
The CakeML Compiler Explorer
Visualizing how a verified compiler transforms expressions

Bachelor of Science thesis in Software Engineering

Rikard Hjort
Jakob Holmgren
Christian Persson

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden, June 2017

The CakeML Compiler Explorer
Visualizing how a verified compiler transforms expressions

Rikard Hjort
Jakob Holmgren
Christian Persson

© Rikard Hjort, Jakob Holmgren, Christian Persson, 2017.

Supervisor:
Magnus Myreen, Department of Computer Science and Engineering.
Examiner:
Arne Linde, Department of Computer Science and Engineering.

Bachelor’s Thesis 2017:24
Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg
SE-412 96 Göteborg
Sweden
Telephone +46 (0)31 772 1000

The Author grants to Chalmers University of Technology the non-exclusive right to
publish the Work electronically and in a non-commercial purpose make it accessible
on the Internet. The Author warrants that he/she is the author to the Work, and
warrants that the Work does not contain text, pictures or other material that violates
copyright law.
The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this agree-
ment. If the Author has signed a copyright agreement with a third party regarding
the Work, the Author warrants hereby that he/she has obtained any necessary per-
mission from this third party to let Chalmers University of Technology store the
Work electronically and make it accessible on the Internet.

Cover image:
Clker-Free-Vector-Images, 2014.
Available: https://pixabay.com/en/tree-plant-dead-tree-silhouette-294114.
Accessed: May 11, 2017.
Licence: CC0.

Typeset in LATEX
Göteborg, Sweden, May 2017

https://pixabay.com/en/tree-plant-dead-tree-silhouette-294114

Preface
This report is the result of a Bachelor thesis project at Chalmers University of
Technology, conducted during the spring semester of 2017.

We would like to express our deepest gratitude to our supervisor, Magnus Myreen,
for inspiring us with ideas and showing deep commitment to the project, spending
countless hours on discussing issues small and large with us.

We would also like to thank the CakeML team, both for their support and quick
answers to our questions, and for creating the interesting research project which is
the CakeML compiler.

Finally, we would like to thank Bachelor thesis groups DATX02-17-03 and DATX02-
17-29 for reading and giving us feedback on our report.

Rikard Hjort, Jakob Holmgren, and Christian Persson, Gothenburg, May 2017

Abstract

This report documents the development of a compiler explorer that provides insight
to the inner workings of the CakeML compiler. The compiler explorer can inter-
actively present information about an expression’s origin and descent at different
stages of compilation. The compiler explorer consists of a web application present-
ing the expression information and the CakeML compiler with our additions that
enable the tracking of expressions. The CakeML compiler is developed in the HOL4
system; the web application user interface in React and the web server in PHP.

Getting insight into the inner workings of a compiler is difficult. Several tools
exist for other compilers that either explain how a section of the source code relates
to the compiled machine code or provide snapshots of different compiler phases.
While these features are useful by themselves, combining them would give better
insight into the compiler’s transformations. The compiler explorer provides such a
combination.

The gained insight provided by the compiler explorer can both help developers
of the CakeML compiler find new optimizations and improve education about the
compiler.

Keywords: compilers; education; visualization; ML; functional programming;
logic programming; algorithms; formal languages

Sammandrag

Denna rapport beskriver utvecklingen av en kompilatorutforskare som ger insyn
i CakeML-kompilatorns inre transformationer. Kompilatorutforskaren kan inter-
aktivt presentera information om uttrycks ursprung efter olika kompilationssteg.
Kompilatorutforskaren består av en webbapplikation som presenterar uttryck och
deras härkomst, samt tillägg till CakeML-kompilatorn som tillåter denna att spåra
uttrycks härkomst.

Att förstå hur en specifik kompilator fungerar är svårt. Det finns flera verk-
tyg för andra kompilatorer som antingen visar hur källkod relaterar till maskinkod
efter kompilering, eller kan visa ögonblickbilder efter olika kompileringssteg. Dessa
funktioner är visserligen användbara var för sig, men att kombinera dem skulle göra
kompilatorns transformationer mer lättförståeliga. Kompilatorutforskaren erbjuder
en sådan kombination.

De insikter som kompilatornsutforskaren erbjuder kan hjälpa nuvarande utveck-
lare av CakeML-kompilatorn att identifiera möjliga kodoptimeringar samt under-
lätta utbildning om kompilatorn.

Nyckelord: kompilatorer; utbildning; visualisering; ML; funktionell programmer-
ing; logikprogrammering; algoritmer; formella språk

Contents

List of Figures viii

Nomenclature ix

1 Introduction 1
1.1 Problem specification . 1
1.2 Solution and contribution . 2
1.3 Structure of this report . 2

2 Technical Background 4
2.1 Verified compilation . 4
2.2 CakeML . 5

2.2.1 The compiler and its general structure 5
2.2.2 The early intermediate languages 5
2.2.3 Line annotations on expressions 8
2.2.4 De Bruijn indexing . 8

2.3 HOL4 . 9
2.4 React . 11

3 Prestudy 12
3.1 Goal for the final product . 12
3.2 Delimitations in scope . 13

3.2.1 Speed and responsiveness of the web application 13
3.2.2 Tracing source position of declarations 13
3.2.3 Tracing prelude code . 13
3.2.4 Updating proofs . 14

3.3 Collecting user requirements . 14
3.4 Subgoals of project . 14

3.4.1 Adding position information to expressions 14
3.4.2 Outputting position information from the compiler 15
3.4.3 Building a web application . 15

3.5 Similar projects . 15
3.5.1 The nanopass compiler framework 15
3.5.2 LLVM Visualization tool . 15

v

CONTENTS CONTENTS

3.5.3 Godbolt’s compiler explorer 16
3.5.4 CakeML’s old compiler explorer 16

4 Results 17
4.1 Adding traces to the compiler . 17

4.1.1 The tra data type . 18
4.1.2 Encoding ancestry with traces 18
4.1.3 Decoding ancestry from traces 21
4.1.4 Adding traces to declarations 22
4.1.5 Turning traces off using None 23

4.2 Intermediate languages for output . 24
4.2.1 presLang . 25
4.2.2 displayLang . 26
4.2.3 jsonLang . 27
4.2.4 Handling De Bruijn indices . 29

4.3 Web application . 30
4.3.1 Server-side application . 31
4.3.2 Graphical user interface . 31
4.3.3 Rendering HTML using React components 31
4.3.4 Highlighting expressions on click 34

5 Discussion 35
5.1 Planning the project . 35

5.1.1 Getting user input . 35
5.1.2 Learning HOL and CakeML 36
5.1.3 Division of labor . 36

5.2 Compiler changes . 37
5.2.1 Implementation of traces . 37
5.2.2 New intermediate languages 37
5.2.3 Handling De Bruijn indices . 38
5.2.4 Testing changes to the compiler 38

5.3 Web application . 39
5.3.1 Using React . 39
5.3.2 Performance . 39

5.4 Suitability for intended uses . 40
5.5 Effects on society as a whole . 41
5.6 Future work . 41

5.6.1 Improving overview . 41
5.6.2 Source code highlighting . 42
5.6.3 Pretty-printing . 42
5.6.4 Optimizations . 43
5.6.5 Tracing the entire compiler . 44
5.6.6 Refactoring tra . 44
5.6.7 Tracing prelude code . 44

vi

CONTENTS CONTENTS

6 Conclusion 46

Bibliography 47

A Survey responses I

vii

List of Figures

2.1 Visual description of the CakeML compiler 6
2.2 exp data type in the ast language inside CakeML 7
2.3 dec data type in the modLang language inside CakeML 8
2.4 Graphical representation of De Bruijn indexing 9
2.5 Example input code to HOL4 . 10
2.6 HOL4 representation of the function defined in Fig. 2.5 10
2.7 Example code for a simple React component 11

4.1 tra data type . 18
4.2 Converting from source AST to modLang 19
4.3 Structure of the first trace t1 of an expression 19
4.4 Trace t1 being split into two traces using Cons 20
4.5 Conversion of Handle from exhLang to patLang 20
4.6 Two traces being merged into one using Union 21
4.7 Algorithm for determining ancestry 22
4.8 Start trace for orphan expressions in decLang 23
4.9 mk_cons, as its infix version § . 24
4.10 mk_union . 24
4.11 Flow of a program through the modified compiler 25
4.12 conF data type in presLang . 26
4.13 sExp data type in displayLang . 26
4.14 obj data type in jsonLang . 27
4.15 Translation of displayLang to jsonLang 28
4.16 Translation of trace to jsonLang . 28
4.17 Removing De Bruijn indexes in conversion to presLang 29
4.18 Example of replacing De Bruijn indices with variable names 30
4.19 Web application GUI before any user interaction 32
4.20 Web application GUI after clicking the “Compile” button 32
4.21 Active expression in the web application GUI 33
4.22 Ancestor expression in the web application GUI 33
4.23 Descendant expression in the web application GUI 33

viii

Nomenclature

AST Abstract syntax tree, page 1

CIL Compilation Intermediate Language, page 24

component In the context of React: a function that takes a JavaScript
object and produces a React element, page 11

element In the context of React: a JavaScript object representing
something that can be displayed on a web page, page 11

GUI Graphical User Interface, page 11

HOL4 Higher Order Logic theorem prover, which CakeML is de-
fined in, page 9

IL Intermediate Language. Intermediate languages are used in
compilers to transform a source program step-wise, by trans-
lating between similar but progressively more machine-like
languages, page 5

orphan expression An expression created directly from a declaration during a
compiler pass, page 22

pass Single traversal of the entire program by the compiler, page 1

PIL , page 24

prelude A large collection of predefined functions that the CakeML
compiler adds automatically at compilation, page 13

prop In the context of React: a parameter to a function that is a
React component, page 11

trace Data showing the path a piece of program in an IL has taken
through the compiler, page 17

ix

1
Introduction

Compilers play a central role in programming. They are the programs that can take
source code written in a high-level language such as C, Java, Python, Haskell or
ML and turn it into a machine-code file that a computer can run. In the process
of compiling, many compilers optimize the code the programmer wrote to make the
program more efficient while leaving behavior, or semantics, unchanged.

There is also a small set of compilers which are formally verified, meaning they
are proven not to change the semantics of the input program. Examples of such
compilers are CompCert which is a verified compiler for C code [1], [2] and CakeML
which is likely to be the first verified compiler to be bootstrapped, i.e., that has been
used to compile its source code [3]. The CakeML compiler is not only verified but also
optimizes the compiled code [4, Sec. 5, 7.2] and by its design allows “implementation
of optimisations at practically any level of abstraction” [4, Sec. 1].

The development team behind CakeML has expressed a desire to perform more
optimizations. As an aid in this work, they have suggested a new tool, a compiler
explorer, which would enable them to comprehend the inner workings of the com-
piler better. Such a tool should show several intermediate representations in the
compiler side by side. Also, it should allow the user to select a piece of code in
one representation and have the corresponding pieces of code in the other represen-
tations highlighted. The idea is that the new tool would enable the developers to
easily inspect what the compiler is doing which would help in the development of
optimizations. Furthermore, it is expected that such a tool would aid new develop-
ers in quickly gaining an understanding of the code. This report is about the initial
development of such an explorer tool.

1.1 Problem specification
As it stands, the compiler has no debugging tool or other means for stepping through
its code. Because of this, it is hard to exactly comprehend what the compiler does
since all one can do is read its code and run sections of it manually, which is tedious.
The result of this obstacle is that it is hard to identify possible code optimizations
and to introduce the compiler to new developers.

A feature missing in the current compiler is the possibility to follow parts of
the input program as it moves through the compiler. At the moment, the compiler
creates abstract syntax trees (ASTs) which are traversed a large number of times.
Each traversal called a compiler phase, or a compiler pass, introduces some change
until the AST can be turned into machine code. In this way, the different parts of

1

1.2. SOLUTION AND CONTRIBUTION 1. Introduction

the program are gradually transformed. However, there is no information relating a
specific part of the program at a certain pass with its earlier or later forms.

1.2 Solution and contribution
We have created a way to follow expressions through the CakeML compiler by
modifying the intermediate representations. We have also built a simple way to
output intermediate representations from the compiler in a JSON format which can
easily be consumed by a web application.

To show the usefulness of these new features we have built a proof-of-concept web
application in which the user can compile a CakeML program, and for each inter-
mediate representation present the information given by the compiler. By clicking
an expression in one of these representations, the earlier and later forms of the same
expression get highlighted.

This way to trace expressions through a compiler is, as far as we can deter-
mine, completely novel. Our way of encoding position information, which will be
discussed in Section 4.1, is also quite minimal yet contains all information necessary
to follow the transformations of an expression. Furthermore, our solution for out-
putting JSON information from the compiler is modular, and only small additions
are required to add support for new compiler passes.

Finally, we have solved several issues around the presentation, such as how to
follow expressions that are created by the compiler rather than appearing in the
source code and how to present the internal states in a readable way even in the
presence of De Bruijn indexing. De Bruijn indexing, which will be explained in
Section 2.2.4, is a technique for binding variables in expressions that does not use
any variable names, which makes the code hard to parse for a human reader.

A potential drawback of introducing these changes to the compiler is the overhead
in computation and memory it carries with it. To tackle this, we have introduced a
way of turning off the tracking data from the start, resulting in very little overhead.

1.3 Structure of this report
The structure of this report is as follows.

• In Chapter 2 we introduce technical knowledge needed to follow the remainder
of the report. We give an introduction to verified compilation, CakeML and
its internal structure; the HOL4 interactive theorem prover; and a framework
for building a modern web application, React.

