

Population Based Microsatellite Genotyping
Master of Science Thesis in Algorithms, Languages & Logic

Snædís Kristmundsdóttir

Department of Computer Science & Engineering
Chalmers University of Technology

Gothenburg, Sweden 2014

MASTER’S THESIS

Population Based Microsatellite
Genotyping

Snædís Kristmundsdóttir

JUNE 2014

Department of Computer Science & Engineering Statistics
Chalmers University of Technology deCODE genetics
Göteborg, Sweden 2014 Reykjavík, Iceland
Examiner: Devdatt Dubhashi Supervisor: Bjarni Vilhjálmur Halldórsson

Population Based Microsatellite Genotyping
Snædís Kristmundsdóttir
SNÆDÍS KRISTMUNDSDÓTTIR c©

Department of Computer Science & Engineering

Chalmers University of Technology
SE412-96 Gothenburg
Sweden

Abstract

Microsatellites, also known as short tandem repeats (STRs) are short DNA sequences
containing repeated motifs ranging from 2-6 bases. The number of repeats varies between
individuals and the numbers occurring in a population are known as the alleles of a mi-
crosatellite. Each individual carries two copies of each chromosome and hence two alleles
of each microsatellite. There are at least 250.000 microsatellites that have a known loca-
tion on a human reference genome, the most common form is dinucleotide repeats.

The range of applications for microsatellite analysis is very wide and includes among
other things medical genetics, forensics and genetic genealogy. However, microsatellite
variations are rarely considered in whole-genome sequencing studies in large due to a lack
of tools capable of analyzing them.

The goal of this thesis is to create a microsatellite genotype caller which is faster and
more accurate than others previously presented. In order to accomplish this goal two things
were examined. First, we reduce by 87% the amount of sequencing data necessary for cre-
ating microsatellite profiles using previously aligned sequencing data. This was achieved
by filtering the input to contain only reads aligned to known microsatellite locations and
unaligned reads as these should be the ones useful for profiling. The results indicate that
when performing microsatellite profiling using previously aligned data it is possible to sig-
nificantly reduce running time with negligible effects on the resulting profile. Second, the
accuracy of the microsatellite profiler was increased from 87.5% to 96.3%. The improve-
ments included using population information to train microsatellite and individual specific
error profiles. This was done by adding parameters to the model as well as using sequenc-
ing data from multiple individuals to improve parameter estimates. Combining these two
procedures we were able to give a practical implementation of microsatellite genotyping
which is both much faster and more accurate than previously presented solutions.

iii

iv

Acknowledgements

First, I would like to express my gratitude to deCODE genetics for making this thesis
possible and to my supervisor at deCODE, Professor Bjarni Vilhjálmur Halldórsson for
his patience and guidance. I would also like to thank my friend and colleague Dr. Birte
Kehr for her valuable opinions and for always listening to my ideas. Last, I would like to
thank my family for putting up with me during these past few months.

v

vi

Contents

1 Introduction 1
1.1 Genetic variation . 1
1.2 Microsatellites . 2
1.3 Outline . 4

2 Background 7
2.1 Sequencing methods and reference genomes 7

2.1.1 Reference genomes and alignment to them 8
2.1.2 Single and paired end sequencing 9
2.1.3 Chain termination sequencing - Sanger sequencing 10
2.1.4 Microsatellite STR Analysis using capillary electrophoresis 10
2.1.5 Next generation sequencing . 10

2.2 Formats for genetic data . 11
2.2.1 FASTA and FASTQ files . 11
2.2.2 SAM and BAM-files . 12
2.2.3 VCF-files . 12
2.2.4 BED-files . 13

2.3 Previous work . 13
2.3.1 lobSTR . 14

2.4 Algorithmic methods . 16
2.4.1 Expectation maximization . 16
2.4.2 Logistic regression . 16
2.4.3 Feature selection . 17

3 Data description and arguments for data selection 19
3.1 Data for read selection . 19
3.2 Data for error model . 19

3.2.1 Choosing microsatellites . 20
3.2.1.1 Pre-processing of training data 21

vii

3.3 Benchmarking data from capillary electrophoresis 23

4 Read selection 25
4.1 Input manipulation . 25
4.2 Results . 28

5 Modelling error 35
5.1 lobSTR error model . 35

5.1.1 Definition . 35
5.1.2 Possible problems . 36

5.2 Improved error model . 37
5.2.1 Stepwise improvements . 37
5.2.2 Determining the genotype . 40
5.2.3 Implementation . 42

5.3 Results . 44
5.3.1 Bechmark data vs. lobSTR error model 45
5.3.2 Benchmark data vs. Updated error model 46
5.3.3 Updated error model vs. lobSTR error model 55

6 Conclusion 59
6.1 Summary . 59
6.2 Suggestions for Future Research . 60

6.2.1 Aligning reads to microsatellites . 60
6.2.2 Further improvements in the error model 60

Bibliography . 61

viii

Chapter 1

Introduction

1.1 Genetic variation

Any two individuals differ in approximately 6 · 106 base pairs in their DNA sequence.
Although this may appear to be a large number, it is only 0.1% of the entire human
genome as the size of the human genome is around 3 · 109 base pairs and each individual
carries two copies of each chromosome. Despite its small relative size this 0.1% can make
a lot of difference and it is believed to be responsible for many of the observable differences
between individuals.

The differences in genetic sequence between individuals are known as genetic variations
and determining these differences is referred to as genotyping.

There exist many different types of genetic variations, the most common one being single
nucleotide polymorphisms (SNPs). Single nucleotide polymorphisms are DNA sequence
variations where a single nucleotide (A, T, G or C) is altered. Indels are another frequent
type of genetic variation. Indels occur when one or more base pairs are present in some
genomes but absent in others. Block substitutions are another type of variation and they
arise when a string of adjacent nucleotides is different between two genomes. An inversion
variant describes cases where the order of the base pairs is reversed in a defined section of a
chromosome. The phenomenon when an identical or nearly identical sequence is repeated
in some chromosomes but not in others is called a copy number variant. Normally indels
and copy number variations are only a few bases long but can span entire chromosomes,
an example of this are individuals with Down’s syndrome which have an extra copy of
chromosome 21 [19].

1

1.2 Microsatellites

Microsatellites are a form of repetitive DNA sequences in the human genome and are some
of the most common form of variation. They occur when a short sequence of DNA (2-6
bases) is repeated a number of times [21]. The mutation rate for microsatellites is much
higher than for other variations and its value has been estimated between 1 · 10−4 and
1 · 10−3 mutations per locus per generation [31]. The reason for this high mutation rate is
their repetitive structure. It causes a secondary DNA conformation that makes replication
slippage events more likely than in other locations of the genome [26]. Replication slippage
is an error which occurs when DNA molecules are copied. The error results in either an
increase or decrease in the number of motif repeats. During replication the copy strand
being created and the original template strand get shifted in their relative positions which
causes a part of the template to either be copied twice or not copied at all, see Figure 1.1.
As a result of this error the newly replicated polynucleotide has either an extra repeat
unit or is missing a repeat unit [12].

The effect of replication slippage is different depending on the cell it happens in and
when it happens. If a slippage event occurs during replication of a sex cell it results in what
is called a germline mutation. If the mutated sex cell takes part in fertilization then the
mutation is passed on to the individual’s offspring. Slippage events can also occur during
the development of somatic tissue and this is called a somatic mutation. The mutated cell
can divide and create more cells carrying the same mutation but the mutation will never
be passed on to an offspring [20]. During some sequencing processes the DNA molecules
in the sample are replicated by PCR amplification as a part of the sample preparation. If
a slippage event occurs during this process it generates stutter noise in the sample which
results in wrong sequencing results from the molecules containing the mutation. This
makes the analysis of the sequencing results harder and may result in genotyping errors.

The high mutation rate causes the number of repeat motifs at a microsatellite lo-
cus, known as the alleles of a microsatellite, to vary greatly between individuals [31].
Each individual carries two copies of each chromosome and hence two alleles of each mi-
crosatellite. No pair of individuals alive today have the same combination of alleles for
all microsatellites [22]. This makes it possible to create a unique genetic profile for every
individual if enough microsatellites are profiled, with the exception of identical twins who
share 100% of their DNA [3]. If both copies of the chromosome have the same allele
of a microsatellite the individual is a homozygote at that microsatellite but if they are
different he is a heterozygote.

Such high variability of repeat numbers between individuals makes the analysis of
microsatellite variations highly desirable and makes it amenable to a wide range of ap-

2

Figure 1.1: An extra repeat element added because of replication slippage [12].

plication. Despite this they remain comparatively understudied and this is in large part
caused by a lack of tools capable of analyzing them [17]. Until 2006 microsatellites were
the most commonly studied class of variation but with the development of new sequencing
and genotyping techniques the focus has shifted to other genetic variations such as single
nucleotide polymorphisms and indels.

Microsatellites have a number of attributes which make their analysis using high
throughput sequencing analysis pipelines very hard. High throughput sequencing is the
most widely used sequencing technology today. This technique generates short DNA frag-
ment sequences called reads which are randomly sampled from the individuals genome.
The reads are then assembled to create the genome of the individual being sequenced.
Reads can be anywhere from 35 base pairs long and up, depending on the details of the se-
quencing technique used but the most common length is around 100 base pairs. For a read
to be useful in microsatellite genotyping it must completely encompass the microsatellite.
If a read only contains a portion of the microsatellite it can only give a lower bound on the
number of repeats and thus only reads fulfilling this condition can be used for determin-
ing the number of repeats [21]. Another challenge is how most popular read-to-reference
aligners (see Section 2.1.1) trade-off between the tolerance of insertions/deletions and
running time. A reference genome is the sequence of a template individual DNA used

3

as reference when finding where on the genome a read originates from. Once reads have
been aligned one can identify differences to the reference individual. Aligning a read to a
reference genome becomes very hard if it contains a microsatellite, even if the microsatel-
lite only has small number of added/deleted repeat motifs compared to the genome used
as reference. This is due to the gaps that the extra/missing base pairs create in the align-
ment [24]. PCR amplification, a routine step in sample preparation for whole genome
sequencing, can create stutter noise. When this happens the DNA amplicons contain a
false repeat length caused by successive slippage events during amplification. It results in
reads declaring a false allele which damages the results of genotyping [18]. The conclusion
to be drawn from this is that despite its desirability, the analysis of microsatellites is very
challenging using the sequencing and analysis techniques available today.

1.3 Outline

The goal of this thesis is to increase the speed and accuracy of microsatellite profiling.
First, we reduce the running time of a microsatellite profiler when running it on previ-
ously aligned sequencing data without damaging its results. A microsatellite profiler is a
program that given sequencing data, determines an individuals’ number of repeats at a
microsatellite locus.

Second, we create a microsatellite genotype caller using population information that
is more accurate than previously presented callers of this kind.

We show that the running time of a microsatellite profiler can be reduced by running
it on previously aligned data and using the output of premapped BAM-files.

We provide a novel microsatellite genotype caller that uses population information
to construct an error model for profiling microsatellites. The model uses the population
information to first determine what distinguishes a sequencing error read or a misplaced
read from a good read and then trains microsatellite and individual specific error models.
Comparison with results from the previously mentioned microsatellite profiler reveal that
the accuracy of genotyping is increased from 87.5% to 96.3%. This is due to the new
approach used to identify different types of sequencing errors and the quality of parameter
estimation.

