
Visualizing the UI impact of Methods for Program Comprehension

Master’s thesis in Software Engineering Programme

ANTON GREGORY

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2018

Master’s thesis 2018

Visualizing the UI impact of Methods for
Program Comprehension

ANTON GREGORY

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2018

Visualizing the UI impact of Methods for Program Comprehension
ANTON GREGORY

© ANTON GREGORY, 2018.

Supervisor: Regina Hebig, Software Engineering
Examiner: Jan Philippe Stegnoefer , Software Engineering

Master’s Thesis 2018
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Gothenburg, Sweden 2018

Visualizing the UI impact of Methods
ANTON GREGORY
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

iv

Abstract
Software developers spend 58% of their time comprehending source code. Most
methods to support this task are limited to providing abstract views on a system’s
building blocks and connections. However, this perspective is fundamentally differ-
ent to the user view on a running software system. Indeed, it was found in a study
that developers working with UI systems use the UI as a starting point to compre-
hend the software. However, there is a lack of techniques that help developers to
map user view to the source code. We developed a first simple prototype to automat-
ically generate documentation that includes links to the user view and performed a
qualitative user study with 24 participants. The results indicate the feasibility of the
development of such prototype and provide insights into perceived advantages and
limitations. This indicate that this research direction has the potential to change
the way we understand software in future.

Keywords: software, engineering, computer, science, thesis, comprehension, UI, vi-
sualization, documentation, maintenance, reverse engineering, user interface, docu-
ment generation.

v

Acknowledgements
First and foremost, I would like to express my heartfelt gratitude to my supervisor
Regina Hebig for guiding me and supporting me through out the research. Your
constant feedback during my writing and continuous assistance helped me a lot.

I would also like extend my gratitude to my examiner Jan-Phillipp, all the anony-
mous people who responded my questionnaire and my opponent Logesh for being
patient with me to complete my thesis.

Anton Gregory, Gothenburg,Sweden

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Problem Description . 1
1.2 Purpose of Study . 2
1.3 Disposition . 3

2 Background 4
2.1 Related Work . 4

2.1.1 Documentation . 5
2.1.2 Architecture . 5
2.1.3 Code . 5

2.2 GUI-based Software Testing . 6
2.2.1 1st generation: Coordinate-based 6
2.2.2 2nd generation: Component/Widget-based 6
2.2.3 3rd generation: Visual GUI Testing 6

3 Methods 8
3.1 Research Methodology . 8

3.1.1 Problem identification and motivation 8
3.1.2 Define the objectives for a solution 10
3.1.3 Design and development: . 11
3.1.4 Demonstration . 12
3.1.5 Evaluation . 12

4 Implementation 20
4.1 Prototype Development . 20
4.2 Configuration . 25
4.3 Process of Tracing a Method . 28

5 Results 31
5.1 UI of Arts Of Illusion . 31
5.2 Overview of Results . 33

5.2.1 Build failure . 34
5.2.2 Successful build and failed to open jar 34

ix

Contents

5.2.3 No difference found . 34
5.2.4 Differences found . 35

5.3 Quality of images recorded . 36
5.4 Mapping of Recordings . 38
5.5 Impact Observed on UI Component 40

6 Evaluation 47
6.1 Analysis of Data . 47

6.1.1 Familiarizing the data . 47
6.1.2 Generating initial codes . 48
6.1.3 Searching for themes . 49
6.1.4 Reviewing themes . 49
6.1.5 Defining and naming themes 51

6.1.5.1 Advantages . 51
6.1.5.2 Limitations . 53
6.1.5.3 Usages . 54

6.2 Findings from Analysis . 56

7 Discussion 61
7.1 Threats to validity . 61

7.1.1 Internal Validity . 61
7.1.2 External Validity . 61

7.2 Limitations . 62
7.3 Discussion . 63

8 Conclusion 68

Bibliography 70

x

List of Figures

3.1 Design science research activities [36] 9

4.1 Architecture diagram of prototype . 20
4.2 Chart to illustrate the results obtained from the tool 24
4.3 Project setup GUI of UI-Tracer tool 25
4.4 Project setup GUI-2 of UI-Tracer tool 26
4.5 Screenshot of the ‘Arts of illusion’ application 27
4.6 Image to illustrate how the screenshot in image 4.5 is divided 27
4.7 First quarter of the image from ‘Arts of illusion’ application with

un-manipulated code . 28
4.8 Screenshot of the ‘Arts of illusion’ application with manipulated code 29
4.9 Image saved as result by UI-Tracer 29
4.10 Sequence diagram of UI Tracer tool 30

5.1 Screenshot of ‘Arts of Illusion’ application 31
5.2 Menu Bar of ‘Arts of Illusion’ . 32
5.3 Tool Bar of ‘Arts of Illusion’ . 32
5.4 View window of ‘Arts of Illusion’ . 32
5.5 Object panel & Properties panel of ‘Arts of Illusion’ 33
5.6 Score panel of ‘Arts of Illusion’ . 33
5.7 Chart to illustrate the results obtained from the tool 35
5.8 Pie chart of images recorded as changes 36
5.9 Example of an invalid recording that has the screenshot of background

application . 37
5.10 Example of image recorded as difference with blank UI 37
5.11 Difference in component length Front 38
5.12 Camera object transformed . 41
5.13 Camera object missing from view window 42
5.14 Result of ‘File’ menu button missing in Menu bar 42
5.15 Comparison between original Tool Bar panel and result from tool . . 43
5.16 Comparison between original Object panel and result from tool . . . 43
5.17 Comparison between original Properties panel and result from tool . . 44
5.18 Difference in component View window Front 44
5.19 Comparison between original Control elements from view control and

result from tool . 45
5.20 Comparison between original score component and result from tool . 45
5.21 Difference in component View window Front 46

xi

List of Figures

6.1 Mind map of the central theme ‘Advantages’ 50
6.2 Mind map of the central theme ‘Limitations’ 51
6.3 Mind map of the central theme ‘Usages’ 51
6.4 Chart of Themes obtained for question 1 and their count 57
6.5 Chart of Themes obtained for question 2 and their count 58
6.6 Chart of Themes obtained for question 3 and their count 59
6.7 HeatMap of answers obtained for question 4 60

xii

List of Tables

3.1 Question given to participants . 17

4.1 Values returned based on method return type. 21

5.1 Types of results produced based on methods 35
5.2 Number of images grouped by their category 38
5.3 Mapping of Methods and number of valid recordings 40
5.4 Mapping of UI components and number of changes 41

6.1 Sample answer obtained for question 4 from questionnaire 48
6.2 Advantages of UI Tracer and the number of participants who men-

tioned it . 56
6.3 Limitations of UI Tracer . 57
6.4 Usage of UI Tracer . 58

xiii

1
Introduction

Maintenance of software is as important as its development because 65 % to 75%
of the overall effort in software lifecycle goes to maintenance [1]. The code under-
goes changes during maintenance of the software, e.g. for fixing bugs, to cope up
with hardware upgrades, or to incorporate changing requirements [4]. Due to these
reasons, the maintenance phase of the software lifecycle is often regarded as one of
the most important and expensive phases above all when compared to other phases
of the software development lifecycle [2]. The size of the code and complexity of
the code increases as the source code evolves. This has a significant impact on the
understandability of the software [25].

Software developers and maintainers need to read and understand the source code
and other documentation at their work. Programmers use software comprehension
techniques to understand code and it aids them more during the maintenance phase
of the software life cycle. These techniques help the programmer to understand
the system components, architecture, source code etc. For example, there are soft-
ware such as Graphviz that help the user to visualize the software components and
their dependencies. Müller [18] describes software comprehension as, “a process
where a software practitioner understands a software artifact using both knowledge
of the domain and/or semantic and syntactic knowledge, to build a mental model
of its relation to the situation”. Program comprehension also acts as a core factor
in analysis, refactoring and reengineering of the program [19]. Due to the signifi-
cance of program comprehension on software maintenance, there is always a need
to investigate and understand the issues involved in software comprehension. This
necessity is the reason for this research and contribution to program comprehension.

1.1 Problem Description
The developers who developed the software might not be available when software
enters the maintenance phase. Now the new developers who maintain the soft-
ware struggle to understand the code. They have to understand the source code
by themselves or use documentation. Necessary documentation might not exist and
if it does exist it might be outdated. Research shows that developers rely more
on source code when compared to documentation [5]. In some cases, there will be
too much of information provided in the documentation whereas in other cases too
little information [5]. These cases stall the software maintainers to get the informa-

1

1. Introduction

tion they require. Easy and quick understanding of the source code could have an
enormous potential to save the time required for comprehension during bug fixing
and maintenance tasks. It has been found that 58% of developers time is spent on
comprehending the software system under maintenance [55].

In fast-paced working environments finishing work on time is vital. During mainte-
nance, the software developers spend more time trying to understand the software.
This delays the maintenance process even further. High pressure on the maintainers
might make them work without having adequate knowledge of the software system.
This is an immense problem for organizations because the chances of new bugs to
get introduced are high [9]. Moreover, one change might cause a ripple effect in the
source code, leading to the introduction of additional bugs. The results of a study
concerning code inspection showed that 60% of the issues reported by professional
reviewers were maintenance issues related to software understandability [4]. These
above mentioned factors and results indicate the significance of understandability
in software.

Boehm [28] observed that modification of software is usually performed in three
steps: understanding of the existing software, modifying the existing software and
re validating the modified software. A study [23] conducted on program compre-
hension techniques found that maintainers interact with the UI to comprehend the
software. According to this study 17 out of 21 participants who work with GUI ap-
plications used UI to comprehend the software. Certain participants in the interview
mentioned that they used UI to inspect code. For example, to know the part of the
code that was executed by a button click. This information is then used as a starting
point for the exploration of code. The information obtained will help in the process
of comprehending the software for developers who maintain systems with UI, and
thus this proves the significance of UI on comprehension for developers working on
systems with UI. Their study concludes that maintainers test by interacting with
the user interface to know the starting point of the application for further inspec-
tion. From the same study it is known that there are no techniques available to
help the user with the mapping of code to UI. In addition to the above finding, it
has been found in the study [23] that developers follow a “problem-solution-test”
pattern when they work. This pattern implies that developers begin by identifying
the location of a problem, implement the solution to the problem and test the so-
lution. This indicates that knowing the location of logic in the system could help
developers in comprehending software systems.

1.2 Purpose of Study
In this research, a new comprehension technique will be proposed which would help
the user understand the impact a method has on the UI. This technique will be dif-
ferent from the conventional text-based and model-based comprehension techniques.
The aim of using this UI-based technique is to provide the user with an easy visual
description of the impact that the source code has on the system, and thus making
it easier for user to understand the location of methods that are responsible for UI

2

1. Introduction

rendering. This will in turn create a mapping for users to know the significance of
the methods on the user interface. We believe that this will help the user understand
the impact of a piece of code in the software and thus helping the user to identify
the mappings of the code to functionality.

Through this thesis, we wanted to understand the feasibility of creating a tool that
could generate a mapping of UI components to its source code. We also wanted
to understand the results of the tool and investigate if the developers could use
them. We believe this technique could be used in conjunction with other standard
comprehension techniques that already exist right now. This way we would like to
create a comprehension technique and contribute to the research in the software
comprehension domain.

1.3 Disposition
This document provides the reader with a comprehensive description of the thesis
research. In the remainder of this document, we will present the background theory
related to the subject of the thesis in chapter 2. Following that in chapter 3 we
have presented the methodology we used to conduct the research. Next, we have
presented the implementation of the prototype developed as a part of the thesis in
chapter 4. The results we obtained from the prototype are discussed and analyzed in
chapter 5. The findings from the evaluation of the results are presented in chapter 6.
Finally, we discussed our contribution in chapter 7 and concluded with some ideas
for future research in chapter 8.

3

2
Background

In the following sections, the background of this research is discussed in detail. This
chapter will illustrate the already existing comprehension techniques providing a
clear outline of this research.

2.1 Related Work

Understandability of the software code is heavily affected by multiple factors followed
during software development. These include violating the best practices while docu-
menting the code, introduction of complex logic in the code, bad readability etc [5].
Software maintainers work with unfamiliar code that may not be written by them
[3]. When the maintainers understand the code faster it becomes easy for them to
start working on it.

When the developers understand the code, they can identify the potentially reusable
components which might be of use to them during maintenance. In the U.S. depart-
ment of defence alone $300 million could be saved by increasing the re-usability of
the code just by 1% [6]. Although reuse saves cost and time, the difficulty in under-
standing the source code will stall the developers to re-use the components created
by other developers. One study report states that 40% to 60% of the maintenance
activity is invested in understanding how the software and how to implement the
planned changes in the maintenance [4]. This indicates how important it is for or-
ganizations to focus on the creation and updation of software documentation .

Considering the understandability issues maintainers face, program comprehension
has always been studied intensively [19]. Many techniques are followed to generate
documentation of software. For example in java, annotation based documentation
is supported. Annotations provide information about the program but it is not a
part of the program itself [13]. These annotations are extracted using JavaDocs[14]
to provide the documentation. Tools such as Doxygen [15]/Graphviz [16] provide
visual representation of the structure of the code which could be of use to developers
to understand the system visually. Software visualization acts as a documentation
helping the user with a visual representation of the complex views of the system
[17]. There are various techniques followed widely in program comprehension on
different levels of the software. Each of them are discussed below.

4

2. Background

2.1.1 Documentation

Documentation is a well known program comprehension technique. Documentation
is a textual description that is intended to communicate the information about the
software system. As this acts as a communication model it is rather important
that a good and up to date documentation is available to the maintainers of the
system. Documentation might contain requirements , design architectures or code
explanations etc. There are currently various tools available that help in generating
document from the source code. These tools extract the information from the source
code and converts the source code in to documentation. Doxygen [15], Sphinx
[39] etc are some of the document-generating software currently available. Even
though software documentation contains information about the software system , it
is important to note whether the information in the documentation is up to date or
not. As the software system evolves the documentation might get outdated. Rise
of agile practices in organizations also puts the engineers in a situation where they
have less documentation [20]. These factors affect the documentation to a large
extent.

2.1.2 Architecture

Software visualization is a technique which aids in the understanding of the software
by presenting the components of the software as visual images[21]. This technique
gives physical shapes to shapeless software code and presents them to the user. The
user could gain an insight about the structure of the software code or comprehend
any complex component etc. Jarchitect, SourceTrail, JIVE [40, 41, 42] are some
of the popular known tools that offer software visualization. Reverse engineering
in software is a research area which aids in program comprehension. This tech-
nique emphasizes the understanding of the system, its components and their inter
relationship from the end product. With reverse engineering the structure of the
components and their dependencies could be understood, and thus aiding in program
comprehension. Reverse engineering is, however, a tedious task for large amount of
data [38].

2.1.3 Code

On code level there are techniques that support program comprehension. Following
proper coding standards throughout the entire code base, addition of comments at
required places and good design etc impact the readability of the code. Program
slicing is another technique which simplifies programs by abstracting the intended
method from a complex program. This is done by removing the parts of the program
which have no effect on the method of interest. This helps in understanding a specific
part of the code by eliminating complexity in the method [22]. Research [23] shows
that most developers try to comprehend the software directly by debugging it. It
should be noted that this approach is time consuming when dealing with systems
with a huge code base.

