
An Evaluation of Human Pose
Estimation Using a Deep
Convolutional Neural Network

SVEN ABELSSON RUNING

Department of Signals and Systems
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

Master’s thesis 2017:11

An Evaluation of Human Pose Estimation Using a
Deep Convolutional Neural Network

SVEN ABELSSON RUNING

Department of Signals and Systems
Chalmers University of Technology

Gothenburg, Sweden 2017

An Evaluation of Human Pose Estimation Using a Deep Convolutional Neural Net-
work
SVEN ABELSSON RUNING

© SVEN ABELSSON RUNING, 2017.

Supervisor: Erik Landolsi, Visionists AB
Examiner: Fredrik Kahl, Department of Signals and Systems

Master’s Thesis 2017:11
Department of Signals and Systems

Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Network predictions of the human pose from a set of test images.

Typeset in LATEX
Printed by [Name of printing company]
Gothenburg, Sweden 2017

iv

An Evaluation of Human Pose Estimation Using a Deep Convolutional Neural Net-
work

SVEN ABELSSON RUNING
Department of Signals and Systems
Chalmers University of Technology

Abstract
The purpose of this master thesis was to evaluate how a deep convolutional neural
network can be used to estimate a human body pose in a 2D image. The evaluation
was done by implementing a state of the art network and test its performance on
the MPII human pose dataset. Three different ways to preprocess the training data
was tested and the network’s accuracy went from 60.8% for the first method to
71.2% for the third method, a roughly 17% increase in performance. These results
indicate that the choice of preprocessing method have a large effect on the overall
performance of the network.
An analysis of the MPII dataset revealed that the distribution of poses is skewed
towards poses facing the camera in an upright position. A score was calculated for
each pose that measures how much a pose deviates from the norm. Using this pose
score it is shown shown that the network performs much worse on poses that are rare
in the MPII dataset. This indicates that network has learned how the keypoints are
distributed and has overfitted to the MPII dataset. To improve the generalization
of the network a more thorough data augmentation should be implemented.

Keywords: pose estimation, CNN, MPII, preprocessing, training data, rare pose,
augmentation

v

Acknowledgements
I would like to thank my superviser at Visionists AB, Erik Landolsi for all the help
and support during the thesis work. I’m also grateful to Mattias Johansson and
Stefan Karlsson at Visionists for their help and many constructive ideas. Finally I
would like to thank my examiner Fredrik Kahl for his feed back and support.

Sven Abelsson Runing, Gothenburg, November 2017

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Aim . 2
1.2 Limitations . 2

2 Background 3
2.1 Human pose estimation . 3
2.2 An introduction to Convolutional Neural Networks - CNNs 4

2.2.1 Convolutional layer . 6
2.2.2 Max-pooling layer . 6
2.2.3 ReLU layer . 7
2.2.4 Training the network . 7

2.2.4.1 Batch Normalization 8
2.2.5 Convolutional layers vs fully connected layers 9

3 Methods 11
3.1 Before training the network . 11

3.1.1 The MPII dataset . 11
3.1.2 Training data . 13
3.1.3 Preprocessing of training data 14

3.1.3.1 First preprocessing method - M1 14
3.1.3.2 Second preprocessing method - M2 16
3.1.3.3 Third preprocessing method - M3 16

3.2 Training the network . 18
3.2.1 Residual unit . 19
3.2.2 The Hourglass module . 20
3.2.3 Connection layer . 21
3.2.4 Training details . 22

3.3 After training the network . 23
3.3.1 Visual evaluation . 23
3.3.2 Evaluation using PCKh . 24
3.3.3 Evaluating performance on difficult poses 25

4 Results 29

ix

Contents

4.1 Comparing preprocessing methods . 29
4.2 General performance of M3 . 32
4.3 Difficult poses . 33

5 Discussion 35

6 Conclusion 37

Bibliography 39

x

List of Figures

1.1 An example of a pose estimation in a 2D image. 1

2.1 The keypoints that make up the pose. 3
2.2 Images from the MPII datase, illustrating the difficulty of human pose

estimation. 4
2.3 An artificial neuron, x0 is called a bias and is commonly set to 1. . . 5
2.4 A simple CNN architecture with two convolutional layers. 5
2.5 Max-pooling operation with kernel size 2x2 and stride 2. 6
2.6 One iteration of supervised learning. 7
2.7 The loss plotted as a function of the number of epochs. 8

3.1 Annotation in the MPII dataset. Blue rectangle: head rectangle,
yellow rectangle: bounding square, red circle: center of the an-
notated person, green circles: keypoints. 12

3.2 Bounding square before and after adjustment. 12
3.3 The 16 ground truth images for the keypoints in the yellow square in

Figure 3.1. 13
3.4 Stacked ground truth images. 14
3.5 An image of a skier before preprocessing. 15
3.6 Uncentered training data without occluded keypoints. 15
3.7 Uncentered training data with occluded keypoints included. 16
3.8 The boy in the lower left corner is close to the edge. 17
3.9 The second preprocessing method stretches the images and the boy

is not in the center. 17
3.10 Zero padding has been used to center the boy and avoid stretching

the image. 18
3.11 The network layout . 18
3.12 The residual unit used throughout the network. 19
3.13 The Hourglass Module . 21
3.14 The connection layer . 22
3.15 Intermediate and final predictions . 22
3.16 Image used to make predictions. 23
3.17 Predictions of all 16 keypoints with a relative color scale where more

green means increased likelihood of keypoint. 24
3.18 The predictions of the knees and ankles are not over the threshold

and are not included. 24
3.19 Distribution of the head and right ankle in the MPII dataset. 25

xi

List of Figures

3.20 Most likely location of each keypoint. 26
3.21 The lines are the distances between the most likely location of the

keypoints and the location in the current pose. These distances are
squared and summed up when calculating the pose score. 27

4.1 Predictions on the MPII test set. 29
4.2 An example of prediction of occluded keypoints. 31
4.3 Predictions accuracy as a function of the normalized distance for M3. 32
4.4 Illustration of easy and difficult poses 33
4.5 Keypoint predictions on a difficult pose. 34

xii

List of Tables

3.1 First part of the network that prepares the image for the first hourglass. 19
3.2 Parameters used for training . 22

4.1 Accuracy on only visible keypoints. 30
4.2 Accuracy on only occluded keypoints. 30
4.3 Accuracy on ground truth including all keypoints. 31
4.4 Accuracy of each keypoint. 32
4.5 Comparison of predictions on easy and difficult poses. 33

xiii

List of Tables

xiv

1
Introduction

The task of finding the pose of a human in an image, is a complex and longstanding
problem in computer vision. Developments in deep convolutional neural networks
(CNNs) have led to major advances in recent years. The goal of this thesis is to
evaluate how well a state of the art deep CNN can estimate the pose of a human in
a 2D image. Figure 1.1 shows an example of a pose estimation.

(a) An image where you want to estimate the pose. (b) After cropping the
image around a person,
the network can make an
estimation of the pose.

