
(
cnn
)
--
the
united
states
have
named
former
germany
captain
jurgen
klinsmann
as
their
new
national
coach
,
just
a
day
after
sacking
bob
bradley
.
bradl
,
w

<GO>

klinsmann

appointedasthenewcoachof
unitedstates

Query-Based Abstractive Summarization
Using Neural Networks
Master’s thesis in Computer Science: Algorithms, Languages and Logic

JOHAN HASSELQVIST
NIKLAS HELMERTZ

Department of Computer Science and Engineering
C H A L M E R S U N I V E R S I T Y O F T E C H N O L O G Y
U N I V E R S I T Y O F G O T H E N B U R G
Gothenburg, Sweden 2017

Master’s thesis 2017

Query-Based Abstractive Summarization
Using Neural Networks

JOHAN HASSELQVIST
NIKLAS HELMERTZ

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2017

Query-Based Abstractive Summarization Using Neural Networks
JOHAN HASSELQVIST
NIKLAS HELMERTZ

© Johan Hasselqvist & Niklas Helmertz, 2017.

Supervisor: Mikael Kågebäck, Department of Computer Science and Engineering
Advisor: Henrik Alburg, Findwise AB
Examiner: Peter Damaschke, Department of Computer Science and Engineering

Master’s Thesis 2017
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Visualization of the attention mechanism presented in this thesis, shown from
an isometric perspective. It is described in more detail as Figure 7.1.

Gothenburg, Sweden 2017

iv

Query-Based Abstractive Summarization Using Neural Networks
JOHAN HASSELQVIST
NIKLAS HELMERTZ
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract

Creating short summaries of documents with respect to a query has applications in for
example search engines, where it may help inform users of the most relevant results.
Constructing such a summary automatically, with the potential expressiveness of a
human-written summary, is a difficult problem yet to be fully solved. In this thesis,
a neural network model for this task is presented. We adapt an existing dataset of
news article summaries for the task and train a pointer-generator model using this
dataset to summarize such articles. The generated summaries are then evaluated
by measuring similarity to reference summaries. We observe that the generated
summaries exhibit abstractive properties, but also that they have issues, such as
rarely being truthful. However, we show that a neural network summarization model,
similar to existing neural network models for abstractive summarization, can be
constructed to make use of queries for more targeted summaries.

Keywords: natural language processing, summarization, neural networks, sequence
to sequence.

v

Acknowledgements

We would like to thank our supervisor Mikael Kågebäck, who has continuously
supported us in this thesis work, even before we had decided on a topic. In addition,
we would like to thank Henrik Alburg at Findwise, who has provided valuable
feedback and ideas, as well as everyone at Findwise Gothenburg for a great work
environment.

Johan Hasselqvist & Niklas Helmertz, Gothenburg, June 2017

vii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Goals . 2
1.3 Delimitations . 2
1.4 Outline . 3

2 Related Work 5
2.1 Question Answering . 5
2.2 General Summarization . 5
2.3 Query-Based Summarization . 6

3 Theory 7
3.1 Natural Language Processing . 7

3.1.1 Tokenization . 7
3.1.2 Named Entity Recognition . 8
3.1.3 Language Models . 8
3.1.4 Beam Search . 8

3.2 Machine Learning . 9
3.3 Neural Networks . 10

3.3.1 Feedforward Neural Networks 10
3.3.2 Recurrent Neural Networks 11
3.3.3 Gated Recurrent Units . 12
3.3.4 Word Embeddings . 14
3.3.5 Sequence-to-Sequence Models 14
3.3.6 Training . 17

4 Model 19
4.1 Document Encoder . 20
4.2 Query Encoder . 20
4.3 Decoder . 20

4.3.1 Pointer Mechanism . 22
4.4 Training Loss . 23

5 Dataset 25
5.1 Processing . 27
5.2 Dataset Structure . 28

ix

Contents

5.3 Other Datasets . 28

6 Experiments 29
6.1 Vocabulary . 29
6.2 Pointer Training . 30
6.3 Training Details . 30
6.4 Generating Summaries . 31
6.5 Model Parameters . 32
6.6 Evaluation . 32

6.6.1 Query Dependence . 33
6.7 Baseline . 33

7 Results and Discussion 35
7.1 Query Dependence . 39

8 Conclusion and Future Work 41

Bibliography 43

x

1
Introduction

In this thesis, we present a model for generating summaries of text documents with
respect to a certain query. This is known as query-based summarization. More
specifically, the model is designed for brief, commonly single-sentence, summaries.
A situation where this may be useful is when a user has performed a search in a
search engine and a set of documents have been returned. Concise summaries could
then be displayed along with the search results, giving a quick overview of how the
document is related to the search query.

What is commonly done in search engines today is that text surrounding an occurrence
of a search query in the document is displayed as a summary. This is an example
of extractive summarization, which produces a summary that only contains parts
of the original document. A significant difference in the model we present is that
it generates an abstractive summary. This type of summary allows for rephrasing
and using words not necessarily present in the original document, comparable to a
human-written summary. This has the potential of summarizing documents in a
more concise way than what is possible with an extractive summary, i.e. making it
easier for a reader to understand the relationship between a document and a query.

In this chapter, we briefly present some research background, define the goals of this
thesis work, and describe the thesis structure.

1.1 Context

Automatic text summarization has been a research topic for many years. In general,
the goal is to concisely represent the most important information in documents.
Much previous work in summarization has been using extractive methods (Nenkova
and McKeown, 2012). Commonly, individual sentences are extracted and composed
together to form a summary. This gives sentences that are as grammatically correct
as the source document. They are however inherently limited, and cannot reproduce
human-written summaries in general.

Abstractive summarization in particular is closely related to natural language gen-
eration, and it would be desirable to reach human-level performance in writing
summaries. It may however require human-level understanding of the context of
documents to produce results comparable to human-written ones.

1

1. Introduction

An important progress in using neural network models for generating text is sequence-
to-sequence, used by Sutskever et al. (2014) for machine translation. It is a way
of mapping a varying-length input text to a varying-length output text, and it is
applicable to machine translation as well as summarization.

In recent years, progress has been made on using neural network models for text
summarization and similar problems. Some examples are sequence-to-sequence
models for non-query-based abstractive summarization by Rush et al. (2015) and
Nallapati et al. (2016). Neural network models have additionally been used for
generating image captions (Karpathy and Fei-Fei, 2015), which is a form of summary,
and for question answering problems, such as by Hermann et al. (2015) and Tan et al.
(2015). Inspired by this progress, we design a model for query-based summarization
using neural networks.

Chapter 2 goes into more detail on some of the mentioned works most closely related
to the approach used in this thesis.

1.2 Goals

The goals of this thesis work are to create a neural network model for query-based
abstractive summarization and to evaluate if it can make use of a query for a more
targeted summary. For reaching these goals, we make the following contributions:

• A model for query-based abstractive summarization, presented in Chapter 4.

• A dataset for query-based abstractive summarization, created by adapting an
existing dataset originally used for question answering, described further in
Chapter 5.

• An evaluation of the performance of our model, and of whether the model
makes use of the query for a more targeted summary, presented in Chapter 7.

1.3 Delimitations

To limit the scope of the thesis work, and partly due to the datasets available, we
focus on queries consisting of one or a sequence of words making up a single entity1,
rather than a more general complete question. Grammatically, a single entity would
not form a complete question, but it does still expresses a particular information
request. Furthermore, the task is limited to single-document summarization. This
is in contrast to the more general task of multi-document summarization, where
information from multiple documents is combined to form a summary.

Yet another limitation of the thesis work is that we limit our experiments to the
English language. This is mainly due to the availability of datasets. In addition, it

1A more detailed definition of entity can be found in Section 3.1.2.

2

1. Introduction

would be ideal if the resulting summaries are coherent and grammatically correct.
However, it is not a requirement of the final system.

1.4 Outline

The thesis is structured to first present relevant prerequisite concepts, in Chapter
3. This is followed by a description of the model and the dataset, independently in
Chapters 4 and 5 respectively. Chapter 6 describes experiments in which the model
is evaluated using the dataset. We then present and discuss the results in Chapter 7,
as well as what could be the next step moving forward in Chapter 8.

3

1. Introduction

4

2
Related Work

There are several tasks related to query-based summarization. In the following
sections, we review some existing models for these tasks and their relation to our
problem and approach.

2.1 Question Answering

The task of question answering is to produce an answer to a question posed in natural
language. The task is very general and many other problems can be expressed as a
question-answering problem. Summarizing with respect to a query may for instance
be expressed as “What is a summary of the document with respect to the query X?”,
for the query X. If the answer to a question is a single complete sentence, then it is
especially close to the types of query-based summaries considered in this thesis.

Otterbacher et al. (2009) present a model, Biased LexRank, which they use for a form
of question answering as well as extractive query-based summarization. The answers
they generate are full sentences, which makes it similar to our task of query-based
summarization.

Hermann et al. (2015) present neural network models for question answering. For
training these, they create a large dataset from CNN/Daily Mail news articles. We
adapt this dataset for query-based summarization, as detailed in Chapter 5.

Kumar et al. (2016) introduce Dynamic Memory Networks, which they show reached
state-of-the-art performance in a variety of NLP tasks. We draw inspiration from
their use of a question module when we incorporate query information in our model.

2.2 General Summarization

General summarization differs from query-based summarization in that a document
is summarized without respect to a query.

Nallapati et al. (2016) build upon a machine translation model by Bahdanau et al.
(2015) and generate general abstractive summaries on multiple datasets, including
the CNN/Daily Mail dataset by Hermann et al. (2015). Additions they make for their

5

2. Related Work

model include a pointer-generator mechanism (Gülçehre et al., 2016) that allows the
model to copy words from the source document.

See et al. (2017) propose a similar model, using a similar pointer-generator mecha-
nism, that outperforms Nallapati et al. (2016) on a slightly different version of the
CNN/Daily Mail dataset (making the result not “strictly comparable”). They also
incorporate what they call coverage for avoiding repetitions in the output.

