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Abstract
In this project, starting from an interpretable language model based on knowledge
graphs, four essential methods for natural language processing (NLP) have been
developed, namely (i) paraphrasing, (ii) part-of-speech tagging, (iii) semantic sim-
ilarity analysis, and (iv) text simplification. The methods yield good results on
a small dataset and thus offer promising prospects for continuing research on in-
terpretable NLP. Applications of NLP are becoming increasingly embedded in our
daily lives in applications such as voice assistants, automatic language translation,
opinion mining and medical diagnostics. One of the reasons behind the exponen-
tially growing interest in NLP is the development of deep neural network (DNN)
models that have achieved outstanding performance on various NLP tasks. How-
ever, the domination of DNN models has been followed by deep concerns regarding
the black-box nature of such systems. By contrast, the language model used here is
fully interpretable, paving the way for safe and accountable NLP.

Keywords: natural language processing, conversational AI, interpretable AI, para-
phrasing, text disambiguation, knowledge graphs
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1
Introduction

“It is hard from the standpoint of the child, who must spend many years
acquiring a language... it is hard for the adult language learner, it is hard
for the scientist who attempts to model the relevant phenomena, and it is
hard for the engineer who attempts to build systems that deal with natural
language input or output. These tasks are so hard that Turing could rightly
make fluent conversation in natural language the centerpiece of his test for
intelligence.”

– Page 248, Mathematical Linguistics, 2007 [1].

Natural language processing (NLP) is the broad and interdisciplinary field that deals
with enabling machines to process and generate human language. In recent years,
research within NLP has seen a notable upsurge and is now becoming increasingly
embedded in our daily lives [2] [3] [4]. Some applications of NLP include voice as-
sistants [5], automatic language translation [6] [7], email spam detection [6], text
summarization [8], conversational agents [9], opinion mining [10], and medical diag-
nostics research [11].

Due to the unstructured nature of human language, NLP is inherently hard and
despite the extensive use of NLP in various applications, it is still very much an
open area of research with many unresolved problems [8]. In recent years the intro-
duction of deep learning into the field of NLP has propelled significant advances, and
deep neural network (DNN) models have consequently come to almost completely
dominate the field [12] [13] [14]. However, due to the black-box nature of such mod-
els, an increasing number of researchers have raised concerns regarding their use
in high-stakes situations where a high degree of accountability and transparency is
required, such as in decision-making that may deeply affect peoples’ lives [14] [15]
[16]. The lack of transparency and accountability of black-box models have started
to receive more attention lately and in an attempt to alleviate these problems ef-
forts have been made to create separate posthoc models that explain the black-box
models [17]. This means that a second model is built such that it replicates the
behaviour of the first model as closely as possible. There are, however, numerous
problems with this approach. A model that replicates behaviour only provides an
approximation of the original model, and these approximations are often not reliable
and can be misleading [18] [17] . Thus, it is crucial to put more effort into building
models that are inherently interpretable, i.e. models in which the decision-making
process consists of interpretable primitives that are human-comprehensible, and thus
provide their own explanation [17].
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1. Introduction

An example where transparency is of utmost importance is in the case of task-
oriented agents, which are conversational agents that need to be able to carry out
precise and consistent interaction with users on specific and sometimes critical sub-
jects [19]. As a contribution to solving this issue, a recent example of an inherently
interpretable dialogue manager is DAISY [20] [21], the development of which has
been motivated by the following points: (i) it is crucial that a conversational system
should be comprehensible to developers such that it is possible to troubleshoot errors
and modify or expand the system, (ii) it is of equal importance that a user should
be able to query the system and receive a clear description of why a certain decision
was made. Moreover, it is important to (iii) avoid dependency on large amounts of
training data, and (iv) to alleviate the risk of incorporating unwanted biases in the
system (which is often a consequence of using large amounts of uncurated training
data, see 2.3) [21].

In recent work, and as an extension of the DAISY dialogue manager mentioned
above, Wahde et al. have proposed a framework for an interpretable knowledge-
graph based language model based on the English language [22]. The work in this
thesis mainly consists of improving and expanding the skeleton language model in-
troduced by Wahde, and to develop four interpretable methods for common NLP
tasks, namely (i) part-of-speech tagging, (ii) text simplification, (iii) semantic simi-
larity analysis, and (iv) paraphrasing.

1.1 Aims and objectives
The overall aims of the thesis are to (i) build an interpretable knowledge graph-based
language model that represents the English language and (ii) use it in developing
reliable and interpretable methods for natural language processing tasks. The in-
tention is to construct a proof of concept by demonstrating the developed methods
on a limited set of questions pertaining to the Nobel prize.

1.1.1 First objective
The first objective is to improve and expand the existing language model proposed
by Wahde (see above). Automatic methods will be developed to build the model
such that it easily can be expanded to cover multiple language domains in future
work.

1.1.2 Second objective
The second objective is to develop four methods that, in conjunction with the lan-
guage model, can be used to perform four different NLP tasks. These methods in-
clude: (a) a part-of-speech tagger method that takes an input sentence and outputs
the correct part of speech of each word in the sentence, (b) a simplification method
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1. Introduction

that takes an input sentence and rephrases it to a lexically and syntactically simpler
sentence whilst maintaining the semantic meaning of the original sentence, (c) a
similarity method that takes two sentences as input and outputs whether the two
sentences are semantically similar or not, and (d) a paraphrasing method that takes
a sentence as input and outputs a paraphrased (but semantically similar) version of
the sentence.

1.2 Scope
As the aim of the thesis is to demonstrate a proof of concept, the language model
and the resulting NLP capabilities will not cover the full English language but will
mostly be limited to cover a predefined set of questions pertaining to the Nobel
prize. Due to the versatility of the English language, covering all possibilities of
paraphrasing is a daunting task even for a limited dataset. Therefore, the resulting
language model and NLP capabilities will not be exhaustive even for the predefined
Nobel prize questions.

1.3 Outline
In chapter 2, some background and related work, such as previous knowledge graph-
based language models and previous work on NLP subtasks is given. In chapter 3,
the work and methods of this thesis is presented, including the definition and genera-
tion of the language model and the implementation of the NLP subtasks. Chapter 4
presents the results of applying the developed model and methods on a number of
example sentences, and a subsequent discussion based on the results. The thesis is
concluded in chapter 5 and pointers to areas of future research are given.
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2
Background

This chapter presents some background and a selection of previous related work on
language models (2.1.1), and on the four NLP tasks that are the subject of this thesis:
POS tagging (2.2.1), text simplification (2.2.2), semantic similarity analysis (2.2.3),
and text paraphrasing (2.2.4). The chapter gives a brief account on the history of
NLP and the diaspora of both so-called rule-based and data-driven methods. The
methods developed as part of this thesis are, however, excludingly of a rule-based
nature which is why, occasionally, more light is shined on this family of approaches.

2.1 Natural language processing
Natural language is defined as any language that has developed naturally as a means
of communication among humans, through repetition and without conscious plan-
ning [23]. In contrast, there are artificial and constructed languages such as computer
programming languages and international auxiliary languages (e.g. esperanto) which
are not considered as variations of natural language. Natural Language Processing
(NLP) is an interdisciplinary field that concerns the engineering of computational
methods used for programming a computer in such a way that it can process and
understand human language [24]. The field is at the intersection between compu-
tational linguistics, cognitive science, computing science and artificial intelligence
[13]. Some NLP tasks include speech recognition, dialogue systems, part-of-speech
tagging, sentiment analysis and automatic language translation [13] [25]. Applica-
tions of NLP greatly effect the quality of human-computer interaction and areas of
application range everywhere from business and education to healthcare and various
sorts of services in peoples’ everyday lives [19] [26] [4].

2.1.1 Language models
As opposed to programming languages which are constructed to follow a strict set
of rules to be unambiguous and precise, natural language is full of ambiguities [7].
The variations of ambiguity are numerous and include part-of-speech ambiguities
(such as whether a verb is simple past or past participle), semantic ambiguity (such
as polysemic words; e.g. the word run has 29 distinct senses in Webster’s Seventh
Dictionary, further divided into around 125 sub-senses) [27], syntactic ambiguity
(such as the one in Sam went for a walk with her friend in the red shirt), reference
ambiguity (e.g. Ethel told Lucy that her pie was wonderful) and so on [28].
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2. Background

By using and simultaneously developing natural langauge, humans have, slowly and
gradually over a long time, learnt to master the art of perceiving and communicat-
ing elaborate and refined meanings [7]. The intricate nuances of natural language,
however, is the main problem when trying to make a computer process information
in this form [28]. To be able to achieve this, the language needs to be modelled in
some way, i.e. the regularities of the language need to be captured and character-
ized, or described, such that the description can be used to predict or disambiguate
future use of the language [28] [29]. Designing an appropriate language model (LM)
is at the core of all NLP tasks and the different approaches to solving NLP prob-
lems are closely connected with the approach chosen for the language modelling [28].

The approaches to language modelling that are seen in the literature can be broadly
categorized into three families, that each has taken centre stage during different time
periods [28] [30]. The first research within NLP dates back to the early 1950s. The
earliest approaches to language modelling fall within the linguistic or knowledge-
based family; these models were syntax-oriented and mainly based on hand-crafted
rules and formal grammars [31] [30]. While having the advantage of being inter-
pretable by humans and easy to debug, the rule-based systems were considered to
have several limitations [13]. These limitations included the fact that NLP methods
must extract not only syntactic information but also semantic information from text;
i.e. the usage of a word is not only governed by what part of speech the word belongs
to but also to a high degree on the (syntactic and semantic) context in which it is used
[12]. Additionally, since the language processing using these methods was dependent
on predefined rules, the models were poor at handling uncertainty, and building the
hand-crafted models was considered a laborious and time-consuming project [13].
Thus, eventually a reorientation occured and, around the 1980s, statistical NLP
was born [30]. For some time onward, data-driven machine learning approaches
such as k-nearest neighbors, naïve Bayes, hidden Markov models, decision trees and
random forests were widely used, until the next transformation happened follow-
ing the first proposals of neural models for NLP [12]. Machine learning methods
became popular largely because, with them, researchers do not need to hand-craft
precise and exact rules for the language but can let statistical models, with auto-
matically tuned parameters, learn the rules from large amounts of training data
[13]. The statistical models have been considered very successful as they can learn
to (more gracefully than the hand-crafted models) handle uncertainty, generalize
across different domains and achieve almost human-like performance in natural lan-
guage output [12]. From approximately 1990 to around 2010, NLP was dominated
by the so-called ”shallow” machine learning algorithms, after which deep-structured
machine learning algorithms entered the field. The shift toward deep learning is
described as equally revolutionizing as the shift from rule-based methods to shallow
machine learning as it had an equally transforming impact on model performance
[13]. However, as is further discussed in section 2.3, deep learning methods do not
come without significant drawbacks.
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2. Background

2.2 Subtasks of NLP
For this thesis, four methods for subtasks of NLP have been developed. This section
presents some background and previous work on these subtasks.

2.2.1 Part-of-speech tagging
A part of speech (POS), also known as word class, is a category of words that share
similar grammatical properties [32]. In the English language, the following 10 parts
of speech are traditionally differentiated between: verb, noun, adjective, adverb,
preposition, numeral, determiner, pronoun, conjunction, and interjection [33]. POS
tagging is the process of automatically labelling each word in a sentence with the
correct word class (and sometimes even more explicit grammatic information) [34].
Labelling the words in a text with the correct POS is an important first measure
in discerning the linguistic structure of a text [35]. POS tagging is, moreover, of-
ten referred to as the backbone of NLP, as it lays such an important foundation in
the preprocessing stage of many other NLP tasks [34] [36] [4]. Useful applications
include the tagging of large text corpora that can be used for linguistic studies,
tagging words for text indexing and retrieval, identifying word classes for machine
translation, word sense disambiguation, question answering parsing, as well as en-
coding and decoding pronunciation in speech processing [36] [4].