• After having introduced the necessary theory, we continue in Chapter 3 and
define our goal and delimitations for the compiler explorer in detail. We also
explain how we have worked, and examine projects with similar goals to ours.

• In Chapter 4 we describe our solution in detail, first focusing on the changes
to the compiler and after that on how to use its output in a web application.

2

1.3. STRUCTURE OF THIS REPORT 1. Introduction

• Chapter 5 is a critical look at our own process and its possible effects on the
final result. As well as the result itself, we discuss its fit as a solution to our
problem, along with suggested future improvements.

• Chapter 6 is a closing summary of this report, its results, and our main dis-
cussion points.

We assume that the reader has a fundamental knowledge of functional program-
ming or lambda calculus as this project relies heavily on these topics, especially the
sections covering De Bruijn indexing and the changes we have made to the CakeML
compiler. However, it is our belief that a reader unfamiliar with these topics but
experienced in programming and familiar with the basics of context-free grammars
should have little trouble following the main ideas presented.

3

2
Technical Background

In this chapter, we introduce important concepts that will play a crucial role in
the rest of this report. Given the array of topics that needs to be introduced, this
chapter is necessarily somewhat fragmented, and each section can be read without
knowledge of the others. This siloing of concepts allows the reader to use this
chapter as a general reference, and to look up concepts as needed. The structure of
this chapter is as follows.

• Section 2.1 explains the concept of verified compilation and its importance in
more detail.

• Section 2.2 covers the CakeML compiler, especially the concepts of intermedi-
ate languages, line annotations, and De Bruijn indexing.

• Section 2.3 gives an introduction to writing functions in HOL4.

• Section 2.4 covers React, a JavaScript library used to build our web applica-
tion.

2.1 Verified compilation
The CakeML compiler is a verified compiler, meaning it is developed together with a
mathematical proof which shows that the compiler preserves program behavior [3].
In this section, we briefly describe the idea of verified compilation.

While compilers play a crucial role in programming, they are themselves just
programs, and thus susceptible to the same weaknesses as the programs they com-
pile. Particularly in the case of an optimizing compiler, they might be large and
highly complex programs. As such, they run the risk of having bugs. A bug in a
compiler means that the compiled program behaves differently than what is specified
in the semantics of the input language. Such a bug is called a miscompilation. The
existence of miscompilations poses the question whether a given compiler actually
can be trusted. If a compiler might miscompile, any proofs of the correctness of
the program in the source language risk being void. And indeed miscompilation
happens—compilers have been shown to have bugs [5].

Miscompilation is the motivating problem behind verifying a compiler. A verified
compiler has been proven to never miscompile, i.e., never change the behavior of the
compiled program. By using standard axioms and inference rules of logic, it can be
shown that the compiler will not miscompile.

4

2.2. CAKEML 2. Technical Background

2.2 CakeML
This section describes some techniques used in the CakeML compiler that will be
important to our project. Firstly, we give an overview of the CakeML compiler and
its general structure. Secondly, we explain the role of some intermediate languages
in the CakeML compiler. Thirdly, we explain De Bruijn indexing, a technique used
in the compiler that our project needs to roll back to make the code human readable.
Finally, we look at how the compiler creates line annotations for its input code, a
feature which we will utilize later.

2.2.1 The compiler and its general structure
The CakeML compiler is a verified compiler for a significant subset of the Stan-
dard ML programming language and compiles to a wide range of popular architec-
tures [4, Sec. 1]. A special type of semantics called functional big-step semantics
are used to define program behavior [6], and it is proven that the machine code
produced by the compiler has identical semantics to the input program [3]. The
proof is conducted with the HOL4 theorem prover, which was in turn proven to be
correct by Kumar et al. [7], and which will be presented in more detail in Section
2.3. Furthermore, the CakeML compiler can be run as a function in the HOL4 logic,
which can be applied to the compiler source code, producing a machine code rep-
resentation of itself that is verified; the compiler is thus bootstrapped and is likely
the first verified compiler to be so [3].

In the process of compiling, the CakeML compiler uses 12 intermediate languages
(ILs) on different levels of abstraction, from source to machine code. These languages
and their roles in optimizing are described by Tan et al. [4].

Fig. 2.1 shows the progression of a source program through the compiler, with
comments on each compiler pass. The compilation is shown from top to bottom,
with each arrow representing a compiler pass, and each box representing an IL. In
the code base for CakeML [8], each language has an abbreviated name relating to its
role. For example, the sixth IL from the top, which introduces exhaustive pattern
matches, is called exhLang.

2.2.2 The early intermediate languages
This report will deal mainly with the early intermediate languages, from the boxes
“source AST” up to and including “no pat. match” in Figure 2.1. These languages
all have roughly the same syntax. In this section, we will give an overview of what
the syntax looks like to get familiar with its general structure.

Fig. 2.2 shows the syntax for the expressions in the source AST as an algebraic
data type, simply called ast in CakeML. It captures all syntactically valid expres-
sions in a CakeML program and is recursively defined. Every line after the first
begins with a constructor, followed by one or more types, declaring what the type
the arguments to the constructor must have. There are a few keywords in this
definition that will recur in this report, which we will explain here. alist and list
both indicate a list of a certain type, so string list indicates a list of strings. option

5

2.2. CAKEML 2. Technical Background

Compiler transformations

source syntax

source AST

LanguagesValues

Parse concrete syntax

a
b
st

ra
ct

 v
a
lu

e
s

in
cl

.
cl

o
su

re
s

a
n

d
 r

e
f

p
o
in

te
rs

a
b
st

ra
ct

 v
a
lu

e
s

in
cl

.
re

f
a
n
d
 c

o
d
e
 p

o
in

te
rs

m
a
ch

in
e
 w

o
rd

s
a
n
d
 c

o
d
e
 l
a
b
e
ls

6
4

-b
it

w

o
rd

s
no modules

no cons names

no declarations

exhaustive
pat. matches

no pat. match

3
2

-b
it

w
o
rd

s

ClosLang:
last language
with closures
(has multi-arg

closures)

Infer types, exit if fail

Eliminate modules

Replace constructor
names with numbers

Reduce declarations to
exps; introduce global vars

Make patterns exhaustive

Compile pattern matches
to nested Ifs and Lets

Rephrase language

Track where closure values
flow; annotate program

Fuse function calls/apps
into multi-arg calls/apps

Introduce C-style fast
calls wherever possible

Remove deadcode

Prepare for closure conv.

Perform closure conv.

Inline small functions

Fold constants and
shrink Lets

Split over-sized functions
into many small functions

Compile global vars into a
dynamically resized array

Optimise Let-expressions

Switch to imperative style

Remove deadcode

Combine adjacent
memory allocations

Remove data abstraction

Simplify program

Select target instructions

Perform SSA-like renaming

Force two-reg code (if req.)

Reduce caller-saved vars

Allocate register names

Concretise stack

Implement GC primitive

Turn stack access into
memory acceses

Rename registers to match
arch registers/conventions

Flatten code

Delete no-ops (Tick, Skip)

Encode program as
concrete machine code

BVL:
functional
language
without

closures

only 1 global,
handle in call

DataLang:
imperative
language

WordLang:
imperative

language with
machine words,

memory and
a GC primitive

StackLang:
imperative
language

with array-like
stack and

optional GC

LabLang:
assembly lang.

ARMv6

ARMv8 x86-64 MIPS-64 RISC-V

All languages communicate with the external world
via a byte-array-based foreign-function interface.

Move nullary constructor
patterns upwards

High-level comments

Parsing and type inference
are essentially unchanged
from the previous version.

The initial phases of the
compiler backend
successively remove
features from the input
language. These phases
remove modules,
declarations, pattern
matching. All names are
turned into representations
based on the natural
numbers, e.g. de Brujin
indices are used for local
variables and constructor
names become numbers.

ClosLang is a language for
optimising function calls
before closure conversion.
These phases fuse all
single-argument function
applications into true multi-
argument applications, and
attempt to turn as many
function applications as
possible into fast C-like
calls to known functions.

The languages after closure
converstion but before data
becomes concrete machine
words, i.e. languages from
BVL to DataLang, are
particularly simple both to
write optimisations for
and for verification proofs.
The compiler performs
many simple optimisations
in these laguages, including
function inlining, constant
folding and merging of
nearby memory allocations.

One of the most delicate
compiler phases. This
introduces the bit-level
data representation & GC.

The rest of the compiler is
similar to the backend of a
simple compiler for a C-like
language. Our compiler
implements fast long jumps
in order to support ML-style
execptions. The compiler
differs from a C compiler
by having to interact with
and implement the GC.

The GC is introduced as a
language primitive on
compilation into WordLang.
Further down in StackLang,
the GC is implemented as a
helper function that is
attached to the currently
compiled program.

The final stage turns a
target-neutral assembly
language to concrete
machine for for five target
architectures, including
32- and 64-bit architectures,
and bigendian and
littleendian architectures.

Fig. 2.1. Visual description of the CakeML compiler. Boxes represent intermedi-
ate languages (ILs) and arrows compiler passes. Illustration provided by Magnus
Myreen [9]. Reproduced with permission.

6

2.2. CAKEML 2. Technical Background

exp =
Raise exp
| Handle exp ((pat, exp) alist)
| Lit lit
| Con ((string, string) id option) (exp list)
| Var ((string, string) id)
| Fun string exp
| App ast$op (exp list)
| Log lop exp exp
| If exp exp exp
| Mat exp ((pat, exp) alist)
| Let (string option) exp exp
| Letrec ((string, string × exp) alist) exp
| Tannot exp t
| Lannot exp locs

Fig. 2.2. exp data type in the ast language inside CakeML. exp represents general
expressions in CakeML. This data type is representative for the expression data
types in several of the languages that follow. $ is used to give a fully qualified
name to a type, so ast$op refers to the op type in the ast module. The × symbol
indicates a tuple. Taken from the source code of the CakeML compiler [8].

means the value may but does not have to be present, so an expression of the type
string option can be either NONE or SOME x where x is a string. id is defined as
(ν, ξ) id = Short ξ | Long ν ((ν, ξ) id), simply meaning it is a Short of one
type, wrapped an arbitrary amount of times by Long values with some other type.
For example, (string, string)id can be used to define arbitrarily long qualified names,
such as foo.bar.baz, which would be the value baz in the module bar, which in
turn is inside the module foo.

The intermediate languages following ast are, in turn, modLang, conLang, decLang,
exhLang, and patLang. There are of course more languages after these ones, but
these are the ones this report covers. ast, modLang and conLang all have declara-
tions, which disappear in decLang, from which point the program is represented by
a single expression, which remains the case up until closLang which introduces a
code table, i.e., an immutable code store.

Declarations in ast, modLang and conLang all look roughly the same. Fig. 2.3
shows the dec data type in modLang. A declaration in CakeML is the assignment of
an expression to a variable, such as val x = 3 + 5, where 3 + 5 is the expression,
and it would be encoded as a Dlet. There are some variants to this, such as decla-
rations for mutually recursive declarations (Dletrec), but that is a minor point for
the purposes of this report.

7

2.2. CAKEML 2. Technical Background

dec =
Dlet num modLang$exp
| Dletrec ((string, string × modLang$exp) alist)
| Dtype (string list) type_def
| Dexn (string list) string (t list)

Fig. 2.3. dec data type in the modLang language inside CakeML. dec represents
general declarations in CakeML. This data type is also similar to the declaration
data type in conLang. Top level declarations are encoded with Dlet, mutually
recursive declarations are encoded with Dletrec, type declarations are encoded
with Dtype, and new exceptions are encoded with Dexn. Taken from the source
code of the CakeML compiler [8].

2.2.3 Line annotations on expressions
In the first compiler pass, from “source syntax” to “source AST” in Fig. 2.1, the
parser phase of the CakeML compiler wraps each expression in the source AST in a
line annotation, using the Lannot exp locs constructor. This constructor takes an
expression to annotate and a pair of natural number pairs (called locs), representing
the start and end positions of each expression. The first number pair is the line and
column where the expression starts, and the second the line and column where it
ends (inclusive, indexed from 1). If for example, the statement

val x = 3 + 5;

appears at the beginning of the first line, the starting position of the expression
3 + 5 is (1,9) and the end position is (1,13). The fact that each location is
unique—two expressions can not both start and end in the same place in the source
text—will be useful as a point of departure for our tracing of expressions later, since
we will need to assign unique identifiers to expressions. At the start of this project,
the parser only annotated expressions and not declarations. However, similar anno-
tations were added to declarations in April 20171.

2.2.4 De Bruijn indexing
Starting from patLang, represented by the seventh box in Fig. 2.1, the CakeML
compiler uses De Bruijn indexing, a notation scheme originally invented for lambda
expressions. This notation looks different from the standard variable naming used in
lambda calculus as well as many high-level programming languages where a variable
defined with the name x will from then on always be referenced by writing x. In
this section, we give a short introduction to De Bruijn indexing.

De Bruijn indices are numbers which replace variable names according to a spe-
cific scheme. In short, De Bruijn indexing uses an ordinal number to indicate where
a variable was bound [10]. Starting from 0, this means 0 represents the nearest

1The change was introduced by commit 7fbd1d01861385d3298aa5e6ad147a6de2b69f48 in [8].

