
Investigating abelian categories
in univalent type theory
With a focus on the category of Rmodules
Master’s thesis in Engineering mathematics and computational science

DAVID ELINDER

DEPARTMENT OF MATHEMATICAL SCIENCES
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2021
www.chalmers.se

www.chalmers.se

Master’s thesis 2021

Investigating abelian categories
in univalent type theory

With a focus on the category of Rmodules

David Elinder

Department of Mathematical Sciences
Chalmers University of Technology

Gothenburg, Sweden 2021

Investigating abelian categories in univalent type theory
With a focus on the category of Rmodules
David Elinder

© David Elinder, 2021.

Supervisor: Thierry Coquand, Department of Computer Science and Engineering
Examiner: Martin Raum, Department of Mathematical Sciences

Master’s Thesis 2021
Department of Mathematical Sciences
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone: +46 31 772 1000

Typeset in LATEX
Printed by Chalmers Reproservice
Gothenburg, Sweden 2021

Investigating abelian categories in univalent type theory
With a focus on the category of Rmodules
David Elinder
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
In 1976 the first computer checked proof was made to prove the four color theorem.
This raised questions about how these computations should be interpreted to create
a formal proof, as well as the validity of the proof given. In 2005 the proof was
recreated in the proof assistant Coq, both showing the structure of the proof and
proving its correctness as long as one trusts the correctness of the Coq kernel.

Other examples of formalized proofs are Feit-Thompson (in finite group theory)
and Kepler’s conjecture. One area of mathematics that has however been difficult
to formalize is category theory because of its high level of abstraction. With the
development of homotopy type theory and research on the consequences of the
univalence axiom formalizations of concepts in category theory are now possible.
The goal of this thesis is to formalize the concept of abelian categories and to prove
that, for a commutative ring R, the category of R modules is abelian. These concepts
will also be formalized in the proof checker Cubical Agda.

Since we represent these concepts in the setting of a univalent foundation, this will
automatically ensure that all our definitions made in this framework are invariant
under algebraic isomorphisms and category theoretical equivalences. This will enable
us to create formulations that act naturally both in the context of category theory
and in the context of algebra without sacrificing either correctness or clarity in order
to achieve these results. It will also enable us to use proofs that closely mirror those
we are used to from these fields.

Keywords: Category theory, Abelian category, Univalent type theory, Cubical
Agda.

iii

Acknowledgements
I would like to thank my supervisor Thierry Coquand for his guidance during the
development of this thesis. I would also like to thank my examiner Martin Raum
for helpful insight into the realm of abelian categories. I would like to thank Anders
Mortberg for insight into the SIP representation and for inviting me to a meeting
with the Agda development team. I would also like to thank the members of the
agda development team for their work on the cubical agda standard library, and for
helpful insight about algebraic structures in cubical agda. Lastly, I would like to
thank my many friends at Chalmers who have made the time during the pandemic
bearable and who have come to digital meetups when no other were allowed. I would
especially want to thank Erik von Brömssen who has been a great help in discussing
both the thesis work and life during the pandemic in general.

David Elinder, Gothenburg, June 2021

v

Table of Contents

1 Introduction 1

2 Homotopy type theory 3
2.1 Type theory . 3

2.1.1 Propositions as types . 3
2.1.2 Universe levels . 3
2.1.3 Type theory and set theory 4
2.1.4 Concrete dependent types . 6
2.1.5 Σ-types and fibers . 6

2.2 Homotopy type theory . 7
2.2.1 Equivalence and the univalence axiom 8
2.2.2 Useful tools . 9
2.2.3 Homotopy levels . 10

2.2.3.1 (−2)-types . 10
2.2.3.2 (−1)-types . 10
2.2.3.3 0-types . 11
2.2.3.4 n-types for n ≥ 1 . 11

3 Category Theory 13
3.1 Definition of a category . 13

3.1.1 Some examples of categories 14
3.1.2 Commutative diagrams . 15

3.2 Equality and categories . 16
3.3 Limits . 17

3.3.1 Initial and Terminal objects 17
3.3.2 The zero object and zero morphisms 19
3.3.3 Products . 20

3.3.3.1 Implementation . 22
3.3.4 Kernels . 22
3.3.5 Cocategory . 24
3.3.6 Initial, terminal and zero objects 24
3.3.7 Coproducts . 24
3.3.8 Cokernels . 25

3.4 Morphism properties . 26
3.4.1 Monics and Epics . 26
3.4.2 Monic and injective . 27

4 Abelian categories 29
4.1 Preadditive . 29

vii

Table of Contents

4.2 Additive . 29
4.3 Abelian category . 30
4.4 Implementation . 31

5 Implementation and challenges 33
5.1 Equivalent ways to represent equivalence 33
5.2 Implementing modules and module homomorphisms 34
5.3 The category RMod . 35

5.3.1 RMod is a univalent category 35
5.3.1.1 Univalence . 36
5.3.1.2 Liftings and univalence 38

5.3.2 Proving RMod is abelian . 41
5.3.2.1 Zero Object . 41
5.3.2.2 Product . 43
5.3.2.3 Coproduct . 43
5.3.2.4 Kernels . 44
5.3.2.5 Cokernels . 45
5.3.2.6 Monics are kernals 49
5.3.2.7 Shortened proof . 53
5.3.2.8 Epics are cokernels 53

5.3.3 RMod is additive . 57

6 Conclusion 59
6.1 Cubical agda version and disclaimer 59
6.2 Reflections . 59
6.3 Future work . 59

6.3.1 Other abelian categories . 60
6.3.2 K-Theory . 60
6.3.3 Vector spaces . 60
6.3.4 Alternative definitions of abelian 60
6.3.5 More properties of RMod . 61

References 63

A Modules And Algebra A-1
A.1 Basic structures . A-1

A.1.1 Semigroups . A-1
A.1.2 Monoids . A-1
A.1.3 Monoid homomorphisms . A-2
A.1.4 Groups . A-2
A.1.5 Abelian Group . A-2
A.1.6 Rings . A-2

A.2 Modules and vector spaces . A-3
A.2.1 Module homomorphisms . A-4

A.3 Categories of algebraic structures . A-5
A.4 Modules with properties . A-5

A.4.1 Projective modules . A-5

viii

1. Introduction

In 1976 the first computer checked proof was made to prove the four color theorem.
Some criticized the proof and claimed that it was unclear how the computations
relate to the proof. Some also claimed that the correctness of the proof relies on the
absence of coding mistakes. In 2005 the proof was recreated in the proof assistant
Coq, both showing the structure of the proof and proving its correctness as long as
one trusts the correctness of the Coq kernel [1].

There have also been formalizations of proofs from many other fields of mathematics,
such as the Feit-Thompson (in finite group theory) and Kepler’s conjecture. One
area of mathematics that has however been difficult to formalize is category theory
because of its high level of abstraction. Category theory also has the concept of
isomorphism. In category theory objects that are isomorphic are considered similar
and can often be used interchangeably, despite the fact that they may, for instance,
be different objects as sets. Since this concept of isomorphism is separate from
our usual definition of equality it was for a long time unclear how this should be
represented in type theory.

In 2013 the book “Homotopy Type Theory - Univalent Foundations of Mathemat-
ics” [2] was released which aimed to provide a framework in type theory that could
formalize abstract fields of mathematics in a manner that would be intuitively un-
derstood by human beings, not just the proof checking programs. Among the fields
discussed in the book are homotopy theory and category theory. In homotopy type
theory the concept of equality is defined as abstract paths between elements of types
and two types are equivalent if there is a function between the types that is invert-
ible. To unify these concepts the powerful univalence axiom was added, which states
that the concept of equality of types is equivalent to the concept of equivalence of
types. For more information see chapter 2 of this thesis.

Using this foundation of homotopy type theory this thesis aims to investigate how
well this framework can represent abelian categories with a focus on the category
of Rmodules. It will also investigate what challenges arise when we try to formalize
category theory in univalent type theory, and is a small step on the way to finding
how well higher category theory can be encoded in univalent type theory.

All the results of this thesis have been implemented in the cubical type theory
libraries of the Agda proof assistant, which we will refer to as “cubical Agda”. Cu-
bical type theory is a branch of homotopy type theory where the abstract paths
are functions from the interval type I to the relevant types, similar to how we de-
fine paths in topology. For more information on cubical type theory see section

1

1. Introduction

2.2. All the code created during the development of this thesis can be found at
https://github.com/ByteBucket123/ThesisWorkGitCopy [3].

2

https://github.com/ByteBucket123/ThesisWorkGitCopy

2. Homotopy type theory

In the following sections we will briefly go over the basic concepts of homotopy type
theory. Many of these concepts are described in more detail in the book “Homotopy
Type Theory - Univalent Foundations of Mathematics” [2] and references will be
given where appropriate.

2.1 Type theory
This section will serve as a quick refresher on type theory, and will only go over the
most basic concepts. For a more detailed overview the author suggests “Types and
Programming Languages”[4] by Benjamin C. Pierce or the introductory chapter of
[2].

Some standard notation to keep track of is that t : T represents an element t of type
T . Also we let A→ B denote the type of functions with input of type A and output
of type B. We will also write A := B to denote “define A as B”.

2.1.1 Propositions as types
One of the basic ideas of type theory is the idea of propositions as types. Here
we view types as propositions and their elements as proofs of their corresponding
proposition. These elements are sometimes also called witnesses. Thus a type T
may be viewed as a true proposition if it has an element t. In the same spirit we can
consider a function f : A→ B. This function takes a proof, also called witness, of A
and gives a proof of B. Thus functions can be viewed as implications. Here A implies
B since for all a : A we get an element f(a) : B. Shortly, if A is a true proposition
then B is also a true proposition. Alternatively we may read f : (a : A) → B as
“For all a in A we can prove B”.

From this perspective, we soon find two trivial types. The type Unit with the only
element unit, and the type Empty which has no elements. Here it is clear that
the type Empty represents the trivially false proposition, since it has no elements
and thus can not be proven. We also realize that Unit represents the trivially true
proposition, since we always know we can prove it with unit.

2.1.2 Universe levels
When considering two types A and B it is convenient to have a type that contains
both of them. The naive definition for a type of all types inherits similar paradoxes

3

2. Homotopy type theory

to what originally plagued basic set theory. Similarly to how these can be solved in
set theory by set theory universes we will introduce type theoretic universes. The
first is the universe U0 and for any U` there is a universe U`+1. This forms a hierarchy
U0, U1, U2,

To represent that A is a type in the universe U` we will write A : Type U`. We will
not go into the construction of these but the reader should note that U` : Type U`+1
and that if a dependent type, such as a record, contains an arbitrary type of the
universe U` then it must be in U`+1 or above. For more information see section 1.3
in [2]. We will use the shortened notation Type to represent Type U` in cases where
the universe U` is arbitrary or can be easily inferred from the context.

Note that since our universes form a hierarchy we may define Umax(`,`′) as the largest
of U` and U`′ . Also note that this means that Umax(`′,`) is the same universe as
Umax(`,`′).

2.1.3 Type theory and set theory
When considering type theory it is also possible to take a more set-theoretic view-
point. Here we may consider the type N which has two constructors, the first one
returns an element of N denoted 0, and the other constructor, denoted succ, takes an
element n : N and returns another element of N. Since the Martin-Löf type theory is
based on the concept of “no junk” all elements given by different constructors, or for
different inputs to the same constructor are themselves different. Thus the elements
0 and succ n are different for all n : N. For more information on Martin-Löf’s type
theory see [4].

We can now define some basic arithmetic with this type. We define a function
_ + _ : N→ N→ N by pattern matching on the inputs n : N and m : N where

_ + _ : N→ N→ N
n+ 0 = n

n+ (succ m) = succ (n+m).

Note here that we have used simple recursion here to define _ + _. Now that we
have a basic type for the set N we may want to start proving properties of N. Here
it is useful to merge our perspectives of types as sets and types as propositions.

An important notion to capture when talking about propositions is the notion of
equality. In standard type theory we define this by the type _ ≡ _ which has only
one constructor, namely refl. This constructor takes an element a : A and returns
an element of a ≡ a. Here it is important to note that for two elements a : A and
a′ : A we may have a ≡ a′ if a and a′ are judgmentally equal. I will not go into the

4

2.1. Type theory

exact definition of this, but this may be that they are equal except for some simple
reductions, for example: f(a) ≡ (λa→ f(a))a or f ≡ (λa→ f(a)).

Using this it is easy to prove that _ ≡ _ is an equivalence relation. First we see
that (a : A) → a ≡ a is just the refl constructor. Then we note that to prove
a ≡ b → b ≡ c → a ≡ c we pattern match on the first element and realize that
since refl is the only constructor of a ≡ b, and it gives an element a ≡ a we have
that b must be judgmentally equal to a. Thus the function is actually on the form
a ≡ a→ a ≡ c→ a ≡ c, and we only need to return the second argument. Finally
we prove a ≡ b → b ≡ a by again pattern matching on the first argument and
realizing that the function is a ≡ a → a ≡ a and we can use refl to prove the
output.

Before we leave equality there is one last concept we want to consider. We will want
to prove that (f : A→ B)→ a ≡ b→ f(a) ≡ f(b). This is a simple concept, but it
is also one of the most important for proving propositions. The proof is once again
pattern matching on a ≡ b, realizing b is judgmentally equal to a and then proving
fa ≡ fa by refl. We denote this proof as cong.

Now that we have the basics for equality we can do some simple arithmetic. We
can prove (n : N) → n ≡ n + 0 by refl since n + 0 is defined as n. The proof of
(n : N) → n ≡ 0 + n is more tricky however, and it requires us to pattern match
on n. For the 0 case we see that 0 + 0 is defined as 0 and 0 ≡ 0 by refl. For the
succ n case we will have to prove succ n ≡ 0 + succ n. Since 0 + succ n is defined
as succ (0 + n) we will have to prove succ c ≡ succ (0 + n) and if we here use cong
on succ we will only need to prove that n = 0 + n, but this is what our function is
proving! So we can use induction and we are done. We may write the proof as

AddZeroLeft : (n : N)→ n ≡ 0 + n

AddZeroLeft 0 = refl 0
AddZeroLeft (succ n) = cong (AddZeroLeft n).

A problem one might run into is that we might have two different definitions that
we intuitively want to use interchangeably. If we defined the type OneElem, which
has the only element ∗ then, since their definitions are very similar, it might be rea-
sonable to want it to be equal to Unit. But since their types are different they are
not equal. However, for any property we prove for OneElem there is a correspond-
ing property, and a corresponding proof for Unit, which we receive by exchanging
OneElem for Unit and ∗ for unit everywhere in the proof and in the definition of
the property.

As an example, if we define HasOneElem : (A : Type) → (x y : A) → x ≡ y then
we could prove HasOneElem OneElem by pattern matching on the elements, seeing
that both are ∗ and then proving ∗ ≡ ∗ by refl ∗. It does not follow directly however

5

2. Homotopy type theory

that HasOneElem Unit despite the fact that they have a very similar definition.
To solve these and similar problems it will help to have a more general concept of
equality. This leads us nicely into the main concept of homotopy type theory.

2.1.4 Concrete dependent types
Before we leave this brief look into type theory we will describe dependent types
and Σ−Types. A dependent type is something whose type depends on some other
type, or an element of a type. The most simple example is a list. A list of integers
for example contains integers, but it is not the same type as a list of strings, despite
the fact that they are both lists. Another example is a vector, which is defined as
a list of a certain length. Here a vector of integers with 4 elements is not the same
type as a vector of integers with 5 elements, since here the type depends also on the
number of elements. This may be clearer if we look at some Agda pseudocode for
their definitions. Now, consider

data List (A : Type) : Type where
[] : List A
_ :: _ : A→ List A→ List A

and

data Vec (A : Type) (n : N) : Type where
[] : Vec A 0
_ :: _ : {n : N} → A→ Vec A n→ Vec A (succ n).

Here data is just the keyword to define a new type and we can clearly see that the
type List depends only on the type A, which is the type of its elements, while Vec
depends both on A and on an integer n : N, which is the length if the vector. Thus
when we take in a vector as an argument to a function we must either know the length
of the vector beforehand, or be able to infer it. Here {n : N}means that Agda should
be able to infer our n in question, since it is the length of the vector it will be given.
Thus there is no need in demanding that the value n is given to the function. The
type Vec might seem complicated, but there are occasions where it is useful to know
the length of the vector. For example the function fst : List A→ A that returns the
first element of a list of type A will have a problem when the list is empty. Here we
might have unexpected behavior or we might need to send an error message. This can
all be avoided by instead having the function fst : {n : N} → Vec A (succ n)→ A
where we know that the list is not empty since 0 is not succ n for any n : N.

2.1.5 Σ-types and fibers
For a : A and a P : A → Type we define Σ A (λa → P a) or simply Σ A P as a
pair of an element a : A and an element of P (a) for our particular a. We will allow
ourselves to use the syntax Σ (a : A) (P a) to represent Σ A P . Here it is easy to
define the functions fst : Σ A P → A and snd : (σ : Σ A P) → P (fst σ). A pair
of two types A and B is a special case of a Σ-type where our P is always the type

6

2.2. Homotopy type theory

B and does not depend on a. Thus we can define A × B as Σ A (λa → B). We
will also let (a, pa) denote an element in Σ A P , meaning that (a, pa) : Σ A P is
notation for a : A and pa : P a.

If we consider Σ-types from the point of view of types as proposition we may think
of Σ (a : A) (P a) as “There exists a in A such that there is a proof of P a”. Similarly
we may think of A × B as “There exists proofs of both A and B”. This intuition
is useful for understanding how we use these types, but there is an issue with this
intuition. There may be several proofs of Σ (a : A) (P a) and thus this is not a
well behaved type for such propositions. We will solve this in section 2.2.3 where
we define propositions in homotopy type theory and propositional truncation.

Lastly we are briefly going to talk about fibers. For a function f : A → B and an
element b : B we say that fiber f b := Σ (a : A) (f(a) ≡ b) which is the type of
elements from A such that f maps them to b. These have several applications, but
we will mostly use them for equivalences in homotopy type theory, see section 5.1
in this thesis. For more information on fibers, see section 4.2 in [2].

2.2 Homotopy type theory
This section will be a brief explanation of the main concepts of homotopy type
theory and is inspired by chapter 2 in [2]. Relevant references will be given for the
interested reader throughout this section.