Tremendous effort has been made by researchers to improve the accuracy of current
POS tagging methods; nevertheless, the field still faces challenges when it comes to
reducing error rates [4]. The reason that POS tagging is nontrivial is the fact that
many words are ambiguous and belong to different parts of speech depending on the
context [4] [35]. The word tag, for example, can be either a verb or a noun and with-
out context in the form of surrounding words it is impossible to deduce which POS
is appropriate for a specific instance of the word in a text. Therefore, a POS tagger
needs to be a system that uses context to assign the correct POS to a given word [35].

There are numerous variations of POS tagging systems but the overall architecture
is often similar [37]. One of the first steps is typically tokenization, which means
that the input text is split into tokens that are feasible for further analysis. Usually,
each string of non-blank characters in the text constitutes a token but this varies
depending on the structure of the natural language that is processed [37]. In the
next step, the tokenized input is passed through a program, called a POS tagger,
that assigns the appropriate POS tag to each token. Considering the ambiguous
sentence ”We can can a can.”, a successful POS tagger may produce the POS tags
shown in Table 2.1 [37]. The output from the tagger may be either explicit or ex-
pressed in a compact tag as seen in the table.

There is a wide spectrum of methods that have been used to encode the decision-
making processes of POS taggers. The majority of the current taggers are encoded
with statistical a priori knowledge of all the possible POS tags of a given word as well
as contextual interdependencies between tokens and their respective tags [37]. The

6



2. Background

Token Explicit POS specification Compact POS tag

We personal pronoun, first person, unspecified gender,
plural and nominative case Pp1-pn

can modal verb, indicative present Voip
can main verb, infinitive Vmn
a indefinite article, unspecified gender, singular Ti-s
can common noun, neuter gender, singular Ncns

Table 2.1: Examples of two variants of POS tagging of an ambiguous sentence [37].

collection of a priori knowledge that is required for a tagger to perform its job is what
can be referred to as the language model. An overwhelming majority of the LMs
that are available today are encoded in a data-driven statistical manner such that
the POS tagger learns the LM from training data [37]. The data-driven methods
are attractive since, given the availability of adequate training data, reasonable per-
formance can be achieved with minimal human effort [37]. One example of a recent
DNN-based state-of-the-art POS tagger is the Bidirectional Long Short-Term Mem-
ory Deep Neural Network with a CRF layer (BI-LSTM-CRF) which, when used on
the Penn TreeBank (PTB) POS-tagging data set produced a POS-tagging accuracy
of 97.55% [38]. Using a similar model, others have reported a POS-tagging accuracy
of 97.85% [39]. Despite impressive results, a significant drawback of the data-driven
approaches involving statistical LMs is that the error rate seems to remain at a few
percentage points, despite the numerous efforts that have been made to improve
the accuracy of the systems [37]. Furthermore, the statistical data-driven methods
suffer from the usual problems of lack of interpretability (which are discussed in
section 2.3).

As opposed to the data-driven models, LMs for POS tagging can also be non-
statistical and deterministic, and based on hand-coded grammar rules [37]. An
example of a system that is purely rule-based and grammar-based is the EngCG-2
tagger which is capable of performing POS disambiguation of arbitrary English texts
with an accuracy of 99.7% [40]. This accuracy is higher than any reported accuracy
of a statistical tagger. However, the development of the model took several years [37].

There are also hybrid methods that combine statistical and hand-crafted rule-based
approaches [37] [28]. One example of such a method is a transformation-based error-
driven learning method in which the POS tagging process is rule-based but the rules
are automatically learned from an annotated training corpus [41]. Testing of this
method has resulted in a reported accuracy of 97.2% when all the words in the test
set were known to the tagger, and an overall accuracy of 96.6% when the tagger was
used on a data set that included unknown words [41]. A number of rules that the
system learned are seen below1:

1AT = article, HVD = had, IN = preposition, MD = modal, NN = sing. noun, NP = proper
noun, PPS = 3rd sing. nom. pronoun, PPO = obj. personal pronoun, TO = infinitive to, VB=

7



2. Background

1. TO IN NEXT-TAG AT (Change from TO to IN if next tag is AT)

2. VBN VBD PREV-WORD-IS-CAP YES (Change from VBN to VBD if previ-
ous word is capitalized)

3. VBD VBN PREV-1-OR-2-OR-3-TAG HVD (Change from CBD to VBN if
any of the previous 3 words are HVD)

4. VB NN PREV-1-OR-2-TAG AT (Change from VB to NN if any of the previous
2 words are AT)

5. NN VB PREV-TAG TO (Change from NN to VB if previous tag is TO)

To summarize, the current average performance of state-of-the-art POS taggers lies
at an accuracy of around 97-98% [37], which sounds like an impressive achievement.
It should, however, be noted that considering an average sentence length of 30
words this level of accuracy would mean that on average every third sentence has 2-
3 tagging errors [37]. This error rate could be detrimental to higher-level processing
of the text [37].

2.2.2 Text simplification
Automatic text simplification (TS) is the process of reducing the linguistic complex-
ity of text whilst retaining its original semantic meaning. The purpose is to make
the text more easily comprehensible and improve its readability [42]. Text simplifi-
cation is an important task for many reasons. For instance, it can be used to make
text accessible to readers with low reading abilities, such as second language readers
[43], people with diagnoses such as autism [44] and dyslexia [45], children, or people
with low literacy levels [42]. Automatic TS is also, similarly to POS tagging, used
as a preprocessing technique in various other NLP tasks to facilitate higher-level
processing [42].

Automatic TS is an actively studied research field and has, like most NLP tasks,
seen an upsurge in conjunction with the growth in statistical data-driven ML tech-
niques for NLP [42]. However, despite the active interest of the research community
in the field, the situation is described as far from satisfactory and far from reaching
a saturation stage [42].

TS can be divided into several different approaches, two of which are lexical and
syntactic simplification [42]. Lexical simplification means simplifying the individual
words in the text by identifying complex words and replacing them with less complex
synonyms. Syntactic simplification refers to reducing the grammatical complexity
of complicated syntactic structures (such as passive relative clauses) [42]. Research
on either lexical or syntactic simplification can be roughly classified into two main
approaches, namely rule-based and data-driven [42]. The first rule-based lexical
simplification system was proposed in 1998 [46] to simplify English newspaper texts
to make them comprehensible to aphasic readers. This system consists of two main

verb, VBN = past part. verb, VBD = past verb.

8



2. Background

components: (i) an analyser component that performs a syntactic analysis and POS
tag disambiguation of the input text and (ii) a simplifier component that simplifies
the analysed text [46]. The simplifier component includes a lexical simplifier as well
as a syntactic simplifier. The lexical simplifier works by feeding the words in the
input text, one by one, into the WordNet lexical database [47] (see a description of
WordNet in 2.4) and thus retrieving a list of synonyms for each word [46]. Then,
the word frequency of each synonym is extracted from the Oxford Psycholinguistic
Database [48] and the synonym with the highest frequency is selected and substi-
tutes the original complex word in the text [46]. The project that this system was a
part of has widely influenced subsequent research on lexical simplification systems
[49]. The typical pipeline of lexical simplification systems is seen in Figure 2.1,
where the example sentence ”The cat perched on the mat.” is simplified. The main
difference between this pipeline and the system just described is the addition of the
word sense disambiguation step where, in this example, the synonym ”roosted” was
ruled out, as it does not apply properly to the context of cats [49].

Input
”The cat perched on the mat.”

Identification of complex words
”perched”

Substitution Generation
Perched: Rested; Sat; Roosted; Settled

Word Sense Disambiguation
Perched: Rested; Sat; Roosted; Settled

Synonym Ranking
1) Sat; 2) Rested; 3) Settled

Output
”The cat sat on the mat.”

Figure 2.1: The typical lexical simplifi-
cation pipeline. In the example, the sen-
tence ”The cat perched on the mat.” is
simplified to ”The cat sat on the mat.”.

The complex word identification and
synonym ranking steps (seen in Fig-
ure 2.1) share common characteristics
as both steps require a way to mea-
sure lexical complexity (and ”ranking”
of words) [46]. Choosing the method
for measuring or evaluating text com-
plexity is in general a central point in
TS [42]. Traditionally, it is a measure
that is hard to define and there is a wide
spectrum of methods and text complex-
ity scores that have been used by re-
searchers within the field [42] [50]. For
evaluating lexical complexity, i.e. com-
plexity of individual words, word fre-
quency is often used, which can be ob-
tained from a number of sources [51] [52]
[42]. For assessing complexity of a block
of text, containing more than one word,
a combination of automatic and manual
methods is frequently used, where the
automatic method commonly includes
computing various readability indices
(such as the Flesch Reading Ease score
[53], the Fog Index, and the SMOG

Grading score [54]) [55] [56] [57]. The manual approach typically entails letting
human experts evaluate the system on a sentence level. These experts usually as-
sess the performance of the system by considering three aspects, namely degree of
simplification, preservation of grammatical correctness, and preservation of meaning
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[51] [58] [59] [54] [60] [55].

Syntactic simplification is usually carried out in three stages: (i) analysing the
structure of the input text and identifying its parse tree (a tree representation of
the relations between the grammatical components of the sentence [61]), (ii) mod-
ifying the parse tree, according to a set of rules, to simplify the sentence structure
(such as rearranging or dropping clauses), (iii) regenerating a readable sentence
from the modified parse tree [42]. Similarly to lexical simplification, syntactic sim-
plification can also be categorized roughly into rule-based or data-driven solution
approaches [42]. Most syntactic simplification systems are, however, rule-based as
the data-driven ones have been shown to produce less syntactic simplification [42].
Meanwhile, the lexical rule-based approaches have been considered limited in terms
of performance. Therefore, hybrid approaches to TS have been proposed and shown
to produce superior results compared to either excludingly rule-based or excludingly
data-driven approaches [42]. In this thesis, however, data-driven methods are not
considered due to the drawbacks mentioned earlier in this thesis and in 2.3.

2.2.3 Semantic textual similarity
Semantic similarity is the notion of conceptual distance between two objects [62].
Semantic textual similarity (STS) is, more specifically, the measure of semantic
equivalence between two blocks of text, such as two sentences [63]. Measuring STS
is a complex and challenging problem as the semantic meaning of words is highly
dependent on the context [62]. Applications of semantic similarity analysis in NLP
include estimating relatedness between search engine queries [64], generating key-
words for online advertising [65], analyzing results in biomedical applications [66]
[67] [68], online information retrieval [69], text summarization [70], and text catego-
rization [71]. Given the wide range of applications, the approaches used to measure
semantic similarity are highly varied [62], and only a brief account of some of the
methods will be given here. Rather than resulting in a binary decision, i.e. either
similar or not similar, STS methods often output a ranking or percentage of similar-
ity between texts [63]. STS can be said to measure the degree of synonymy, i.e. the
amount of shared characteristics between two objects or concepts [72]. For instance,
car and plane are considered semantically similar to some degree, as they are both
means of transport, they are both fuel-driven machines with wheels and engines etc..
A similar reasoning holds for scientist and actor. The words actor and movie are,
however, not considered semantically similar according to the definition, despite the
fact that they are clearly related, because they belong to different branches of tax-
onomy [73]. I.e. actor and scientist <is-a> person, whereas movie <is-a> product
[73]. The relationship between movie and actor falls within the wider concept of
measuring semantic relatedness [63].