Figure 1.1: An example of a pose estimation in a 2D image.

The network will be trained on the MPII Human Pose dataset [1], which contains a
great variety of annotated poses with different backgrounds and clothing.
There will be extra focus on the effect of different preprocessing techniques of the
training data and how well the network can handle unusual poses.
The ability to automatically find the articulated body pose of a human is applicable
in a wide range of technologies. Some of the technologies that would benefit from
an accurate body pose estimation includes: human-robot interaction, surveillance,
assisted living for the elderly. From the estimation of a human body pose in a single
image, the step is not far to be able to analyze a sequence of images in a video.
The constant increase in image data, driven by easier access to digital cameras in all
areas of society, adds to the need of automatically being able to analyze and label
images and videos of human activities.

1

1. Introduction

1.1 Aim
The aim of this study is to explore how a deep convolutional neural network (CNN)
can be used to estimate the human body pose by implementing a state of the art
network in a deep learning framework called caffe [2]. The main questions this thesis
will address is:

• How well can the network handle different conditions in backgrounds, occlu-
sion, clothing, body sizes?

• How does the preparation of the training data influence the performance of
the network?

• Analyze the MPII dataset by scoring each pose depending on its rarity. Are
poses that are more rare in the MPII dataset more difficult to predict?

Furthermore, the network’s predictions will be compared to standard benchmarks
and there will be a discussion of what optimizations that can be made to improve
the network and what the main limitations of the network are.

1.2 Limitations
The position of the human body will be described by the location of a set of key-
points: the wrists, elbows, shoulders, ankles, knees, hips, lower neck, head top,
pelvis and thorax. The problem of finding the articulated body pose will be limited
to 2D images and the output coordinates will be in 2D image coordinates.
It will be assumed that the rough position of the person to be annotated is known.
This is because the network lack ability to decide what person it should estimate
the pose of. For the network to perform well, the image need to be preprocessed in
such a way that the person to be annotated is roughly in the center of the image.
The network can only handle images of size 256 x 256 pixels, images of other sizes
needs to be cropped and/or resized.

2

2
Background

2.1 Human pose estimation

The goal of the human pose estimation can vary. Work has been done to use a
single 2D image to generate a 3D body pose estimation [3], as well as using a 2D
depth image to generate the 3D body pose estimation [4]. The focus of this thesis
work is to estimate a human body pose from a single 2D image. The body pose
is represented by the major joints in the body (Figure 2.1), wrist, elbow, shoulder,
ankle, knee, hip, lower neck and top of the head, thorax and pelvis. The task is to
estimate the image coordinates of these joints.

Figure 2.1: The keypoints that make up the pose.

According to [5] the most challenging aspects of human pose estimation is: (1)
The great variability in human visual appearances (clothing, accessories, hairstyles),
(2) variability in lighting conditions, (3) variability in human physic (tall, short,
overweight, thin), (4) partial occlusion due to self occlusion or layering of objects in
the scene, (5) complexity of the human skeleton (the human body has 230 joints),
(6) this leads to a high dimensionality of the pose (244 degrees of freedom), (7)
the loss of 3D information from viewing a 2D image. The images in Figure 2.2 are
taken from the MPII dataset and illustrate the challenging conditions of human pose
estimation.

3

2. Background

Figure 2.2: Images from the MPII datase, illustrating the difficulty of human pose
estimation.

Attempts to solve human pose estimation before CNNs generally lacked a holistic
view of the problem [6] [7] and could not produce results close to those achieved
by CNNs. To the best of my knowledge, the first attempt to solve the human
pose problem with a convolutional neural network was done in 2013 by two Google
employees [8]. They used convolutional and fully connected layers to regress to the
x-y coordinates of the body joints. Their results were state of the art at the time
and showed that CNNs could get a holistic view of the pose. Since then, state of
the art in body pose estimations have involved CNNs.
The network layout used for this thesis work, closely follows the layout in a paper
from 2016 [9] that achieved top results on the MPII Human Pose dataset [1]. This
type of fully convolutional neural network seems very suitable for pose estimation.
This is probably due to a CNN’s ability to both handle local image information
(detecting parts, elbow, wrist etc) and global image information (connecting the
parts).

2.2 An introduction to Convolutional Neural Net-
works - CNNs

Over the past couple of years, CNNs have made great contributions to human pose
estimation and computer vision in general. This section aims to give a brief intro-

4

2. Background

duction of how CNNs work and why they are effective for computer vision.
The basic computational unit in a neural network is the artificial neuron, Figure
2.3. The input values, x1 to xm, are multiplied with their associated weights, w0 to
wm, and the result is summed up and passed through an activation function. The
The output y of the neuron is calculated as:

y = g(
m∑
i=0

wixi)

The artificial neuron is inspired by the neuron found in the brain of animals. The
inputs can be seen as the dendrites and the activation function controls when and
how strongly the axon (output) should fire to the next neuron. Typically the network
has many neurons in a layer and the neurons in the first layer forms the input to
the neurons in the second layer and so on.

Figure 2.3: An artificial neuron, x0 is called a bias and is commonly set to 1.

CNNs are a group of feed forward, artificial neural networks that are built up by
convolutional and max-pooling layers. In a CNN, a neuron has a limited number of
inputs from the previous layer (receptive field), x1 to xm, controlled by the kernel
size. The effective receptive field of neurons grow larger in the deeper layers and
gives CNNs the ability to combine local features into global features in the deeper
layers. Figure 2.4 shows a simple structure for a CNN that is used for classification.
The input to the network is an image and the output is the predicted class of an
object.

Figure 2.4: A simple CNN architecture with two convolutional layers.

5

2. Background

This type of structure is useful when determining what is in an image e.g. to
see if there is any human keypoints in the image, however it does not give much
information of where the object is.

2.2.1 Convolutional layer
The main building block of a CNN is a convolutional layer with learnable filters.
The layer performs a convolutional operation between the input and the filters and
pass on the result to the next layer. The result of the convolution is a 2D plane
called a feature map. Normally several learnable filters are used so that the output
of the convolutional layer is a 3D volume, H×W×D where H and W are the spatial
dimensions and D is number of feature maps (numbers of filters used). The network
in Figure 2.4 for example has 4 filters in the first layer and 8 filters in the second
layer. The spatial dimension Wout of the output is determined by the filter kernel
size (K), stride (S), zero padding (P) and Win according to the following formula:

Wout = Win −K + 2P
S

+ 1

Almost all convolutional layers in the network implemented in this thesis use a kernel
size of 3× 3, a zeropadding of 1 and a stride of 1 so that the spatial dimensions are
unchanged. A nice illustration of the different types of convolutions can be found
at [10].
The design of the convolutional layer is inspired by biology and how the cat’s visual
cortex functions [11]. Each cell in the visual cortex looks at a small region of the
visual field, called a receptive field. Together, the cells cover the entire visual field
and each cell behaves like a local filter, detecting features like edges. The first
convolutional layers detects local features like edges and textures. Convolutional
layers later in the network combine these local features to higher level features [12].
During training, the network updates and learn the filter parameters that extract
the most useful features for the task. Letting the CNN learn these filters instead of
handcrafting them both saves time and give better results.