8

2.3. HOL4 2. Technical Background

Fig. 2.4. Graphical representation of De Bruijn indexing. The arrows relate each
number to the λ that binds it. Adapted from [11], CC0.

enclosing lambda, 1 the next one, and so on. An example of a simple lambda ex-
pression can be seen in Expression 2.1, which contains four bound variables. With
De Bruijn indices instead of variable names, we get the result seen in Expression 2.2.
As can be seen by comparing the expressions, every instance of 0 denotes a different
variable, namely their nearest enclosing λ. If there were any unbound variables in
this expression, they would have an index larger than the number of lambdas en-
closing it. For example, if any of the numbers were 3, it would reference an unbound
variable.

λx. (λy. y (λz. z))(λu. x u) (2.1)

λ (λ 0 (λ 0)) (λ 1 0) (2.2)

Another view of this expression is shown in Fig. 2.4. Here Expression 2.2 is
decorated with arrows from the numbers to the λ by which they are bound.

2.3 HOL4
CakeML is written using HOL4, the latest version of the HOL system which is
designed to support interactive theorem proving in higher order logic, hence the
acronym HOL. One interacts with the HOL4 system using the read-eval-print loop
of the general-purpose programming language Standard ML [12].

In HOL one builds functions and theorems which describe them. Fig. 2.5 gives an
example of a function in HOL. We deliberately use a contrived yet working example
of a function that returns either its input or its input incremented by one. It does
this by first calculating a local variable, modRes, and then pattern match on its
value.

The resulting definition in HOL, seen in Fig. 2.6, looks only a little bit different.
The result is a theorem stating that for all n’s, inc_odd_num n will assume the
value n + 1, n or ARB, where ARB represents an arbitrary number. The last case
was not something included in the input but rather was inferred by HOL. In HOL,
every function must be a total function. Since modRes has type num and we only
covered the cases of 0 and 1, HOL adds a case for every remaining possible value.

9

2.3. HOL4 2. Technical Background

val inc_odd_num_def = Define‘
inc_odd_num n =

let modRes = n MOD 2 in
case modRes of

| 1 => n+1
| 0 => n‘;

Fig. 2.5. Example input code to HOL4. This code defines a simple function which
increments its input by 1 if it is odd, and returns it unchanged if it is even.

inc_odd_num (n : num) =
(let (modRes : num) = n MOD (2 : num)
in
case modRes of
(1 : num) ⇒ n + (1 : num)
| (0 : num) ⇒ n
| v ⇒ (ARB : num))

Fig. 2.6. HOL4 representation of the function defined in Fig. 2.5. The function is
encoded as a theorem, and all possible cases for the result of modRes are covered.
All variables are shown with their types. In this case, the only type is num, which
represents natural numbers.

10

2.4. REACT 2. Technical Background

const Header = ({ firstName, lastName }) => (
Hello, {firstName}! Your last name is {lastName}.
)

Fig. 2.7. Example code for a simple React component. The text contained within
the tags is affected by the values of the firstName and lastName props,
respectively.

2.4 React
For the graphical user interface (GUI) of our web application, we make use of a
library called React, developed by Facebook [13]. The purpose of React is to alter
a web page by changing its HTML dynamically.

Web browsers render web pages using the HTML language. HTML elements
are organized together in a tree structure describing the structure and content of a
web page. Web browsers parse this tree structure to display visual elements on the
screen, and if the HTML elements in the tree change the web browser updates the
visual elements.

React is based on a similar model to HTML, creating a tree of React elements.
React elements are JavaScript objects that represent something that can be rendered
by a web browser. In a web application using React, the React framework converts
React elements to HTML elements, which are then rendered by the web browser [14].

Instead of manipulating React elements directly, one can define React compo-
nents, which are JavaScript functions that return React elements [15]. The pa-
rameters to a React component are called that component’s props. Since a React
component is an ordinary JavaScript function, the props can be of any type.

Since React components return React elements, they can be used in places where
React elements are expected. Thus, one can denote components as HTML tags,
i.e. the component Foo can be denoted as <Foo>. This convention will be used
throughout this report.

A code example of a simple React component representing a web page header
can be seen in Fig. 2.7. The <Header> component takes two props, firstName and
lastName. It returns a React element representing a HTML element contain-
ing the text “Hello, firstName! Your last name is lastName.” where firstName
and lastName are substituted with the values of the firstName and lastName
props, respectively.

11

3
Prestudy

In this chapter we take a closer look at the problem and our suggested solution,
before going into the solution in depth in Chapter 4.

In Section 3.1 we define our main goal for the project, which is to build a web
application that allows the user to click expressions and see their ancestors and
descendants in other ILs. To do this, we need to introduce changes to the compiler,
both for following expressions through the compiler and for outputting the necessary
data from the compiler. In Section 3.2 we go on to define the outer boundaries of this
project, i.e., some things that are of interest but that we will not concern ourselves
with as part of this project.

We also describe the way in which we go about building the solution. Firstly, we
explain how we collect user requirements from the core developer team in Section
3.3. Secondly, we explain how we divide our main goal into high-level subgoals that
can be completed separately in Section 3.4.

We conclude this chapter by surveying the field of similar projects in Section
3.5, and conclude that we find no project that provides the feature of following
expressions as our solution does.

3.1 Goal for the final product
The final product that this project sets out to produce is called the “compiler ex-
plorer”. We based our goal for this product on correspondence and discussions with
the CakeML development team.

The compiler explorer should be a web application in which the user can write
CakeML source code in an editor or text field, compile it and get a printed view of
what the program looks like after each compiler pass. Furthermore, the user should
be able to view the state at two differents points in the compilation side by side,
click a declaration or expression in one of these states, and have the corresponding
parts of the program in the other state highlighted. It should be possible to view
the initial state (the source program) in this way, including highlights.

The purpose of the compiler explorer is twofold. Firstly, it would allow for current
developers to more easily understand the intricacies of the compiler passes, the main
purpose being that they can then identify potential optimizations the compiler could
perform. Secondly, it would make it easier for new CakeML developers to learn and
understand the compiler.

Given that we need information from the compiler before we can build the web
application, we decided to gear the project primarily towards figuring out the best

12

3.2. DELIMITATIONS IN SCOPE 3. Prestudy

way of modifying the existing compiler, verify the soundness of our suggested mod-
ifications with the developer team, and then making the necessary changes.

Finally, we set a goal for this project as a whole of developing a basic understand-
ing of the CakeML compiler, which we believe will give us a better understanding of
compilers in general, and of the process necessary for formally verifying a compiler.

3.2 Delimitations in scope
Due to the time constraints and small workforce in this project, we have deemed it
necessary to limit our scope. The following sections will make explicit some aspects
of the compiler explorer that are important for its usability and quality, but which
we have chosen to not focus on.

3.2.1 Speed and responsiveness of the web application
The compiler explorer makes use of tree traversal algorithms for highlighting. These
traversal algorithms visit every node in quite large ASTs, making the compiler ex-
plorer somewhat slow. The highlighting can take tens of seconds in the Chromium
browser, running on modern laptops. Several possible optimizations could solve this
problem, and we discuss them in Section 5.3.2. However, in the face of other pri-
orities, such as having an otherwise complete user interface, we have opted not to
perform these optimizations.

3.2.2 Tracing source position of declarations
As mentioned in Section 2.2.3, declarations did not get annotated with their position
in the source code until April 2017, several months into this project. We considered
a workaround but ultimately decided it would be too complex to figure out source
position of declarations. Therefore, we have opted to leave out highlighting for
declarations.

3.2.3 Tracing prelude code
After reading and parsing the source program as input, the CakeML compiler adds
a prelude to the source program, which contains a large number of predefined func-
tions. This prelude is not at any point during the rest of the compilation separated
from the user-supplied source code. However, it contains no position information.
Therefore, this code appears in the compiler explorer, but without the possibility to
follow its transformations, and the user of the web application will have to search
through it to find the parts of the program that was written by them. We have
discussed several methods for marking and handling the issues with the prelude
code but ultimately decided not to implement a solution. However, we suggest it as
future work and outline a solution in Section 5.6.

13

3.3. COLLECTING USER REQUIREMENTS 3. Prestudy

3.2.4 Updating proofs
After our modifications to the compiler, some proofs for the compiler need to be
updated. After consulting with our supervisor, we have decided to leave the updating
of proofs to him and the other developers, since to update the proofs we would have
to learn much more about theorem proving in HOL than there has been time for.

3.3 Collecting user requirements
The way we collect user requirements and clarify specifications is by direct contact
with the CakeML developers. Our main contact with the team is through our
supervisor, Magnus Myreen, who is one of the current developers listed on the
CakeML project website [16]. We also participated in an initial conference call
with the developer team at the start of the project, and have posted questions on
the CakeML developer mailing list and the CakeML IRC channel, all of which are
referenced from the CakeML website, mentioned above.

The main requirements for the compiler explorer, such as that it should be a web
application, print ILs and have the described highlighting feature, have been solicited
from our supervisor and were defined in the project specification from the start. The
same is true of the purpose of the compiler explorer in aiding optimization efforts and
learning. An informal survey conducted on the developer mailing list in May 2017
indicated that the other developers had similar expectations on the explorer. The
survey and responses can be found in Appendix A.

3.4 Subgoals of project
We turn our attention to the division of this project into discrete, high-level subgoals.
As the web interface will need to have information about the state at every IL, the
compiler will have to provide such information, meaning that it must both contain
the information and output it at compilation. Based on this simple analysis, we
have arrived at the following subdivision, which we cover in the following three
subsections. In reaching these goals, it is also an objective of ours to produce a
high-quality solution from a software development perspective.

3.4.1 Adding position information to expressions
To be able to follow an expression from source code to any intermediate language,
ancestry needs to be encoded in the expressions somehow. From looking at the
expressions in one IL, it should be possible to apply an algorithm which decides
what expressions in a previous IL it has originated from, and what expressions in
a later IL it gives rise to. It is worth noting that since the CakeML compiler lives
within HOL, the solution must be purely functional and have minimal impact on
existing proofs, i.e., the compiler is not allowed to change much in structure.

14

3.5. SIMILAR PROJECTS 3. Prestudy

3.4.2 Outputting position information from the compiler
Once we have found a way to structure positional information and track it through
the ILs, we will need to output the state of the program, including position infor-
mation, at every IL. The output will need to be structured in such a way that the
web application can easily consume it. A suitable format is thus JSON since it is a
standard language that JavaScript can easily read in.

3.4.3 Building a web application
We will need to create a web application which can present the information we
output from the compiler. The web application should match the description in
Section 3.1. Solving this problem also includes figuring out an intuitive way to
represent the ILs textually. While there are no clear rules for how to represent the
ILs as text, using standard conventions for functional programming and context-free
grammars we should find ways of printing the trees in a readable fashion so that it
is intelligible to most programmers.

3.5 Similar projects
To the best of our knowledge, there exists no tool for visualizing the transformations
of a compiler in the way we are proposing, where each IL can be viewed, and
corresponding expressions in different ILs are highlighted together. In our search
for related work, we have come across four projects which each provide parts of what
we are proposing.

3.5.1 The nanopass compiler framework
The nanopass compiler framework by Sarkar et al. provides an unparser:

The unparser can also translate the record structures into their im-
plied parenthesized forms, i.e., with no host-language translations, allow-
ing the student to pretty-print intermediate language code. [17, Sec. 4.1]

However, only this possibility to pretty-print is mentioned, and no mention of
any tracing capabilities is made.

3.5.2 LLVM Visualization tool
The LLVM project has a visualization tool which, like the nanopass framework and
our explorer, can show the state of the compiler after each pass [18]. The visualiza-
tion tool offers several views of the state after each pass, showing call hierarchies,
unparsed code with syntax highlighted, control flow graphs and more, but there is
no mention of any tracing capabilities here either.

15

3.5. SIMILAR PROJECTS 3. Prestudy

3.5.3 Godbolt’s compiler explorer
There exists a tool that is also called “Compiler Explorer”, which supports the
languages C++, Go, D, and Rust [19]. For clarity, we will refer to this tool as
“Godbolt’s Compiler Explorer”, after one of its maintainers. Godbolt’s Compiler
Explorer lets the user edit the source code, and get a line-by-line view of how the
resulting assembly code relates to the source code. One feature that is missing from
Godbolt’s Compiler Explorer, however, is the capability of viewing the intermediate
code after different compiler passes.

3.5.4 CakeML’s old compiler explorer
There exists a web application for exploring CakeML, also called “Compiler Ex-
plorer”. For clarity, we will refer to this web application as the “old explorer”. The
old explorer’s web page states that one can “Write CakeML code and see how it is
transformed by each phase of compilation” [20]. When a program is put into the old
explorer, the output is the resulting ASTs for some ILs. However, this implementa-
tion lacks the desired feature of allowing the user to highlight parts of the program
and see what parts of the program the highlighted part corresponds to in later or
earlier ILs.

16

4
Results

In the course of this project, we have made changes to the CakeML compiler, adding
the possibility to compile the input code into a JSON object which shows the state
of the compiler after each pass, together with information about which parts of each
intermediate AST correspond to each other. These changes have been made in a
fork of the main CakeML project [21].

With the help of these changes to the compiler, we have created a proof-of-
concept web application which can compile the source code and output the compiler
state at several ILs [22]. The user may click an expression in an IL and have the
corresponding expressions highlighted in both previous and later ILs, thereby seeing
the ancestry of each expression, so as to better understand the compiler’s inner
workings.

These results were achieved by three technical contributions, two of which are
modifications to the CakeML compiler, and one which is a web application with
algorithms for determining ancestry.

• The first contribution, covered in Section 4.1, is a new data type, the trace,
which holds data of which path a section of the input program has taken
through the compiler.

• The second contribution, covered in Section 4.2, is three new ILs which are
used to compile existing ILs into JSON format.