The methods used to compute STS can be roughly classified into the following
families: (i) knowledge-based methods, (ii) corpus-based methods, (iii) deep neural
network-based methods, and (iv) hybrid methods [63]. In knowledge-based methods
an underlying knowledge base or, equivalently, knowledge source is used to derive
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information about similarity between terms [63]. The knowledge base may consist
of e.g. an ontology, a lexical database, a thesaurus, a dictionary etc [63]. From the
knowledge base one can thus derive a structured, unambiguous representation of
concepts, and the semantic relations between them [63]. Two lexical databases that
are widely used in knowledge-based semantic similarity methods are WordNet and
Wiktionary [63]. WordNet is (as further described in 2.4) a lexical database over
the English language that can be visualized as a graph, where the nodes represent
the meaning of the words and the edges represent the relationships between words
[73]. Wiktionary2 is an open-source lexical database that covers more than 6 million
words from 4000 languages [74]. Wiktionary is organized such that each sense of
a given word has its own entry. Compared to WordNet, however, Wiktionary does
not contain well-established taxonomic lexical relationships and is therefore less well
suited for semantic similarity analysis [74].

Knowledge-based methods can be further classified into (i) edge-counting meth-
ods, (ii) feature-based methods, and (iv) information content-based methods [63].
In edge-counting methods, the knowledge-base is considered a graph, in which the
nodes represent words that are taxonomically connected by edges [75]. The similar-
ity between two terms is then inversely proportional to the number of edges between
the terms [75]. In feature-based methods, similarity between two words is computed
in terms of the overlap between the gloss of the given words [63]. A gloss represents
the meaning of a word in a dictionary, and a glossary is a collection of glosses [63].
For example, using the Lesk measure, similarity of two words can be estimated by
studying the overlap of words present in their respective glosses as well as the glosses
of other words that they are connected to in e.g. WordNet [76]. Lastly, information
content-based methods measure similarity in terms of the information content (IC)
value of different terms [63]. The IC value of a concept is a measure of the amount
of information that is obtained from the concept when it occurs in a text [77]. A
high IC value indicates more specificity and less ambiguity whereas a lower IC value
indicates that the word has a more abstract meaning [73].

Corpus-based semantic similarity methods is a family of methods that measure
semantic similarity between concepts by extracting information from large text cor-
pora, based on the assumption that ”similar words occur together, frequently” [78].
In corpus-based methods, two words are considered similar if their surrounding con-
texts tend to be similar [73]. Drawbacks of these methods include the fact that they
do not take the actual meaning of words into account and thus leave room for word
sense ambiguity [63]. In general, this makes them more suited for measuring se-
mantic relatedness rather than semantic similarity [73]. Additionally, corpus-based
methods depend on the access to huge high-quality corpora, the building and curat-
ing of which is very resource-demanding. Furthermore, despite the growing access
to large amounts of text on the internet, the ”ideal corpus” is yet to be defined [63].

The third family of methods that was mentioned is the family of DNN-based meth-
ods. Similarly to many other NLP tasks, DNN-based methods have outperformed

2https://en.wiktionary.org/
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most traditional methods for STS methods [63]. However, they share the depen-
dency on large high-quality corpora. Additionally, their implementation requires
huge computational resources and their black-box nature makes them less well suited
for applications that require a high degree of interpretability (see further in 2.3).

2.2.4 Paraphrasing
Paraphrasing is the task of expressing the same, or almost the same semantic mean-
ing of an input sentence, in a different wording, whilst maintaining grammatical
and syntactical correctness [79]. Paraphrasing methods also include recognizing
and extracting paraphrases from corpora, and is thus closely related to methods
for semantic similarity analysis [80]. NLP related applications of automatic para-
phrasing include text summarization [81], question answering (QA) [82], information
retrieval [83], machine translation [84], and conversational agents [85]. Automatic
paraphrasing is very useful in knowledge-based QA systems for bridging the gap
between the user’s questions and the knowledge-based assertions in the system [84]
[82] [86] [87]. Additionally, paraphrase generation is an important tool for generat-
ing textual training data for other NLP tasks [84].

There are three main challenges of sentence paraphrasing, the first two being: (i)
words can have multiple meanings, and (ii) two words that are considered synonyms
are generally not interchangeable in all contexts [88]. The word great can e.g. mean
either of a substantial amount or very good, but only one of these is appropriate in
the sentence ”Walking home, he was stricken by a great pain in the knee.”. There-
fore, it is not sufficient to rely on generic domain-independent lexical resources [88].
The third challenge is (iii) the fact that two sentences may be paraphrases of each
other without there being any one-to-one correspondences between single words or
phrases within the sentences [88]. The latter makes sentence paraphrasing a prob-
lem of a different dimension compared to paraphrasing of smaller lexical units [88].

Furthermore, the notion of semantic similarity is not trivial in the first place. Con-
sidering sentences (1)-(3) below, (1) and (2) are paraphrases of each other. When
it comes to sentence (3), most people would accept this variant as a paraphrase of
(1) and (2) as well; however, it may be argued that in sentence (3) there is some
ambiguity to whether the construction of the bridge has been completed or not [80].
To account for such fine distinctions, and the fact that changing the wording of a
sentence or phrase may always tweak the conveyed meaning somewhat, even if to
an infinitesimal degree, the clause almost the same is included in the definition of
paraphrasing (see the beginning of this section) [80].

(1) Company X constructed the new bridge.
(2) The new bridge was constructed by Company X.
(3) Company X is the constructor of the new bridge.

As a way to generalize the paraphrasing capabilities of a system, the paraphras-
ing methods may be based on templates such as sentences (4)-(6), where X and Y
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may be replaced with arbitrary noun phrases. Additional restrictions may also be
added to the templates. These may be syntactic, such as requiring either uncount-
able or countable nouns, or semantic, such as requiring Y to be an object containing
letters [80].

(4) X wrote Y.
(5) Y was written by X.
(6) X is the writer of Y.

Additional to paraphrasing, there is a neighbouring concept called textual entail-
ment. Textual entailment methods generate, recognize, or extract pairs <T, H> of
expressions (T = True, H = Hypothesis) such that a human that reads and trusts
the truth of T would deduce that H is most probably also true [80]. An example of
entailment is seen in sentences (7)-(8) below, where (7) textually entails (8) but the
reverse is not true (if e.g. Y is a symphony composed by X) [80].

(7) X painted Y.
(8) Y is the work of X.

In addition to the definition given at the beginning of this section, paraphrasing
can also be defined in terms of symmetrical and asymmetrical textual entailment
[89]:

Definition 2.2.1 A symmetrical paraphrase is a pair of natural language expres-
sions <Ea, Eb>, such that each expression entails the other one, i.e. Ea |= Eb and
Eb |= Ea.

Definition 2.2.2 An asymmetrical paraphrase is a pair of natural language expres-
sions <Ea, Eb>, such that one expression entails the other one, but at least one
expression is more general or contains more information than the other one, i.e. ei-
ther Ea |= Eb and Eb ̸|= Ea or Eb |= Ea and Ea ̸|= Eb.

In the literature, a distinction is made between paraphrasing/textual entailment
methods for recognition and methods for generation [80]. A recognizer system takes
as input a pair of language expressions (specific or templates) and outputs a judg-
ment (that may be either probabilistic or binary) that indicates whether or not
there is any entailment relation between them [80]. Thus, a paraphrase recognizer
is practically a semantic similarity analyser. To a paraphrasing/textual entailment
generator, the input is a single language expression and the output is normally a set
of language expressions that entail or are entailed by the input [80]. The output set
normally has to be as large as possible, whilst containing as few errors as possible,
to be considered a high-performing system [80].

Similarly to other NLP tasks, there is a large variety of paraphrasing methods [90].
In the last few decades, data-driven corpus-based approaches have become extremely
popular [90]. Many of these methods rely on the notion that a language possesses
distributional structure, which refers to the idea that sentences and phrases are not
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formed by arbitrarily combining components of the language [90]. Rather, elements
of the language tend to occur only in certain positions relative to other elements of
the language. Furthermore, it is assumed that the positions of members of a certain
class relative to positions of members of some other class can be described in terms
of probabilistic measures, and that it thus is possible to compute the distribution of
every member in the corpus [90]. Then, based on these ideas, words or phrases that
share the same distribution are assumed to have similar meanings [90]. A weakness
of this assumption is the fact that many terms that are distributionally similar can-
not be used interchangeably in paraphrasing [90]. Consider e.g. the elements of the
pairs <boys, girls>, <cats, dogs>, <high, low> which often occur in similar con-
texts, and thus have similar distributions, but are not semantically interchangeable
[90].

2.3 Drawbacks of deep neural networks
The deep neural networks that are currently extensively used in NLP are composed
of layers of artificial neural networks and often have billions of trainable parameters
[12]. One of the most significant drawbacks of the DNN methods is that they are
so complex that they are practically black boxes and are thus too complicated for
a human to comprehend [14] [91] [17]. This stands in contrast with the naturally
interpretable models of the rule-based paradigm in the early days of NLP [13]. As
opposed to a black-box system, an interpretable system is a system that is composed
of interpretable primitives such that the decision-making steps can be comprehended
by a human [21].

The increasing use of algorithmic decision-making in society combined with the
upsurge of neural models in applications has led an increasing number of people
to caution against the rise of a ”black-box” society and stress the importance of
algorithmic transparency [92] [17] [91] [13] [14]. In both America and the European
Union the increasing awareness has led to new legislation that restricts the use of
black-box algorithms in public decision making [93] [94] [17]. Interpretability of
models is important for several reasons. For instance, the question of accountability
is important both for model builders and users. System builders need to understand
whether the system is working as intended, whether the predictions are sensible,
and whether relevant legislation and regulations are conformed to [95]. For users,
it is crucial to understand how to use the model in the correct way and that the
output is unbiased and fair [95] [17]. There are unfortunately several examples of
cases where incorrect use has led to severe negative consequences. These examples
include polluted air that was incorrectly classified as safe to breath and dangerous
prisoners that were released from prison prematurely due to poor automatic bail de-
cisions [17]. Moreover, interpretability is crucial in situations where a model needs
to be combined with external data, which is likely to occur if the model is used in
any social context, as many such contexts tend to have a high variability depending
on e.g. geographical parameters and societal development [17].

Another disadvantage of deep neural models is that they require massive amounts
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of data to be trained [96]. For many applications, the data needs to be carefully
preprocessed and curated to prevent the model from learning unwanted biases such
as e.g. language that is violent, racist or sexist [19]. This work takes an enormous
amount of time and resources. Furthermore, high-quality data is especially signifi-
cant in high-stake situations, such as in the case of task-oriented agents that need
to provide users with precise and consistent information [97].

2.4 Previous work on interpretable knowledge-
based language models

In contrast to supervised, corpus-based machine learning methods which require
large amounts of manually annotated training data, so called knowledge-based sys-
tems have proven to be a useful alternative for NLP tasks such as word sense dis-
ambiguation [98]. A knowledge base is a system that stores information about data
structures and relationships between them [99]. Knowledge-based approaches to
NLP typically use knowledge graphs (KGs) to represent the knowledge base [73]. A
formal definition of a KG is as follows:

Definition 2.4.1 A KG is defined as a directed labeled graph, G = (V, E, τ), where
V is a set of nodes, E is a set of edges connecting those nodes; and τ is a function
V × V → E that defines all triples in G.

Nodes of KGs are typically composed of a set of concepts C1, C2, ..., Cn that represent
conceptual abstractions, and a set of instances I1, I2, ..., Im that represent entities in
the real world [73]. The knowledge graph that is most frequently used is based on
WordNet [98], which is an online lexical database that contains information about
words in the form of more than 166 000 pairs (f, s), where f is a word form and s
is a word sense [47]. WordNet also includes information about semantic relations
between words, more specifically the relations synonymy, antonymy, hyponynmy,
meronymy, troponymy, and entailment [47]. The words are arranged according to
the semantic relations between them into so-called synsets, such that words that are
connected via a given semantic relation are in the same synset [62]. When WordNet
is visualized as a knowledge graph, synsets constitute the nodes in the graph and
the edges represent the relations between synsets [73].