2.2.2 Max-pooling layer

Figure 2.5: Max-pooling operation with
kernel size 2x2 and stride 2.

The max-pooling operation returns the
largest value in a kernel and discards the
other values, Figure 2.5 shows the most
common type of max-pooling. The max-
pooling layer is inserted between convo-
lutional layers to gradually bring down
the spatial resolution. This has the ef-
fect of decreasing the amount of param-
eters and thus the amount of computa-
tions in the network is decreased [13].
Reducing the amount of parameters in
the network also has a regularizing effect
and decrease overfitting.

6

2. Background

2.2.3 ReLU layer
The ReLU (Rectified Linear Unit) [14] activation function is used after each con-
volutional layer. The ReLU is a non-linear function: f(x) = max(0, x) and it has
been found to speed up training for deep networks [15] compared to the hyperbolic
tangent and sigmoid activation functions. The ReLU used in this network is called a
Leaky ReLU [16]. It has been found that the Leaky ReLU can converge faster than
the regular ReLU. The Leaky ReLU differs from the regular ReLU in that it has a
non-zero slope for the negative part of the activation function: f(x) = 0.1x, x < 0
and f(x) = x, x > 0.

2.2.4 Training the network
During training, an image is input to the CNN and convolutional and max-pooling
layers calculate their outputs and feed them to the next layer until finally outputting
a prediction, this process is called forward propagation. In supervised learning, the
predicted result is compared to a ground truth and a loss function is applied and
the closer the prediction is to the ground truth, the smaller the loss is. The network
in this thesis uses a euclidean (also called L2) loss function and it has the following
definition, where N is the number of outputs, y is the ground truth and ŷ is the
predicted output:

Loss = 1
2N

N∑
i=1

(yi − ŷi))2

After the loss has been calculated, the back-propagation algorithm [17] is used to find
how much each neuron contribute to the loss. It does this by taking the derivative
of the loss function with regards to the network parameters. If Θ is the parameter
vector of the model, α the learning rate and J(Θ) the loss, then the updated of the
i-th parameter can be written as:

Θi = Θi − α
∂

∂Θi

J(Θ)

The error contribution is then propagated backwards through the network and the
parameters are updated to minimize the loss. The learning rate is a metaparameter
of the model and has to be fine tuned for the specific task. Figure 2.6 shows the
basic steps of supervised learning.

Figure 2.6: One iteration of supervised learning.

7

2. Background

To speed up the training, several training examples (called a mini-batch) are typi-
cally processed in parallel during one training iteration.

Figure 2.7: The loss plotted as a func-
tion of the number of epochs.

It is common practice to split up the
training data into three parts: a train-
ing set, a validation set and a test set.
The training set is used for training the
network and periodically the training is
interrupted to let the network do predic-
tions on the validation set. The predic-
tions on the validation set will result in a
loss that is plotted to keep track of how
the training is progressing. As long as
the loss on the validation set is decreas-
ing, the training continues. When the
network has seen all training examples
in the training set one time, it is called
an epoch and Figure 2.7 shows the loss
during training when plotted against the
number of epochs. The reason the graph
is jagged is that the network has been
trained with stochastic gradient descent [18].
When the loss has stopped to decrease, the network is tested on the test set. If the
network performs well on the validation set but poorly on the test set, is called that
the model has overfitted to the validation set and failed to generalize well.

2.2.4.1 Batch Normalization

Batch normalization is used consistently throughout the network implemented in
this thesis. Batch normalization addresses a common problem when training deep
neural networks, that parameter changes in the early layers can greatly change the
distribution of the input to later layers [19]. To solve this problem and make learning
more easy for later layers, batch normalization normalizes all inputs to a layer for
a given mini-batch (a set of training examples that are processed in parallel during
training). If x is an input to a layer, B = (x1...m) is all the inputs of x in a batch and
yi is the batch normalized output, batch normalization is described by the following
formulas:

µB = 1
m

m∑
i=1

xi

σB = 1
m

m∑
i=1

(xi − µB)2

x̂i = xi − µB√
σ2
B + ε

yi = γx̂i + β ≡ BNγ,β(xi)

8

2. Background

The parameters γ and β are introduced to keep the representation power of the
network and are learned during training. The mini-batch mean and variance, µB
and σB are only used during training. When using the trained network for inference,
the global mean and variance of the entire training set is used. The larger the
mini-batch size is, the better batch normalization performs, since the estimations
of the mean and variance becomes less noisy. After normalization layers will have
inputs with zero mean and a standard deviation of one and this more predictable
distribution allows for the network to be trained with a higher learning rate. Batch
normalization also has a regularizing effect and makes the network less sensitive to
how the network parameters are initialized.

2.2.5 Convolutional layers vs fully connected layers
Compared to neural networks made of fully connected layers, CNNs need much fewer
weights and they better exploit the property that pixel values that are close to each
other are more correlated than pixel values that are far apart. Neural networks
made of fully connected layers tend to not scale well to larger images. For an image
of size 32×32 with three color channels, a single fully connected neuron would have
32 × 32 × 3 = 3072 weights. If the size of the images goes up to 256 × 256 × 3, a
single fully connected neuron would have 196 608 weights. Normally there would
be several neurons in a layer which means that the number of weights goes up fast.
The large number of weights demand a lot of memory during training and makes
the fully connected network prone to overfitting [13].
In CNNs, the weights of a filter is shared over the image. The sharing of weights
and the small filter sizes makes CNNs have much less weights than fully connected
layers. In the example of an image of size 256× 256× 3, a convolutional layer with
a filter size of 3 × 3 and 128 features would have 3 × 3 × 3 × 128 = 3456 weights.
This is significantly less than the fully connected layer. That the CNNs use less
memory makes it possible to stack many layers after each other in so called deep
CNNs. This has been proven to be effective when the network needs to learn more
abstract and complex tasks. For example deep CNNs have been succesfully used in
Alphago [20], that was able to beat the world’s best player in the board game Go
and in the ImageNet challange [21], [22].

9

2. Background

10

3
Methods

3.1 Before training the network

Before any training could begin it was important to know what type of data the
MPII data set contained, decide what data should be included in the training and
how to preprocess the images.

3.1.1 The MPII dataset
The training data used to train the network comes from a dataset called MPII
Human Pose dataset [1]. The dataset is a state of the art benchmark for evaluating
articulated human pose estimations. The images are taken from youtube videos
and are greatly varied in regards to human poses, backgrounds, clothing, body size,
distance and angle to the annotated individual. The dataset consists of roughly
25k images, containing over 40k people with annotated body joints. The size of the
dataset is 12.9GB for the images and 12.5MB for the annotations. The annotations
are provided in a MATLAB structure and the information per image is listed bellow.