In homotopy type theory the main idea is not to view types as sets, but rather as
topological spaces. Here we want our notion of equality to not be as restrictive as
our _ ≡ _ above, and we instead let the proof that a ≡ b be a continuous function
from a to b that stays within the space. We will call these equality proofs “paths”.
One may think of this equality proof as a function f : [0, 1] → A, for the relevant
type A, where f(0) = a and f(1) = b. With this insight it is natural to define
equality of such equality proofs as homotopies, which in turn can be regarded as
functions H : [0, 1] × [0, 1] → A where H(s, 0) = p(s) and H(s, 1) = q(s) for two
paths p q : a ≡ b. We also put the restriction on H that H(0, t) = a and H(1, t) = b
to make H(−, t) a path from a to b for every fix value t. We also let the function
f(t) = a, which is the stationary path at a, represent our previous equality refl a.

We now have our main idea of paths and paths between paths. Now comes the
question of how we define this in our type theory, as we do not have a set of real
numbers from 0 to 1. In cubical type theory the solution is to define a type that
represents the set [0, 1] and to define paths as the functions given above. For a more
detailed walkthrough of this see [5] and [6].

More generally in homotopy type theory we do not define these functions directly,
but rather we use their properties, and the induction rule on refl to create these
paths. A detailed construction of these are found in chapter 2 of [2].

7

2. Homotopy type theory

We will see that this idea leads to a useful equivalence relation. For those readers
who have studied topology it should be intuitive that for any path p : a ≡ b we can
define p−1 : b ≡ a where the idea is to follow the path in the opposite direction,
which in set theoretic terms mean p−1(t) = p(1 − t). We could also define the
composition of paths as for any p : a ≡ b and q : b ≡ c we let

compPath : [0, 1]→ A

compPath t = p(2t) for all t < 1
2

compPath t = q(2t− 1) otherwise .

and we should see that we have compPath : a ≡ c. This is thus an equivalence
relation, but it is not obvious how to define this in the type theory we are working
with. For the sake of brevity we will leave their construction to chapter 2 in [2] and
move on to another of the main concepts in homotopy type theory, the univalence
axiom.

2.2.1 Equivalence and the univalence axiom
To define the univalence axiom we will first define the concept of equivalence. The
idea behind the univalence axiom is that types are equivalent iff they are equal.
That relates back to our example with the types Unit and OneElem. In standard
type theory they had very similar definitions, but were not equal. This will now be
solved and will give a more intuitive view of equivalence. For the readers that are
familiar with category theory this will also help in making categories that behave
naturally, where two of the objects are equal iff they are isomorphic, something that
does not hold automatically. For more information see 3.2.

This concept of equivalence will not be the definition of _ ≡ _ but a different
definition relating to functions and their inverses. Chapter 4 in [2] goes over the
equivalence type, as well as a lot of equivalent formulations that in practice are very
useful for different applications. This section will only present the basic definition,
see 5.1 for more information on different definitions of equivalence.

Firstly, we define equivalence for functions as two functions being equivalent if they
are equal for all arguments. This can be seen as

f ∼ g := (a : A)→ f(a) ≡ g(a).

Secondly, a function is then considered to be an equivalence of types if it has a right
and a left inverse. That is for f : A→ B we define

isEquiv (f) := (Σ(g : B → A) (g ◦ f ∼ Id A))× (Σ (h : B → A) (f ◦ h ∼ Id B))

where Id A is the identity function on A defined by λa → a, and _ ◦ _ is normal
function composition.

This definition is called bi-invertible and represents that f has a left and a right
inverse. It is natural to want the definition to be that there exists a function g :

8

2.2. Homotopy type theory

B → A which is both a right and a left inverse. This definition is called a quasi-
inverse and it has proven problematic for proof relevant mathematics. For more
information see section 2.4 in [2]. Also note that if A and B are 0-types, see section
2.2.3, then quasi-inverses are well behaved.

Finally we define our wanted equivalence of types as

A ' B := Σ (f : A→ B) (isEquiv f)

that is, we prove that A is equivalent to B by giving a pair of a function f : A→ B
and a proof that f is an equivalence. This in turn means that to prove that two types
are equivalent we need to supply a function f : A→ B, two functions g h : B → A
as well as proofs that g is a left inverse of f and that h is a right inverse of f .

This is a very powerful definition, and we will illustrate this with an example where
we prove that Unit ' OneElem as we wanted earlier. For the function f : Unit→
OneElem we will have to chose the function λunit → ∗ and for g and h we will
chose λ∗ → unit, since these are the only elements that we can map to. It should
now be clear that (a : Unit) → g(f(a)) ≡ a and (b : OneElem) → f(h(b)) ≡ b by
the definition of g, h and the fact that Unit and OneElem only has one element.

It is now high time to introduce the univalence axiom. The univalence axiom can
be stated concisely by

(A B : Type U`)→ (A ≡ B) ' (A ' B).

From a propositional view point this can be read as “for all types A and B the
concepts of equivalence and equality are themselves equivalent”. As noted in section
2.10 in [2] this is technically not an axiom, only a property of our universe U`. The
axiom part comes from the fact that we now assume that every universe we will
work in has this property.

2.2.2 Useful tools
In this section we will introduce some tools that are natural from the view of propo-
sitions as types. First, assume we have a function f : A → B and a proof that for
a a′ : A we have that a ≡ a′. Then it is natural to want a proof that f(a) ≡ f(a′),
since ≡ is supposed to represent equality. The book [2] refers to this function as
apf : (b ≡ b′)→ (fa ≡ fa′).

In this paper we will use the more general

cong :(A : Type)→ (B : A→ Type)→ (f : (a : A)→ B a)→
(a a′ : A)→ (a ≡ a′)→ f(a) ≡ f(a′).

Another useful function is transport. The type of transport is

transport : (A : Type)→ (P : A→ Type)→ (a a′ : A)→ (P a ≡ P a′)→ P a→ P a′.

9

2. Homotopy type theory

To understand this, for any type A we let P a be a type for any a : A. Then
transport says that if we have any a a′ : A such that P a ≡ P a′ then if we have an
element of P a we also have an element of P a′. For more information on transport
and its definition see section 2.3 in [2].

The last tool in this section is functional extensionality. It says that for any type A,
P : (a : A)→ Type and functions f g : (a : A)→ P a then f ≡ g if for all a : A we
have that f(a) ≡ g(a). This simply means that two functions are equal if they are
equal for all inputs. We will denote the proof of this as funExt, similarly to how it
is done in cubical agda. For more information on funExt see section 2.9 in [2].

2.2.3 Homotopy levels
Before we end our walkthrough of basic homotopy type theory we will touch on the
important concept on homotopy levels.

2.2.3.1 (−2)-types

The first homotopy level is (−2)-types. A type is a (−2)-type if it has an element
that is equal to every other element of the same type. This can be stated as

isContr A := Σ(a : A)((b : A)→ a ≡ b)

for a specific type A. These types are also called contractions, since from a topological
view this means that there exists a point in the space that has paths to every other
point, meaning that the space is contractible. It should also be clear that contractible
types are equivalent, since if we have contA : isContr A and contB : isContr B we
can let f := λa→ (fst contB) and g, h := λb→ (fst contA) and then g(f(a)) ≡ a by
(snd contA) a and similarly f(h(b)) ≡ b by (snd contB) b. It should be clear from
this that any contractible type is equivalent to Unit, or the true proposition. This
also gives that Unit ' OneElem.

2.2.3.2 (−1)-types

Secondly we consider the (−1)-types. A type is a (−1)-type if its elements are
pairwise equal. This can be formulated as

isProp A := (a b : A)→ a ≡ b.

for our type A. The (−1)-types are called propositions. One may naively think that
this is the same as being a (−2)-type but note that we here said that they should
be equal for any two elements, and not that we have to give a specific element
to start with. This means that the type Empty satisfies isProp Empty but not
isContr Empty since it has no element. Where one may think of (−2)-types as
representing the true proposition, the (−1)-types may be thought of as representing
either the true proposition, if it has an element, or the false proposition, if it does
not have any elements. This makes them ideal to represent the behavior we expect
from propositions in logic, where we usually are not concerned with what proof was
given to prove them, hence all its proofs are equal.

10

2.2. Homotopy type theory

2.2.3.3 0-types

We define the 0-types as those types where all equalities on the same elements
are equal. That is, for any two objects that have paths between them there is a
homotopy between any two paths. Stated more compactly we define

isSet A := (a b : A)→ (p q : a ≡ b)→ (p ≡ q))

for our given type A. These types are called sets. Note here that these are not the
normal sets from set-theory. We have not defined the union or cardinality of them.
They are just types that capture the basic property of equality for elements in sets.
Note that we have not demanded any equality between the elements, so sets can
have different elements, we have just demanded that their equalities are the same,
which in turn reflect the idea that we in set-theory do not trouble ourselves with
what proof was used to prove that two elements are the same.

2.2.3.4 n-types for n ≥ 1

For n ≥ 1 we have a similar expression to the one for isSet. A type is a n-type if
pairwise equality on its elements is a (n− 1)-type. This can be written as

isNType : (A : Type)→ (n : N)→ Type
isNType A 0 = isSet A
isNType A (succ n) = (a b : A)→ isNType (a ≡ b) n.

It might be interesting for those with a mathematics background to know that the
1-types are called groupoids. This is because the pairwise equality of these types
form groups, since the equalities are paths. Another interesting property is that
for any n-type, including (−2)-types and (−1)-types, it is possible to prove that
they are also (n + 1)-types. The reader should note that to be a n-type is itself a
proposition, see section 3.3 in [2].

It is also possible to truncate any type A to an n-type. We leave the explanation
of truncation to section 3.7 in [2], but the reader may think of this as a version
of A that can be proven by an element of A and is an n-type but where we may
not use the elements of A unless we are proving another n-type. We will denote
propositional truncation by ||_||.

11

2. Homotopy type theory

12

3. Category Theory

This chapter will give some of the basic definitions from category theory and how
these can be viewed in homotopy type theory. For more information on category
theory see [7].

3.1 Definition of a category
It is natural to start with the definition of a precategory. A precategory contains
two things, objects and morphisms between objects. These also must satisfy the
following properties:

1. For any object there must exist a morphism from the object to itself called the
identity morphism.

2. There must exist a composition operator on morphisms.

3. Composition with the identity morphism returns the original morphism.

4. The composition operator on morphisms is associative.

In other words we have that morphisms have an origin and a destination, both of
which are objects in the category. These morphisms may be thought of as pointed
arrows between objects. We also have that each object has its own identity mor-
phism, which is an arrow pointing from the object to itself.

There is also the composition of morphisms, which can be thought of as first following
the first arrow and then the second arrow. Note that the destination of the first
morphism must be the origin of the second morphism. If two morphisms have that
the destination of the first is the origin of the second they are called “composable”.
We will denote the composition of morphisms by ◦, so the composition of a morphism
f , from A to B, and a morphism g, from B to C, will be denoted f ◦ g. This is
illustrated in the following diagram:

A B

C

f

f◦g
g

It is standard practice to denote a morphism from A to B by f : A→ B, but since
this notation clashes with our notation for functions we will instead use f : A⇒ B.

13

3. Category Theory

We will in the future not state specifically that the morphisms we are composing
are composable. We will also let hom(A,B) denote all morphisms from A to B,
so f ∈ hom(A,B) is the same thing as f : A ⇒ B. We will also use the notation
hom A B for hom(A,B), and hom C A B for hom(A,B) in the category C.

Then we have the identity morphisms. These can be thought of as an arrow that
goes back to the same point it started at, similarly to how we thought of the identity
path as a stationary path. From this way of thinking about morphisms it should be
intuitive that composing with the identity arrow gives back the original arrow. The
reader should note that this can be written more compactly as id A ◦ f = f and
f ◦ id B = f , where id A is the identity morphism on the object A.

In practice categories can be implemented as a record containing the following:

Object : Type U`

hom : (A B : Object)→ Type U`′

id : (A : Object)→ hom A A

leftComp : {A B : Object} → (f : hom A B)→ id A ◦ f ≡ f

rightComp : {A B : Object} → (f : hom A B)→ f ◦ id B ≡ f

Assoc : {A B C D : Object} → (f : hom A B) → (g : hom B C) → (h :
hom C D)→ f ◦ (g ◦ h) ≡ (f ◦ g) ◦ h

Note here that U` and U`′ may be different universes. We say that a precategory is
a category if hom(A,B) is a set for all objects A and B.

3.1.1 Some examples of categories
Before we move on we will look at some basic examples.

One of the most basic examples of a category is the category of small sets. Here
the word small just refers to the fact that we only consider the sets within our
universe. Here the objects are sets and the morphisms are the functions between
these sets. We also have that the identity morphisms are the identity functions and
our composition operation is functions composition. The reader should be able to
verify that this fulfills the requirements. We will denote this category as SET.

One important thing to note is that morphisms between objects need not be unique.
For any function f : A→ N from a nonempty set A we have that f 6≡ f ◦ succ since
succ(n) is not equal to n for any (n : N). This also shows us that morphisms from
an object to itself does not have to be the identity, since succ : N → N but it does
not equal the identity function.

14

3.1. Definition of a category

Another example are categories called posets. For any binary relation ≤ on some
type A, which is both transitive and reflexive, we can define a category by the
following: The objects are the elements of A and for any objects a and b we let there
be a unique morphism from a to b if and only if a ≤ b. By definition of reflexive
we have that for any (a : A) we have a ≤ a and thus there is a unique arrow from
a to itself. We define this as our identity arrow. Similarly if their exists morphisms
f : a ⇒ b and g : b ⇒ c then a ≤ b and b ≤ c and thus by transitivity a ≤ c
and we have a unique morphism from a to c, which we define as f ◦ g. Checking
the remaining requirements is now trivial, since all morphism between objects are
unique.

We leave it to the reader to verify that these precategories are categories.

3.1.2 Commutative diagrams
To represent categories, or parts of categories we will use diagrams. Here we will
denote the objects with capital letters, and the morphisms by arrows between these
letters. To avoid clutter in these diagrams we will usually not draw identity mor-
phisms and compositions of morphisms, since these can be inferred from the diagram.
We also say that a diagram commutes if for two compositions of morphisms in the
diagram we have that if they have the same origin and destination then they are
equal. For example the diagram

A B

C D

f

h g

k

is intended to represent the same category as

A B

C D.

f

h
f◦g

h◦k

id A

g

id B

k
id C id D

We will use commutative diagrams in the rest of the paper, unless otherwise stated.
To clarify one more thing. For a diagram to commute we require that the compo-
sitions of any morphisms commute, not just pairwise. So for the following diagram
to commute

A B C

D E F

f

r

g

h

s t

we require that f ◦ g ◦ h ≡ r ◦ s ◦ t. Also note that we do not explicitly write down
the parenthesis for the composition, since it is associative.

15

3. Category Theory

We will also use dashed lines when a morphism is the unique morphism that makes
the diagram commute. If we have a diagram where a morphism is the unique
morphism from an object to another that makes the diagram commute, this does
not mean that it is the only morphism between these objects in general. As an
example consider the product diagram below

D

A C B.

f g
h

pA pB

Here the morphism h is the unique morphism such that f ≡ h ◦ pA and g ≡ h ◦ pB,
but there may still be other morphisms from D to C that does not satisfy these
condition. We will explain the product diagram in the section 3.3.3.

3.2 Equality and categories
Category theory has its own concept of equality between objects in a category. In
category theory two objects are considered equal if they are isomorphic. In turn,
two objects, A and B, are isomorphic if there exists a morphism f : A ⇒ B and a
morphism f−1 : A⇒ B such that f−1 ◦ f = id B and f ◦ f−1 = id A. Here both f
and f−1 are called isomorphisms.

This is not our standard definition of equality that we defined in homotopy type
theory. Thus we may define categories where two objects are isomorphic, but they
are not the same object. We will thus define that a category is a univalent category
if any isomorphic objects in the category are also equal. These can be thought of as
well behaved categories, and we will prove that the categories we want to study are
univalent.

The attentive reader may notice the similarity in the names of univalent category
and univalent universe. This is intentional, and is well illustrated by the example of
SET. Here if we have that if A and B are isomorphic, then there exists isomorphisms
f and f−1 as defined above. Since these are functions and the composition operation
in SET is functions composition we have that f−1 is both a right inverse and a left
inverse to f as functions. Thus it is clear that f is an equivalence of A and B, as
types. If we now use the univalence axiom we realize that A ≡ B and thus SET is
a univalent category.

While the example of SET shows the power of the univalence axiom, we should
note that not all categories have that their morphisms are functions, and that their
composition operator is functions composition. The reader should note that this
does not stop a category from being univalent. If we recall our example of a poset
category from above we may add an additional constraint on our relation ≤. If ≤
is an anti-symmetric relation, meaning that if a ≤ b and b ≤ a then a ≡ b, then we
clearly have that the poset category of that relation is a univalent category.

16

3.3. Limits

If we decide to use univalent categories we will get a lot of important tools automat-
ically. For instance, let us consider two objects A and B in a category C, a proof
that A is isomorphic to B, as well as P : Object C → Type. If P represents some
property from category theory then it should respect isomorphisms, which means
that PA should imply PB. In a univalent category our isomorphism is equivalent
to an equality, and transporting over that equality gives us what we want. If we
are not in a univalent category we will have to prove that all our definitions of cat-
egorical properties respect isomorphisms for every object in the definition. Aside
from requiring a lot of extra proofs, this might also add compilation time to the
implementation if these proofs are complex and thus take a long time to reduce.

We will denote isomorphism of objects, A and B, in a category by A ∼= B. While
there is a straightforward way to represent isomorphisms in categories as a record
that includes:

f : A⇒ B

f−1 : A⇒ B

leftInv : f−1 ◦ f ≡ id A

rightInv : f ◦ f−1 ≡ id B ,

there is more than one way to represent that a category is univalent. We will discuss
some of these later in section 5.3.1.1.

Another concept based on isomorphism is that an object may be “unique up to
isomorphism”. We say that an object A which satisfies some condition is unique up
to isomorphism if for any other object B satisfying the same condition we have that
A ∼= B. If these objects are in a univalent category C then we have that A ∼= B
implies A ≡ B and so A is the unique object in C satisfying the condition. For any
example of this see initial objects, proposition 3.3.2.

3.3 Limits
One important concept in category theory is limits. These are important construc-
tions that often include both objects and morphisms that have some important
properties. We will not go into the general definition of a limit here, but will instead
look at some specific limits that we need for our application later.

3.3.1 Initial and Terminal objects
Two of the most basic limits are the initial and terminal object. An object I is
initial if for any object A in the category there is a unique morphism from I to A.

17

3. Category Theory

An illustration of this is given in the following diagram

A B C

D I

E F.

The property that an object A is an initial object has a simple representation in
type theory. This representation for a given category C is given by

isInitial : (I : Object C)→ Type
isInitial I = (A : Object C)→ isContr (hom C I A)

Thus a proof that an object I is initial is a function that takes any object A and
returns a proof that the homset from I to A is contractible, meaning it contains a
unique element.