Despite including useful information about word relations, lexical databases such
as WordNet tend to suffer from sparseness in the availability and density of rela-
tions [100]. Many synsets lack sufficient information for an algorithm to be able
to choose the appropriate word sense for ambiguous words, and contextual knowl-
edge from actual text is not included [100] [98]. To remedy this problem, various
attempts have been made to incorporate semantic relations from other sources into
the lexical databases, such as from sense annotated corpora [100] [101]. Despite the
advantages of such hybrid approaches, that type of solution does not circumvent
the corpus-dependency problem. To this end, attempts have been made to incorpo-
rate external semantic knowledge into the actual knowledge graph, which has been
proven to increase the accuracy of the system compared to only basing the graph
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on WordNet [100]. The resulting capacity of the system to differentiate between ap-
propriate and inappropriate senses of ambiguous words has, however, still not been
satisfactory. This makes researchers suggest that WordNet might not be an ideal
knowledge base to use in these applications [100].

2.5 N-gram models
A common approach in statistical language modelling is to make the Markov assump-
tion that the probability of a token tk in a text only depends on the j preceding
tokens [61]. This can be expressed in terms of the following equation:

P (tk|t1, ..., tk−1) ≈ P (tk|tk−j, ..., tk−1) (2.1)

This approach to language modelling is also referred to as n-gram language modelling
[61]. An n-gram is a sequence of n consecutive tokens in a text. What constitutes a
token depends on the context; it could be either a word, a letter, or something else.
For example, we may consider the sentence ”Which scientist received the Nobel prize
in Physics in 1903?”, and define a token as a word in the sentence. Not considering
the question mark, this sentence then has 9 1-grams, namely the set {[Which], [sci-
entist], [received], [the], [Nobel], [prize], [in], [Physics], [in], [1903 ]}. The 2-grams
of the sentence are {[Which scientist], [scientist received], [received the], [the Nobel],
[Nobel prize], [prize in], [in Physics], [Physics in], [in 1903 ]}. For any given sen-
tence, n-grams can be generated in a similar way for all n such that n is larger than
0 and less than the number of tokens in the sentence.

In this thesis, the technique of splitting a sentence into n-grams of all possible
n-gram lengths is used, but in a non-statistical context. This is described further in
Chapter 3.
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3
Implementation and methods

This chapter presents the methods that have been developed and implemented in
this thesis. These include the development of the interpretable knowledge-based
language model and the implementation of the four interpretable NLP methods for
(i) POS tagging, (ii) semantic similarity analysis, (iii) paraphrasing, and (iv) text
simplification.

The structure of the chapter is as follows: (i) a description of the language model
architecture is presented, (ii) the generation of the language model is explained,
(iii) brief accounts of various implementation details such as auxiliary methods and
important classes are given, (iv) the developed algorithms of the four NLP tasks are
presented.

3.1 Components of the language model
As described in 1.1.1, the first objective of this thesis is to expand and improve the
language model that has been proposed as part of recent work by Wahde et al. [22].
The LM that Wahde et al. propose is a special case of a generalized knowledge graph.
In line with the description of KGs in 2.4, the KG proposed by Wahde consists of a
set of nodes that are interconnected by a set of edges. The KG defines three types
of edges, namely instance edges (isInstanceOf), attribute edges (hasAttribute)
and subcategory edges (isSubcategoryOf). For the special case where the KG is
a language model, additional custom edges can be defined that are relevant to
describe relations in the context of language.

For this thesis, the following custom edges have been used in the LM: isInflectionOf
(for verbs), isPluralOf (for nouns), isOrdinalOf (for integers), isComparativeOf (for
adjectives and adverbs), isSuperlativeOf (for adjectives and adverbs), isSimilarTo
(asymmetrical similarity relation applicable to phrases), isBiSimilarTo (symmetri-
cal similarity relation applicable to phrases), isVersionOf (applicable to words). An
example of a small and incomplete LM that is built according to the described struc-
ture is shown in Figure 3.1.

As can be seen in the figure, a node does not represent a synset (as in WordNet)
but can be either a single word, or a phrase that in turn is composed of a wordBase
that points to a list in which each element is either a word or a wordOption. As seen
in Figure 3.1, both word and wordOption are subcategories of wordBase. The text

17



3. Implementation and methods

Figure 3.1: An example of a small and incomplete LM, visualized as a graph
network (M. Wahde, personal communication, 12 Dec, 2022).
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Figure 3.2: A small part of the LM developed in this thesis, where the node for
the adverb when is visualized along with the closest neighbouring nodes.

that is shown inside any node is the identifier of the node (e.g. she1 is the identifier
of a node that is an instance of pronoun, has the spelling she and the pronoun type
personal etc). Identifiers are used since every node has to be well-defined. Since
most words have several meanings, using only spelling to identify them would be
ambiguous. Moreover, as seen in Figure 3.1, a node can have a number of differ-
ent abstraction levels, i.e. a node can be a specific word instance (such as she) or
be a generic node such as a POS (e.g. pronoun) or the even more generic nodes
word or phrase. In this way, the syntactical relationships that are present in the
English language are represented in the model and can be used to define rules for
language processing. Considering a specific example, the node verb is a subcategory
of word which is a subcategory of wordBase. Moreover, verb has the direct attribute
verbForm (the allowed values of a given attribute are specified when defining the
LM, which will be described later), and also the indirect attribute spelling which is
inherited from word. Thus, a fully defined verb in the LM needs to have a specified
verb form and spelling, such as the node attend1 which has the specified spelling
attend and verb form root.

An example from the LM that was developed for the thesis is shown in Figure 3.2,
where the node for the adverb when is visualized (in the centre of the image) as well
as the most closely connected neighbouring nodes. The graph shown in Figure 3.2
is only a subgraph of the full LM; e.g. all adverb instances in the LM are connected
to the node adverb but the full graph would be too detailed to visualize in a small
figure. As seen in Figure 3.2, the node word has an attribute called wordfrequency,
which has not yet been mentioned but will be described more in detail further on.
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Figure 3.3: A small part of the textual representation of the LM developed in this
thesis.

3.1.1 Textual representation of the language model
Now that the conceptual structure of the LM has been presented, this section will
describe the textual representation of the LM. A small part of the textual represen-
tation of the LM used in this thesis is seen in Figure 3.3. This figure shows the first
lines of the text document that constitutes the textual definition of the LM. The
textual representation is parsed in a computer program which results in the visual
representation, part of which was seen in Figure 3.2. As seen in Figure 3.3, each node
is defined on a separate line, within square brackets, starting with the node prefix
LMNode and the identifier. Subsequently, various edge relations and attributes are
defined. E.g. the node word has the edge relation isSubcategoryOf=wordbase (which
connects it to the node wordbase), and the attributes spelling, wordFrequency, and
generic (indicating that it is not the specific word instance word but the generic
node word which has specific instances as subcategories). Some attributes are nodes
and some attributes are value nodes. If an attribute is a value node, it contains
the isType declaration, as e.g. is seen in Figure 3.3 for the generic attribute which
can have either of the values true and false. The value nodes are the bright orange
nodes in Figure 3.1, and the regular nodes are shown as blue. The values of the
value nodes are shown in the green boxes directly above the node to which the value
attribute applies (see e.g. the word frequency value and the adverb form value in
Figure 3.2).
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3.1.2 Phrases
As mentioned in 2.4, the lexical database WordNet (which most current KG-based
LMs are based on) includes relations between words and word forms but lacks the
aspect of textual context. WordNet does provide example sentences for the words
but not in a format that can be easily used for computational purposes, such as au-
tomatic paraphrasing tasks. The LM used in this thesis, however, incorporates the
concept phrase which enables computational processing of contextual knowledge.
By defining instances of phrase, word instances are put into context and thus word
sense disambiguation can be carried out. To understand the concept of phrases in
the LM, consider again the LM example in Figure 3.1, where the nodes with identi-
fiers phrase1 and phrase2 are visualized in the bottom left corner of the graph. As
seen in the figure, both phrase1 and phrase2 are instances of phrase and a similar-
ity relation is declared between them, represented by an isSimilarTo edge. Every
phrase has a wordBase attribute which defines the words that constitute the phrase.
The wordBase attribute points to a list which may be made up of either specific
word instances or instances of wordOption (or a mix of the two). The respective
word bases of phrase1 and phrase2 are shown in the green boxes directly above the
phrase nodes. The word base of phrase1 is {pp1, attended1} and the word base of
phrase2 is {pp1, was1, present1, at1}. As seen in Figure 3.2, most of the elements
in these two word bases are instances of some POS which in turn is a subcategory
of word, whereas pp1 is an instance of wordOption. The wordOption points to a list
of the possible words that pp1 could be substituted with, and this list is shown in
the green box directly above the pp1 node, namely: {I1, he1, she1}. This means
that phrase1 has the three possible spellings {I attended, he attended, she attended}
and phrase2 has the possible spellings {I was present at, he was present at, she was
present at}. These phrases can be used to disambiguate the meaning of the word
present and clarify that the word present, when used in this context, is the specific
word instance present1 which is an adjective and not e.g. the noun (as in I gave
him a present). The similarity relation between the two phrases can be used to
paraphrase either phrase1 or phrase2.

To exemplify the difference between a LM based on WordNet and the LM used in
this thesis, we may consider the phrase I was present at the meeting. To paraphrase
this phrase using WordNet, the synset of the adjective present could be retrieved
(given that it is known by the program that present is an adjective), which contains
the words attendant, ever-present, existing, here, naturally occurring, omnipresent,
and ubiquitous. This information does not help much in forming a paraphrased ver-
sion of the sentence that most people would accept as natural (e.g. I was existing
at the meeting is not a natural way of saying I was present at the meeting). With
the LM that is presented here, however, the phrase can be directly paraphrased to
I attended the meeting, despite present and attended belonging to different word
classes.
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Figure 3.4: Textual representation of three different phrases in the LM, that are
interconnected by similarity edges. Each of the phrases shown contains an instance
of a wordOptionSpecific.

Figure 3.5: Textual representation of three instances of wordOptionSpecific in the
LM.

3.1.2.1 wordOption, wordOptionSpecific, wordPowerOption

As described in previous sections, each instance of phrase in the LM has a word-
Base attribute which points to instances of word or wordOption. In addition to
wordOption, two similar concepts exist in the LM, namely wordOptionSpecific and
wordPowerOption. The wordOptionSpecific concept has been introduced for the
purpose of enabling more generic phrases whilst maintaining specific similarity rela-
tions. The wordOption can be said to represent synonymity relations between words.
If a phrase contains a wordOption in a certain position, it means that all the words
in the wordOption are interchangeable in that specific phrase. On the contrary, if a
phrase contains a wordOptionSpecific in a certain position, there may still be a list of
different words that can be used in that position but for a similarity relationship to
hold between this phrase and some other phrase, the other phrase must also contain
the same wordOptionSpecific. As an example we may consider the phrases shown in
Figure 3.4, and the definition of the genericDiscipline11 node in Figure 3.5. As seen
in Figure 3.5, genericDiscipline11 is a wordOptionSpecific and represents either of
the nodes {chemistryNoun,physicsNoun,biologyNoun}. It is not shown in the figure
but these are all instances of word. The fact that genericDiscipline11 is a wordOp-
tionSpecific means that the phrase thePrizeDiscipline in Figure 3.4 can have either
of the four spellings {nobel prize in chemistry, nobel prize in physics, nobel prize in
biology}, but for the similarity relations to hold with the two other phrases shown
in the figure, the wordOptionSpecific must be the same word in both phrases that
the relation applies to. I.e. ”nobel prize in chemistry” is similar to ”chemistry
nobel prize” but not to ”physics nobel prize” etc. However, if genericDiscipline11
had been a wordOption rather than a wordOptionSpecific the similarity would have
been valid regardless of the discipline.
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Figure 3.6: Example of an instance of wordPowerOption in the LM.