• The third contribution, covered in Section 4.3 is the web application as men-
tioned earlier, which has a React [13] GUI and contains algorithms for travers-
ing the JSON given from the compiler to show ancestry of expressions.

4.1 Adding traces to the compiler
A central problem is to come up with a way to track the path a piece of the input
program takes through the compiler. If we imagine a program moving through the
compiler, from source code to binary format, then at every step we want to ask
where each expression in the current state came from in the previous state, the one
before that and so on.

Our contribution that solves this problem is the trace data type, a piece of
data that annotates each expression in each IL with information of what path that
expression has taken from the source code input up to that point. A trace essentially
conveys, in a minimal form, the following things: an expression’s exact position

17

4.1. ADDING TRACES TO THE COMPILER 4. Results

tra = Empty | None | (�) tra num | Union tra tra

Fig. 4.1. tra data type. Used for encoding the path any one expression has taken
through the compiler, where � (Cons in prefix form) encodes traces being split
and Union encodes expressions being merged.

in the source code, where that expression has been split into one or more other
expressions and where two or more expressions have been joined into one. This
section explains the structure and use of traces, and how they have been added to
the CakeML compiler.

4.1.1 The tra data type
The traces are implemented with the tra data type. A tra value is intended to be
added to the information contained in an expression. For example, if the compiler
previously contained an expression constructor such as

| Let (string option) ast$exp ast$exp

then after our modifications, the constructor would instead be

| Let tra (string option) ast$exp ast$exp

where a tra has been inserted right after the constructor name.
Fig. 4.1 shows the definition of the tra data type. It is a recursive type with two

non-recursive constructors, Empty and None, and two recursive ones, � and Union.
� is an infix version of a constructor named Cons, in the tradition of how the word
is used in LISP, where “compositions of cons form expressions of a given structure
out of parts” [23, Sec. 3]—essentially a device for building recursive structures, for
example, lists—and we will use it both as Cons in prefix form and � in infix form
in this report.

4.1.2 Encoding ancestry with traces
This section describes how traces are used in the compiler explorer. We will first go
over how traces are most often instantiated, and after that the different ways, they
may grow. From this, we can explain how they can be checked to find ancestors and
descendants of a given expression.

At the outset, every expression in the source AST is wrapped in a Lannot con-
structor, as described in Section 2.2.3. In the first IL after the source AST, modLang,
these line annotations are converted into tra values. Each line annotation consists of
four numbers indicating the position of the expression in the source code: the start
row, start column, end row, and end column. These numbers are put into four Cons
constructors, mimicking a list of four elements. Fig. 4.2 shows how this is done in the
conversion from source AST to modLang. When a Lannot is encountered, the start
and end positions (st and en) are read and turned into a trace, which is then passed

18

4.1. ADDING TRACES TO THE COMPILER 4. Results

compile_exp t env (Lannot e (st,en)) =
(let t ′ =

if t = None then t
else (((Empty � st.row) � st.col) � en.row) � en.col

in
compile_exp t ′ env e)

compile_exp t env (App op es) = App t op (compile_exps t env es)

Fig. 4.2. Converting from source AST to modLang. The Lannot case shows how
a line annotation is converted into a trace that is passed along to the next call of
compile_exp. The App is an example of how this trace is attached to a modLang
expression.

Fig. 4.3. Structure of the first trace t1 of an expression. Expression traces are
created with four initial numbers indicating the position in the source code, in this
example starting on row 1, column 2, and ending in row 3, column 4.

along to the next call of compile_exp. The only exception is if the trace None has
been passed in, the motivation for this is explained in Section 4.1.5. For expressions
other than Lannot, the trace that is being passed along in the function call gets
attached to the created modLang expression. Since every expression is wrapped in a
line annotation, this means each expression will have its source position encoded in
its trace.

Fig. 4.3 shows what the structure of a trace t1 would be for an expression starting
in row 1, column 2, and ending in row 3, column 4, it is essentially a list of the four
initial numbers. By including this information in the trace, it will be possible to
locate and highlight the position or positions in the source code where an expression
in any IL originated. This way of constructing traces also ensures that every trace
is unique at the start since no two expressions could start and end in the same place
in the source code1. The way we designed traces will be discussed in Section 5.2.1.

For all compiler passes following the initial one, traces are only allowed to grow or
remain unchanged, never shrink. Traces grow either by being extended with another
Cons or by joining two traces together with a Union. It is also possible for a trace

1Note, however, that expressions can contain other expressions.

19

4.1. ADDING TRACES TO THE COMPILER 4. Results

Fig. 4.4. Trace t1 being split into two traces using Cons. Both Cons values in
the top of the figure are new traces, but they wrap the same base.

compile_exp bvs (Handle t e1 pes) =
Handle (t § 1) (compile_exp bvs e1)
(compile_pes (t § 2) (NONE::bvs) pes)

Fig. 4.5. Conversion of Handle from exhLang to patLang. The conversion includes
the splitting of a trace. The § symbol is an inline version of mk_cons, covered in
Section 4.1.5, and can for now be thought of as being exactly like �. Taken from
the source code of our modified version of the CakeML compiler [21].

to remain unchanged from one pass to the next, and this is, in fact, most often the
case. Only when an expression get split into several ones, or two expressions get
combined into one new, extended traces get created for the new constructs.

Fig. 4.4 shows what happens to a trace t1 in a situation where the expression
carrying it gets split into two expressions. A split happens every time a trace
occurs more than once on the right-hand side of a definition, such as in the case of
Fig. 4.5, which shows part of a function taken from the conversion of exhLang to
patLang. The transformation is from a Handle constructor in exhLang to a Handle
constructor in patLang. Here the newly created Handle value is assigned a new
trace, wrapped in an additional Cons, and another newly created trace is passed to
the compile_pes function, which compiles patterns. Each new trace gets wrapped
in a Cons with a natural number, such that the number is different for each of the
newly created traces. As a general rule, the numbers start at 1 and are incremented
at each occurrence on the line, reading left to right.

Fig. 4.6 shows the situation where instead of two or more traces occurring on the
right-hand side of a transformation, there are two or more traces on the left-hand
side. This indicates several expressions are merging, and the Union constructor is
necessary. In Fig. 4.6, the trace t2 seen in Fig. 4.4 gets merged with a different trace
altogether.

20

4.1. ADDING TRACES TO THE COMPILER 4. Results

Fig. 4.6. Two traces being merged into one using Union. The first trace t2 being
merged was created by the process described in Fig. 4.4 and the second trace was
created directly from a line annotation, as in Fig. 4.3.

4.1.3 Decoding ancestry from traces
Because of how traces are designed, it is a simple matter to find the ancestors and
descendants of an expression based on its trace. This is because 1) an existing trace
can only be expanded at each new compiler pass, and 2) all traces are unique from
the start. However, it is not immediately obvious that this must work.

An expression e1 with the trace t1 is the ancestor of another expression e2 with
the trace t2, if and only if t2 can be derived from t1. For a familiar metaphor, we
can view the traces as binary trees, where a Cons constructor is a node with a
numerical value and a left child, Union is a node with no value and two children,
and Empty is a leaf node with no value. Then we can say with certainty that the
second expression was derived from the first if t1 is a subtree of t2.

A more formal algorithm for determining ancestry is given in Fig. 4.7. It is pre-
sented here in imperative pseudo-code rather than JavaScript, which is the language
used for this algorithm in the web application.

21

4.1. ADDING TRACES TO THE COMPILER 4. Results

1) If either t(e1) or t(e2) is Empty, but not both, return FALSE.

2) If t(e1) = t(e2), meaning the traces are identical, return TRUE.

3) If t(e1) = Cons tc n, set t(e1) = tc and start from 2).

4) If t(e1) = Union t1 t2, then

(a) set t(e1) = t1, repeat from 2) and save the result; then
(b) set t(e1) = t2, repeat from 2) and save the result; then
(c) return the conjunction of the results.

Fig. 4.7. Algorithm for determining ancestry. Let t(x) be the trace of expression
x. Let e1 and e2 be expressions. Then e2 is an ancestor of e1 if the algorithm
returns TRUE.

This method is certain to work thanks to how we grow traces. At the outset, all
expressions have unique traces (we will take unique to mean that it can not appear
twice in the same IL), since they come from unique source positions. A trace may be
split by being wrapped in a Cons, encoding that the new expression is a descendant
of the old one. For example, the trace in Fig. 4.3 is an ancestor trace of both new
traces in Fig. 4.4, and is also a subtree of both of them, and this is the only way in
which these new traces could have come about. Furthermore, both new traces are
unique, so they, in turn, will safely match only to their descendants. If two traces
are merged into a Union, then both these traces will be matched as ancestors to
the Union trace. The Union trace will be unique since it is guaranteed that both
merged traces were unique.

4.1.4 Adding traces to declarations
There is an important exception to the rule of expressions having traces that start
with their source position, and that is the expressions which are created directly
from declarations. For example, in the conversion to decLang, the first IL without
declarations, all declarations are turned into expressions. These new expressions
have no incoming trace data in them since declarations do not contain traces. Be-
cause of this, we face the challenge of coming up with a way of instantiating traces
that is always globally unique. That is, the new traces must both be unique at the
outset, and they may never accidentally grow into another identical trace.

The solution to this problem is a special trace for orphan expressions for each
IL. Fig. 4.8 shows such a special trace for the conversion from conLang to decLang,
the special trace is called od_tra for “orphan decLang trace”2. The structure of this
trace is that of a standard orphan trace, the Union Empty Empty construct which
is guaranteed to never conflict with a non-orphan trace, wrapped in a Cons. The

2In “od_tra”, “o” is for orphan and “d” is for decLang.

22

4.1. ADDING TRACES TO THE COMPILER 4. Results

orphan_trace = Union Empty Empty
od_tra = (orphan_trace � 3)

Fig. 4.8. Start trace for orphan expressions in decLang. The construction Union
Empty Empty could never appear at the start of a non-orphan expression, as they
all start with a series of Cons values. By wrapping the basic orphan_trace in an
additional Cons with a number unique for each IL, we obtain a basis for adding
traces to orphan expressions.

Cons is needed to distinguish orphan traces in different ILs. In this case, the number
provided to Cons is 3, since decLang is the third IL in the compiler backend3.

The special orphan trace is added to each expression that is created directly from
a declaration, after first being wrapped in an additional Cons with a unique num-
ber. The first orphan expression to be created gets the number 1, the second one the
number 2, and so on. This number has to be explicitly passed from function to func-
tion and get incremented on the way, which is a somewhat intricate process which
we shall not cover in detail here. The curious reader may, for example, examine the
use of the functions compile, compile_prog, compile_prompt and compile_dec in
the file con_to_decScript.sml in the source code of our modified version of the
compiler [21] to learn how the unique numbering is achieved.

4.1.5 Turning traces off using None
The only constructor of tra we have not covered so far is None. This constructor
serves a special purpose, namely turning traces off in an efficient manner, so as to
avoid the computations and memory usage necessary for using traces. By passing
along a None as a trace, no trace data will be accumulated in the compilation
process. The reason is that Cons or Union are never used directly in building
traces, except for when creating the initial trace as seen in Fig. 4.2. However, if a
None is seen here, then a None gets passed on in the recursive call. In all other
cases where traces are built, the smart constructors mk_cons and mk_union are
used. Fig. 4.9 and Fig 4.10 show these constructors. Looking at mk_cons in Fig.
4.9, we can see that it takes the same arguments as the Cons constructor, but
also checks whether the given trace is None. If the given trace is None, mk_cons
returns None as well. Otherwise, it simply creates the corresponding Cons value.
mk_union, as seen in Fig. 4.10, behaves similarly, and return None if one of the two
given traces is None. By passing a None value as a starting value to the compiler,
i.e., to the compile_exp function shown in Fig. 4.2, no actual trace is ever created,
and all expressions simply get annotated with None.

3A similar construct used in modLang uses the number 1 since modLang is the first IL.

23

4.2. INTERMEDIATE LANGUAGES FOR OUTPUT 4. Results

tr § n =
case tr of
None ⇒ None
| _ ⇒ tr � n

Fig. 4.9. mk_cons, as its infix version §. This function is used instead of calling
� directly. It checks whether the given trace is None and if so returns None.
Otherwise, it works exactly like �.

mk_union tr1 tr2 =
case tr1 of
None ⇒ None
| _ ⇒

(case tr2 of
None ⇒ None
| _ ⇒ Union tr1 tr2

Fig. 4.10. mk_union. This function is used instead of calling Union directly. If
any of the traces given to mk_union is None, then it returns None. Otherwise, it
works exactly like Union.

4.2 Intermediate languages for output
Keeping with the convention of converting a program from one format to another by
making one or more passes which convert the program from one IL to the next, we
modified the compiler by adding three new ILs. These ILs help with the conversion of
an IL used in compilation to a machine-readable output format which can be used to
display that language. Since these ILs are only used for presentation purposes, and
not for executing, they have only syntax and no defined semantics. To disambiguate
the use of the term “IL”, the terms “CIL” and “PIL”will be used in what follows.
CIL shall refer to the ILs for compilation which are existing in the CakeML compiler,
such as modLang or patLang. PIL shall refer to the ILs for presentation, which we
have defined in the course of this project.

