained ImageNet weights as starting
point. The top row of each image illustrates scenes from two different times. The
bottom row compares the obtained result to the ground truth.
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(a) 1% (b) 10%

(c) 20% (d) 50%

(e) 100%

Figure 4.15: Comparison of different fraction of labeled VL_CMU_CD dataset
combination of MoCO with pretrained ImageNet weights as starting point.
The top row illustrates images from two different times. The bottom row compares
the obtained result to the ground truth.
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Figure 4.16: Performance (f1-score) of model pretrained on VL_CMU_CD
dataset using the self-supervised method with pretrained ImageNet weights as a

starting point.

As shown in the Table 4.4 and 4.5, self-supervised DSSCD with pretrained Ima-
geNet weights as starting point outperforms both the baseline model and the self-
supervised DSSCD model. The model with a better performance is given below.

Table 4.5: Performance (f1-score) of two stage pretraining methods when the model
is evaluated on PCD dataset with augmentations.

Pretraining methods
Label Fraction

1% 10% 20% 50% 100%

SimCLR (Sup-Im weights as starting point) 0.693 0.768 0.770 0.787 0.785

MoCO (Sup-Im weights as starting point) 0.670 0.770 0.794 0.780 0.773
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(a) 1%

(b) 10%

(c) 20%

(d) 50%

(e) 100%

Figure 4.17: Comparison of different fraction of labeled TSUNAMI dataset using
SimCLR with pretrained ImageNet weights as starting point. The top row
of each image illustrates scenes from two different times. The bottom row compares
the obtained result to the ground truth.
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(a) 1%

(b) 10%

(c) 20%

(d) 50%

(e) 100%

Figure 4.18: Comparison of different fraction of labeled GSV dataset using Sim-
CLR with pretrained ImageNet weights as starting point. The top row of
each image illustrates scenes from two different times. The bottom row compares
the obtained result to the ground truth.
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(a) 1%

(b) 10%

(c) 20%

(d) 50%

(e) 100%

Figure 4.19: Comparison of different fraction of labeled TSUNAMI dataset combi-
nation of MoCO with pretrained ImageNet weights as starting point. The
top row of each image illustrates scenes from two different times. The bottom row
of each image compares the obtained result to the ground truth.
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(a) 1%

(b) z0%

(c) 20%

(d) 50%

(e) 100%

Figure 4.20: Comparison of different fraction of labeled GSV dataset combination
of MoCO with pretrained ImageNet weights as starting point. The top row
of each image illustrates scenes from two different times. The bottom row of each
image compares the obtained result to the ground truth.
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Figure 4.21: Performance (f1-score) of model on PCD dataset using
self-supervised pretraining with pretrained ImageNet weights as starting point.

4.1.4 Comparing different pretraining models with baseline
supervised ImageNet Model
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Supervised DR-TANet baseline
Self-supervised SimCLR
Self-supervised MoCO
Self-supervised SimCLR + ImageNet weights
Self-supervised MoCO + ImageNet weights

Figure 4.22: Performance (f1-score) comparing different pretraining models with
baseline supervised ImageNet model on VL_CMU_CD dataset.

The baseline method chosen in this study is training a model with pretrained Im-
ageNet weights as a starting point. This is further compared with self-supervised
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1% 10% 20% 50% 100%
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Self-supervised SimCLR + ImageNet weights
Self-supervised MoCO + ImageNet weights

Figure 4.23: Performance (f1-score) comparing different pretraining models with
baseline supervised ImageNet model PCD dataset.

and the combination of self-supervised model with supervised ImageNet. As shown
in Figure 4.22, an average performance of 20% outperforms other labeled fractions,
and the same in Figure 4.23.
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5
Discussion & Conclusion

This section provides a conclusion to the project and attempts to answer the most
important questions mentioned under the problem statements.

Which pretrained model achieved the best performance?