The disection of this thesis is as follows. Chapter 2 gives an introduction to sequencing
techniques, formats for storing genetic data, some of the previous work done on microsatel-
lite profiling and the algorithmic methods applied. A description and motivation of the
data sets used is given in Chapter 3 along with a description of the capillary electrophore-
sis genotypes used for benchmarking. The input reduction process used to lower the
running time of a microsatellite profiler and its results are presented in Chapter 4. The

4

results indicate that a significant decrease in running time is possible with negligible effect
on the generated profiles when using previously aligned data for profiling. The average
running time reduction achieved for a set of 80 individuals was 74.4% and the average
effect on results was less than 2%. Chapter 5 gives a description of both the error model
applied in the microsatellite profiler examined in Chapter 4 and the error model imple-
mented with the intention of increasing the genotyping accuracy. A comparison of their
performance relative to the capillary electrophoresis genotypes is covered as well. The
comparison shows an substantial improvement in genotyping accuracy for 362 individuals
on 185 microsatellites.

5

6

Chapter 2

Background

Here we give an introduction to concepts necessary while reading the following chapters.
We introduce methods and techniques for sequencing DNA molecules and aligning short
sequences to reference genomes. Formats for storing and annotating genetic data are
introduced and defined. We give a detailed description of the microsatellite profiler used
for running time reduction and for comparison with the genotype caller presented. Last,
we give a brief summary of the algorithmic methods applied.

2.1 Sequencing methods and reference genomes

The goal of DNA sequencing is to determine the order of nucleotides in a DNA molecule.
All sequencing technologies presently available use the same high level process.

First, a sufficient number of DNA molecules is obtained, either through replication of
a DNA molecule from the sample or by using a sample containing an ample amount of
DNA molecules. Next, the molecules are broken into small fragments at random locations
and the order of bases in the fragments is determined. These sequenced fragments are
called reads.
During sequencing every base is given a PHRED quality value which is a log value of the
probability of sequencing errors, this probability is estimated during sequencing and the
PHRED quality value is computed in the following way

PHRED score = −10 · log10(error probability) (2.1)

Bases with a low PHRED score are therefore more likely to be the result of errors during
sequencing. The PHRED scores are one of the attributes considered here when classifying
error reads from true reads.

As the reads are randomly broken, their location is not known and they must be

7

aligned to a reference genome, the DNA sequence of a template individual, to determine
their genomic location. Aligning reads to a reference genome is a non trivial and very time
consuming task, it is prone to errors and for some reads an alignment to the reference
genome can not be found. Alignment to reference genomes is covered in more detail
in section 2.1.1. When the reads where alignment is possible have been aligned to the
reference genome, the DNA sequence has been determined as well as the sample allows.
What varies between sequencing technologies are among other things the read length
and the number of times on average each location in the sample is sequenced, or the
sequencing coverage. The most commonly used sequencing technologies and the ones
used at deCODE break the DNA molecules into fragments that are around 500 base pairs
long and sequence around 100 base pairs from each end of the fragment. The number of
times the sample is sequenced determines the coverage of the sequencing which is defined
as the average number of pieces overlapping each base. In high coverage sequencing data
an error read is less likely to impact genotyping results since many other reads cover the
same genomic area.

2.1.1 Reference genomes and alignment to them

A reference genome is the DNA sequence of a representative individual used to determine
the genomic location of reads generated during the sequencing of another individual. Most
individuals will not have a sequence very different from the reference sequence and genetic
variants can be discovered by considering the difference between the individual being se-
quenced and the reference genome. The first human reference genomes were introduced in
February 2001 when the Human Genome Project (HGP) and Celera Genomics published
their results to that date. The HGP presented a 90 percent complete sequence of all three
billion base pairs in the human genome [1] and Celera presented a nearly complete se-
quence of 92% of the human genome [33]. Both were of comparable quality and since then
many improvements and additions have been made to this sequence, the latest version
was released in December 2013.

Once a fragment of DNA has been sequenced the next step of analysis is to align it to
a reference genome to reveal its genomic location. Alignment programs search the entire
reference genome to find where the sequence being aligned fits best. When reads are
aligned to a reference genome they don’t always match completely, this could be due to
genetic variations, misplacement of the read or sequencing errors for example. The edit
distance from the read to the reference is the smallest number of substitutions, insertions,
and deletions of bases that can be used to transform the read to the reference. Error-
tolerant alignment can reveal whether the sequence has a variation relative to the reference

8

and hence find the differences between the reference and the individual being sequenced
but the procedure is not perfect. To determine where on the genome the read fits best
the alignment programs use a scoring scheme. These scoring schemes give each possible
alignment a score which increases for each base matching the reference and decreases
for each gap or mismatch introduced in the alignment. The alignment with the highest
score is then reported as the location of the read. To be considered valid the score of an
alignment must have a minimum value which can usually be set by the user along with
the parameters of the scoring scheme. The scoring scheme often gives the correct location,
but this problem is particularly challenging in for microsatellites.

2.1.2 Single and paired end sequencing

The two main techniques used in DNA sequencing are single end sequencing and paired
end sequencing which produce single-end reads and paired-end reads, respectively [7].
While the single end approach sequences the DNA fragment from one end only, the
paired-end one sequences it from both ends. This produces read pairs containing reads
from both ends of the DNA fragment. The distance between read pairs is short and
follows a tightly bound distribution. The usage of paired-end reads can help detect re-
arrangements, and because the approximate distance between reads in a pair is known,
alignment algorithms can use this knowledge to align the reads covering repetitive regions
more precisely, see Figure 2.1. This improves the overall alignment quality, especially
in repetitive genomic regions where alignment of reads is hard [6]. All sequencing data

Figure 2.1: Both ends of the DNA fragment are sequenced with a known distance between
then which improves alignment. [6].

analyzed in this thesis comes from paired end sequencing performed using Illumina se-
quencers and when discussing mates of reads this refers to the other member in the read
pair. Paired end sequencing is currently the most widely used form of sequencing.

9

2.1.3 Chain termination sequencing - Sanger sequencing

The Sanger sequencing method uses a purified DNA polymerase enzyme to synthesize
DNA chains that vary in length. The key feature in the reaction mixture used in this
method is including chemically modified nucleotides that terminate the elongation of the
DNA strands. This gives DNA fragments of varying length which are then separated by
size using gel or capillary tube electrophoresis. In this separation method an electric field
pulls molecules across a substrate or hairlike capillary fiber and it is sensitive enough to
distinguish DNA fragments with only a single nucleotide length difference. The fragments
line up by size and the base at the end of each fragment can be determined. From this, the
DNA sequence can easily be read. Each reaction can result in a read between 750-1000
base-pairs long using the latest machines [11].

2.1.4 Microsatellite STR Analysis using capillary electrophoresis

This method knows beforehand the location of the microsatellite. A unique sequence on
either side of the microsatellite is identified and a primer is used to amplify the region
containing the microsatellite. Fragments containing the microsatellite sequence are cut
and analyzed using capillary electrophoresis. Since this process can distinguish DNA
fragments with only a single nucleotide length difference this enables one to correctly
identify the allele of the microsatellite based on the length of the sequence. The results
from this procedure however are not perfect since the resulting eletropherograms have to
be manually inspected to accurately determine the genotype. Software has been developed
with the intention of automating this inspection process as much as possible. An example
of this is the Decode-GT program which classifies genotyping decisions into good, bad
and ambiguous decisions based on the properties of their electropherograms. Only the
ambiguous decisions would then need manual inspection while the bad ones are discarded
and the good ones are taken as truth without inspecting them [27].

2.1.5 Next generation sequencing

Next generation sequencing is a synonym for technologies that parallelize the sequencing
process and produce thousands or millions of sequences concurrently. The reads obtained
using this method can be anywhere from 35 base pairs long and up, but the sequencing
error rate increases as the read length increases. The most widely used next generation
sequencing technology was developed by Illumina and generates reads that currently have
a length of around 100 base pairs. All data used in this thesis was generated using the
Illumina sequencing technology. Most current next generation sequencing methods apply

10

the paired end sequencing technology [29].

2.2 Formats for genetic data

2.2.1 FASTA and FASTQ files

The FASTA format is text-based and used to represent both amino-acid and nucleotide
sequences. In these files nucleotides and amino acids are represented using a single letter
to encode them. It is possible to have sequence names and/or comments precede the
sequences [9]. The format was originally created by Bill Pearson as an input format for
his FASTA suite of tools, but has become a standard in bioinformatics [28]. A FASTA
file stores sequences that all begin with a description line which is distinguished from the
sequence data by a ">" symbol as its first letter. Following this symbol is a sequence
identifier and following the identifier is a sequence description. Both the sequence identifier
and description are optional but if they are present there can not be a space between the
">" symbol and the identifiers first letter. All lines of text in a FASTA file should be
shorter than 80 characters. The end of a sequence is identified by the beginning of the
next one, i.e. a ">" symbol, or of course the end of the file itself [9]. Figure 2.2 shows an
example of a sequence in the FASTA format

>gi|186681228|ref|YP_001864424.1| phycoerythrobilin:ferredoxin oxidoreductase
MNSERSDVTLYQPFLDYAIAYMRSRLDLEPYPIPTGFESNSAVVGKGKNQEEVVTTSYAFQTAKLRQIRA
AHVQGGNSLQVLNFVIFPHLNYDLPFFGADLVTLPGGHLIALDMQPLFRDDSAYQAKYTEPILPIFHAHQ
QHLSWGGDFPEEAQPFFSPAFLWTRPQETAVVETQVFAAFKDYLKAYLDFVEQAEAVTDSQNLVAIKQAQ
LRYLRYRAEKDPARGMFKRFYGAEWTEEYIHGFLFDLERKLTVVK

Figure 2.2: An example of a sequence in the FASTA format

The FASTQ format is a simple extension to the FASTA format which makes it possible
to assign a numeric quality score to each element in a sequence [13]. This format is only
used for nucleotide sequences because the quality score is defined for sequences created
using next generation high throughput sequencing techniques which are only used for
sequencing DNA, not proteins. In FASTQ files the description line is identified by an
"@" symbol as its first letter and the next line contains the actual sequence. The third
line must start with a "+" symbol and then optionally repeats the description line. The
fourth and last line contains the qualities which are defined in terms of the estimated
probability of error during sequencing [13]. Figure 2.3 shows an example of a sequence
in the FASTQ format

11

@SRR014849.1 EIXKN4201CFU84 length=93
GGGGGGGGGGGGGGGGCTTTTTTTGTTTGGAACCGAAAGGGTTTTGAATTTCAAACCCTTTTCGGTTCCAA
CCTTCCAAAGCAATGCCAATA
+SRR014849.1 EIXKN4201CFU84 length=93
3+&$#"""""""""""7F@71,’";C?,B;?6B;:EA1EA1EA5’9B:?:#9EA0D@2EA5’:>?:\%A;A
8A;?9B;D@/=<?7=9<2A8==

Figure 2.3: An example of a sequence in the FASTQ format

2.2.2 SAM and BAM-files

SAM stands for Sequence Alignment/Map format and SAM-files store aligned sequencing
data, i.e. sequencing data that has been aligned to a reference genome. The SAM format
is a TAB-delimited text format that contains an optional header section, where all lines
start with a "@" symbol. Following the header is an alignment section and each alignment
line represents the alignment of a single DNA-sequence read to a reference genome. Each
line in the alignment section must have 11 mandatory fields that contain necessary align-
ment information, these include for example mapping position and quality. In addition,
alignment lines can have a variable number of optional fields for other information that
might be aligner specific. The mandatory fields can have the values ’0’ or ’*’ (depending
on the field) if the corresponding information is unavailable [23]. BAM files are com-
pressed binary versions of SAM files and one can translate from one format to the other
relatively easily using for example the Samtools software. Most aligned sequencing data
is stored in the BAM format due to the size convenience it offers relative to files in the
SAM format [23].