5

2. Background

2.2 GUI-based Software Testing
GUI testing of software is a way to ensure the functionality of the user interface meet
its specifications. There are various tools developed as an application of GUI test-
ing. These tools help the user to write scripts that automate and perform testing.
These tools could be made to perform actions on GUI and emulate user actions as
well. But these tools though sharing the same purpose they have differences in the
way they interact with the GUI. According to these differences they are classified in
to the following generations [26] .

• 1st generation: Coordinate-based.
• 2nd generation: Component/Widget-based.
• 3rd generation: Visual GUI Testing.

2.2.1 1st generation: Coordinate-based
The first generation automation is based on getting the coordinates from the screen
and then using it to interact with the GUI. To get the coordinates the user actions
is recorded which is then used to generate scripts that could be played as an au-
tomation process. The risk involved in this approach is that any minor change in
UI component will flunk the automation because the action is triggered based on
coordinates. Examples of this generation include JUnit [37], Sikuli [12] etc

2.2.2 2nd generation: Component/Widget-based
In this generation of automation, the automation is simulated by direct access to
GUI components. This technique is also called as Widget or Tag based GUI test-
ing. This technique is followed widely in industries due to its robustness. In this
approach the tags in GUI is used for automation. For example there is a button
with label ‘OK’ then the tool will scan to locate the tag ‘OK’ and then simulates
user action. Examples of this generation tools are Selenium [45], QTP [45] etc. The
main limitation of tools belonging to this generation is that testing over certain GUI
applications is not possible as the tags are inaccessible. The other limitation is that
there is no mean to verify the correctness from a GUI point of view, both in terms
of appearance or behavior [43]

2.2.3 3rd generation: Visual GUI Testing

The 3rd generation GUI-based testing is also referred to as Visual GUI Testing.
This generation tools use image recognition capabilities to interact and assert the
UI components in GUI application. Examples of this generation includes, Sikuli [12]
an open source application, JAutomate etc. Each form of GUI testing in this gen-
eration has different advantages and disadvantages due to their individual features.
E.g. Sikuli is free as it is an open-source while JAutomate is not [44].

6

2. Background

Image recognition on these tools is usually done in two steps. First the current state
of GUI is captured as a screenshot. Then the image recognition algorithm scans
for the image(eg : an image of a button) in the screenshot . If it recognizes the
image then the coordinates of the matched object is returned. These coordinates will
be then used to perform actions on them. Different tools uses different algorithms
but most algorithms rely on similarity based matching. This means that there is a
percentile up to which a match will be considered acceptable. For example, if the
acceptability reaches the 70th percentile it is considered a match. This degree could,
however, be adjusted in most of the tools that fall under this generation category
[43].

7

3
Methods

In this chapter, the methodology of this research is explained. Here along with the
methodology we also discuss how we derived at research questions and how this
research is carried out to address them.

3.1 Research Methodology
This research is carried out with a design science research methodology [36]. This
methodology helps in addressing unsolved and important problems in new and inno-
vative ways. Therefore, we chose design science research methodology for this thesis
research which enables us to develop and study new approaches that addresses the
problems in program comprehension. This design science research method consists
of the following activities: identifying the problem, defining the objectives for a so-
lution, design and development, demonstration and evaluation. The six activities
that constitute a design science in research is shown in the figure 3.1.

3.1.1 Problem identification and motivation
This activity is performed to identify the problem area and to derive at a solution
that is concrete. This phase therefore determines the value of the solution itself,
and thus contributes to the development of the artifact. Moreover, this phase also
provided a motivation for carrying out the research and to know whether the results
obtained are valid to be considered as a solution.

The paper “How Do Professional Developers Comprehend Software?” [23] is a study
conducted to explore how program comprehension tools are used in practice and
comparing the techniques effectively with one another. As the base of our thesis
research is about program comprehension, the paper [23] answered questions about
the anomalies we had in the beginning. In this paper [23] it has been found that
developers or maintainers who work with GUI applications comprehend by identi-
fying the methods that are executed as a consequence of button click or other use
actions. In addition to this the paper also proves that users interact with the UI
to understand the system. The paper “Which documentation for software mainte-
nance?” [5] is a study conducted to know how much documentation is of help to the
maintainers and that too what artifacts are considered important to them.

When the research was started, we were unsure how developers comprehend a GUI

8

3. Methods

Figure 3.1: Design science research activities [36]

systems. Moreover, we were unsure whether the information about the mapping
of code and GUI elements could be of any use to them. On reading papers about
program comprehension techniques, the paper [23] helped us in understanding how
professional developers comprehend software in the industry. The study shows the
approach developers follow when they comprehend. They found that 18 participants
out of 28 followed a “problem-solution-test” [23] work pattern, which is in conjunc-
tion with what Boehm [28] observed during the modification of software. This is a
three-step process: Identifying the problem, applying the solution and testing the
applied solution. In case of implementation of a new feature, the first step of iden-
tifying the problem is replaced with the identification of code locations.

Moreover they also found that, in systems that involve UI, the developers tend to
examine the UI and try to understand the code from there. In order to locate the
part of the code that impacts the UI, the developer must comprehend the code
using conventional methods. These methods can include text-based documentation
or model-based techniques. There are, however, no tools that provide the necessary
documentation for this purpose. This means that the developer has no tools to
support them in mapping the UI to the code. They debug to trace information
about how UI and code are related. Based on these findings we concluded that
automation support deriving this tracing could assist developers.

9

3. Methods

Research questions
The research questions were formulated such that they can address the aim and
intended contribution of this project. Considering the problems analyzed and dis-
cussed during the previous activity we derived at the following research questions.

RQ1. How can we design and implement the technique to visually observe the im-
pact a method has on the UI?

RQ2. Can we map the UI components of the view that appears after the application
is loaded (the “starting screen”) to its source code through this approach?

RQ3. How do developers or maintainers perceive the documentation created using
the technique under study?

3.1.2 Define the objectives for a solution
After the problem has been identified the next step was to frame the objectives of
the solution according to the chosen methodology. At first, we wanted to comment
each method, record the differences in the UI and then produce the result as doc-
umentation. However, to comment each method one by one in source code is a
tedious task. We decided to approach the problem by developing a tool that could
automate how developers debug the system with UI to locate parts of the code that
impacts UI. We believed that such tool if developed could help the developers by
providing them with useful information such as the parts of the code impacting the
UI and thus enabling them to comprehend the software faster.

The intention of developing the proposed tool is to automate the way a developer
would debug the application to locate the parts of the code. For example, if a de-
veloper wants to change the layout of a button, he or she needs to locate the code
linked to that button. The developer therefore debugs the system manually in order
to locate the code. There are no technologies that could automate this debug pro-
cess. However, we planned to develop a tool that could comment the body of the
method. For the commenting out process we decided to have it on a method level.
This is because commenting out the whole class could lead to more errors during
compilation whereas commenting out line by line is also not practical as it would
consume much time. Thus, we believe that studying the impact on a method level
is more meaningful and reached a conclusion that development of such tool could be
studied during the research thereby answering RQ1. This also allows us to explore
the challenges involved technically.

As the next step, we wanted to examine the results of the tool after its development.
As the tool intended to be developed for the research is in its prototype version, we
decided to study the possibility of generating documentation for UI components in
one screen (starting screen). We wanted to know if there would be UI components
that get affected by any of the code manipulations or whether it will be of results
that are less significant. We wanted to study the quality of the results and the

10

3. Methods

type of methods that created them. So, we decided to perform an analysis of the
results about to be obtained from the study. This practical aspect of the analysis
would relate to RQ2. We wanted to know if the results obtained have the potential
to be considered as a comprehension technique that could benefit the maintainers
or software developers. In order to analyze the perception of developers on this
technique, we planned to set up a qualitative study of the results. This way we
wanted to find the answer for RQ3 which could be used as feedback for further
researches.

3.1.3 Design and development:

To answer RQ1 we had to analyze how this new comprehension technique could be
implemented. In order to do this, we decided to check for changes exist in UI if a
method in the project is commented out. There are visual GUI testing tools which
provide the comparison of images and simulate user actions. Upon studying these
tools, we found that 3rd generation category of GUI testing tools offers the oppor-
tunity to interact with UI components based on image recognition [11]. Sikuli[12],
provides the options to check for a pattern on a screen and to compare images. The
very same GUI testing tool also provides the ability to read or write a file which
could be used to comment a method in the code. In Sikuli IDE scripts are written in
’python’ [29] language. While learning about Sikuli we discovered that the API pro-
vided by said GUI testing tool offers all the features provided in Sikuli scripting via
Java. We decided to choose Sikuli API in Java to develop the tool because reading
or writing a file is more straightforward using Java in comparison to writing python
scripts to achieve the same for this research. Moreover, there is no performance
difference as Sikuli IDE uses Jython [71]. Java also offers more support in the form
of external libraries to help in automating the tasks needed to be performed and
also easy to perform debugging during the development process. For example, after
commenting on a method, the system should be compiled and started. In order to
do so, the whole project should be built (i.e. using build tools such as Ant, Maven
[31, 32]). It is possible to programmatically run build files (i.e. execute build files)
through Java whereas Sikuli IDE required creating complex scripts. The other ad-
vantage is the debugging support offered in standard Java IDEs such as Eclipse and
IntelliJ. Sikuli API in Java is, therefore, more appropriate for this research study in
comparison to scripting in Sikuli IDE.

During the design, we noted that it is necessary to observe the changes and record
these changes as files. It is, however, complicated to trace these changes back to the
method that caused the change. So, we needed a mechanism that is robust, and thus
we decided to use the database to save the mapping of the changes in the UI and the
method that is responsible for its creation. When the tool is being used the observed
difference will be saved as a file, and its location will be stored in the database. For
every method, if there are any changes observed the details corresponding to the
change would be stored. The database chosen is SQLite [33] as it offers the basic
database operations with the support to be embedded in the tool itself. As the
tool being developed helps in tracing the source code to the UI components, it will

11

3. Methods

be named ’UI - Tracer’. Detailed description of the implementation is provided in
chapter 4.

3.1.4 Demonstration
This activity is performed as a formal evaluation of the solution. This section of
the thesis, therefore, relates to RQ2 as it deals with the tool’s ability to identify
important methods for the starting screen’s UI components. In this phase, the tool
developed has to be tested on a project. As this research is based on studying the
impact a method has on UI; we decided to choose a project which has a user inter-
face. The project to be analyzed must contain visual components, i.e. certain UI
that can be tested. Therefore, we selected a project called ‘Arts of illusion’ which
is a free and open source project which provides 3D modelling and rendering of
images/objects. The user interface has components which could be used by the user
to create 3D images or objects based on the needs of the user. For this reason, we
decided to choose this UI system for the study. This project has around 398 classes
in it.

The tool developed is decided to be tested on this ‘Arts Of Illusion’ application’s
source code and results from this tool will be evaluated manually in relation to the
following questions and purposes:

• Evaluate the quality of differences in images obtained as a result of the tool.
• Identify if all the UI components present in the starting screen disappear

change or go missing when the tool processes them.
• Identify whether multiple methods are associated with the impact on a single

UI component.

3.1.5 Evaluation
The purpose of this activity in this thesis is to answer research question RQ3 and
thereby finding out how software engineers or developers perceive the new com-
prehension technique proposed. In order to obtain their perception, we decided to
perform a usability evaluation of the results from the tool and study them qualita-
tively. By evaluating the results, we wanted to study and understand the areas of
improvement which could be useful for future research works.

There are different options to choose when framing an evaluation study. The re-
search setting to use in the study is one among them. The research setting could
be controlled or natural depending on various aspects of the study. Here we dis-
cuss the choice of using natural settings in this thesis. In controlled experimental
investigation the variables of interest (“independent variables” and their measurable
outcomes the “dependent variables”) have to be studied in controlled settings [68].
In case of our research, measuring the impact this technique has on developers in
a controlled setting requires a heavy setup. For example, measuring the difference
in time taken by participants when they use the new comprehension technique and

12

3. Methods

the traditional comprehension techniques. So the study performed as a part of this
evaluation phase is done in natural settings [69] and not performed as a controlled
experiment.

The research question RQ3 is connected to the perception of the developers, mak-
ing it qualitative would help us in exploring people’s views on their understanding
and experiences [47]. These factors led us to choose formative evaluation approach
for performing the evaluation as formative evaluation relies on qualitative methods
[67]. Formative evaluation helps in enhancing a program, policy group or product
[70]. According to Stetler, “formative evaluation is herein defined as a rigorous as-
sessment process designed to identify potential and actual influences on the progress
and effectiveness of implementation efforts” [64]. Results from formative evaluations
typically include opinions and suggestions. Identifying these outcomes are crucial
as they will help in meeting the goals of the evaluation. Formative evaluation is
also called as exploratory evaluation [62]. Thus using this approach qualitatively
made it possible for us to elicit “What”, “Why” and “How” questions related to the
comprehension technique under study [47].

Motivation: Any evaluation needs to have realistic goals and so prior to choosing the
type of evaluation we wanted to decide on the goals and the outcomes expected of
the evaluation. The proposed comprehension technique in this research is new and
we wanted to know if such a comprehension technique through a visual documen-
tation (generated by the tool) could be used by developers. Also, as mentioned in
RQ3, we wanted to know how developers or maintainers perceive the documentation
created using the technique under study. Thus, as we are concerned about people’s
view on the results, we wanted to know primarily the following and have set them
as evaluation goals.

• Evaluate whether participants could understand and use this technique.
• Identify whether the participants could find scope for usage of this technique

among other comprehension techniques.
• What are the advantages, uses and weaknesses of the new comprehension tech-

nique over other standard comprehension techniques?

Since the participants have no prior experience with this approach it is tough to
understand their perception of the new comprehension technique. This created a
need for the participants to understand how this new technique works leading us to
perform usability testing [62] prior to the identification of other outcomes such as
advantages, uses and limitations of the technique. Usability testing has become a
standard and an integral part in formative evaluation [66]. This involves tasks or
scenarios that the user has to perform during the study. In other words, tasks are
activities the participants (i.e experimental units) of a study should perform as a
part of an evaluation. Using the tasks in usability testing we wanted to evaluate
whether participants could understand and use this technique. Moreover, through
the usability tasks, we wanted to understand if participants could find usage areas
to use this technique among the existing standard techniques.

13

3. Methods

After knowing whether the participants could understand the technique we wanted
to identify other outcomes such as advantages, limitations and uses of the new com-
prehension technique. By identifying the advantages of the results it would help us
to emphasize the importance and contribution of the newly proposed documenta-
tion. Knowing the limitations would help in improving the documentation technique
and also by finding the usage scope of comprehension technique will help in knowing
the usage scope of this technique among other standard comprehension techniques.
The above-mentioned outcomes of the evaluation advantages, uses and weakness of
the of the subject are studied qualitatively after the usability testing.

Procedure: Usually usability testing is done to evaluate usability of software systems
and more commonly on systems with user interface. In our case as the subject under
study are results that has no UI we adapted the usability testing and performed it
on the results we obtained from the tool. From [62] and [63] the following activities
are performed in this research to perform the evaluation of results obtained from
the tool.