• Annotated list of images
· Image name
· Body annotations for each person in the image
· x1, y1, x2, y2 - coordinates of head rectangle
· Scale - person scale w.r.t. 200 px height
· Object position - rough human position in the image
· Annotated keypoints - person-centric body joint annotations

· .x, .y - coordinates of a joint
· id - joint id (0 - r ankle, 1 - r knee, 2 - r hip, 3 - l hip, 4 - l knee,

5 - l ankle, 6 - pelvis, 7 - thorax, 8 - upper neck, 9 - head top,
10 - r wrist, 11 - r elbow, 12 - r shoulder, 13 - l shoulder, 14 - l
elbow, 15 - l wrist)

· is visible - joint visibility
• List of training/testing image assignment
• Single person - contains the id of sufficiently separated individuals

Figure 3.1 shows the annotated data for an image in the MPII dataset.

11

3. Methods

Figure 3.1: Annotation in the MPII dataset. Blue rectangle: head rectangle,
yellow rectangle: bounding square, red circle: center of the annotated person,
green circles: keypoints.

A bounding square can be calculated with object position (objpos) and scale but it
is frequently too small as illustrated in Figure 3.2a. Frequently ankles are cut of and
therefor left out of the training data. To address this problem, the y-coordinate is
increased by 15 and the scale is increased by a factor of 1.25. Figure 3.2b shows the
adjusted bounding square. With the object position and the scale from the MPII
dataset it is trivial to calculate the adjusted bounding square as follows (x,y is the
upper left corner):

side = scale× 200× 1.25

x = objpos.x− side

2

y = objpos.y − side

2 + 15

(a) MPII bounding square (b) Adjusted bounding square

Figure 3.2: Bounding square before and after adjustment.

12

3. Methods

3.1.2 Training data

Only annotations of sufficiently separated individuals are used and there are roughly
24k such annotations in total. Roughly 4200 of these images were used for validation.
Before training could start the annotations of each image in the MPII dataset had
to be converted into 16 label-images (one for each annotated joint) of size 64× 64.
A 2D Gaussian hill (7 pixels in diameter and standard deviation of 1) was placed
in each label image at the x-y coordinate of the corresponding joint (Figure 3.3).
The labeled images were stacked to create a 16× 64× 64 volume of labels for each
training image (Figure 3.4). The stack of labeled images was used as ground truth
during training.

Right ankle Right knee Right hip Left hip

Left knee Left ankle Pelvis Thorax

Upper Neck Head Top Right wrist Right elbow

Right shoulder Left shoulder Left elbow Left wrist

Figure 3.3: The 16 ground truth images for the keypoints in the yellow square in
Figure 3.1.

13

3. Methods

Figure 3.4: Stacked ground truth images.

In the MPII dataset, the ground truth of occluded joints is given and can be included
in the training data. However joints that are missing from the image or are severally
occluded do not have a ground truth annotation in the MPII dataset. In this case
a ground truth of zeros is used as training data.
One data augmentation is used to expand the training data and that is flipping the
image around the vertical axis. With data augmentation there is a rough total of
48k training images and 768k label-images. In order to make it easier to handle the
large amount of images, a Python [23] script was used to place the images into an
LMDB database [24].

3.1.3 Preprocessing of training data
The resolution of the images in the MPII dataset varies and since the CNN takes
an images of size 256× 256 as input there is a need for both cropping and resizing
of the original image before feeding it to the CNN. There are different ways to
crop and resize the original image and there is also a choice whether to include
occluded keypoints in the training data or not. During the process of trying to
improve the performance of the CNN, three different ways of preprocessing were
implemented and evaluated. All preprocessing methods use a bounding square to
crop the image so that the aspect ratio is preserved. The preprocessing was done
using the commercial software package MATLAB [25].

3.1.3.1 First preprocessing method - M1

Figure 3.5 shows the original image of a skier before preprocessing. The bounding
square is not allowed to be outside of the original image in the first preprocessing
method. If the side of the bounding square is larger than the image, the side is
set to min(height,width). This way of cropping the image does not ensure that the

14

3. Methods

annotated person is in the center of the image as can be seen in Figure 3.6.

Figure 3.5: An image of a skier before preprocessing.

The first version of the training data only contained ground truth annotations for
visible joints, the ground truth for occluded joints were ignored and set to zero. Fig-
ure 3.6 shows this type of preprocessing. The reasoning for removing the occluded
keypoints was that, keypoints that are not visible can not give the network infor-
mation about the pose, therefore they can be excluded from the training data. This
approach provides the network with less keypoint annotations during training and
also prevents the network from learning to predict the location of occluded keypoints.

Figure 3.6: Uncentered training data without occluded keypoints.

15

3. Methods

3.1.3.2 Second preprocessing method - M2

In the second version of the training data, all keypoints with a ground truth was
used for training (Figure 3.7). In the MPII dataset, most keypoints have anno-
tations even if they are not visible as long as they are estimated to be inside the
image. Only keypoints that are clearly not in the image or are severely occluded
lack annotation. Even if these keypoints are not visible, it was thought that see-
ing them during training would be beneficial for the network. With the second set
of training data, it could be investigated if the network could learn to predict the
location keypoints even if they were occluded. The second version of the training
data uses the same type of uncentered bounding square and cropping as in the first
version.

Figure 3.7: Uncentered training data with occluded keypoints included.

3.1.3.3 Third preprocessing method - M3

The third and last version of the training data include occluded keypoints but use a
different way to crop the image so that the annotated person is always placed in the
center of the image. Figure 3.8 is used to illustrate the third preprocessing method.

16

3. Methods

Figure 3.8: The boy in the lower left corner is close to the edge.

The second preprocessing method will use the yellow bounding box to crop the image
and then resize the image to 256 x 256. When the annotated person is close to the
edge like in Figure 3.8, it will result in a stretched image and a changed aspect ratio
(Figure 3.9).

Figure 3.9: The second preprocessing method stretches the images and the boy is
not in the center.

Zero padding is used to center the annotated person and avoid the problem of
stretching the image. In zero padding, zeros are added to the image where the
bounding box exceeds the edges of the image. Figure 3.10 shows the result after the
third preprocessing method.
Without centering the image around the person to annotate, it would be difficult
for the network when there are multiple people relatively close to each other in the
image, because it would be unclear who to annotate. The purpose of this change
in the training set was to study how much performance could be improved if the
network could assume that the center of the person to annotate was always in the
center of the image. This represents a simpler problem where the person is already

17

3. Methods

Figure 3.10: Zero padding has been used to center the boy and avoid stretching
the image.

located, the remaining task is to estimate the pose.

3.2 Training the network

The network was trained with a layout that closely follows the one used in Stacked
Hourglass Networks for Human Pose Estimation [9]. The input is a 256 × 256 × 3
color image and the output is a volume of 64 × 64 × 16, one 64 × 64 image per
keypoint. Figure 3.11 shows an overview of the network layout.

Figure 3.11: The network layout

The main part of the network consists of the hourglass modules which takes an image
of size 64 × 64 and 256 features as input. The first part of the network preprocess
the input image so that it can be fed into the first hourglass module. This is done
by convolutional layers and max pooling and the details of this first step is shown
in Table 3.1.