2.2.3 VCF-files

Variant Call Format (VCF) is a generic text format used to store genetic variation data
such as SNPs, insertions, deletions and structural variants. VCF files are normally stored
in a compressed manner. The format was developed for the 1000 genomes project and
has since then become the standard format for representing genetic variations. [14].
All VCF files contain the following three sections. Meta-information lines that all begin
with "##", one header line beginning with "#CHROM" and data lines that contain the
variation type and position along with genotype data, one variant per line. Each VCF
record(data line) has the same number of tab-separated fields as the header line. The
symbol "." is used to denote missing data.[4]

12

2.2.4 BED-files

BED stands for Browser Extensible Data and BED is a TAB-delimeted text format for
defining genomic regions. It is used by the UCSC genome browser and defines one ge-
nomic region, called a BED record, per line [2]. BED records have three required fields
and nine additional fields which are optional. The required BED fields are the name of
the chromosome, the starting position of the feature in the chromosome and the ending
position of the feature in the chromosome. The first base in a chromosome is numbered
0 and the ending position is not included in the display of the feacture. For example, the
first 100 bases of a chromosome are defined with a starting position of 0 and an ending
position of 100 [8].

2.3 Previous work

A number of attempts have been made to develop software capable of reliably genotyping
microsatellites. These include

• REDEEM (Read Error DEtection and Correction via Expectation Maximization).
The software attempts to model and correct errors in short reads generated by
next generation sequencing technology with a repeat aware approach. This would
simplify downstream analysis of the sequencing data since it can assume absense of
errors with reasonable confidence [34].

• lobSTR takes in raw sequencing data, identifies reads possibly containing microsatel-
lites, determines the repeat motifs of those reads and aligns them to a reference
genome. The set of reads aligned to each microsatellite is passed to an error model
provided with the software which determines the final genotype [21]. Further defined
in Section 2.3.1.

• RepeatSeq uses informed error profiles to determine human microsatellite genotypes.
The method applies a fully Bayesian approach and uses three attributes to determine
which error profile to apply when genotyping. These are the length of the repeat in
the reference genome, the length of the repeat motif and the average base quality
of the bases in the reads. The error profiles to choose from are provided with the
software and were created using near homozygous fly genomes [22].

• GenoTan uses 2 regression steps to determine the inherited genotype at a microsatel-
lite loci. The first roughly estimates genotypes for the microsatellites using a NLS
(Non-linear Least Square) fitting method. The genotypes from the first step are

13

then used to estimate parameters used in the second step where a final genotyping
decision is made [32]. This method only determines genotypes for microsatellites
containing homopolymer runs, i.e. when the repeat motif is a single base.

We chose to focus on lobSTR both for reducing running time and for comparison with
genotyping accuracy since it is the most highly cited of these. We now give a detailed
description of the software.

2.3.1 lobSTR

LobSTR is a microsatellite profiler for personal genomes that works on raw sequencing
data in the form of FASTA files, FASTQ files or BAM files. It produces a VCF file
specifying an individuals’ alleles for all microsatellite loci covered in the input. Before
reaching this result the program performs two steps. The first step identifies reads possibly
containing microsatellites, determines their repeat sequence and aligns them to a reference
genome. The second step determines the alleles for each microsatellite based on the reads
aligned to it in the first step [21].

1.Sensing and alignment

Detect informative STR reads

ACGGCTAGC GTGTGTGTGTGT GCACAGAGT

Determine repeat unit

GT

Anchor flanking regions to reference

ACGGCTAGCGTGTGTGTGTGTGCACAGAGT

Return # repeat units

GT x 6

2.Allelotyping

Determine maximum likelihood
allelotype at each STR locus

GT x 6
GT x 8

Figure 2.4: Step 1: Find microsatellite reads and align them to a reference genome. Step 2:
Determine the genotype [21]

In the first step, entropy calculations are performed on all reads in the raw sequencing
data to predict whether a read contains a microsatellite. This is done by splitting each
read into overlapping windows of user specified size (default is 24 base pairs with a 12
base pair overlap). One or more consecutive windows that have entropy levels below a
certain threshold and have windows with normal levels of entropy on each side are the ones
of interest. To compute the length of the repeat motif in reads marked as interesting,

14

the algorithm uses a spectral analysis approach. First, all consecutive windows in the
read, having an entropy score below the threshold are merged and then a fast Fourier
transform is performed along columns of a matrix representation of the merged sequence.
Because microsatellites have a unique fingerprint in the frequency domain this enables
the algorithm to determine the length of the repeat motif. To finally determine the motif
sequence all possible sub-sequences of the length returned by the spectral analysis are
recorded and the one occurring most frequently is chosen.

Alignment of the reads is achieved by comparing the flanking windows with normal en-
tropy scores to reference flanking areas of all considered microsatellites with the identified
repeat sequence and the ones achieving the best alignment are the result. The minimum
flanking region length for alignment can be specified by the user and has a default size of
8 base pairs. The reference flanking areas are stored in an index consisting of one file for
each repeat motif and a BED-file containing the genomic coordinates of all microsatellites
considered. There are two and indices available with the lobSTR software. The smaller
one contains the reference flanking areas for microsatellites and the microsatellite genomic
coordinates BED-file in the hg18 build of the human reference genome. The bigger one
is an extension of the smaller one and the BED-file and the reference flanking areas are
all given in the hg19 build of the human reference genome. This method of alignment
eliminates the problem of a gapped alignment which occurs frequently in other alignment
programs when dealing with repetitive areas in the genome. A BAM file containing the
alignments of all chosen reads as well as their repeat motifs is the output of this step along
with another file containing statistics on the results. In the second step, lobSTR performs
genotyping using microsatellite aligned reads from the BAM-file generated in the first step
along with an error model that models the probability that a read is a result of stutter
noise. The model is provided with the software and can be used directly but the user can
also choose to train a new model on his own data. This is however only possible on male
genomes containing a large number of reads aligned to microsatellites located on the sex
chromosomes. Since males have only one copy of each sex chromosome homozygosity can
be assumed and used to identify error reads. Included in the noise model as influential
factors are motif length, microsatellite region length, GC content of flanking regions and
microsatellite purity. This model is described in detail in Chapter 5. A visualization of
the whole process can be seen in Figure 2.4.

15

2.4 Algorithmic methods

2.4.1 Expectation maximization

The expectation maximization algorithm is used for estimating parameters of probabilistic
models with incomplete data by alternating between 2 steps, the E-step and the M-step.
In the E-step the algorithm computes an expected probability distribution of missing
data given the current model. In the M-step the algorithm then re-estimates the model
parameters using the data completion obtained in the other step. The name of the E-step
is derived from the fact that it is not necessary to compute the probability distribution
over the completions explicitly, it only has to compute the Expected statistics over the
completions. In the same way the name of the M-step is derived from the fact that re-
estimating the model is actually Maximizing the expected log-likelihood of the data [15].

Here we will use expectation maximization in error model training. We will train classi-
fiers to classify between true reads and error reads caused by undefined errors and estimate
rates of slippage errors at each microsatellite location considered, see Section 5.2.3.

2.4.2 Logistic regression

Logistic regression is used for estimating the probability of an event. It uses the knowledge
obtained from relevant explanatory variable/s to predict the probability p of an event
occurring. This is different from linear regression where the event we want to predict is a
precise numerical value, for example the height of a person in a specific population. The
relationship between the predicted probability and explanatory variables/s is not linear
and is described instead using the logistic regression function where p is the probability
we want to predict and x is the independent relevant variable:

p =
eb0+b1x

1 + eb0+b1x
(2.2)

During logistic regression one estimates the values of b0 and b1 using the explanatory
variable [10]. The logistic curve is frequently used to model population growth, survival
from a disease or the spread of a disease [30].

Here we will use logistic regression to fit a regression curve for each microsatellite
considered using expectation maximization. The logistic regression will compute for each
read a probability that this read supports a true allele.

16

2.4.3 Feature selection

Feature selection is the process of selecting a subset of the attributes available in the
training set and using this subset as variables in classification. The training set is a set of
observations for which we know the labeling, i.e. we know the class of each sample. Each
sample then has characteristics that are called attributes and if many samples within
the same class have the same value of a specific attribute then it characterizes the class.
The purpose of a classifier is to determine the class of the sample/s given as input.
Feature selection has two main purposes. First, it makes the training and application
of a classifier more efficient by decreasing the size of the effective attributes. This is
very important for classifiers that are expensive to train. Second, feature selection often
increases classification accuracy by eliminating noise features. A noise feature is a feature
that increases the classification error on new data when it is added as an attribute. For
example an attribute can contain no information about a class but it happens to have the
same value for all examples from a given class. Including this attribute might then result
in a classifier that misassigns test samples containing this value of the attribute to this
class. When an accidental property of an attribute in the training set causes an incorrect
generalization like this it is called overfitting.

We can view feature selection as a method for replacing a complex classifier (using all
features) with a simpler one (using a subset of the features) [25].

Here we will use a form of feature selection to determine the optimal subset of features
for fitting a logistic regression curve that predicts the probability that a read reports a
true allele.

17

18

Chapter 3

Data description and arguments for
data selection

The DNA sequence data used in this thesis is whole genome, paired end, sequence data
of Icelanders generated at deCODE genetics.

3.1 Data for read selection

The data used to examine the effects of input reduction on the microsatellite profiling
results came from 80 BAM-files, each containing sequencing data for one individual. The
reads in the BAM-files were all aligned to the second latest version of the human genome
reference (hg19). We chose a set of 80 individuals and the average file size before input
reduction was 58.9GB. Figure 3.1 shows the size distribution of these files.

3.2 Data for error model

The error model training was performed using data stored in 362 BAM-files, each con-
taining sequencing reads from one individual. The reads were aligned to the third latest
version of the human genome reference (hg18). Error models were trained for 185 mi-
crosatellites coming from all chromosomes.

The coverage of sequencing data is a good attribute to measure its quality. High
coverage data gives genotyping results that are more conclusive and reliable. A definition
of sequencing data coverage is given in Chapter 2. We chose a set of 412 individuals whose
BAM files contained sequencing data with coverage greater than 40x.

deCODE genotypes which were obtained by microsatellite analysis using capillary
electrophoresis were used as benchmarking data to estimate the accuracy of the error

19

Figure 3.1: Size distribution of BAM-files used for read selection.

model, these are described in Section 3.3. This microsatellite analysis method has been
estimated to be around 99% accurate so they were taken to be the truth. No benchmarking
data turned out to be available for a number of the original 412 high-coverage individuals
and some files were inaccessible which reduced the set to 383 individuals. Furthermore,
inconsistencies between capillary electrophoresis genotyping rounds were discovered for
21 out of these 383 so the final set contained 362 individuals. These inconsistencies are
explained further in Section 3.3.

3.2.1 Choosing microsatellites

Care had to be taken when choosing microsatellites because comparison of genotyping
results to the benchmark data had to be possible. The BAM-files of the chosen individuals
had to contain reads covering the microsatellite and benchmark data had to be available
for the individuals at this microsatellite as well.

Error models should be trained for microsatellites where matching benchmarking and
training data but they should also be confirmed previously as good genetic markers.
Because of this the set of microsatellites considered contained only ones that had been

20

verified at deCODE to be good markers in the paper A direct characterization of human
mutation based on microsatellites [31].

The first criteria for choosing microsatellites from the set considered was that bench-
mark data had to be available for at least 150 of the 362 individuals. Furthermore,
BAM-files of at least 350 individuals had to contain reads aligned to the microsatellites.
This criteria returned 457 microsatellites.

Next, the quality of the sequencing data stored in the BAM-files used for training was
assessed. The number of instances where the data never could have given the correct result
was computed for all 457 microsatellites. The correct result for a microsatellite in a given
individual was considered possible when there existed read/s reporting the right allele/s
in the set of reads covering the microsatellite in the individual. The results showed that
the average ratio where the correct result was never possible was 3.6% per microsatellite
with a maximum of 60.1% and a minimum of 0%. The microsatellites retained were the
ones for which this ratio was 1% or less since this is the expected value for this number.
This reduced the final set size to 185 microsatellites.