• Choosing experimental units
• Evaluation tasks
• Data collection
• Analysis of data

Choosing experimental units

In this section, we will discuss how the participants are chosen for the study and
about the sampling technique we followed for choosing participants. All the par-
ticipants who took part in the study are Master’s students of software engineering
programme of the Chalmers University of technology. The participants are students
of a course “Software evolution project”, a 15 credits course that primarily revolve
around software quality and software maintenance. The course contains lectures
and lab projects based on Software Quality and Software maintenance. Also, it is a
pre-requisite for the course that the students should know Object Oriented program-
ming and Software quality. It was eight weeks already into the course by the time
the study was done and it is an added assurance that the participants knew software
quality and maintenance from the lectures and lab projects of the course. This gave
us the confidence about their knowledge on software development, maintenance and
common comprehension techniques.

The students who participated in the study also have good English knowledge, and
this made us carry out the process in the English language. They are also new to
‘Arts of illusion’ application thus giving us room for knowing how they approach or
use the results from the tool. As a part of the course, the students were divided
into groups of 5-7 people per group for the lab project. The lab was scheduled for
8:00 -12:00 hrs and when we performed the study, participants were chosen using
Convenience Sampling technique [46]. This was done as we did not have time to
approach each group of students and perform the study in the available time. So,

14

3. Methods

we approached the students of the course group by group seeking whether they are
interested in participating in our study which is related to program comprehension.
We presented them about our research and also about the evaluation study that we
have planned to perform. The participants were informed by us that approximately
30 minutes would be taken for performing the evaluation study. The participants
had the freedom to decline their participation in their study. Few students responded
that they did not wish to take part in our study as they had to work on their lab
assignments. In these cases, no participants were compelled to participate in our
study. We ensured that verbal consent is obtained from the participants before they
are chosen for the study. The process of obtaining consent from the participants was
performed with the teacher of the course (Software evolution project) present. The
course supervisor assured the students that their grades are not impacted anyway
despite their participation or non-participation in the study. In total 24 participants
took part in the study out of which two of them were teaching assistants from the
course and rest of them being students of the course.

Evaluation Tasks

To perform usability testing, tasks have to be performed by the participants. The
main intention of this usability testing is to understand if the participants could use
the results for comprehension purposes and elicit their opinions. Tasks are catego-
rized into three categories [65] and they are prescribed tasks, participant defined,
and open ended tasks. In prescribed tasks, the researcher frames the tasks that have
to be performed by the participants. In contrast to prescribed tasks, the partici-
pants are made to frame the tasks in participant defined category. Whereas in open
ended tasks the participants are allowed to use the subject under study without any
specific demands. In this study, we made use of prescribed tasks as the technique is
rather new to the participants. The participants therefore were given two tasks and
they are as follows.

• Task 1 Hide the camera object (shown in figure below) from the display pane
only during start-up without affecting other functionalities of the ‘Arts Of
Illusion’.

• Task 2 Change the default playback speed in the playback slider.

These tasks are prior tested with a person who is familiar with Software Develop-
ment, to ensure that these tasks are solvable in the limited time we had for the
study. Both the tasks could be solved in multiple ways. There is no strict solution

15

3. Methods

we expected the participants to perform as the idea here is to meet the evaluation
goal of understanding whether the participants could comprehend using this tech-
nique.

The first task was framed in a way such that the solution to it should affect the UI
alone instead of the functionality of the ‘Arts Of Illusion’ application. This way we
wanted to see if the user can comprehend using the new comprehension technique
to work on UI related changes or issues. There is a method named ’visibility’ in the
Camera.java class which is connected to the task 1. This method is also in the results
recorded by the tool as the camera object disappeared when the tool commented the
body of the method ’visibility’. As both, the name of the object(Camera) and the
class(Camera.java) are the same we felt that this task is more straightforward for
solving. Moreover, we observed that the task could be solved using the same tech-
nique that we used to produce the result i.e. commenting the body of the method.
To avoid this risk, we decided to add a small constraint to the first task. So, the
results from the tool will just lead to the code location and the participants should
understand the code logic to perform the solution. So instead of just having the
task as ’hide the camera object’ we added a small constraint to the task by avoiding
the participant to comment the whole method.

The second task affects both the UI and also the functionality of the ‘Arts Of Il-
lusion’ application. The default playback speed is set to 1 in the application logic
of ‘Arts Of Illusion’. Unlike the task 1, the task 2 cannot be solved directly by
commenting the method associated to the result in the documentation. Using the
results, the participants could identify the starting point of comprehension but the
solution could not be achieved by commenting the method completely. Comment-
ing the method here will remove the ’playback speed’ object completely from the UI
which is not the expected solution for this task. Thus, we did not add any additional
constraint to task 2 unlike task 1.

In addition to the results obtained from the tool, we also provided standard docu-
mentation from the official ‘Arts Of Illusion’ tool, SonarQube generated documenta-
tion of ‘Arts Of Illusion’ and also the documentation generated from Doxygen. We
provided this extra documentation as it would help the participants to use them if
they get stuck with not knowing how to proceed in solving tasks using the results
from the tool. Moreover, as one of the objectives of this usability testing is to iden-
tify whether they could find usage scope for this technique among other standard
techniques, providing them with other resources helped us in achieving this objec-
tive. The participants had the freedom to choose any documentation they wanted
to solve the tasks.

While performing usability testing using tasks, the participants were divided into
groups of 2 to 3 persons, and they were allowed to work on the tasks as a group. As
discussed for solving the tasks we also provided them with results generated from the
tool that is created as a part of the study. As the next step, a small brief about ‘Arts
Of Illusion’ tool is given to the participants. We showed the participants the actual

16

3. Methods

tool ‘Arts Of Illusion’ in a machine (laptop) and demonstrated what it does. After
this step, we introduced the participants about our research, i.e. about what we are
trying to achieve by developing a tool “UI Tracer”, the results we obtained and how
we plan to use them as a documentation technique for UI developers. We had the
results i.e. the images we obtained from running the tool on ‘Arts Of Illusion’ to
them printed on a paper. The participants were provided with two machines, one
running IntelliJ [50] and one running eclipse [49], as an aid for the task. The purpose
of providing these machines was to give the participants the possibility to choose
an IDE to work with. We also explained them about the questionnaire section that
follows after this step.

Data collection

For data collection, we used questionnaires and decided to proceed against inter-
views to ensure that participants feel free to give honest and critical answers. The
questionnaires were filled anonymously by the participants so there is no option to
trace them back. To elicit the opinions and feelings about using this approach, we
made use of standardized, structured, open-ended questions for the questionnaire
method [48]. Having the questions open-ended gave us the advantage of participants
not biasing their responses. Once the participants are done with solving the evalu-
ation tasks, they were provided with a sheet containing the questions that follows:

1. Do you think UI-Tracer provides an advantage?
Yes• No• No opinion•

If yes what is the advantage?

2. Do you think UI-Tracer approach has limitations?
Yes• No• No opinion•

If yes what are the limitations?

3. When would you use UI Tracer & how would you use the information?

4. Think of different situations you might be in a system that is new to you,
e.g. need to fix a bug m change a behaviour , evolve the system, refactor the
system, new requirements are coming in ...
What do you have to understand about the system, and when would you rather
use which of the following tools?

Rather SonarQube
(Visualization & Analysis) Rather UI Tracer

Rather Documentation Rather DoxyGen
(Documentation & Call graphs)

Table 3.1: Question given to participants

17

3. Methods

The participants are given around 10 minutes of time to answer the questions in
table 3.1. However, it was not a mandate that they need to complete it in the
provided time.

The questions in 3.1 are chosen exclusively for deducting answers to the research
question RQ3. Every question mentioned above are planned in a way that it could
elicit the answer for RQ3 and aimed at meeting the goals of the evaluation. One
of the goals of the evaluation is to elicit the advantages, weaknesses of this new
comprehension technique over other comprehension technique. Since this compre-
hension technique is quite new we wanted to elicit the positives/negatives of this
approach through these questions. For this reason, we started framing the ques-
tions in the questionnaire that revolves around the advantage of this comprehension
technique has over other traditional comprehension techniques. This way we would
know how the users would get benefited if they are going to use the approach. The
next question is about the limitations this technique has over other traditional com-
prehension techniques. As it is a new technique, we wanted to know the areas of
improvement and thus helping the next iterations of this research to know the key
areas. This is also framed as a direct question as the first one. Following the elici-
tation of advantages and limitations of the technique we wanted to know how and
when the participants would use this technique under study. So the question 3 in
questionnaire 3.1 was framed concerning the usage situations of this technique.

Finally, we wanted to know the usage scenarios of this new technique among other
comprehension techniques. This is because we already provided the participants
with the tasks to work on using the documentation from official Arts of illusion,
generated documentation from SonarQube and Doxygen along with the newly gen-
erated documentation from the UI Tracer. We wanted to elicit if the participants
could think of situations where they would use these techniques specifically. The
main idea here is to get as much of information possible about the technique un-
der study thus helping us deducting the outcomes of our evaluation. This reason
paved the way for choosing questions that are open-ended allowing the participants
to answer what they feel and think about the technique.

Analysis

After getting the data from the questionnaire section it is necessary to consolidate
and analyze it. So, we used thematic analysis as the method to analyze the data
we had. According to Boyatzis [51], thematic analysis is a qualitative method that
helps in identifying, analyzing and creating patterns within the qualitative data.
Thematic analysis is a widely used method for the analysis of qualitative data [51].
After performing the data collection through questionnaires, we started analyzing
the data using thematic analysis. This thematic analysis is performed using the six
steps as mentioned in the research paper [52]. The following steps are carried out
on the data collected and these are further discussed in detail in chapter 6.

• Familiarizing the data: Repeated reading is performed as the first step of the
thematic analysis. This way it was possible for us to understand the depth

18

3. Methods

and the breadth of the content. Notes were taken to understand the overall
data.

• Generating initial codes: Coding is performed after familiarizing the data.
In this research the coding process is carried out manually instead of using
software programmes to generate codes.

• Searching for themes: Themes are generated as the next step after coding.
The codes obtained are grouped under broader themes and these themes are
generated in a way that they represent the data collected.

• Reviewing themes: Refinement of the themes generated from the previous step
is done here. All the themes generated are reviewed to ensure that the data
and the themes cohere meaningfully.

• Defining and naming themes: In this step, all the themes generated are defined
and explained. This way we establish the connection between the themes and
the data.

• Producing the report: As the last step, the summary of the analysis is pro-
duced. Here we explain the findings in relation to RQ3.

19

4
Implementation

The prototype developed as a part of the research methodology followed is explained
in this chapter.

4.1 Prototype Development
In this chapter, the implementation of the tool developed for answering the RQ1
will be covered. While developing the tool we planned in a way that could help
the user by automating most of the manual tasks that is required to generate the
documentation. The main tasks needed by the user to perform the approach we had
is by manipulating the body of the method, build the program run the program and
check for any differences in UI. We decided to automate each of these tasks in the
tool we built. So, if we have to do the same task manually, then the following steps
have to be performed.

• Comment the body of the method.
• Build the application.
• Compare for difference on the UI of the application and record them if different.

Figure 4.1: Architecture diagram of prototype

Based on these tasks we created the following components that form the basis of the
prototype. The above-mentioned tasks have to be performed in order to generate
differences. So, in the design phase, we decided to automate each of these tasks to
help the user with the generation of the documentation.

20

4. Implementation

Explorer
As the first step, we developed the component that could loop through the source
code and get the body of the method. As the source code here is ‘Java’, we decided
to parse the contents of a Java program. This step if performed manually would take
a lot of time as the code base might contain a large number of methods. To avoid
this, we made use of the library ‘Java Parser’ to parse the contents of a Java file.
This API contains methods that could iterate through each class files and provide
details about each method one after another. The library had functionality which
was extended in the tool to meet the requirement of iterating through each java file
one by one. The method visit() from the class VoidVisitorAdapter is extended to
provide information about the method. The method can provide information such as
the starting line of the method, the return type, the ending line etc. This information
is used by other components for further processing. But it has to be noted that the
location of the source code should be provided to this component. This component
excludes the interfaces and abstract classes. This is done because the interfaces and
abstract classes in Java are allowed to contain just method declarations. So, there
is no method body in them, and so we discard these methods.

Manipulator
The next step in the process is to make use of the information provided by the pre-
vious component and manipulate the code. Here simple file processing is done using
Java to read the code and manipulate it accordingly. We named this component
‘Manipulator’ as this part contains all the logic to comment the body of the method.
The main task of this component is to modify the code and also to revert it. This is
because once the code is modified, and after the necessary comparisons are done, it
is important that we revert the changes we made. This way we ensure that all the
comparisons recorded are based on the impact it has on one method.

DataType Modified_V alue

Onject/ Complex data type null
int, double, float 0

String null
boolean false

Table 4.1: Values returned based on method return type.

In Java commenting the body of the method that returns a value will result in com-
pilation errors. For this reason when the method information is obtained we check
whether the method has any return value or not. For example, if there is a method
that returns void then the whole body of the method could be commented. But if
there is a return type then based on the data type that is being returned, the body
of the method will be commented, and a string will be inserted at the end of the
method. For instance, in case there is a method that returns a value of Object data
type then the return value would be null. On the other hand, for a primitive data

21

4. Implementation

type, the value will be returned 0 or false according to the data type. The table 4.1
above shows the comparison of the return type that is manipulated. For complex
data types, a null value is returned.

public void setGrid(double spacing)
{

gridSpacing = spacing;
}

The above code snippet will be transformed into the following code where the whole
body of the code will be commented out.

public void setGrid(double spacing)
{/*

gridSpacing = spacing;
*/ }

For example , the methods that return a value will be transformed with a slight
variation as discussed.
public double getDistToScreen()

{
return distToScreen;

}

The above-mentioned method contains a primitive data type as the return type, and
so the return type of the same will be modified based on the values from 4.1
public double getDistToScreen()

{/*
return distToScreen;

*/ return 0;}

Similarly, for the methods that return complex data type in the method will return
a null value after commenting the body of the method.
public final Mat4 getViewToScreen()

{/*
return viewToScreen;

*/ return null;}

All the changes made have to be reverted before notifying the explorer for next
method. In case of exceptions when making manipulation of the file, it is ensured
that the method which was manipulated is reverted back to its original state. This
way before moving to the next method we ensure that all the changes done previously
are reverted.

Builder
The next task that has to be performed after manipulation of the file is to create
a build of the system under consideration. For ‘Arts of illusion’ the build file is
an Ant file. Ant API from Apache is used as the library to create the component

22

4. Implementation

that executes the default target of the build file. This component gets the build file
as input and executes the ant target. So, each time a method is manipulated by
the manipulator component, we use this builder component to execute the build.
The results of the build might vary depending on the method which is getting
manipulated. For instance, commenting out few methods might cause build failures
and other might result in successful builds etc. For each method, the build status
of the application is saved in the database. For example, if there are any run-time
exceptions due to the manipulation of the method, the build might fail to lead the
creation of corrupt jar. Whereas in some cases the build might be unsuccessful and
these data are saved in the database.

Comparator
The last task forms the base of the tool. If the Builder component generates a
successful build, then the task is to run the newly built jar file and check for any
differences that exist in the UI of the application. The outcome is completely de-
pendent on the method that is commented. We used Sikuli API in Java to make
use of its image processing abilities. It has powerful image comparing or recognition
libraries that helped us in achieving what is required for the study. Once the Builder
component notifies that the jar is built, the comparator component opens the jar
and begins looking for any differences that exist between the actual version of the
application and the newly built version. This component makes use of the actual
version of the application to compare for differences. For doing so, the screenshot
of actual version is passed as reference. So every time after the jar generated by the
builder is opened the comparator uses the reference image for comparison.
This component uses the exists() method from the Screen class for finding any
differences. If there are any differences, then the screenshot of the difference is
captured and saved in the local file system following which the details of the image
are saved in the database. If there are no differences, then no screenshot is captured.
This component compares what is being displayed on the screen. It captures, records
and compares based on what is being displayed on the screen. So irrespective of the
language a project is built with this component could be extended or adapted to be
made use.