The definition for terminal objects is similar. Here an object T is terminal if for
any object A there is a unique morphism from A to T . Note that this is the same
definition as for initial objects, where we have just flipped the morphisms. Similarly
this can be represented in homotopy type theory as

isTerminal : (T : Object C)→ Type
isTerminal T = (A : Object C)→ isContr (hom C A T).

Recall from the introduction that we want to prove when important concepts in
category theory are propositions and sets and so on. This is our first example of
this. We will want to prove that isInitial A and isTerminal A are propositions for
all objects A. In this case the proof is very straightforward.

Proposition 3.3.1. In a category C the type isInitial A is a proposition for any
object A in C.

Proof. We need to prove that for any p q : isInitial A we have that p ≡ q. Since
p and q are functions, by functional extensionality we have that if we can prove
p(B) ≡ q(B) for any object B in C we have that p ≡ q. The last step is simple, since
isContr is a proposition for any type we have that both p(B) and q(B) are proofs
of isContr (hom C I A) and thus p(B) ≡ q(B) and by functional extensionality
p ≡ q.

The reader should note that the proof for isTerminal is completely analogous. As
an exercise to see the relation between the math and homotopy type theory we will
prove that an initial object is unique in a category theoretic sense. That is we will
prove that any two initial objects are isomorphism.

18

3.3. Limits

Proposition 3.3.2. In any category C any two initial objects are isomorphic.

Proof. We start by giving the proof from a mathematical viewpoint. Here we let I
and I ′ be two initial objects, and we want to prove that I ∼= I ′. First we note that
I is initial so there must exist a unique morphism f : I ⇒ I ′. Similarly I ′ is initial
so there must exist a unique morphism g : I ′ ⇒ I. Now we note that f ◦ g : I ⇒ I
and since I is initial this must be a unique morphism. But id I : I ⇒ I and it
must also be a unique morphism since I is initial. By uniqueness we now have that
f ◦ g ≡ id I. The same argument gives that g ◦ f ≡ id I ′ and thus I and I ′ are
isomorphic by f and g.

The proof in homotopy type theory is completely analogous, except that we need
to prove that if we have two unique objects, then they are equal. This in homotopy
type theory becomes a function isContr A→ isProp A for some type A. Recall that
isContr is to have an element that is equal to every other element, which is what
it means to be unique, and isProp means that all elements are equal. A proof of
isContr A is an element a and a function eq A : (b : A) → a ≡ b. If p q : A then
eq A p : a ≡ p and eq A q : a ≡ q and thus but transitivity of _ ≡ _ we have that
p ≡ a ≡ q and thus isProp A.

We could do the homotopy type theory step more abstractly by referring to the fact
that we know from basic homotopy type theory that if A is a n-type then it is also
a (n + 1)-type. So if A is contractible, which is to be a (−2)-type, then it is also a
proposition, since this is to be a (−1)-type.

By an analogous proof we see that terminal objects are also isomorphic.

3.3.2 The zero object and zero morphisms
Now that we have defined what it means for an object to be initial and terminal
it is time to define what it means to be a zero object. A zero object is simply an
object that is both initial and terminal. The representation of this in homotopy
type theory is straightforward and it is given by

isZeroObject : (Z : Object)→ Type
isZeroObject Z = (isInitial Z)× (isTerminal Z)

which is the pair of a proof of isInitial Z and isTerminal Z. We see that isZeroObject
is clearly a proposition, since by functional extensionality we only need to prove it
for all Z and we know from basic homotopy type theory that pairs are equal if
each of their elements are equal. Thus we only need to prove that isInitial Z and
isTerminal Z are propositions, which we saw earlier.

Also note that any zero objects are unique up to isomorphism. This follows directly
from the fact that a zero object is an initial object. The reader should note that we
could also have used that a zero object is a terminal object.

19

3. Category Theory

For a univalent category C we can define hasZeroObject C as a pair of an object
Z and a proof of isZeroObject Z. This is a proposition since Z is unique up to
isomorphism and we are in a univalent category, which means that Z is unique.

Related to the concept of a zero object, Z, is the concept of a zero morphism. A
zero morphism from an object A to an object B is defined as a morphism that
is equal to the composition of a morphism from A to Z and a morphism from
Z to B. Note that any morphism toZero : A ⇒ Z is unique since Z is a zero
object, and thus terminal. Similarly, any morphism fromZero : Z ⇒ A is unique
since Z is an initial object. Thus if f : A ⇒ B is a zero morphism then f ≡
toZero ◦ fromZero. It is also unique since if g : A ⇒ B is a zero morphism then
f ≡ toZero ◦ fromZero ≡ g. Knowing that the zero morphism is unique and that
it is equal to toZero◦fromZero, where both toZero and fromZero are themselves
unique we can say that toZero ◦ fromZero is the unique zero morphism.

Thus we can define the function

getZeroMorphism : (A B : Object C)→ hom C A B

getZeroMorphism A B = (getToZero A) ◦ (getFromZero B)

where getToZero A returns the unique morphism from A to Z and getFromZero B
returns the unique morphism from Z to B.

The reader may verify that SET has no zero object. This follows since the only initial
object is the empty type, where the outgoing functions are the empty functions, and
the terminal objects are the one element sets, since the incoming functions have to
map to the same object. Thus when discussing properties of categories with a zero
object we will have to take another category as an example.

3.3.3 Products
Products are one of the first objects that one typically gets introduced to in category
theory. This is because their definition is fairly simple, but they provide a lot of
structure that is useful in both proofs and applications.

We say that an object AXB is the product of objects A and B if

pA : There exists a morphism pA : AXB ⇒ A.

pB : There exists a morphism pB : AXB ⇒ B.

morphismProd : For any object S and any morphisms f : S ⇒ A and g : S ⇒ B
there exists a morphism h : S ⇒ AXB such that f ≡ h ◦ pA and g ≡ h ◦ pB.

uniqueness : Given S, f and g above, for any two morphisms h h′ : S ⇒ AXB
that satisfy condition “morpshismProd”, we have that h ≡ h′.

20

3.3. Limits

This definition is usually accompanied by the following diagram

S

A AXB B

f g
h

pA pB

that tries to illustrate the above definition. The morphisms pA and pB are called
projections, to A and B respectively. The morphism h is sometimes denoted< f, g >
since it can be thought of as a product of the morphisms f and g. The triple of
AXB, pA and pB as defined above is called a product diagram.

It is possible to show that the object AXB is unique up to isomorphism, just as we
did for initial objects. We will not give the detailed proof here, but the interested
reader should be able to deduce from the following diagrams

AXB′

A AXB B

AXB′

p′A p′Bh

pA pB

h′
p′A p′B

AXB′

A B

AXB′

p′A p′B

id AXB′

p′A p′B

that by uniqueness we have h ◦ h′ ≡ id AXB′ and by a similar argument h′ ◦ h ≡
id AXB.

One problem still remains. We would like to show that our above definition of a
product is a property. Sadly, if we define isProduct AXB as the definition above we
will find that it is not a property. We will illustrate this with an example in SET.

To start our example, let us show the intuitive products in SET. We define AXB to
beA×B, whereA andB are two objects in SET. Then we let pA = fst and pB = snd.
Now if we want to find our h : S → AXB we first let h(s) = (a, b). We then see that if
f ≡ h◦pA we have by functional extensionality that f(s) ≡ pA(h(s)) ≡ fst (a, b) = a
by the definition of h(s) and pA. Similarly we find that g(s) ≡ pB(h(s)) ≡ b. Thus
h is uniquely determined by the function λs→ (f(s), g(s)).

One might think that this should be the only proof that A and B has the product
AXB. Though AXB is unique up to isomorphism, and “morphismProd” and the
uniqueness of h are properties by functional extensionality we still have to choose
our pA and pB. To see that there are other options, let A be a set with at least two
distinct elements. That is there exists s t : A such that s 6≡ t. Then let P ′A : A→ A
be a permutation on A that is not the identity function. A permutation is a function
from a type to itself that is invertible. We say that a permutation is of order 1 if
it is its own inverse, meaning P ′A ◦ P ′A ≡ id A. An example of a permutation on A

21

3. Category Theory

that is of order 1 is the function

e(x) =

s if x ≡ t

t if x ≡ s

x otherwise

which clearly has the property e(e(x)) ≡ x. Now we let pA := fst ◦P ′A and pB := snd .
It remains to show that if f : S → A and g : S → B then there exists a unique
h : AXB such that f ≡ h◦pA and g ≡ h◦pB. Once again, let h(s) = (a, b). Then if
f ≡ h◦pA we must have that f(s) ≡ pA(h(s)) ≡ pA(a, b) ≡ P ′A(a). To find a from this
we simply apply P ′A to each side of the equation and get P ′A(f(s)) ≡ P ′A(P ′A(a)) ≡ a
since P ′A is a permutation of order 1. Similarly to what we did above, we must have
that b ≡ g(s). Thus h is uniquely defined as h(s) := (P ′A(f(s)), g(s)).

3.3.3.1 Implementation

Let us now consider how to define types representing these propositions we have seen
above. First, for objects A, B, AXB and projections pA : AXB ⇒ A, pB : AXB ⇒
B we may define the type isProductDiagram A B AXB pA pB as a record containing
the two conditions “morphismProd” and “uniqueness”. Now, since these conditions
end in equalities on morphisms we get that isProductDiagram A B AXB pA pB is
a proposition for any category C. If we want to consider a general precategory then
we would have to truncate the equalities to make it a proposition, since the homsets
may no longer be sets.

Next, we may define isProduct A B AXB to be a record containing two morphisms
pA : AXB ⇒ A, pB : AXB ⇒ B as well as a proof of isProductDiagram A B AXB
pA pB. Since these projections are not unique we will need to propositionally truncate
the record to make isProduct A B AXB a proposition.

We will also define hasProduct A B as a record containing an object AXB and a
proof of isProduct A B AXB. Note that products are unique up to isomorphism,
which means that if we are in a univalent category then this is already a proposition.
If we want this in a general precategory however we will need to propositionally
truncate this record since the object AXB may not be unique. For a precategory C
we may also define hasAllProducts as a function that takes any two objects A and B
in C as input and give a proof of hasProduct A B. This is a proposition by functional
extensionality since hasProduct A B is a proposition. In our implementation we
chose to give the definition from the point of view of a univalent category so most
of the truncations could be removed.

3.3.4 Kernels
The structure of a kernel object is more advanced than what we have seen so far. It
also requires the category to contain a zero object. The definition of a kernel can be
stated as follows: For a given morphism f : A⇒ B, the object K is a kernel object
of f if

22

3.3. Limits

kernelMorphism There exists a morphism k : K ⇒ A.

KerComp The composition k ◦ f is equal to the zero morphism from K to B.

kerFactors For any morphism h : S ⇒ A where h ◦ f equals the zero morphism,
there exists h′ : S ⇒ K such that h′ ◦ k ≡ h.

uniqueness For h given above, if two morphisms h′ and h′′ satisfy the above con-
dition then h′ ≡ h′′.

This is illustrated by the diagram

K

A B

S

k

0

f

h

h′

0

.

Similarly to how we proved the uniqueness of the product, the reader should be able
to deduce the proof that the kernel object is unique from the following diagrams

K ′

K A B

K ′

k′ 0
h

k

h′

f

k′ 0

K ′

A B

K ′

k′ 0

id K′
f

k′ 0

. Note that we did not draw the zero morphism from K to B for readability. Also
note that there is no ambiguity in which zero morphisms we mean, since the zero
morphism between any objects are unique.

Again, similarly to our approach for the product, we denote the pair of a Kernel
object and its kernel morphism as a kernel diagram. It is possible to prove that to be
a kernel diagram is a property, but to be a kernel object is not. For brevity the proof
will be omitted, but a reader with knowledge of abstract algebra, might be interested
to know that in the category of monoids, where morphisms are homomorphisms, the
kernel object is the algebraic kernel of f and the kernel morphism is the inclusion
Kerf → A. Here it is clear that the kernel morphism is not unique, since adding
an appropriate permutation gives a different, but still valid, kernel morphism. The
category of monoids where the morphisms are homomorphisms is called MON and
will be used as an example for objects that do not exist in SET.

The implementation of kernels is similar to how we did for products in section
3.3.3.1. First we can define a type isKernelDiagram′ zero f K k containing the

23

3. Category Theory

conditions “KerComp”, “kerFactors” and “uniqueness” for f , K and k defined as
above, and zero : hasZeroObject C. As we said earlier, these conditions end in
equalities, so they are propositions if we are in a category. However, if we are in
a general precategory we will have to propositionally truncate the equalities. Note
that we could define this as isKernelDiagram zero f k where we can infer K since
it is the origin of k.

Then we define isKernel zero f K as a propositional truncation of the record con-
taining a morphism k : K ⇒ A and a proof of isKernelDiagram′ zero f K k. Note
that the propositional truncation is necessary since k does not have to be unique.

Finally we define hasKernel zero f as a record containing an object K and a proof
of isKernel zero f K. Note that if we are in a univalent category we will not need to
propositionally truncate this type since K is unique. We also define hasAllKernels C
for a category C as a function that takes a morphism f , a proof that C has a zero
object and returns a proof of hasKernel zero f . Note that this is a proposition by
functional extensionality since hasKernel zero f is a proposition.

3.3.5 Cocategory
Before we go over the coming objects, it is natural that we talk about cocategories.
A cocategory is simply a category where we have flipped all morphisms. The objects
are the same and there exists a morphism f : A⇒ B in the cocategory if and only
if f : B ⇒ A in the original category. The composition operator is defined as f ◦ g
in the cocategory if g ◦ f in the original category. The reader can verify that this
fulfills the definition of a category. A cocategory is also called a dual category or
an opposite category. We denote the cocategory of a category C as Cop. For any
property P in C we say that Q is the dual of P if (P holds in C) implies (Q holds
in Cop). We should also note that (Cop)op = C, which also means that if P is the
dual of Q then Q is the dual of P .

3.3.6 Initial, terminal and zero objects
If we look at the definition it is clear that being initial and terminal are dual prop-
erties, which means that if an object is initial in the category, then it is terminal is
the cocategory, and vice versa. This is since properties on morphisms going from an
object in the category are transferred to properties of morphisms going to an object
in the cocategory. We also note that this means that the zero object is its own dual.

3.3.7 Coproducts
A more interesting case is the coproduct. The dual of the definition of a product is

iA : There exists a morphism iA : A⇒ A+B.

iB : There exists a morphism iB : B ⇒ A+B.

24

3.3. Limits

morphismProd For any object S and any morphisms f : A ⇒ S and g : B ⇒ S
there exists a morphism h : A+B ⇒ S such that f ≡ iA ◦ h and g ≡ ib ◦ h.

uniqueness Given S, f and g above, for any two morphisms h h′ : S ⇒ A + B
that satisfy condition “morpshismProd”, we have that h ≡ h′.

where A+B is the coproduct. This is clearly illustrated by the coproduct diagram:

A A+B B

S
f

iA

h
g

iB

Similarly to how we called pA and pB projections since they in some sense project
the product into each part we call iA and iB injections since they, in some sense,
inject the objects A and B into the coproduct. We also call a triple of a coproduct
and its injections a coproduct diagram, and to be a coproduct diagram is a property,
but not to be a coproduct, unless we use propositional truncation on the definition,
just as for products.

Lets once again return to SET and show that it has coproducts. The coproduct of
A and B in SET is the disjoint union of A and B. The disjoint union differs from
the regular union in that we also remember which set the element came from. This
can be implemented in type theory as the type

data DisjointUnion (A B : Type) : Type where
ElemA : A→ DisjointUnion A B

ElemB : B → DisjointUnion A B

Here the two constructors ElemA and ElemB can be used to get an element in the
disjoint union from any element in A or B respectively. For any element in the
disjoint union we can also case split on the constructors to see which set it originally
came from. The natural injections are then iA := ElemA and iB := ElemB. From
these definitions we find that h(ElemA a) ≡ f(a) and h(ElemB b) ≡ g(b) and thus
it is uniquely determined on all of A+B.

The implementation of coproducts is analogous to the implementation of products,
see section 3.3.3.1.

3.3.8 Cokernels
Similarly to how we defined the coproduct as the dual of a product, we will define
a cokernel that is the dual of a kernel. We say that an object E is a cokernel of a
morphism f : A⇒ B if

coKernelMorphism There exists a morphism c : B ⇒ E.

coKerComp The composition f ◦ c is equal to the zero morphism from A to E.

25

3. Category Theory

coKerFactors For any morphism h : B ⇒ S where f ◦h equals the zero morphism,
there exists h′ : E ⇒ S such that c ◦ h′ ≡ h.

uniqueness For h given above if two morphisms h′ and h′′ satisfy the above con-
dition then h′ ≡ h′′.

The diagram for this definition is

E

A B

S

h′
f

0

0

c

h

which we note is just the dual of the diagram for the kernel. Similarly to kernels,
the category SET has no cokernels since it has no zero object, but the reader with
a background in abstract algebra may verify that in MON the cokernel object is
B/Imf , which is the quotient monoid of B and the image of f . Here the cokernel
morphism is just the injection into the cokernel object, which need not be unique.

The implementation of cokernel is analogous to the implementation of kernels, see
section 3.3.4.

3.4 Morphism properties
Thus far we have talked about structures in category theory, but not about properties
on morphisms themselves. In this section we will discuss the concept of monics and
epics, and how they relate to the structures we have seen thus far.

3.4.1 Monics and Epics
A morphism f : A ⇒ B is called monic if for any morphisms g h : S ⇒ A we have
that h ◦ f ≡ g ◦ f implies h ≡ g. This can be seen in the diagram

S A B
g

h

f

. Monic morphisms are also called monomorphisms. This concept has a dual called
epics. A morphism e : A⇒ B is epic if for any g h : B ⇒ S we have that e◦g ≡ e◦h
implies g ≡ h. This is shown in the diagram

A B Se
g

h

which clearly is the dual of the diagram for monics. An epic morphism is also called
an epimorphism. Some authors also say that the morphism is epi. Also note that

26

3.4. Morphism properties

we denote epimorphism with a double arrow and monomorphisms with a hook at
the start of the arrow.

If we look at the definition for kernels, we see that the fourth condition about
uniqueness is equivalent to requiring that the kernel morphism is monic. This is
shown in the following proposition:

Proposition 3.4.1. Let C be a category with a zero object. Given a morphism
f : A ⇒ B, for an object K with a morphism k : K → A satisfying k ◦ f ≡ 0, for
any object S in C and any h : S ⇒ A satisfying h ◦ f ≡ 0 we have a h′ : S ⇒ K
such that h′ ◦ k ≡ h. Then we have that the condition that h′ is unique is equivalent
to the condition that k is monic.