Two C++ programs were written using a sequencing analysis library called SeqAn to
identify the microsatellites satisfying the criteria from the set considered and to extract
relevant attributes. The first of the two programs identified the microsatellites satisfying
the data availability criteria and filtered reads aligned to them from the BAM-files. The
second one took as input the filtered reads and extracted from them the attributes chosen
for model training. These programs will now be described in detail.

3.2.1.1 Pre-processing of training data

To identify and align reads containing microsatellites the sensing and alignment step of
lobSTR was run on the 362 high-coverage individuals. The training data was extracted
from the BAM-files generated by this step as they contained only reads aligned to mi-
crosatellites.

The sequencing method used to obtain the benchmarking genotypes returns the loca-
tion of primers close to the microsatellite rather than its exact coordinates. Because of
this the genomic coordinates for microsatellites in the training data did not match the
ones for the benchmarking microsatellites.

To translate between these two types of microsatellite coordinates a C++ program was
written. The program goes through a BAM-file generated in the sensing and alignment
step of lobSTR and checks for all reads if the coordinates of the microsatellite they are
aligned to fall between the coordinates of any benchmarking microsatellite. When such
a read is encountered a translation between the two coordinates for that microsatellite is
obtained. To find all "translate-able" microsatellites and determine how many individu-

21

als they occur in, this program was run on the BAM-files generated in the sensing and
alignment step of lobSTR for all chosen individuals. A BED-file containing benchmarking
microsatellite coordinates for all microsatellites considered was passed along with them.
Each time a translation was found it was written to an output file common to all indi-
viduals. This made it possible to count for all translate-able microsatellites how many
individuals they occurred in. The ones occurring in more than 350 individuals were cross-
referenced with the microsatellites where benchmarking data was available for more than
150 individuals. The intersection of those two contained 457 microsatellites. To then
create BAM-files containing only reads aligned to these chosen microsatellites the same
program was run again on same BAM-files but this time the BED-file passed along with
them contained only the coordinates of the chosen microsatellites. An option was added
to the program to specify whether the matching reads should be written to an output file
for each individual and switched on for this second run.

At this point the data was still in BAM-format so some further manipulations were
made before the data was imported into R where the error model was implemented. To
achieve this and to get an rough estimation of genotypes used as error model initialization
a second C++ program was written, again using SeqAn. This program computed, for
each read in a BAM-file, the various attributes thought to indicate whether the read
represented a true allele, was a result of replication slippage or a result of some other error.
To initialize the error model training all reads supporting the most frequent allele at each
location were labelled as representing a true allele. If the number of reads supporting
the second most frequent allele was more than 15% of the number of reads supporting
the most frequent one then those were marked as representing a true allele as well and
the individual was considered a heterozygote. All reads supporting an allele with one
motif-repeat less than either of the true alleles at each location were marked as a result
of replication slippage during PCR amplification and the rest were marked as error reads.
All the computed values and the labeling were then written to an output file to be passed
to R where the data quality estimation which identified the cases where a correct result
was never possible was performed.

22

3.3 Benchmarking data from capillary electrophoresis

Genotypes obtained using microsatellite analysis by capillary electrophoresis available at
deCODE were used as benchmarking data. Prior to 2006 microsatellites were the most
common form of genetic variants studied at deCODE and most of the data is generated
before that date. A file containing all genotypes available for the initial 412 individuals was
generated and this revealed the individuals for which no benchmarking data was available.
As mentioned earlier, the removal of these individuals and the ones with inaccessible
BAM-files reduced the set size to 383 individuals.

The benchmarking data from the 383 individuals was examined further and incon-
sistencies in results between genotyping rounds were identified in 21 individuals. These
rounds were all stored in the same database but only one copy of results for each in-
dividual was initially extracted since these inconsistencies were not anticipated. The
inconsistencies makes it impossible to decide which genotype is the true one and thus
these individuals could not be included. Causes for this may include sample mix ups or
other types of man-made errors during sample preparation, sequencing and genotyping.
The final set therefore contained 362 individuals.

The file containing all available genotypes for the final set of 362 individuals was used
to determine the microsatellites where data was available for more than 150 of the indi-
viduals. The microsatellites where benchmarking data was available for more than 150
was cross referenced with the microsatellites where training data was available for more
than 350 individuals and the intersection returned 457 microsatellites. Since the coordi-
nates for the deCODE-microsatellites are not exact coordinates but rather boundaries on
a genomic region containing them these coordinates did not match the ones returned by
lobSTR exactly. A translation scheme was created in the C++ program mentioned in the
previous section to handle this. The quality assessment of the data described in Section
3.2.1 then determined the 185 microsatellites included in the final set.

23

24

Chapter 4

Read selection

Here we explain the input filtering process used to reduce the running time of a microsatel-
lite profiler. We present the results which are very conclusive and show an average running
time reduction of 74.4% with very little effect on the microsatellite profile generated, less
than 2% on average. For unfiltered input files containing sequencing data for 80 individ-
uals the average running time was over 100 hours. This would sum up to 2.000.000 CPU
hours for sequencing data of 20.000 individuals which is not feasible. Since the running
time has had a prohibitive effect on the usage of this tool at deCODE this type of data
pre-processing could possibly enable its usage in the future.

4.1 Input manipulation

We select reads from BAM-files to perform microsatellite profiling using the fact that
they are aligned. This filtering reduces the input size for profiling and as a result the
running time. We compare the final genotyping results with results obtained using the
entire contents of the BAM-file.

The input reduction utilizes that because the sequencing data has already been aligned
it is possible to select only reads aligned to known microsatellite locations as well as reads
that have not been properly aligned. We use the BED-file provided with the microsatel-
lite profiler. This file contains locations of all microsatellites considered by the profiler
and allows us to choose only reads with alignments intersecting these locations, along
with their mates. We will also include all unaligned reads along with their mates. The
unaligned reads are included since we don’t know if they contain microsatellites or not.
The sequences already aligned to a non-microsatellite sequence are unlikely to contain to
a microsatellite while sequences that are unaligned may in fact contain a microsatellite
but have not been aligned because they are too different from the reference.

In addition to this, the input reduction procedure throws away low quality reads, i.e.

25

the ones that fail platform or vendor quality checks and reads that are PCR or optical
duplicates. This should increase the result quality since the reads being removed could
possibly affect the results in a bad way. We run the microsatellite profiler on only the
filtered reads and since this decreases the input size it decreases the running time as
well. This is done without damaging the genotyping results because the reads that are
discarded very likely do not contain microsatellites.

The high level idea behind the filtering process is to simultaneously scan the BAM-file
and BED-file given as input and compare all reads in the BAM-file with the current BED-
file microsatellite coordinates. If a read intersecting a microsatellite is found it is filtered
along with its mate. When the BAM-file scan reaches reads with alignment locations
greater than the current BED-file microsatellite coordinates it updates them to the next
one behind it.

The results indicate that the difference between results obtained from filtered input
and unfiltered input is very little and can be explained in large by the removal of the low
quality reads performed by the filter. Thus, it should be safe to conclude that the benefits
from filtering the input are greater than the loss and that this is a good way to reduce
running time when generating microsatellite profiles using previously aligned sequencing
data.

Pseudocode . We let rsi and rei denote the start and end positions of the alignment
for read number i, respectively. We set ms

j and me
j as the start and end positions of

microsatellite number j, respectively. For properties regarding the read we let rui be a
logical value which is true if read i is unaligned, rqi be set to true if the read passes
quality checks and rdi be set to true if the read is an optical duplicate. Both the reads
and microsatellites must then be sorted in the same way such that ∀i, k if i < k then
ri comes before rk and ∀j, l if j < l then mj comes before ml in the sorting. Given a
BAM-file containing reads r1 . . . rn and a BED-file containing the genomic coordinates of
microsatellitesm1 . . .mb we will start with j = 1, consider each read from 1 to n separately
and check for the following conditions

1. Is rqi = FALSE? If yes, discard it and set i = i+ 1.

2. Is rdi = TRUE? If yes, discard it and set i = i+ 1.

3. Is rui = TRUE? If yes, print ri and its mate to the output and set i = i+ 1.

4. Is rei < ms
j? If yes, discard it and set i = i+ 1.

5. Is rsi > me
j? If yes, set j = j + 1 and start from 4. again.

26

6. Is rei ≥ ms
j and rei ≤ me

j? If yes, print ri and its mate to the output and set i = i+1.

7. Is rsi ≥ ms
j and rsi ≤ me

j? If yes, print ri and its mate to the output and set i = i+1.

8. Is rsi ≥ ms
j and rei ≤ me

j? If yes, print ri and its mate to the output and set i = i+1.

9. Is rsi ≤ ms
j and rei ≥ me

j? If yes, print ri and its mate to the output and set i = i+1.

Figure 4.1: The black line at the top shows the microsatellite region. Condition 4 deals with
the blue read, condition 5 with the red one, condition 6 with the green one, condition 7 with the
orange one, condition 8 with the purple one and condition 9 with the pink one.

Implementation The input reduction program was written in C++ using the sequence
analysis library SeqAn which allows for easy reading and manipulation of data stored in
BAM-files [16]. After sorting and preprocessing the BED-file containing the microsatellite
locations it can be passed to the program along with a BAM file and a name for the output
BAM-file. The program goes through the input BAM-file sequentially in parallel with the
location file comparing all read alignments to the current microsatellite location. If we
find an unaligned read or a read with an alignment intersecting a microsatellite then we
mark it and its mate for writing to the output BAM-file. When a read with an alignment
located after the current microsatellite is read from the BAM-file then the value of the
current microsatellite is updated to the next one. Because of this it is very important
to consider the sorting of the BAM-file and make sure this sorting matches the location
BED-file.

27

4.2 Results

To examine the effects of these input manipulations we now reduce the size of the 80 BAM-
files chosen earlier, see Chapter 3. The average running time of the filtering program was
1.33 hours (maximum 2.69 hours, minimum 0.63 hours). File size reduction decreased the
average BAM-file size from 58.9GB (maximum 123GB, minimum 28GB) to an average of
7.7GB (maximum 15GB, minimum 3.8GB). This gives an average imput size reduction
of 86.9% (maximum 93.9%, minimum 84.5%). Figures 4.2 and 4.3 visualize this. The
first one shows the file size before reduction in GB on the red line and the size for the
corresponding file after reduction in GB on the green line and the second one shows a
histogram of the size reduction percentages.

Figure 4.2: The red line shows file sizes before filtering and the green one after filtering for the
corresponding files.

28

Figure 4.3: Histogram of size reduction in percentages

We run the lobSTR sensing and alignment step on both the filtered and original BAM-
files. Because it would have been very computationally expensive to run the program using
the larger BED-file and index the smaller one was chosen.

Effects on size of generated files. We estimate the effect that the filtering has on the
BAM-files generated in the sensing and alignment step. We do it by computing the size
ratio between a file generated using the whole BAM-file of an individual and the filtered
BAM-file of the individual for all 80 individuals. This shows an average size reduction
of 5.4% which indicates that most of the reads identified by lobSTR as microsatellite-
containing were present in the filtered input but not all. Figure 4.4 shows the size of
the generated BAM-files, red line representing the size when using the original BAM-files
as input and the green line the size when using the reduced input. The four drops (at
individuals: ≈ 17, 44, 72 and 80) observable in the green line were examined further and
the BAM-files of these individuals turned out to have an unusually high content of low
quality and duplicate reads which the filter removed but were still present in the output
from the unfiltered BAM-files.

29

Figure 4.4: Red line shows output size from original files and green line from filtered files.

Effects on running time. We consider the running time and for the original BAM-files
the average was 119.5 hours (maximum 253.3 hours, minimum 60 hours) while the average
was 30.1 hours (maximum 55 hours, minimum 16.5 hours) for the filtered BAM-files. This
gives an average of 74.4% reduction in running time (maximum 88.5%, minimum 69%),
this is visualized in Figure 4.5 where the running time for the original BAM-files is shown
on the red line and the running time for the same BAM-files after size reduction is shown
on the green line.