To output the compiler state at any CIL in a format that can be used to present
the CIL in an external application, three passes are made, with a conversion to a new
PIL at every pass. The first of the PILs is called presLang and represents anything
that can be presented. The second PIL is called displayLang and structures the
output in a way which defines how it should be displayed. The third PIL is called
jsonLang and has the structure of a JSON object, which can then be converted
to a string which can be pretty printed by the compiler. Fig. 4.11 shows the flow
between CILs and PILs in the compiler, where horizontal arrows represent compi-
lation through CILs with machine code as the target language, and vertical arrows
represent compilation through PILs with JSON as the target language. The dashed

24

4.2. INTERMEDIATE LANGUAGES FOR OUTPUT 4. Results

displayLang

presLang

modLang conLang decLang exhLang patLang

JSONPython XML

Fig. 4.11. Flow of a program through the modified compiler. Horizontal arrows
indicate compilation with machine code as the target language, and vertical arrows
represent compilation with JSON as the target language. The dashed boxes and
arrows indicate possible alternative output formats to JSON.

boxes represent other possible target languages, to emphasize that outputting JSON
is specific to our purposes of making a web interface, but another application might
have better use of some other target language of the explorer. We now turn to
describing each of the PILs more closely.

4.2.1 presLang

The first PIL is presLang, which encompasses anything that can be presented.
presLang has an expression type with one constructor corresponding to every con-
structor in every CIL we have present in the compiler explorer. This includes dec-
larations, patterns, and expressions.

Up to and including exhLang, each CIL has each of its constructors mirrored
exactly in presLang. Most of these CILs have very similar syntax, so the same
constructor in presLang can represent constructors in several of these CILs. When
a constructor has had the same name but taken different arguments in different
CILs, we have created a new data type to solve the problem. An example of this,
for the constructor Con, can be seen in Fig. 4.12, where the conF datatype represents
the Con constructor for modLang, conLang, and exhLang, respectively.

From patLang and onward, there is no longer an exact correspondence between
presLang constructors and the constructors in the CIL, due to the encoding of De
Bruijn indices, which will be explained further in Section 4.2.4.

Every CIL needs its own function to be converted to presLang, partly since
otherwise types will not match. This is represented in Fig. 4.11 by the arrows from
each CIL to presLang.

25

4.2. INTERMEDIATE LANGUAGES FOR OUTPUT 4. Results

conF =
Modlang_con ((string, string) id option)
| Conlang_con ((num × tid_or_exn) option)
| Exhlang_con num

Fig. 4.12. conF data type in presLang. The data type shows how presLang
handles that the Con constructor differs in the CILs. The cross represents the
tuple type.

sExp =
Item (tra option) string (sExp list)
| Tuple (sExp list)
| List (sExp list)

Fig. 4.13. sExp data type in displayLang. This data type is used to structure
expression in a general way, so that they may be easily translated to the desired
output format.

4.2.2 displayLang

The second PIL is displayLang with the purpose of structuring any presLang
expression in such a way that it, after restructuring, corresponds to how each con-
structor is to be represented in textual output.

The constructors of presLang are transformed into expressions of the form
showed in Fig. 4.13. Looking at the three constructors, it is clear that the structure
is far more basic than that of presLang. Any expression can be seen as a tree with
three types of nodes: Tuple and List nodes which contain no data other than it being
a Tuple or List, respectively, and Item nodes with a name in the form of a string, and
optionally a trace. This structure can easily be captured in a programming language
by using only dictionaries, tuples and lists. If the language lacks tuples, they can be
encoded by lists and some signifier whether a list should be interpreted as a tuple
or not, such as a boolean value. For our purposes, we will use a JSON format, as
we will see in Section 4.2.3, but these structures could easily be captured in Python
objects, an XML schema, S-expressions or some other suitable data format.

We have chosen to let the trace data type appear in the displayLang as is. That
is, we have not encoded traces into displayLang expressions, which we could have
done since traces are simply trees. However, since the trace plays a central role in
the usage of the explorer data, we consider it valuable to be able to treat traces
separately in the final output, which would be hard if the trace data was mixed in
with expression data.

As can be seen in Fig. 4.11 by looking at the connection between presLang
and displayLang, a single pass is needed and does not hinge upon which CIL is

26

4.2. INTERMEDIATE LANGUAGES FOR OUTPUT 4. Results

obj =
Object ((string, obj) alist)
| Array (obj list)
| String string
| Int int
| Bool bool
| Null

Fig. 4.14. obj data type in jsonLang. This data type faithfully mimicks the
grammar of JSON values as specified in [24], with the exception of not allowing
floating point numbers.

represented in presLang. Thus a single function is needed, which can convert any
presLang constructor into the displayLang format.

The only type of data that can be expressed in the tree is strings and traces.
As such, all information about a presLang expression, except for its traces, must
be encoded as strings. This highlights the purpose of displayLang that it is meant
only to display, and to convert an expression to displayLang is to make explicit
some desire on how it should be displayed, in string format. Even numbers need to
be encoded as strings, since the HOL num datatype allows arbitrarily large integers,
which could not be fully captured in JavaScript numbers, or any other language
that uses a fixed number of bits for number representation.

4.2.3 jsonLang

The final PIL in the chain between a CIL and output is jsonLang. The structure
of jsonLang can be seen in Fig. 4.14, which shows the obj datatype. The grammar
of obj conforms to the specified structure of JSON objects [24]. With objects being
defined as a sequence of members, each being a string (the name) and a value (which
can be any other type of JSON value), arrays as sequences of JSON values, and bare
the types of bare values being strings, numbers, booleans or the null value. The
only deviation from the JSON specification is that this grammar does not support
floating point numbers, only integers. The reason for this is that CakeML only
supports integral numbers [25, Line 71].

Fig. 4.15 shows the function converting from displayLang to jsonLang. It
encodes any Item as an object with the properties name and args, where name gets
the value of the string in the Item, and the args the value of the list of arguments,
converted to a jsonLang array. The trace is added as a property if it exists. Further,
the function encodes a Tuple as an Object with a boolean indicating it being a tuple
and an array of the elements. A List is simply encoded as an array.

As can be seen in the clause in Fig. 4.15 that converts Item objects, traces
are converted to jsonLang by a trace_to_json function. This function is shown in
Fig. 4.16. It encodes a trace as an Object with a name property, detailing which
constructor is used, and other fields dependent on the constructor.

27

4.2. INTERMEDIATE LANGUAGES FOR OUTPUT 4. Results

display_to_json (Item tra name es) =
(let es′ = MAP (λ a. display_to_json a) es in
let props = [(“name”,String name); (“args”,Array es′)] in
let props′ =

case tra of
NONE ⇒ props
| SOME t ⇒ (“trace”,trace_to_json t)::props

in
Object props′)

display_to_json (Tuple es) =
(let es′ = MAP (λ a. display_to_json a) es
in
Object [(“isTuple”,Bool T); (“elements”,Array es′)])

display_to_json (List es) =
Array (MAP (λ a. display_to_json a) es)

Fig. 4.15. Translation of displayLang to jsonLang. This HOL theorem describes
how to interpret a sExp value from displayLang as a obj value, so as to structure
it into the form of a JSON object.

trace_to_json (tra � num) =
Object
[(“name”,String “Cons”); (“num”,num_to_json num);
(“trace”,trace_to_json tra)]

trace_to_json (Union tra1 tra2) =
Object
[(“name”,String “Union”); (“trace1”,trace_to_json tra1);
(“trace2”,trace_to_json tra2)]

trace_to_json Empty = Object [(“name”,String “Empty”)]
trace_to_json None = Null

Fig. 4.16. Translation of trace to jsonLang. This is a HOL theorem that when
applied equates every Cons (�) value to an Object of a certain structure, the same
for every Union value, and so on.

28

4.2. INTERMEDIATE LANGUAGES FOR OUTPUT 4. Results

pat_to_pres_exp h (Var_local t var_index) =
Var_local t (num_to_varn (h − var_index − 1))

pat_to_pres_exp h (Fun t e) =
Fun t (num_to_varn h) (pat_to_pres_exp (h + 1) e)

Fig. 4.17. Removing De Bruijn indexes in conversion to presLang. The function
pat_to_pres_exp, of which two clauses are shown here, takes a number, h, in
addition to a patLang expression. h is the number of currently bound variables
in the scope, which is used to assign names to variables. The function produces a
presLang expression, where variable names are re-introduced. For example, a Fun
expression in patLang has no variable name, but a Fun in presLang does.

In the end, the jsonLang object is transformed into a string which the compiler
backend can output, and which can be consumed by the web application.

4.2.4 Handling De Bruijn indices
In patLang, De Bruijn indices are used in place of variable names, but when pre-
senting expressions in the explorer from patLang the indices are replaced by variable
names. To achieve this, we reverse the De Bruijn indexing process when converting
from patLang to presLang.

As the variable names have been discarded by the compiler, we invent new names.
The outermost variable is given the name “a”, the second outermost variable given
the name “b” and so forth. When “z” has been bound, the next binding inside that
scope will bind “aa”, the next one “ab” and so on. Thus, by looking at a variable
name binding, one can determine how many variables are bound in the current
scope.

In CakeML, De Bruijn indices are more sophisticated than in lambda calculus,
as there is more than one way to bind a variable and a richer syntax. Fig. 4.17
shows parts of the function that converts an expression from patLang to presLang.
The first case shows how a variable is given a name as described in the previous
paragraph. The function num_to_varn returns “a” when given 0 as input, “b” when
given 1, and so on. By taking h− num− 1, num being the De Bruijn index of the
variable, we obtain which order the current variable has, i.e., 0 for the outermost
variable, 1 for the second outermost variable, and so on. The second case shows
how h is increased when a binding is encountered. h is used to calculate what name
the new variable should get, and pat_to_pres_exp is called recursively, but with h
incremented.

29

4.3. WEB APPLICATION 4. Results

To see an example of the difference between expressions with De Bruijn indices
and expressions with variable names conversion, first, consider the following expres-
sion in CakeML.

let
fun f x = g x
and g x = f x

in
f 2

end

This expression has two mutually recursive functions and a statement. Evalua-
tion of it would not terminate, and it is obviously not useful, but nevertheless, serves
as a simple example. Fig. 4.18 shows the result of calling pat_to_pres_exp on a
simplified version of this expression in patLang. Before the conversion, the number
0 refers to either the input variable of the functions or to the first function, depend-
ing on context. Also, the first function is referred to as either 1 or 0, depending
on context. In the result, each of the functions defined is converted to a tuple with
three elements: 1) the function’s name; 2) the name of its input variable; and 3) the
function body. The first function is named “b” and the second “a”4. In all three
occurrences of App, the two functions are called by name.

pat_to_pres_exp 0
(Letrec t1

[App t2 Opapp [Var_local t3 2; Var_local t4 0];
App t5 Opapp [Var_local t6 1; Var_local t7 0]]
(App t8 Opapp [Var_local t9 0; Lit t10 (IntLit 2)])) =

Letrec t1
[(“b”,“c”,App t2 (Patlang_op Opapp) [Var_local t3 “a”; Var_local t4 “c”]);
(“a”,“c”,App t5 (Patlang_op Opapp) [Var_local t6 “b”; Var_local t7 “c”])]
(App t8 (Patlang_op Opapp) [Var_local t9 “b”; Lit t10 (IntLit 2)])

Fig. 4.18. Example of replacing De Bruijn indices with variable names. Calling
App with Opapp as argument is how standard function application is encoded.
Then the first list element is the function, and the second is the argument. In the
result, names have been assigned to the mutually recursive functions inside Letrec,
and the functions are called by name.

4.3 Web application
The web application lets the user input the source code of a CakeML program, see its
representation in the ILs used in the compilation process up to patLang and be able
to interact with it by tracing expressions between ILs. It consists of a server-side
application and a user interface in the form of an interactive web page.

4Variable names are assigned in reverse order for mutually recursive functions.

30

4.3. WEB APPLICATION 4. Results

4.3.1 Server-side application
The server-side application consists of a simple server that accepts requests con-
taining source code for CakeML programs. Upon receiving such a request, the web
server returns a JSON representation of the IL trees for that program.

The web server is implemented in the programming language PHP, with a simple
PHP program that accepts HTTP POST requests. The POST request should contain
a parameter q that contains the source code of a CakeML program as a string.

The PHP program stores the source code from the q parameter in a temporary
file, and then runs a bootstrapped, binary version of the CakeML compiler5 with
the content of that file. The binary compiler produces JSON representations of the
IL trees for that program by converting them to displayLang and then to JSON.
The JSON representations are then returned as the response to the POST request.
It should be noted that this program was written and is hosted by Magnus Myreen.

4.3.2 Graphical user interface
The web page before any user interaction is depicted in Fig. 4.19. It consists of
a text area where the user can input their source code, and a “Compile” button.
After a user has input their program and clicked “Compile”, the blank area below
will contain text representations of each IL, which is illustrated by Fig. 4.20.

The expressions in the text representations are clickable. When the user clicks on
an expression in a certain language, and that expression has a trace, that expression
becomes highlighted with a light blue background color, as depicted by Fig. 4.21. We
will hereafter refer to that expression as the active expression, the language which it
came from as the active language, and the trace of the active expression as the active
trace. Expressions that are ancestors to the active expression become highlighted
with a light red background color, and expressions that are descendants become
highlighted with a light green background color. This is illustrated by Fig. 4.22
and Fig. 4.23, respectively. (The texts explaining which language the highlighted
expressions are from were added to the figures afterward, and are not present in the
GUI.)

When the user clicks on another expression that has a trace, that expression
will be the new active expression, and it and its ancestors and descendants will
be highlighted accordingly. If an expression without a trace is clicked, however, the
currently active expression is deactivated. This causes the highlighted expressions—
the active expression, along with its ancestors and descendants—to no longer be
highlighted.

4.3.3 Rendering HTML using React components
The GUI of the web application is built using the JavaScript library React, which
is described in Section 2.4.