Proof. The simple direction is to prove that k monic implies h′ unique. Assume that
there are two h′ and h′′ that satisfy the above conditions. Then h′ ◦ k ≡ h ≡ h′′ ◦ k
and by definition of k being monic we get h′ ≡ h′′.

For the other direction let h′ be unique for each h satisfying the conditions above
and for g l : S ⇒ K let g ◦ k ≡ l ◦ k. We want to show that g ≡ l. Now define
h := g ◦ k. We see that h ◦ f ≡ g ◦ k ◦ f ≡ g ◦ 0 ≡ 0 and thus we get our h′
from above. But since g satisfies the same condition by our assumption we get that
h′ ≡ g by uniqueness of h′. But similarly l ◦ k ≡ g ◦ k ≡ h and so l satisfy the same
conditions, so h′ ≡ l. Finally we see that g ≡ h′ ≡ l and we are done.

Now since the cokernel is the dual of the kernel, the cokernel morphism is the dual
of the kernel morphism and being epic is the dual of being monic it should be clear
from the definitions that the fourth condition of the cokernel is equivalent to the
cokernel morphism being epic. The interested reader may find a proof for this by
taking the dual of each statement in the above proof.

For our application we will find proving that the kernel morphism is monic to be
simple, and thus will prefer this over proving the last condition for the kernel.
Similarly we will prove that the cokernel morphism is epic.

3.4.2 Monic and injective
In SET a morphism is a function and it is monic if it is injective. We show this by
a quick proof.

Proposition 3.4.2. A morphism in SET is monic if and only if it is injective.

Proof. Let f : A → B. We want to prove that for all a b : A where f(a) ≡ f(b)
implies a ≡ b is equivalent to for all g h : S → S where g ◦ f ≡ h ◦ f implies g ≡ h.

We start with the easy direction, and prove that if f is injective then it is monic. If

27

3. Category Theory

g◦f ≡ h◦f then for all x : S we have f(g(x)) ≡ f(h(x)) by functional extensionality.
But then g(x) h(x) : A and by injectivity of f we have that g(x) ≡ h(x) for all x : S
and thus g ≡ h.

For the other direction let a b : A where f(a) ≡ f(b). We define two functions
g := λx → a and h := λx → b. Then for all x : S we have that f(g(x)) ≡ f(a) ≡
f(b) ≡ f(h(x)) and thus g ◦ f ≡ h ◦ f . Now we use the fact that f is monic and
get g ≡ h. This in turn gives us that a ≡ g(x) ≡ h(x) ≡ b for all x : S and we are
done.

The reader with a background in proof checkers or constructive logic might appre-
ciate the fact that this proof is constructive. The more common proof is the same
for the first direction, but for the second one assumes there exists a b : A such that
a 6≡ b and instead take two functions g h : S → A where g(x) ≡ h(x) except for
some x : A where g(x) ≡ a and h(x) ≡ b. Then g ◦ f ≡ h ◦ f but g(x) 6≡ h(x) which
leads to a contradiction.

We should note that while the proof that a surjective function is epic in SET
is simple, we can not prove that every epic function in SET is surjective in a
constructive manner. This is since the proof requires the axiom of choice, and thus
is not constructive. We will show that this holds in RMod but we will need to use
the fact that we have some more structure in this category.

We should note that while it often holds that monics are injective and epics are
surjective in applications, these concepts are more general since they apply in any
category, not just the ones where morphisms are functions. As an example, consider
a poset category. Here it is clear that every morphism is both monic and epic, since
morphisms between the same objects are unique. They are not functions however
and thus they are not injective or surjective.

28

4. Abelian categories

Abelian categories are categories where the homsets are abelian groups themselves
and that have the necessary structure to do abstract algebra in. For more informa-
tion on abstract algebra and abelian groups see appendix A. Instead of giving the
definition directly we will build it up from more simple definitions. For more details
see chapter 8 in “Categories for the working mathematician” [7].

4.1 Preadditive
We say that a category C has Ab-homsets if every homset is an abelian group. We
then say that a category is preadditive if

1. it has Ab-homsets.

2. composition is bilinear.

Note that the condition of composition being bilinear means it satisfies the two
following conditions:

• For any morphisms f : A ⇒ B and g h : B ⇒ D we have f ◦ (g + h) ≡
(f ◦ g) + (f ◦ h).

• For any morphisms f g : A ⇒ B and h : B ⇒ D we have (f + g) ◦ h ≡
(f ◦ h) + (g ◦ h).

where + is the operators of the abelian groups given by the relevant homsets. It
should be clear from the context which abelian groups are intended.

4.2 Additive
Before we define an additive category we need to define a structure called a binary
direct sum. In a preadditive category an object D is a binary direct sum of two
objects A and B if

1. There are morphisms iA : A⇒ D and iB : B ⇒ D.

2. There are morphisms pA : D ⇒ A and pB : D ⇒ B.

3. The above morphisms satisfy iA ◦ pA ≡ id A, iB ◦ pB ≡ id B and (pA ◦ iA) +

29

4. Abelian categories

(pB ◦ iB) ≡ id D.

The morphisms in the above definition form the following diagram:

A D B
iA

pA pB

iB

Note here that we do not require that pA ◦ iA and pB ◦ iB are id D, and in our case
we will see that this is not the case.

Now that we have binary direct products defined we say that a category C is an
additive category if

• It is a preadditive category.

• It has a zero object.

• For all objects A and B in C it also has a binary direct sum of A and B.

Here there are many basic properties to prove. Some of these are

• The zero object in the abelian groups for each homset is the zero morphism in
that homset.

• For any binary direct product we have that iA ◦ pB ≡ 0 and iB ◦ pA ≡ 0.

Note here that 0 is the zero morphism between the relevant objects, which by the
first property is also the zero object in the abelian group for that homset.

4.3 Abelian category
For abelian categories there are many equivalent definitions, but we will start by
giving the following: A category C is an abelian category if

1. It is a preadditive category.

2. It has a zero object.

3. It has all products and coproducts.

4. It has all kernels and cokernels.

5. Every monomorphism is a kernel morphism and every epimorphism is a cok-
ernel morphism.

Here there are many equivalent definitions since many of the conditions can be
derived from the others. Given condition 1, by proposition 1 in [7] we could replace

30

4.4. Implementation

condition 2 by C having an initial object or by C having a terminal object. Given
condition 1, by theorem 8.2.2 in [7] we see that condition 3 is equivalent to just
having all products, having all coproducts or having all binary direct sums.

By the remark above it is clear that an abelian category is also an additive category.
Some authors also divide this further, and say that a category satisfying conditions
1− 4 is a preabelian category.

There is also a proof that given conditions 2−5 then condition 1 can be derived. This
is useful in many categories where we have found these limits, but where the abelian
structure on the homsets might be complex. There is a proof of this fact implemented
in the proof checker UniMath at UniMath/CategoryTheory/AbelianToAdditive but
to implement the proof in Agda proved to be outside the scope of this thesis. The
proof is quite complex and requires us to infer a lot of structure and limits for abelian
categories before attempting it.

That conditions 2−5 implies 1 was also shown in section 2.3 of “Abelian Categories
- An introduction to the theory of functors” [8] by Peter Freyd.

4.4 Implementation
Similarly to how we have done before, the definitions that contain several condi-
tions are implemented as records containing corresponding conditions. Note that
if we regard univalent categories we will not need to propositionally truncate our
equalities.

For the definition of abelian category we have several choices, as mentioned above.
Our implementation uses the definition of conditions 2 − 4. Explicitly, this results
in the definition

record isAbelian C where

zero : hasZeroObject C
prod : hasAllProducts C
coprod : hasAllCoProducts C
ker : hasAllKernels C
coker : hasAllCoKernels C
monicsAreKernels : {A S : Object C} → (k : hom C S A)→ isMonic C k →
||Σ (B : Object C) (Σ (f : hom C A B) (isKernel C zero f k))||

epicsAreCoKernels : {B S : Object C} → (k : hom C B S)→ isEpic C k →
||Σ (A : Object C) (Σ (f : hom C A B) (isCoKernel C zero f k))||

where C is the category in question. Note here that we need the propositional
truncations since k may act as a kernel resp. cokernel to several f .

31

https://github.com/UniMath/UniMath/blob/master/UniMath/CategoryTheory/AbelianToAdditive.v

4. Abelian categories

32

5. Implementation and challenges

5.1 Equivalent ways to represent equivalence
There are several ways to represent equivalence in homotopy type theory. The one
we saw in the earlier chapter on homotopy type theory was the version used by [2]
but there are other equivalent ways to choose from, as described in chapter 4 in [2].

Some of these are appropriate for different applications, and cubical Agda has chosen
to use the one of contractible fibers. This says that two types A and B are equivalent
if there exists a function f : A → B such that we can prove isContr (fiber f b) for
all b : B.

From a mathematical perspective, if there is an a : A for all b : B such that f(a) ≡ b
then f is surjective. We also have that since a is unique for every b : B we must
also have that f is injective. Now, since it is both injective and surjective it is a
bijection and we know that this implies that f is invertible.

The last type of equivalence we are going to consider is fiberwise equivalence. Let
A be a type and let P Q : A→ Type. Also let f : (a : A)→ P a→ Q a. Then we
may define the function total(f) by

total(f) : Σ A P → Σ A Q

total(f) w = (fst w, f(fst w, snd w)).

Now Theorem 4.7.7 in [2] states that f(a) is an equivalence for all a : A if and only
if total(f) is an equivalence. We can use this to prove that for any a type A, a
relation ∼: A → A → Type, a function f : (a b : A) → (a ≡ b) → (a ∼ b) and
a proof of (a : A) → isContr

(
Σ (b : A) (a ∼ b)

)
then for all a b : A we have that

f a b is an equivalence between a ≡ b and a ∼ b. The proof of this is implemented
in Cubical/Foundations/Equiv/Fiberwise.agda.

33

https://github.com/agda/cubical/blob/master/Cubical/Foundations/Equiv/Fiberwise.agda

5. Implementation and challenges

5.2 Implementing modules and module homomor-
phisms

Using our knowledge from abstract algebra, see appendix A, it is natural to define
a module as a record with the following fields

A : Type
0m : A
_ + _ : A→ A→ A

− _ : A→ A

_ · _ : 〈R〉 → A→ A

isMod : isModule A 0M _ + _ − _ _ · _.

Here A is the underlying type of the module, 〈R〉 is the underlying type of the
commutative ring we are defining the module over, 0m is the zero object, _ + _
and _ ·_ are defined as in appendix A. The operator −_ is the operator that takes
an element to its additive inverse, as we define in appendix A. For a module M we
will denote the underlying type as 〈M〉. This notation and the added −_ operator
was chosen to bring the thesis in line with the algebra libraries in the cubical agda
standard library.

This definition is equivalent to the Σ-type

Σ (A : Type)
Σ (0m : A)

Σ(_ + _ : A→ A→ A)

This representation is called the SIP representation (Structure Identity Principle)
and is used in cubical agda to represent algebraic structures. There is also a library
that facilitates equivalence proofs between these types. For more information see
[9] [10]. Cubical agda is in the process of moving to the more general representa-
tion of DURGs (Displayed Univalent Reflexive Graphs)[11] but these are not fully
implemented at the time of writing.

The reader should note that since the concept of left modules over a ring R is already
defined in the standard library we have chosen to define isModule as isLeftModule,
but over a commutative ring.

Here it is important to consider the universe levels used. For a commutative ring
R with an underlying type in U` we have decided to define the underlying type of a
module over R to also be in U`. This was done to follow the definition of left modules
given in the standard library. Translating our proofs to this more general case, where
〈M〉 : U`′ for another universe U`′ , should not prove to much of a challenge however,
and we have provided the script ThesisWorkGitCopy/RModulesAlt/Liftings.agda
with liftings for all the relevant algebraic structures in order to facilitate this process.

34

https://github.com/ByteBucket123/ThesisWorkGitCopy/blob/master/RModulesAlt/Liftings.agda

5.3. The category RMod

In a similar manner we implement module homomorphisms between modules M
and N as a record with the following fields

func : 〈M〉 → 〈N〉
additive : (x y : 〈M〉)→ f(x+M y) ≡ f(x) +N f(y)
presScalar : (r : 〈R〉)→ (x : 〈M〉)→ f(r · x) ≡ r · f(x)

where we call func the underlying function of the module homomorphism. For a
module homomorphism f ′ we will denote its underlying function by f . We denote
the type of module homomorphisms from M to N by ModuleHomo M N and the
constructor moduleHomo.

Since 〈N〉 is a set by definition we get that both additive and presScalar are prop-
erties, since they end in equalities. Thus we can prove that two module homomor-
phisms are equal if and only if their underlying functions are equal. This means
that if we have two module homomorphisms f ′ g′ : ModuleHomo M N then f ′ ≡ g′

is equivalent to f ≡ g and by functional extensionality we may show that this is
equivalent to f(x) ≡ g(x) for all x : 〈M〉.

5.3 The category RMod
Now that we have defined modules and module homomorphisms it is time to define
the category RMod. For a given commutative ring R we define RMod as the pre-
category with objects being modules over R and where the morphisms are module
homomorphisms. The identity morphisms are the identity functions. The compo-
sition is function composition on the underlying functions. The reader may verify
that the identity function is linear, the compositions of module homomorphisms are
themselves module homomorphisms and that this defines a precategory.

5.3.1 RMod is a univalent category
Before we show that RMod is abelian we first show that it is both a category and
is univalent.

Proposition 5.3.1. RMod is a category.

Proof. To show this we need to show that for any modules M and N we have that
isSet (ModuleHomo M N). This is simpler to do with a Σ-type so we construct the
corresponding type

ModuleHomoΣ = Σ (h : 〈M〉 → 〈N〉) (Σ (add : isAdditive h) (scal : presScalar h))

35

5. Implementation and challenges

and the functions

ModuleHomoΣToModuleHomo : ModuleHomoΣ→ ModuleHomo
ModuleHomoΣToModuleHomo (h , add , scal) = moduleHomo h add scal
ModuleHomoToModuleHomoΣ : ModuleHomo→ ModuleHomoΣ
ModuleHomoToModuleHomoΣ (moduleHomo h add scal) = h , add , scal.

These clearly form an isomorphism between ModuleHomoΣ and ModuleHomo. Thus
since isomorphisms are equivalences we may use the univalence axiom to see that
they are equal. Thus if we prove isSet(ModuleHomoΣ M N) then we can use
transport to prove isSet(ModuleHomo M N).

Here we will use the function isSetΣ : isSet A → ((a : A) → isSet (P a)) →
isSet (Σ A P) for A : Type and P : A → Type. This proof is implemented in
ThesisWork/SetSigmaType.agda. Intuitively, isSet says that if both parts of a Σ-
type are sets, then the Σ-type itself is a set. There is a similar proof isPropΣ for
propositions. Now, the additive and scalar parts are both propositions as we saw
earlier. Thus by isPropΣ and since propositions are sets it is sufficient to show that
the type of 〈M〉 → 〈N〉 is a set.

Since the underlying type of modules are sets we may instead prove the more general
statement that if B is a set then the type of functions from A to B is a set for any
type A. To clarify, we will prove that for any functions h k : A→ B and p q : h ≡ k
where isSet B we have that p ≡ q. Here we will use cubical type theory to prove
the statement. What we want is to create a homotopy H between p and q. To this
end for any i : I we want to define H(i) : h ≡ k such that H(0) = p and H(1) = q.
Recall here that I in cubical type theory is the type of the unit interval. Since
H(i) is an equality between functions we may use functional extensionality to get
an element of h ≡ k. Thus for any x : A we need to give a proof of h(x) ≡ k(x).
To this end let p′(x) = λj → (p(j))(x) and q′(x) = λj → (q(j))(x). Thus if we can
define H ′ : (x : A)→ p′(x) ≡ q′(x) where H ′(x, 0) ≡ p′(x) and H ′(x, 1) ≡ q′(x) then
H := λi→ funExt (λx→ H ′(x, i)) will prove our theorem. To define H ′ is simple,
since p′ and q′ are equalities on the set B, which is a set.

The full proof can be stated compactly as the function

isSetFunc setB h k p q = λi→ funExt (λx→ setB (hx) (kx)
(λj → (p j)x) (λj → (q j)x) i)

where setB : (y z : B)→ (p q : y ≡ z)→ p ≡ q is the proof that B is a set.

Now that we have proven that both parts of the sigma expression are sets we use
isSetΣ to show isSet(ModuleHomoΣ M N) which is what we wanted.

5.3.1.1 Univalence

To prove that RMod in univalent is going to be more complicated. This is since
there are several equivalent definitions of being univalent.

36

https://github.com/ByteBucket123/ThesisWorkGitCopy/blob/master/SetSigmaType.agda

5.3. The category RMod

Before we give the standard definition, consider the function pathToIso that takes
two object A and B in our precategory, an equality A ≡ B and returns A ∼= B,
which we recall is a proof that A and B are isomorphic as objects. Since we know
that A ∼= A by the identity morphism on A we can use the equality A ≡ B and then
transport on the second A in A ∼= A to get A ∼= B.

Given pathToIso the standard definition of a category being univalent is that for all
object A and B in the category there is a proof of isEquiv (pathToIso A B). Given
this it follows that (A ≡ B) ' (A ∼= B) since pathToIso is an equivalence between
(A ≡ B) and (A ∼= B).

For our application a direct proof of this proved more complicated than to prove
(A ≡ B) ' (A ∼= B) and then proving that this implies isEquiv (pathToIso A B).
The proof of (A ≡ B) ' (A ∼= B) follows from the SIP representation and the
similar proof for left modules in Cubical/Algebra/Module. The translation from
isomorphism of left modules to isomorphism in the category RMod will be omitted
since it is mostly mechanical.

To prove that (A ≡ B) ' (A ∼= B) implies isEquiv (pathToIso A B) we will first
prove another equivalent condition for a precategory to be univalent. An alternative
definition for a precategory C to be univalent is that for all object A in C we must
prove isContr (Σ (B : Object C) (A ∼= B)). That is for any object A there is only
one pair of an object B and a proof that A is isomorphic to B in C. We denote this
definition UnivalentAlt.