18

3. Methods

Layer Kernel Stride Padding Output
Input image 256× 256× 3
Convolution 7 2 3 128× 128× 64
Convolution 3 1 0 128× 128× 128
Max pooling 2 2 0 64× 64× 128
Convolution 3 1 0 64× 64× 256

Table 3.1: First part of the network that prepares the image for the first hourglass.

3.2.1 Residual unit
The residual units are the main building block of the hourglass network. It combines
several of the recent advancements in deep neural networks, made during the last
couple of years. Figure 3.12 shows an overview of the residual unit.

Figure 3.12: The residual unit used throughout the network.

An identity mapping of the residual units indata is elementwise added to the output
of the last convolutional layer. This type of skip-layer helps to optimize and train
deep neural networks [22]. Batch normalization is performed after each convolution
in the residual unit. Batch normalization has been shown to greatly decrease the
training time of deep neural networks and have a regularizing effect [19]. The number
of features coming in and out of the residual unit is 256 throughout the network. The
reason for the 1x1 convolution before and after the 3× 3 convolution is to lower the
number of weights needed to be saved for the residual unit [21]. A 3x3 convolution
with 256 features coming in and out requires 256 × 9 × 256 ≈ 590000 weights. A
1x1 convolution to bring down the features, followed by a 3x3 convolution and a
1x1 convolution to get back to 256 features requires: 256 × 1 × 128 + 128 × 9 ×
128 + 128 × 1 × 256 ≈ 213000 weights. Using half the number of features reduces
the amount of parameters saved in memory by roughly 64% compared to do the

19

3. Methods

3x3 convolution with full features. Saving memory on the GPU is important as it
allows for deeper nets and larger batch sizes which in turn speed up training and
the efficiency of batch normalization.

3.2.2 The Hourglass module

The network needs to capture both local features like elbows and wrists as well
as global features of how the keypoints are interconnected. The first part of the
hourglass module (Figure 3.13) is a series of down sampling units. The spatial
resolution is progressively reduced by max pooling, from 64 × 64 at the start to
4 × 4 in the middle. This first part is similar to network layouts used for image
classification [15], where the main part of the network is a series of convolutional
and max pooling layers. The first downsampling units can learn more local features
like edges and patterns while the last units learn more global and abstract features
[12]. Generally speaking, the downsampling part of the hourglass is concerned with
what is in the image.

In the case of human pose estimation it is not enough to know that there is elbows,
wrists and other keypoints in the image, the problem also consist of determining their
location. The problem is similar to image segmentation and the hourglass modules
layout is inspired by network layouts that have successfully been used for image
segmentation. The parallel connections in the hourglass module is also found in
[26] where they are used to increase the granularity of the predictions. The gradual
upsampling used in [27], as well as in the hourglass module, further improves the
details of the prediction.

20

3. Methods

Figure 3.13: The Hourglass Module

The localization of the keypoints takes place in the upsampling units. Before each
upsampling unit, the spatial resolution of the previous unit is increased through
deconvolution and added element-wise to output of the parallel unit. In the upsam-
pling units, more global features from the low spatial resolution layers are combined
with more local features from higher spatial resolution layers. Through a series of
such upsampling units the spatial resolution is brought back up to 64 × 64. The
purpose of the parallel connections are to preserve the granularity of the features.

3.2.3 Connection layer

The network consists of two hourglass modules linked with an intermediate super-
vision. This connection layer can be seen in Figure 3.14. The output of the first
hourglass is split in two directions before being element-wise added together again
before the second hourglass. One path goes through two residual units and the other
one makes predictions for the 16 keypoints and a euclidean loss function is applied.
Since all residual units have a skip-layer, the original input to the first hourglass is
also part of the input to the second hourglass.

21

3. Methods

Figure 3.14: The connection layer

Figure 3.15 shows how the predictions in the connection layer and the final predic-
tion. It can be seen that the prediction is gradually refined by each hourglass.

(a) Right elbow (b) Right wrist

Figure 3.15: Intermediate and final predictions

3.2.4 Training details
The training was done on a PC with the Ubuntu operating system and a 12 GB
NVIDIA TitanX graphics card. The framework chosen for the training is called
Caffe [2]. The network consisted of two stacked hourglasses and Table 3.2 shows the
metaparameters used during training.

Optimization algorithm RMSProp [28]
Learning rate 2.5e-4
Momentum 0.9
Momentum2 0.999
Weight decay 5e-5
Mini-batch size 6

Table 3.2: Parameters used for training

22

3. Methods

When the loss stopped decreasing, the learning rate was lowered by a factor of 5
and training continued for one more day. Total training time was about two days.
The Euclidean loss function was used for the supervision between hourglasses and
on the final prediction of the network.

3.3 After training the network

The MATLAB interface matcaffe [29] was used for testing and evaluating the net-
work after training. Matcaffe can load the weights and layout files from caffe and
run forward propagation on test images to make predictions.

3.3.1 Visual evaluation

One way to visualize the predictions of the network is to overlay the predicted
heatmaps over the original image. This gives an indication of what type of joints
are difficult and what type of mistakes the network is prone to do and was especially
helpful during the early phase of testing. Figure 3.16 shows a test image used to
make the predictions.

Figure 3.16: Image used to make predictions.

In Figure 3.17 it is possible to see how sure the network is in its prediction of each
keypoint. The predictions of the ankles shows that the network is confused as to
the location of these keypoints and this is due to occlusion. The strength of the
predictions of occluded keypoints are low compared to visible keypoints.

23

3. Methods

Right ankle Right knee Right hip Left hip

Left knee Left ankle Pelvis Thorax

Upper Neck Head Top Right wrist Right elbow

Right shoulder Left shoulder Left elbow Left wrist

Figure 3.17: Predictions of all 16 keypoints with a relative color scale where more
green means increased likelihood of keypoint.

An easier way to visualizing the network predictions is to only show the maximum
value of each keypoint and connect them to a skeleton, Figure 3.16 shows an example.
A threshold of 0.1 is used to discard predictions that are of too poor quality.

Figure 3.18: The predictions of the knees and ankles are not over the threshold
and are not included.

3.3.2 Evaluation using PCKh
In order to evaluate if an experiment had improved the performance of the network,
some type of evaluation metric is needed. Preferably a single number that can be

24

3. Methods

improved during the experimentation. For evaluation on the MPII human pose
data set the PCK (probability of correct keypoint) [30] metric is frequently used.
PCKh@0.5 was chosen as the metric to improve during training experiments. It
measures the percentage of keypoint predictions that is at maximum distance of
50% of the head size from the ground truth. The MPII provides a MATLAB toolkit
for calculating the PCK value for a variety of distances.