2.3 Query-Based Summarization

An early work evaluating several methods for extractive query-based summarization
is presented by Goldstein et al. (1999). Besides “full queries”, they use “short
queries”, which on average are 3.9 words. These are similar in length to the types of
queries used in the experiments of this thesis work.

Besides the work by Otterbacher et al. (2009), recent work in query-based sum-
marization has been done by Wang et al. (2013), using parse trees and sentence
compression. It is described as not “pure extractive summarization”.

During the later stages of this thesis work, Nema et al. (2017) propose a neural
network model for query-based abstractive summarization, which has some similarities
to the model we present. However, the dataset they use is smaller in both average
document length and number of documents. Additionally, the types of queries used
are different, in that they use complete questions as opposed to our single-entity
queries.

6

3
Theory

In the following sections, various terms and concepts used throughout the thesis are
explained.

3.1 Natural Language Processing

The field of natural language processing (NLP) contains various problems related to
the processing of natural languages, such as English.

A basic concept used throughout the thesis is the concept of a vocabulary, denoted
V , which we define as a set of words. A word in the context of this thesis is more
general than sequences of letters in a language, which is the more common use of
word. Our definition of word allows for inclusion of other symbols, for example a
word consisting only of the period symbol may be a member of the vocabulary.

Another commonly used concept in NLP is an n-gram. An n-gram is a subsequence
of length n of connected units in a sequence. In NLP, the unit is commonly words. In
the sequence “this is a sequence”, the 2-grams are “this is”, “is a” and “a sequence”.

3.1.1 Tokenization

As a pre-processing step, text in natural languages is often split into a list of smaller
meaningful units. Such units are called tokens, and the process of breaking down
the text to tokens is called tokenization. A naive form of tokenization could be to
separate the text at every whitespace or non-alphanumeric symbol. A less naive
approach would preserve abbreviations and split text more semantically. A tokenized
example sentence can be seen in Table 3.1.

Table 3.1: Comparison between a naive and a less naive tokenization method
of a sentence. Tokens are separated by spaces for readability.

Original In the U.S., Swedish furniture isn’t uncommon.
Naive tokenization In the U . S . , Swedish furniture isn ’ t uncommon .
Less naive tokenization In the U.S. , Swedish furniture is n’t uncommon .

7

3. Theory

The resulting tokens of the tokenization are in this thesis later referred to as words,
belonging to the vocabulary of the tokenized language used in this thesis.

3.1.2 Named Entity Recognition

Information extraction is a class of tasks that involve extracting structured infor-
mation from documents. An example of such a task is named entity recognition,
which is the classification of parts of text into different categories, such as persons or
locations, or no category. An example from the sentence “The mathematician Jeff
Paris visited the city of Paris.” is that “Jeff Paris” should be annotated as a person,
and the last “Paris” as a location.

3.1.3 Language Models

Language modeling is the task of assigning a probability to a sequence of symbols, e.g.
words in a vocabulary. The probability of such a sequence of words in a vocabulary,
V , i.e. P (w1, ..., wN) where wi ∈ V , can be defined as the probability

P (w1, ..., wN) =
N∏

n=1
P (wn | w1, ..., wn−1).

In the case of translation and summarization tasks, finding an optimal output
sequence can be defined as maximizing the conditional probability of the output
sequence dependent on some input X,

P (w1, ..., wN | X) =
N∏

n=1
P (wn | w1, ..., wn−1, X).

In the particular case of query-based summarization, X would correspond to the
input document that is to be summarized as well as the query.

3.1.4 Beam Search

Finding the text sequence with the highest joint probability in the set of all possible
sequences that fulfill some constraints is not trivial. For instance, when searching for
the most probable sequence of N words, a naive way is to exhaustively search through
all the sequences. This is, however, not feasible in general, since with a vocabulary V ,
the number of solutions scales exponentially as |V |N . On the other hand, if one were
to greedily construct such a sequence by iteratively choosing the next word as the
word with the highest probability one might discard words that eventually lead to
more probable results. One compromise between these two extremes is beam search,
which is a generalized breadth-first search algorithm that allows for restriction of
the search space.

8

3. Theory

Just like with breadth-first search, beam search starts off with a root node. All
possible child nodes for this root node are then evaluated, but, differently from with
breadth-first search, only the n best nodes are considered as candidates for a possible
solution. These n candidates are then expanded in a similar way to the root node,
giving a total of n2 candidates. Out of these n2 candidates, only the best n are kept
and expanded in the same way iteratively, until either n solutions have been found
or there are no more nodes to expand. The selection of n, the beam width, gives a
trade-off between execution time and memory usage, and the potentiality of finding
a better solution. An infinite beam width corresponds to normal breadth-first search.

3.2 Machine Learning

The field of machine learning is about algorithms for detecting patterns and making
predictions based on data, i.e. learning from the data, rather than algorithms whose
behaviors have been specified explicitly.

Some machine learning tasks are supervised learning tasks, where a model can be
trained on pairs of input and expected output, to learn patterns in the input that
makes it possible to predict the output correctly. Commonly, the goal is for this
learning to generalize well, so that it could be used to produce useful output for new
input it has not been trained on.

In the context of machine learning problems, you commonly have a collection of data
known as a dataset. An example of a dataset is the MNIST dataset (LeCun et al.,
1998), which contains images of hand-written digits, along with what digit the image
is supposed to represent.

For evaluation of machine learning models, you can divide the dataset into a training,
validation, and test set. The idea is that we can train the machine learning model
on a part of the data, the training set, and then evaluate it by its predictive ability
on another part of the dataset it has not been trained on. If the model performs
well on the training set, but not the validation set, the model does not generalize
well. This is known as overfitting and is undesirable in a machine learning model.

The reason for there being both a validation and test set is that the performance on
the validation set can be used for making decisions about model design and for tuning
hyperparameters, such as the size of different parts of the model. After the model has
been trained and fully specified, its final generalization performance is determined
using the test set. The reason for not using the validation set performance is that
hyperparameters for the model may have been optimized in a way that improves the
performance due to characteristics specific to the validation set.

Training is commonly performed iteratively over samples in the training set. A cycle
of training over all dataset samples is known as an epoch. Early stopping, described
in detail by Goodfellow et al. (2016, pp. 246-248), is a technique for determining
when to stop training the model. In an iterative training process, we can estimate
the performance on the validation set. If we observe that the performance on the

9

3. Theory

validation set is decreasing, it signals that the model is overfitting. If this continues
for some time, such as over a number of epochs, the training is stopped.

3.3 Neural Networks

Neural networks, or artificial neural networks, are models based on solving computa-
tional problems in a way inspired by how the brain operates. The main similarity
is the idea of neurons being interconnected and outputting signals depending on
those they receive from other neurons. This can for instance be used for supervised
learning, where we can adjust the network to produce the output by performing
computations on the input.

In this section, we present some neural network concepts and examples. More detailed
background on neural networks is described by Goodfellow et al. (2016).

3.3.1 Feedforward Neural Networks

Neural networks are commonly modeled as weighted directed graphs. A commonly
used type of neural network is a feedforward neural network. An example of such a
network can be seen in Figure 3.1.

Figure 3.1: A fully connected feedforward neural network with two hidden
layers.

A feedforward neural network consists of a sequence of layers, each consisting of a
number of nodes. Nodes are connected to subsequent layers with edges. The weight
of the edge from node j in layer l to node i in layer l + 1 is a value in a matrix
W

(l)
ij . It is an n×m matrix, where m and n are the number of nodes in layer l and

l + 1, respectively. The leftmost and rightmost layer are the input and output layer,
respectively. The input data is the column vector x. After the computation, the
input having been fed through the network, the final output is the vector h. Each
individual layer’s output vector is y(l). We additionally define y(0) = x and y(3) = h.

10

3. Theory

For each layer after the input layer, l ≥ 1, the output is computed as

y(l) = f
(
W (l)y(l−1) + b(l)

)
.

The bias vector b(l) is not represented in the figure. Its role is similar to W (l), but
its contribution does not depend on the previous layer’s output. The function f is
the activation function. It should be a non-linear function, such as element-wise
application of the sigmoid function σ(x) = 1

1+e−x . There are however several other
options for such functions. That the function is differentiable is necessary for the
next phase.

Generally, the goal is to assign the weights in the graph, so when data is set in the
input layer, the resulting vector on the other end is the desired result. This can be
done using backpropagation (Rumelhart et al., 1986). Given training data, consisting
of input and the desired output, the technique adjusts the weights to accommodate
the sample. It can be seen as learning to find a pattern. For backpropagation,
we use a loss function L(y, ŷ), where y is the known desired output and ŷ is the
predicted output. It is designed to give a numerical indication of how wrong the
network’s prediction is. The objective is to minimize this error. This can be done
using stochastic gradient descent by updating the weight according to

W
(l)
ij ← W

(l)
ij − η

∂L

∂W
(l)
ij

for all layers l, rows i and columns j. An equivalent update is done of the bias, with
b(l) taking the place of W (l). The step size η determines how sensitive the update is
to the gradient. Having differentiable functions throughout the computation makes
it possible to compute ∂L

∂W
(l)
ij

using the chain rule. Training of neural networks is
described further in Section 3.3.6.

Feedforward networks are appropriate for certain kinds of problems, for example
classification. Imagining a complex three-dimensional surface, we want to classify
if a new point is likely below or above the surface, given a set of points for which
we know which side of the surface each is on. Training on such points gives us a
network that can be used to estimate if new points are above or below the surface.

3.3.2 Recurrent Neural Networks

There are numerous problems relating to text processing where a feedforward neural
network is not well suited. When input data is text written in some language,
the words are connected in an order that forms some pattern. For exploiting this
structure, there are recurrent neural networks (RNN). What makes them recurrent
is the repeated use of the same neural network layer for each element of an input
sequence, such as words. The RNN can be designed to emulate how a human may
read a text, processing each word sequentially, and forming an understanding of the
text.

11

3. Theory

A simple approach to designing an RNN is to feed output from the previous item
as additional input to a neural network in the current step. This can be viewed as
adding a cycle to the previously shown feedforward network. We show this simple
RNN compared the previous feedforward network, but with only one single layer, in
Figure 3.2.

Figure 3.2: The simple RNN compared to a feedforward network.