Now consider the similar expression isContr (Σ (B : Object C) (A ≡ B)). Here
the only part that is different is A ≡ B. Thus if we knew (A ≡ B) ≡ (A ∼= B)
and could prove isContr (Σ (B : Object C) (A ≡ B)) for any A we could transport
(A ≡ B) to (A ∼= B) and get isContr (Σ (B : Object C) (A ∼= B)). Luckily
there is a known proof for isContr (Σ (B : Object C) (A ≡ B)) and since we have
(A ≡ B) ' (A ∼= B) one may think that we are done, by using the univalence axiom
to get (A ≡ B) ≡ (A ∼= B).

The problem here is that the univalence axiom is a property of a universe. Similarly
paths must also stay within the same universe. An intuition for this is that if we had
a path that did not end in the same universe it started in, then such a path would
at some point have to jump from one universe to another, and would thus not be
continuous. Functions however may return elements in another universe, and we see
from the definition that such a function can be an equivalence. Thus equivalences of
types can go between universes, but paths can not, and thus the univalence axiom
is not applicable for such equivalences.

One should note that this is not just a technical detail, this is exactly the problem
we are currently facing. In order to simplify the notation we have thus far not
written down the universe levels. We will however need to do that now to clarify
the problem. Let M be a module over R and let U` be the universe containing

37

https://github.com/agda/cubical/tree/master/Cubical/Algebra/Module

5. Implementation and challenges

the underlying type of M , which is 〈M〉. Then since M itself contains 〈M〉 it can
not be within the same universe U`, but instead the next universe U`+1. A module
homomorphism from M to N , where both 〈M〉 and 〈N〉 are in U`, only deal with
mapping the elements of 〈M〉 and 〈N〉 and thus the module homomorphism belongs
to U`.

Knowing this, we recall that paths stay within the same universe, and we see that
M ≡ N is in the universe U`+1 while M ∼= N only contains elements of the module
homomorphism types and thus stay in U`. From this we see that (A ≡ B) ' (A ∼= B)
goes between universes and we can not apply the univalence axiom. In section 5.3.1.2
we will prove the equivalence of these definitions for univalence in the general case.
To do this we will however use the proof in the specific case where the objects and
the morphisms of the precategory is in the same universe. We will here assume this
is the case, for now, and later show that this assumption is unnecessary.

By our assumption we can then use univalence to prove the alternative definition
and we only need to prove that if for every object A in our precategory we have
isContr (Σ (B : Object C)(A ∼= B)) then isEquiv (pathToIso A B). Here we realize
that these are two equivalent ways to represent equivalence in homotopy type theory,
see section 5.1, and we are done. We now realize that these three expressions,

1. (A B : Object C)→ (A ≡ B) ' (A ∼= B)

2. (A : Object C)→ isContr (Σ(B : Object C)(A ∼= B))

3. isEquiv (pathToIso A B)

are equivalent ways to represent that a precategory is univalent. Note here that
we have proven that 3 implies 1, 1 implies 2 and 2 implies 3. Also note that the
implication between 1 and 2 was only done for precategories where the objects and
the morphisms were in the same universe. We will prove the general case in the
following section.

5.3.1.2 Liftings and univalence

To do the proof for the general case we will use liftings. A lifting is an element of
the lifting type, which is defined as a dependent type that takes two universes U`

and U`′ as well as a type A in U`. It then returns a record in the universe Umax(`,`′).
In pseudo Agda syntax it can be defined as

record Lift {U`} {U`′} (A : Type U`) : Type Umax(`,`′) where

constructor lift
field

lower : A

where the standard library definition is given in Cubical/Foundations/Prelude.agda.

38

https://github.com/agda/cubical/blob/master/Cubical/Foundations/Prelude.agda

5.3. The category RMod

Note here that the universes U` and U`′ can be inferred from the context. If we
realize that the constructor lift lifts a specific element of A and lower returns the
specific element that was originally lifted, then it should be clear that these are
inverses. In cubical type theory it is also easy to see that liftings are equal if and
only if their underlying elements are equal. It is proven by the theorems

liftExt : {a b : Lift{U`}{U`′}A} → lower a ≡ lower b→ a ≡ b

liftExt p i = lift (p i)

and the similar proof

lowerExt : {a b : Lift{U`}{U`′}A} → a ≡ b→ lower a ≡ lower b
lowerExt p i = lower (p i).

These are intuitive if we think of lift and lower as continuous functions and recall
that the image of a path under a continuous function is also a path.

Let C be a category with objects in U` and morphisms in U`′ , and where for all objects
A and B we have (A ≡ B) ' (A ∼= B). We want to show that isContr (Σ (B :
Object C) (A ∼= B)). The idea of our proof will be to lift both the objects and
the morphisms to Umax(`,`′), use the proof we already have for when the objects and
the morphisms are in the same universe, and finally to use lowerExt to bring it all
back down to the relevant universes. To this end we start by defining the dependent
type PreCatLift. PreCatLift takes a category C and returns a new category C ′

by mapping lift on the objects and morphisms in C. We thus lift the objects to
Umax(`,`′) and the morphisms to Umax(`′,`) which is equal to Umax(`,`′). We can define
composition by

_ ◦C′ _ := λ(lift f)(lift g)→ lift (f ◦C g).
Note here that since we are dealing with both the categories C and C ′ we have used
the notation _ ◦C _ to refer to the composition in C. Similarly we will use _ ∼=C _
as notation for isomorphism in C. The other conditions of being a precategory are
all paths, which can be lifted by liftExt.

For the sake of notation we let C ′ = PreCatLift C. For A and B that are objects
in C we let A′ and B′ be the corresponding objects in C ′. We first want to show
(A′ ≡ B′) ' (A′ ∼=C′ B

′). We will show that this follows from transitivity of ', and
a few lemmas.

Lemma 5.3.1. For any category C and objects A,B in C we let C ′ = PreCatLift C
and let A′, B′ be the corresponding liftings of A and B respectively. Then we have
that (A′ ≡ B′) ' (A ≡ B).

Proof. We simply note that LowerExt and liftExt are inverses since they only apply
lower and lift respectively, which are themselves inverses.

Lemma 5.3.2. Let A B : Object C, C ′ = PreCatLift C and let A′, B′ be the
corresponding liftings of A and B respectively. Then (A ∼=C B) ' (A′ ∼=C′ B

′).

39

5. Implementation and challenges

Proof. First we define a function toLift : (A ∼=C B) → (A′ ∼=C′ B
′) by using lift

on the morphism and liftExt on there equalities. For the other direction we define
fromLift : (A′ ∼=C′ B

′) → (A ∼=C B) by using lower and lowerExt. Since the
functions we applied on each morphism and path are each others inverses we see
that toLift and fromLift are inverses by reflexivity of paths. Thus we have proven
that (A ∼=C B) ' (A′ ∼=C′ B

′).

Now we are ready to prove the proposition we were after.

Proposition 5.3.2. Let C ′ = PreCatLift C and for two objects A B : Object C let
A′, B′ be the corresponding liftings of A and B respectively. Then the proposition
(A ≡ B) ' (A ∼=C B) implies (A′ ≡ B′) ' (A′ ∼=C′ B

′).

Proof. This follows directly from the above lemmas and transitivity of ' since (A′ ≡
B′) ' (A ≡ B) ' (A ∼=C B) ' (A′ ∼=C′ B

′).

Now since we have that the objects and the morphism in C ′ are in the same universe
and for all objects A′ and B′ we have that (A′ ≡ B′) ' (A′ ∼=C′ B

′) we can
use our theorem above to get a proof for (A′ : Object C ′) → isContr (Σ (B :
Object C ′) (A′ ∼=C′ B

′)). Before we can lower this back down we will need one last
lemma.

Lemma 5.3.3. For any object A in C let C ′ := PreCatLift C and A′ be the corre-
sponding lifting of A. Then

Lift
(
Σ (B : Object C) (A ∼=C B)

)
'(

Σ (B′ : Object C ′) (A′ ∼=C′ B
′)
)
.

Proof. Here we once again define a function toLiftCat that first takes(
isContr (Σ (B : Object C) (A ∼=C B))

)
out of the lifting and then lifts B to B′

and A ∼=C B to A′ ∼=C′ B
′ as we have done before. And similarly toLowerCat maps

lift on
(
isContr (Σ (B : Object C) (A ∼=C B))

)
which we get from lowering B′ and

A′ ∼=C′ B
′, as above.

Thus we see that these expressions are equal and we have proven the lemma.

Finally we can prove the theorem we wanted.

Theorem 5.3.4. Given a category C and that for all A and B we have (A ≡ B) '
(A ∼=C B) we can prove (A : Object C)→ isContr (Σ (B : Object C) (A ∼=C B)).

Proof. We will need to prove that for any A in C we have
isContr (Σ (B : Object C) (A ∼=C B)). We can prove this by giving an element of
Σ (B : Object C) (A ∼=C B)) and proving that it is equal to every other element.

40

5.3. The category RMod

For our initial element let B be A and let A ∼=C B be A ∼=C A by the identity
morphisms on A. What remains to show is that this element is equal to every
other element.

Let our element with the identity morphism be denoted x. Let z be any other
element. We need to show x ≡ z. Here we use lowerExt and thus only
need to show lift x ≡ lift z. Now note that these are both of the type
Lift

(
Σ (B : Object C) (A ∼=C B)

)
. Also note that this type is equivalent to(

Σ (B : Object C ′) (A′ ∼=C′ B
′)
)

by lemma 5.3.3. The lemma claimed that
they were equivalent, but since they are in the same universe we can use
univalence to prove that they are equal. Also since we have proven that(
Σ (B : Object C ′) (A′ ∼=C′ B

′)
)

is a contraction we can also prove that
Lift

(
Σ (B : Object C) (A ∼=C B)

)
is a contraction by transporting along their

equality and using cong on isContr.

Thus lift x and lift z are elements in a contraction, and since contractions are
propositions they must be equal. As stated earlier, lift x ≡ lift z gives x ≡ z by
lowerExt and we are done.

5.3.2 Proving RMod is abelian
To prove that RMod is abelian we will start by constructing the necessary structures.
A large part of these constructions are purely mechanical and follow from simple
algebraic properties. Thus we will omit some of the mechanical parts and instead
focus on the key points in the construction.

5.3.2.1 Zero Object

First we start by showing that RMod has a zero object. We know from abstract
algebra that this object should be a module where the zero element is the only
element. From this it should be clear that the one element type, OneElem, is a
good choice for the underlying type of the zero object. To make it a module we will
equip it with the following structure

0Zero := ∗
∗+Zero ∗ := ∗
−Zero∗ := ∗
r ·Zero ∗ := ∗

where we recall that ∗ is the only element of OneElem. The proof that this forms a
module is simple, and most conditions are derived by case splitting on the elements
of OneElem. We denote this module as ZeroModule.

To see that ZeroModule is a zero object in RMod we will show that it is both initial
and terminal. Before we can prove these properties we will have a short lemma.

41

5. Implementation and challenges

Lemma 5.3.5. For any modules M and N the function from 〈M〉 to 〈N〉 defined
by λx→ 0N is a homomorphism.

Proof. Let us denote this function f . We will show that f is additive and preserves
scalars. The first condition follows directly by

f(a+M b) ≡ 0N ≡ 0N +N 0N ≡ f(a) +N f(b).

Similarly the condition for scalars is shown by

f(r ·M a) ≡ 0N ≡ r ·N 0N ≡ r · f(a).

Note here that r ·N 0N ≡ 0N is one of the module properties proven in appendix
A.

Proposition 5.3.3. ZeroModule is a terminal object in RMod.

Proof. We need to show that for any moduleM the homset fromM to ZeroModule
is a contraction. We start by defining a homomorphism from M to ZeroModule.
The underlying function of this is simply h := λx → ∗. By lemma 5.3.5 this is a
homomorphism h′. It remains to show that any homomorphism k′ we have that
h′ ≡ k′. As we discussed in section 5.2 it is sufficient to show that for all x : 〈M〉 we
have h(x) ≡ k(x). This follows directly from the fact that they are both elements
of OneElem and OneElem is a contraction, and thus a proposition.

Proposition 5.3.4. ZeroModule is an initial object in RMod.

Proof. LetM be a module over R. We will show that the homset from ZeroModule
to M is a contraction. We again define the function between underlying types by
h := λx → 0M and by lemma 5.3.5 we get a homomorphism h′. Let k′ be a
homomorphism from ZeroModule to M . It remains to show h′ ≡ k′ which is
equivalent to for all x : OneElem we have h(x) ≡ k(x). Now this follows by

h(x) = 0M ≡ k(0OneElem) ≡ k(x)

where k(0OneElem) ≡ 0M is a property we have shown for any homomorphism in
appendix A and x ≡ 0OneElem sinceOneElem is a contraction and thus a proposition.

Thus, since ZeroModule is both initial and terminal it is a zero object. Before we
move on we should note that the zero morphisms from any moduleM to any module
N are the morphisms where their underlying functions maps every element of 〈M〉
to 0N .

42

5.3. The category RMod

5.3.2.2 Product

We start by constructing the product object in RMod, which we denote MXN for
two modules M and N . The underlying type of MXN is 〈M〉 × 〈N〉. To make this
a module we equip this type with the following structure

0MXN := (0M , 0N)
(a, b) +MXN (c, d) := (a+M c, b+N d)

−MxN(a, b) := (−Ma,−Nb)
r ·MXN (a, b) := (r ·M a, r ·N b)

It is simple to show that this is a module using that each condition for being a module
holds for both M and N as well as the property for Σ-types that if a b : A × B,
fst a ≡ fst b and snd a ≡ snd b then a ≡ b.

We now define the projections as pM := fst and pN := snd. To verify that pM and
pN are homomorphisms is left as a simple exercise to the reader. The proof that
this forms a product diagram is identical to the one in SET and we thus refer the
interested reader to that proof, section 3.3.3.

5.3.2.3 Coproduct

We will now see that the coproduct is the same object as the product. We know this
must be the case since in an abelian category products are binary direct products,
which in turn are both products and coproducts. Also recall that coproducts are
unique up to isomorphism.

To construct the injections we define iA := λa → (a, 0N) and iB := λb → (0M , b).
The reader may verify that these are linear. We prove that this is a coproduct
diagram in the following proposition.

Proposition 5.3.5. The moduleMXN is a coproduct in RMod where the injections
may have the underlying functions iA := λa→ (a, 0N) and iB := λb→ (0M , b).

Proof. We will need to show MXN , i′A and i′B form a coproduct diagram. For a
module Z and for any two homomorphism f ′ : M ⇒ Z and g′ : N ⇒ Z we define
h′ as the homomorphism with the underlying function h(a, b) := f(a) +Z g(b). The
linearity of h follows from the linearity of f and g, as well as the commutativity and
associativity of _ +N _. The proof is purely mechanical and is left to the reader.

It is clear that i′A ◦ h′ ≡ f ′ since

h(iA(a)) ≡ h(a, 0N) ≡ f(a) +Z g(0N) ≡ f(a) +Z 0Z ≡ f(a)

by the arithmetic properties of modules that we have shown in appendix A. A similar
proof shows i′B ◦ h′ ≡ g′.

43

5. Implementation and challenges

We want to show that if there is a homomorphism k′ satisfying i′A ◦ k′ ≡ f ′ and i′B ◦
k′ ≡ g′ then k′ ≡ h′. Since they are homomorphism and by functional extensionality
it is sufficient to prove h(a, b) ≡ k(a, b). The proof is given by

h(a, b) ≡ f(a) +Z g(b) ≡ k(iA(a)) +Z k(iB(b)) ≡ k(a, 0N) +Z k(0M , b) ≡ k(a, b)

where the last step follows from linearity of k and properties of additions with 0 in
a module.

5.3.2.4 Kernels

Let f ′ be a module homomorphism between modules A and B. We will show that
there is a kernel of f ′ in RMod.

The underlying type of the kernel object is Σ (a : A) (f(a) ≡ 0B). These are the
objects in A such that f ′ maps them to the 0 element in B. To simplify the notation,
let us first consider how the structure will affect the first element of our Σ-type.

fst (0Kerf) := 0A

fst ((a, fa = 0) +Kerf (b, fb = 0)) := a+A b

fst (−Kerf (a, fa = 0)) := −Aa

fst (r ·Kerf (a, fa = 0)) := r ·A a

For the second part we use following proofs

f(0A) ≡ 0B

f(a+A b) ≡ f(a) +B f(b) ≡ 0B +B 0B ≡ 0B

f(−Aa) ≡ −Bf(a) ≡ −B0B ≡ 0B

f(r ·A a) ≡ r ·B f(a) ≡ r ·B 0B ≡ 0B

where each step follows from simple properties we have shown for module homomor-
phisms. To show that this is a module we first note that 〈B〉 is a set, so f(a) ≡ 0B

is a property. Thus to show that two elements (a, fa = 0) (b, fb = 0) : Σ (a :
A) (f(a) ≡ 0B) are equal it is sufficient to prove a ≡ b.

Note that every condition except that a module is a set ends in showing an equality.
By the previous remarks to show these equalities it is sufficient to prove them for
the first elements of the Σ-type. If we note that the structure on these is the same
as for A we can use that we know that A is a module to prove that this also is a
module. We denote this module Kerf . It remains to show that this is the kernel of
f .

Proposition 5.3.6. Kerf is the kernel of f ′.

Proof. We start by defining the kernel morphism. Let kerf := fst be the underlying
function of the module homomorphism kerf ′ from Kerf to A. Linearity follows

44

5.3. The category RMod

directly by the definitions of the operators for Kerf . Note that this is simply the
inclusion of Kerf into A.

For any element (a, fa = 0) : 〈Kerf〉 it is clear that f(kerf(a, fa = 0)) ≡ f(a) ≡ 0B

where the first equality is by definition of kerf and the second by fa = 0 : f(a) ≡ 0B.
Thus kerf ′ ◦ f ′ ≡ 0 since the zero morphism maps every element to 0.

Now we have that if h′ : D ⇒ A and for all d : D we have hf = 0 : f(h(d)) ≡ 0B

then we need to show there exists a homomorphism k′ from D to Kerf such that
k′ ◦ ker′ ≡ h′. We define k′ by the underlying function k := λd → (h(d), hf = 0).
Again, since 〈B〉 is a set it is sufficient to prove that λd → h(d) is linear, which
holds since h′ is a homomorphism. Now to see that k′ ◦ ker′ ≡ h′ we simply note
that ker(k(d)) ≡ fst (h(d), hf = 0) ≡ h(d).

Finally we will want to prove that k′ is unique. To do this it is simple to prove the
more general condition that k′ is monic. Let g′ f ′ : D ⇒ Kerf and f ′ ◦ kerf ′ ≡
g′ ◦ kerf ′. Then we must prove that f ′ ≡ g′. By functional extensionality on
the underlying functions and since B is a set it is sufficient to prove that the first
elements of the Σ-type are equal, thus fst f(d) ≡ fst g(d) for all d : D. But this
is just the underlying function of f ′ ◦ kerf ′ ≡ g′ ◦ kerf ′ which we were given a
proof of by assumption. Since the underlying functions are equal if and only if the
homomorphisms are equal we are done.