3.3.3 Evaluating performance on difficult poses

In order to evaluate the performance on different poses, a metric called pose score
was created. The intention of the pose score was to measure how much a pose differs
from the most likely pose in the dataset. In order to calculate the most likely pose
all ground truth images for each keypoint in the dataset were summed up to form
distributions of the keypoints:

distributioni =
N∑
j=1

imi,j (3.1)

where imi,j is the j-th ground truth image of the i-th keypoint and N is the number
of ground truth images in the training data. Figure 3.19 shows the distribution of
the head and right ankle. The color scale is relative where more yellow color means
that the keypoints occur in that area more frequently. It can be seen from these
distributions that the head and right ankle frequently appear in a rather small part
of the image and very rarely appear in large parts of the image.

(a) Head (b) Right ankle

Figure 3.19: Distribution of the head and right ankle in the MPII dataset.

All keypoints are concentrated in a similar way as the head and right ankle and
Figure 3.20 shows the most likely location of each keypoint. The maximum locations
are symmetric because mirroring around the vertical axis is used for augmenting the
training data. This means that the most likely pose in the MPII dataset is a person
standing up facing the camera with the arms nest to their body.

25

3. Methods

Figure 3.20: Most likely location of each keypoint.

The pose score tries to measure how much a pose deviates from the most likely pose
in Figure 3.20. It is calculated by summing up the squared distances between the
keypoints in the pose and the keypoints in the most likely pose:

posescorei = 1
M

M∑
j=1
|kpi,j − kpmaxj|2 (3.2)

where M is the number of keypoints in the pose, kpi,j is the location of the j-th
keypoint in the i-th pose and kpmaxj is the location of the maximum of the j-th
keypoint in Figure 3.20. Figure 3.21 illustrates how the distances are calculated for
a pose.

26

3. Methods

Figure 3.21: The lines are the distances between the most likely location of the
keypoints and the location in the current pose. These distances are squared and
summed up when calculating the pose score.

27

3. Methods

28

4
Results

As can be seen by the sample predictions in Figure 4.1, the network can handle a va-
riety of backgrounds, poses and clothing. Exactly how much changes in background
and clothing affects the prediction accuracy is difficult to quantify since the MPII
dataset lack information about these parameters for each image. However when
observing the predictions, it seems that the network is rather invariant to changes
in these conditions. The network generally does few mistakes when estimating a
pose that is not occluded and that does not deviate too much from the norm.

Figure 4.1: Predictions on the MPII test set.

4.1 Comparing preprocessing methods
The preprocessing methods were compared on three different sets of the ground
truth: on only visible keypoints, on only occluded keypoints and finally on both

29

4. Results

visible and occluded keypoints. As can be seen from Table 4.1 the visible keypoints
are easier to predict since M3 has a 75.9% accuracy for visible keypoints vs 71.2%
for all keypoints. The inclusion of occluded keypoints in the training data does not
improve the performance on visible keypoints since M1 performs slightly better on
the visible keypoints. M3 has a significantly higher accuracy than M1 and M2, this
indicates that centering the annotated person has a large effect on performance.

Training data Prediction accuracy
M1 - Uncentered, only visible keypoints 67.9%
M2 - Uncentered with occluded keypoints 66.9 %
M3 - Centered with occluded keypoints 75.9%

Table 4.1: Accuracy on only visible keypoints.

The effect of including occluded keypoints can be seen in Table 4.2. For occluded
keypoints the network does not get any visual clues to determine the location of
the keypoint and the accuracy is much worse compared to the visible keypoints.
When visually examining the predictions of the occluded keypoints it seems that
the network has learned how keypoints usually make up a pose and use this to
predict the occluded keypoints. M2 performs much better than M1 and this is to
be expected since the network trained on M1 lacked occluded keypoints to train
on. The fact that M1 still has 26.8% accuracy on occluded keypoints is rather
fascinating.

Training data Prediction accuracy
M1 - Uncentered, only visible keypoints 26.8%
M2 - Uncentered with occluded keypoints 41.4 %
M3 - Centered with occluded keypoints 48.7%

Table 4.2: Accuracy on only occluded keypoints.

Figure 4.2 shows the prediction made by the final network (trained on the M3
training data) on an occluded pose. The left side of the body is not visible but
the network does a rather good job (except for the left ankle) estimating where the
occluded keypoints are.

30

4. Results

Figure 4.2: An example of prediction of occluded keypoints.

Table 4.3 shows the results when all keypoints are included. The reason for the better
performance of M2 compared to M1 is due to M2’s better accuracy on occluded
keypoints. Since centering the annotated person improves the accuracy of both
visible and occluded keypoints it is no surprise that M3 is performing best when
all keypoints are included. By gradually improving the preprocessing method, the
accuracy was increased by roughly 17%. This improvement in performance was
only due to better preprocessing since the network layout and metaparameters were
unchanged while testing different preprocessing methods.

Training data Prediction accuracy
M1 - Uncentered, only visible keypoints 60.8%
M2 - Uncentered with occluded keypoints 65%
M3 - Centered with occluded keypoints 71.2%

Table 4.3: Accuracy on ground truth including all keypoints.

31

4. Results

4.2 General performance of M3

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Normalized distance

0

10

20

30

40

50

60

70

80

90

100

D
e
te

c
ti
o
n
 r

a
te

,
%

PCKh total, MPII

Figure 4.3: Predictions accuracy as a function of the normalized distance for M3.

The third preprocessing method where the annotations of all keypoints are included
and the person has been centered showed the best results with a PCKh@0.5 of
71.2%. Figure 4.3 shows how the accuracy varies with the normalized distance. In
order to make a comparison, A. Newell et al’s. Stacked Hourglass network [9] was
trained with just two hourglasses and only mirroring as augmentation. With these
settings the Stacked Hourglass network had a prediction accuracy on the validation
set of 78%. The reason for the difference in results is not clear, it could depend
on differences in implementation of the hourglass modules, metaparameters during
training or in the way Torch7 [31] and Caffe [2] implement layers.
Table 4.4 shows the accuracy for each keypoint. The head in this table consists
of two keypoints, the head top and the upper neck. The reason the head has the
highest accuracy could be that it is always visible in the image and that the head has
several features to detect like eyes, nose, mouth and the round shape. The location
of the head in the MPII dataset to the upper center part of the image is also fairly
consistent. The wrists and ankles on the other side are the most difficult keypoints
to predict accurately, probably because they are more frequently occluded, their
locations are more spread out in the MPII dataset and they do not have as many
features as the head has.

Head Shoulder Elbow Wrist Hip Knee Ankle Upper Body Total
Accuracy: 87.6 80.3 70.1 60.7 69.3 65.6 60.8 70.4 71.2

Table 4.4: Accuracy of each keypoint.

32

4. Results

4.3 Difficult poses

During visual examination of the predictions of the network it was noted that when
the person is facing the camera, with the body fully visible and in a common pose as
in Figure 4.4(a), the network had a much higher accuracy than on average. These
type of images are common in the MPII dataset, so there is a relatively large amount
of training data. When examining images of more uncommon poses like in Figure
4.4 the network made much worse predictions.