The boxes represent the intermediate, hidden, vectors. The weight matrices are
labeled differently, with Wih connecting the input to the hidden layer, equivalent to
W (1) in Figure 3.1. The matrix Who transforms the hidden vector to the output.
An additional matrix Whh transforms the vector in the hidden layer to input for the
next iteration. Computations are done similarly to in the feedforward network, but
in several iterations t ∈ {1, 2, ...} for each input item xt. The hidden state yt, which
depends on two inputs, is computed as

yt = f (Wihxt +Whhyt−1 + bh) ,

where y0 is initialized to the zero vector. The bias vectors, such as bh, are again not
included in the figure. The output vector ht can be computed as for the feedforward
network, by

ht = f (Whoyt + bo) .

The weights can, as with the feedforward example, be trained using backpropagation
to generate a desired sequence of ht. The total loss L may be the sum of the loss for
each ht.

3.3.3 Gated Recurrent Units

The previously presented simple RNN is known to suffer from the vanishing/exploding
gradient problem (Hochreiter, 1991; Y. Bengio et al., 1994), i.e. the backpropagated
errors tend to either become too large, or too small, as they are propagated back
through the network. This results in RNNs not performing well for long-term
dependencies. An example of long-term dependence is that the use of “her” or
“his” may depend on a name mentioned much earlier in the text. Hochreiter
and Schmidhuber (1997) propose using long short-term memory (LSTM) units

12

3. Theory

that alleviate this issue, making it easier to train RNNs for finding long-term
dependencies. Similar to LSTM, the gated recurrent unit (GRU) (Cho et al., 2014)
does not suffer from the vanishing/exploding gradient problem, but is simpler and
less computationally intensive, while still achieving comparable results on many tasks
(Chung et al., 2014; Kumar et al., 2016).

Compared to the simple RNN, the GRU network is recurrent through a more complex
procedure. However, they are similar in that we pass a previous hidden state ht−1,
which can be initialized to the zero vector the first iteration. The architecture is
illustrated in Figure 3.3.

+

•

•

•

Figure 3.3: Diagram of the GRU architecture. The named boxes represent
intermediate vectors. Each except xt and ht is the output vector of a neural
network, without hidden layers, whose input is shown by the incoming arrows.
Boxes with multiple input vectors have the input concatenated. A circle signifies
a vector operation of the incoming elements, where + is vector addition, · is
element-wise multiplication, and “1−” computes the complement probability
for the input elements in [0, 1], by subtracting each from 1.

In Figure 3.3, the vectors rt and zt are scaling vectors, intended to regulate what
information is let through. These can be described as gates. They have elements
in [0, 1], generated from a network with the logistic sigmoid, σ, previously defined
in Section 3.3.1. The vector h′t is rather intended to carry data. Its elements are in
[−1, 1], generated from a network with a tanh activation function. The entire GRU

13

3. Theory

architecture can be described by the formulas

rt = σ(W r[xt, ht−1] + br)
zt = σ(W z[xt, ht−1] + bz)

h′t = tanh(W h[xt, rt � ht−1] + bh)
ht = zt � ht−1 + (1− zt)� h′t,

where � is element-wise multiplication, [x1, x2] is the concatenation of the vectors
x1 and x2, forming a vector whose dimension is the sum of the dimension of x1 and
x2. The W with a superscript are weight matrices, and the b with a superscript are
bias vectors. The exact dimension of the vectors are configurable parameters, which
must be set so the vector operations are defined.

The vector zt is intended to regulate how much information from the previous state
should be forgotten. For example, in terms of language, if xt corresponds to a token
for a period character, it may produce a zt that causes information from the previous
sentence encoded in ht−1 to be forgotten. Similarly, it regulates what of the new
input is added to the state ct. The final ot regulates how the state influences the
output.

To shorten following formulas in this thesis, we denote an entire GRU update step as

ht = GRU(ht−1, xt).

3.3.4 Word Embeddings

How to use words as input to a neural network is not obvious. Neural networks
internally use numerical vectors. Word embeddings give a way to represent words of
a vocabulary as fixed size vectors. Given a vocabulary V , we can encode each word
uniquely using a one-hot encoding. This gives a vector of length |V | where every word
in the vocabulary is mapped uniquely to some dimension, which a value of 1, while
the other dimensions are 0. This vector can be transformed to an embedding for the
word by multiplying it by an embedding matrix Wemb of dimensionality demb × |V |,
where demb is the word embedding dimensionality, commonly a hyperparameter in
neural network models.

The intention is that the embeddings capture some characteristics of words, giving
useful vector representations. For instance, two related words such as football and
soccer may be expected to be close to each other in the vector space. Two methods
for generating word embeddings are word2vec (Mikolov et al., 2013) and GloVe
(Pennington et al., 2014).

3.3.5 Sequence-to-Sequence Models

In translation and summarization tasks we want to find a mapping from an input
sequence to an output sequence, where the output length is not necessarily dependent

14

3. Theory

on the input length. One way to do this is by using a sequence-to-sequence model
(Sutskever et al., 2014).

A sequence-to-sequence model for sequences of words has at least two core compo-
nents. Firstly, an encoder, which reads the input sequence word by word, producing
an internal fixed-size representation of it. This internal representation is then passed
to the second component, the decoder, which generates the output sequence. Both
the encoder and the decoder are usually RNNs, and the input words are converted
to vector input through a word embedding layer. Figure 3.4 shows an overview of
how a sequence-to-sequence model produces an output sequence an example task.

Figure 3.4: Visualization of a sequence-to-sequence model outputting a
sentence translated from English to Swedish. The boxes in the encoder represent
RNN time steps with the word shown below as input. The words above the
the boxes in the decoder signifies the output words. Further, it contains some
variables defined subsequently in this chapter.

In a basic sequence-to-sequence model, using GRUs, the encoder can be defined with
a single GRU cell. At the ith input word wi, it then produces a hidden state

hi = GRU(hi−1, E(wi)),

where E(wi) is the word embedding of wi. The initial state h0 can be a zero vector.

The final encoder hidden state is a representation of all the input, and is passed on
to the decoder as its initial state, defined as s0. The decoder is defined in a similar
way to the encoder, with separate internal weights and biases, and its states are
computed as

st = GRU(st−1, E(yt−1)),

where yt−1 is the word computed from the previous decoder hidden state. At the
first time step, t = 1, where there is no previously generated word, a special token
signifying the start of the output can be used instead.

For selecting an output word, the decoder hidden state can then be projected on the
vocabulary V as

zt = Wst + b,

whereW ∈ R|V |×d and b ∈ R|V | are trainable parameters, and d is the decoder hidden
state size. The result, zt, contains values that can be converted to the probabilities

15

3. Theory

ptj of outputting each vocabulary word j at time step t by normalizing it using the
softmax function, as

ptj = exp(ztj)∑
k exp(ztk) .

If we define this as the probability Pt(w) where w is the jth vocabulary word, the
output word at time step t, yt, can be decided by computing the argmax of the
probabilities over the vocabulary as

yt = arg max
w∈V

Pt(w).

For many problems, it has been found to be beneficial to use more of the RNN
states than the final fixed-size hidden state. Attention is a mechanism for allowing
the model to access more information in the decoding process, by letting it identify
relevant parts of the input and use the encoder hidden state at these locations. This
technique has been used successfully for machine translation (Bahdanau et al., 2015)
and image captioning (Xu et al., 2015).

There are two main attention types: soft attention and hard attention. Soft attention
generates a distribution over all the encoder hidden states, giving weights to how
important different parts of the input is. This is done by first scoring all the encoder
outputs, given some input that can differ depending on the application. This input
often includes at least the previous decoder hidden state. The scoring can be done
in different ways, for instance as a dot product or using additional neural network
layers. We denote the ith encoder hidden state as hi, the previous decoder hidden
state as st−1, and the scoring of hi as ei. The scoring can be expressed using a score
function as

ei = score(hi, st−1).

The attention distribution α is then computed taking the softmax of all the scores,
as

αi = exp(ei)∑
j exp(ej)

The output of the attention is often called a context vector, c, and is an average of
the encoder hidden states, weighted by the attention distribution, as

c =
∑

i

αihi.

This combines information from the encoder states that were given higher scores, and
therefore hopefully can benefit the decoding process. In machine translation, a word
in the target language is often connected to a single word in the source language,
which can be attended to using this mechanism.

Hard attention focuses on a single state hi with probability αi as a context vector
instead of taking a weighted average. However, this step is not differentiable, so one
cannot use standard backpropagation.

16

3. Theory

3.3.6 Training

The training of a neural network is an optimization process where we attempt to
optimize the parameters, such as weight matrices, according to some error measure.
This is often done using some form of backpropagation, as described in the feedforward
example in Section 3.3.1.

More specifically, backpropagation can be done using stochastic gradient descent
(SGD). SGD differs from the standard gradient descent in that it updates parameters
of the network after every observation in the training set, rather than doing one
parameter update after having computed the loss for the whole training set. In
particular with a large dataset, SGD generally leads to faster convergence, i.e. in
a lower number of iterations. Compared to computing the gradient over the entire
training set, gradients based on individual samples may vary greatly from sample
to sample. This commonly leads to a more chaotic path in the parameter space
throughout the training procedure.

To stabilize the gradient somewhat, and to decrease training time per sample, mini-
batch gradient descent can be used. Instead of using a single sample or the whole
training set, a subset of the training set is used for each parameter update.

Further, the order in which samples, or mini-batches, are trained on affects the
training outcome. When training over multiple epochs, it is common to shuffle the
samples, or mini-batches, in-between. This has been observed to result in faster
convergence (Y. Bengio, 2012).

17

3. Theory

18

4
Model

For the task, we have designed a sequence-to-sequence model with attention and a
pointer mechanism, making it a pointer-generator model. The input for the problem
is a document and a query. These are sequences of words passed to a document
encoder and a query encoder respectively. The encoders’ outputs are then passed to
the attentive decoder, which generates a summary. Both encoders, as well as the
decoder, use RNNs with GRUs. Each occurrence of GRU, with a subscript, in the
formulas in the following sections has separate weights and biases. The entire model
is depicted in Figure 4.1. The different components and variables in the figure will
be explained in detail throughout the chapter.