5.3.2.5 Cokernels

For any module homomorphism f ′ : A ⇒ B, we know from abstract algebra that
the cokernel of f ′ should be the quotient space 〈B〉/〈Im f〉. This is a space of
equivalence classes where two elements from 〈B〉 are in the same equivalence class
if they are equal modulo an element of 〈Im f ′〉. To this end we start by defining our
equivalence relation.

We define the relation ∼ as b ∼ b′ := Σ (a : 〈A〉) (b′ ≡ f(a) +B b). For this relation
b ∼ b′ if there exists an element of 〈A〉 such that b′ ≡ f(a) +B b. Note that we
could also have used the equality b′ +B (−Bb) ≡ f(a) as the second condition. If
f is not injective then the proof of b ∼ b′ might not be unique, since f might map
two different elements of 〈A〉 to b′+B (−Bb). Thus we will need to use propositional
truncation on the relation to make it propositionally valued. This is also called prop-
valued and a relation ∼ is defined as propositionally valued if b ∼ b′ is a proposition
for all b b′ : 〈B〉.

We will start by showing that this is an equivalence relation. Since the truncation
of an equivalence relation is an equivalence relation it is sufficient to show this for
the untruncated relation.

Proposition 5.3.7. The relation _ ∼ _ is an equivalence relation.

45

5. Implementation and challenges

Proof. First we prove reflexivity. For any b : 〈B〉 it is clear that b ∼ b by 0A since

b+B (−Bb) ≡ 0B ≡ f(0A)

.

For symmetry we see that if (a, b′ = fab) : b ∼ b′ then −Aa satisfies that b ≡
f(−Aa) +B b

′ since

b ≡ b′ +B (−Bf(a)) ≡ (−Bf(a)) +B b
′ ≡ f(−Aa) +B b

′

by known properties of module homomorphisms.

Finally we see that the relation is transitive since if (a, b′ = fa + b) : b ∼ b′ and
(a′, b′′ = fa′ + b′) : b′ ∼ b′′ then a′ +A a satisfy b′′ ≡ f(a′ +A a) +B b since

b′′ ≡ f(a′) +B b
′ ≡ f(a′) +B f(a) +B b ≡ f(a′ +A a) +B .

by linearity of f . Since we have now shown that the relation is reflexive, transitive
and symmetric we know that this is an equivalence relation.

Now that we have our equivalence relation we can define our underlying set 〈B〉/ ∼
which is the set of equivalence classes from 〈B〉 generated by the relation _ ∼ _.
In pseudo Agda code the definition can be given as

data _/_ (A : Type) (∼: A→ A→ Type) where
[_] : (a : A)→ A/ ∼
eq/ : (a b : A)→ (r : a ∼ b)→ [a] ≡ [b]
squash/ : (x y : A/ ∼)→ (p q : x ≡ y)→ p ≡ q.

Note here that [_] is the constructor which takes an element of A to its equivalence
class under ∼, eq/ proves that if a ∼ b then [a] ≡ [b] and squash/ ensures that
A/ ∼ is a set. This definition can be found in the standard library at Cubical/HIT-
s/SetQuotients/Base.agda.

Now that we have our underlying set we will need to define our structure and show
that this is a module, denoted CoKf . To do this we will need to use elimination
rules, but for these the notation might become quite complicated. For the implemen-
tation of this we have provided helper functions in the script ThesisWork/SetQuo-
tientHelp.agda. This script contains versions of the elimination rule for function
with 2 or 3 inputs.

The original elimination rule says that for any P : (x : 〈B〉/ ∼) → Type such that
P x is a set for all x : 〈B〉/ ∼ and a function g : (b : 〈B〉) → P [b] where for any
b b′ : 〈B〉 where b ∼ b′ we have that g(b) ≡ g(b′). Then there exists a function

46

https://github.com/agda/cubical/blob/master/Cubical/HITs/SetQuotients/Base.agda
https://github.com/agda/cubical/blob/master/Cubical/HITs/SetQuotients/Base.agda
https://github.com/ByteBucket123/ThesisWorkGitCopy/blob/master/SetQuotientHelp.agda
https://github.com/ByteBucket123/ThesisWorkGitCopy/blob/master/SetQuotientHelp.agda

5.3. The category RMod

g′ : (x : 〈B〉/ ∼) → P x. In set theory this rule states that we may use a function
on the original set to induce a function on our equivalence classes if such a function
would be well defined. Note that such a function is well defined if g maps every
underlying element of an equivalence class x to the same element in P x.

To simplify the notation we will prove the necessary conditions to use the elimination
rule and leave the reader the task of applying the elimination rule. Note that since
〈B〉 is a set we will only need to construct g and prove that for b b′ : 〈B〉 we have
g(b) ≡ g(b′).

First we define _ +′ _ : (b b′ : 〈B〉) → 〈B〉/ ∼ as λb b′ → [b +B b′], where [b]
denotes the equivalence class of b under ∼. We need to show that for b b′ b′′ where
(a, b′ = b+ fa) : b ∼ b′ we have [b+B b

′′] ≡ [b′ +B b
′′] and [b′′ +B b] ≡ [b′′ +B b

′]. To
prove [b+B b

′′] ≡ [b′ +B b
′′] it is sufficient to show that b+B b

′′ ∼ b′ +B b
′′ but this is

clear since
b′ +B b

′′ ≡ f(a) +B b+B b
′′

by cong (λx → x +B b′′) and b′ = b + fa : b′ ≡ b +B f(a). The proof is analogous
for [b′′ +B b] ≡ [b′′ +B b

′]. Thus we can use the elimination rule to induce a function
_ +CoKf _.

Using the elimination rule we make similar constructions to define −CoKf [b] as [−Bb]
and r · [b] as [r · b].

To show that this forms a module we will use that we know B is a module along
with the elimination rule. Since the quotient set is a set by definition our equalities
are propositions. It is thus trivial to prove the set requirement for the elimination
rule. Going from the proof that B is a module to the proof that 〈B〉/ ∼ is a module
follows a very similar structure. We will show how to prove that _ +CoKf _ is
associative and the reader should be able to construct similar proofs for the rest of
the conditions.

Lemma 5.3.6. _ +CoKf _ is associative.

Proof. We will need to show that for any x y z : 〈B〉/ ∼ we have that x +CoKf

(y +CoKf z) ≡ (x +CoKf y) +CoKf z. To do this we let P := λx y z → x +CoKf

(y+CoKf z) ≡ (x+CoKf y)+CoKf z and P x y z is a proposition since the quotient set
is a set by definition. Thus we can use out elimination rule for 3 arguments to prove
the lemma given that we can prove (b b′ b′′ : 〈B〉) → [b] +CoKf ([b′] +CoKf [b′′]) ≡
([b] +CoKf [b′]) +CoKf [b′′] and prove that the induced function is well defined.

To prove (b b′ b′′ : 〈B〉)→ [b] +CoKf ([b′] +CoKf [b′′]) ≡ ([b] +CoKf [b′]) +CoKf [b′′] we
let b b′ b′′ : 〈B〉. Then we realize that by definition of +CoKf we have that

[b] +CoKf ([b′] +CoKf [b′′]) ≡ [b] +CoKf [b′ +B b
′′] ≡ [b+B (b′ +B b

′′)]
and

([b] +CoKf [b′]) +CoKf [b′′] ≡ [b+B b
′] +CoKf [b′′] ≡ [(b+B b

′) +B b
′′].

47

5. Implementation and challenges

So what remains to be proven is that [b +B (b′ +B b′′)] ≡ [(b +B b′) +B b′′]. But by
associativity of +B we have b+B (b′ +B b

′′) ≡ (b+B b
′) +B b

′′ and thus

(b+B b
′) +B b

′′ ≡ f(0A) + b+B (b′ +B b
′′)

which gives us b+B(b′+Bb
′′) ∼ (b+Bb

′)+Bb
′′. Now since b+B(b′+Bb

′′) ∼ (b+Bb
′)+Bb

′′

we also have that [b+B (b′ +B b
′′)] ≡ [(b+B b

′) +B b
′′].

The final step is to show that we give the same proof for any underlying elements
in our equivalence classes, but this is trivial since we have shown an equality of
elements in a set. So since 〈B〉/ ∼ is a set, our proof is unique and thus the induced
function is well defined.

The proofs for the other conditions follow the same line of reasoning. We use the
elimination rule to only consider the underlying elements of the equivalence classes.
Then we reduce the expressions and realize that we only need to show equality of
two equivalence classes where the underlying elements are equal since B is a module.
Then we use that b ≡ b′ implies b ∼ b′ and that these are equalities on 〈B〉/ ∼,
which is a set.

Now that we have proven that CoKf is a module we need to show that it is a
cokernel of f ′.

Proposition 5.3.8. CoKf a cokernel of f ′.

Proof. First let us define the cokernel morphism coKf ′ : B ⇒ CoKf by the under-
lying function cokf := λx→ [x]. It is clear that this function is linear since

[b+B b
′] ≡ [b] +CoKf [b′]

and
r ·CoKf [b] ≡ [r ·B b]

by definition.

Then to see that f ′ ◦ coKf ′ ≡ 0 we note that for all a : A we have that

0B ≡ f(0A) ≡ f((−Aa) +A a) ≡ f(−Aa) +B f(a)

so 0B ∼ f(a) by −Aa and the proof above, and thus [0B] ≡ [f(a)].

Now we must show that for any module homomorphism h′ : B ⇒ D where f ′◦h′ ≡ 0
we have that there exists k′ : CoKf ⇒ D such that coKf ′ ◦ k′ ≡ h′. To this end
we use the elimination rule to define k : CoKf → 〈D〉. Since 〈D〉 is a set we only
need to define a function on the underlying elements of our equivalence classes. To
this end we choose this to be λb→ h(b), which is just h. It remains to show that if

48

5.3. The category RMod

b ∼ b′ then h(b) ≡ h(b′). Let a : A such that b′ ≡ f(a)+ b and consider the following
equation

h(b′) ≡ h(b+B f(a)) ≡ h(b) +D h(f(a)) ≡ h(b) +D 0D ≡ h(b)

since f ′ ◦ h′ ≡ 0 which means that their underlying functions are equal, and that
the zero morphism from A to D maps every element of A to 0D.

To show that the induced function k is linear we simply use elimination and it is
linear on the underlying elements of each equivalence class since h is linear. To show
that this is well defined we simply note that 〈D〉 is a set so any two equivalence
proofs are equal.

To see that coKf ′ ◦ k′ ≡ h′ it is sufficient to show that the underlying functions are
equal. By functional extensionality we take any b : B and prove k(coKf(b)) ≡ h(b)
which by definition of coKf is k([b]) ≡ h(b) which is the definition of k.

It remains to show the uniqueness of k′. This follows if we prove that coKf ′ is epic.
To do this let D be a module and g′ h′ : CoKf ⇒ D where coKf ′ ◦ g′ ≡ coKf ′ ◦ h′.
We need to prove g′ ≡ h′ and as above it holds if we have g(x) ≡ h(x) for any
x : 〈B〉/ ∼. Now we use the elimination rule on x and need to show that for any
a : A we have g([a]) ≡ h([a]). This is just the underlying functions of coKf ′ ◦ g′ ≡
coKf ′ ◦h′ evaluated at a. We now note that the elimination is an equality and that
〈D〉 is a set and thus we are done.

5.3.2.6 Monics are kernals

In order to prove that monics are kernels and that epics are cokernels we will follow
a similar proof to that used in “Additive, abelian, and exact categories” [12].

We start by showing the idea of the proof. For a monic module homomorphism
f ′ : A⇒ B consider the following diagram

B CoKf

A

Imf

coKf ′

f ′ 0

g′

inc′ 0

Here CoKf is the cokernel of f ′, coKf ′ is the cokernel morphism, Imf is the image
of f and inc is the inclusion map. To make the diagram commute we note that
g′ ◦ inc′ ≡ f ′ and thus we chose g to be the function λa → fa. We want to show
that f ′ is a kernel of cokf ′. To do this we will first show a lemma which proves it is
sufficient to show that inc′ is a kernel of cokf ′ and that g′ is an isomorphism. The
paper [12] claims that it is clear that inc′ is a kernel to coKf ′. It also claims that

49

5. Implementation and challenges

since f ′ is monic f is also injective, and thus g is injective, and since g is surjective
by construction it is an isomorphism.

For our proof we will start by proving the lemma mentioned above. This is stated
in the paper [12] but the proof is left to the reader.

Lemma 5.3.7. Let f ′ : A ⇒ B be a homomorphism. If k′ : D ⇒ B is the kernel
morphism of m′ : B ⇒ E and we have an isomorphism i′ : A ⇒ D such that
i′ ◦ k′ ≡ f ′ then f ′ is a kernel to m′.

Proof. As stated in the paper, the proof is simple. First we see that

f ′ ◦m′ ≡ i′ ◦ k′ ◦m′ ≡ i′ ◦ 0 ≡ 0

since any composition with the zero morphism is itself the zero morphism.

Next we need to show that for any morphism h′ : G ⇒ B where h′ ◦m′ ≡ 0 there
is a morphism g′ : G ⇒ A such that g′ ◦ f ′ ≡ h′. To justify our coming definitions
consider the following diagram

D A B

G

i−1′

k′

i′

f ′

h′g′
g̃′

We note that since k′ is a kernel of m′ it follows that there exists g̃′ : G ⇒ D such
that g̃′ ◦ k′ ≡ h′. Now we define g′ := g̃′ ◦ i−1′. We now see that

g′ ◦ f ′ ≡ g̃′ ◦ i−1′ ◦ i′ ◦ k′ ≡ g̃′ ◦ id D ◦ k′ ≡ g̃′ ◦ k′ ≡ h′

by the definition of g̃′ and i being an isomorphism.

Finally we need to show that g′ is unique. It is sufficient to show that f ′ is monic.
To show that f ′ is monic, assume r′ s′ : H ⇒ A such that r′ ◦ f ′ ≡ s′ ◦ f ′. Then
r′ ◦ i′ ◦ k′ ≡ s′ ◦ i′ ◦ k′ and since k′ is monic we have r′ ◦ i′ ≡ s′ ◦ i′. This gives us
that r′ ◦ i′ ◦ i−1′ ≡ s′ ◦ i′ ◦ i−1′ and thus r′ ≡ s′ and we have shown that f ′ is monic.
Note that the last step is just the proof that i′ is monic.

An important part of the proof is that if a module homomorphism is monic then its
underlying function is injective. Unfortunately most of the proofs we found for this
were either not constructive, not suited for our homotopy type theory framework or
required more complex proofs for properties of categories. Thus we have constructed
the following proof.

50

5.3. The category RMod

Proposition 5.3.9. A module homomorphism is monic in RMod if and only if its
underlying function is injective.

Proof. The first part is similar to the proof we gave for monics in SET. We assume
f ′ : A⇒ B is a module homomorphism and that f is injective. Then if g′ h′ : D ⇒ A
and g′ ◦ f ′ ≡ h′ ◦ f ′ we have by functional extensionality that for x : A we have
g(x) h(x) : A and f(g(x)) ≡ f(h(x)) and thus g(x) ≡ h(x) since f is injective. Now
since the underlying functions of g′ and h′ are equal we have that g′ ≡ h′.

Here we might want to give a similar proof to the one for SET, but naive construc-
tions such as λx→ a and λx→ x+ a are not linear for a unless a ≡ 0. Instead, we
will give the following proof.

Assume f ′ : A ⇒ B is monic and that a b : A such that f(a) ≡ f(b). We need
to show that a ≡ b. We first construct the module GenOneElem(a) which is the
free module generated by an element a. This is the module of elements on the form
r · a. This means that the underlying type is Σ (g : A) (Σ (r : 〈R〉) (g ≡ r · a)).
Here the operators on the first element are the same as for A and the operators on
〈R〉 are the corresponding operators for R. To prove the equalities for the operators
is simple and left as an exercise to the reader. To prove that this is a module is
also simple. All the conditions follow from the fact that corresponding rules hold
for A and R and that g ≡ r · a is a proposition. The details can be found in
ThesisWork/RModules/MonicToInjective.agda.

Here one might want to use the fact that f(r ·A a) ≡ r ·B f(a) ≡ r ·B f(b) ≡ f(r ·A b)
to prove that the injections from GenOneElem(a) and GenOneElem(b) are equal
and then use that f is monic to prove that a ≡ b. There are two problems with
this approach. Firstly, to use the fact that f is monic we need to have that the
injections come from the same module. This can be solved by taking the product
module of GenOneElem(a) and GenOneElem(b), which we have shown exists for
any two modules. The second issue is that any two elements of GenOneElem(a)
and GenOneElem(b) are on the form r · a and r′ · b and we can only use the proof
above if r ≡ r′. We will solve these problems by choosing the following approach.

Firstly, we define a module GenProd(a, b) which has the underlying type

Σ (r : 〈R〉) (Σ (g1 : A) (Σ (g2 : A) ((g1 ≡ r · a)× (g2 ≡ r · b)))).

Similarly to the construction of GenOneElem(a), the operators are defined by the
corresponding operators for A and R and it is simple to prove that this forms a
module. One may realize that this is the same module as GenOneElem((a, b)) for
(a, b) in the product module of A and A.

Now we define g := λx→ fst (snd x) and h := λx→ fst (snd (snd x)) and get that
g(x) ≡ r · a and h(x) ≡ r · b for r ≡ fst x where x : GenProd(a, b). That these are
linear follows directly from the definition of + and · for GenProd(a, b). Thus we

51

https://github.com/ByteBucket123/ThesisWorkGitCopy/blob/master/RModules/MonicToInjective.agda

5. Implementation and challenges

can now use our proof above to see that f(g(x)) ≡ f(r ·A a) ≡ f(r ·A b) ≡ f(h(x))
and thus g′ ◦ f ′ ≡ h′ ◦ f ′ and since f ′ is monic we get g′ ≡ h′.

Finally, since g′ ≡ h′ we have that g ≡ h and by functional extensionality g(x) ≡
h(x) for all x : GenProd(a, b). Let x := (1r, a, b, . . .) where 1R ·Aa ≡ a and 1R ·Ab ≡ b
is part of the definition for A being a module. Then a ≡ g(x) ≡ h(x) ≡ b and we
are done.