(a) Easy poses (b) Difficult poses

Figure 4.4: Illustration of easy and difficult poses

In order to examine how the network performs on easy and difficult poses, the
pose score metric (Section: 3.3.3) was calculated for each annotated person in the
validation set. The accuracy of the predictions on the 20% most difficult poses was
compared to the predictions of the 20% most easy poses. The results can be seen in
Table 4.5

Type of pose Prediction accuracy
20% most easy poses 81.2%

All poses 71.2%
20% most difficult poses 59.7%

Table 4.5: Comparison of predictions on easy and difficult poses.

The results in Table 4.5 indicate that the network has learned the distributions of
the keypoints and rely rather heavily on the location in the image to predict the
keypoints. Figure 4.5 is as an example of a pose that the network has difficulty
predicting. Even though the legs and arms are clearly visible the network fails to
correctly include them in the pose. It is probably due to the unusual location of the
keypoints, the knees are over the hips and the ankles are over the knees and this is
a very uncommon setup in the MPII dataset.

33

4. Results

Figure 4.5: Keypoint predictions on a difficult pose.

This shows the importance of varied and well balanced training data. Even though
the poses in the MPII data set are taken from a great variety of activities, the
distribution is still rather skewed toward a pose that is standing up facing the
camera (Section 3.3.3). The network seems to have overfitted to the distribution of
poses and when a pose deviates too much from the norm it has difficulty predicting
the pose. To reduce the problem of overfitting a more thorough data augmentation
could have been used. The only data augmentation used was mirroring around the
vertical axis.

34

5
Discussion

The final version of the network had a lower PCKh@0.5 than the Hour Glass network
with the same depth and type of augmentation. Apart from the reasons mentioned
in Chapter 4, the size of the minibatch greatly affected performance (especially for
lower sizes). Batchnormalization works better on large minibatch sizes but due to
memory constraints in Caffe, the memory available for the model was about 1/8
compared to if it was trained in Torch7. This meant there was a trade of between
a deep network (more hourglasses, using more memory) or larger minibatch sizes.
After experimenting with different depths and minibatch sizes it was found that
a depth of two hourglasses and a minibatch size of 6 was the best trade off. The
Hour Glass network used 8 hourglasses and a minibatch size of 6, this resulted in a
PCKh@0.5 of 90.9% which was state of the art at the time.
To the best of my knowledge, the analysis of the MPII dataset used in this report is
a new approach. Previous methods have not been focus on how common poses are
in the dataset or how much they deviate from the norm. The previous analyses of
the poses in the MPII dataset have been focused on dividing the poses into different
body pose and view point clusters. This is done to evaluate how the different state
of the art networks are doing on different types of poses and viewpoints. The results
are consistent with the findings in this report that poses with a high pose score are
more difficult to estimate.
The performance of the network could be improved by a more rigorous data aug-
mentation. One way to do this is to rotate the image by an random angle and zoom
by a random factor before being feeding the image to the network during training.
This would result in a more spread out distribution of the keypoints in the training
data. It would also reduce the problem of the network overfitting to the distribution
of poses in the MPII dataset. The problem of overfitting could also be addressed
by increasing the training data, preferable with more diversified poses. Another
improvement would be to have more computer memory available to train a deeper
model with more hourglasses. The PCKh@0.5 of the Hour Glass network goes from
78% to 90.9% when increasing the number of hourglasses from 2 to 8.
To improve the performance further on more rare poses, the training data could be
increased with more diversified poses.
The network needs to have the person to annotate in the center of the image to work
well and this information is provided in the MPII dataset. In a future application
where the location of the person to annotate is unknown a R-CNN (a method that
uses a CNN to find region proposals [32], [33]) network could be used to find the
person in the image. The proposed region could then be fed to the pose estimation
network to find the exact pose.

35

5. Discussion

36

6
Conclusion

Changes in the background, clothing and body size have a small impact on the
network’s ability to estimate the pose. Occlusion is affecting the predictions neg-
atively with 48.7% accuracy for occluded keypoints and 75.9% accuracy for visible
keypoints.
By changing the preprocessing method it was possible to increase the accuracy from
60.8% to 71.2%, a roughly 17% increase in performance without changing the model
or metaparameters of the network. This shows that the choice of preprocessing
method can greatly affect the overall performance of a network.
Poses that are uncommon in the MPII dataset is challenging for the network. The
accuracy on the easiest 20% of poses is roughly 36% higher than the accuracy on
the most difficult 20% of poses. The network seems to have learned the skewed
distribution of poses in the MPII dataset and have a bias towards the most likely
position of a keypoint. To improve performance on rare poses further data augmen-
tation could be implemented and more training data on a varied set of poses could
be collected. The performance would also benefit from a deeper model with more
hourglass modules.
For the pose estimation to work well, the person should be centered in the image,
not be much occluded and have a pose that does not deviates too much from the
norm in the MPII dataset. In applications where the center of the person to anno-
tate is unknown, a R-CNN could be used to find a regional proposal that could be
further analyzed by the pose estimation network.

37

6. Conclusion

38

Bibliography

[1] Mykhaylo Andriluka et al. "2D Human Pose Estimation: New Benchmark and
State of the Art Analysis," IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2014. Available: http://human-pose.mpi-inf.mpg.de/
[Apr. 16, 2017] 1, 4, 11

[2] Jia, Yangqing and Shelhamer, Evan and Donahue, Jeff and Karayev, Sergey
and Long, Jonathan and Girshick, Ross and Guadarrama, Sergio and Darrell,
Trevor, "Caffe: Convolutional Architecture for Fast Feature Embedding", arXiv
preprint arXiv:1408.5093, 2014 2, 22, 32

[3] Hashim Yasin et al. "A Dual-Source Approach for 3D Pose Estimation from a
Single Image." CVPR, 2016. Available: https://arxiv.org/abs/1509.06720
[Apr. 15, 2017] 3

[4] Jamie Shotton et al. "Efficient Human Pose Estimation from Single Depth Im-
ages," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 12, dec, 2013. Avail-
able: http://ieeexplore.ieee.org/document/6341759/ [Apr. 15, 2017] 3

[5] Katsushi Ikeuchi. Computer Vision a Reference Guide. New York: Springer
Science+Business Media, 2014, pp. 362-70. 3

[6] P. F. Felzenszwalb and D. P. Huttenlocher. "Pictorial structures for object
recognition." International Journal of Computer Vision, 61(1):55–79, 2005.
Available: http://www.cs.cornell.edu/~dph/papers/pict-struct-ijcv.
pdf [Apr. 15, 2017] 4

[7] D. Ramanan. "Learning to parse images of articulated bod-
ies." In NIPS, 2006. Available: https://papers.nips.cc/paper/
2976-learning-to-parse-images-of-articulated-bodies [Apr. 15,
2017] 4

[8] Alexander Toshev, Christian Szegedy. "DeepPose: Human Pose Estimation via
Deep Neural Networks," in IEEE Conference on Computer Vision and Pattern
Recognition, 2014. Available: https://arxiv.org/abs/1312.4659 [Apr. 15,
2017] 4