The primary feature of the GUI is the text representations of the IL trees, which
are designed to be as close as possible to how they would have been written as

5The result of bootstrapping the compiler and creating an executable file from it, that can be
run by a computer directly without requiring the HOL interactive environment.

31

4.3. WEB APPLICATION 4. Results

Fig. 4.19. Web application GUI before any user interaction. The example program
val x = 3 + 5; is pre-filled in the area for source code.

Fig. 4.20. Web application GUI after clicking the “Compile” button. The text
representations for the IL trees are visible. Expressions with gray text do not have
a trace, while expressions with black text do.

32

4.3. WEB APPLICATION 4. Results

Fig. 4.21. Active expression in the web application GUI. It is highlighted with a
light blue background color. The expression is in conLang.

Fig. 4.22. Ancestor expression in the web application GUI. It is highlighted with
a light red background color. The expression is in modLang.

Fig. 4.23. Descendant expression in the web application GUI. It is highlighted
with a light green background color. The expression is in exhLang.

single expressions in HOL syntax. This means the text representations use the
appropriate syntax for constructors, lists, tuples, etc., as well as added parentheses
to avoid ambiguity.

All expressions are contained in one HTML element each, in a recur-
sive fashion. For example, the expression Lit (IntLit 4) would be rendered as
Lit (IntLit 4). This does not affect how the ex-
pressions are rendered visually [26, Sec. 4.5.28], but it allows for retaining the struc-
ture of the IL trees even in the HTML element structure.

Since the IL trees are converted to displayLang expressions, and displayLang
has a well-defined and clear structure, the web application implements rendering of
any displayLang expression as a tree of HTML elements. This is done with four
React components: one top-level component called <DisplayLangExp>, and three
auxiliary components called <Item>, <Tuple>, and <List>. Together they are able
to render any displayLang expression as a tree of elements.

The purpose of the <DisplayLangExp> component is to take a displayLang
expression, determine whether it is an Item, Tuple, or List, and then delegate the
actual rendering to the corresponding <Item>, <Tuple>, or <List> auxiliary com-
ponent, respectively. The auxiliary components contain logic for rendering their
corresponding displayLang constructor as text in HOL syntax.

• The <Item> component takes two props called name and args, correspond to
a constructor name and its arguments, respectively. It renders each element

33

4.3. WEB APPLICATION 4. Results

in args using the <DisplayLangExp> component and then returns a
containing the constructor name and the rendered arguments.

• The <Tuple> component takes one prop called elements, corresponding to
the elements of a tuple. It renders each element in elements using the
<DisplayLangExp> component and then returns a containing the ren-
dered elements, separated by commas, and surrounded by parentheses.

• The <List> component behaves identically to the <Tuple> component but uses
square brackets instead of parentheses, and semicolons instead of commas.

4.3.4 Highlighting expressions on click
The expressions that have traces should be clickable to highlight the along with their
ancestors and descendants. To do this, each containing an expression with
a trace has its onclick attribute set to a handler which causes that expression to
be activated. Additionally, the handler consumes the click event and stops it from
propagating to any enclosing s by calling the stopPropagation method [27,
Sec. 3.1].

The expressions in the IL trees, as they are represented as displayLang ex-
pressions, contain no direct information about which expressions are their ancestors
and descendants. This can, however, be calculated by comparing the traces of the
expressions, as explained in Section 4.1.3. When an expression is activated, the
trace of each expression in the IL trees is compared to the active trace to determine
ancestry.

This information is added to the expressions using what we call tree decoration.
Tree decoration is the process of replacing each node n in a tree with the tuple
(n, f(n)) for some function f . Each node is thus “decorated” with some extra infor-
mation that is derived from the node itself. In the web application, tree decoration
is performed on the IL trees, so that each expression as “decorated” with a new
property called highlight, containing information about how that expression is
related to the active expression. The value of highlight is one of "ancestor",
"descendant", "equal", or "none".

At the heart of the web application’s implementation of tree decoration is a
function called decorateExp. It is capable of traversing any displayLang expression
exp, applying a function func to any HCO(Item), and storing the result under a
new property with name key. The web application uses this by using the IL trees
as exp, a function to determine ancestry as func, and "highlight" as key. The
function to determine ancestry compares each expression’s trace to the active trace.

The highlight property is then used in the <Item> component: if the value
is "ancestor", the background color is set to a light red color; the value "equal"
gives a light blue background color; and the value "descendant" gives a light green
background color.

34

5
Discussion

In this chapter we will discuss the way we worked, our results, their fit as a solution
to the problem we have defined and suggested improvements that can be made to
the explorer. We also discuss how we learned the tools used in the development and
various difficulties we encountered along the way.

5.1 Planning the project
In the early phases of the project, we had to get a clear picture of what we were to
build, learn the compiler tools and then plan our work from there. This section will
discuss our experience doing so.

5.1.1 Getting user input
One of the two target groups for the compiler explorer are new developers of the
CakeML compiler. However, the compiler explorer never reached a state that allowed
for user testing on this target group. This outcome is unfortunate since the purpose
of the compiler explorer was, in part, to make it easier for these new developers to
learn and understand the compiler. The lack of input from this target group makes
it difficult to determine if the envisioned final product would be helpful for new
developers.

On the other hand, we did have contact with the other target group of the
compiler explorer, namely the current CakeML developers. This target group is
small, with the CakeML developer mailing list consisting of 22 persons excluding
us, the authors. In particular, we had regular contact with our supervisor who is also
one of the CakeML developers. This way we got regular feedback on how well the
compiler explorer satisfied the expectations of this target group. Since they are the
primary experts on the compiler and have an interest in attracting new developers,
we believe that this contact has been enough to ensure that the compiler explorer
will be reasonably useful to the new developers.

35

5.1. PLANNING THE PROJECT 5. Discussion

5.1.2 Learning HOL and CakeML
To start building the compiler explorer, we had to learn both HOL and CakeML. We
followed the official tutorial [28]. The HOL4 website [29] states that for beginners
the average time it takes to able to use HOL comfortably is about a month1.

Given this challenge, it is not surprising that we invested much time in learning
how to modify the CakeML source code. Getting a working development envi-
ronment took us several days, and it often broke in ways we were not able to fix
ourselves. Sitting down with our supervisor, we continuously learned many tips and
tricks that could have saved us much time early on.

The same problem applied to CakeML and the compiler. The source code for
the compiler has many specific conventions, lacks comments in many places, and has
incomplete documentation, making it hard to enter the project without significant
assistance. In the end, we developed an understanding of the core ideas behind
the compiler, the purpose of different ILs and compiler passes, but perhaps our
knowledge remains somewhat shallow.

Another difficulty was that since the compiler is being continuously developed,
the code base has undergone changes during our work. Most notably, line annota-
tions in their current form were not implemented when we started this project, even
though a decision had been made to implement them. This meant we had to work
without them in the beginning. The result was slower development early on in the
project, which set us back in our planning.

5.1.3 Division of labor
Being only three people in the project meant we had little redundancy in personnel.
To prepare for the possibility of one team member becoming incapacitated, we
decided to try to distribute knowledge fairly evenly. We all learned about HOL and
CakeML and worked closely together during the first half of the project.

We grossly underestimated the work required for the web application. Whereas
adding traces and outputting JSON for a single language from the compiler was
nearly completed on schedule (end of February) the web application never came to
the first prototype stage we hoped would be done by the end of the first half of
the project. Two group members worked on adding traces to the compiler, whereas
one group member worked on the web application, as we had anticipated this to
be the easier problem to solve. Even so, we continuously underestimated the time
it would take to complete the web application, which meant we did not allocate
another team member to work on it until the last month when it was hard to get
up to speed quickly enough.

1Our supervisor has informed by our supervisor that this estimate likely is for graduate students
pursuing a Masters degree or a Ph.D.

36

5.2. COMPILER CHANGES 5. Discussion

5.2 Compiler changes
Regarding the changes made to the compiler, the most significant ones are the
introduction of traces and our three ILs. We discuss these, how we handled de
Bruijn indices, and the development process, in turn, here.

5.2.1 Implementation of traces
Traces are a simple solution to a complex problem, utilizing only two recursive
constructors and one non-recursive constructor to encode position and an additional
constructor for turning traces off. The implementation even allows distinguishing
different types of origin with little efforts, such as orphan expressions and expressions
originating in code.

The structure was chosen specifically to limit the number of constructors, and
therefore the number of patterns that need to be handled when working with traces.
The downside of the simple structure is that we employ two tricks in our encoding,
namely making the source position a series of Cons and encoding orphan expression
with a Union. We could, of course, use separate constructors for encoding the start
of an expression as either a source position or an “orphan”, removing Empty. In the
end, we feel that refactoring to using more constructors would be sensible and easy,
at least on the compiler side, and it is something we would recommend for future
development.

A further consideration that has not been brought up, however, is the perfor-
mance regarding speed, e.g., for matching traces together in the web application.
We decided to not focus on this performance as it is not something that the devel-
opers have asked for. Also, traces will not grow arbitrarily large but will be only
slightly larger than the number of compiler passes, which rarely increase.

Another issue with our implementation is that it meant we added an extra ar-
gument to the constructors in every language we added to explorer. This means
multiple changes to the compiler functions, and therefore also to the correctness
proofs of the compiler. One option we investigated was to decorate similarly as de-
scribed in [30], which aims to solve a very similar problem in Haskell. However, the
proposed solution makes use of extensible data types, a proposed syntactic feature
in Haskell [?], [31], and nothing like it is available in HOL.

Traces are designed so that it should be impossible for two expressions to end
up with the same trace. However, we have not verified this property formally. This
might be dangerous since there is a risk that two expressions which are not related
end up having the same trace if our method for building traces is flawed. However,
we have seen no such behavior in our testing, and have little reason to believe that
such a mistake could have occurred in our work. We also believe we could perform
a verification of the uniqueness of traces, but we have not made it a priority.

5.2.2 New intermediate languages
One of our goals was to keep the logic of visualizing the compiler separate from that
of compiling programs. As in any software project, we wanted to separate concerns

37

5.2. COMPILER CHANGES 5. Discussion

and not have to do the same thing many times in different places. As a result we
introduced our own ILs, presLang, displayLang and jsonLang. These separate
the concerns of removing semantics, presenting data and converting to an output
format, respectively, and ensure that a single pass to presLang is enough to output
any IL from the compiler – no further special treatment per language needed.

Also, by introducing presLang we did not have to deal with semantics in presLang,
displayLang and jsonLang as they can never be run. We realized that by introduc-
ing the new ILs, we could compile to our desired output without also introducing
new semantics and possibly difficult proofs that would burden the CakeML project
as a whole. This choice allowed us to work mostly independently without risk of
interfering with the core development team’s work.

Further, the introduction of displayLang makes sure our solution is extensible
with regards to the output format. The design of displayLang allows future de-
velopment to add support for any desired output format with only a few lines of
code.

5.2.3 Handling De Bruijn indices
While De Bruijn indices are useful in computing, we believe that displaying bound
values as variable names is more intuitive to humans. Therefore, we believe convert-
ing De Bruijn indices to variable names was a necessity to make the compiler explorer
comprehendible for patLang, where values are bound using De Bruijn indices. The
conversion results in a presentation which is easier to comprehend because of the
usage of ordinary variable names. The downside to the conversion is that it is not a
perfect representation of how expressions look in the compiler at that stage. While
this might seem counterintuitive to the objective of using the compiler explorer as a
tool to learn more about the compiler, it makes for an easier way to follow what is
going on. Ideally, in the future, the compiler explorer could switch between different
modes where you can choose to either see an IL exactly as is or with modifica-
tions for easier understanding. It is worth to be noted that one of the weaknesses
of the previous compiler explorer was that the parts with de Bruijn indices were
unreadable, see the response of Magnus Myreen in Appendix A.

5.2.4 Testing changes to the compiler
The intention of verified software is to rely on formal proofs rather than traditional
software testing—such as unit tests and integration tests—to ensure the correctness
of programs. This is the case for the CakeML compiler. However, in the course
of this project, we opted to not rewrite proofs to accommodate changes, due to
time constraints. Instead, our changes were verified by regularly bootstrapping the
compiler and running it.

The proofs we have affected will, however, need to be updated for our changes
to be merged into the main CakeML code base. After discussion with the CakeML
development team, we have learned that it should be a simple matter to update the
proofs since our changes do not affect semantics. It should be sufficient to ignore

38

5.3. WEB APPLICATION 5. Discussion

the traces in the semantics proofs and to add terminations proofs for functions that
evaluate traces.

To informally verify continuously that our code has been working, rather than
wait on the slow bootstrapping process, we implemented a small file with actions that
can be run manually, and the output inspected for errors. This has been considerably
slower than an automated procedure. However, we have not learned the necessary
tools to automate such a process with HOL, and we have not considered this testing
a large enough priority to allocate time for this learning.

5.3 Web application
The web application we created was a proof-of-concept, only implementing the min-
imum functionality required. Presently, it is quite slow and difficult to overview.
However, the most important technical problems have been solved. In this section,
we discuss our experience of building the web application with React and possible
performance optimizations.

5.3.1 Using React
We are happy with our choice of using React to create the GUI. The functional
programming-oriented approach of React fits particularly well to the type of problem
the GUI has to solve, namely rendering a recursive data structure. We, the authors,
have previous experience with functional programming, which enabled us to more
quickly learn and get familiar with the programming model of React. Had we not
had that experience, learning React had been more of a challenge which would likely
have delayed the proof-of-concept web application even further.