Effects on number of profiled microsatellites. Since the desired result is of course
a microsatellite profile for each of the 80 individuals in the form of a VCF-file the next
step is to pass the two versions of BAM-files generated in the first step to the second
step of lobSTR which performs the genotyping. Here the input sizes between the BAM-
files generated from the filtered input and the unfiltered input do not differ enough to
influence the running time so it is not documented. We compare the resulting VCF-files,
on average the BAM-file generated from the reduced input returned genotypes for 155400
microsatellites (maximum 169126, minimum 116051) while the BAM-file generated from

30

Figure 4.5: Red line shows running time for original files and green line for filtered files.

the original input returned genotypes for 158084 microsatellites on average (maximum
172145, minimum 117986). On average the number of microsatellites genotyped using the
reduced input was 98.3% of the number of microsatellites genotyped using the original
input. Figure 4.6 shows this comparison per individual. Of the microsatellites found in
both cases the VCF files agreed on 99.4% of them on average. For a total comparison the
smaller input found and agreed with 97.8% of the microsatellites from the bigger input
on average.

Analyzing differences in results. To better understand the difference in number of
genotyped microsatellites we analyze both versions of BAM files generated in the sensing
and alignment step, i.e the one generated using the filtered input and using the unfiltered
input. In both files we check the coverage of every microsatellite genotyped in the VCF-
file generated using the unfiltered BAM-file as input. The results were that on average the
BAM-file generated in the sensing and alignment step using the reduced input covered
98,4% of the loci in the VCF file while the one using the original input covered all of
them. To see if the microsatellites were covered by a similar number of reads in each file
this ratio between covering reads was computed for all microsatellites in all individuals.
The left side of Figure 4.7 shows a histogram of this ratio for all covered microsatellites

31

Figure 4.6: Red line shows number of microsatellites genotypes for original files and green line
for filtered files.

in a sample individual.

To explain any difference in coverage ratio both BAM-files generated in the sensing
and alignment step were analyzed further. The reads only present in the file generated
using the original BAM-file as input were identified. These were located in the original
BAM-file, checked for properties indicating low quality reads and optical duplicates and
removed if such were present. The coverage ratio between microsatellites in both files
generated in the first step was then computed again. The right side of Figure 4.7 shows
the results of this. Close to 100% of the covered microsatellites now have a coverage ratio
of 1 between the files generated using the original and reduced BAM-files. This indicates
that the difference in results was due to low quality reads present in the files generated
using the unfiltered input but not in the ones generated using the filtered input and that
the filtering had no effect on the resulting genotype for almost all loci. This procedure
also raised the average size ratio between the BAM-files generated by the first step from
94.6% to 97%

Last, we examine was why some microsatellites were genotyped differently when using
the reduced BAM-file as input and the original BAM-file as input. The average num-
ber of microsatellites the VCF-files disagreed was 847 microsatellites out of the 158084
microsatellites genotyped on average. This is an average ratio of 0.5%. We looked at
the reads covering these locations that are only present in the BAM-file resulting from

32

Figure 4.7: Coverage ratio between BAM-files, original on left and on right when low quality
and duplicate reads have been removed.

running the first step using the original BAM-file as input. We went further on to locate
these reads in the original BAM file and checked their quality and location to understand
why they are not a part of the filter’s output. On average 12% of the reads covering these
locations only in the output generated using the original files as input were discovered to
either have low quality or were PCR optical duplicates. It is possible that this contributed
to the difference in results.

33

34

Chapter 5

Modelling error

Here we will start by giving a detailed definition of the error model provided with lobSTR
which we will use for comparison with our error model. Possible problems with the model
will be discussed. Next we give a step by step description of the development of our
model. Last, results from both gentype callers will be presented and compared to each
other and the benchmark data. Our results improve the genotyping accuracy from 87.5%
to 96.3%.

5.1 lobSTR error model

5.1.1 Definition

The error model from lobSTR is trained using data aligned to sex chromosomes on male
samples since they are hemizygous, meaning that a male individual has only one copy of
each sex chromosome.

The model is generative and considers two aspects of stutter noise, the first one ad-
dresses the probability sj that a read covering a microsatellite j is a result of stutter noise.
The second one expresses the distribution of error lengths, D(e), i.e. the probability of
error length e given that there is stutter noise. Four characteristics are used to predict
sj for each microsatellite j. These are the length of the repeat motif, the STR region
length (which refers to the length of the entire region spanned by the microsatellite), the
GC content of the microsatellite’s flanking regions and STR purity. STR purity is a score
that measures the purity of the STR sequence and is based on the suggested Tandem
Repeats Finder scoring scheme with match=2, mismatch=-7 and indel=-7. Therefore the
maximum possible score for a perfectly pure STR sequence (e.g. ATATATATATAT) is 2 ·
(length of STR region). These characteristics are modelled as having the same effect on
stutter probability in every location, i.e. there is only one model for all microsatellites.

35

To compute sj for a read covering microsatellite j the model plugs in the value of these
four attributes at that microsatellite.

Stutter noise where the length is a multiple of the repeat motif length, is modelled as
being Poisson distributed. Stutter noise creating non unit errors is modelled to have a
geometric distribution with p = 1

x̄+1
where x̄ is the average error modulo the repeat motif

length. Stutter noise tends to delete repeat units rather than increase their number and
because of this an extra parameter q is added to the model representing the probability
that stutter will increase the true allele length. The final expression for the probability
of error length e given a repeat motif length of m then becomes

D(e,m) = Pois(λ = m) · Z ·Geom
(
p =

1

x̄+ 1

)
· Y (5.1)

where Z is an indicator variable that is 1 if e 6= 0, else 0 and Y is another indicator variable
equal to q if e > 0, else 1− q.

This model computes the probability, P (L|A,m), of generating a read with a mi-
crosatellite of length L when the true microsatellite length is A in a hemizygous locus, i.e.
only one chromosome copy is present, with a repeat motif length of m. For a microsatel-
lite locus where two copies of a chromosome are available and the true lengths are A and
B the probability of this is P (L|A,B,m) = 1

2
· (P (L|A,m) + P (L|B,m)) since each read

has equal possibility of coming from either allele. Since all PCR rounds are independent,
the probabilities of stutter noise between reads are also independent and we can multi-
ply them together to compute the likelihood of getting this set of reads given a specific
genotype. This kind of independence allows the usage of log-likelihood, the sum of logs
of probabilities for all reads covering the same microsatellite is maximized with respect
to A and B in order to determine the alleles present in the individual being genotyped.
Along with the score, lobSTR requires 20% of reads to support an alternative allele for a
location to be classified as heterozygous and 50% of the reads must support the resulting
alleles [5].

5.1.2 Possible problems

Because the model was trained only on microsatellites of male samples on the sex chro-
mosomes it is not able to capture per location error, i.e. the four characteristics used
to predict the probability of stutter noise at each microsatellite location might not have
the same effect on other chromosomes. As we have data available for a large number of
individuals we develop and apply a more complex estimation of the slippage rate at each
microsatellite. Furthermore, the quality of alignment is not considered in the classifica-
tion but this quality heavily contributes to how reliable a read is for genotyping. In this

36

model all reads are considered real or a result of stutter noise. Thus the only type of error
accounted for is stutter noise created due to slippage events during sample preparation.
Other types of sequencing errors or misplacement of reads are not considered.

5.2 Improved error model

We start with an error model that uses a simple heuristic to estimate the rate of slippage
events on a per microsatellite basis. The first update is to add a logistic regression
classification to the model. This accounts for the fact that slippage events are not the only
possible type of errors and the regression is trained to identify other types of errors. Next
we update our estimate of the slippage rate to include the contribution of the individual
by estimating a slippage rate for each individual. We then model the slippage in each case
to be the sum of the individual and microsatellite contributions. Because this can lead
to overestimation of slippage rates we update the estimate by weighing contributions of
individuals and microsatellites with their variance to reduce the effect of noisy data in the
final estimates. The method used for determining the genotype is refined twice. First by
increasing the tolerance for error reads in the genotype and second by considering the fact
that slippage events are more likely to delete repeat units than to increase their number.

5.2.1 Stepwise improvements

Estimating slippage rates for each microsatellite. The frequency of slippage errors
that cause stutter noise varies between microsatellites. To account for this we estimate
a specific slippage rate for each location using the training data. This gives an accurate
estimation since it includes the characteristics of each microsatellite instead of using the
same expression for all of them. We estimate the slippage rate at microsatellite i by
dividing the number reads at the microsatellite marked as error reads by the total number
of reads aligned to the microsatellite. The reads get their initial labelling as true or error
reads in the pre-processing of the data and the labelling is iteratively updated during the
estimation process. The following expression is used to estimate SM

i , the slippage rate at
microsatellite i

SM
i =

∑
ne
i∑
ni

(5.2)

where ne
i stands for the number of reads at microsatellite i marked as error reads and

ni stands for the total number of reads aligned to microsatellite i. The distribution of
this slippage rate per location is shown in Figure 5.3 in Section 5.3.2. This expression
however ignores the contribution of the individual to the slippage rate and considers only
the microsatellite contribution.

37

Adding logistic regression. To account for errors, other than the ones caused by
stutter noise, we train a logistic regression classifier for each microsatellite. We train it
using only reads reporting true alleles and error reads that are not a result of stutter noise.
This enables us to give each read a probability of reporting a true allele. The probability
is computed by classifying the read using the classifier trained for the microsatellite it is
aligned to. By including this probability in the expression used to determine the genotype
we can also identify error reads caused by undefined errors. The attributes used by the
classifier are various but all have in common their ability to indicate the quality of a read
in one way or the other. We compute a number of attributes and consider all of them
but an optimum subset is selected using feature selection. The attributes considered are
summarized in Table 5.1 and the process used for feature selection is described in Section
5.2.3

Estimating slippage rates for each microsatellite and each individual. To in-
crease the accuracy of our slippage rate estimates, we update the expression of the esti-
mate to contain the sum of slippage that is caused by the microsatellite location and the
slippage that is caused by the individual. A system of equations is used to estimate the
slippage rate. Here, Sij represents the slippage rate for the pair of microsatellite i and
individual j, SM

i represents the slippage contributed by microsatellite i and SP
j represents

the slippage that individual j contributes.

Sij = SM
i + SP

j (5.3)

We denote the probability that a read aligned to microsatellite i, marked as an error
read is actually reporting a true allele as pei . The probability that a read aligned to
microsatellite i, regardless of how it is marked, reports a true allele is represented by pi.
For reads grouped by individuals we let pij denote the probability of reporting a true
allele for a read aligned to microsatellite i from individual j. To estmate the slippage rate
at microsatellite i we then use the following expression

SM
i =

∑
pei∑
pi
−
∑
j

SP
j ·
∑
pij∑
pi

(5.4)

In the expression used for estimating the slippage of individual j we let pej denote the
probability that an error read from individual j reports a true allele and pj denote the
probability that a read from individual j reports a true allele, regardless of how it is

38

marked. So the expression becomes

SP
j =

∑
pej∑
pj
−
∑
i

SM
i ·

∑
pij
pj

(5.5)

The equations depend on each other and are updated iteratively using a basic initializa-
tion. The updating process is described in Section 5.2.3.

Although this estimate improves the previous expression it however allows for very
high slippage rate estimates in some cases since all individuals contribute equally to the
slippage at each position and vice versa without regard to their variance. Thus if an
individual or a microsatellite has a high variance they will cause overestimation of the
slippage rate.