[9] Alejandro Newell et al. "Stacked Hourglass Networks for Human Pose Esti-
mation," Computer Vision and Pattern Recognition, 2016. Available: https:
//arxiv.org/abs/1603.06937 [Apr. 16, 2017] 4, 18, 32

[10] "Convolution arithmetic", Available: https://github.com/vdumoulin/conv_
arithmetic 6

[11] Hubel, D. and Wiesel, T. (1968). "Receptive fields and functional architecture
of monkey striate cortex." Journal of Physiology (London), 195, 215–243. 6

[12] Zeiler, Matthew D; Fergus, Rob., "Visualizing and Understanding Convolu-
tional Networks", CVPR, 2013. 6, 20

39

http://human-pose.mpi-inf.mpg.de/
https://arxiv.org/abs/1509.06720
http://ieeexplore.ieee.org/document/6341759/
http://www.cs.cornell.edu/~dph/papers/pict-struct-ijcv.pdf
http://www.cs.cornell.edu/~dph/papers/pict-struct-ijcv.pdf
https://papers.nips.cc/paper/2976-learning-to-parse-images-of-articulated-bodies
https://papers.nips.cc/paper/2976-learning-to-parse-images-of-articulated-bodies
https://arxiv.org/abs/1312.4659
https://arxiv.org/abs/1603.06937
https://arxiv.org/abs/1603.06937
https://github.com/vdumoulin/conv_arithmetic
https://github.com/vdumoulin/conv_arithmetic

Bibliography

[13] Andrej Karpathy, "CS231n: Convolutional Neural Networks for Visual Recog-
nition", Department of Comupter Science, Stanford, 2017, Available: http:
//cs231n.github.io/convolutional-networks/ 6, 9

[14] V. Nair and G. E. Hinton. "Rectified linear units improve restricted boltzmann
machines." In Proc. 27th International Conference on Machine Learning, 2010.
7

[15] Alex Krizhevsky and Sutskever, Ilya and Hinton, Geoffrey E., "ImageNet Clas-
sification with Deep Convolutional Neural Networks", Advances in Neural In-
formation Processing Systems 25, Curran Associates, Inc., 2012, pp. 1097-1105.
7, 20

[16] Bing Xu, Naiyan Wang, Tianqi Chen, Mu Li, "Empirical Evaluation of Rec-
tified Activations in Convolutional Network", CVPR, 2015, Available: https:
//arxiv.org/abs/1505.00853 7

[17] Rumelhart, David E.; Hinton, Geoffrey E.; Williams, Ronald J., "Learning rep-
resentations by back-propagating errors", Nature, 1986, doi: 10.1038/323533a0
7

[18] Bottou L. (2010) "Large-Scale Machine Learning with Stochas-
tic Gradient Descent." In: Lechevallier Y., Saporta G. (eds)
Proceedings of COMPSTAT’2010. Physica-Verlag HD, Available:
http://leon.bottou.org/publications/pdf/compstat-2010.pdf 8

[19] Sergey Ioffe and Christian Szegedy, "Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift", CoRR,
abs/1502.03167, 2015, Available: http://arxiv.org/abs/1502.03167 [Nov.
6 2017] 8, 19

[20] Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L., van den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman,
S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach,
M., Kavukcuoglu, K., Graepel, T. and Hassabis, D. (2016). "Mastering the
game of Go with deep neural networks and tree search." Nature, 529(7587),
pp.484-489. 9

[21] Christian Szegedy et al. "Going Deeper with Convolutions", CoRR,
abs/1409.4842, 2014, Available: http://arxiv.org/abs/1409.4842 9, 19

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun, "Deep Resid-
ual Learning for Image Recognition", CoRR, abs/1512.03385, 2015, Available:
http://arxiv.org/abs/1512.03385 [Nov. 6 2017] 9, 19

[23] Python Software Foundation. Python Language Reference, version 2.7. Avail-
able at http://www.python.org 14

[24] Lightning Memory-Mapped Database. Wikipedia. Available: https://en.
wikipedia.org/wiki/Lightning_Memory-Mapped_Database [Apr. 17, 2017]
14

[25] MATLAB Release 2016b, The MathWorks, Inc., Natick, Massachusetts, United
States. 14

[26] Evan Shelhamer, Jonathan Long and Trevor Darrell, "Fully Convolutional
Networks for Semantic Segmentation",CoRR, abs/1605.06211, 2016, Available:
http://arxiv.org/abs/1605.06211 20

40

http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/
https://arxiv.org/abs/1505.00853
https://arxiv.org/abs/1505.00853
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1512.03385
http://www.python.org
https://en.wikipedia.org/wiki/Lightning_Memory-Mapped_Database
https://en.wikipedia.org/wiki/Lightning_Memory-Mapped_Database
http://arxiv.org/abs/1605.06211

Bibliography

[27] Hyeonwoo Noh, Seunghoon Hong and Bohyung Han, "Learning Deconvolution
Network for Semantic Segmentation", CoRR, abs/1505.04366, 2015, Available:
http://arxiv.org/abs/1505.04366 20

[28] Tieleman, T., Hinton, G.: "Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude." COURSERA: Neural Networks for
Machine Learning (2012) 22

[29] http://caffe.berkeleyvision.org/tutorial/interfaces.html 23
[30] Y. Yang and D. Ramanan. "Articulated human detection with flexible mixtures

of parts." PAMI’13. 25
[31] Collobert, R., Kavukcuoglu, K., Farabet, C.: "Torch7: A matlab-like environ-

ment for machine learning." In: BigLearn, NIPS Workshop. (2011) 32
[32] Ross B. Girshick, Jeff Donahue, Trevor Darrell and Jitendra Malik, "Rich

feature hierarchies for accurate object detection and semantic segmentation",
CoRR, abs/1311.2524, 2013, Available: http://arxiv.org/abs/1311.2524 35

[33] Kaiming He et al. "Mask R-CNN", CoRR, abs/1703.06870, 2017, Available:
http://arxiv.org/abs/1703.06870 35

41

http://arxiv.org/abs/1505.04366
http://caffe.berkeleyvision.org/tutorial/interfaces.html
http://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1703.06870

	List of Figures
	List of Tables
	Introduction
	Aim
	Limitations

	Background
	Human pose estimation
	An introduction to Convolutional Neural Networks - CNNs
	Convolutional layer
	Max-pooling layer
	ReLU layer
	Training the network
	Batch Normalization

	Convolutional layers vs fully connected layers

	Methods
	Before training the network
	The MPII dataset
	Training data
	Preprocessing of training data
	First preprocessing method - M1
	Second preprocessing method - M2
	Third preprocessing method - M3

	Training the network
	Residual unit
	The Hourglass module
	Connection layer
	Training details

	After training the network
	Visual evaluation
	Evaluation using PCKh
	Evaluating performance on difficult poses

	Results
	Comparing preprocessing methods
	General performance of M3
	Difficult poses

	Discussion
	Conclusion
	Bibliography