Core
This component coordinates all the actions performed by the above-mentioned com-
ponents and ensures that they are in sequence. In addition to this, this component
also performs some checks before requesting other components. For example, if the
build fails in the middle of the process, then it ensures that the manipulator reverts
the changes to its original version and requests for next method to the ‘explorer’
component. The ‘core’ component is also responsible for updating the database
with results according to the action performed in the other components. The status
and the results of the other components will be noted and updated in the database.
The core component after the completion of the operation performed by the builder
component opens the jar for the next component ‘comparator’. Only if the jar could

23

4. Implementation

be opened by the core component, it requests the ‘comparator’ component to look
for differences.

Database

All the images saved as a result along with the method responsible for creating
them are saved in the database. The database in this prototype has three tables,
and they are project table, method table and image table. The project table contains
all the information about the respective project. In this case, this table will contain
information about ‘Arts of illusion’ as that project is under study. The next table
is Method table which contains information about methods of the corresponding
project. The third table Image contains information about images that are recorded
as differences by the ‘comparator’ component.
The ER diagram 4.2 shows the relationship between the tables and how they exist
in the database.

Figure 4.2: Chart to illustrate the results obtained from
the tool

As shown in figure 4.2 the relationship between tables in the database is chosen
with few considerations. It was designed in a way to add more projects if needed.
Each project will contain many methods, so the relationship between a project and
a method is one to many. Whereas one method might produce zero to multiple
images, and that is the reason the table has one to unspecified relation.
The database is setup using SQLite as this tool can then make use of this local
database in its machine. The attributes in the table are corresponding to the re-
quirements of the project. The values from these tables can then be used to produce
the mapping as intended using simple query.

24

4. Implementation

4.2 Configuration

The tool developed could be configured to support other java based UI projects that
have Ant build system. Some information is required from the user to begin its
processing of the source code. In this section, we will outline the dependency each
component has to perform its respective operation, and how these dependencies are
obtained from the user.

• The Explorer component needs to know the location of the source code of the
application that is under study. In this case, as it is the source code of ‘Arts
of illusion’ application, the location of this particular code is a dependency of
this component.

• The location of build file is needed by the Builder component. This build file
will be used by the Builder component to run the default task associated with
the project.

• The Comparator component needed to know the location of the screenshot of
the UI of the ‘Arts of illusion’ application. These set of images will be used
by UI-tracer tool to make the comparison.

For convenience, we added some basic features to the UI-Tracer tool to get all the
information that is needed by these components as inputs. This information is
stored in the database and used for a later purpose. Every information once stored
in the database can be reused again for later purposes. For example, if the ‘Arts of
illusion’ project is set up in the UI- Tracer tool, then the project setup information
will be stored in the database and can be re-used again.

Figure 4.3: Project setup GUI of UI-Tracer tool

25

4. Implementation

The figure 4.3 shows the image of the UI screen from the UI-Tracer tool that gets the
input from the user related the project that he/she needs to trace. To provide the
location of source code as input, we have a field that could be used to get the value
from the user. The ‘Comparator’ component needs the screen-shot of the starting
screen of the application that is under processing. We added a feature to the tool
that could be used to take a screenshot of the application. To do so, we need to know
the location of the jar file which is unmodified. The screenshot of the starting screen
of this jar will be used by the tool as a reference when it looks for differences. The
user has to ensure that the correct version of the application is used for this purpose.

The ‘Manipulated jar file’ field is to get the location of the jar file which will be
generated after building the application. The ‘Actual jar’ field is to get the location
of the jar which is not manipulated. We added two separate fields if the user has
to pass different locations e.g. if the location of the build file is different from the
actual version. Once these fields are provided, the user can choose the area that
needs to be ignored. This setup takes the area that has to be ignored while taking
the screenshots of the actual jar. This is done as there are areas of the screen that
needs to be ignored like ‘Task Bar’ in windows, dock in Mac Os. This way we
eliminate the comparator component comparing unwanted portions of the screen
when it looks for a difference. The value in the ‘Waiting time’ field will be used
every time as a static value for opening the jar by the core component in the later
stage of the process. The ‘core’ component will wait only the specified time and if
the jar is not opened it will continue with the processing of rest of the code. On
clicking the ‘Save and continue’ button, the user will be prompted with a screen
as shown in image 4.4. The ‘OpenJar’ button will start the jar from the location
specified by the user in the GUI 4.3.

Figure 4.4: Project setup GUI-2 of UI-Tracer tool

On clicking ‘Scan screen‘ will take a screenshot of the screen that appears on the
screen. The below image 4.5 shows the screenshot of ‘Arts of illusion’ application

26

4. Implementation

with the un-manipulated code. This screenshot is divided into four portions during
the initial setup of the tool. These divided images will be used as patterns to check
whether the manipulated version run by the tool contains them.

Figure 4.5: Screenshot of the ‘Arts of illusion’ application

Figure 4.6: Image to illustrate how the screenshot in image
4.5 is divided

The screenshot taken is split into four parts as shown in figure 4.6. This helps
in easily finding differences i.e. if there is any difference in the first quarter the
comparator component will record only the first quarter. Now as the area to check
for is low, this adds convenience in the end after the results are obtained. All this
information can be set using this GUI as one-time setup and can be reused for later
purpose.However, this GUI and functionality are designed for the convenience of the

27

4. Implementation

researcher to perform the study, and the whole setup is in its basic version.

The image 4.6 are the split images of the screenshot of the ‘Arts of illusion’ applica-
tion. Each image will be compared one by one against the application using Sikuli.
The first quarter will be checked for its existence against the application running on
the manipulated code. If any changes exist, then there is an impact in this portion
of the image. Similarly, the rest of the images are compared against the application
running on the manipulated code. When there is a change that portion will be
saved as an image and stored in a file. The location of that file will be stored in the
database for future reference.

4.3 Process of Tracing a Method
In this section, the steps involved in creating a result will be explained. Consider
that the tool is about to analyze the method visibility(Boundingbox bb) from Cam-
era.java class of ‘Arts of illusion’ application. As the first step, the method details
are fetched by the explorer component and it is passed to the component ‘Core’.
The runCore() method of the ‘Core’ component is executed which sequentially han-
dles and coordinates the activities. To begin with, the core component asks the
‘Manipulator’ component to add a comment to the method visibility(Boundingbox
bb). This is done through ‘addComment()’ method of the ‘manipulator’. Once the
method is manipulated the ‘executeAntTask()’ of the ‘Builder’ component is called
and it executes the build file associated with the project. If the build fails at this
stage then the result is stored as ‘Build failure’ in the database by the ‘core’. On the
other hand, if the build is passed, the jar file created is opened. The starting screen
of this version is compared for differences by the ‘comparator’ component. After
recording the differences, the ‘core’ component uses the ‘manipulator’ to revert the
comments and performs the same set of operations for the next method.

Figure 4.7: First quarter of the image from ‘Arts of
illusion’ application with un-manipulated code

28

4. Implementation

For example, consider the code has created an impact as follows in the manipulated
version of the application as shown in figure 4.8. Notice the camera icon in the first
quarter of the screen is missing. This difference will be monitored during the check
performed by the ‘Comparator’ component of the tool.

The first quarter of the image from 4.6 which is shown in 4.7 and this will be
checked for its existence in the image 4.8. Now the ‘comparator’ component will
notice the difference as the camera object is missing in 4.8. Thus the impact created
is noticed and saved as an image as a file as shown in figure 4.9. As the difference
is corresponding to the first quarter only that portion of the UI will be recorded
as the difference. The corresponding details are also stored in the database. Now
the subsequent quarters of the image from 4.6 will be used by the ‘comparator’
component to see if it exist in the UI of the application with manipulated code.

Figure 4.8: Screenshot of the ‘Arts of illusion’ application with
manipulated code

Figure 4.9: Image saved as result by UI-Tracer

29

4. Implementation

After checking for the existence of original application’s screenshots in the manip-
ulated application, the core component uses the manipulator component to revert
the changes done to the Camera.java file. Once this step is done the next method
will be looked upon by the ‘explorer’ and the above operations are repeated until
all the methods are processed by the tool.

The sequence of steps involved in the creation of a result is illustrated in the sequence
diagram 4.10. Each component is represented by the rectangle boxes in 4.10. The
operations are represented by the text above arrows pointing to the right-hand side.
The arrows pointing to the left side return data from the methods.

Figure 4.10: Sequence diagram of UI Tracer tool

30

5
Results

This chapter will cover the contents that answers the research question RQ2. At
the beginning of this chapter, we discuss the significant components of the ‘Arts of
Illusion‘ UI followed by the analysis of the results obtained from this tool.

5.1 UI of Arts Of Illusion

The UI of ‘Arts of Illusion’ application contains many interactive UI components
[53]. These include buttons, panels, drop down list etc. In this section, an overview
of the UI of ‘Arts Of illusions’ will be given. The figure 5.1, is the screenshot of
‘Arts of Illusion’ application.

Figure 5.1: Screenshot of ‘Arts of Illusion’ application

The main components of ‘Arts of Illusion’ will be discussed below. These components
are obtained from the official documentation[54] of ‘Arts of Illusion’ application.

The Menu bar panel contains clickable buttons. They appear at the top left of the
UI and clicking them will drop menu items as a list that has buttons encapsulating
functions respective to each menu item. The image 5.2 represent the Menu Bar of
the ‘Arts of Illusion’ application.

31

5. Results

Figure 5.2: Menu Bar of ‘Arts of Illusion’

Tool Bar contains the commonly used tools that allows the user to create objects
and work on them [54]. The figure 5.3 shows the representation of Tool Bar in the
application.

Figure 5.3: Tool Bar of ‘Arts of Illusion’

The main window of the ‘Arts of Illusion’ application is divided into four main
components. These components are called as the view windows. These view windows
represents different views in four areas. The figure 5.4 represents the view window
of ‘Arts of Illusion’ application. When the application starts the default setup is
that one view window contains the ’Camera Object’ as shown in the centre of the
5.4 . On top of each view window there are controls to modify the behaviour of the
view window. These are known as ’View Controls’

Figure 5.4: View window of ‘Arts of Illusion’

To the right of the main screen of the ‘Arts of Illusion’ application there are two
panels. One is the Object panel and the other is the Properties panel. The object

32

5. Results

Figure 5.5: Object panel & Properties panel of ‘Arts of
Illusion’

panel represents the objects that are in the view whereas the properties panel is
about the properties of the objects that are in the view. By default when the ‘Arts
of Illusion’ application is started,the Camera and Light object is there in the objects
panel at the start of the ‘Arts of Illusion’ application. The figure 5.5 shows the
image of the Object panel (Fig a) and Properties panel (Fig b).

The ’Art of Illusion’ controls animations through a score or timeline on which various
actions can be mapped. For controlling this the application has a Score panel on
which it has a Scale and controls associated with it. The figure 5.6 shows the image
of ’Score panel’ from the ‘Arts of Illusion’ application.

Figure 5.6: Score panel of ‘Arts of Illusion’

5.2 Overview of Results
The UI Tracer tool during its run manipulated the Arts of illusion code and gen-
erated results. The tool was run on 5348 number of methods of Arts of illusion
application. So overall the core component had to loop through 5348 times the code
commenting each method with an intention of finding differences in the UI. The tool
took approximately 28 hours to produce the results and complete the processing on

33

5. Results

‘Arts of Illusion’. Based on the results obtained from the tool we classified them into
the following categories:

• Build failure.
• Successful build and failed to open jar.
• No differences found.
• Differences found recorded as images.

The classifications will be discussed one by one:

5.2.1 Build failure

Build has failed for 182 times during the run of this tool on ‘Arts of illusion’ source
code. We performed analysis on the methods that produced this set of results. Many
methods caused this scenario because of the removal of the body of the constructors.
These are the constructors of classes that extends a parent class with no default
constructor. Here in the source code of ‘Arts of Illusion’ many constructors have
calls to the super constructors. When these methods are commented they produce
compile-time errors and thus the build failed as result. Maybe a workaround could
be considered for the future work to avoid this issue. These set of methods are
also considered with no significance as it is not adding any value to the approach
proposed.

5.2.2 Successful build and failed to open jar

The indicator of a successful build is that there are no compilation errors when
building the ‘Arts of Illusion’ system. However, there are cases when we get a
successful build but the jar produced could not be opened due to some run time
exceptions that have occurred due to the removal of the body of the method. There
are 60 results produced by the tool that falls under this category. It has to be noted
that for methods that return a complex object, we commented out the body of the
method and added null as the return value. These null objects are unexpected by
the caller and has caused run time exceptions and thus jar fails to load. Thus,
these set of methods produced results that cannot be considered significant for this
research.

5.2.3 No difference found

Of the total 5348 methods processed by the tool, 4954 methods did not produce any
differences in the UI of the starting screen of the application. As the focus is to find
visible differences only on the starting screen of the application, we obtained this
high number of 4954 with no variations. It has to be inferred from this result that
the build is successful and the jar could be opened for 4954 times and no differences
were recorded by the comparator component. We did not investigate the behaviour
of these methods as it is a time-consuming task and it yields little benefit to the
focus of this study.

34

5. Results

5.2.4 Differences found
We found during our analysis that there are 217 methods that produced visual
differences on the UI of the application. The comparator component has picked these
differences and recorded them as images. The output of the comparator component
recorded as visual differences is 503 images. As mentioned before while taking
the screenshot and recording them, the image is split into four quarters for easy
traceability in the later stage of mapping. For example, if there are any differences
in the upper left side of the UI of the application then that part alone will be saved
as an image. This has led to the creation of more than one image for a method if
there are multiple differences located in more than one part of the UI.
There are methods/constructors that have caused more than one image as a result
and that is why the number of methods that produced the results is not correspond-
ing to the number of images obtained as output.

Summary
The tool produced 503 images as differences. The tool produced images into parts
for easy navigation. The figure represents the number of sets obtained from the set
of images categorization of images obtained as result.

Figure 5.7: Chart to illustrate the results obtained from
the tool

Type of result based on methods in Numbers
Build failure 182

Successful build and failed to open jar 60
No difference found 4954
Difference found 152

Table 5.1: Types of results produced based on methods

35

5. Results

5.3 Quality of images recorded
As discussed, on running the tool UI tracer on ‘Arts of Illusion’ source code, we have
obtained 503 images as differences. These images represent some significant changes
but it is important to understand few factors such as the quality of the images
obtained, the UI component that was changed and the source code responsible for
these changes. Out of the 503 images obtained an extended analysis is done to
see if all these images could be considered as valid. The following are some of the
classifications that we did on these images and this classification is discussed below.

Figure 5.8: Pie chart of images recorded as changes

Invalid Recordings
On analysis of the images obtained as results, we observed that there are images
that do not provide any inferences i.e we could not observe any component of the
‘Arts of Illusion’ UI in these set of images. We categorized these images that have no
UI components under invalid recordings category. For example, in some recordings,
we observed that the images are completely blank and in few others, the recording
has been performed on the desktop background or any other application that was
running behind ‘Arts of illusion’. These invalid recordings are caused due to failure
in the loading of UI when the ‘Arts of Illusion’ application is started with the manip-
ulated code. Run time exceptions that occurred when the application was started
has created the failure of loading the UI. The comparator component has noticed
that the ‘Arts of Illusion’ process is running and started its comparison believing
that the UI is loaded successfully.