Weighing contributions of individuals and microsatellites with their variance
To decrease the weight of individuals and microsatellites with noisy reads in the slippage
rate estimates we update the estimate once more and weigh the contributions of each
individual and microsatellite with the inverse of their variance. This gives microsatellites
and individuals with low variance higher weights in the estimate and should thus make it
more stable and reliable. The slippage rate at a microsatellite essentially represents the
probability of getting an slippage error read at the given microsatellite and it is a binary
distributed variable. We define the variance of a microsatellite as its slippage rate and
use the definition of a variance for one trial on a binary distributed variable, given by

v = p(1− p) (5.6)

After this update, the expression for the slippage rate at microsatellite i becomes

SM
i =

∑
pei∑
pi
−
∑
j

SP
j ·

1
SP
j (1−SP

j)
·
∑

pij∑
pi∑

j
1

SP
j (1−SP

j)
·
∑

pij∑
pi

(5.7)

and similarly the slippage rate for individual j becomes

SP
j =

∑
pej∑
pj
−
∑
i

SM
i ·

1
SM
i (1−SM

i)
·
∑

pij∑
pj∑

i
1

SM
i (1−SM

i)
·
∑

pij∑
pj

(5.8)

Using these estimates we include the overall slippage rate of the individual or microsatellite
being considered along with the contribution of each microsatellite to the individual and
the contribution of each individual to the microsatellite. These contributions are however
weighed with the inverse of their variance so noisy individuals or microsatellites are not

39

able to skew the estimates. We have now covered how we intend to use logistic regression
and estimated slippage rates to identify both errors causing stutter noise and undefined
errors. Next we cover how these are used to determine the genotypes.

5.2.2 Determining the genotype

Having trained a logistic classifier and estimated the slippage rates at all microsatellites
and for all individuals we now have all that we need to determine the genotypes. To
do this for individual j at microsatellite i we start by looking at all reads for the given
individual aligned to the given microsatellite and determine the possible genotypes they
offer. We then compute the likelihood of the reads given each genotype and pick the
genotype that maximizes this likelihood. The expression used to compute this likelihood
for a set of reads R = {r1, . . . , rn} and a genotype gt is

P (R|gt) =
∏
s

p(rs|gt) (5.9)

Like the expressions for the slippage rate estimates, the formula used to compute p(rs|gt)
was updated several times during the creation of the model. Our first version assumes
a Poisson distribution of the stutter noise error events with λ = Sij and includes the
probability of reporting a true allele given to every read by the logistic regression classifier
of the microsatellite it is aligned to. We let p(rts) denote the probability that read s reports
a true allele and x stand for number of slippage events. The number of slippage events
is defined as the difference between the number of repeats reported by the read and the
number of repeats in the genotype. This gives the following expression for a homozygous
genotype A.

p(rs|A) = p(rts) · pois(x;Sij) (5.10)

and for a heterozygous genotype (A,B) we compute the number of slippage events relative
to both alleles in the genotype.

p(rs|A,B) = p(rts) · (
1

2
· pois(x(A);Sij) +

1

2
· pois(x(B);Sij)) (5.11)

The problem with this expression is however that it becomes very small for reads that
are error reads not due to slippage events. For non-slippage errors our model assumes that
each of the other reported alleles is equally likely and so we set ni

alleles as the number of
alleles present in the population for microsatellite i and update the expression for p(rs|gt)
in the following way

40

p(rs|A) = p(rts) · pois(x;Sij) +
1− p(rts)
ni
alleles

(5.12)

and in the same way for a heterozygote genotype

p(rs|A,B) = p(rts) · (
1

2
· pois(x(A);Sij) +

1

2
· pois(x(B);Sij)) +

1− p(rts)
ni
alleles

(5.13)

Using this expression to determine the probability of a read given a genotype we assume
that stutter noise is equally likely to result in reads with fewer repeat units and reads
with extra repeat units. This is however not the case as stutter noise is more likely to
delete repeat units and to account for this we add a parameter, a, with the same purpose
as q in the lobSTR model. The probability of deleting a repeat unit is set as 0.85 and
of adding a repeat unit as 0.15 which means we set a as 0.85 if allelei < A and 0.15 if
allelei > A The final expression derived from this thus becomes

p(rs|A) = p(rts) · pois(x;Sij) · a+
1− p(rts)
ni
alleles

(5.14)

and in the same way for a heterozygote genotype but there we need a1 and a2 to compare
allelei with both alleles of the genotype, A and B

p(rs|A,B) = p(rts)·

(
1

2
· pois(x(A);Sij) · a1 +

1

2
· pois(x(B);Sij) · a2) +

1− p(rts)
ni
alleles

(5.15)

This final expression combines the power obtained both through the logistic regression
classifier and the estimation of slippage rates at microsatellites and individuals. By adding
the probability that a read is an error to the number it contributes to the likelihood we
raise the tolerance for error reads. This makes it possible to call a homozygous genotype
despite having perhaps a number of reads supporting another allele if these other reads
get poor results from the logistic regression classifier.

41

5.2.3 Implementation

Expectation maximization. We use expectation maximization to simultaneously train
a logistic regression classifier and estimate the rate of slippage errors for each microsatel-
lite. In the E-step we use the current genotypes to train a classifier and estimate slippage
rates. In the M-step we use the probabilities of reporting a true read, given to each read
by the logistic regression classifier of the microsatellite it is aligned to, and the estimated
slippage rates to determine and update the genotypes. This is iterated until convergence
has been reached. Then we should have both an optimally trained classifier and optimal
estimates of slippage rates for each microsatellite. The condition chosen for convergence
at each microsatellite is that when one or no individuals get an updated genotype con-
vergence has been reached. We then use the estimated slippage rates for each marker to
re-estimate slippage rates for each individual and then we repeat the training of logistic
regression classifiers and estimations of slippage rates per marker using these new individ-
ual slippage rates. This estimation of slippage rates for each individual is performed every
time after the training of logistic regression classifiers and estimations of microsatellite
slippage rates. If the sum of squared differences between the individual slippage rates in
the previous estimation and the current estimation divided by the number of individuals
is less than 1 · 10−6 then we consider convergence to be reached.

We initialize the probability of reporting a true allele as 95% for all reads and the
individual slippage rates were initialized as

Sp
j (initial) =

∑
pej

2 ·
∑
pj

(5.16)

where pej stands for the probability that a read from individual j marked as an error read
reports a true allele and pj denotes the probability that a read from individual j reports
a true allele, regardless of how it is marked.

Feature selection for logistic regression. We compute a vector of 9 attributes for
every read and use a subset of it, chosen using feature selection, for classification by
logistic regression. The first attribute is the quality score given to the alignment of the
read to the reference. This gives an idea of how well the flanking areas of the microsatellite
sequence match the reference flanking areas of the microsatellite it was aligned to and is
therefore highly informative. Alignment scores are deduced from the scoring scheme of
the alignment program used and can be set to take into account the base quality in the
read. Since the quality score considered here only refers to the alignment quality of the
microsatellite’s flanking regions then extra (or missing) repeat motifs do not influence it.
This means that it does not matter whether the individual being profiled has a different

42

allele from the reference. Next we consider how clean the microsatellite sequence extracted
from the read is, i.e. how purely repetitive the extracted sequence is. This is computed by
dividing the actual number of repeats in the sequence by the expected number of repeats
so for a completely clean sequence this value would be one. For example a microsatellite
sequence where the repeat motif is ’AC’ and is 12 basepairs long is expected to have six
repeats of ’AC’. However the sequence ’ACACATACAC’ has only a cleanness of 5/6 ≈
0.833.

The distance between the alignment location of the read and the alignment location
of its mate is also considered as an influential factor. The distance between paired-end
reads follows a tightly bound distribution and if the distance between the alignment of
read pairs deviates significantly from this distribution it indicates that the alignment is
wrong.

The next three attributes are the number of bases with PHRED values, defined in
Section 2.2, above 20 in the part of the read coming before the microsatellite sequence, in
the microsatellite sequence itself and in the part of the read coming after the microsatellite
sequence. The portion of bases with a PHRED value above 20 in the mate of the read is
also computed. The limit of 20 was chosen since since a PHRED score of 20 means that
the probability of the base being a sequencing error is 1%.

When reads are aligned to a reference genome they don’t always match completely,
this could be due to genetic variations, misplacement of reads or sequencing errors for
example. The edit distance from the read to the reference is the smallest number of
substitutions, insertions, and deletions of bases that can be used to transform the read
to the reference. This edit distance of the reads mate is included in the attribute vector
since a high edit distance might indicate a bad alignment. The last attribute is the total
length of the sequence in the read, all reads in the data used here should be either 101 or
120 bases long and if a read is much shorter than this it indicates that something might
have gone wrong during sequencing.

It is possible that some attributes don’t have power to predict the quality of a read. These
attributes could harm the classification by slowing it down and adding noise to attributes
with predictive power. We apply a form of feature selection to select attributes to include
in the classifier. First, we train a logistic regression classifier for all microsatellites with
all nine attributes. Next, we count for each attribute the number of microsatellites where
it was relevant, i.e. its p-value in the logistic regression model was significant. We train a
logistic regression classifier with only the most frequently relevant attribute and perform
genotyping. The second most frequently relevant attribute is then added to the training

43

Attribute Definition
Quality score Map quality score of the aligned read.
Cleanness # of repeats in the microsatellite sequence/ # of ex-

pected repeats in the microsatellite sequence
Distance to mate Distance from a reads alignment location to the align-

ment location of the mate read.
Number over 20 before The number of bases in the read with a PHRED quality

over 20 coming before the microsatellite sequence.
Number over 20 in The number of bases in the read with a PHRED quality

over 20 in the microsatellite sequence.
Number over 20 after The number of bases in the read with a PHRED quality

over 20 coming after the microsatellite sequence.
Portion of mate over 20 The portion of bases in the sequence of the mate read

with a PHRED quality over 20.
Edit distance of mate Edit distance to the reference, including ambiguous

bases but excluding clipping.
Sequence length Total length of the read-sequence.

Table 5.1: The attributes used as control variables in the Logistic regression classification.

process and genotyping is performed again. This is repeated until the genotyping accuracy
stops increasing between rounds of adding attributes. when the accuracy stops increasing
an optimum subset of attributes for classification has been found.

5.3 Results

We present the results by a pair-wise comparison between the lobSTR error model, up-
dated error model and the benchmarking data. The genotypes compared with the bench-
marking data are conditioned to be inferred from at least 12 reads for both the lobSTR
error model and our error model. This is done to ensure a level of confidence in the
genotypes compared. There is a considerable probability of allelic dropout or severe
under-representation of one allele in a heterozygous genotype for decisions made using
fewer reads than this.

44

5.3.1 Bechmark data vs. lobSTR error model

The genotypes returned by the error model provided by lobSTR agreed with the bench-
marking data in 87.5% of the cases when considering only genotypes determined from 12
or more reads. The accuracy per location is shown in Figure 5.1.

Figure 5.1: Histogram of lobSTR genotyping accuracy per location.

This low consensus could be explained a number of things. The fact that the error
model was trained on different data is a very likely cause. The model does not account for
any other type of error than stutter noise and this might decrease its predictive power. It’s
generality, i.e. using the same model for all microsatellites, might also hurt the results and
no attempts were made to tune the runtime parameters of the microsatellite profiler and
thus it is possible that the accuracy might increase for parameters other than the default
ones. Also, these numbers do not tell the entire story since the accuracy of genotyping of
course depends heavily on how many reads we infer the genotype from. Figure 5.2 shows
clearly how the consensus with the benchmarking data increases as the number of reads
available increases. As the number of available reads reaches ≈ 29 the curve levels off at
100% accuracy.

45

Figure 5.2: The consensus with benchmarking data as a function of the number of available
reads.

5.3.2 Benchmark data vs. Updated error model

Here we cover the results of each improvement in the order they were added to show how
the development increased the accuracy of genotyping.