Figure 4.1: Overview of our model. It illustrates connections between parts
of the model at a fixed decoder time step t, using the variables defined in this
chapter. The bottom part, containing labeled boxes, correspond to the different
RNNs. The top part is intended to visualize the two ways the output word yt

can be selected, through the pointer and generator mechanism, to the left and
right respectively.

19

4. Model

4.1 Document Encoder

The document encoder processes an input document, generating a state for each input
word. To get a representation of the context around a word, we use a bidirectional
RNN (Schuster and Paliwal, 1997) encoder, so both the context before and after
contribute to the representation. This is used by Bahdanau et al. (2015) amongst
others, achieving good results on a similar task related to text comprehension.

The combined RNN hidden state at time step i, hi, and the intermediate states,
→
h i

and
←
hi, from the forward reader and backward reader respectively, are computed as

→
hi = GRU−→doc(

→
h i−1, E(wi))

←
hi = GRU←−doc(

←
h i−1, E(←wi))

hi = [
→
hi,
←
hi],

where wi ∈ V , for the vocabulary V , is word i in the input document; ←wi is word i in
the reversed input; and E(wi) is the word embedding of wi. The initial states

→
h0 and

←
h0 are zero vectors. Due to the concatenation, the combined state hi has twice the
dimensionality of the state of each unidirectional encoder. The document encoder
state dimensionality is denoted ddoc and the word embedding dimensionality demb.

4.2 Query Encoder

The query encoder is responsible for creating a fixed-size internal representation of
the input query. Unlike the document encoder, the query encoder is a unidirectional
RNN encoder since queries are relatively short compared to documents and we only
use the final state to represent the whole query. The RNN state hQ

i at query word i,
is updated according to

hQ
i = GRUque

(
hQ

i−1, E
(
wQ

i

))
q = hQ

NQ
,

where wQ is the input query and NQ is the length of the query. The initial state hQ
0

is the zero vector. The query encoder state dimensionality is denoted dque.

4.3 Decoder

The decoder is a unidirectional RNN for constructing a summary of the input
document by depending on the final state of the input encoder, the query. It utilizes
soft attention, in combination with a pointer mechanism, as well as a generator
part similar to Bahdanau et al. (2015). The query embedding q is fed as input

20

4. Model

at each decoder time step. This is similar to the answering module in a question
answering model presented by Kumar et al. (2016), who use an RNN-encoded question
representation as input at each decoder time step. In our model, the RNN state is
updated according to

st = GRUdec (st−1, [ct, q, E (yt−1)]) ,

where s0 = hND
, the final document encoder state, ND being the number of input

words; y0 corresponds to a special <GO> token, used at the initial time step when no
previous word has been predicted; ct is the context vector at time step t from the
attention mechanism, defined subsequently; and yt−1 ∈ V is the predicted output
word at time step t− 1. This is either from the generator mechanism, or the pointer
mechanism, also defined subsequently. The word embeddings are the same as are
used in the encoder.

The intention of the inclusion of q to the input of GRUdec is to give the decoder the
ability to tune the structure of the output sequence to eventually output something
concerning the query. For example, if the query is a location, the decoder can output
words leading up to an appropriate inclusion of the location.

The generator outputs a word from a subset of the vocabulary Vgen ⊆ V at each time
step. The selection of the output words is done through a distribution of words in
Vgen, computed through a softmax as

pgen
tj = exp(ztj)∑

k exp(ztk) ,

for j ≤ |Vgen|, an index uniquely mapped to a word w ∈ Vgen, and ztj as defined
subsequently. Defining this as the probability P gen

t (w), we then select output word
ygen

t with the highest probability by

ygen
t = arg max

w∈Vgen

P gen
t (w).

The softmax probability depends on ztj, the output from two linear transformations
on the decoder state and context vector, defined as

zt = W (2)
gen

(
W (1)

gen[st, ct] + b(1)
gen

)
+ b(2)

gen,

where W (1)
gen ∈ Rdgen×(ddec+ddoc), b(1)

gen ∈ Rdgen , W (2)
gen ∈ R|Vgen|×dgen and b(2)

gen ∈ R|Vgen| are
trainable hyperparameters, in which dgen is the dimensionality of the hidden layer.
The main function of this layer is to reduce the dimensionality of the input, for
reducing computation time for the final layer with size |Vgen|.

The model has a soft attention mechanism, based on one used by Bahdanau et al.
(2015) for machine translation. The result of the attention mechanism is a context
vector ct produced at each time step t, computed as

ct =
∑

i

αtihi

αti = exp(eti)∑
k exp(etk)

eti = score(hi, st−1, E(yt−1), q),

21

4. Model

where hi is the document encoder hidden state at index i. The score function is
defined as

score(h, s, x, q) = vᵀatt tanh(Watt[h, s, x, q] + batt),

where Watt ∈ Rdatt×(ddoc+ddec+demb+dque) is a weight matrix, vatt ∈ Rdatt is a vector, and
batt is a bias vector, all of which are trained together with the rest of the network.
The query q is included for the model to focus attention around query words when
appropriate.

4.3.1 Pointer Mechanism

A general issue is that with a generator mechanism limited to frequent words,
infrequent words cannot be generated. In our model, perhaps most problematic, the
query words may not be possible to generate. Further, if the model needs to learn
to output names, and there are many different ones and few occurrences of each in
the training data, training a model to generate them correctly is problematic. A
way to solve these issues is to allow the model to directly copy a word in the input
document to the output summary, or point to it. This may additionally be viewed
as using the input text as a secondary output vocabulary, in addition to Vgen.

Combining a pointer mechanism with a generator mechanism gives a pointer-generator
model. This has been done for summarization by Nallapati et al. (2016), and is
presented separately by some of the authors (Gülçehre et al., 2016). Additionally,
Merity et al. (2017) and See et al. (2017) present similar models with the same
capability.

The pointer mechanism adds a switch, pptr ∈ (0, 1), at each decoder time step t, to
the model. It is computed as the output of a linear transformation fed through a
sigmoid activation function, as

pptr
t = σ

(
vᵀptr[st, E(yt−1), ct] + bptr

)
,

where vptr ∈ Rddec+demb+ddoc and bptr are vectors, all of which are trained together
with the rest of the network.

If pptr
t > 0.5, a word is copied from the input, otherwise the generator output is

used. What is copied from the input for the tth decoder word is determined by the
attention distribution. Specifically, at time step t, we select the word at index

i′t = arg max
i

αti

in the document, where the attention is highest, as

yptr
t = w(i′t).

The final output word can then be defined as

yt =

y
ptr
t if pptr

t > 0.5
ygen

t otherwise

22

4. Model

4.4 Training Loss

The model is trained in when to use the pointer mechanism in a supervised manner.
We define an additional training input xptr

t that is either 1 if the pointer mechanism
is set to be used for the tth word in the summary, or 0 otherwise. For training this,
we define a loss function

Lptr =
NS∑
t=1

(
xptr

t

(
− log pptr

t

)
+
(
1− xptr

t

) (
− log

(
1− pptr

t

)))
.

This is to train pptr
t to predict xptr

t .

For training the generator mechanism, we define a loss over the generator softmax
layer as

Lgen =
NS∑
t=1

(
1− xptr

t

)
(− logP gen

t (w∗)) ,

where NS is the length of the target summary, w∗ ∈ Vgen is the the tth word in the
target summary. Multiplying by

(
1− xptr

t

)
excludes any addition to the loss when

the pointer mechanism is set to be used.

We introduce a form of supervised attention for when the pointer mechanism is set
to be used for an output word by introducing a loss function

Latt =
NS∑
t=1

xptr
t (− logαti∗) ,

where i∗ is the index in the input document to point to.

The final loss function is the sum of the different losses, normalized by the length,
computed as

L = 1
NS

(Lgen + Latt + Lptr) .

23

4. Model

24

5
Dataset

In this chapter, we describe the dataset that has been constructed for the experiments
performed in this thesis work. Additionally, properties and problems of the dataset
are discussed.

To train a deep learning neural network model for question answering, Hermann
et al. (2015) constructed a dataset of document–query–answer triples from CNN
and Daily Mail news articles. Included with each published news article, there are a
number of human-written highlights, which summarize different aspects of the article.
Table 5.1 shows some example highlights for a single article. They construct a
document–query–answer by considering a named entity in a highlight to be unknown,
making the highlight into a Cloze-style question (Taylor, 1953), whose answer is the
entity made unknown. An example document and a Cloze-style question and its
answer can be seen in Table 5.2.

Table 5.1: Highlights of a CNN article titled “Airline quality report sorts out
the duds from the dynamos in 2012”.

1. Hawaiian Airlines again lands at No. 1 in on-time performance
2. The Airline Quality Rankings Report looks at the 14 largest U.S. airlines
3. ExpressJet and American Airlines had the worst on-time performance
4. Virgin America had the best baggage handling; Southwest had lowest complaint rate

The article data comes from web scraping of the corresponding news organization’s
web site. For the question-answering model, they have then been tokenized and
anonymized by Hermann et al. (2015). The anonymization step replaces named
entities with entity markers, such as “@entity12”, which refers to the same entity
in multiple locations in a document, found through “simple entity detection”. The
same marker does not refer to the same entity across documents however.

We propose using the CNN/Daily Mail dataset for query-based abstractive summa-
rization by regarding each highlight as a summary of its document, and entities in the
highlight as queries. For every occurrence of an entity in a highlight, we construct a
document-query-summary triple for query-based summarization. Table 5.2 shows for
a sample document a Cloze-style question compared and the corresponding query-
summary pair constructed by us. If an entity is mentioned in multiple highlights, we
consider there being multiple target references for the document-query pair.

25

5. Dataset

Table 5.2: Example of dataset samples generated from a document-query
pair using our method compared to Hermann et al. (2015). In the Cloze-style
questions, the entity corresponding to the answer has been replaced by X.