As already mentioned the UI-Tracer has three main tasks manipulation of code,
compile and run the application and look for differences. After we run the applica-
tion with the manipulated code the UI-Tracer tool enters a waiting phase. The user
could configure this waiting phase and the purpose of this waiting phase is to wait
for application with the manipulated code to load completely. Once the waiting
phase is over we check if the already started ‘Arts of illusion’ application is still

36

5. Results

running or whether it crashed due to some exceptions. If it is still running then we
start the comparison process looking for differences. However, in some cases, the
manipulation of code will result the application to fail the process of loading its UI.
Unfortunately, in these cases, the application process is still alive but the starting
screen is left unloaded. After the UI-Tracer tool steps out of its waiting phase it
starts recording as the process is still alive but as there is no UI loaded it records
the background application running with ‘Arts of illusion’ process as shown in figure
5.9.

Figure 5.9: Example of an invalid recording that has the
screenshot of background application

Another invalid recording is shown in the figure 5.10. Here due to run time excep-
tions such as ‘Null pointer exceptions’ the ‘Arts of Illusion’ application has failed to
load the main window causing the UI Tracer to record it as a difference as well.

Figure 5.10: Example of image recorded as difference with
blank UI

As the above-mentioned figures 5.9 & 5.10 are not changes in the UI that could be
regarded as valid and so they belong to the category of invalid recordings. These
recordings provide no significant information and thus could be discarded.

37

5. Results

Valid Recordings
Images that have resulted in significant differences compared to the ones mentioned
in invalid recordings are grouped under valid recordings category. These images
have the potential to be used to identify the impact a method has on the UI. This is
because the generated images recorded as differences are rather significant. Overall
110 images are considered to be valid recordings as the changes in the UI compo-
nents are significant. There are an interesting set of images that have resulted in
minute differences between the actual version and the modified version. For ex-
ample consider the example given in the figure 5.11: fig (a) represents the image
of View Control component in the ‘Arts of Illusion’ application with unmodified
source code. The second figure (b) in Figure 5.11 represents the image of the View
Control component of the ‘Arts of Illusion’ application with modified source code.
The modification done here is the commenting out of rebuildCameraList() method
from the ViewerOrientationControl.java class by the UI Tracer tool. As shown in
the figure the difference here in both the images is that the length of the component
Front. This is recorded as a difference and as a result, this difference is recorded.

Figure 5.11: Difference in component length Front

The table 5.2 shows the overall summary of the changes recorded

Category of images Number of images
Invalid recordings 393
Valid recordings 110

Table 5.2: Number of images grouped by their category

5.4 Mapping of Recordings
Analysis was done to find the type of methods responsible to create the recordings
that are considered as valid. On examining the images that are grouped under valid
recordings we found that there are few constructors that are responsible for resulting
in these recordings. The other recordings observed where caused as a result of the
manipulation of regular methods. The following table 5.3 shows the summary of the

38

5. Results

methods and constructors that created the recordings as images.

It also has to be noted that some methods produced multiple images as changes. As
discussed this is due to dividing the screen-shot into four parts for easily tracking
the changes.

Class name Method name Number
of
Valid
Record-
ings

ApplicationPreferences.java getAnimationFrameRate 2
Camera.java setScreenParamsParallel 1
Camera.java setObjectTransform 2
Camera.java visibility 1
LayoutWindow.java LayoutWindow 1
LayoutWindow.java createFileMenu 1
LayoutWindow.java createEditMenu 1
LayoutWindow.java createObjectMenu 1
LayoutWindow.java createAnimationMenu 1
LayoutWindow.java createSceneMenu 1
LayoutWindow.java setHelpText 1
LayoutWindow.java setTime 1
ObjectPropertiesPanel.java ObjectPropertiesPanel 1
ObjectPropertiesPanel.java rebuildContents 1
PluginRegistry.java getResource 4
Scene.java addObject 4
SceneViewer.java rebuildCameraList 3
SceneViewer.java setOrientation 3
SceneViewer.java finishAnimation 2
SceneViewer.java viewChanged 2
SceneViewer.java updateImage 2
PositionTrack.java isNullTrack 2
Score.java setTime 2
Score.java setPlaybackSeed 2
Score.java layoutChildren 2
TimeAxis.java paint 2
DefaultDockableWidget.java DefaultDockableWidget 4
DefaultDockableWidget.java paintBorder 3
DefaultToolButton.java paint 2
GenericTool.java activate 1
ThemeManager.java getIconURL 4
ThemeManager.java getIcon 2
ThemeManager.java getAppBackgroundColor 1
ThemeManager.java getPaletteBackgroundColor 1

39

5. Results

ThemeManager.java getDockableBarColor1 4
ThemeManager.java getDockableBarColor2 4
ThemeManager.java getNodeFromNodeList 4
ThemeManager.java getAttribute 4
ToolPalette.java paint 2
Translate.java text 2
TreeList.java addElement 1
TreeList.java buildState 1
TreeList.java paint 1
UIUtilities.java applyDefaultBackground 1
UIUtilities.java applyBackground 2
ValueField.java ValueField 1
SoftwareCanvasDrawer.java SoftwareCanvasDrawer 2
SoftwareCanvasDrawer.java paint 2
SoftwareCanvasDrawer.java drawBorder 1
SoftwareCanvasDrawer.java renderLine 2
SoftwareCanvasDrawer.java renderWireframe 1
ViewerOrientationControl.java createWidget 2
ViewerPerspectiveControl.java createWidget 1
ViewerScaleControl.java createWidget 2
Vec2.java Vec2 3
Vec3.java length 1
ObjectInfo.java isVisible 1
ObjectInfo.java setVisible 1

Table 5.3: Mapping of Methods and number of valid
recordings

5.5 Impact Observed on UI Component
The images considered to be valid are examined to identify the component that was
affected along with the type of change in UI component. Few components have
resulted in many numbers of differences whereas few components have resulted in
few number of differences. The following table shows the summary of the number
of changes observed under each component of the UI.

UI Component No of changes
Camera Transformed or missing 25
Menu Bar 6
Tool Bar 2
Object Panel 7
Properties Panel 5
View window 18
View Control 14

40

5. Results

Score 22
Miscellaneous 23

Table 5.4: Mapping of UI components and number of
changes

This section will cover the changes observed per component and describe what the
changes along to justify the answer for RQ2.

Camera Transformed or missing

The table 5.4 shows the number of times the components of the Arts of illusion UI
has changed or modified.
For example, when the constructor of the class Vec3.java is commented and com-
pared by the tool UI-Tracer, the image 5.12 is obtained. As shown the camera object
is completely transformed.

Figure 5.12: Camera object transformed

Similarly, the image 5.13 is obtained when UI tracer compared the build of Arts of
illusion version after commenting out the method renderline() from SoftwareCan-
vasDrawer.java class of the source code. From the results of UI Tracer, it is evident
that the camera object has been transformed multiple times. These include either
the camera object missing from the view window, transformed into a different ob-
ject or changed its position from its default position in the view window. All these
changes are recorded as Valid changes by the tool.

41

5. Results

Figure 5.13: Camera object missing from view window

Changes in Menu Bar
Similarly, for the UI component Menu Bar from the Arts of illusion UI, we obtained
6 changes as valid ones. Shown in figure 5.14 is an image produced by UI Tracer tool
when it processed the method createFileMenu from the LayoutWindow.java class.
As shown in figure 5.14, the button ‘File’ from the menu bar is missing after the
processing by the tool and this shows that this method is responsible for rendering
the UI components associated with the button File in the ‘Menu’ bar. Similarly,
we obtained changes for other buttons that are in the menu bar like ‘Edit’, ‘Scene’,
‘Object’ etc.

Figure 5.14: Result of ‘File’ menu button missing in Menu
bar

Changes in Tool Bar
The UI component Tool Bar has produced least number of changes as result recorded
by the tool. There were just two images produced as differences by the tool. The

42

5. Results

figure 5.15 show the differences observed. The tool bar from the UI has disappeared
completely in one of the image observed and in the other one the component is
transformed into an error representation of the image as shown in figure 5.15. How-
ever, both the images could be considered as valid ones as they produce visibly clear
differences as result.

(a) Original version (b) Modified version

Figure 5.15: Comparison between original Tool Bar panel
and result from tool

Changes in Object panel
The object panel component has undergone changes seven times during the process-
ing done by the tool. Some changes happened in the title of the component ‘Object
panel’. In one of the images obtained the title of the component has disappeared
as shown in 5.16(c). Whereas in most of the other images obtained as differences,
we observed that the elements that were under the component Object panel have
disappeared as shown in figure 5.16(b).

(a) Original ver-
sion

(b) Modified ver-
sion

(c) Modified ver-
sion

c

Figure 5.16: Comparison between original Object panel
and result from tool

Changes in Properties panel
Similar to the changes observed in object panel, the properties panel also had changes
in the resulting images from the tool. It was observed that initially, the properties
panel had a text ‘No objects selected’ inside the panel. In the image differences when
we examined we found that one change is that the text underneath the Properties
panel is missing as shown in figure 5.17.

43

5. Results

(a) Original version (b) Modified version

Figure 5.17: Comparison between original Properties panel
and result from tool

Changes in View Window
View window covers most areas of the UI as shown in figure 5.18. During our
analysis, we found that many images that contained changes in the component View
window are due to the transformation of its size. These differences are recorded
and produced as results by the tool. The other difference is when the camera
object changes its position from its default position in the figure to some other view
window. The figure represents this difference and this also serves as an example that
one method might produce changes that affect more than one component in the UI.
Here in this figure both the camera object and the view window is considered to
have got changed when the tool did its processing. The camera object has moved
from its default view window to another view window and thus making a difference
in both the UI components as shown in fig 5.18.

Figure 5.18: Difference in component View window Front

Changes in View Control
View Control as discussed contains the UI elements for configuring the view window
associated with it. This component has changed for 14 times during the processing
by the tool. The figure 5.11 is one example where the view control has changed its
length. The other changes include missing or transformation of values from the view
control as shown in figure 5.19.

44

5. Results

(a) Original version (b) Modified version

Figure 5.19: Comparison between original Control
elements from view control and result from tool

Changes in Score component

Score component is one of the main components as it contains multiple interactive
UI elements in it. The changes observed by the tool after it processed the code are
mostly related to the missing or transformation of the UI elements in this component.
For example, the figure 5.20 shows the UI elements to control the score component.
The other image shows the difference in the set speed label i.e. the label ‘Speed:
1x’ is missing from the figure 5.20(b). Similarly, we identified 22 images containing
differences in the Score component.

(a) Unmodified version (b) Modified version

Figure 5.20: Comparison between original score
component and result from tool

Miscellaneous Changes

There are 22 images that fall under the miscellaneous category. We have obtained
images that have changed the color of the entire UI background. These images
cannot be categorized as the results obtained because of the change in component
or transformation of components of UI. For this reason, a set of images are grouped
under category Miscellaneous. For example the following image 5.21 is a result of
background color change in the application UI.

45

5. Results

Figure 5.21: Difference in component View window Front

46

6
Evaluation

For answering the RQ3, we wanted to understand how software engineers perceive
this technique and so we collected data from the participants through questionnaires.
The data was collected qualitatively and this created a need for performing an
analysis. We used thematic analysis to analyze the data collected and this chapter
will cover the steps we performed to do the analysis.

6.1 Analysis of Data

As mentioned in the Methods chapter 3, tasks were given to the participants to see
if they can understand and use the technique. This is done as a part of usability
testing where the participants could experience the technique. All the participants
who took part in the study managed to solve the tasks using the new comprehension
technique provided to them. The participants successfully used the results provided
to them as a new comprehension technique in spite of having the option to use other
standard comprehension techniques. This proves that the participants understand
and are able to use it for comprehension purposes which is one of the evaluation
goals. After solving the tasks, the participants answered the questions presented
to them through questionnaire section. There were few participants who answered
all the questions and few others did not answer some of the questions. These data
helped us in achieving the other evaluation goal of identifying the usage scenario
of the new comprehension technique along with its advantages, disadvantages and
uses. The data from each participant are analyzed using thematic analysis which
will be discussed in the below sections.

6.1.1 Familiarizing the data

As the first phase of our analysis repeated reading of the collected data was done to
get familiar with it so that we could find patterns with ease for later stages. Since the
data we obtained is in handwritten form, we transcribed the data into an electronic
document for convenience. This way it was easier to find the common patterns and
to do further analysis on it. At this stage, we transformed the words or phrases that
are incorrectly written in the handwritten answers from the questionnaire. At this
stage, we also segregated the data question wise which helped us understand the
data even deeper. After the conversion of data into a digital format we analyzed
the data and noted some ideas about it.

47

6. Evaluation

6.1.2 Generating initial codes
Coding was carried out in this phase. Here the term coding implies the terms or
phrases from the collected data that are potentially relevant to the research question
are identified and noted. Codes are labels or categories generated from the data we
obtained. In other words, coding is a method done in qualitative analysis to break
the descriptive data into categories. It was easy for us at this stage to understand
the data and do the coding because of the categorization of data question wise.
For convenience in this research, coding is done using inductive analysis. Inductive
analysis is a way of exploring the information by generating theory from the data
available. This enabled us to compress the information into a summary and also
helped us to create a link between the research question RQ3 and the data.

From the answers we obtained from the participants we noticed that in some cases
there are just one line statements which gave us a single code. Whereas in some
cases, one answer was broken into multiple codes. For the question 2, the following
is one of the answers we obtained.

Question 2:Do you think UI-Tracer has limitations?
If yes: what are the limitations?

Answer:“It is difficult to compare lot of images”
For the above answer obtained, the code generated is “Lot of images”. As we are
referring to limitations in the question, the phrase “Lot of images” is relevant here.
For this reason, this code is chosen under the data collected for question 2. Similarly,
coding is done for other three questions in the questionnaire.
In the question 4 of the questionnaire, we added all the resource provided to the
participants as options during evaluation. We asked the participants to come up
with scenarios when they would be using the technique over other. So, the answers
were obtained in the small table as shown 6.1 and this led the participants to provide
short answers. Thus, the data collected as answers for question 4 are of two or three
words and this in turn made the coding process simpler. For example, consider the
following example in 6.1:
Question 4:Think of different situations you might be in a system that is new to
you, e.g. need to fix a bug m change a behaviour, evolve the system, refactor the

system, new requirements are coming in ...
What do you have to understand about the system, and when would you rather use

which of the following tools?

Rather SonarQube Rather UI-Tracer
(Visualization & Analysis) tool

Answer: Refactoring Answer: New to system
Rather Documentation Rather DoxyGen
Answer:Always out of date Answer:New to the system

Table 6.1: Sample answer obtained for question 4 from
questionnaire

As shown in table 6.1, a participant has mentioned that he/she would be using

48

6. Evaluation

SonarQube for refactoring, UI-Tracer and Doxygen when new to a system. The
participant has also complained that the documentation technique is always out
of date. Similarly, answers from other participants for question 4 are short which
gave us the opportunity to proceed to the next step of analysis i.e. “Searching for
themes”.