Figure 3.7: Textual representation of two phrases that each contains an instance
of wordPowerOption.

Lastly, there is the wordPowerOption which makes a similarity relation valid for
all word options even if one of the phrases involved has a wordOptionSpecific. An
example where this can be used is for the phrases (a) ”share his/her/their prize with
anyone”, (b) ”share his/her/their prize with some other laureate” and (c) ”share
the prize with anyone”. In phrases (a) and (b), the possessive pronouns should
be wordOptionSpecific since the phrases are similar if and only if the pronouns
match. Moreover, it may also be considered valid that, regardless of the pronoun
option, both phrases (a) and (b) are similar to phrase (c). For that purpose the
wordPowerOption has been defined. In this case, the word the in phrase (c) is
declared as wordPowerOption, as seen in Figure 3.6 and Figure 3.7.

3.1.2.2 Generic instances of words

The generic word node has an attribute called generic. This attribute may be either
true or false. Every instance that is an instance of word or an instance of a node that
is a subcategory of word inherits the attribute generic. If an instance is generic it
means that it represents all words in the LM of the given word class. Some generic
nodes can be seen in Figure 3.8. If e.g. genericVerbRoot (which is seen in the figure)
is part of a word base in a phrase, it means that any root verb can be used at
that position in the given phrase. The concept of generic word instances makes it
very convenient to create rules that automatically apply to an immense number of
phrases.

3.1.2.3 The verbRestriction attribute

Instances of phrase have an attribute called verbRestriction which takes either of
the values true and false. If verbRestriction=true for some phrase, it means that
the verb forms of the verbs in the phrase are relevant to resolve ambiguity. If we
e.g. consider the phrase ”Who received the Nobel prize?”, we do not need to confirm
the verb form of received because it is clear from the context that it has to be simple
past. However, if the phrase is simply ”received the Nobel prize”, the verb form
is ambiguous as this phrase may be part of e.g. either the previously mentioned
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Figure 3.8: Examples of instances of generic-type nodes in the textual represen-
tation of the LM.

sentence or the sentence ”Who has received the Nobel prize?”, in which case the
correct verb form of received would be past participle. For such ambiguous phrases
in the LM, verbRestriction is set to true so that no processing occurs with this
phrase until the verb form in the given context is confirmed.

3.2 Generating the language model
Data for specific word instances have been added to the LM by automatically pars-
ing word data from Wiktionary1. As an example, the result of the parsing for the
word prize is seen in Figure 3.9, where the first node is the singular noun prize and
the second node is the plural noun form. After that follows six different versions of
prizeNoun which are the six different senses of the word, as a noun, that are listed in
Wiktionary. After the noun entries, entries for prize as a verb follow, for a number
of different verb forms. The bottom nodes seen in the figure represent the adjective
version.

In addition to parsing word entries from Wiktionary, external word frequency data
has been integrated in the LM such that each word node contains a word frequency
item. The word frequency data was computed by Wahde, as part of a previous
project, by analysing a corpus containing 255, 575 distinct words. The corpus con-
sisted of radio transcripts from American NPR, and relative word frequency was
computed for each word in terms of number of occurrences per one million words.
Taking into account (i) the size of the corpus (in terms of distinct words) and (ii)
the fact that the corpus consists of spoken dialogue covering a wide spectrum of
different subjects, the computed word frequencies are likely to be fairly representa-
tive of general every day use of the English language. The word frequency data was
automatically added to the LM text document. The purpose of integrating word

1https://www.wiktionary.org/
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Figure 3.9: Output resulting from automatic parsing of word data from Wik-
tionary, for the word prize.

frequency data into the LM is to be able to perform text simplification, which will
be discussed in more detail in subsequent sections.

As a starting point, Both words and phrases have been added to the LM (mainly)
to cover a number of questions pertaining to the Nobel prize . These questions are
the following:

(1) ”Who won the Nobel prize in Physics in 1901?”
(2) ”Which scientist received the Chemistry Nobel prize in 1903?”
(3) ”In what year did Becquerel win the Nobel prize?”
(4) ”Did Becquerel share his prize with anyone?”
(5) ”How many women have won the Nobel prize twice?”
(6) ”Which woman was the first one to receive a Nobel prize?”

Phrases relevant to the listed questions were added manually to the LM, but with
the help of an automatic phrase search tool that has been previously developed by
Wahde. The phrase search tool is a program that searches for phrases in a large
corpus consisting of radio transcripts, based on some input parameters provided by
the user, and outputs the phrases that it finds. More specifically, the tool searches
for sentences in the corpus that contain certain words that are present in the input
phrase, but do not contain certain other specified words. The input parameters
include (i) Paraphrase search, which is the phrase to be searched for, (ii) Target
phrase, which is the words in the phrase that should not be included in the search
(i.e. in the output sentences), Non-overlap penalty which regulates how the output
sentences should be ranked based on their similarity with the original phrase. An
example usage of the phrase search tool is seen in Figure 3.10, where the phrase to be
searched for is ”nobel prize” (at the start of the program, all letters in the corpus are
converted to lower case). In the figure, both words are marked with the * symbol,
meaning that both words are required in the output sentence. No target phrase was
specified in this case so the search is practically simply a search for sentences that
include nobel prize. The output provides a systematic way to add relevant phrases
to the model in the context of the Nobel prize.
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Figure 3.10: Example usage of a phrase search tool that was used to search for
relevant phrases in a large corpus.

3.3 Developing four methods for NLP
In this section, the four NLP methods (the development of which constitutes the
second objective of this thesis, see 1.1.2) are presented. As stated earlier, these
methods include (a) a POS tagger method that takes an input sentence and outputs
the correct POS of each word in the sentence, (b) a simplification method that takes
an input sentence and rephrases it to a lexically and syntactically simpler sentence
whilst maintaining the semantic meaning of the original sentence, (c) a semantic
similarity analysis method that takes two sentences as input and outputs whether
the two sentences are semantically similar or not, and (d) a paraphrasing method
that takes a sentence as input and outputs a paraphrased (but semantically similar)
version of the sentence. The four methods have the names (a) Disambiguate,
(b) Simplify, (c) CheckSimilarity, and (d) Paraphrase, and the implemented
algorithms of these are presented as pseudocode in 3.3.5-3.3.8. The rest of the
chapter is dedicated to, first, giving a general overview of the implementation and,
subsequently, explaining relevant auxiliary methods and classes that are referred to
in the algorithms.

3.3.1 General overview of the implementation
A graphical user interface (GUI) has been implemented, through which a user can
run the four NLP methods that have been developed for this thesis. The NLP
application is implemented such that all of the four NLP methods are placed in a
class called LanguageProcessor(), which also contains a number of auxiliary meth-
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ods. When the program is started from the GUI and the LM has been loaded by
the user, an instance of LanguageProcessor() is created with the LM as input. The
user is then able to run any of the four NLP methods separately from the GUI.

The general procedure in all four NLP methods is such that the input sentence
(that is provided by the user) is first cleaned and processed into a list of n-grams.
Note that the term sentence is used here but there is no requirement that the input
text is an actual full sentence. Subsequently, the input n-grams are iterated through
in descending order of length and for each n-gram, the program performs a binary
search over the phrases that exist in the LM to find phrases that have the same
spelling as the current n-gram. If such a phrase is found and it fulfills certain re-
quirements (e.g. pertaining to verb forms), phrases in the LM that are similar to this
phrase (i.e. connected to this phrase’s node by an isSimilarTo edge or an isBiSim-
ilarTo edge) are collected in a list (except in the POS tagging method where no
paraphrasing occurs and thus no similarity relations need to be considered). Among
all the similar phrases, one is selected based on certain criteria (the nature of which
depends on the specific NLP task) and the original sentence is paraphrased by sub-
stituting the current n-gram with the phrase that was provided and selected from
the LM. If no similar phrase is found that meets the criteria, no paraphrasing oc-
curs for this n-gram and the algorithm simply continues to the next iteration. (Note
that a phrase can have multiple equivalent spellings, i.e. it may contain instances
of wordOption. If that is the case for the matching phrase, the alternative spellings
of that phrase are also considered similar phrases.) In the POS tagging method,
instead of retrieving similar phrases, any matching phrase that meets the relevant
criteria is used for disambiguating the input, i.e. storing POS information, but not
for paraphrasing.

In all four methods, a recursive call is made every time a paraphrasing or a dis-
ambiguation update is carried out. I.e., when a similar phrase has been selected
and the n-gram has been substituted with the new phrase or the disambiguation
data of the input has been updated, a recursive call is made on the new version of
the sentence. In that way, the original sentence is iteratively and recursively up-
dated to a new version. The recursion continues until no further updates are made,
or until a specified number of maximum recursive calls has been made.

Each algorithm is described in more detail in the following sections.

3.3.2 Preprocessing
This section describes the text preprocessing that is implemented in all four NLP
methods.

3.3.2.1 The Clean() method

Before any further processing of the input text is done, the input is cleaned. The
cleaning takes place in a method referred to as Clean, and consists of (ii) removing
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characters in the input sentence that are not alphanumeric or white space, and (ii)
converting all remaining characters to lower case.

3.3.2.2 The Tokenize() method

After cleaning, the input sentence is tokenized which means that the sentence is split
into a list of the tokens that make up the sentence, in the order that they occur in
the sentence. Throughout the whole implementation, the tokens are the individual
words that make up the sentence, i.e. tokens are sequences of characters separated
by white space. The tokenization step is referred to as Tokenize in the algorithms
in the subsequent sections.

3.3.2.3 The MakeNgrams() method

As briefly mentioned in 2.5, dividing a text into n-grams (for some range of values of
n) is a commonly used approach in language modelling. The n-gram technique plays
a central part in the present implementation. In all four NLP methods, the input
sentence is processed by iteratively comparing each n-gram in the input with existing
phrases in the LM. The n-grams are iterated through in descending order of length
(since longer phrases contain more information) and in the natural order in which
they occur in the input sentence. In each of the four NLP methods, the n-grams
are generated at an early stage as part of the preprocessing of the input sentence.
This is done by calling the MakeNgrams method on the tokenized input sentence.
In the MakeNgrams method, the n-grams are formed by iterating through the
tokenized input and saving sequences of consecutive words, one n-gram length at a
time. The method results in a list of tuples. Each tuple consists of an integer that
represents the n-gram length and a list containing all the n-grams in the input of
that length, in the order that they occur in the input. The list of tuples is sorted in
order of n-gram length.

3.3.3 Key classes
All programming methods that were developed for this thesis were implemented in
the object-oriented class-based programming language C#. This section describes
some key classes that each constitutes a central part of the functionality throughout
all four NLP methods.

3.3.3.1 The Disambiguation class

As stated in 2.2.1, POS tagging is an important backbone of many NLP tasks as
it is a very useful tool to disambiguate the linguistic structure of a text and thus
facilitate higher level processing. Furthermore, it has been shown that preprocessing
a text by performing POS tagging increases the performance of word sense disam-
biguation of the words in the text [102]. The idea of addressing seemingly separate
NLP tasks as a whole has been expressed and implemented by several researchers
[103] [104] [28]. L. Padró states that ”it seems logical that the more information we
have, the better results we will produce at a given task [...] this is more or less what

28



3. Implementation and methods

we humans do when understanding a natural language utterance: we use all kinds
of information –lexical, syntactical, semantic, etc” [28].