Additionally, the declarative programming style that React allows for most likely
drastically reduced the complexity of the code responsible for highlighting expres-
sions. Since React handles updating the HTML automatically, we could focus our
efforts on correctly implementing the logic for calculating ancestry, and not consider
exactly how the background color of the s should get updated.

5.3.2 Performance
As it stands, the web application takes several seconds from a user click until high-
lighting is completed. We find it to be detrimental to the user experience. However,
there are ways we could improve performance by adapting the compiler output and
the rendering process, by utilizing the fact that the compiler runs faster than the
web application, and by using smarter ancestry calculation algorithms.

An improvement that could be made on the compiler side is to remove traces
before they are output and replace them with a structure which is faster to traverse.
In the pass from displayLang to jsonLang, every trace could be converted to a
single, unique number. Then instead of a trace, each expression would contain said
number, and two lists: one for the numbers which are its ancestors, and one for those
which are its descendants. Also, the compiler would output a table of which source
code positions correspond to which trace number. This would mean that comparing

39

5.4. SUITABILITY FOR INTENDED USES 5. Discussion

traces would become a problem of comparing numbers, which is an improvement
from O(n) to O(logm), where n is the size of the largest trace, and m is the total
number of unique traces. Since there are, in the worst case, as many levels to a trace
as there are compiler passes, and there are nearly 30 compiler passes, this should
give some improvement.

On the web client side, a further optimization would be to create a lookup
table which associates each unique number with all the expressions which have that
number as its trace. As the page is rendered and elements are created, a pointer
to each element with a trace number could be added to a list of such pointers in
the lookup table. This would mean that instead of traversing the entirety of the IL
trees every time a new expression is clicked, highlighting would simply be a matter of
looking at the ancestor and descendant numbers and looking up the corresponding
elements, highlighting them, without traversing unrelated elements at all.

Another optimization that could be done on the web client side is to be more
cautious with which parts of the IL trees that are rendered by default. At present,
the web client unconditionally renders the entire IL trees, including the entire pre-
lude which encompasses a vast portion of the entire IL tree. As we discussed in
Section 3.2.3, we have discussed several methods for marking the prelude, which
could be used to not render it by default but rather on demand. This would most
likely speed up both the initial render (when the compilation finishes) and subse-
quent renders (when the user clicks on expressions) due to the browser not having
to render a large amount of HTML elements.

5.4 Suitability for intended uses
As the survey responses in Appendix A indicate, especially the answers to question
3, the development team want to be able to visualize where code goes and explain
to newcomers how the compiler works. Magnus Myreen also says that it was hard
to read intermediate code with De Bruijn indices and that it was hard to find the
relevant parts of a program. Scott Owens further hopes that he can get intermediate
output for a document explaining the compiler which explains the compiler.

Currently, the web application has issues that would not make it fully suitable
for this intended use yet. Firstly, it is hard to overview the output as the user must
scroll horizontally to find highlighted code, and highlighted sections of the code are
not lined up. Secondly, the output lacks pretty-printing, making it hard to parse
for a human reader. Thirdly, it does not cover the whole compiler from source
to machine code, but only the initial five ILs. Fourthly, prelude code always gets
printed, making the output large even for small programs. Lastly, highlighting is
slow. Each of these is a problem that we know how to address, but which was left
unsolved due to time constraints. All of these problems are fairly easy to solve, and
we outline the solution to all of them in this chapter. We have little doubt they will
be solved as the development of the compiler progresses after the end of this thesis
project.

Other than supporting developers, the motivation for building the compiler ex-
plorer was to give insight into how the CakeML compiler behaves. While we believe
the completed compiler explorer will be a great tool to this end, one important

40

5.5. EFFECTS ON SOCIETY AS A WHOLE 5. Discussion

drawback of our solution is the changes we made to the compiler. Our addition
of traces to constructors means that every expression has an extra argument, the
purpose of which may not be clear to a newcomer to the CakeML project, and which
is itself not shown in the compiler explorer. We believe this initial confusion to be
modest and passing, as the purpose is easy to explain and the format is consistent
through all modified languages, but it is nevertheless a drawback to our solution.

5.5 Effects on society as a whole
The CakeML project is an important research project. While introducing the Com-
pCert compiler, which is also verified, Leroy [2] states that if in the future, formal
methods are common for checking source code, “the compiler could appear as the
weak link in the chain”.

Seeing how software errors could have fatal consequences when occurring in an
autonomous car or medical equipment, verified compilation might very well take a
central role in the development of safety-critical software. The future of this field
may in large determine whether we trust – or should trust – the software we build
in the future and increasingly trust with our lives. In the end, a verified compiler
may prevent disasters.

As it stands, however, there are few verified compilers, CompCert and CakeML
being two prolific examples. These are both developed by small teams. With a
compiler explorer at hand, it will be possible to more easily expand the CakeML team
with newcomers, increasing the amount of work put into CakeML, and improving
its prospects for the future.

By helping the core developers find optimizations the chances of adoption of
the CakeML compiler increases, as performance of software is often an important
consideration. By helping the developer team identify optimizations, it is our hope
that they can prove that verified compilers can realistically be good at optimizing,
furthering the field of verified compilers as mainstream adoption becomes easier.

At the very least, of course, the compiler explorer can make the work of the
developers easier, and perhaps inspire similar projects for other products, making
the work of understanding other compilers less cognitively burdensome for those
working on them.

5.6 Future work
In this section, we will discuss different improvements and new functionality that
could be added which we believe would improve the compiler explorer. We discuss
a different improvement in each section, and order the sections according to our
perceived importance, from most important to least important.

5.6.1 Improving overview
The current user interface prints each AST horizontally and does not line up related
expression. This means that when the user clicks an expression, highlights might

41

5.6. FUTURE WORK 5. Discussion

appear off-screen and thus be tricky to find. To cope with this, our suggested solution
is to display each AST with independent scrolling. Also, we suggest that the web
interface should automatically scroll to expressions when they become highlighted
and have the possibility to step through all highlighted expressions.

5.6.2 Source code highlighting
Currently, the web application does not provide any interaction with the input source
code. The developer team, through our supervisor, have expressed a desire to be
able to see where in the source code an expression in an IL has originated. Indeed,
this is a reason that we used the line annotations from the source code in our trace.

Allowing the user to click on expressions in the source code and have correspond-
ing expressions in ILs highlighted, and vice versa is a matter of improving the web
application. As it stands, the necessary information to implement this functionality
in the web application is provided in the output from the compiler.

Highlighting the source code when the user clicks an IL would be a simple matter.
By looking at the clicked expression’s trace, we could find all sequences of four Cons
terminating with Empty. These would all indicate start and end positions of the
expressions to be highlighted, as explained in Section 4.1.2. For example, if an
expression with the trace shown in Fig. 4.6 was clicked, the characters from row
1, column 2 up to and including row 3 and column 4 would be highlighted in the
source code, as would the characters from row 7, column 8 to row 9 column 10.

In the reverse situation, when the user clicks on an expression in the source
code, the procedure would be different. Firstly, since clicking on the source code
means clicking on a specific character in a string of text, the row and column of
the clicked character would have to be noted by the web application. Secondly, the
web application would have to search through the traces in modLang to find the
smallest trace that includes the clicked character. In this context, smallest refers to
the number of characters included in the portion of the source code that is encoded
by the last four Cons’s in a trace. The smallest trace would then be set as the
activated trace, and highlighting would be performed as usual.

5.6.3 Pretty-printing
The text representations of the IL trees in the web application are very hard to read,
as they simply stretch from left to right without line breaks. An improvement to
readability would be to do pretty-printing that would mimic what a programmer
would write.

The most naïve way to do pretty-printing would be to print an IL tree as a
regular tree by doing the following.

• After each constructor name, or opening bracket or parenthesis, do a line break
and increase the indentation level.

• After each argument to a constructor, or element in a list or tuple, do a line
break and keep indentation level.

42

5.6. FUTURE WORK 5. Discussion

• After completing an argument list or closing a bracket or parenthesis, do a
line break and decrease the indentation level.

Below is an example of what the result would look like. Consider the following
code.

Foo (Bar 2) (t1, t2) [e1; e2; e3]

By the steps above, the above code would be pretty-printed as follows.

Foo
(Bar

2)
(

t1,
t2

)
[

e1;
e2;
e3

]

An even better way to pretty-print the code would be to consider line length as
well. For example, a list that would fit on a line should get printed without line
breaks, and otherwise receive line breaks only as needed. The same would go for
constructors, but these might get special treatment depending on the constructor
so that for example a Let would be printed in a way that mimics how let is often
written in code.

Making this change would also mean that the layout of the web application
should change, from displaying each IL on its own line to showing them in columns.
As each IL would then occupy a lot of space both vertically and horizontally, this
would be a good time to switch to only displaying two or three ILs at a time.

There exist libraries for general pretty-printing of text, such as John Hughes’
pretty library for Haskell [32]. However, we have not found any suitable library
of this type for JavaScript. Furthermore, if such a library exists, it might prove
difficult to be integrated with React and the rendering of HTML elements that have
onclick functionality and similar features.

5.6.4 Optimizations
The performance considerations mentioned in Section 5.3.2 should be addressed by
making the suggested optimizations. Currently, rendering takes quite some time,
which is detrimental to the user experience.

43

5.6. FUTURE WORK 5. Discussion

5.6.5 Tracing the entire compiler
At the moment the compiler explorer traces and displays all ILs from modLang up
to and including patLang. This is in itself valuable, but developers that work on
lower level ILs will not be able to benefit fully from the explorer until we support all
compiler passes. However, this is a straightforward process and one which is already
in progress.

Adding traces to a new IL is sometimes a complex matter, but has so far has
proven feasible, and a project that does not require more than a day’s work. Com-
plications arise when transformations are not straightforward, e.g., call many helper
functions to which the trace then needs to get passed, as the resulting expressions
may be nested and hard to annotate after their creation. If the traces are added by
a developer who is familiar with the IL in question, and thus has a good overview
of the compiler passes performed there, we imagine it would often be quicker.

Extending presLang to accommodate a new IL is not difficult, but can be time-
consuming, as new constructors need to be added and modified. For example,
closLang, the next IL after patLang, has the constructor Tick which does not occur
in any earlier IL, and its App constructor looks different from all previous ILs.
These issues have occurred in our implementation process, and we have solved and
uniformly documented them, so this too should not take more than a day’s work for
an IL. However, maintaining presLang when the compiler changes might become
burdensome. It might be feasible to auto-generate presLang and conversion to and
from it, but we have yet to find a method for this generation which can handle even
a single IL and which would not itself be as difficult to maintain as the current code.

The web application is agnostic as to which languages it gets. Thus, if the
compiler explorer outputs JSON for a new IL, the web application will be able to
accept and display it without modification.

5.6.6 Refactoring tra

As discussed in Section 5.2.1, we believe traces could be refactored to have more
expressive constructors, such as creating one constructor for source code position,
and one for orphans. Orphans might be removed if the source code position for dec-
larations is used instead, as is now possible. If tracing prelude code is implemented,
a special constructor for prelude expressions could be added.

5.6.7 Tracing prelude code
As mentioned in Section 3.2.3, the compiler adds a prelude to every program it
compiles, which is fairly large and has no traces. It was only late into this project
that we started using a web server with a bootstrapped compiler, which was the first
time this problem was encountered. We have since then discussed possible measures
to handle the prelude code, as well as the display of different ILs in general, but
time has not permitted us to implement a solution. However, we consider this the
next important step in the explorer project.

Our proposed solution to this problem is to create a new, special trace con-
structor for prelude traces, given that the refactoring proposed in Section 5.2.1 has

44

5.6. FUTURE WORK 5. Discussion

been performed. If not, a special prelude trace could be created, one which would
never match an existing trace, much like the orphan traces introduced in Section
4.1.4. Using this new trace as base, we could traverse the prelude, assigning unique
numbers to each expression by wrapping the base in Cons.

In the web application, we could then identify expressions with these special
traces and fold them together, so that the user may view them, but not see them
by default.

45

6
Conclusion

The goal of this project was to develop a tool for exploring how the CakeML compiler
transforms its input code, compiler pass for compiler pass. The motivations for this
were twofold. Firstly, current developers of CakeML should be able to more easily
identify possible optimizations the compiler could make. Secondly, newcomers to
the compiler should be able to get a good understanding of how the compiler works
quickly.

The final product, called the compiler explorer, is a prototype tool for visualizing
the compiler transformations. It consists of a web application in which the user
can see the state of a compiled program after each compiler pass. By clicking on
expressions in the program, corresponding expressions after other compiler passes get
highlighted, and the user can then see how the compiler has applied transformations
to specific expressions.

With our project, we have solved the general problems of building a complete
compiler explorer. Extending our solution to cover the entirety of the compiler will
a straight-forward matter.

To solve the issue of relating expressions with each other after different passes,
we invented the concept of traces, which is a small datatype which can be used to
encode all the necessary information in a simple tree structure.

We also needed to output the necessary information from the compiler in a
format that the web application could consume. To this end, we introduced three
new intermediate languages. These are semantics-free and thus do not need to be
verified. In this way, we interfere minimally with the development of the compiler
in general and add very little overhead regarding proofs.

To the best of our knowledge, this is the first product which shows the internal
transformations of a compiler with this level of interaction, where the user is shown
not only the state after each transformation, but also how these transformations
happen. By connecting expressions in different intermediate languages together in
the web application, we expect it will be much easier to get a firm grasp of the
CakeML compiler’s inner workings.