6.1.3 Searching for themes
Once we generated the codes from the data, the next step done was to create or
find themes from the codes available. Themes are a subset of codes. From the
list of available codes obtained from the previous step, themes are created. This is
done by categorizing the codes from the above list under a broader level of themes.
Grouping the codes generated from the previous step helped us to obtain condensed
and broader view of the data under consideration.

Question 1: Do you think UITracer provides an advantage?
If yes what is the advantage

Answer:“To locate UI elements functionality not sure of other tools that do that ”
“Functionality with UI, Full documentation of how front-end and back-end are

connected”
All data that are relevant or related to a theme is grouped. An answer collected
through questionnaire might have one or more theme depending on the code gener-
ated. The above two answers are from the data that was collected for the question
1 in questionnaire phase. For the first answer the code “Locate UI elements” was
created and for the second answer the codes “Functionality with UI” and “Connec-
tion of front-end and back-end” were created. These three codes on a broader view
fall under one theme, i.e. the mapping of UI to its code/ functionality. Thus, the
theme “UI-mapping” is created and in a similar way themes are generated for the
rest of the data.

6.1.4 Reviewing themes
At this point, the generated themes from the previous step were reviewed to ensure
the correctness of the analysis. Some themes did not have data to support them.
This reviewing is done on two levels. One review is done on code level(which are
below the themes). In this step, a review was done to check if the codes under the
themes form a pattern with the themes. The other stage is done at the theme level.
Here the themes are checked to ensure that they fit in the context under discussion
and if not we discarded them or renamed to make the analysis consistent.

Mind maps are generated for easy visualization of the data that was being analyzed.
A mind map is a visual representation of data that projects the theory of objects
linked to and arranged around a central key word or idea. We used mind map in
this step to help us with the review of the themes as it gives an overview of the data.
Here the primary branches represent the themes we generated from the qualitative

49

6. Evaluation

Figure 6.1: Mind map of the central theme ‘Advantages’

data whereas the secondary branches represent the code or label obtained from the
data collected. So, for the mind map shown in the figure 6.1, the central idea is
‘Advantages’. This mind map is generated as a part of the analysis performed on
the data collected for the question 1.

Question 1:Do you think UI Tracer provides an advantages?
If yes: what is the advantage?

The central topic advantages have the themes “UI-Mapping”, “Locate Code” and
“Locate Changes”. These are the primary themes of the data collected, and the
secondary branches represent the phrases or terms used to group the data during
the coding process.
The figure 6.2 represents the mind map of the limitations of the approach. That is
the reason the central theme/idea is “Limitations”, and the surrounding branches
represent the themes created during this analysis. “Different Projects”, “Mislead-
ing”, “Larger Systems” and “Too much documentation” are the themes that repre-
sent the data collected for the question 2.

Question 2:Do you think UI Tracer has limitations?
If yes: what are the limitations?

The mind map in figure 6.3 represent the data collected for the question 3. The
data represents the usages of the results from the approach. Thus “Usage” is the
central idea here and the surrounding themes represent the overall data collected.

Question 3:When would you use UI Tracer & how would you use the
information?

The data obtained from the question 4 contained answers that are mostly single line
statements. So, coding is not performed on the data collected for question 4. The
data obtained for this question will be discussed in the last section of this analysis
Few themes were removed during this review stage from mind map, and the figures
with mind map represent the data after review. The next subsection will cover the
description of these themes and what they infer about the data collected.

50

6. Evaluation

Figure 6.2: Mind map of the central theme ‘Limitations’

Figure 6.3: Mind map of the central theme ‘Usages’

6.1.5 Defining and naming themes

This step is to explain what the above-mentioned themes from mind-maps imply and
how they represent the data collected. This step also describes how the mentioned
themes fit in the context of the research relating to the findings that helped us in
answering research question RQ3.

6.1.5.1 Advantages

The following are the themes obtained from the data collected for the question 1.
Each theme will be discussed and described along with statements from the data.

51

6. Evaluation

Locate Code:

This theme represents the data that mentioned that the comprehension technique
under study provides the advantage of locating the relevant code the participants
are searching. From the codes generated during the initial phase of our analysis
this broader theme was created. There were answers obtained from the participants
that are linked to this central theme. Participants reported that using this tool,
they could locate the code they are looking for easily without having to search for
the code.

“To locate UI elements functionality not sure of other tools that do that”
Using this tool they have achieved faster search of the piece of code they are search-
ing. For example, a participant stated the following as an advantage.

“Faster to find relevant code”
Overall this theme abstracts/ represents these statements. Some participants also
reported similar data for the answers to question 3 i.e they implied that they would
be using this technique for “Locating code”. This led us to use the same theme
for the “Usages” as well and hence will not be discussed separately under ‘Usages’
section.

UI-Mapping

Many participants mentioned that the new comprehension technique helped them
in comprehension by providing the mapping of the UI components and its source
code.

This theme comprises the data which expresses more about the results generated by
the tool i.e. the mapping of UI Component and its source code. On the other hand
the theme ‘Locate code’ comprises the data which expressed the ease of locating
code achieved via using the results from the tool. One participant reported that
this technique has the advantage with the mapping of UI components to its source
code of know complex UI.

“It allows visual elements on the screen to easily be connected to methods that
create them. Reverse engineering to know complex UIs.”

A participant also said that this technique has the advantage of connecting the
front-end and back-end. This statement is given below.

“Functionality with UI, Full documentation of how front-end and back-end are
connected”

These similar answers led us to generate this central theme. Overall this theme
represents the data from the participants that states the advantage of the technique
as a mapping between the UI and the code.

Overview

Some participants found the technique to help them with knowing the overview of
the system. As we gave the participants the results of the approach, they found them
as a good overview to refer when needed. They mentioned them as the advantage

52

6. Evaluation

of this technique. One answer also suggested that this technique has the advantage
of speeding up identifying changes.

“Quickly getting a overview of what methods interact with the UI”
As these data revolves around the central idea of helping them with finding the
changes in the system, we generated this theme “Locate changes”.

6.1.5.2 Limitations

For the question 2 from the questionnaire, we obtained different themes that deals
with the limitations in general. These themes will be covered here.

Different Projects

Participants questioned whether this technique would be suited for projects other
than the one that was the subject of the study. For example, one participant doubted
the support of this approach on swift programming and this statement is given below.

“Swift programming for macOS and iOS”
One of the participants has also mentioned in his/her answer that this approach
would not work for web-based applications as quoted below.

“Does it work for web applications”
Another interesting answer suggested that this approach would fail for systems with
no UI or systems with dynamic UI which is given below.
“Based on understanding it might be tough to find differences in dynamic behaviour

of the UI without manual interaction from humans”
All these data represent the limitations this approach has for projects other than
“Arts Of Illusion”. So, the theme “Different Projects” was created as a central theme
to group these data under them.

Misleading

Many participants suggested that using this approach and making the changes would
lead to the introduction of new bugs. There is also one answer that mentioned about
the naming that could confuse. The following are some answers that are grouped
under this theme.

“Functions and UIs have same names that cause confusing.”
“We did the task 1 in a dirty way by commenting the code thus it might introduce

to new bugs”
In the results provided to the participants, some methods have same or similar
names. This similarity in the names led to confusion for the participants to solve
the tasks given to them. It is understandable why this comment was given. An-
other similar answer is for the comment that mentioned that the approach needs
recommendations to the right method. What we inferred from this answer is that
he/she expects the technique to be accurate to point to the right code or at least to
provide some recommendations(hints).

53

6. Evaluation

Too much Documentation

From the data collected we observed that many participants have hinted out that
too much information in the form of documentation would make the search slower.
One of the answers obtained is given below.

“It is difficult to compare lot of images”
There is also an answer that mentions that referred that this approach in Larger
systems would result in big documentation thereby making the approach slower. We
find this answer interesting as the participants have found a limitation related to
the generation of the documentation. This statement is stated below in quotes.
“If there are more methods then that would result in huge amount of images. This
would not only be unhealthy but it would also prevent the localization as too much

to search through.”
From these statements, we inferred that having too many images in the result would
not help the user much.

Larger Systems

An answer obtained from the participant mentioned is that it would require a lot
of time to process and generate documentation for systems is large in scale. The
following is one of the related statements that is grouped under this theme.
“It doesn’t go through all the parts of the code important to find the most atomic

parts of the UI, can be cumbersome on larger projects”
And there is also an answer that mentioned about the time required to generate
documentation for systems with complex UI which also stated that testing all the
combinations would consume a lot of time. This statement is quoted below.
“UI Traces has to use the whole user interface. UI Traces has to click button, test
every possibilities and open every panel.There are too many combinations to test

them all.”
We find these answers surprising as the participants considered even the generation
of documentation into account when they were answering the questionnaire.

6.1.5.3 Usages

The data collected from question 3 talks about the situations where participants
would use this technique. Here we have listed all the themes obtained for this ques-
tion, and the description of the themes obtained for question 3 is given below.

Testing

Participants stated that they would use the approach when they have to do testing
in UI or do bug fix in UI. The following is one of the statements that represent this
theme.

“Testing my code , to locate instance of the UI element”
There are also participants who mentioned in their answers that they would use this
approach for finding bugs in the UI. This statement is quoted in the below text.

“Finding UI releated bugs and change in ui related behaviour”

54

6. Evaluation

Similar answers obtained from the data collected were grouped under this theme. We
could interpret that participants find this tool to help them during testing systems
with UI.

Maintenance

Participants stated that they would use this approach when they are maintaining
a system. One participant also mentioned that they would use this approach when
they have to use the software at the start of the maintenance as mentioned below.
“To map UI to source code, at the start of maintenance. As the results are sorted

by area it is even more easier. ”
Another answer obtained from the data collected that were grouped under this
theme is also mentioned below.

“I need to maintain a software, The info will be used to locate the method of
interest but as I said previously locating the method reduces the effort when the

method is not too big ”
We could observe from the results that certain participants could find using this tool
during the maintenance phase of a software system.

Specific Issues

Few answers described that the participants would use the technique for specific
issues. However, the context of specific issues is still unknown. It is not safe to
assume the topic specific issues to something else. So, we did not transform theme
to something else. Rather we kept it as it is and used it to imply the participants
answers as, that this technique is not generic and not suited for all situations.

“For specific issues in an application that I’m not familiar with ”
The above-mentioned themes are one of the statements that are grouped under this
theme. Another statement obtained is given below:
“Use it whenever I want to do specific stuff in the system or If I wanted to better
understand how the different component work or are related to each other. ”
This statement again implies that that participant would use this technique to do
something specific in the system. These answers that have a similar context in them
are grouped under this theme.

Won’t Use

We obtained few answers that stated that the participants would not be using this
technique. There are not many reasons provided here except a participant who
stated that he/she rarely develops UI in java as stated below.
Personally don’t use as rarely code UI in java. Will contact previous designers or

developers
But we find this theme as important as others and so we specify this theme sepa-
rately.

55

6. Evaluation

Understanding unfamiliar system

Few participants said that they would use the approach to understand the system
that they are not familiar. Few others mentioned that they would use this approach
when they are new to a system. As all these answers are related to the core idea of
understanding an unfamiliar system we generated this theme.
For example, one participant mentioned that:

“When working on code have never touched before”
Also, one participant mentioned that he/she would use this approach to understand
an unfamiliar system. This statement is mentioned below in quotes:

To know UI changes in application that I’m not familiar with. Also for
comprehending the dependencies of the UI

Related answers from the collected data are classified under this theme.

6.2 Findings from Analysis

The answers are so diverse, and this allowed us to explore more areas of the topic
under research. However, to condense all the information collected, we have quan-
tified the findings. This summarizes the data collected, and the themes analyzed to
make it easier for interpretation. We have counted the themes mentioned by each
participant and presented the information as a summary of analysis in charts.

Summary of Advantages

We have obtained three different themes for the data collected for question 1. Each
adds a different value to the research. Here in table 6.2 we have presented the
statistics of the number of participants who quoted each theme.

Themes No of participants who mentioned this theme
Locate Code 12
UI- Mapping 5
Overview 4
No Opinion 2

Table 6.2: Advantages of UI Tracer and the number of
participants who mentioned it

56

6. Evaluation

Figure 6.4: Chart of Themes obtained for question 1 and
their count

The table 6.2 and graph6.4 shows that the theme Locate code has been mentioned
by 12 number of participants making it the highest among its group. Second to
Locate Code comes the UI-Mapping mentioned by 5 participants. Next to this is
the Overview theme quoted by 4 participants. It should be noted that out of the
24 participants who took part in the questionnaire section only 2 participants chose
‘No opinion’ and expressed nothing for Advantages part.

Summary of Limitations

Similarly, from the data obtained from the question 2 the table is obtained. We
have obtained four themes under Limitations.

Themes No of participants who mentioned this theme
Different projects 5
Larger Systems 7

Misleading 4
Too much documentation 3

No opinion 4

Table 6.3: Limitations of UI Tracer

57

6. Evaluation

Figure 6.5: Chart of Themes obtained for question 2 and
their count

The table 6.3 and chart 6.5 shows the number of participants who mentioned each
theme under limitations. It could be observed that the seven participants have
mentioned the theme ‘Larger systems’ in their answers. This theme as discussed
questions the support of this tool on larger systems and stated that it would be
time-consuming to generate documentation. Next to this five participants men-
tioned the theme ‘Different projects’. Four participants mentioned that it would be
misleading to use this approach. Three participants have expressed the theme ‘Too
much documentation’ from their answers. Four participants chose ‘No opinion’ as
their option for answering question 2 in the questionnaire. Overall, we managed to
obtain some interesting and different themes out of the data collected.

Summary of Usages

The table is created using the data from the themes obtained from the analysis of
the data collected for question 3.

Themes No of participants who mentioned this theme
Testing 4

Locate Code 8
Understanding unfamiliar system 11

Wont use 3
Specific purpose 8
Maintenance 3
No opinion 0

Table 6.4: Usage of UI Tracer

58

6. Evaluation

Figure 6.6: Chart of Themes obtained for question 3 and
their count

The chart 6.6 provides a visual representation of data given in table 6.4. It could
be observed that almost half of the participants have mentioned through their an-
swers that they would use this approach to understand a system that they are
unfamiliar with. This is significant information as eleven participants have men-
tioned this theme. Eight participants have mentioned that they would use this
technique for locating the code that they are looking for. Another interesting theme
mentioned by the participants is the theme ‘Specific purpose’. As discussed as the
term ‘specific’ could not be assumed to be something that the participants did not
specify. However, it could be interpreted that eight participants find themselves to
use this technique for a specific purpose and not for generic purpose. Eight partici-
pants mentioned that they would be using this technique for locating code and four
participants mentioned that they would use this while testing UI based systems.
Just three participants mentioned via their answers that they would be using this
technique during maintenance of the software. Every 24 participants answered the
question 3, and none chose the option No opinion. It has to be noted that three
participants mentioned that they won’t be using this technique.

Summary of Answers obtained for question 4

For answer 4, unlike all other questions, the participants answered general concepts
in one or two words. This, in turn, led us not to follow thematic analysis completely
as the data obtained already contained themes. In few cases few participants did
not answer few sections. For example, they left blank for “Rather doxygen”.
So we gathered all the information and managed to condense all the data to form
the table given below 6.7.