In line with this reasoning, a key aspect of the program that has been developed in
this thesis is the implementation of a class called Disambiguation. In each of the
four implemented NLP methods, an instance of Disambiguation is passed as input,
then modified and updated as the method proceeds, and passed along in every re-
cursive call. The instance of Disambiguation holds all the current information about
the (possibly rephrased) input sentence. In that way all information that becomes
accessible about the input sentence as the method proceeds is collected, used, and
refined as the method progresses. The Disambiguation class keeps track of (i) the
words in the sentence (as a list of words), (ii) the LM nodes of the respective words
(as a list of nodes), and (iii) the retrieved disambiguation information about the
sentence, i.e. the POS tags for the respective words (which are stored in the nodes).
In this way, when processing the input sentence and searching for a matching phrase
in the LM, matching can be done not only based on spelling but also on POS tag
information. This results in a more refined matching procedure and opens up for
more matching possibilities; e.g. with phrases that have the verbRestriction=true
attribute and thus require information about verb forms; as mentioned previously,
these phrases cannot be matched solely based on spelling but also require POS in-
formation.

The Disambiguation class has the method Update, which, when a phrase has been
found in the LM that matches an n-gram in the processed sentence, updates the node
list and the connecting disambiguation information of the sentence. Additionally,
the Disambiguation class has the method RephraseUpdate, which first rephrases
the current sentence (by substituting the given n-gram with the given semantically
equivalent phrase, that are both passed as input to the method) and then updates
the node list, word list, and disambiguation data accordingly.

The Disambiguation class also has the CheckRestriction method, which is fur-
ther described in 3.3.4.

3.3.3.2 The ExpandedPhrase class

Since a phrase in the LM may contain not only specific words but also instances
of wordOption and/or wordOptionSpecific (see 3.1.2.1), a single phrase may have
multiple possible spellings. For example, we may have the following node in the
LM:

[LMNode: identifier=example, isInstanceOf=phrase, wordbase=
{whoPronoun, wonOption, theDeterminer, prizeNoun}]

(3.1)

Consider that whoPronoun, theDeterminer, and prizeNoun are all identifiers of word
instance nodes, such as the one in 3.2, and wonOption is an instance of wordOption,
and thus has a node such as the one in 3.3 (where the node getVerbPastSimple has
the spelling ”got”).
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[LMNode: identifier=whoPronoun, spelling=who,
isInstanceOf=Pronoun, wordFrequency=3172.54184270]

(3.2)

[LMNode: identifier=wonOption, isInstanceOf=wordOption,
word={winVerbPastSimple,getVerbPastSimple}]

(3.3)

Then, the example phrase (3.1) has two possible spellings, namely (i) who won the
prize and (ii) who got the prize. Thus, a phrase in the LM is often a compact rep-
resentation of multiple spellings. This means that in order to search for a given
phrase based on spelling, all phrases in the LM need to be expanded, i.e. all possible
spellings of every phrase need to be generated and stored, whilst maintaining the
connection to the node of the phrase (so that the program still knows which node a
given spelling belongs to).

For the purpose of keeping track of the spellings and other relevant information
about a phrase, a class called ExpandedPhrase was created. An instance of Ex-
pandedPhrase has (i) the spelling of the given expanded version of the phrase, (ii)
the node of the phrase, (iii) the node list of the compact representation of the phrase
(such as the word base in 3.1), (iv) the node list of the expanded representation of
the phrase (such as {whoPronoun, getVerbPastSimple, theDeterminer, prizeNoun}
in the case of one of the spellings of the example phrase 3.1), and (v) a list of word
frequencies of the words in the spelling of the given version of the phrase.

3.3.4 Handling phrases
The core functionality of the implemented NLP methods described here is the han-
dling of phrases, the implementation of which is also the main novelty of the LM
presented here. In this section, the most relevant stages of phrase handling are
described.

3.3.4.1 Phrases in the language model

When the LM is loaded from the GUI, the text file that represents the LM is
parsed and the nodes that have the attribute isInstanceOf=phrase are collected in
a list called phraseList. An instance of a class called LanguageModel is created
and phraseList is a field belonging to this instance. This means that whenever
an instance of LanguageModel exists within a certain scope, the phraseList can be
accessed. In the algorithms that are presented further on in this thesis, the retrieval
of the phrase list is represented by the command LanguageModel.phraseList.

3.3.4.2 The MakePhraseDictionary method

After the phrases have been retrieved from the LM by calling LanguageModel.phraseList,
they are organized into a so-called dictionary consisting of key-value pairs. This step
is referred to as the MakePhraseDictionary method. The dictionary contains all
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the phrases in phraseList, arranged such that each key is a phrase length (number of
words in a phrase) and the corresponding value is a list containing the phrases with
this length in the LM. Organizing the phrases in a dictionary enables fast searching
for phrases with a specific length in the LM.

3.3.4.3 The ExpandPhrases/ExpandConditionalPhrase methods

After phrases of a given length have been retrieved from the dictionary containing
all phrases in the LM, these phrases are expanded such that all possible spellings
are represented in a list of ExpandedPhrase instances. This step is carried out in
the ExpandPhrases method and is done by generating all possible combinations
of any present wordOptions/wordOptionSpecifics in a given phrase. The purpose of
this step is to be able to search for phrases in the LM that match the current input
n-gram.

In Simplify, CheckSimilarity, Paraphrase, the procedure is such that when
a matching phrase is found in the LM, the phrases that are similar to the match-
ing phrase are also retrieved and expanded. The expansion of the similar phrases
is done in a method called ExpandConditionalPhrase. In this method, an ex-
panded spelling is only considered valid if any wordOptionSpecific that is present in
a similar phrase is also present in the input phrase. This procedure differs from the
one in ExpandPhrases in which all candidate nodes in any wordOptionSpecific set
are expanded and considered for further analysis.

Both ExpandPhrase and ExpandConditionalPhrase respectively result in a
list of instances of the ExpandedPhrase class, sorted alphabetically based on the
spelling field.

3.3.4.4 The ExpandFrequencies method

In Simplify, any paraphrasing is done (partially) based on word frequencies of the
words in a given phrase. The word frequencies of the words in an expanded phrase
are retreived in a method called ExpandFrequencies. This method simply takes
the nodes in the node list of the expanded phrase instance and retrives the word
frequency from the LM for each node.

3.3.4.5 The CheckRestriction method

A given phrase in the LM may have the attribute verbRestriction=true which means
that this phrase can only be matched with an n-gram if it is ensured that the verb
forms in the phrase are consistent with the verb forms in the n-gram. E.g. con-
sider the n-gram won the prize in the input sentence Who won the prize?. Only
considering spelling, this n-gram would match with the following phrase:

[LMNode: identifier=example2, isInstanceOf=phrase, wordbase=
{wonOption2, theDeterminer, prizeNoun}]

(3.4)
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In this case, wonOption2 is the following wordOption:

[LMNode: identifier=wonOption2, isInstanceOf=wordOption,
word={winVerbPastParticiple,getVerbPastParticiple}],

(3.5)

where winVerbPastParticiple is the past participle of win which has the spelling
won and getVerbPastParticiple is the past participle of get, which (in America) has
the spelling gotten. This means that, without using any restriction on verb form,
the n-nram won the prize in the input sentence could be substituted with gotten
the prize and result in the sentence Who gotten the prize? which is grammatically
incorrect.

Thus, the attribute verbRestriction is an important feature to distinguish between
eligible and ineligible phrases in any paraphrasing or disambiguation stage. When
a phrase is matched with an input n-gram based on spelling, the verbRestriction at-
tribute is always checked. If verbRestriction=true the method CheckRestriction
is called. In this method, the nodes in the matching phrase are compared with the
disambiguation data (see 3.3.3.1) of the input sentence. If no information about verb
forms is available in the disambiguation data, or if the verb forms differ between the
matching phrase and the input sentence disambiguation, the verb restriction is not
considered fulfilled and the matching phrase is not passed on for further analysis.

3.3.4.6 The GetSimilarToNodes method

When a phrase in the LM has been found to match a given n-gram in the input
sentence, the phrases that are similar to the matching phrase are retrieved. This is
done by calling the GetSimilarToNodes method. In Paraphrase and Simplify,
only output edge similarity (including bisimilarity) is considered since, in paraphras-
ing, an n-gram should not be substituted with a phrase that it is not similar to, even
if that phrase, in turn, is similar to the n-gram. e.g. the phrase ”in what year” can
be substituted with ”when” (even if the question becomes less specific) but the op-
posite is not true since ”when” might, more appropriately, refer to ”at what time”
or ”on which day” etc, depending on context. Similarly, ”Which scientist won the
prize?” is similar to Who won the prize?”, but the opposite is not necessarily true
since the recipient does not have to be a scientist (given the available context).

Whether only output similarity or both directions of similarity should be considered
is passed to GetSimilarToNodes as an input boolean argument. In CheckSimi-
larity both directions of similarity is considered as this method analyses similarity
of two sentences rather than paraphrasing. In that context, the sentences ”In what
year did Becquerel win the Nobel prize?” and ”When did Becquerel win the Nobel
prize?”, are considered similar.

3.3.5 The part-of-speech tagging algorithm
This algorithm takes a sentence as input and outputs POS information about each
word in the input, if such information for the given word could be found in the LM.
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The algorithm proceeds by iteratively and recursively trying to match the n-grams
in the input with existing phrases in the LM. The iterative matching is done by
iterating through the n-grams in the input in descending length order and, for each
n-gram, searching for phrases in the model that the n-gram matches with, based on
spelling. If such a phrase is found, and any existing phrase restrictions are fulfilled,
the disambiguation information of the input is updated with the information that
is contained in the found phrase. If this update leads to an expansion of the al-
ready known disambiguation information, a recursive call is made with the updated
disambiguation information as input. Otherwise, the iteration through the input
n-grams is simply continued.

The overall method is divided into two algorithms, Algorithm 1 which conducts
some necessary preprocessing of the input sentences and prepares a dictionary con-
taining the phrases in the LM, and Algorithm 2 which recursively disambiguates the
input.

Algorithm 1 Call POS tagger algorithm
1: procedure CallDisambiguate(input) ▷
2: cleanedInput← Clean(input)
3: inputWords← Tokenize(cleanedInput)
4: disambiguation← new Disambiguation(inputWords)
5: phraseList← languageModel.PhraseList // get list of all the phrases in the

LM
6: phraseDictionary ← MakePhraseDictionary(phraseList)
7: disambiguation← Disambiguate(disambiguation, phraseDictionary)
8: return disambiguation
9: end procedure

Algorithm 2 POS tagger algorithm
1: procedure Disambiguate(string input) ▷
2: inputNgrams← MakeNgrams(disambiguation.WordList)
3: for each ngram length (in descending order) do
4: ngramsCurrentLength← get the ngrams in inputNgrams with the current

length
5: phrasesCurrentLength← get the phrases with the current length in

phraseDictionary
6: expandedPhrasesCurrentLength←

ExpandPhrases(phrasesCurrentLength)
7: for each ngram in ngramsCurrentLength do
8: matchingPhrases←

expandedPhrasesCurrentLength.BinarySearch(ngram)
9: for each phrase in matchingPhrases do

10: isRestrictedPhrase ← true if current phrase has verbRestriction = true,
otherwise false

11: if isRestrictedPhrase then
12: isOkay ← CheckRestriction(phrase, ngram)
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13: end if
14: if isOkay or not isRestrictedPhrase then
15: disambiguation← disambiguation.Update(phrase)

// update with the information that exists in the matching phrase
16: if any new update occured then
17: disambiguation← Disambiguate(disambiguation, phraseDictionary)
18: return disambiguation
19: end if
20: end if
21: end for
22: end for
23: end for
24: return disambiguation
25: end procedure

3.3.6 Similarity analysis
This algorithm takes two sentences, sentence1 and sentence2, as input and outputs
true if they are semantically similar, and false if they are not. The idea of this al-
gorithm is that one of the sentences, sentence1, is considered the template and then
the algorithm iteratively and recursively tries to paraphrase the other sentence, sen-
tence2, until it is equal to sentence1 or until all n-grams in sentence2 have been
iterated through and no further substitutions of phrases can be made. The iterative
paraphrasing is done by iterating through the n-grams in sentence2 in descending
length order and, for each n-gram, searching for phrases in the model that the n-
gram is similar to and thus can be substituted with, such that the original sentence
becomes paraphrased but retains its semantic meaning. Paraphrasing of sentence2
occurs if (i) the found similar phrase exists in the template sentence or (ii) if the
found similar phrase contains a verb that exists in the template but is missing in
sentence1 (the idea of this is that the algorithm sometimes has to find the correct
verb first and can then, in a subsequent step, change the verb form). As soon as
sentence2 has become paraphrased such that it is equal to sentence1 (i.e. has the
same words, in the same order as sentence1 ), the algorithm returns true; otherwise,
at the end of the algorithm, it returns false.