Document
(cnn) former vice president walter mondale was released from the mayo clinic on
saturday after being admitted with influenza , hospital spokeswoman kelley luckstein
said . “ he ’s doing well . we treated him for flu and cold symptoms and he was released
today , ” she said . mondale , 87 , was diagnosed after he went to the hospital for a
routine checkup following a fever , former president jimmy carter said friday . “ he is in
the bed right this moment , but looking forward to come back home , ” carter said during
a speech at a nobel peace prize forum in minneapolis . “ he said tell everybody he is
doing well . ” mondale underwent treatment at the mayo clinic in rochester , minnesota
. the 42nd vice president served under carter between 1977 and 1981 , and later ran
for president , but lost to ronald reagan . but not before he made history by naming a
woman , u.s. rep. geraldine a. ferraro of new york , as his running mate . before that ,
the former lawyer was a u.s. senator from minnesota . his wife , joan mondale , died last
year .

Highlight
walter mondale was released from the mayo clinic on saturday , hospital spokeswoman
said

Cloze-style question
walter mondale was released from the X on saturday , hospital spokeswoman said

Cloze-style answer
mayo clinic

Our query
mayo clinic

Our target summary
walter mondale was released from the mayo clinic on saturday , hospital spokeswoman
said

The dataset is not clean in the sense that the highlights cannot always be considered
summaries of information in the article. For example, there are highlights such as
“At the bottom of the page, comment for a chance to be mentioned on CNN Student
News. You must be a teacher or a student age 13 or older to request a mention
on the CNN Student News Roll Call”, i.e. there are other notices unrelated to the
particular article shown as highlights.

An additional problem with the dataset is that highlights sometimes refer to previous
highlights. For example, if the first highlight refers to a person with their name,
subsequent highlights sometimes refer to the same person with only a pronoun. This
means that when we regard a highlight as a reference summary to a news article, it
may be the case that who or what the pronouns refer to is ambiguous.

26

5. Dataset

5.1 Processing

As opposed to Hermann et al. (2015), we do not use an anonymized version of
the dataset. Instead we use a less processed version of the dataset and process it
through a different tokenization algorithm, followed by lowercasing the text. It is
processed through the Python library NLTK1 (Bird et al., 2009), which uses the
tokenizers Punkt Sentence Tokenizer2 and Penn Treebank Tokenizer3, for English. We
noticed that this processing commonly resulted in words beginning with apostrophe
characters improperly. We applied another small tokenization step that splits the
word at those apostrophes, except for some common cases, such as the genitive “’s”
and “’til”.

Furthermore, we have performed a different split for creating our training, validation,
and test set than Hermann et al. (2015). They train and evaluate on articles from
CNN and Daily Mail separately, for example evaluating only on CNN articles after
training on only CNN articles. Validation and test sets have been created by reserving
articles from a single month of a single year to each.

We decided to train our model on a mix of CNN and Daily Mail articles, with a
proportion of them being reserved for validation and test sets. This proportion
is selected so that it is similar to the proportion of the CNN data split done by
Hermann et al. (2015). Which articles are included for the validation and test set
is determined randomly with equal probability for every article. If we instead were
to use the same split as Hermann et al. (2015) when we mix the CNN and Daily
Mail articles, Daily Mail would be greatly overrepresented. This is because the CNN
articles span over several more years than the Daily Mail articles, so a single month
of Daily Mail articles contains a larger proportion of all Daily Mail articles than
what a single month of CNN articles does for all CNN articles.

Some statistics of the resulting dataset can be seen in Table 5.3.

Table 5.3: Statistics of the dataset. The # symbol is used as an abbreviation
of “number of”.

Training Validation Test
#documents 300,805 4,652 4,652
#document-query pairs 1,066,377 16,308 16,593
#document-query-summary triples 1,294,730 19,827 20,046
Average #words per document 773.02 778.78 775.70
Average #words per query 1.52 1.53 1.52
Average #words per summary 14.44 14.52 14.40

1Version 3.0, URL: http://www.nltk.org/
2Described at: http://www.nltk.org/_modules/nltk/tokenize/punkt.html
3Described at: http://www.nltk.org/_modules/nltk/tokenize/treebank.html

27

http://www.nltk.org/
http://www.nltk.org/_modules/nltk/tokenize/punkt.html
http://www.nltk.org/_modules/nltk/tokenize/treebank.html

5. Dataset

The dataset can be reproduced using a script made available on GitHub4.

5.2 Dataset Structure

We organize the dataset triples hierarchically, first by document, then query, then
reference. The documents and queries are numbered numerically starting with 1,
while the references are numbered alphabetically starting with A. Document 1 may
have queries 1.1 and 1.2, and reference summaries A.1.1, B.1.1 and A.1.25. The order
is shuffled amongst document, query and reference IDs.

5.3 Other Datasets

There exist other datasets from Document Understanding Conferences (DUC)6,
especially from DUC 2005, DUC 2006 and DUC 2007 used for query-based abstractive
multi-document summarization, such as by ShafieiBavani et al. (2016). These
datasets, however, are much smaller than the CNN/Daily Mail corpus, and the
summaries are rather long (around 250 words), unlike the shorter summaries that
are the focus for this thesis work.

Nema et al. (2017) create a dataset with which they train their own query-based
abstractive summarization model. Their dataset is however smaller, consisting of
only 12,695 document-query-summary triples, and their documents are only 66 words
long on average, compared the CNN/Daily Mail average of over 750 words. While we
believe that the tasks we attempt to solve are very similar, we think that summarizing
longer documents as with the CNN/Daily Mail dataset is of even greater interest.

4URL: https://github.com/helmertz/querysum-data
5Selected for matching the format expected by pyrouge
6URL: http://duc.nist.gov/data.html

28

https://github.com/helmertz/querysum-data
http://duc.nist.gov/data.html

6
Experiments

In this chapter, we detail how we use the constructed CNN/Daily Mail dataset with
our model. We first describe some more practical details about how we trained the
model and how we generate summaries, followed by how we evaluate the generated
summaries. Additionally, we present an evaluation method for measuring how well it
incorporates the query when generating summaries.

6.1 Vocabulary

The subset Vgen of the entire vocabulary V used for the model in these experiments
contains a number of special tokens, which we differentiate from the other words,
and frequent words from the training set. There are four special tokens: <UNK>,
<GO>, <EOS>, and <PAD>. The <UNK> token, from unknown, is for representing words
not in the vocabulary. <GO> is the word fed as previous output at the first decoder
time step and signifies the start of the summary generation. <EOS>, end of sequence,
is appended to the query fed through the query encoder and the target summaries.
When the decoder generates the <EOS> token, the generated summary is regarded as
complete. <PAD> is included for technical implementation reasons, and the network
is not trained to output these. In addition to the special tokens, Vgen contains many
as possible of the most frequent words from the training set summaries until Vgen
contains 20,000 words. This correspond to the words the generator mechanism can
output.

The complete vocabulary V used for the input is substantially larger than what the
decoder generator can output. It additionally contains the 150,000 most frequent
words in the training set documents not in Vgen.

Word embeddings for the vocabulary words are initialized with 100-dimensional
GloVe embeddings1, trained on “Wikipedia 2014 + Gigaword 5”. If the word does
not have a GloVe embedding, we initialize the word embedding by sampling the
per-dimension univariate normal distributions with means and standard deviations
of the entire collection of GloVe embeddings. The vocabulary is expanded by adding
those of the 100,000 most frequent words in the pre-trained GloVe embeddings that
are not yet in the vocabulary. This gives a total vocabulary size of |V | = 173, 256.

1Downloadable as “glove.6B.zip” at: https://nlp.stanford.edu/projects/glove/

29

https://nlp.stanford.edu/projects/glove/

6. Experiments

The word embeddings for these are trained along with the network.

6.2 Pointer Training

We train the model to use the pointer mechanism for occurrences of entities in the
summaries, specifying the training target used for the loss contributions Lptr and
Latt. The entities are the same that are used for anonymization by Hermann et al.
(2015). For each entity word in the summaries, we point to the corresponding index
of the word in the first occurrence of the entity in the document. Specifically, we
process the non-anonymized summaries from beginning to end, trying to greedily find
literal occurrences of entities, prioritizing entities consisting of more words. We then
point to the first complete occurrence of the entity in the corresponding document.
That we only train the pointer for the first occurrence is potentially problematic. It
would seem more reasonable to train it to attend to any instance of the entity in the
text, but this would make the loss more complex.

The pointer mechanism is additionally used for words not included in the smaller
vocabulary Vgen used for the generator mechanism, but which are not part of an
entity. We train the model to point to the first occurrence in the document, if there
are any. If it is neither in Vgen nor the input document, to avoid training the model
to output <UNK>, we make the loss zero at these time steps. Due to the nature of
our evaluation, presented in detail in Section 6.6, we want the model to produce a
best guess, rather than <UNK>.

6.3 Training Details

All weight matrices are initialized using Tensorflow’s implementation of Xavier
uniform initialization (Glorot and Y. Bengio, 2010) and all bias vectors are initialized
as zero vectors.

During training, when the previous output word is input to the next decoder step
(E(yi−1)), rather than feeding the actual predicted output word, we feed it the
previous word directly from the reference summary, as if it had generated the correct
output. This technique is used to speed up training. The trade-off is discussed in
more detail by S. Bengio et al. (2015), who additionally propose an approach based
on gradually decreasing the probability of using the technique.

We use a sampling-based loss computation for Lgen introduced by Jean et al. (2015),
with a sample size of 512. Essentially, this means that the probability of every word
w, P gen

t (w), is not computed when maximizing the probability of the target word.
Beside the target word, only a randomly sampled subset of other words is used when
computing the softmax probabilities. This is done for reducing computation time
during training.

Both during training and test time, we limit the document length to the first 800

30

6. Experiments

words, to reduce computation time.

The loss L is minimized using the SGD-based Adam optimizer (Kingma and Ba,
2015). We used mini-batches of 30 samples, with an averaged loss over all the samples
in the batch. The mini-batches remained the same over epochs, but the order in
which they were trained on was randomized between every epoch.

Experiments have been run on a single Nvidia Tesla K80, with 12 GB of memory.
The model has been implemented using the machine learning library TensorFlow
(Abadi et al., 2015), version 1.1. The code for the model is available on GitHub2.