The first version determines the genotype using microsatellite specific slippage rate.
Next a probability of reporting a true allele is computed for each read using a microsatellite
specific logistic regression classifier. To account for the possibility that a read is an error
caused by something else than slippage and should not influence the genotype we add
to the likelihood contribution of each read the probability that it reports a false allele
divided by the total number of alleles in the population. Because the slippage rate in each
case depends not only on the microsatellite but on the individual as well we update the
slippage estimate to include this. To avoid overestimating the slippage rates we weigh the
contributions of each microsatellite and each individual with the inverse of their variance
to minimize the effect of noisy individuals and microsatellites. Last we add a parameter
expressing the fact that slippage events during replication are more likely to delete repeat
motifs than add them.

Estimating slippage rates for each microsatellite. Figure 5.3 shows the distribu-
tion of the slippage rates estimated using the initial expression for slippage rates shown
in Equation 5.2. Figure 5.4 shows a histogram of the per microsatellite consensus with
the benchmarking data and Table 5.2 summarizes the improvement made.

46

Figure 5.3: The distribution of slippage rates per microsatellite using initial estimate.

Improvement Genotyping accuracy
Estimating microsatellite specific slippage rates 91.8%

Table 5.2: Total genotyping accuracy when estimating a slippage rate for each microsatellite.

Adding logistic regression. Figure 5.5 shows a histogram of the per microsatellite
consensus with the benchmarking data and Table 5.3 summarizes the improvement made.

Improvement Genotyping accuracy
Applying logistic regression 91.8%

Table 5.3: Total genotyping accuracy when adding logistic regression to identify undefined
errors.

47

Figure 5.4: Accuracy of genotyping per location when using initial slippage rate estimates.

Adding probability of being an error read divided by number of present alleles
to likelihood contribution. Figure 5.6 shows a histogram of the per microsatellite
consensus with the benchmarking data per microsatellite and Table 5.4 summarizes the
improvement made.

Improvement Genotyping accuracy
Adding the probability of being an error read divided
by the number of alleles in the population to likelihood
contribution

93%

Table 5.4: Total genotyping accuracy when adding the probability of being an error read divided
by the number of alleles in the population to likelihood contribution.

Estimating slippage rates by considering interaction between microsatellite
and individual. Figures 5.7 and 5.8 show the distributions of the slippage rates
estimated using the expressions given in Equations 5.4 and 5.5. They consider the

48

Figure 5.5: Accuracy of genotyping per location when adding logistic regression.

interaction between the microsatellite slippage and the individual slippage. Figure 5.9
shows a shows a histogram of the per microsatellite consensus with the benchmarking
data and Table 5.5 summarizes the improvement made.

Improvement Genotyping accuracy
Considering interaction between microsatellite and indi-
vidual when estimating slippage rates

92.8%

Table 5.5: Total genotyping accuracy when adding the interaction between microsatellite and
individual to slippage rate estimates.

Weighing contributions of individuals and microsatellites with their variance.
Figures 5.10 and 5.11 show the distributions of the slippage rates estimated when using
the expressions in Equations 5.7 and 5.8. They consider the interaction between the
microsatellite slippage and the individual slippage and weigh each contribution with the

49

Figure 5.6: Accuracy of genotyping per location when adding probability of being a non-slippage
error read.

inverse of its variance. Figure 5.12 shows a shows a histogram of the per microsatellite
consensus with the benchmarking data and Table 5.6 summarizes the improvement made.

Improvement Genotyping accuracy
Considering the contribution of each individual and each
microsatellite and weighing it with the inverse of its vari-
ance

93%

Table 5.6: Total genotyping accuracy when adding the interaction between microsatellite and
individual to slippage rate estimates and weighing contributions with the inverse of their variance.

Correcting for the fact that stutter noise tends to delete repeats Figure 5.13
shows a histogram of the consensus with the benchmarking data per microsatellite when
adding a parameter expressing that stutter noise is more likely to delete repeat units than
add them. Table 5.7 summarizes the improvement made.

50

Figure 5.7: Distribution of slippage rates per microsatellite when considering the contribution
of each individual.

Improvement Genotyping accuracy
Adding parameter for probability of deleting or adding
repeat units

96.3%

Table 5.7: Total genotyping accuracy when adding parameter for probability of deleting or
adding repeat units.

As mentioned before the number of reads aligned to a microsatellite heavily influences
the accuracy of the genotype assigned to it. Figure 5.14 shows how the consensus with
the benchmarking data increases as the number of reads available to perform genotyping
increases. As the number of reads reaches ≈ 20 the accuracy reaches 100% and levels off.

To examine the effect of the number of reads used for genotyping on a per microsatellite
basis we plot the genotyping accuracy for all microsatellites as a function of the median
of the available reads at that microsatellite. This is shown in Figure 5.15. The trend
here is not as clear as in 5.14 but it is evident that as the median of available reads
at a microsatellite increases, so does the genotyping accuracy. The slippage rate varies
between microsatellites. We examine how the genotyping accuracy develops as a function
of the slippage rate at the microsatellite. This is shown in Figure 5.16 and like one would
expect the accuracy decreases as the slippage rate increases since more error reads make

51

Figure 5.8: Distribution of slippage rates per individual when considering the contribution of
each microsatellite.

it harder to infer the right genotype.

Allelic dropout occurs when a DNA sample is sequenced and one or more alleles are not
present in the resulting sequencing data. Assuming that each read has equal probability
of coming from either allele and that we need at least two reads representing an allele to
have a chance of identifying it then the probability of allelic dropout in a set of n reads
can be computed by

p(allelic dropout) =
1

2n
·
((

n

0

)
+

(
n

1

)
+

(
n

(n− 1)

)
+

(
n

n

))
=

1

2n
·
(

n!

0!(n− 0)!
+

n!

1!(n− 1)!
+

n!

(n− 1)!(n− (n− 1))!
+

n!

n!(n− n)!

)
=

1

2n
· (2n+ 2) (5.17)

Because we condition the genotypes we compare to the benchmarking data to be
determined from at least 12 reads the possibility of allelic dropout is barely high enough
to be considered. Using the expression in Equation 5.17 we can compute the expected
total number of allelic dropout cases by

E(#ad) =

i=maxCoverage∑
i=1

#casesn ·
1

2n
· (2n+ 2) (5.18)

52

Figure 5.9: Accuracy of genotyping per microsatellite when adding the interaction between
microsatellite and individual.

where #ad stands for number of allelic dropout cases and #casesn represents the number
of cases where n reads are available to determine a genotype. The effect that this could
have on our results in however negligible and will not be considered here. Table 5.8
summarizes all improvements and corrections made and shows the contribution of each
to the genotyping accuracy. It is worth mentioning that despite the decrease in accuracy
caused by adding the per individual estimates of slippage rates, removing it from the final
result decreases the accuracy. This indicates that in combination with other factors of
the model the contribution of these slippage estimates is positive.

53

Figure 5.10: Distribution of slippage rates per microsatellite when considering the contribution
of each individual and weighing it with the inverse of its variance.

Improvement Genotyping accuracy
lobSTR genotype caller 87.5%
Estimating microsatellite specific slippage rates 91.8%
Applying logistic regression 91.8%
Adding the probability of being an error read divided
by the number of alleles in the population to likelihood
contribution

93%

Considering the contribution of each individual and each
microsatellite when estimating slippage rates

92.8%

Considering the contribution of each individual and each
microsatellite when estimating slippage rates and weigh-
ing it with the inverse of its variance

93%

Adding parameter for probability of deleting or adding
repeat units

96.3%

Table 5.8: Total summary of improvement of genotyping accuracy

54

Figure 5.11: Distribution of slippage rates per individual when considering the contribution of
each microsatellite and and weighing it with the inverse of its variance.

5.3.3 Updated error model vs. lobSTR error model

Here we compare the result of the final version of our updated error model to the results of
the error model from lobSTR. Figure 5.17 shows the consensus between the two models on
a per microsatellite basis. There were four microsatellites where the genotyping accuracy
of the lobSTR error model genotyping was greater than the one of the updated model
genotyping. In all four cases the accuracy was above 95% for both models and the
maximum difference was 3.6%.

55

Figure 5.12: Accuracy of genotyping per microsatellite when adding the interaction between
microsatellite and individual and weighing it with the inverse of its variance.

Figure 5.13: Histogram of genotyping accuracy per microsatellite when adding parameter for
probability of slippage errors adding vs removing repeat units.

56

Figure 5.14: The consensus with benchmarking data as a function of the number of reads used
to infer the genotype.

Figure 5.15: The consensus with benchmarking data as a function of the median of the coverage.

57

Figure 5.16: The consensus with benchmarking data as a function of the slippage rate at the
microsatellite.

Figure 5.17: Consensus between updated error model and lobSTR error model genotyping
results.

58

Chapter 6

Conclusion

6.1 Summary

Microsatellites are repetitive areas in the genome with a repeat motif of length 2-6 bases
and have a high mutation rate. The number of repeats in a microsatellite are known as the
alleles of the microsatellite and vary greatly between individuals. This makes determining
the alleles of microsatellites in individuals very interesting but their structure makes it
hard and time consuming using the sequencing technology available today.

Here we have shown that when creating a microsatellite profile for an individual us-
ing previously aligned data it is possible to significantly decrease the running time by
considering only reads that are either aligned to a known microsatellite location or not
aligned at all. This type of filtering dismisses a large portion of the data immediately
without significantly effecting the microsatellite profile. To do this we used the alignment
locations of reads along with attributes indicating undesirable qualities. We compared
the microsatellite profiles generated using this input to the profiles generated using all
reads from a whole genome sequencing BAM-file. The comparison showed a considerable
decrease in input size and an average of 74.4% decrease in running time but only a very
small difference in the microsatellite profiles returned, an average of less than 2%. This
indicates that when using previously aligned data for generating microsatellite profiles it
is enough to include only reads aligned to known microsatellite locations and unaligned
reads.

An error model was also created using population information to better describe and
identify reads supporting false alleles and thereby increase the accuracy of genotyping.
The model dealt with stutter noise errors created during PCR amplification, misplaced
reads and other sequencing errors. The reads resulting from sequencing errors or were
misplaced where identified by a logistic regression classifier using a number of attributes
extracted from their alignment in BAM-files. For modeling the stutter noise errors we

59

took into account both the contribution of each person to the stutter noise and the
contribution of each microsatellite to the stutter noise. This created a unique stutter rate
for each individual/microsatellite pair which increased the accuracy of the genotyping
compared to previous methods. To estimate the accuracy we used genotypes available at
deCODE obtained by microsatellite analysis using capillary electrophoresis. The accuracy
of the error model provided with the micorsatellite profiler used for comparison was was
87.5% and the accuracy of the improved model was 96.3%.

Combining these two parts of the thesis we can take a previous method which was
both slow inaccurate and create a new microsatellite genotyping procedure which is both
more accurate and faster.

6.2 Suggestions for Future Research

6.2.1 Aligning reads to microsatellites

Future plans for this project include reimplementation of the sensing and alignment step
using the SeqAn library. The new implementation would simply compute and store all
k-mers with an entropy below a chosen threshold and then create hashtable of those
instead of performing entropy calculations for all reads. This would hopefully decrease
the running time and increase consensus with benchmark data results. The removal of
low quality reads would also be added as a way to improve result quality.

6.2.2 Further improvements in the error model

Since the results of the error model trained here were less than perfect it would be in-
teresting to try other approaches to training it. One of these would be to use data from
individuals known to be homozygote in certain areas of the genome to estimate error and
slippage rates. Since these areas are distributed over all of the genome then the estimated
error rates should correctly reflect the true ones. Another approach would be to use other
attributes to detect reads resulting from undefined sequencing errors or use another form
of regression than the logistic regression.

60

Bibliography

[1] A Brief History of the Human Genome Project,
https://www.genome.gov/12011239.