The overall method is divided into two algorithms, Algorithm 3 which conducts
some necessary preprocessing of the input sentences and prepares a dictionary con-
taining the phrases in the LM, and Algorithm 4 which recursively tries to paraphrase
sentence2 such that it becomes more similar to sentence1.

Algorithm 3 Call similarity analysis algorithm
1: procedure CallCheckSimilarity(sentence1, sentence2) ▷
2: cleanedInput← Clean(sentence1)
3: cleanedTemplate← Clean(sentence2)
4: disambiguationInput← Disambiguate(cleanedInput)
5: disambiguationTemplate← Disambiguate(cleanedTemplate)
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6: phraseList← languageModel.PhraseList // get list of all the phrases in the
LM

7: phraseDictionary ← MakePhraseDictionary(phraseList)
8: templateWords← Tokenize(cleanedTemplate)
9: ngramsTemplate←

MakeNgrams(templateWords)
10: isSimilar ←

CheckSimilarity(cleanedInput, cleanedTemplate, templateWords,
ngramsTemplate, cleanedInput, phraseDictionary, disambiguationInput,
disambiguationTemplate)

11: return isSimilar
12: end procedure

Algorithm 4 Similarity analysis algorithm
1: procedure CheckSimilarity(previousVersion, cleanedTemplate, templateWords,

ngramsTemplate, cleanedInput, phraseDictionary, disambiguation, disambigua-
tionTemplate) ▷

2: if (cleanedInput = cleanedTemplate) then
3: return true
4: end if
5: inputWords← Tokenize(cleanedInput)
6: inputNgrams← MakeNgrams(inputWords)
7: for each ngram length (in descending order) do
8: ngramsCurrentLength← get the ngrams in inputNgrams with the current

length
9: phrasesCurrentLength← get phrases with current length in

phraseDictionary
10: expandedPhrasesCurrentLength←

ExpandPhrases(phrasesCurrentLength)
11: for each ngram in ngramsCurrentLength do
12: matchingPhrases←

expandedPhrasesCurrentLength.BinarySearch(ngram)
13: for each phrase in matchingPhrases do
14: isRestrictedPhrase← true if current phrase has

verbRestriction = true, otherwise false
15: if isRestrictedPhrase then
16: isOkay ← CheckRestriction(phrase, ngram)
17: end if
18: if (isOkay or not isRestrictedPhrase) then
19: disambiguation← disambiguation.Update(phrase) // update with

information in matching phrase
20: similarToPhrases←

GetSimilarToNodes(phrase, considerInputSimilarity = true)
21: for each phrase in similarToPhrases do
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22: phraseSpellings← ExpandConditionalPhrase(phrase)
23: for each spelling in phraseSpellings do
24: hasMissingV erb← CheckMissingVerbs(disambiguation,

disambiguationTemplate, phrase)
25: existsInTemplate← true if new phrase exists in

cleanedTemplate

26: if existsInTemplate or hasMissingV erb then
27: disambiguation←

disambiguation.RephraseUpdate(phrase, ngram)

28: if (updated sentence == cleanedTemplate) then
29: return true
30: else if (updated sentence not equal to previous
31: version AND not equal to version before previous version) then
32: isSimilar ←

CheckSimilarity(previousVersion, cleanedTemplate,
templateWords, ngramsTemplate,
cleanedInput, phraseDictionary, disambiguation,
disambiguationTemplate)

33: return isSimilar
34: end if
35: end if
36: end for
37: end for
38: end if
39: end for
40: end for
41: end for
42: return false
43: end procedure

3.3.7 Paraphrasing
Similarily to the previous methods, this method is divided into two submethods: (i)
one that does some preprocessing and calls the recursive paraphrasing method, and
(ii) the recursive paraphrasing method itself.

The idea of this method is that it, with a certain probability referred to as paraphras-
ing probability, performs a random, but eligible, paraphrasing of the input sentence,
such that the semantic meaning of the original sentence is retained. Randomisation
is incorporated at four stages of the recursive algorithm: (i) when choosing a random
n-gram length to start the iteration from, (ii) when choosing randomly among the
phrases in the LM that are found to match the spelling of the input (and that fulfill
any relevant restrictions), (iii) when a random matching phrase in the LM has been
chosen, a random decimal number between 0 and 1 is generated; if this number is
less than the paraphrasing probability, a (iv) random spelling is chosen among the
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similar phrases of the matching phrase. The variables in the algorithm that are
assigned by means of randomisation are marked in red in Algorithm 6 to facilitate
for the reader.

Algorithm 5 Call paraphrasing algorithm
1: procedure CallParaphrase(input) ▷
2: cleanedInput← Clean(sentence1)
3: disambiguation← Disambiguate(cleanedInput)
4: phraseList← languageModel.PhraseList // get list of all the phrases in the

LM
5: phraseDictionary ← MakePhraseDictionary(phraseList)
6: paraphrasedInput = Paraphrase(cleanedInput, phraseDictionary,

cleanedInput, 0, disambiguation)
7: return isSimilar
8: end procedure

Algorithm 6 Paraphrasing algorithm
1: procedure Paraphrase(cleanedInput, phraseDictionary, originalInput, num-

berOfIterations, disambiguation)
2: previousV ersion← cleanedInput
3: inputWords← Tokenize(cleanedInput)
4: inputNgrams← MakeNgrams(inputWords)
5: randomMaxNgramLength = random integer in (0, length(inputWords))
6: for each ngram length <

randomMaxNgramLength (in descending order) do
7: ngramsCurrentLength ← get the ngrams in the input with the current

length
8: phrasesCurrentLength← get the phrases with the current length in

phraseDictionary

9: expandedPhrasesCurrentLength← ExpandPhrases(phraseList)
10: for each ngram in ngramsCurrentLength do
11: matchingPhrases←

expandedPhrasesCurrentLength.BinarySearch(ngram)
12: for each phrase in matchingPhrases do
13: isRestrictedPhrase← true if current phrase has

verbRestriction = true, otherwise false
14: if isRestrictedPhrase then
15: isOkay ← CheckRestriction(phrase, ngram)
16: end if
17: if (isOkay or not isRestrictedPhrase) then
18: allMatchingPhrases.Add(phrase)
19: disambiguation← disambiguation.Update(phrase)
20: end if
21: end for
22: end for
23: if allMatchingPhrases is not empty then
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24: randomMatchingPhrase← choose a matching phrase randomly from
allMatchingPhrases

25: similarToPhrases←
GetSimilarToNodes(phrase, considerInputSimilarity = false)

26: for each phrase in similarToPhrases do
27: currentPhraseSpellings← ExpandConditionalPhrase(phrase)
28: phraseSpellings.Add(currentPhraseSpellings)
29: end for
30: p← random number in (0, 1)
31: if p <= paraphraseProbability AND

phraseSpellings not empty then
32: similarPhrase← chooose random phrase in phraseSpellings
33: paraphrasedSentence← disambiguation.RephraseUpdate(similarPhrase)
34: numberOfIterations← numberOfIterations + 1
35: if paraphrasedSentence not equal to oldV ersion then
36: paraphrasedSentence ← Paraphrase(paraphrasedSentence, phraseDic-

tionary, originalInput, numberOfIterations, Disambiguation)
37: return paraphrasedSentence
38: end if
39: end if
40: end if
41: end for
42: if paraphrasedSentence not equal to originalInput OR numberOfIterations > 10 then
43: return paraphrasedSentence
44: else
45: numberOfIterations← numberOfIterations + 1
46: paraphrasedSentence ← Paraphrase(paraphrasedSentence, phraseDic-

tionary, originalInput, numberOfIterations, Disambiguation)
47: return paraphrasedSentence
48: end if
49: end procedure

3.3.8 Text simplification
The simplification method is, similarly to Paraphrase, CheckSimilarity, and
Disambiguate, divided into two submethods (i) one for preprocessing and for call-
ing a recursive simplification method, and (ii) the recursive simplification method
itself. The simplification algorithm works similarly to previous methods by iterating
through the n-grams in the input sentence (in descending order of length) and, for
each n-gram, searches for matching phrases in the LM. The simplification method,
however, has the additional criterion that the input sentence is paraphrased only if
the paraphrased version results in a simpler sentence than the original one.

As described in 2.2.2, text simplification can be carried out on a number of dif-
ferent levels. In this thesis, the implemented simplification is a combination of a
lexical and syntactic approach carried out at phrase level, thus taking context and
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grammatical cohesion into account, unlike most automatic LS systems of today [42].
In Figure 2.1, the typical lexical simplification pipeline of current systems was pre-
sented. The present implementation adheres to this pipeline to a large extent, how-
ever not exactly. In the present implementation, substitution generation is carried
out for every word in the input without first identifying complex words. Word sense
disambiguation is a built-in feature considering that all substitutions are carried out
at phrase level, as well as considering the POS disambiguation procedure. Synonym
ranking is carried out by comparing simplicity scores of all retrieved similar phrases.

In this thesis, degree of simplicity of a phrase is measured in terms of the aver-
age word frequency of the words in the phrase, and the number of words in the
phrase. I.e. generally, phraseX is considered simpler than phraseY if the average
word frequency of the words in phraseX is higher than the average word frequency
of phraseY, unless phraseY is much shorter. To account for the wide range in word
frequency (the word the occurs 50 000 times per one million words compared to
was which occurs 6 700 times) the frequencies are normalized by taking the base 10
logarithm. The exact expression used for phrase simplicity in the algorithm is

log10(wordFrequencyAverage)
numberOfWords

(3.6)

This expression is partly inspired by the Swedish readability index LIX [105] which
is based on the following formula (words and sentences refer to the number of words
and number of sentences in the text; a word is considered long if it contains more
than 6 characters [105]):

words

sentences
+ (long words) · 100

words
, (3.7)

and the automated readability index (ARI) for English texts [106] in which the
following formula is used (where characters refers to the number of characters in the
text):

GL = 4.71 characters

words
+ 0.5 words

sentences
− 21.43. (3.8)

The ARI is used to determine the appropriate grade level (GL) of English school
texts. The ARI formula (3.8) has been empirically established by means of multiple
regression and correlating each factor with already assigned grade levels of school
texts [106]. For both LIX and ARI, a lower index indicates a simpler text and vice
versa. The ideas of the formulas are similar; a text that has long words and many
words per sentence is considered complicated. However, they do not take common-
ness of words into account, unlike many other implementations of text simplification
systems (see 2.2.2). Since the simplicity score in the present implementation is used
on singular phrases rather than on texts containing multiple sentences, it is not rele-
vant to include number of sentences in the formula. In future work, word length (or
other parameters) could be included, but for this thesis word frequency and number
of words was considered sufficient and eligible as a simplicity measure.

Furthermore, if one (or both) of the phrases in a comparison only contains one
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word, the minimum word frequencies of the phrases are compared and the phrase
with the highest minimum word frequency is considered the simplest.