We will also need to define the module Imf . We do this by giving it the underlying
type Σ (b : B) (Σ (a : A) (b ≡ f(a))). Since we want elements in Imf to be
equal if they are equal in B we will need to use propositional truncation on Σ (a :
A) (b ≡ f(a)) to make it a proposition in the general case. In our case however f
is injective, so this is already a proposition, so we will omit this step. This clearly
forms a module by defining the operators by their corresponding operators from A
and B.

To define g′ we let g := λa→ (f(a), a, refl) and it follows that this is linear since f
is linear. Then we define g−1 := λ(b, a, p)→ a where p : b ≡ f(a). It is clear that g−1

is linear from the definition of + and · on Imf . We see that g−1(g(a)) ≡ a by refl
and g(g−1(b, a, p)) ≡ (f(a), a, refl) since b ≡ f(a) by p : b ≡ f(a), a ≡ a by refl and
p ≡ refl since they are equalities in the set B. Since the compositions underlying
functions are equal to the identity function they are the identity morphisms and
thus g is an isomorphism.

We define inc′ : Imf ⇒ B by the underlying function inc := fst which clearly is
linear. It remains to show that inc′ is a kernel of coKf ′.

Proposition 5.3.10. The module homomorphism inc′ is a kernel morphism to
coKf ′.

Proof. First we need to show that inc′◦coKf ′ ≡ 0 but by considering the underlying
functions and functional extensionality it is sufficient to prove [b] ≡ [0] for (b, a, p) :
Imf where p : b ≡ f(a). By equality on CoKf it is sufficient to show b ∼ 0 which
is given by b ≡ f(a) ≡ f(a) + 0 and this step is done.

Now we must show that for any h′ : E ⇒ B where h′ ◦ coKf ′ ≡ 0 we have that
there exists u′ : E ⇒ B such that u′ ◦ inc′ ≡ h′. As above, from h′ ◦ coKf ′ ≡ 0 we
can get [h(e)] ≡ [0] for any e : E. Since ∼ is an equivalence relation and b ∼ b′ is
a proposition for all b b′ : B we can show that it is effective and thus get a proof of
h(e) ∼ 0 from [h(e)] ≡ [0], see Cubical/HITs/SetQuotients/Properties.agda.

Now assume that (a, p) (a′, q) : b ∼ b′ for some b b′ : B. Then p : b′ ≡ b +B f(a)
and q : b′ ≡ b +B f(a′) and we can show f(a) ≡ b′ −B b ≡ f(a′). Now since f
is injective we get that a ≡ a′ and thus (a, p) ≡ (a′, q) since p ≡ q from the fact

52

https://github.com/agda/cubical/blob/master/Cubical/HITs/SetQuotients/Properties.agda

5.3. The category RMod

that 〈B〉 is a set. Thus b ∼ b′ is a proposition before the propositional truncation.
From this we can show that the truncation of b ∼ b′ is equivalent to b ∼ b′ itself.
Thus we may remove the truncation in this case, and from [h(e)] ≡ [0] we get a : A,
p : h(e) ≡ 0 +B f(a) and that such an a must be unique.

Thus we get q : h(e) ≡ 0 +B f(a) ≡ f(a) from p and the definition of B being a
module. Now we define u := λe → (h(e), a, q) and inc(u(e))) ≡ fst(h(e), a, q) ≡
h(e) and thus u′ ◦ inc′ ≡ h′.

Finally we need to show that u′ is unique. It is sufficient to prove that inc′ is monic.
This holds since inc is an injection, injections are injective and thus inc′ is monic by
proposition 5.3.9. The proof is analogous to how we showed that kerf is monic.

Now we have all the prerequisites to apply lemma 5.3.7 and we are done.

5.3.2.7 Shortened proof

In this case it is possible to give a shorter, more direct proof.

Proposition 5.3.11. Let f ′ : A⇒ B be a monic module homomorphism. Then f ′
is a kernel morphism to coKf ′.

Proof. Here we will only give the proof idea here since the proof borrows a lot of
steps from the previous proof.

First we note that f ′ ◦ coKf ′ ≡ 0 by the definition of cokf ′. We need to show that
for any module homomorphism h′ : E ⇒ A where h′ ◦ coKf ′ ≡ 0 we have that there
exists u′ : E ⇒ A such that u′ ◦ f ′ ≡ h′. As in proposition 5.3.10 we find that for
every e : E we have h(e) ≡ f(a) for some a : A. We then define u := λe → a. It
remains to show that u is linear, since we know f(u(e)) ≡ f(a) ≡ h(e).

We will show that u is additive and leave the analogous proof that it preserves
scalars to the reader. To prove this we get e e′ : E and we need to prove u(e+ e′) ≡
u(e) + u(e′). Since these are elements in A and f is injective it is sufficient to prove
f(u(e+ e′)) ≡ f(u(e) + u(e′)). This follows from the calculations

f(u(e+E e
′)) ≡ h(e+E e

′) ≡ h(e) +B h(e′) ≡ f(u(e)) +B f(u(e′)) ≡ f(u(e) + u(e′))

where we use that f(u(x)) ≡ h(x) for all x : E and that both h and f are linear.

Finally we note that since f ′ is monic u′ must be unique.

5.3.2.8 Epics are cokernels

We note that this is the dual statement for of monics are kernels. Thus the paper
[12] presents a similar solution. For an epic module homomorphism f ′ consider the

53

5. Implementation and challenges

following diagram
A Kerf

B

A/Kerf

f ′

inc′

kerf ′

0

0
g′

.

The proof idea is that we define g′, A/Kerf and inc′ such that g′ is an isomorphism,
inc′ is the cokernel morphism of kerf and inc′ ◦ g′ ≡ f ′. Then we use the following
lemma.

Lemma 5.3.8. Let f ′ : A ⇒ B be a morphism. If c′ : A ⇒ D is the cokernel
morphism of m′ : E ⇒ A and we have an isomorphism i′ : D ⇒ B such that
c′ ◦ i′ ≡ f ′ then f ′ is a cokernel morphism of m′.

Proof. We see that this is just the dual statement of lemma 5.3.7 and thus the proof
follows by exchanging the origin and destination of each morphism as well as the
order of composition.

The paper [12] then claims that A/Kerf ∼= A/Imkerf and that c := λx → [x]
incuses a module homomorphism c′ which is the cokernel of kerf ′. Then since f ′ is
epic we have that B ∼= imf and then the paper uses a theorem to prove the existence
of g′.

We will start by defining a relation on A. We define a ∼ a′ := f(a) ≡ f(a′). We
note that this is an equivalence relation since ≡ is an equivalence relation and that
a ∼ a′ is a proposition for all a a′ : A since 〈B〉 is a set.

Now we define A/Kerf as having the underlying type A/ ∼ and define the operators
by using the corresponding operators on A and the elimination rule on set quotients.
Now we define inc := λx → [x] which is linear by the definitions of the operators
and the elimination rule. This construction is analogous to how we defined CoKf ,
see section 5.3.2.5.

Now we show that this is a cokernel morphism of kerf .

Proposition 5.3.12. The morphism inc′ is a cokernel morphism of kerf ′.

Proof. First we need to show that kerf ′◦inc′ ≡ 0, but by functional extensionality it
is sufficient to prove inc(kerf(a, p)) ≡ [0] for (a, p) : Kerf . Here inc(kerf(a, p)) ≡
[a] and p : f(a) ≡ 0 so f(a) ≡ 0 ≡ f(0) and thus a ∼ 0. Since A/ ∼ is a set this is
sufficient.

54

5.3. The category RMod

Next we need to show that for any morphism h′ : A⇒ E such that kerf ′ ◦ h′ ≡ f ′

we have that there exists u′ : A/Kerf ⇒ E such that inc′ ◦ u′ ≡ h′. We use the
elimination rule to define u([a]) := h(a). We need to show that u([a]) ≡ u([b]) if
a ∼ b to see that it is well defined. By definition u([a]) ≡ h(a) so it is sufficient
to prove h(a) ≡ h(b). We note that this holds if and only if h(a) +B (−Bh(b)) ≡ 0
and thus h(a +A (−Ab)) ≡ 0. Now since h(kerf(x)) ≡ 0 for all x : Kerf , by
functional extensionality, we only need to prove some p : f(a +A (−Ab)) ≡ 0 since
then (a +A (−Ab), p) : Kerf . Now we use that a ∼ b and get f(a) ≡ f(b) and thus
f(a+A (−Ab)) ≡ 0, similarly to how we did for h′.

Thus u is well defined and that it is linear follows from the fact that h′ is linear,
similarly to how we did for coKf , see section 5.3.2.5.

Finally we need to show that inc′ is epic. To this end we get g h : A/Kerf ⇒ F
and need to show inc′ ◦ g ≡ inc′ ◦ h implies g′ ≡ h′. It is sufficient to show that
g(x) ≡ h(x) for all x : A/ ∼. By the elimination rule it is sufficient to show that
g([a]) ≡ h([a]) for all a : A and this follows from functional extensionality on the
underlying functions of inc′ ◦ g ≡ inc′ ◦ h. Note that this is automatically well
defined since 〈F 〉 is a set and g([a]) ≡ h([a]) is thus a property.

To show that there exists an isomorphism g′ we will need the following proposition.
Note that we here define that a function f : A→ B is surjective if there is a function
that takes b : B to the propositional truncation of Σ (a : A) (f(a) ≡ b).

Proposition 5.3.13. A module homomorphism f ′ : A⇒ B is epic if and only if f
is surjective.

Proof. First we show that if f is surjective then f ′ is epic. We thus get g′ h′ : B ⇒ D
where f ′ ◦ g′ ≡ f ′ ◦ g′ and need to show g′ ≡ h′. By functional extensionality we
need to show g(b) ≡ h(b) for all b : B. But since 〈B〉 is a set this is a proposition.
We can thus use the elimination rule for propositional truncation. This states that
the specific element of the truncated type, which was originally used to prove the
truncation, may be used in order to prove a proposition, see section 6.9 in [2]. Thus
for our b we get an element (a, p) : Σ (a : A) (f(a) ≡ b).

We now see that
g(b) ≡ g(f(a)) ≡ h(f(a)) ≡ h(b)

where g(f(a)) ≡ h(f(a)) is just functional extensionality on f ′ ◦ g′ ≡ f ′ ◦ h′. Now
we assume that f ′ is epic and will show that f is surjective. This follows the
standard category theory proof where we use that our category has cokernels for
every morphism.

First we note that f ′ ◦ coKf ′ ≡ 0 ≡ f ′ ◦ 0 by definition of coKf ′ and properties of
composition with the 0 morphism. Now since f ′ is epic we get that g ≡ 0 and thus
for all b : B we get [b] ≡ [0]. As we have seen earlier, the propositional truncation

55

5. Implementation and challenges

of our relation ∼ for the cokernel is an equivalence relation and thus it is effective.
This means that since we have [b] ≡ [0] we get an element of b ∼ 0, but under a
propositional truncation.

By the elimination rule for propositional truncation we may remove the truncation
when proving propositions, since being surjective is a proposition. Thus when we
remove the truncations we get that for our b : B we have an a : A such that
b ≡ 0 + f(a). Thus since b ≡ 0 + f(a) ≡ f(a) we have a proof of Σ (a : A)(f(a) ≡ b)
and we are done.

Using this proposition we now prove the last step.

Proposition 5.3.14. There exists an isomorphism g′ : A/Kerf → B such that
inc′ ◦ g′ ≡ f ′.

Proof. We define g′ by using the elimination rule on the underlying function g([a]) :=
f(a). To prove that this is well defined we will need to show that if a b : A and
a ∼ b where ∼ is the relation of A/Kerf then we have f(a) ≡ f(b). But this is just
the definition of a ∼ b, and this step is done. The reader may verify that linearity
of g follows from linearity of f .

Then we will show that for any b : B there exists a proof of Σ (x : 〈A/Kerf〉) (b ≡
g(x)), which can be written as fiber g b. Now we first show that fiber g b is a
proposition. Since the second element of the Σ-type is an equality and 〈B〉 is a set
we get that it is sufficient to show that the first element is a proposition. Thus given
(x, p) (y, q) : fiber g b we need to show x ≡ y.

Here we use a lemma which claims that two equivalence classes are equal if their
underlying elements are related. Since this is a known fact from algebra the proof
will be omitted, but a curious reader may read the proof in ThesisWork/SetQuo-
tientHelp.agda. Thus if we have x ≡ [a] and y ≡ [b] it is sufficient to prove a ∼ b.
Thus what remains to prove is that f(a) ≡ f(b). Here we note that

f(a) ≡ g([a]) ≡ g(x) ≡ b ≡ g(y) ≡ g([b]) ≡ f(b)

since g(x) ≡ b and g(y) ≡ b by assumption and g([a]) ≡ f(a) by definition.

Now that we have proven that fiber g b is a proposition, we may use the elimination
rule for truncation on the proof that f is surjective to get an element in Σ (a :
A) (f(a) ≡ b). Thus we want to prove fiber g b from an element (a, p) where a : A
and p : f(a) ≡ b. We realize that ([a], p) : fiber g b since g([a]) ≡ f(a) by definition.
Thus for any b : B we can get an element fib : fiber g b and we define g−1 := fst (fib).

We now prove that g(g−1(b)) ≡ b for all b : B. If we apply the definitions of
g−1 and g we get f(a) ≡ b where b ≡ f(a), and this is just the same equality,
but the other way around, so we are done with this step. We also want to show

56

https://github.com/ByteBucket123/ThesisWorkGitCopy/blob/master/SetQuotientHelp.agda
https://github.com/ByteBucket123/ThesisWorkGitCopy/blob/master/SetQuotientHelp.agda

5.3. The category RMod

that g−1(g(x)) ≡ x for x : A/ ∼. Again, we use that equivalence classes are
equal if their underlying elements are related. Thus it is sufficient to show that if
[a] ≡ g−1(g(x)) and x ≡ [c] then a ∼ c, which means f(a) ≡ f(c). Here we note
that f(a) ≡ g([a]) ≡ g(g−1(g(x))) since [a] ≡ g−1(g(x)). Now g(g−1(y)) ≡ y for all
y : B, which means g(g−1(g(x))) ≡ g(x). Finally g(x) ≡ g([c]) ≡ f(c) and we are
done.

Since g and g−1 are inverses for each element in B and A/ ∼ respectively we have
that they are inverses as functions by functional extensionality. We know from
abstract algebra that the inverse of a linear function is a linear function, and the
interested reader may read the proof in ThesisWork/RModules/RModuleHomomor-
phismProperties.agda.

Thus this induces a module homomorphism g−1′ which is an inverse to g, and thus
g is an isomorphism and we are done.

Here if we combine our lemma with our proposition we get what we wanted and
have proven the last requirement for showing that RMod is abelian.

One may want to do a more direct proof that epics are cokernels, similarly to what
we did for the proof that monics are kernels, but this is difficult. The difficulty comes
from the fact that if we try to prove that f ′ is a cokernel morphism directly we will
have trouble eliminating the propositional truncation for surjectivity. We would
want a proof that for any type B and P : B → Type we have that (b : B)→ ||P b||
gives a proof of ||(b : B) → Pb||. This is however the definition for the axiom of
choice in homotopy type theory, see section 3.8 in [2]. One may think of this as
saying that if for every element of B there is a proof for P b then there is a function
which for every element of B chooses a proof of P b. These are in mathematics
called choice functions, and since we want to give a constructive proof we will avoid
using them.

Unfortunately Agda needs a lot of time to reduce the statement that the inverse of
a linear function is linear for this case. Thus a more direct proof for linearity of g−1

can be found in ThesisWork/RModules/DirectProofKernels.agda.

5.3.3 RMod is additive
Technically we have proven all the necessary conditions forRMod to be abelian, since
the additive structure can be inferred from the properties above. As mentioned in
section 4.3 the proof that this is the case proved outside the scope of this thesis,
thus we will here give a short proof that RMod is additive.

Theorem 5.3.9. For a commutative ring R the category RMod is additive.

Proof. First we note that for modules A and B the homset from A to B is an abelian

57

https://github.com/ByteBucket123/ThesisWorkGitCopy/blob/master/RModules/RModuleHomomorphismProperties.agda
https://github.com/ByteBucket123/ThesisWorkGitCopy/blob/master/RModules/RModuleHomomorphismProperties.agda
https://github.com/ByteBucket123/ThesisWorkGitCopy/blob/master/RModules/DirectProofKernels.agda

5. Implementation and challenges

group under the following operators

f +Hom A B g := λx→ f(x) + g(x)
−Hom A B f := λx→ −Bf(x).

Here linearity of these operators follows from the linearity of f and g, and the proof
that this is abelian follows from that B is abelian with respect to +B. We also see
that linearity of f and g gives that this forms a preadditive category.

Since we have already proven that RMod has a zero object it remains to show that
RMod have binary direct products. Thus for any A and B we need to show there
is an object AXB, module homomorphisms p′A : AXB ⇒ A, p′B : AXB ⇒ B,
i′A : A ⇒ AXB and i′B : B ⇒ AXB such that i′A ◦ p′A ≡ id A, i′B ◦ p′B ≡ id B and
(p′A ◦ i′A) + (p′B ◦ i′B) ≡ id AXB.

Recall that we defined the product and the coproducts in RMod as the same object.
We now choose AXB as the product of A and B and let pA, pB be the projections
that made it a product, while iA and iB are the injections that makes it a coproduct.
By this definition we see that pA(iA(a)) ≡ fst (a, 0) ≡ a and thus by functional
extensionality i′A ◦ p′A ≡ id A. The same argument gives us that i′B ◦ p′B ≡ id B.
Similarly

iA(pA(a, b)) +AXB iB(pB(a, b)) ≡ (a, 0B) +AXB (0A, b) ≡ (a+A 0A, 0B +B b) ≡ (a, b)

and thus by functional extensionality (p′A ◦ i′A) + (p′B ◦ i′B) ≡ id AXB and we are
done.

58

6. Conclusion

6.1 Cubical agda version and disclaimer
All code provided in this thesis was developed for cubical agda version 2.6.2 from
the development branch. During the work on the thesis the standard library has
developed quickly. In an attempt to make the code more compatible with later
versions, some of the parts that have undergone the most changes in the standard
library have been moved to a script named “Compatibility code”. This script also
includes code snippets that were required for the proofs, but that was not in the
original version. Each part in “Compatibility code” should state clearly which script
it originally belonged to. I take no credit for the code in “Compatibility code” and
all credits go to the original creators of the cubical agda development team [13].
ThesisWork/CompatibilityCode.agda

6.2 Reflections
From the proofs given in this thesis it should be clear that homotopy type theory is
sufficiently powerful to represent abstract concepts of category theory. The reader
might also notice that the proofs given are in many cases similar, if not identical, to
how these concepts are proven in regular category theory and abstract algebra. The
reader may also appreciate how naturally these definitions of category theoretical
concepts behave in homotopy type theory, and how well they capture the concepts
in question.