[2] File formats - great documentation - confluence ,
http://bejerano.stanford.edu/help/display/GREAT/File+Formats.

[3] Human Genetic Variation,
http://science.education.nih.gov/supplements/nih1/Genetic/guide/pdfs/

nih_genetics.pdf.

[4] An introduction to Variant Call Format,
http://faculty.washington.edu/browning/beagle/intro-to-vcf.html.

[5] Modeling PCR stutter noise for accurate calling of STRs from short reads,
http://erlichlab.wi.mit.edu/lobSTR/GSAStutterNoise_mgymrek.pdf.

[6] Paired-End Sequencing | Achieve maximum coverage across the genome | Illumina ,
http://www.illumina.com/technology/paired_end_sequencing_assay.ilmn.

[7] Single End Sequencing | Illumina ,
http://www.illumina.com/technology/single_read_sequencing_assay.ilmn.

[8] UCSC genome bioinformatics: FAQ,
http://genome.ucsc.edu/FAQ/FAQformat#format1.

[9] What is FASTA format?,
http://zhanglab.ccmb.med.umich.edu/FASTA/.

[10] What is logistic regression? - University of Strathclyde,
http://www.strath.ac.uk/aer/materials/5furtherquantitativeresearchdesignandanalysis/

unit6/whatislogisticregression/.

[11] J. Adams. Dna sequencing technologies. Nature Education, 1(1), 2008.

61

https://www.genome.gov/12011239
http://bejerano.stanford.edu/help/display/GREAT/File+Formats
http://science.education.nih.gov/supplements/nih1/Genetic/guide/pdfs/nih_genetics.pdf
http://science.education.nih.gov/supplements/nih1/Genetic/guide/pdfs/nih_genetics.pdf
http://faculty.washington.edu/browning/beagle/intro-to-vcf.html
http://erlichlab.wi.mit.edu/lobSTR/GSAStutterNoise_mgymrek.pdf
http://www.illumina.com/technology/paired_end_sequencing_assay.ilmn
http://www.illumina.com/technology/single_read_sequencing_assay.ilmn
http://genome.ucsc.edu/FAQ/FAQformat#format1
http://zhanglab.ccmb.med.umich.edu/FASTA/
http://www.strath.ac.uk/aer/materials/5furtherquantitativeresearchdesignandanalysis/unit6/whatislogisticregression/
http://www.strath.ac.uk/aer/materials/5furtherquantitativeresearchdesignandanalysis/unit6/whatislogisticregression/

[12] T. A. Brown. Genomes. Wiley-Liss, Oxford, 2nd edition, 2002.

[13] P. J. A. Cock, C. J. Fields, N. Goto, M. L. Heuer, and P. M. Rice. The Sanger
FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ
variants. Nucleic Acids Res, 38(6):1767–1771, 2010.

[14] P. Danecek, A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. DePristo, R. E.
Handsaker, G. Lunter, G. T. Marth, S. T. Sherry, G. McVean, R. Durbin, and . G.
P. A. G. . The variant call format and vcftools. Bioinformatics, 27(15):2156–2158,
Aug 2011.

[15] A. P. Dempster, N. M. Laird, D. B. Rubin, et al. Maximum likelihood from incom-
plete data via the em algorithm. Journal of the Royal statistical Society, 39(1):1–38,
1977.

[16] A. Döring, D. Weese, T. Rausch, and K. Reinert. Seqan an efficient, generic c++
library for sequence analysis. BMC Bioinformatics, 9:11, 2008.

[17] J. Duitama, A. Zablotskaya, R. Gemayel, A. Jansen, S. Belet, J. R. Vermeesch, K. J.
Verstrepen, and G. Froyen. Large-scale analysis of tandem repeat variability in the
human genome. Nucleic Acids Res, 2014.

[18] H. Ellegren. Microsatellites: simple sequences with complex evolution. Nat Rev
Genet, 5(6):435–445, 2004.

[19] K. A. Frazer, S. S. Murray, N. J. Schork, and E. J. Topol. Human genetic variation
and its contribution to complex traits. Nature Reviews Genetics, 10(4):241–251, 2009.

[20] S. D. e. a. Griffiths AJF, Miller JH. An Introduction to Genetic Analysis. 7th edition.
W. H. Freeman, http://www.ncbi.nlm.nih.gov/books/NBK21894/, 2000.

[21] M. Gymrek, D. Golan, S. Rosset, and Y. Erlich. lobstr: A short tandem repeat
profiler for personal genomes. Genome Res, 22(6):1154–1162, Jun 2012.

[22] G. Highnam, C. Franck, A. Martin, C. Stephens, A. Puthige, and D. Mittelman.
Accurate human microsatellite genotypes from high-throughput resequencing data
using informed error profiles. Nucleic Acids Res, 41(1):e32, Jan 2013.

[23] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth,
G. Abecasis, R. Durbin, and . G. P. D. P. S. . The sequence alignment/map format
and samtools. Bioinformatics, 25(16):2078–2079, Aug 2009.

62

[24] H. Li and N. Homer. A survey of sequence alignment algorithms for next-generation
sequencing. Brief Bioinform, 11(5):473–483, Sep 2010.

[25] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to information retrieval,
volume 1. Cambridge university press Cambridge, 2008.

[26] S. M. Mirkin. Expandable dna repeats and human disease. Nature, 447(7147):932–
940, Jun 2007.

[27] B. Pálsson, F. Pálsson, M. Perlin, H. Gudbjartsson, K. Stefánsson, and J. Gulcher.
Using quality measures to facilitate allele calling in high-throughput genotyping.
Genome research, 9(10):1002–1012, 1999.

[28] W. R. Pearson and D. J. Lipman. Improved tools for biological sequence comparison.
Proc Natl Acad Sci U S A, 85(8):2444–2448, Apr 1988.

[29] J. S. Reis-Filho. Next-generation sequencing. Breast Cancer Res, 11(Suppl 3):S12,
2009.

[30] S. Snider and J. Brimlow. An introduction to population growth. Nature Education
Knowledge, 4(4):3, 2013.

[31] J. X. Sun, A. Helgason, G. Masson, S. S. Ebenesersdóttir, H. Li, S. Mallick, S. Gnerre,
N. Patterson, A. Kong, D. Reich, et al. A direct characterization of human mutation
based on microsatellites. Nature genetics, 44(10):1161–1165, 2012.

[32] H. Tae, D.-Y. Kim, J. McCormick, R. E. Settlage, and H. R. Garner. Discretized
gaussian mixture for genotyping of microsatellite loci containing homopolymer runs.
Bioinformatics, 30(5):652–659, Mar 2014.

[33] J. C. Venter, M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G. Sutton,
H. O. Smith, M. Yandell, C. A. Evans, R. A. Holt, et al. The sequence of the human
genome. science, 291(5507):1304–1351, 2001.

[34] X. Yang, S. Aluru, and K. S. Dorman. Repeat-aware modeling and correction of
short read errors. BMC Bioinformatics, 12 Suppl 1:S52, 2011.

63

64

List of Figures

1.1 Replication Slippage . 3

2.1 Paired-end sequencing . 9
2.2 An example of a sequence in the FASTA format 11
2.3 An example of a sequence in the FASTQ format 12
2.4 A flow chart explaining the lobSTR process 14

3.1 Size distribution of BAM-files used for read selction 20

4.1 Method for selecting reads . 27
4.2 Input sizes before and after filtering . 28
4.3 Distribution of size reduction . 29
4.4 Output size comparison for 1st step of lobSTR 30
4.5 Running time comparison for 1st step of lobSTR 31
4.6 Comparison of number of microsatellites genotyped 32
4.7 Coverage ratio between BAM-files . 33

5.1 Accuracy of lobSTR genotyping per location 45
5.2 Accuracy of genotyping using the base error model as a function of available

reads . 46
5.3 Initial distribution of slippage rates per microsatellite 47
5.4 Accuracy of genotyping per location when using initial slippage rate estimates 48
5.5 Accuracy of genotyping per location when adding logistic regression 49
5.6 Accuracy of genotyping per location when adding probability of being a

non-slippage error read. 50
5.7 Distribution of slippage rates per microsatellite when considering the con-

tribution of each individual . 51
5.8 Distribution of slippage rates per individual when considering the contri-

bution of each microsatellite . 52
5.9 Accuracy of genotyping per microsatellite when adding the interaction be-

tween microsatellite and individual . 53

65

5.10 Distribution of slippage rates per microsatellite when considering the con-
tribution of each individual and weighing it with the inverse of its variance 54

5.11 Distribution of slippage rates per individual when considering the contri-
bution of each microsatellite and weighing it with the inverse of its variance 55

5.12 Accuracy of genotyping per microsatellite when adding the interaction be-
tween microsatellite and individual and weighing it with the inverse of its
variance. 56

5.13 Histogram of genotyping accuracy per microsatellite when adding param-
eter for probability of slippage errors adding vs removing repeat units. . . . 56

5.14 Accuracy of genotyping as a function of coverage 57
5.15 Accuracy of genotyping as a function of the median of the coverage 57
5.16 Accuracy of genotyping as a function of microsatellite slippage rates 58
5.17 Consensus between updated error model and lobSTR error model genotyp-

ing results. 58

66

List of Tables

5.1 The attributes used as control variables in the Logistic regression classifi-
cation. 44

5.2 Total genotyping accuracy when estimating a slippage rate for each mi-
crosatellite. 47

5.3 Total genotyping accuracy when adding logistic regression to identify un-
defined errors. 47

5.4 Total genotyping accuracy when adding the probability of being an er-
ror read divided by the number of alleles in the population to likelihood
contribution. 48

5.5 Total genotyping accuracy when adding the interaction between microsatel-
lite and individual to slippage rate estimates. 49

5.6 Total genotyping accuracy when adding the interaction between microsatel-
lite and individual to slippage rate estimates and weighing contributions
with the inverse of their variance. 50

5.7 Total genotyping accuracy when adding parameter for probability of delet-
ing or adding repeat units. 51

5.8 Total summary of improvement of genotyping accuracy 54

67

	Titlepage
	Cover
	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 Genetic variation
	1.2 Microsatellites
	1.3 Outline

	2 Background
	2.1 Sequencing methods and reference genomes
	2.1.1 Reference genomes and alignment to them
	2.1.2 Single and paired end sequencing
	2.1.3 Chain termination sequencing - Sanger sequencing
	2.1.4 Microsatellite STR Analysis using capillary electrophoresis
	2.1.5 Next generation sequencing

	2.2 Formats for genetic data
	2.2.1 FASTA and FASTQ files
	2.2.2 SAM and BAM-files
	2.2.3 VCF-files
	2.2.4 BED-files

	2.3 Previous work
	2.3.1 lobSTR

	2.4 Algorithmic methods
	2.4.1 Expectation maximization
	2.4.2 Logistic regression
	2.4.3 Feature selection

	3 Data description and arguments for data selection
	3.1 Data for read selection
	3.2 Data for error model
	3.2.1 Choosing microsatellites
	3.2.1.1 Pre-processing of training data

	3.3 Benchmarking data from capillary electrophoresis

	4 Read selection
	4.1 Input manipulation
	4.2 Results

	5 Modelling error
	5.1 lobSTR error model
	5.1.1 Definition
	5.1.2 Possible problems

	5.2 Improved error model
	5.2.1 Stepwise improvements
	5.2.2 Determining the genotype
	5.2.3 Implementation

	5.3 Results
	5.3.1 Bechmark data vs. lobSTR error model
	5.3.2 Benchmark data vs. Updated error model
	5.3.3 Updated error model vs. lobSTR error model

	6 Conclusion
	6.1 Summary
	6.2 Suggestions for Future Research
	6.2.1 Aligning reads to microsatellites
	6.2.2 Further improvements in the error model

	Bibliography

	Bibliography