59

6. Evaluation

Figure 6.7: HeatMap of answers obtained for question 4

As shown in table 6.7, the participants have mentioned that they would use Sonar-
qube for refactoring code compared to other documentation techniques. Whereas
12 participants have mentioned that, they would use text-based documentation for
changing the behaviour of the system. Six participants mentioned that they would
be using UI-Tracer for fixing bugs in a system whereas four participants mentioned
they would use documentation for the same purpose. Few participants stated that
Doxygen, Sonarqube and documentation never help them. While the concept of
documentation generated by the UI-Tracer tool is rather new to participants, no
participant mentioned that the tool is never helpful. Moreover, six participants
mentioned that they would use UI-Tracer and Doxygen to understand an unfamil-
iar system and four participants mentioned they would use documentation for the
same purpose. Only two participants mentioned that they would use Sonarqube for
this purpose. Five participants mentioned that they would use UI-Tracer to find UI
mapping whereas no one mentioned that they would be using other techniques for
the same purpose. Interestingly we found that six participants mentioned that they
would be using UI-tracer for the understanding of an unfamiliar system which is one
more than the number of participants who mentioned that they would be using this
technique for locating the code. This finding is also similar to the data we collected
were 11 participants reported they would use this technique for the understanding
of an unfamiliar system while 8 participants mentioned that they would be using
this technique for locating the code. It is clear that despite the standard techniques
available for comprehension, this study shows that participants find key areas where
they find scenarios to use UI-tracer.

60

7
Discussion

This chapter presents the threats that concern the validity of the research along
with the validity of generalizing the results. This chapter ends with the discussion
on answers to the research questions of this thesis.

7.1 Threats to validity
In this section, we discuss the potential threats to validity that affect the soundness
of the research. We identified two validity types:

• Internal Validity.
• External validity.

7.1.1 Internal Validity
Internal validity refers to the degree to which the conduct of a study eliminates the
systematic error [57]. Multiple factors could cause systematic errors in research, and
this includes the choice of population recruited for the study, the factors involved
in the measurement of study variables etc [58]. While conducting the questionnaire
section for data collection, we wanted to elicit as much of information possible from
the participants. So we chose open-ended questions for the questionnaire part and
thus avoiding bias that might have occurred as a result of giving suggestions to
participants [56]. In addition to this, we also made the data collection through
questionnaire anonymous so that participants don’t adjust their answers in fear of
being judged. Moreover, when conducting the task phase before the data collec-
tion, we gave the participants with documentation techniques such as code cities,
documentation from ‘Arts of Illusion’ etc. This way we prevented the participants
from solving the tasks in favour of the technique proposed in this study and also
helped in eliminating the risk that participants had to attribute positive feedback
alone to us. The thematic analysis performed on the collected qualitative data was
done inductively. This way of doing inductive analysis links the generated themes
emerge directly from the data and thus being the reflection of the data itself.

7.1.2 External Validity
External Validity refers to the degree to which the findings of the study could be
generalized to the population [57]. So, the characteristics of the sample obtained

61

7. Discussion

using convenience sampling are analyzed to find the how they represent the popula-
tion. Though we used convenience sampling for choosing participants, the common
characteristic of the selected sample is their connection to software engineering. Two
of them in the sample are teaching assistants of the course and rest all are final year
Master’s students studying Software engineering. The collective knowledge they
all have concerning software engineering is about program comprehension, software
maintenance, software quality etc. gives us confidence that they know to answer the
questionnaire. It is possible that the opinion of more experienced developers differ
from the ones that the students expressed. Since the students are already in their
final year and have previous experience using software comprehension techniques on
an unknown system, we argue that they are qualified to judge the approach.

7.2 Limitations

We already discussed the limitations observed by the participants who took part in
the study. However, in this section, we will emphasize and discuss more in detail
related to the limitations we observed during the whole research.

The UI tracer tool developed is only intended as a prototype, and so it has few limi-
tations. The main issue with the current version of the prototype is its performance.
We observed that the UI-Tracer tool generates results with low performance. Cur-
rently, during our test runs, we observed that it takes up to 28 hours to complete its
processing on the source code of ‘Arts of Illusion’ application and generate results.
The tool was run on 5348 methods of the ‘Arts of Illusion’ source code and these
many times the tool has to run. So for each method, we observed on an average it
takes up to 15 seconds to complete its processing on a method. So, when the source
code is large, it heavily impacts the performance of the result generation.

The other issue concerned with the prototype is its support for projects other than
Java. Though this issue is mentioned by the participants who took part in the study,
we wanted to add this topic here to discuss few things that were not noticed by the
participants. We have designed UI-Tracer tool to be adapted to most of the situa-
tions in theory. We believe in the generalizability of each component that performs
the prime tasks of this research. However, it would help through future researches
to discover the challenges incurred in generalizing the tool.

The quality of the results produced by the tool has its limitations as well. This is
evident from the number of images obtained from the tool. From the 503 images
obtained as a result, we have 393 images that are regarded as invalid. The ratio
of valid images to invalid images could be rounded to 1:4. This is a significant
difference, and we find this as another limitation that should be addressed with
future researches.

62

7. Discussion

7.3 Discussion

RQ1. How can we design and implement the technique to visually observe the impact
a method has on the UI?

As shown in the chapter implementation 4, we created a tool that could automate
and generate results that could be used in the creation of documentation as pro-
posed. All the main components are flexible to be supported on different platforms
like Windows, MacOs etc because of having built the tool on Java. Moreover it is an
added advantage that Java with its vast various types of libraries [59] would make
is easier while extending the tool with additional features. Currently the tool can
only process UI applications based on Java that uses Ant as the build system. As
mentioned before the Java library Java Parser is used to retrieve information about
the classes and the methods contained in the application that has to be studied.
This library is used by the ‘Explorer’ component of the UI-Tracer to parse the con-
tents of the Java file. This ‘Explorer’ component should be adapted for processing
UI applications that are built on programming languages other than Java in future
researches.

The ‘Comparator’ component performs image processing on what appears on the
screen and it uses Sikuli API which could also be used to simulate user actions.
Sikuli being a GUI testing tool gives this advantage and we believe that we could
use and extend this feature to the tool to simulate basic user actions. Especially in
UI systems with multiple screens this feature of the Sikuli could be used to simulate
user actions (e.g. clicking a button). For example, in Eclipse IDE, on starting it
prompts the user for choosing the workspace.

One of the main components, is the local database added to the tool. This database
is used to store all the information related to the mapping of the source code and
the images recorded as differences. Simple queries could be used to retrieve data
and this could be presented to the user with GUI in the future as a separate tool
to add convenience for developers while comprehending. The database could be ex-
tended to store additional information about methods and used for different forms
of analysis if required.

The tool developed was aimed for research purposes and is still in a prototype ver-
sion. Therefore, there are few limitations to the tool concerning its performance
and usability in general. Theoretically, we observed that the performance concern
with the tool could be addressed to some extent with the Sikuli API. Sikuli has a
matching algorithm which it uses while comparing images. This matching algorithm
in Sikuli has a variable called similarity parameter [60, 61]. The higher the value of
this parameter the more robust the algorithm would be, and Sikuli will notice even
minute changes between images. The downside associated with this way of using a
higher value of similarity parameter is its performance in matching. On the other
hand, the lower the value of this parameter would result in improved performance,
but the quality of the matching would be compromised. This way of low robust

63

7. Discussion

matching could have been used in our research but it might have an impact on the
results of RQ2. So, in this research, we have used a maximum value for the match-
ing algorithm giving importance to the quality of differences generated for RQ2.
However, there is no proof recorded as a difference in performance while altering the
value of similarity parameter. This should be studied in future research works along
with other technical challenges involved. Moreover, in ‘Arts of Illusion’ application,
the default build is not associated with any test suite. This saved us a significant
amount of time. So, for other applications running the build without running the
test suite will save a significant amount of time and prevent build failures associated
with test case failures.

As already mentioned the number of invalid recordings observed is a concern related
to the prototype. These are caused by run time exceptions that occurred while the
application is started which led to the failure in loading UI. As these recordings are
related to the failure in loading UI, it would be interesting to see if we can explore
the possibility of adding a listener to the screen through Sikuli or other libraries.
This way of adding listener will help prevent the tool to record images before the UI
has loaded. From the usability point of view, not many efforts were taken during the
research as the intention was to create a prototype. Right now, the UI associated
with the tool was designed and developed just for study purpose. These limitations
have to be addressed in the future researchers by enhancing the quality of the tool
which is in its prototype version. Overall, we answer RQ1 with the design and
implementation of the tool UI-Tracer. Through the development of UI-Tracer, we
prove that the creation of a tool that could help the developers to visually observe
the impact a method has on the UI. This way it can help the developers who use
UI as a starting point [23].

RQ2. Can we map the UI components of the view that appears after the application
is loaded (the “starting screen”) to its source code through this approach?

The prototype recorded 503 images in total as differences. In these 503 images,
there are 110 valid images and 393 invalid images. On analysis of the valid images,
we found that each component in the starting screen of the UI has gone through
a change at least once in the entire processing of the prototype. For example, the
UI component ‘Camera object’ recorded the highest number of differences with 25
images. The table 5.3 in results chapter also shows that there are few methods that
have created multiple changes by affecting various components of the UI. These
changes linked to the UI were examined to see if we can map the components back
to the source code. On inspecting the code, we noted that all components of the UI
elements could be traced directly to its source code. This is also evident to an extent
through the evaluation performed where the participants successfully identified the
starting point for comprehension using the new technique.

It is clear from the results that few components are impacted by multiple methods
of the source code. Not all methods from the map are responsible for the creation
of the UI elements. Some UI component changes in the images are not directly

64

7. Discussion

traced to the methods that created it. For example, we obtained certain methods as
results from the UI map that is responsible for fetching the icons of the component.
Although the changes are not directly mapped to the source of the UI component,
the mapping led us to the part of the source code that is responsible for loading its
icons. This way we argue that the results obtained are more than just a UI-map but
also could help the developers with the possibility to explore and understand more
areas of the source code.

As discussed in section 5.5, we show that all the UI components listed in the ‘Art
of illusion’ website [54] has gone through a change at least once and was recorded
by the UI-Tracer tool. There are other UI elements which are only visible on a click
of a button. We did not focus on these UI elements that do not appear on the
starting screen of the application. This is because in this research we focused only
on creating a mapping between the UI of the starting screen of the application and
its source code. However, from the results observed we could still trace the source
code of the UI which is not directly visible on the starting screen. For example,
the menu button ‘File; gives a drop-down list on click. Now from the results we
have, we could find the source code of the methods responsible for the creation of
the ‘File’ button. We believe this could be a good starting point for developers to
comprehend even for the UI elements without a direct mapping of its method.

However, it has to be noted that the limitation the tool has concerning the genera-
tion of these the valid set of images is significant. It is therefore rather important
to understand the challenges and technical difficulties involved in the generation of
low number of results. Overall from the results observed and analyzed, we imply
that this approach would contribute to the developers who need to comprehend soft-
ware system through its UI. Through these discussions, we prove that the generated
set of results map the UI components to its source code and thereby answering RQ2.

RQ3. How do developers or maintainers perceive this technique?

From the analysis of data collected during the evaluation phase, we obtained an-
swers for RQ3. All 24 participants who took part in the study managed to solve the
given tasks using the here presented documentations within the 30 minutes. This
time includes the introduction of this new technique to the participants, who were
exposed to it for the first time. Thus, the participants managed to use the documen-
tation to successfully find methods that were entry points to solve the tasks within
such a short time (the documented example system consists of over 90 000 lines of
code and more than 500 classes). After collecting this experience in working with
the new documentation technique 20 of the 24 participants felt confident enough to
make statements about the advantages and limitations they perceive the technique.
All 24 participants provided answers on potential usages they identified. Therefore,
we think that participants indeed do understand the concept behind this form of
documentation and are quickly able to use it.

During evaluation, we observed that participants begin with identifying code lo-

65

7. Discussion

cations as starting points when they are presented with a task. They looked for
options to know the starting point for comprehending. This backs up the findings of
the study [23] that identified developers follow a “problem – solution – test” pattern
i.e. developers start looking for identifying the code location when presented with
a problem”. From what we observed during the evaluation and from the data we
collected, it is evident that participants did the same. On analysis of the data we
collected from 24 participants, it was found that 12 participants reported that they
find locating the code as an advantage that UI tracer provides. In addition to this,
8 participants even mentioned that they would use this technique while locating
the code. These numbers show that this technique has the potential to help the
developers when they follow the “problem-solution-test” pattern. This gives us the
hope that developers would find this tool and its results useful with its some key
advantages.

Study [55] shows the importance of understandability and how long developers spent
on comprehending software systems during maintenance. Also from [4] we could see
the result of issues caused due to lack of understandability of software systems. In-
terestingly we have found themes from the collected data that concerns these issues.
We identified that almost half of the participants in our study mentioned that they
would use this approach for understanding an unfamiliar system and on the other
hand three participants mentioned maintenance as a usage scenario of this technique.
Theoretically, we could establish a relation that through this approach one could
locate code or get familiar with an unknown system. The type of usage might differ
but they cover important parts of the maintenance challenges, other comprehension
challenges such as understanding a complex algorithm, a systems architecture, or
dependencies. Thereby we believe that we could address the common maintenance
challenge and reduce the time spent on comprehending software systems through
this approach.

In this research, no evidence is recorded on the time difference taken by the par-
ticipant to solve the task with other documentation techniques. However, it is
fair to say through our results that this technique has the scope to be used with
other techniques that can reduce the common issues with maintenance such as un-
derstandability of the system. Thus, we see a demarcation line between program
comprehension challenges that are not in range of this proposal, but often in the
center of traditional approaches, and challenges that can be addressed with the here
presented idea (approaching new systems and locating code). This suggests that
traditional comprehension techniques and our idea might function as complements
in future.

Are limitations inherent to the idea?

The two top limitations mentioned by the participants are “different projects” (5
participants) and “larger systems” (7 participants). Both limitations are not actu-
ally concerned with the presented documentation, but the tool used to generate it-
This is interesting since the participants only got a short explanation of what the

66

7. Discussion

tool is doing, but neither saw the tool nor knew about the time it took to generate
the documentation. Nonetheless, the participants showed a good feeling about gen-
eral challenges of such a tool. Indeed, it is necessary to provide some configurations
to address other programs, e.g. providing an ant script to compile another system.
Even more, there is a language specific aspect to compilation and the manipulation
of the source code. However, it is theoretically possible to extend the tool in future
to also support other languages.

Likewise, participants doubt that the tool can scale to generate documentation for
larger systems within a reasonable time. This is a reasonable concern that we share,
although the run-time of around 28 hours for Art of Illusion can be considered some-
what acceptable for a non-optimized prototype that is run over the weekend. Future
studies will need to be concerned with optimizing the tool, such that larger systems
can be covered as well. The other two limitations concern the documentation it-
self. Three participants mentioned worries that the documentation gets too big to
be helpful, e.g. when locating the right method to implement a change. This is a
problem that concerns documentations in general, however, an important one. To
eliminate this downside, there is a need for providing navigation and search support
in future. Some students perceived the documentation as misleading. This was
often due to the fact that different methods can have similar impacts on the user
interface, creating confusion about the right entry point. This limitation is to some
degree inherent to the presented idea. What the user can see is an interaction of
multiple classes and methods in the system, and can be affected by all of them.
However, further support might help developers to be more aware of that limitation
or even provide options to recommend the method that is the best entry point.