The results of models pretrained using different methods, evaluated on both the
VL_CMU_CD and PCD datasets were presented in the previous section. The per-
formance of the downstream task was tested with various percentages of labeled data.
The model which achieved the highest f1-score was the one with self-supervised pre-
training with ImageNet weights as starting point. In case of VL_CMU_CD dataset,
the pretraining architecture with the best result was SimCLR, while in case of PCD
dataset, the pretraining architecture with the best result was MoCO. It is important
to note that the difference in performance between SimCLR and MoCO is not very
significant. SimCLR had a higher f1-score by 0.005 on the VL_CMU_CD dataset,
while MoCO had a higher f1-score by 0.024 on the PCD dataset. Strong arguments
can be made in favour of both. While SimCLR creates stronger augmentations to
make the model more robust, MoCO uses a memory bank, can store samples to
create more negative pairs and as a result can work with smaller batch sizes, mit-
igating memory issues. The highest f1-score was achieved in the downstream task
where 20% of the labeled data was used. The training was also faster than in the
cases where 50% and 100% of the labeled data was used. In this study based on
Figure 4.22 and 4.23, self-supervised pretraining gave the best results when a low
percentage (around 20% or less) of labeled data was used for finetuning, but did
not improve the results any further when a higher percentage of labeled data (above
20%) was used.

Limitations of self-supervised models and potential improvements

It was seen that an increase in the amount of labeled data for a downstream task did
not improve the f1-score and accuracy of the models - with the various pretraining
methods described - tested. This was mainly due to a random selection of labeled
data rather than a class-balanced selection. A class balanced selection ensures that
during the model would learn and gain information about all classes present during
the training process. In the case of a SCD dataset, this would mean having equal
amounts of images from all classes of images present in the dataset. However, in this
study due to time and feasibility constraints, a random selection of VL_CMU_CD
and PCD data does not ensure that images belonging to each class were selected.
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This way the model does not learn about each category of images present in the
dataset, resulting in lower f1-scores when the model has to predict changes in cate-
gories of images it has little to no knowledge. A limitation of this study is that while
the proposed method increases performance for VL_CMU_CD and PCD datasets,
it was only demonstrated for one backbone architecture (ResNet-18), owing to com-
puting resource limitations. Using a backbone architecture with more layers, such as
the ResNet-50 would have potentially led to a further improvement in f1-scores on
account of its greater complexity, but would have taken longer to train and required
more computational power [25].

The performance of the models (both with self-supervised pretraining and super-
vised pretraining) reached their maximum performance when 20% of the labeled
data was used for finetuning. This is because the models learnt no new information
with a further increase in the amount of labeled data. If the backbone architecture
were to be changed to a network with more layers like the ResNet-50, it would be
interesting to note where the performance of the models peaks. With an increase
in the number of layers, the complexity of the network would increase and it may
learn more information when the amount of labeled data passed increases. This has
scope for further investigations.

Overall discussion

The f1-scores generated from the results and the accuracy of the image were highest
when 20% of the labeled was used to finetune the models. Since annotation of images
involves a lot of manual labour, small labeled data sets are efficient in many domains,
where labeling is a costly and time-consuming procedure. In this SCD scenario, the
performance gains obtained by the models for small labeled datasets became more
significant. Self supervised learning is not limmited to applications involving curated
training sets like ImageNet, but may be useful in applications involving uncurated
data, as was seen during the evaluation of models on limited amounts of data from
the VL_CMU_CD and PCD datasets. However, the comparison of several models
led to the conclusion that a model with self-supervised pretraining starting with
ImageNet weights performed better on account of its higher f1-score. It is expected
that this research will help to promote the use of self-supervised methods and re-
sult in label-efficient and robust models that are suitable for real-world applications.

5.1 Conclusion
Finetuning the DR-TANet model using both self-supervised and supervised pre-
trained methods on publicly available scene change detection datasets (VL_CMU_CD
and PCD) improved f1-scores on downstream tasks. All of the models pretrained
using self-supervised learning methods outperformed the models trained using stan-
dard supervised learning methods as was shown in figures 4.22 and 4.23. Self-
supervised pretraining resulted in good f1-scores even after finetuning with limited
labeled data. The non-reliance of self-supervised pretraining on labels, as well as its
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better performance made it superior to supervised pretraining.

Another important conclusion is that random selection of data is not the best way
to proceed with a downstream task, and instead it is better to perform a class-
balanced data selection. A minimum amount of labeled samples for each mini-
batch should be set to reduce class imbalance in the dataset. According to the
results shown in Figures 4.22 and 4.23, unless finetuning with limited input SCD
datasets (VL_CMU_CD and PCD), self-supervised pretraining can help speed up
convergence but not necessarily improve the f1-score. Finally, it is worth highlighting
that the SCD semantic segmentation task is gaining as much popularity as object
detection. This study hopes to motivate future research into self-supervised scene
change detection for many applications advantageous to society.
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