Training the model took approximately 18 hours per epoch. We used early stopping
based on the validation set and stopped training when we did not gain an improve-
ment for a whole epoch. This gave our best-performing model parameters after
approximately three epochs, a total of 54 hours, which are used for the subsequent
evaluation. In contrast to Nallapati et al. (2016) and See et al. (2017), this number
of epochs is low. However, in a single epoch, we train on the same documents and
target summaries multiple times, due to how the dataset is constructed.

6.4 Generating Summaries

When generating output, beam search is used. This affects the word selected from
the generator mechanism. When extending a partial summary, instead of extending
it with only the most probable word

ygen
t = arg max

w∈V
P gen

t (w),

the top-k words are selected, giving k different partial summaries for each of the
previous k partial summaries, totaling k2 partial summaries at that time step. These
partial summaries are considered one by one, starting with the most probable. If
a considered summary is complete, i.e. ends with the <EOS> token or reaches the
maximum output length, it is added to a pool of k completed summaries. If it is not
a complete summary, it is instead added to a pool of k best partial summaries to be
extended at the next step. Once k complete summaries have been found, the most
probable of these is chosen as the output summary.

For time steps where the pointer mechanism is used, the partial summaries are
prioritized by the same probabilities as if the generator had been used instead, so k
partial summaries with different probabilities are created for the word chosen by the
pointer mechanism. This is difficult to justify, but we hope that this should give a
reasonable probability at time steps when the pointer mechanism is used, preventing
summaries using the pointer mechanism more to be prioritized.

In our experiments, we use a beam width of k = 5 and a maximum output length of
32.

2URL: https://github.com/helmertz/querysum

31

https://github.com/helmertz/querysum

6. Experiments

A slight deviation from what is presented in Section 4.3.1 is that when the pointer
mechanism is used and the attended word was not in V , we do not output <UNK>,
which it is otherwise interpreted as in the model, but rather the actual input word
before it being converted to an index in the vocabulary. This may be viewed as a
post-processing step.

6.5 Model Parameters

The hyperparameter used for the experiments can be seen in Table 6.1. We have not
performed extensive hyperparameter tuning, but instead examined hyperparameters
used for similar models, such as Nallapati et al. (2016) and See et al. (2017).

Table 6.1: Hyperparameters of the model used for the experiments.

Hyperparameter Value
Word embedding size demb 100
Document encoder size ddoc 512
Query encoder size dque 256
Decoder size ddec 512
Attention hidden size datt 256
Generator hidden size dgen 256

6.6 Evaluation

The standard evaluation method for automatic summarization is ROUGE (Recall-
Oriented Understudy for Gisting Evaluation) (Lin, 2004). It is based on comparing
n-grams between a generated summary and one or multiple reference summaries. A
possible flaw when evaluating summaries is that synonyms, and variations of words,
are counted as different words, resulting in lower scores even if the summaries are
semantically similar.

ROUGE scores texts as a ratio from 0 to 1, where 1 is a perfect score. This is often
presented as 0 to 100 percent, as is done in this thesis. We will be presenting results
with F-scores, which is the harmonic mean of the two measurements precision and
recall. Precision measures the relevance of the evaluated summaries’ contents and
recall measures how much of the reference summary is represented in an evaluated
summary. For n-gram based ROUGE metrics, if we let X and Y be the set of
all n-grams in an evaluated summary and reference summary respectively, we can
compute the precision as |X∩Y |

|X| . Recall is computed in a similar way as |X∩Y |
|Y | .

Using the Python package pyrouge3, our results are evaluated with F-scores from
3Version 0.1.3, https://pypi.python.org/pypi/pyrouge. The arguments used for the

ROUGE-1.5.5.pl script are: -c 95 -2 4 -U -r 1000 -n 4 -w 1.2 -a -m

32

https://pypi.python.org/pypi/pyrouge

6. Experiments

four different metrics provided by ROUGE: ROUGE-1, ROUGE-2, ROUGE-L, and
ROUGE-SU4. ROUGE-1 and ROUGE-2 are the scores for 1-grams and 2-grams
respectively. ROUGE-L and ROUGE-SU4 are more complex metrics, detailed by Lin
(2004). When evaluating a generated summary against multiple reference summaries,
it is evaluated against all the targets individually, and only the highest score is used.

6.6.1 Query Dependence

To determine whether incorporating a query benefits our model, we use an evalua-
tion metric based on ROUGE. Instead of evaluating the generated summary for a
document and a query with ID n against the reference summaries for that query, we
evaluate it against the reference summaries for query n+ 1, i.e. the query ID has
been offset. For the query with the highest ID, the reference summaries for the first
query are used. The idea is that if the score is lower than for the normal evaluation,
then the model has made use of the additional information in the query. Table 6.2
shows for an example document, 1, what the generated summaries are evaluated
against during the query-dependence evaluation.

Table 6.2: Example of reference summaries used during normal evaluation
compared to with offset queries.

Reference summaries

Query ID Normal Offset queries
1.1 A.1.1, B.1.1 A.1.2
1.2 A.1.2 A.1.3, B.1.3
1.3 A.1.3, B.1.3 A.1.1, B.1.1

It is worth to mention that two reference summaries for different queries may be
the same, as the same original highlight may be used as a reference summary for
multiple queries. In these cases, the query will be appropriate for the summary and
the model may have benefited from the query even in the query-offset evaluation.
It may be possible to avoid this in some cases. However, for simplicity, we use this
method.

6.7 Baseline

As a baseline, we compare the results to a simple extractive summary, designed
specifically for the dataset used in this thesis work. The baseline summary is
constructed by selecting the first sentence in the document containing the query,
without restricting the length of the document. If no such sentence is found, i.e.
the document does not contain the query, the first sentence of the document is used
instead. This does occur in the dataset, but not frequently.

33

6. Experiments

We additionally observe that the average length of baseline sentences using the
CNN/Daily Mail dataset is commonly greater than for the reference summaries. The
average number of words is 30.56 for the baseline summaries, while it is 14.44 for the
reference summaries. It may be possible to gain a higher ROUGE score if a fewer
number of words around the query occurrence is selected, but it might not form a
complete sentence.

34

7
Results and Discussion

After running the experiments described in the previous section, we evaluate the
performance of our model in comparison to the baseline. The ROUGE scores on the
test set can be seen in Table 7.1. We observe that they are lower than the baseline
model, which we later will comment on in more detail, followed by a discussion on
possible improvements. We denote the baseline model, described in Section 6.7, first
query sentence and the model developed for this thesis our model.

Table 7.1: ROUGE F-scores of the different models on the test set. Numbers
in bold signifies the best score among the models.

ROUGE

Model 1 2 L SU4
First query sentence 33.81 18.19 29.22 17.49
Our model 18.25 5.04 16.17 6.13

We observe that the attention at a time step appears to often be highly focused on
only a few words in the document. An example of an output summary can be seen
in Table 7.2, and Figure 7.1 shows the attention distribution over time for the same
generated summary.

35

7. Results and Discussion

Table 7.2: Model output and reference summary for a document-query pair
in the test set. Only the beginning of the document is shown; “[...]” signifies
that the document continues.

Document
(cnn) – the united states have named former germany captain jurgen klinsmann as
their new national coach , just a day after sacking bob bradley . bradley , who took over
as coach in january 2007 , was relieved of his duties on thursday , and u.s. soccer
federation president sunil gulati confirmed in a statement on friday that his replacement
has already been appointed . “ jurgen is a highly accomplished player and coach with
the experience and knowledge to advance the program , ” said gulati . [...]

Query
united states

Reference
jurgen klinsmann is named as coach of the united states national side

Output
klinsmann appointed as the new coach of united states

(cn
n
) -- th

e
un
ite
d

st
at
es

ha
ve
na
m
ed

fo
rm
er

ge
rm
an
y

ca
pt
ai
n

ju
rg
en

kl
in
sm
an
n

as th
ei
r
ne
w
na
tio
na
l

co
ac
h

, ju
st
a da

y
af
te
r
sa
ck
in
g

bo
b
br
ad
le
y

. br
ad
le
y

, wh
o
to
ok
ov
er
as co

ac
h

in ja
nu
ar
y

20
07
, wa

s
re
lie
ve
d

of hi

<GO>
klinsmann
appointed

as
the
new

coach
of

united
states

Figure 7.1: Visualization of the attention distribution, αij, as the summary
in Table 7.2 is generated. The words of the document are shown on the
horizontal axis, from left to right. Only a limited number of document words
are shown. The vertical axis shows the output words, from top to bottom,
after the <GO> token. The darker a cell is, the higher the attention on that
position, influencing the word selected on the row below. The final row shows
the attention distribution before the <EOS> token was generated.

Another observation we make is that the attention often is focused at the beginning
of the documents. However, there are certainly instances when entities are selected
from far back in documents. This bias may partly be due to our decision to point
to the first occurrences of entities during training. Although, it has been noted by
Goldstein et al. (1999) that the beginning of news articles often summarizes the
article quite well.

From examining some of the output summaries from our model, we see that they
often strongly match the topic of the input documents, but they rarely succeed in
generating summaries rephrasing something actually stated in the article. Table 7.3

36

7. Results and Discussion

shows an example output that is fairly grammatically correct, but not truthful with
respect to the article.

Table 7.3: Model output and reference summary for a document-query pair
in the test set.

Document
president barack obama sided with open-internet activists on monday , urging the federal
communications commission to draft new rules that would reclassify the broadband net
to regulate it more like a public utility . the end result would tie the hands of internet
service providers that want to cut special deals with services like netflix , youtube , hulu
and amazon to push their streaming content along a ’ fast lane ’ that ordinary americans
ca n’t access . [...]

Query
netflix

Reference
obama ’s vision would bar providers like verizon and comcast from cutting deals with
hulu , netflix and amazon so their streaming content could be delivered along online ’
fast lanes ’

Output
obama ’s chief executive of netflix has refused to allow users to access the service

We observe that the model manages to learn some of the dataset samples which
are not actual summaries, described in Chapter 5, such as notices repeated over
several articles. The generated summary shown in Table 7.4 is an example of this.
Interestingly, the model manages to literally repeat the reference summary, up to
the maximum output length limit.