We conclude that most of the limitations mentioned by the participants are con-
nected to the downside of the current state of the prototype that we used for gener-
ating the documentation. They do not necessarily hold in general for the underlying
idea of enriching documentation with a user perspective.

67

8
Conclusion

Through our research, we have presented a new technique for program comprehen-
sion enrich documentation of source code with aspects of the user perspective of a
system. We also came out successful in developing a simple prototype that could
generate the documentation for the proposed technique. While our initial proto-
type is limited to connecting only user interface elements and no behavioral aspects
yet, we already gained promising results. The prototype is developed in Java and
could be easily modified for an upgrade. We have strong hopes that in future,
the idea will help to complement classical approaches that support understanding of
architecture or algorithms with support for locating functionality in the source code.

From the already discussed limitations, we can directly retrieve some directions
for future research. The most prominent is one is to show that the approach can
be extended to systems developed in languages other than Java. Particularly, the
adaption to other programming concepts, e.g. functional languages, will be interest-
ing to experiment. Another direction of interest are systems running in a browser,
which are more complicated to deploy automatically. Also, performance optimiza-
tion needs to be addressed in future. Possible directions are incremental methods
for creating the documentation as the system is developed.

Another future research direction concerns the presentation and usability of the
documentation in general. Few participants noted that it would be a problem with
large number of images in the documentation. Finding a better way to navigate
in the documentation is an example of the future research direction. A possibility
would be to use image processing libraries to automate the finding of changes per
UI components of an application. This could be used along with the data in the
database and could be presented to the user with an interactive GUI. This way the
user can quickly navigate to the code that is responsible for the change. Directions
to address the confusion issues as mentioned by the participants can be to provide
strategies that developers can use to quickly check what method is the most promis-
ing entry point to affect aspects related to a user interface element. Moreover, the
tool can be further enhanced by using additional information from the database to
provide

An even more important direction for future research becomes obvious with the
observation that eight participants stated that they would use this approach only
for specific purposes. Part of these comments is the observation that the current
version does merely give an insight into user interface elements. Thus, the question

68

8. Conclusion

is whether this approach will stay limited to this part of the user perspective or
whether future extensions could help to reveal more about the functionality of a
system from the user perspective. We see this potential, since many rich options of
tools like Sikuli, e.g. filling in forms and processing data automatically, have not
been explored yet. This feature of simulating user actions with Sikuli could also be
used in the future to discover if we can generate the mapping of UI components that
only change when interacting with them. Also, the current version is designed to
generate documentation for the UI elements from the starting screen. It would be
interesting to see how we can extend the current tool to support multiple screens as
Sikuli can be used to simulate user actions. We see this as one of the most important
directions for future.

69

Bibliography

[1] McKee, J. R. (1984, July). Maintenance as a function of design. In Proceedings
of the July 9-12, 1984, national computer conference and exposition (pp.
187-193). ACM.

[2] Postema, M., Miller, J., & Dick, M. (2001). Including practical software evolu-
tion in software engineering education. In Software Engineering Education and
Training, 2001. Proceedings. 14th Conference on (pp. 127-135). IEEE.

[3] Kaur, U., & Singh, G. (2015). A Review on Software Maintenance Issues
and How to Reduce Maintenance Efforts. International Journal of Computer
Applications, 118(1).

[4] Uchida, S., & Shima, K. (2005). An experiment of evaluating software under-
standability. Journal of Systemic, Cybernetics and Informatics, 2, 7-11.

[5] Souza, S. C. B. D., Anquetil, N., & Oliveira, K. M. D. (2006). Which
documentation for software maintenance? Journal of the Brazilian Computer
Society, 12(3), 31-44.

[6] Poulin, J. S. (1994, November). Measuring software reusability. In Software
Reuse: Advances in Software Reusability, 1994. Proceedings., Third Interna-
tional Conference on (pp. 126-138). IEEE.

[7] Storey, M. A. (2005, May). Theories, methods and tools in program
comprehension: Past, present and future. In Program Comprehension, 2005.
IWPC 2005. Proceedings. 13th International Workshop on (pp. 181-191). IEEE.

[8] Śliwerski, J., Zimmermann, T., & Zeller, A. (2005, May). When do changes
induce fixes?. In ACM sigsoft software engineering notes (Vol. 30, No. 4, pp.
1-5). ACM.

[9] Śliwerski, J., Zimmermann, T., & Zeller, A. (2005, May). When do changes
induce fixes?. In ACM sigsoft software engineering notes (Vol. 30, No. 4, pp.
1-5). ACM.

[10] Borjesson, E., & Feldt, R. (2012, April). Automated system testing using
visual gui testing tools: A comparative study in industry. In Software Testing,

70

Bibliography

Verification and Validation (ICST), 2012 IEEE Fifth International Conference
on (pp. 350-359). IEEE.

[11] Yeh, T., Chang, T. H., & Miller, R. C. (2009, October). Sikuli: using GUI
screenshots for search and automation. In Proceedings of the 22nd annual
ACM symposium on User interface software and technology (pp. 183-192).
ACM.

[12] Sikuli (Version X-1.0rc3) [Computer software]. Retrieved from
http://www.sikuli.org

[13] Java Annotation, Retrieved from https://docs.oracle.com/javase/tutorial/java/annotations/

[14] JJavaDoc Tool, Retrieved from http://www.oracle.com/technetwork/articles/java/index-
jsp- 135444.html

[15] Doxygen [Computer Software]. Retrieved from http://www.stack.nl/ dim-
itri/doxygen/

[16] Graphviz [Computer Software]. Retrieved from http://www.graphviz.org/

[17] Urquiza-Fuentes, J., & Velázquez-Iturbide, J. A. (2004, July). A survey of
program visualizations for the functional paradigm. In Proc. 3rd Program
Visualization Workshop (pp. 2-9).

[18] H. A. M¨uller, S. R. Tilley, and K. Wong, “Understanding software systems
using reverse engineering technology perspectives from the rigi project,” in Pro-
ceedings of the 1993 Conference of the Centre for Advanced Studies on Collab-
orative Research, October 24-28, 1993, Toronto, Ontario, Canada, 2 Volumes,
1993, pp. 217–226.

[19] Rajlich, V., & Wilde, N. (2002). The role of concepts in program compre-
hension. In Program Comprehension, 2002. Proceedings. 10th International
Workshop on (pp. 271-278). IEEE.

[20] Herbsleb, J.D. & Moitra, D. Global Software Development. IEEE Software,
March/April,2001, pp. 16-20.

[21] Gračanin, D., Matković, K., & Eltoweissy, M. (2005). Software visualization.
Innovations in Systems and Software Engineering, 1(2), 221-230.

[22] Harman, M., & Hierons, R. (2001). An overview of program slicing. Software
Focus, 2(3), 85-92.

[23] Roehm, T., Tiarks, R., Koschke, R., & Maalej, W. (2012, June). How do
professional developers comprehend software?. In Proceedings of the 34th

71

Bibliography

International Conference on Software Engineering (pp. 255-265). IEEE Press.

[24] Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (1993). How to design and
evaluate research in education (Vol. 7). New York: McGraw-Hill.

[25] Buse, R. P., & Weimer, W. R. (2010). Learning a metric for code readability.
IEEE Transactions on Software Engineering, 36(4), 546-558.

[26] Alégroth, E., Gao, Z., Oliveira, R., & Memon, A. (2015, April). Conceptualiza-
tion and evaluation of component-based testing unified with visual gui testing:
an empirical study. In Software Testing, Verification and Validation (ICST),
2015 IEEE 8th International Conference on (pp. 1-10). IEEE.

[27] Vaishnavi, V.,& Kuechler, W. (2004). Design research in information systems.

[28] Boehm.B Software engineering. IEEE Transactions on Computers, C-
25(12):1226–1241, 1976.

[29] Python Software Foundation. Python Language Reference, version 2.7. Avail-
able at http://www.python.org

[30] Java. Java Language Reference, version 1.8. Available at http://www.java.com

[31] Ant. Apache (Version 1.9.9) [Software Management & Comprehension tool].
Available from https://ant.apache.org/

[32] Maven.Apache (Version 3.5.0) [Software Management & Comprehension tool].
Available from https://maven.apache.org/

[33] SQLite. (Version 3.19.3) [Database]. Available from https://www.sqlite.org/

[34] Drever, E. (1995). Using Semi-Structured Interviews in Small-Scale Research.
A Teacher’s Guide.

[35] Jorgensen, D. L. (1989). Participant observation. John Wiley & Sons, Inc..

[36] Hevner, A., & Chatterjee, S. (2010). Design science research frameworks.
Design research in information systems, 23-31.

[37] JUnit. (Version: 4.12) [Unit Testing framework]. Available from www.junit.org

[38] Bruneau, M., Durupt, A., Roucoules, L., Pernot, J. P., & Rowson, H. (2014).
METHODOLOGY OF REVERSE ENGINEERING FOR LARGE ASSEM-
BLIES PRODUCTS FROM HETEROGENEOUS DATA.

72

Bibliography

[39] Sphinx. (Version: 1.6.3) [Documentation Generator]. Available from
http://www.sphinx-doc.org

[40] JArchitect. (Version: 2017.1) [Computer Software]. Available from
http://www.jarchitect.com/

[41] SourceTrail. (Version: 2017.2) [Computer Software]. Available from
http://www.sourcetrail.com

[42] JIVE. [Computer Software]. Available from http://www.cse.buffalo.edu/jive

[43] Alégroth, E. (2015). Visual GUI Testing: Automating High-level Software
Testing in Industrial Practice. Chalmers University of Technology.

[44] Alegroth, E., Nass, M., & Olsson, H. H. (2013, March). JAutomate: A tool
for system-and acceptance-test automation. In Software testing, verification
and validation (icst), 2013 ieee sixth international conference on (pp. 439-446).
IEEE.

[45] Kaur, H., & Gupta, G. (2013). Comparative study of automated testing tools:
Selenium, quick test professional and testcomplete. International Journal of
Engineering Research and Applications, 3(5), 1739-43.

[46] Etikan, I., Musa, S. A.,& Alkassim, R. S. (2016). Comparison of convenience
sampling and purposive sampling. American Journal of Theoretical and
Applied Statistics, 5(1), 1-4.

[47] Bricki, N., & Green, J. (2007). A guide to using qualitative research method-
ology.

[48] Leech, B. L. (2002). Asking questions: techniques for semistructured inter-
views. PS: Political Science & Politics, 35(4), 665-668.

[49] Eclipse, I. D. E. (2007). Eclipse Foundation.

[50] IntelliJ, I. D. E. A. (2011). the most intelligent Java IDE. JetBrains[online].[cit.
2016-02-23]. Dostupné z: https://www. jetbrains. com/idea/ chooseYourEdi-
tion.

[51] Boyatzis, R. E. (1998). Transforming qualitative information: Thematic
analysis and code development. sage.

[52] Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology.
Qualitative research in psychology, 3(2), 77-101.

73

Bibliography

[53] Garrett, J. J. (2010). Elements of user experience, the: user-centered design
for the web and beyond. Pearson Education.

[54] Eastman, P. (2013). Arts Of Illusion documentation. Retrieved from
http://www.artofillusion.org/docs/AoI%20Manual/contents.html

[55] Xia, X., Bao, L., Lo, D., Xing, Z., Hassan, A. E., & Li, S. (2017). Measuring
program comprehension: A large-scale field study with professionals. IEEE
Transactions on Software Engineering.

[56] Slovenija, R., & v Sloveniji, T. (2003). DEVELOPMENTS IN APPLIED
STATISTICS.

[57] Kitchenham, B. (2004). Procedures for performing systematic reviews. Keele,
UK, Keele University, 33(2004), 1-26.

[58] Alexander, L., Lopes, B., Ricchetti-Masterson, K., & Yeatts, K. (2015).
Sources of systematic error or bias: information bias. Epidemiol Res Inf Center
(ERIC) Notebook, 2, 1-5.

[59] Ye, Y., Yamamoto, Y., Nakakoji, K., Nishinaka, Y., & Asada, M. (2007,
September). Searching the library and asking the peers: learning to use Java
APIs on demand. In Proceedings of the 5th international symposium on
Principles and practice of programming in Java (pp. 41-50). ACM.

[60] Sikuli Documentation, Global Functions[MinTargeSize], Retrieved from
:http://doc.sikuli.org/globals.html#min-target-size

[61] Sikuli Java API Documentation, Retrieved from
:http://doc.sikuli.org/pattern.html

[62] Rubin, J., & Chisnell, D. (2008). Handbook of usability testing: how to plan,
design, and conduct effective tests. John Wiley & Sons.

[63] McDaniel, S., & Snyder, L. (2004). Planning Usability Tests For Maximum
Impact. In ANNUAL CONFERENCE-SOCIETY FOR TECHNICAL COM-
MUNICATION (Vol. 51, pp. 345-349). UNKNOWN.

[64] Stetler, C. B., Legro, M. W., Wallace, C. M., Bowman, C., Guihan, M.,
Hagedorn, H., ... & Smith, J. L. (2006). The role of formative evaluation
in implementation research and the QUERI experience. Journal of General
Internal Medicine, 21(S2).

[65] Techsmith, M. (2011). Usability Testing for Software and Websites.

74

Bibliography

[66] Downey, L. L. (2007). Group usability testing: Evolution in usability tech-
niques. Journal of Usability Studies, 2(3), 133-144.

[67] Persson, S. (2004). Qualitative Methods in Software Engineering (Unpublished
master’s thesis). Lund University. Retrieved from http://fileadmin.cs.lth.
se/serg/old-serg-dok/docs-masterthesis/59_Rep.5520.Persson.pdf

[68] Hulley, S. B., Cummings, S. R., Browner, W. S., Grady, D. G., & Newman, T.
B. (2013). Designing clinical research. Lippincott Williams & Wilkins.

[69] Thoma, A., McKnight, L., McKay, P., & Haines, T. (2008). Forming the
research question. Clinics in plastic surgery, 35(2), 189-193.

[70] Patton, M. Q. (1990). Qualitative evaluation and research methods. SAGE
Publications, inc.

[71] Developers, J. (2008). Jython implementation of the high-level, dynamic,
object-oriented language Python written in 100 pure Java. Technical report,
www.jython.org, accessed 2008.

75

http://fileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/59_Rep.5520.Persson.pdf
http://fileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/59_Rep.5520.Persson.pdf

	List of Figures
	List of Tables
	Introduction
	Problem Description
	Purpose of Study
	Disposition

	Background
	Related Work
	Documentation
	Architecture
	Code

	GUI-based Software Testing
	1st generation: Coordinate-based
	2nd generation: Component/Widget-based
	3rd generation: Visual GUI Testing

	Methods
	Research Methodology
	Problem identification and motivation
	Define the objectives for a solution
	Design and development:
	Demonstration
	Evaluation

	Implementation
	Prototype Development
	Configuration
	Process of Tracing a Method

	Results
	UI of Arts Of Illusion
	Overview of Results
	 Build failure
	 Successful build and failed to open jar
	No difference found
	Differences found

	Quality of images recorded
	Mapping of Recordings
	Impact Observed on UI Component

	Evaluation
	Analysis of Data
	Familiarizing the data
	Generating initial codes
	Searching for themes
	Reviewing themes
	Defining and naming themes
	Advantages
	Limitations
	Usages

	Findings from Analysis

	Discussion
	Threats to validity
	Internal Validity
	External Validity

	Limitations
	Discussion

	Conclusion
	Bibliography