During this project, we have learned much about compilers and their inner work-
ings. We have also gained insight into the formal methods required to verify a com-
piler and the research contributions that the CakeML project makes. Even though
learning the necessary tools for this project is known to be hard, we have been able
to make great progress thanks to the help and mentoring of our supervisor and the
CakeML development team.

46

Bibliography

[1] G. Stewart, L. Beringer, S. Cuellar, and A. W. Appel, “Compositional
CompCert,” POPL: Principles of Programming Languages, vol. 50, no. 1,
pp. 275–287, 2015. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2775051.2676985

[2] X. Leroy, “Formal verification of a realistic compiler,” Communications
of the ACM, vol. 52, no. 7, pp. 107–115, 2009. [Online]. Available:
http://gallium.inria.fr/~xleroy/publi/compcert-CACM.pdf

[3] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens, “CakeML: A verified
implementation of ML,” in POPL ’14: Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. ACM Press,
2014, pp. 179–191.

[4] Y. K. Tan, M. O. Myreen, R. Kumar, A. Fox, S. Owens, and M. Norrish, “A
new verified compiler backend for CakeML,” in ICFP ’16: Proceedings of the
21th ACM SIGPLAN International Conference on Functional Programming.
ACM Press, Sep. 2016, pp. 60–73.

[5] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and Understanding Bugs
in C Compilers,” SIGPLAN Not., vol. 46, no. 6, pp. 283–294, Jun. 2011.
[Online]. Available: http://doi.acm.org/10.1145/1993316.1993532

[6] S. Owens, M. O. Myreen, R. Kumar, and Y. K. Tan, “Functional big-step
semantics,” in Programming Languages and Systems: 25th European Sympo-
sium on Programming, ESOP 2016, ser. Lecture Notes in Computer Science,
P. Thiemann, Ed., vol. 9632. Springer, 2016, pp. 589–615.

[7] R. Kumar, R. Arthan, M. O. Myreen, and Owens, “Self-Formalisation of
Higher-Order Logic: Semantics, Soundness, and a Verified Implementation,”
Journal of Automated Reasoning, vol. 56, no. 3, pp. 221–259, 2016.

[8] “CakeML: A Verified Implementation of ML,” https://github.com/CakeML/
cakeml, Accessed: May 2, 2017.

[9] M. Myréen, 2017, [Electronic image]. To be published. Provided by Magnus
Myreen.

47

http://dl.acm.org/citation.cfm?id=2775051.2676985
http://dl.acm.org/citation.cfm?id=2775051.2676985
http://gallium.inria.fr/~xleroy/publi/compcert-CACM.pdf
http://doi.acm.org/10.1145/1993316.1993532
https://github.com/CakeML/cakeml
https://github.com/CakeML/cakeml

BIBLIOGRAPHY BIBLIOGRAPHY

[10] N. G. De Bruijn, “Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the Church-Rosser
theorem,” vol. 75, no. 5, pp. 381–392, 1972.

[11] K. Chaudhuri, “Illustration for De Bruijn index,” 2009, Accessed: April
4, 2017. [Online]. Available: https://commons.wikimedia.org/wiki/File:
De_Bruijn_index_illustration_1.svg

[12] M. Norrish and K. Slind, “The HOL System Description,” 2011. [On-
line]. Available: https://sourceforge.net/projects/hol/files/hol/kananaskis-11/
kananaskis-11-description.pdf/download

[13] “React - A JavaScript library for building user interfaces,” https://facebook.
github.io/react/, Accessed: May 9, 2017.

[14] “Rendering Elements,” https://facebook.github.io/react/docs/
rendering-elements.html, Accessed: May 12, 2017.

[15] “Components and Props,” https://facebook.github.io/react/docs/
components-and-props.html, Accessed: May 12, 2017.

[16] “CakeML,” https://cakeml.org/, Accessed: May 4, 2017.

[17] D. Sarkar, O. Waddell, and R. K. Dybvig, “A Nanopass framework for compiler
education,” Journal of Functional Programming, vol. 15, no. 05, p. 653, 2005.

[18] “LLVM Visualization Tool User Guide,” https://llvm.org/svn/llvm-project/
television/trunk/docs/UserGuide.html, Accessed: April 28, 2017.

[19] “Compiler Explorer,” https://github.com/mattgodbolt/compiler-explorer, Ac-
cessed: May 2, 2017.

[20] “CakeML Compiler Explorer,” https://cakeml.org/explorer.cgi, Accessed:
April 4, 2017.

[21] “CakeML: A Verified Implementation of ML,” https://github.com/Saser/
cakeml, Accessed: May 11, 2017.

[22] “Saser/compiler-explorer-react,” https://github.com/CakeML/cakeml, Ac-
cessed: May 11, 2017.

[23] J. McCarthy, “Recursive functions symbolic expressions and their computation
by machine, Part I,” Communications of the ACM, vol. 3, no. 4, pp. 184–195,
1960.

[24] T. Bray, “The javascript object notation (JSON) data interchange format,”
2014. [Online]. Available: https://tools.ietf.org/html/rfc7159.html

[25] “cakeml-github-reference,” https://github.com/CakeML/cakeml/blob/master/
documentation/reference.tex, Accessed: May 11, 2017.

48

https://commons.wikimedia.org/wiki/File:De_Bruijn_index_illustration_1.svg
https://commons.wikimedia.org/wiki/File:De_Bruijn_index_illustration_1.svg
https://sourceforge.net/projects/hol/files/hol/kananaskis-11/kananaskis-11-description.pdf/download
https://sourceforge.net/projects/hol/files/hol/kananaskis-11/kananaskis-11-description.pdf/download
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/docs/rendering-elements.html
https://facebook.github.io/react/docs/rendering-elements.html
https://facebook.github.io/react/docs/components-and-props.html
https://facebook.github.io/react/docs/components-and-props.html
https://cakeml.org/
https://llvm.org/svn/llvm-project/television/trunk/docs/UserGuide.html
https://llvm.org/svn/llvm-project/television/trunk/docs/UserGuide.html
https://github.com/mattgodbolt/compiler-explorer
https://cakeml.org/explorer.cgi
https://github.com/Saser/cakeml
https://github.com/Saser/cakeml
https://github.com/CakeML/cakeml
https://tools.ietf.org/html/rfc7159.html
https://github.com/CakeML/cakeml/blob/master/documentation/reference.tex
https://github.com/CakeML/cakeml/blob/master/documentation/reference.tex

BIBLIOGRAPHY BIBLIOGRAPHY

[26] W3C, “HTML5 – A vocabulary and associated APIs for HTML and XHTML,”
https://www.w3.org/TR/html5/single-page.html, Accessed: May 10, 2017.

[27] ——, “UI Events,” https://www.w3.org/TR/uievents, Accessed: May 10, 2017.

[28] M. Norrish and K. Slind, “The HOL System TUTORIAL,” 2014. [On-
line]. Available: https://sourceforge.net/projects/hol/files/hol/kananaskis-11/
kananaskis-11-tutorial.pdf/download

[29] “HOL Interactive Theorem Prover,” https://hol-theorem-prover.org/#doc, Ac-
cessed: May 9, 2017.

[30] S. Najd and S. P. Jones, “Trees That Grow,” pp. 1–20, 2016. [Online].
Available: http://arxiv.org/abs/1610.04799

[31] “Exstensible datatypes - HaskellWiki,” https://wiki.haskell.org/Extensible_
datatypes, Accessed: May 9, 2017.

[32] “Pretty : A Haskell Pretty-printer Library,” https://github.com/haskell/
pretty, Accessed: May 31, 2017.

49

https://www.w3.org/TR/html5/single-page.html
https://www.w3.org/TR/uievents
https://sourceforge.net/projects/hol/files/hol/kananaskis-11/kananaskis-11-tutorial.pdf/download
https://sourceforge.net/projects/hol/files/hol/kananaskis-11/kananaskis-11-tutorial.pdf/download
https://hol-theorem-prover.org/#doc
http://arxiv.org/abs/1610.04799
https://wiki.haskell.org/Extensible_datatypes
https://wiki.haskell.org/Extensible_datatypes
https://github.com/haskell/pretty
https://github.com/haskell/pretty

A
Survey responses

In May 2017, we conducted an informal survey to verify that the initial requirements
we had set up were valid. What follows is the email we posted to the developer
mailing list, followed by the response we got, and from who. The responses have
been cut down to only the answers to the posed questions.
Hi devs ,

If you have time , we ’d like to hear some opinions from you. We ’d
really appreciate it if you had time.

We ’re writing our thesis about the new compiler explorer , which
allows the tracing of expressions , so that you can

a) get the program you are compiling printed at each intermediate
language and

b) click expressions in one intermediate language and have the
corresponding ones highlighted in another language .

So we have three questions to you. A sentence or two one each
would be enough .

1. Did you use the old compiler explorer ?
(https :// cakeml .org/ explorer .cgi)

2. If yes , then for what? If no , why not?

3. What do you imagine you could use the new explorer for that you
couldn ’t use the old one for?

We ’d like to quote you on your answers , if that ’s alright .

Cheers ,

Rikard

Response: Ramana Kumar

1. Did you use the old compiler explorer ?
(https :// cakeml .org/ explorer .cgi)

Yes.

I

A. Survey responses

2. If yes , then for what? If no , why not?

To see if it worked . To see what intermediate language programs
looked like. To debug or better understand compiler passes
while trying to verify them.

3. What do you imagine you could use the new explorer for that
you couldn ’t use the old one for?

Improving the performance or size of generated code , by being able
to visualise and improve one ’s understanding of intermediate
outputs , including while tweaking compiler passes . The old
explorer could be used for that , but it ’s more relevant in the
new one because the new one supports the version 2 compiler
which has more opportunities for optimisation .

Also , to demonstrate the CakeML compiler ’s behaviour to newcomers .
The old one could be used for that too. But the old one was
slow - required running compilation in the logic. I hope the
new one can also work with the bootstrapped compiler outside
the logic so can run faster .

Response: Michael Norrish

1. I tried using the old explorer once or twice
2. I used it to try to understand the semantics of the various

intermediate languages
3. I expect to be able to better understand how expressions at one

level correspond to code at later levels .

Response: Magnus Myreen

1. Did you use the old compiler explorer ?
(https :// cakeml .org/ explorer .cgi)

Not really , only a few times.

2. If yes , then for what? If no , why not?
The most significant reasons were that the de Brujin indices were

unreadable and it was hard to find the relevant parts of the
displayed output .

3. What do you imagine you could use the new explorer for that you
couldn ’t use the old one for?

I hope to be able to use it to look at the intermediate forms in
order to spot patterns in the code that could be improved . It
is important to understand where the suboptimal intermediate
code comes from and where it goes.

II

A. Survey responses

Response: Yong Kiam

1. Did you use the old compiler explorer ?
(https :// cakeml .org/ explorer .cgi)

Yes , I wrote it.

2. If yes , then for what? If no , why not?

Initially , we noticed 1-2 performance bugs in the compiler with it.

Nowadays , I mainly use it for astPP , i.e.\ to pretty print AST out
to concrete syntax

3. What do you imagine you could use the new explorer for that you
couldn ’t use the old one for?

The old explorer hasn ’t been updated for the new CakeML compiler .
I’ve rewritten custom pretty printing for parts of the lower
level languages multiple times when debugging / tracing through
them.

This new explorer should help a lot with that.

The operation you describe (click an expression and see how it
compiles) sounds useful too. (I also do that by hand when
tracing stuff)

Response: Scott Owens

> 1. Did you use the old compiler explorer ?
(https :// cakeml .org/ explorer .cgi)

I tried it out a few times , to see if good BVL code was being
generated for specific programming idioms . I never really got
it to work for a few reasons . The biggest were the output being
hard to read and the whole thing silently failing on parse
errors .

> 2. If yes , then for what? If no , why not?

See above.

> 3. What do you imagine you could use the new explorer for that
you couldn ’t use the old one for?

I hope that I can use it to generate examples at all of the ILs to
incorporate them into a document explaining what the compiler
does.

III

	List of Figures
	Nomenclature
	Introduction
	Problem specification
	Solution and contribution
	Structure of this report

	Technical Background
	Verified compilation
	CakeML
	The compiler and its general structure
	The early intermediate languages
	Line annotations on expressions
	De Bruijn indexing

	HOL4
	React

	Prestudy
	Goal for the final product
	Delimitations in scope
	Speed and responsiveness of the web application
	Tracing source position of declarations
	Tracing prelude code
	Updating proofs

	Collecting user requirements
	Subgoals of project
	Adding position information to expressions
	Outputting position information from the compiler
	Building a web application

	Similar projects
	The nanopass compiler framework
	LLVM Visualization tool
	Godbolt's compiler explorer
	CakeML's old compiler explorer

	Results
	Adding traces to the compiler
	The tra data type
	Encoding ancestry with traces
	Decoding ancestry from traces
	Adding traces to declarations
	Turning traces off using None

	Intermediate languages for output
	presLang
	displayLang
	jsonLang
	Handling De Bruijn indices

	Web application
	Server-side application
	Graphical user interface
	Rendering HTML using React components
	Highlighting expressions on click

	Discussion
	Planning the project
	Getting user input
	Learning HOL and CakeML
	Division of labor

	Compiler changes
	Implementation of traces
	New intermediate languages
	Handling De Bruijn indices
	Testing changes to the compiler

	Web application
	Using React
	Performance

	Suitability for intended uses
	Effects on society as a whole
	Future work
	Improving overview
	Source code highlighting
	Pretty-printing
	Optimizations
	Tracing the entire compiler
	Refactoring tra
	Tracing prelude code

	Conclusion
	Bibliography
	Survey responses