Table 7.4: Model output and reference summary for a document-query pair
in the test set.

Document
february 13 , 2015 a breakthrough in belarus , a verdict in italy , and an expected veto in
the u.s. all headline cnn student news this friday . [...]

Query
cnn student news roll call

Reference
at the bottom of the page , comment for a chance to be mentioned on cnn student news
. you must be a teacher or a student age 13 or older to request a mention on the cnn
student news roll call .

Output
at the bottom of the page , comment for a chance to be mentioned on cnn student news
. you must be a teacher or a student age 13 or older to

We can frequently see repetitions of the same phrases; an extreme example can be

37

7. Results and Discussion

seen in Figure 7.2. The model appears to get stuck trying to begin a summary. Addi-
tionally, we observe that the repetition can be observed in the attention distribution
as well. The same problem has been seen by Nallapati et al. (2016), who make an
addition, temporal attention (Sankaran et al., 2016), to their model for alleviating
the issue of repetitions. See et al. (2017) propose using coverage to solve the same
issue.

as an
y
ch
ild
of th

e
ei
gh
tie
s

wi
ll
te
ll
yo
u
, ne

on
is a st

ap
le

of an
y
af
te
r-d
ar
k

ce
le
br
at
io
n-

bu
t
tw
o
fo
od
ie
s

fro
m
m
el
bo
ur
ne

ha
ve
ta
ke
n

th
ei
r
lo
ve
of it on

e
st
ep
fu
rth
er

to cr
ea
te

a sw
ee
t

tre
at
th
at
lig
ht
s

up th
e
ni
gh
t

. st
ev
e

fe
lic
e

an
d
gl
en
n

st
or
ey

,
<GO>
steve
felice

,
steve
felice

,
glenn
storey

,
steve
felice

,
glenn
storey

,
steve
felice

,

Figure 7.2: Visualization of the attention distribution, αti, as an output
summary for a document-query pair is generated. The query is “australia”.
The format is the same as in Figure 7.1.

Before running experiments, we suspected that it may be difficult for the pointer
mechanism to sequentially point out words that make up longer entities. However,
we see that this is done successfully quite often. For an example summary, the
certainty of selecting a sequence of entity words can be seen in Figure 7.3.

e
. an

d
if yo

u
he
ar
d

hi
m
sp
ea
k

, hi
s
co
ck
ne
y

ac
ce
nt

wo
ul
d

be as br
oa
d

as th
e
riv
er
th
am
es

. th
is
is de

re
k

ho
ck
le
y

, th
e
wh
ee
le
r-d
ea
le
r

wh
o
da
vi
d

ja
so
n
ha
s
re
ve
al
ed

he to
ok
as hi

s
in
sp
ira
tio
n

wh
en

pl
ay
in
g

de
l
bo
y
in on

ly
fo
ol
s
an
d
ho
rs
es

. as we
ll
as

•••

by pa
ul
be
nt
le
y

pu
bl
ish
ed

: 16
:0
9

es
t
, 18 oc

to
be
r

20
13
| up

da
te
d

: 16
:5
1

es
t
, 18 oc

to
be
r

20
13
he 's cl

ea
rly

a sh
ar
p

dr
es
se
r

wi
th
hi
s
ow
n
di
st
in
ct

st
yl
e
. an

d
if yo

u
he
ar
d

hi
m
sp
ea
k

, hi
s
co
ck
ne
y

ac
ce
nt

wo
ul
d

be as br
o

<GO>
he

was
inspired

by
a

real
east
end
of

only
fools
and

horses

Figure 7.3: Visualization of the attention distribution, αti, as an output
summary for a document-query pair in the test set is generated. The query is
“only fools and horses”. The format is the same as in Figure 7.1. The ellipsis
signifies that parts of the attention distribution has been skipped.

Compared to the reference summaries, the output is generally shorter. The average

38

7. Results and Discussion

number of words in output summaries is 11.27, while the dataset average is 14.44. As
is noted by Wu et al. (2016), beam search commonly favors shorter summaries. They
propose an addition of length normalization, for reducing this tendency. Implementing
such a measure may improve the results of our model as well.

In comparison to Nallapati et al. (2016) and See et al. (2017), our ROUGE scores
are low. They use a different version of the dataset where all highlights are combined
to form a single, often multi-sentence, summary. With similar models, they get
ROUGE-1 results of around 35 on the general summarization task. Speculatively, it
might be that our training procedure may not be as effective. While they always
train the model to output the same summary for the same document, we often have
completely different target summaries for different queries, where the queries make
up a much smaller part of the input. Additionally, differences in the training time of
the models are discussed in Section 6.3.

7.1 Query Dependence

The result of the query dependence evaluation, described in Section 6.6.1, can be seen
in Table 7.5. We can see that the ROUGE scores for the normal evaluation is higher
for all metrics, with statistical significance, according to the ROUGE-reported 95%
confidence intervals. This indicates that the model benefits from the information
provided by queries.

Table 7.5: ROUGE F-scores of our model, from the normal evaluation and
with offset queries, as presented in section 6.6.1.

ROUGE

Evaluation of 1 2 L SU4
Our model 18.25 5.04 16.17 6.13
Our model + offset queries 16.06 3.89 14.25 5.18

The difference in scores might not appear very large, but there are some possible
factors explaining why relatively high scores may be reached with offset queries.
Firstly, a part of the ROUGE score is a result of simply generating common words
and punctuation marks, such as the, commas, and quotation marks. Furthermore,
when constructing the dataset, we often choose multiple queries from the same
highlight. This means that identical reference summaries for different queries are
rather common, and so, when we intend to evaluate against a different query for the
same document, we might actually evaluate against a summary appropriate for the
query. For these reasons, it is difficult to tell exactly how much the resulting output
depends on the query, but we can tell that it is statistically significant.

From examining output summaries, we see that the query does not consistently
influence what aspect of the article is summarized. Neither is the query consistently

39

7. Results and Discussion

repeated in output summaries, which they are in summaries the model has been
trained on.

The model does not always seem successful in constructing a summary where inserting
the query word would be appropriate. In some instances, we see that the query is
attended to, but not at the time steps that would be appropriate. An example of this
is in an article named “’It was absolutely enormous’: Meteor explodes over Arizona
on the eve of the year’s biggest cosmic shower”. In the article, they mention the
meteor shower Geminid, the query in this example, a number of times, but it never
appears in the generated summary. From inspecting the attention distributions, we
see that the word “geminid” has strong attention at several locations in the input
and over several time steps, but not at a time step where it would make grammatical
sense, which may explain why it is not copied with the pointer mechanism. The
following sentence shows words in bold that would have been “geminid” if the decoder
had decided to use the pointer mechanism instead of generating a word: “footage
captured by facebook shows a light light on the show”.

Additionally, we have observed that output for the same document with different
queries, X and Y, can give summaries like “X scored two goals” and “Y scored two
goals”, i.e. the query did not influence what is to be stated, but only the entity
selected through the pointer mechanism. Even if the statement is truthful for one of
them, it likely is not for both.

40

8
Conclusion and Future Work

We have designed a model for query-based abstractive summarization and evaluated
it on a new dataset designed for the task. While the overall performance of the
model is not enough to outperform our extractive baseline, we have shown that we
can incorporate a query in a neural network summarization model and utilize the
information to create more focused summaries.

We find several recurring issues with the generated summaries, some similar to what
has been noticed for general abstractive summarization (Nallapati et al., 2016; See
et al., 2017): (1) the model sometimes gets stuck repeating the same phrase over
and over, (2) the summaries are not consistently relevant to the query, and (3) the
summaries are rarely truthful.

The first of the mentioned problems has been explored by Nallapati et al. (2016)
and See et al. (2017). They use temporal attention and coverage respectively, and it
should be possible to extend our model with one of these techniques.

The second problem could be caused by the model having difficulties in locating
what is relevant to the queries. A property of this dataset is that the exact query
sequence always appears in the query-based summary. This is however not necessary
in query-based summaries in general, and we have for this reason designed the query
usage in the model in a general fashion. For this limited dataset, we believe one can
improve the performance by making an explicit shortcut for repeating the entire
query sequence in the output. For a more general solution, one might try to help
the model by marking literal occurrences of the query words in the document. In
the current model, such matches would instead have to be found through word
embeddings, propagated through the RNNs. It could also be possible to identify
query occurrences through the use of coreference resolution or similar, to not only
capture literal occurrences, but also similar occurrences of the same entity, such as
also marking “Obama” if the query was “Barack Obama”.

The third problem is lessened to some degree when using pointer-generator models.
However, our model still struggles with, for instance, choosing the correct names
at the correct places. More broadly, truly solving the problem of abstractively
summarizing a text seems to require a level of understanding of texts that is quite
far from what we observe in our experiments.

A different approach to the task of generating natural language that we find interesting
would be to, instead of generating a sentence from beginning to end, allow generation

41

8. Conclusion and Future Work

of words on either side of previously generated words. This could for example lead
to a model learning to first output a word very central to the query, and then build a
sentence around this word. With this dataset, we could explicitly output the query
as the initial word, and we would avoid the issue of not reaching a point in the
summary generation where the query word would fit.

There are also ethical considerations related to trying to summarize text automati-
cally. In some sense, an abstractive summarization system takes on the same role
as a person attempting to rephrase information in a document, and similar ethical
difficulties are present. A lack of control of the text generated by the system is prob-
lematic. Summaries might be accidentally offensive in some way, or even completely
contradict the original text. For instance, it might be the case that a negation is
not considered, and therefore a summary states the opposite of the original text.
Someone unaware of the possibility of flaws in the generated summary might become
misinformed. This problem is however, to a limited extent, not unique to abstractive
summarization, as even extractive summarization systems can present information
taken out of context, where surrounding text may be important for interpreting it
correctly.

For summarizing results in a search engine, the resulting summaries from our
model would likely not be very useful. However, we believe that models with high
expressiveness, using natural language generation, can be made reliable enough to
serve a role beyond what is possible with an extractive summary.

42

Bibliography

Abadi, Martín, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan
Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete War-
den, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng (2015).
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software
available from tensorflow.org.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2015). “Neural Machine
Translation by Jointly Learning to Align and Translate”. In: International Con-
ference on Learning Representations (ICLR 2015). arXiv: 1409.0473 [cs.CL].