With respect to the implementation it should also be clear that cubical agda is well
suited to formalize these concepts, and aside from the last proof that epic module
homomorphisms are cokernels every script compiles quickly. This might be since
the proof uses a lot of elimination rules on objects with many nestled definitions
which results in very long expressions that need to be reduced. The compilation is
still sufficiently fast, and the more direct proof reduces much faster.

6.3 Future work
With the current development of the standard library in cubical agda a more ex-
tensive library for category theory is currently being added, which will enable more
advanced category theory to be proof checked in this environment in the future.

Using the proofs we have presented as a base line there is a lot of further work that

59

https://github.com/ByteBucket123/ThesisWorkGitCopy/blob/master/CompatibilityCode.agda

6. Conclusion

can be done.

6.3.1 Other abelian categories
There is a known theorem [14, Theorem 16.2.4] which states that if a category is
categorically equivalent to an abelian category then it is also abelian. This can be
used to show many interesting properties, for instance that the cocategory of an
abelian category is abelian.

We could also define a type called ModuleWithProperty which for a commutative
ring R and P : (M : ModuleR) → Type is on the form Σ (ModuleR) P . With
this we could define the type of finite modules, finitely generated modules, finite
dimensional modules, projective modules, etc, where P in each case ensures this
property. We could then define the category of modules, where for fix R and P
the objects are of type ModuleWithProperty R P and the morphisms are module
homomorphisms on the underlying module. Then in order to show that this category
is abelian it would be sufficient to prove that the objects we defined in the proof
that RMod is abelian also satisfy the property P . This means that for f : A ⇒ B
it is sufficient to prove that the zero module, AXB, Kerf , CoKf , etc. all satisfy
P given proofs of P A, P B.

In the folder ThesisWork/RProj I have given potential definitions for finite dimen-
sional modules and projective modules. I have also translated the first half of the
proof that these form abelian categories.

6.3.2 K-Theory
Another potential continuation of this work is to take the definition of projective
modules and move on to define some of the basic concepts in K-theory. One might
first want to finish the proof that the category RProj is abelian, which is started in
ThesisWork/RProj/AbelianRProj.agda.

6.3.3 Vector spaces
It is also possible to define a field and use modules over these to define vector spaces
and move on to the field of linear algebra.

6.3.4 Alternative definitions of abelian
One may also want to prove that all the different definitions we presented in 4.3 are
in fact equivalent. Some of the proof can be found in [7, Chapter 8] and would not
present too much challenge to implement. However, for the proof that the abelian
structure of the homsets can be inferred from the other definitions one will need to
prove a lot of properties and infer many standard limits from the definition. The
groundwork for this has been done in ThesisWork/AbelianCategory/AbelianToAd-
ditive.agda.

60

https://github.com/ByteBucket123/ThesisWorkGitCopy/tree/master/RProj
https://github.com/ByteBucket123/ThesisWorkGitCopy/blob/master/RProj/AbelianRProj.agda
https://github.com/ByteBucket123/ThesisWorkGitCopy/blob/master/AbelianCategory/AbelianToAdditive.agda
https://github.com/ByteBucket123/ThesisWorkGitCopy/blob/master/AbelianCategory/AbelianToAdditive.agda

6.3. Future work

6.3.5 More properties of RMod
As discussed in section 5.2, for a general definition of a module we let the underlying
set of the module be from a different universe than the commutative ring R. Thus
the category of modules RMod(U`′) depends on a universe U`′ which is the universe
that the underlying sets of the module are from. An interesting statement to prove
is that for two commutative rings R and S we have that RMod(U`′) ' SMod(U`′)
if and only if R ' S.

We may also denote the subcategory of finitely presented modules in RMod(U`′) as
fpRMod(U`′). Here it would be interesting to show that fpRMod(U`′) is indepen-
dent of the universe U`′ . With this we mean to prove that for any U`′ and U`′′ we
have that fpRMod(U`′) ' fpRMod(U`′′).

61

6. Conclusion

62

References

[1] G. Gonthier, “Formal proof—the fourcolor theorem,” Notices of the American
Mathematical Society, vol. 55, no. 11, pp. 1382–1393, 2008. [Online]. Available:
http://www.ams.org/notices/200811/tx081101382p.pdf.

[2] T. Univalent Foundations Program, Homotopy Type Theory: Univalent Foun-
dations of Mathematics. Institute for Advanced Study: https://homotopytypetheory.
org/book, 2013.

[3] Code developed during the thesis. [Online]. Available: https://github.com/
ByteBucket123/ThesisWorkGitCopy.

[4] B. C. Pierce, Types and Programming Languages. Massachusetts Institute of
Technology Cambridge, Massachusetts 02142: The MIT Press, 2002, isbn:
0262162091.

[5] C. Cohen, T. Coquand, S. Huber, and A. Mörtberg, Cubical type theory: A
constructive interpretation of the univalence axiom, 2016. arXiv: 1611.02108
[cs.LO].

[6] T. Coquand, S. Huber, and A. Mörtberg, On higher inductive types in cubical
type theory, 2018. arXiv: 1802.01170 [cs.LO].

[7] S. M. Lane, Categories for the working mathematician. Springer-Verlag, 1978,
isbn: 9781475747218.

[8] P. Freyd, Abelian Categories - An introduction to the theory of functors. Harper
& Row, 1964.

[9] A. Mörtberg, The structure identity principle in cubical agda, 2020-11. [On-
line]. Available: https://staff.math.su.se/anders.mortberg/slides/
PalmgrenMemorial2020.pdf.

[10] Introduction to univalent foundations of mathematics with agda. [Online]. Avail-
able: https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-
Notes/HoTT-UF-Agda.html#sns.

[11] J. P. M. S. von Branitz, “Higher groups via displayed univalent reflexive graphs
in cubical type theory,” 2020-10.

[12] S. Pettersson, “Additive, abelian, and exact categories,” MSc thesis, Uppsala
University, 2016.

[13] Cubical agda development team. [Online]. Available: https://github.com/
agda/cubical/graphs/contributors.

[14] H. Schubert, Kategorien II. Springer, 1970.
[15] R. M. F. David S Dummit, Abstract Algebra. Massachusetts Institute of Tech-

nology Cambridge, Massachusetts 02142: Wiley, 2003, isbn: 9780471433347.

63

http://www.ams.org/notices/200811/tx081101382p.pdf
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book
https://github.com/ByteBucket123/ThesisWorkGitCopy
https://github.com/ByteBucket123/ThesisWorkGitCopy
https://arxiv.org/abs/1611.02108
https://arxiv.org/abs/1611.02108
https://arxiv.org/abs/1802.01170
https://staff.math.su.se/anders.mortberg/slides/PalmgrenMemorial2020.pdf
https://staff.math.su.se/anders.mortberg/slides/PalmgrenMemorial2020.pdf
https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html#sns
https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html#sns
https://github.com/agda/cubical/graphs/contributors
https://github.com/agda/cubical/graphs/contributors

References

64

A. Modules And Algebra

A.1 Basic structures
For the sake of brevity we will assume the reader has some basic knowledge of
abstract algebra. We will however go through some of the basic definitions as a
reminder as we work our way towards a definition for the category RMod. For
a more detailed look see “Abstract Algebra” by David S Dummit and Richard M
Foote [15]. The first definition we will go over is a semigroup.

A.1.1 Semigroups
A semigroup is a type G : Type and a binary operator _ + _ : G → G → G that
satisfies the following:

• isSet G

• _ + _ is associative, meaning there is a function (abc : G) → a + (b + c) ≡
(a+ b) + c

Note that we may denote the operation on G by _+G _ where such a distinction is
important.

A.1.2 Monoids
The semigroup is only the most basic structure we will see, and a more commonly
used structure is the monoid. A monoid has the same basic structure as a semigroup
but adds the following

• There exists an identity element e : G such that (g : G) → g + e ≡ g and
(g : G)→ e+ g ≡ g.

It is trivial to see that the identity element is unique since if there were two e, e′ then
e ≡ e+e′ ≡ e′ by definition. Note that we may use eG to denote the identity element
of G when it is important to clarify which monoid the element belongs to. In many
cases monoids are both simple and useful, having the right amount of constraints to
make them easy to prove properties for.

A-1

A. Modules And Algebra

A.1.3 Monoid homomorphisms
Before we move on we will have to know what a monoid homomorphism is. For two
monoidsM and N a monoid homomorphism between them is a function f : M → N
that satisfy the following properties:

• The function f preserves the identity element, meaning f(eM) = eN .

• The function f preserves the group structure, meaning
(a b : M)→ f(a+M b) ≡ f(a) +N f(b).

These are then the morphisms in the category of monoids, called MON. We leave it
to the reader to verify that compositions of monoid homomorphism are themselves
monoid homomorphisms, and that these form a category under composition.

A.1.4 Groups
The most well known algebraic structure is the group. A Group G is a monoid that
adds the following structure:

• For any element g : G there exists an element in G, denoted (−g), such that
g + (−g) ≡ e and (−g) + g ≡ e.

Note here that (−g) : G is just an element, and that we have not defined an operator
−_ : G → G. However it is clear that such an operator can be inferred as −_ =
λg → (−g).

For group homomorphisms we would like them to preserve our inverses, meaning
f(−g) ≡ −f(g) but this follows from the fact that monoid homomorphism preserve
the monoid structure, and some simple manipulations. The proof is left as an
exercise to the reader.

A.1.5 Abelian Group
An abelian group is as the name suggests a group with one bit of added structure.
We say that a group is abelian if

• The operator _ + _ is commutative, meaning that we have a function (a b :
G)→ a+ b ≡ b+ a.

Here there is no reason to add extra constraints to the definition of group homo-
morphisms, since the added structure clearly is preserved by the original definition.

A.1.6 Rings
The last of our basic structures is the rings. Until now we have only concerned
ourselves with one operator per structure, but for rings we have two. We say that a

A-2

A.2. Modules and vector spaces

type R : Type with operators _ + _ : R → R → R and _ ∗ _ : R → R → R is a
ring if

• We have that R is an abelian group with respect to _ + _.

• We have that R is a monoid with respect to _ ∗ _.

• The operator _∗_ is distributive over _+_, meaning (r a b : G)→ r∗(a+b) ≡
(r ∗ a) + (r ∗ b).

Some authors replace the second condition in the definition of a ring with associativ-
ity of _∗_. They say that our definition is “a ring with unity element”, namely the
identity element of our monoid. For rings the standard notation for the identity ele-
ment for _+_ is 0. This is since many of its properties are similar to how 0 functions
under addition and multiplication for real numbers. Some important properties to
prove are 0 ∗ a ≡ 0 ≡ a ∗ 0 for all a : R and (−a) ∗ b ≡ −(a ∗ b) ≡ a ∗ (−b).

For ring homomorphism we will have to preserve the ring structure of _∗_ as well as
the group structure of _+_. Thus we add the constraint to monoid homomorphisms
that f(r) ∗ f(a) ≡ f(r ∗ a) for all r a : R.

The last structure we will look at is a commutative ring. This is simply a ring with
the added condition that

• For any a b : R we have that a ∗ b ≡ b ∗ a. Shortly, _ ∗ _ commutes.

We could also define more structures such as integral domains and fields, but these
will be left out since they are not relevant to our goal, which is to get to modules!

A.2 Modules and vector spaces
The reader with a background in physics or mathematical analysis will be familiar
with the concept of a vector space. The most common example is Rn where n :
N. Here the elements are vectors of length n, addition is element wise and so is
multiplication by a scalar.

A particularly useful generalization of a vector space is a module, which is defined
as a type M : Type along with a commutative ring R, operators _ +M _ : M →
M →M and _ · _ : R→M →M which satisfy

• M with _ +M _ is an abelian group.

• Multiplication with scalars is associative, which means (r s : R)→ (a : M)→
(r ∗ s) · a ≡ (r · (s · a)).

• Both _ +M _ and _ · _ distribute over each other, which means (r : R) →

A-3

A. Modules And Algebra

(a b : M) → r · (a +M b) ≡ (r · a) +M (r · b) and (r s : R) → (a : M) →
(r +R s) · a ≡ (r · a) +M (s · a).

• Scaling an element a of M with the identity of R, called 1R preserves the
element a, 1R · a ≡ a.

Note here that _ +M _ is a binary operator on M , while _ +R _, is the operator
on R. We will also refer to the identity element of the ring under _ ∗R _ as 1R and
the identity element of the module as 0M . The elements of R are also referred to as
scalars. Here there are many useful properties that has to be proven, and many of
them can be found in the code, see ThesisWork/RModules.

We should note that the definition of a vector space is very similar, it only adds
that the commutative ring R must be a field, which adds a division operator that
is the inverse of multiplication. There are also more general definitions, such as
left modules, with the operator _ ·Left _ : R → M → M and right modules where
_ ·Right _ : M → R → M . For these we do not require R to be commutative, and
thus get different structures depending on if the operator acts on the left or the
right. We see that if r ·Left a ≡ a ·Right r for all r : R and a : M then (r ∗ s) ·Left a ≡
r ·Left (s ·Left a) ≡ (a ·Right s) ·Right r ≡ a ·Right (s ∗ r). If R is commutative then
r ∗ s ≡ s ∗ r and we can prove that the left and right modules are the same, but if
R is not commutative this need not hold. Since the left and right modules are the
same for commutative rings we will choose to represent modules as left modules.

A.2.1 Module homomorphisms
Module homomorphisms are similar to ring homomorphisms in that we want to
preserve both the structure given by _ + _ and _ · _. Thus we way that for two
modules M and N , over the same commutative ring R, a function f : M → N is a
module homomorphism if

• f preserves _ + _, which means (a b : M)→ f(a+M b) ≡ f(a) +N f(b).

• f preserves _ · _, meaning (r : R)→ (a : M)→ f(r ·M a) ≡ r ·N f(a).

We sometimes say that a function is R-linear if it is a module homomorphism be-
tween modules over R. Note here that we did not demand that f(0M) ≡ 0N since
this can be inferred by a simple proof. This and many other properties are derived
in ThesisWorkGitCopy/RModules/RModuleHomomorphismProperties.agda .

Since the proof is so simple we will show the proof idea here, but will skip some of
the trivial details.

Proposition A.2.1. For any homomorphism f between groups G and H we need
not assume f(0G) ≡ 0H

A-4

https://github.com/ByteBucket123/ThesisWorkGitCopy/blob/master/RModules
https://github.com/ByteBucket123/ThesisWorkGitCopy/blob/master/RModules/RModuleHomomorphismProperties.agda

A.3. Categories of algebraic structures

Proof. We want to show f(0G) ≡ 0H from the basic group axioms and f(a + b) ≡
f(a) + f(b). The calculations are simple and goes as follows:

f(0G) ≡ f(0G) + (f(0G) + (−f(0G))) ≡ f(0G + 0G) + (−f(0G))
≡ f(0G) + (−f(0G)) ≡ 0H

where the steps in between, and which axiom is used where is left as an exercise to
the reader.

Now since a module is an abelian group over _ + _ this also holds for module
homomorphisms. The properties in ThesisWorkGitCopy/RModules/RModuleHo-
momorphismProperties.agda include

• (−0M) ≡ 0M

• r · 0M ≡ 0M and 0R · a ≡ 0M

• For a and b in a module M we have −(a+ b) ≡ (−a) + (−b)

• −(r · a) ≡ r · (−a).

• for a module homomorphism f we have that f(−a) ≡ −(f(a)).

among others.

A.3 Categories of algebraic structures
We have seen that there is a category of all small monoids, namely MON. Many
algebraic structures form categories in a similar manner, such as GRP for groups,
Ab for abelian groups and RNG for rings. The category we will be interested in
however is the category RMod of all small modules over R.

In RMod the objects are modules over R and the morphisms are module homomor-
phisms.

A.4 Modules with properties

A.4.1 Projective modules
Projective modules are important in applications since they have many well behaved
properties. We say that a module P over a commutative ring R is protective if

• For any module homomorphism f : P ⇒ X and surjective module homomor-
phism e : E ⇒ X where is a module homomorphism f ′ : P ⇒ E such that
f ′ ◦ e ≡ f .

A-5

https://github.com/ByteBucket123/ThesisWorkGitCopy/blob/master/RModules/RModuleHomomorphismProperties.agda
https://github.com/ByteBucket123/ThesisWorkGitCopy/blob/master/RModules/RModuleHomomorphismProperties.agda

A. Modules And Algebra

The reader with a background in category theory may realize that if we replace
module by object, homomorphism by morphism and surjective with epic then this
is the definition of a projective object in a category. The diagram for a projective
object P is the following

E

P X

e

f

f ′

. We will show later that epimorphisms in RMod are surjective and we can then
realize that the projective objects in RMod are the projective modules.

A-6

DEPARTMENT OF MATHEMATICAL SCIENCES
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden
www.chalmers.se

www.chalmers.se

	Introduction
	Homotopy type theory
	Type theory
	Propositions as types
	Universe levels
	Type theory and set theory
	Concrete dependent types
	TEXT-types and fibers

	Homotopy type theory
	Equivalence and the univalence axiom
	Useful tools
	Homotopy levels
	TEXT-types
	TEXT-types
	TEXT-types
	TEXT-types for TEXT

	Category Theory
	Definition of a category
	Some examples of categories
	Commutative diagrams

	Equality and categories
	Limits
	Initial and Terminal objects
	The zero object and zero morphisms
	Products
	Implementation

	Kernels
	Cocategory
	Initial, terminal and zero objects
	Coproducts
	Cokernels

	Morphism properties
	Monics and Epics
	Monic and injective

	Abelian categories
	Preadditive
	Additive
	Abelian category
	Implementation

	Implementation and challenges
	Equivalent ways to represent equivalence
	Implementing modules and module homomorphisms
	The category TEXT
	TEXT is a univalent category
	Univalence
	Liftings and univalence

	Proving TEXT is abelian
	Zero Object
	Product
	Coproduct
	Kernels
	Cokernels
	Monics are kernals
	Shortened proof
	Epics are cokernels

	TEXT is additive

	Conclusion
	Cubical agda version and disclaimer
	Reflections
	Future work
	Other abelian categories
	K-Theory
	Vector spaces
	Alternative definitions of abelian
	More properties of TEXT

	References
	Modules And Algebra
	Basic structures
	Semigroups
	Monoids
	Monoid homomorphisms
	Groups
	Abelian Group
	Rings

	Modules and vector spaces
	Module homomorphisms

	Categories of algebraic structures
	Modules with properties
	Projective modules