Algorithm 7 Call simplification algorithm
1: procedure CallSimplify(input) ▷
2: cleanedInput← Clean(input)
3: disambiguation← Disambiguate(cleanedInput)
4: phraseList← languageModel.PhraseList // get list of all the phrases in the

LM
5: phraseDictionary ← MakePhraseDictionary(phraseList)
6: simplification = Simplify(cleanedInput, cleanedInput,

phraseDictionary, disambiguation)
7: return simplification
8: end procedure

Algorithm 8 Sentence simplification algorithm
1: procedure Simplify(previousVersion, cleanedInput, phraseDictionary, disam-

biguation) ▷

2: simplification← cleanedInput
3: inputWords← Tokenize(cleanedInput)
4: inputNgrams← MakeNgrams(inputWords)
5: for each ngram length (in descending order) do
6: ngramsCurrentLength← get the ngrams in

inputNgrams with the current length
7: phrasesCurrentLength← get phrases with current length in

phraseDictionary
8: expandedPhrasesCurrentLength←

ExpandPhrases(phrasesCurrentLength)
9: for each ngram in ngramsCurrentLength do

10: matchingPhrases←
expandedPhrasesCurrentLength.BinarySearch(ngram)

11: for each phrase in matchingPhrases do
12: isRestrictedPhrase← true if current phrase has

verbRestriction = true, otherwise false
13: if isRestrictedPhrase then
14: isOkay ← CheckRestriction(phrase, ngram)
15: end if
16: if (isOkay or not isRestrictedPhrase) then
17: disambiguation← disambiguation.Update(phrase) // update with

the information
in the matching phrase

18: similarToPhrases←
GetSimilarToNodes(phrase, considerInputSimilarity = true)

19: ngramWordFrequencies← GetWordFrequencies(phrase)
20: for each phrase in similarToPhrases do
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21: phraseSpellings← ExpandConditionalPhrase(phrase)
22: phraseSpellings← ExpandFrequencies(phraseSpellings)
23: expandedSimilarPhrases.Add(phraseSpellings)
24: end for
25: simplestSimilarPhrase← the phrase in

expandedSimilarPhrases that has the highest simplicity score
26: if simplestSimilarPhrase is simpler than ngram then
27: beforeSimplification← simplification
28: simplification← disambiguation.

RephraseUpdate(previousV ersion, simplestSimilarPhrase, ngram)
29: if simplification not equal to previousV ersion then
30: previousV ersion← beforeSimplification
31: simplification← Simplify(previousV ersion,

simplification, phraseDictionary, disambiguation)
32: end if
33: end if
34: end if
35: end for
36: end for
37: end for
38: return simplification
39: end procedure
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4
Results and Discussion

This chapter presents some results of applying the implemented methods that were
presented in Chapter 3, followed by a discussion.

4.1 Results
This section first presents the results of (i) paraphrasing, (ii) simplification, and (iii)
POS disambiguation, followed by (iv) the results of semantic similarity analysis and,
finally, (v) some demonstration of generic phrases.

4.1.1 Paraphrasing, text simplification & POS disambigua-
tion

Figure 4.1 shows the output of the implemented program when the sentence ”Who
won the Nobel prize in Physics in 1901?” is (i) paraphrased, (ii) simplified, and (iii)
disambiguated.
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Figure 4.1: Results of applying three of the developed NLP methods on the sen-
tence ”Who won the Nobel prize in Physics in 1901?”.

Figure 4.2 shows the output of the implemented program when the sentence ”Which
scientist received the Chemistry Nobel prize in 1903?” is (i) paraphrased, (ii) sim-
plified, and (iii) disambiguated.
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Figure 4.2: Results of applying three of the developed NLP methods on the sen-
tence ”Which scientist received the Chemistry Nobel prize in 1903?”.

Figure 4.3 shows the output of the implemented program when the sentence ”In
what year did Becquerel win the Nobel prize?” is (i) paraphrased, (ii) simplified,
and (iii) disambiguated.
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Figure 4.3: Results of applying three of the developed NLP methods on the sen-
tence ”In what year did Becquerel win the Nobel prize?”.

Figure 4.4 shows the output of the implemented program when the sentence ”Did
Becquerel share his prize with anyone?” is (i) paraphrased, (ii) simplified, and (iii)
disambiguated.

Figure 4.4: Results of applying three of the developed NLP methods on the sen-
tence ”Did Becquerel share his prize with anyone?”.
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Figure 4.5 shows the output of the implemented program when the sentence ”How
many women have won the Nobel prize twice?” is (i) paraphrased, (ii) simplified,
and (iii) disambiguated.

Figure 4.5: Results of applying three of the developed NLP methods on the sen-
tence ”How many women have won the Nobel prize twice?”.

Figure 4.6 shows the output of the implemented program when the sentence ”Which
woman was the first one to receive a Nobel prize?” is (i) paraphrased, (ii) simplified,
and (iii) disambiguated.
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Figure 4.6: Results of applying three of the developed NLP methods on the sen-
tence ”Which woman was the first one to receive a Nobel prize?”.

4.1.2 Semantic similarity analysis
Figure 4.7 and Figure 4.8 show some example output from the implemented semantic
similarity analyser.

Figure 4.7: Results of applying the developed semantic similarity analyser on four
sentence pairs.
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Figure 4.8: Results of applying the developed semantic similarity analyser on three
sentence pairs.

4.1.3 Syntactic paraphrasing of generic phrases
Figure 4.9 shows the output of the implemented program when the sentence ”Which
woman was the first one that climbed Mount Everest?” is (i) paraphrased, (ii) sim-
plified, and (iii) disambiguated. As seen in the figure, the program could not disam-
biguate mount and everest because these words do not exist in the LM. That does
not cause any problems in the paraphrasing, however. The textual representation
of two of the generic phrases involved in this paraphrasing is seen in Figure 4.10.

Figure 4.9: Results of applying three of the developed NLP methods on the sen-
tence ”Which woman was the first one that climbed Mount Everest?”.

Figure 4.11 shows the output of the implemented program when the sentence ”Which
duck was the first one to climb Mount Everest?” is (i) paraphrased, (ii) simplified,
and (iii) disambiguated. As seen in the figure, the program could still not disam-
biguate mount and everest due to the same reason as in the previous example. Here
we also see that the pronoun who is not used since duck was recognized as a generic
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Figure 4.10: Textual representation of two different generic phrases in the LM
that are connected via a similarity relation.

noun by the LM and not as a person. The textual representation of two of the
generic phrases involved in this paraphrasing is seen in Figure 4.12.

Figure 4.11: Results of applying three of the developed NLP methods on the
sentence ”Which duck was the first one to climb Mount Everest?”.

Figure 4.12: Textual representation of two phrases containing instances of generic
words.
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4.2 Discussion
As a starting point for a discussion, some of the results obtained in this thesis have
been compared to results produced by two other currently available NLP tools.

One of the most popular online paraphrasing tools is QuillBot1 [107], which is a
ML-based tool that is said to be the best online paraphrasing tool in 2022 and is
used by millions of people. When prompted with some of the questions used in this
thesis, QuillBot sometimes produces good options of paraphrases, but also quite a
large number of incorrect or even nonsensical ones. Some of the QuillBot results are
presented below:

Prompt: Which scientist received the Nobel prize in Chemistry in 1903?
Result: In 1903, who scientist was awarded the Nobel Prize in Chemistry?

Prompt: Did Becquerel share his prize with anyone?
Result: Shared his reward with anyone, Becquerel?

Prompt: How many women have won the Nobel prize twice?
Result: How many women have received the Nobel Peace Prize twice?

Prompt: Which duck was the first one to climb Mount Everest?
Result: Which of the following ducks was the first to scale Mount Everest?

Another popular online paraphrasing tool is wordtune2 which is another ML model-
based tool that is trained on enormous datasets of written material. Similarly to
QuillBot, wordtune produced a number of good paraphrases for some of the phrases
used in this thesis, along with an equally substantial amount of nonsensical options,
some of which are seen below:

Prompt: Who won the Nobel prize in Physics in 1901?
Result 1 : How much did the Nobel prize in Physics in 1901 go to?
Result 2 : Physicist won the 1901 Nobel prize for their work?
Result 3 : When was the Nobel prize in Physics awarded in 1901?

Prompt: Which scientist received the Chemistry Nobel prize in 1903?
Result: How was the Chemistry Nobel prize awarded in 1903 to which scientist?

Prompt: In what year did Becquerel win the Nobel prize?
Result: Who won the Nobel prize in Becquerel’s year?

Prompt: How many women have won the Nobel prize twice?
Result: Do any women have won the Nobel prize twice?

1https://quillbot.com/
2https://www.wordtune.com/
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The results presented above are only a sub-sample of the paraphrases that were
produced by QuillBot and wordtune. As mentioned above, for some phrases, both
QuillBot and wordtune did produce good paraphrases additional to the nonsensical
results seen above. The problem however, despite such models sometimes achieving
impressive results, is their unreliability. In addition, due to the black-box nature
of such models, there is no straightforward way to fix the observed errors. In that
aspect, the model and methods that were developed in this thesis are superior. For
all phrases that the methods that were developed for this thesis were prompted
with, high accuracy and precision was achieved. This is stated in the sense that (i)
for all cases that were demonstrated in Chapter 4, the paraphrases that were pro-
duced are grammatically correct and semantically similar to the input sentence, (ii)
the output of the simplifier is considered simpler than the input sentence, (iii) the
POS tags that were returned by the disambiguation method are indeed correct, and
(iv) semantically similar sentences were detected by the similarity analyser and vice
versa. Additionally, the methods implemented in this thesis are fully interpretable,
thus enabling complete transparency and easy debugging.

The main disadvantage of the LM that has been developed and applied in this thesis
is that a lot of manual work is required to construct the phrases. The phrases and
phrase similarities need to be carefully curated not to introduce ungrammaticalities
and inappropriate formulations. However, the advantage is that the LM only needs
to be built once and for all, and then it can be applied in any application with full
transparency. For use in high-stake situations where correctness is prioritised over
versatility, this is to be preferred. Furthermore, the process of adding phrases can
be further automatised as part of future work.
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5.1 Conclusion
It can be concluded that implementing interpretable methods for (i) paraphrasing,
(ii) textual simplification, (iii) semantic similarity analysis, and (iv) POS disam-
biguation, using an interpretable language model based on a knowledge graph is
indeed a viable alternative to black-box neural-based systems in situations where
correctness is preferred over versatility. Building a general knowledge graph-based
language model has been shown to be a laborious task requiring high linguistic
awareness, albeit a rewarding one given the reliability of the resulting system. Con-
clusively, the work presented in this thesis offers promising prospects for continued
research on this topic and on ways to further automatise and generalise the process
of constructing an interpretable language model.

5.2 Future work
There is a number of areas into which future work on this topic should be directed.
One would be to optimise the program in terms of execution time. This could be
done by e.g. introducing parallelisation where appropriate and looking into the
choices of data structures throughout the program.

A useful functionality would be to link verb forms for phrases such that it is enough
to add a phrase for one verb form and make the program able to transform it to
equivalent phrases in other tenses. This was planned to be implemented for this
thesis but was not realised due to time constraints.

Another useful functionality would be to introduce a so-called ”skip word” func-
tionality. I.e. being able to construct phrases that consist of nonconsecutive word
sequences, such as ”When did xx win a Nobel prize” ≡ ”When was xx the recipient
of a Nobel prize” for all proper noun options of xx, but without having to generate
all possible such phrases.

Finally, an obvious area of improvement would be to add more phrases and phrase
relationships to the LM to expand the application domain of the model. Moreover,
a relevant focus of future work would be to make the phrase constructions partly
automatised. One way of doing this would be to let a user add the spelling of a new
phrase whereby the user is prompted about which POS should be intended for each
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word in the phrase. Thus, the textual node representation of the phrase could be
generated and added to the LM automatically which would speed up the building
process.
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