Bengio, Samy, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer (2015). “Scheduled
Sampling for Sequence Prediction with Recurrent Neural Networks”. In: Advances
in Neural Information Processing Systems 28. Curran Associates, Inc., pp. 1171–
1179.

Bengio, Yoshua (2012). “Practical Recommendations for Gradient-Based Training of
Deep Architectures”. In: Neural Networks: Tricks of the Trade: Second Edition.
Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 437–478.

Bengio, Yoshua, Patrice Simard, and Paolo Frasconi (1994). “Learning long-term
dependencies with gradient descent is difficult”. In: IEEE transactions on neural
networks 5.2, pp. 157–166.

Bird, Steven, Ewan Klein, and Edward Loper (2009). Natural Language Processing
with Python. 1st. O’Reilly Media, Inc.

Cho, Kyunghyun, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio (2014). “Learning Phrase Representations using
RNN Encoder–Decoder for Statistical Machine Translation”. In: Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Doha, Qatar: Association for Computational Linguistics, pp. 1724–
1734.

43

https://www.tensorflow.org/
http://arxiv.org/abs/1409.0473

Bibliography

Chung, Junyoung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio (2014).
“Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Model-
ing”. In: ArXiv e-prints. arXiv: 1412.3555 [cs.NE].

Glorot, Xavier and Yoshua Bengio (2010). “Understanding the difficulty of train-
ing deep feedforward neural networks”. In: In Proceedings of the International
Conference on Artificial Intelligence and Statistics (AISTATS’10). Society for
Artificial Intelligence and Statistics.

Goldstein, Jade, Mark Kantrowitz, Vibhu Mittal, and Jaime Carbonell (1999).
“Summarizing Text Documents: Sentence Selection and Evaluation Metrics”. In:
Proceedings of the 22Nd Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval. SIGIR ’99. Berkeley, California,
USA: ACM, pp. 121–128.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. MIT
Press.

Gülçehre, Çaglar, Sungjin Ahn, Ramesh Nallapati, Bowen Zhou, and Yoshua Bengio
(2016). “Pointing the Unknown Words”. In: Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers).
Berlin, Germany: Association for Computational Linguistics, pp. 140–149.

Hermann, Karl Moritz, Tomás Kociský, Edward Grefenstette, Lasse Espeholt, Will
Kay, Mustafa Suleyman, and Phil Blunsom (2015). “Teaching machines to
read and comprehend”. In: Advances in Neural Information Processing Systems,
pp. 1693–1701.

Hochreiter, Sepp (1991). “Untersuchungen zu dynamischen neuronalen Netzen”. PhD
thesis. diploma thesis, institut für informatik, lehrstuhl prof. brauer, technische
universität münchen.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long Short-Term Memory”. In:
Neural computation 9.8, pp. 1735–1780.

Jean, Sébastien, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio (2015).
“On Using Very Large Target Vocabulary for Neural Machine Translation”. In:
Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers). Beijing, China: Association for Computational
Linguistics, pp. 1–10.

Karpathy, Andrej and Li Fei-Fei (2015). “Deep Visual-Semantic Alignments for
Generating Image Descriptions”. In: The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

Kingma, Diederik P. and Jimmy Ba (2015). “Adam: A Method for Stochastic
Optimization”. In: International Conference on Learning Representations (ICLR
2015). arXiv: 1412.6980 [cs.CL].

44

http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.6980

Bibliography

Kumar, Ankit, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan
Gulrajani, Victor Zhong, Romain Paulus, and Richard Socher (2016). “Ask Me
Anything: Dynamic Memory Networks for Natural Language Processing”. In:
Proceedings of The 33rd International Conference on Machine Learning. Ed. by
Maria Florina Balcan and Kilian Q. Weinberger. Vol. 48. Proceedings of Machine
Learning Research. New York, New York, USA: PMLR, pp. 1378–1387.

LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner (1998). “Gradient-
based learning applied to document recognition”. In: Proceedings of the IEEE
86.11, pp. 2278–2324.

Lin, Chin-Yew (2004). “ROUGE: A Package for Automatic Evaluation of Summaries”.
In: Text Summarization Branches Out: Proceedings of the ACL-04 Workshop.
Ed. by Stan Szpakowicz Marie-Francine Moens. Barcelona, Spain: Association
for Computational Linguistics, pp. 74–81.

Merity, Stephen, Caiming Xiong, James Bradbury, and Richard Socher (2017).
“Pointer Sentinel Mixture Models”. In: International Conference on Learning
Representations (ICLR 2017). arXiv: 1609.07843 [cs.CL].

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean (2013).
“Distributed Representations of Words and Phrases and Their Compositionality”.
In: Proceedings of the 26th International Conference on Neural Information
Processing Systems. NIPS’13. Lake Tahoe, Nevada: Curran Associates Inc.,
pp. 3111–3119.

Nallapati, Ramesh, Bowen Zhou, Cicero Nogueira dos Santos, Çaglar Gülçehre,
and Bing Xiang (2016). “Abstractive Text Summarization using Sequence-to-
sequence RNNs and Beyond”. In: Proceedings of the 20th SIGNLL Conference
on Computational Natural Language Learning, CoNLL 2016, Berlin, Germany,
August 11-12, 2016, pp. 280–290.

Nema, Preksha, Mitesh Khapra, Anirban Laha, and Balaraman Ravindran (2017).
“Diversity driven Attention Model for Query-based Abstractive Summarization”.
In: ArXiv e-prints. arXiv: 1704.08300 [cs.CL].

Nenkova, Ani and Kathleen McKeown (2012). “A Survey of Text Summarization
Techniques”. In: Mining Text Data. Ed. by Charu C. Aggarwal and ChengXiang
Zhai. Boston, MA: Springer US, pp. 43–76.

Otterbacher, Jahna, Gunes Erkan, and Dragomir R. Radev (2009). “Biased LexRank:
Passage Retrieval Using Random Walks with Question-based Priors”. In: Infor-
mation Processing and Management 45.1, pp. 42–54.

Pennington, Jeffrey, Richard Socher, and Christopher D. Manning (2014). “GloVe:
Global Vectors for Word Representation”. In: Empirical Methods in Natural
Language Processing (EMNLP), pp. 1532–1543.

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams (1986). “Learning
representations by back-propagating errors”. In: Nature 323.6088, pp. 533–538.

45

http://arxiv.org/abs/1609.07843
http://arxiv.org/abs/1704.08300

Bibliography

Rush, Alexander M., Sumit Chopra, and Jason Weston (2015). “A Neural Attention
Model for Abstractive Sentence Summarization”. In: Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language Processing. Lisbon, Portugal:
Association for Computational Linguistics, pp. 379–389.

Sankaran, Baskaran, Haitao Mi, Yaser Al-Onaizan, and Abe Ittycheriah (2016).
“Temporal Attention Model for Neural Machine Translation”. In: ArXiv e-prints.
arXiv: 1608.02927 [cs.CL].

Schuster, Mike and Kuldip K Paliwal (1997). “Bidirectional Recurrent Neural Net-
works”. In: IEEE Transactions on Signal Processing 45.11, pp. 2673–2681.

See, Abigail, Peter J. Liu, and Christopher D. Manning (2017). “Get To The Point:
Summarization with Pointer-Generator Networks”. In: ArXiv e-prints. arXiv:
1704.04368 [cs.CL].

ShafieiBavani, Elaheh, Mohammad Ebrahimi, Raymond Wong, and Fang Chen
(2016). “A Query-Based Summarization Service from Multiple News Sources”. In:
2016 IEEE International Conference on Services Computing (SCC), pp. 42–49.

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le (2014). “Sequence to Sequence Learning
with Neural Networks”. In: Proceedings of the 27th International Conference on
Neural Information Processing Systems. NIPS’14. Montreal, Canada: MIT Press,
pp. 3104–3112.

Tan, Ming, Bing Xiang, and Bowen Zhou (2015). “LSTM-based Deep Learning
Models for Non-factoid Answer Selection”. In: ArXiv e-prints. arXiv: 1511.04108
[cs.CL].

Taylor, Wilson L (1953). “‘Cloze procedure’: a new tool for measuring readability”.
In: Journalism Bulletin 30.4, pp. 415–433.

Wang, Lu, Hema Raghavan, Vittorio Castelli, Radu Florian, and Claire Cardie (2013).
“A Sentence Compression Based Framework to Query-Focused Multi-Document
Summarization”. In: ACL.

Wu, Yonghui, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George
Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex
Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean (2016).
“Google’s Neural Machine Translation System: Bridging the Gap between Human
and Machine Translation”. In: ArXiv e-prints. arXiv: 1609.08144 [cs.CL].

Xu, Kelvin, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemel, and Yoshua Bengio (2015). “Show, attend and tell:
Neural image caption generation with visual attention”. In: International Con-
ference on Machine Learning, pp. 2048–2057.

46

http://arxiv.org/abs/1608.02927
http://arxiv.org/abs/1704.04368
http://arxiv.org/abs/1511.04108
http://arxiv.org/abs/1511.04108
http://arxiv.org/abs/1609.08144

	Abstract
	Acknowledgements
	Contents
	Introduction
	Context
	Goals
	Delimitations
	Outline

	Related Work
	Question Answering
	General Summarization
	Query-Based Summarization

	Theory
	Natural Language Processing
	Tokenization
	Named Entity Recognition
	Language Models
	Beam Search

	Machine Learning
	Neural Networks
	Feedforward Neural Networks
	Recurrent Neural Networks
	Gated Recurrent Units
	Word Embeddings
	Sequence-to-Sequence Models
	Training

	Model
	Document Encoder
	Query Encoder
	Decoder
	Pointer Mechanism

	Training Loss

	Dataset
	Processing
	Dataset Structure
	Other Datasets

	Experiments
	Vocabulary
	Pointer Training
	Training Details
	Generating Summaries
	Model Parameters
	Evaluation
	Query Dependence

	Baseline

	Results and Discussion
	Query Dependence

	Conclusion and Future Work
	Bibliography

