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Abstract
All imaging sensors suffer from having a limited dynamic range, that is, the range of
light intensities which can be accurately measured simultaneously, thus potentially
limiting the amount of detail which can be captured in a single image. A method
for generating high dynamic range (HDR) images from several regular low dynamic
range (LDR) images captured using a photomultiplier tube imaging sensor for a
confocal laser scanning microscope has been developed. This method uses data
from all the available images in order to generate images which simulate an imaging
sensor having unlimited dynamic range and simultaneously reduces the noise in
the pixel intensity observations. The algorithm is based on solving a maximum
likelihood estimation problem for censored data which yields estimates of the true,
non-censored intensity values. The proposed method is demonstrated to generate
HDR images containing details which were difficult or impossible to observe in the
LDR images for several different kinds of samples. Furthermore, the method is
validated by introducing artificial censoring in the original data and comparing the
estimated intensities for different artificial thresholds to the observed intensities. The
proposed method is shown to accurately predict the non-censored pixel values even
for very low artificial thresholds (effectively simulating the behaviour of a sensor
with a reduced dynamic range) which indicates that the method also accurately
predicts the truly censored pixel intensities.
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1
Introduction

This section serves as an introduction to the problem with which this thesis is
concerned. The section includes a short background and a summary of earlier related
work as well as the aim and the delimitations of the project.

1.1 Background

Microscopy techniques are used to study many different phenomena in complex
materials. In this project, we are concerned in particular with confocal laser scanning
microscopy (CLSM). One general problem in digital microscopy, i.e. when the image
is digitized using a digital light sensor, is that light sensors have limited dynamic
range. Hence, the range of light intensities that the sensor can accurately measure is
limited. This means that for a sample yielding both low and high signal intensities
it might not be possible to capture the desirable amount of detail in a single image.
The microscopist can therefore be forced to choose settings that give a high level of
overall detail, but risk missing important details in areas which are comparatively
very dark or very bright.

One way of solving the problem of limited dynamic range would be to, after the
experiment, combine a number of low dynamic range (LDR) images into a single
high dynamic range (HDR) image. Ultimately, the goal would be to produce the
image which would have been obtained had the dynamic range of the sensor not been
limited. This image would contain more information than any of the individual LDR
images and thus provide a more accurate visual representation of the studied sample.
A naive approach would be to capture a number of images using different levels of
exposure and then simply merging the images, by for subsets of pixels choosing the
pixel values from the image which for this particular area has the most appropriate
dynamic range, forming a sort of patchwork. However, this approach has a number
of drawbacks. An image created in this way will have jagged ”edges” where areas
from two different images meet. Furthermore, an observed pixel intensity value is
dependent on not only the ”inherent” brightness of the area comprising the pixel,
which is a property of the material, but also on microscope settings and illumination
conditions, which are independent of the sample as such. Therefore, it appears, an
absolute, inherent measure of local optical properties of the material in a pixel,
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1. Introduction

independent of the means of observation, cannot be obtained. In other words, if
pixel A in this patchwork image has an intensity of 0.4 and pixel B has an intensity
of 0.7 (on a grayscale where black is 0 and white is 1), you cannot conclude that
pixel B is in reality brighter than pixel A since their signals are not measured under
equal conditions. This approach would also only use data from a single observation
per pixel even though several measurements exist (one for each image captured) and
therefore would not utilize data very efficiently.

A better way of creating the HDR image would therefore be to acknowledge the
fact that pixel intensities for a range of acquisition settings provide a wealth of
information not attainable from a single LDR image. For each pixel, using all the
available data from a set of LDR images should minimize the effect of noise and
signal saturation and yield a more reliable model. In other words, we would like to
estimate the effects of the variable input, i.e. the settings of the microscope, on the
output, i.e. the observed pixel intensity. Statistically, this is a regression analysis
problem, and an interpolation and extrapolation problem. The idea is that if we can
express the relationship between input and output mathematically we can use this
model to estimate the true intensities of an image. When this value is larger than
the sensor’s saturation level we are effectively circumventing the physical limitations
of the sensor.

We emphasize the difference between the dynamic range of the detector and the
dynamic range of the image format. The dynamic range of an image format is the
number of representable grayscale values, i.e. 2b where b is the bit depth and typically
equal to 8, 12, or 16. However, this number carries no information concerning the
highest and lowest physical intensities that can be represented in this range, which
is rather a property of the sensor and referred to as the dynamic range of the sensor.
The goal of this thesis is to obtain images simulating an increased dynamic range
of the imaging sensor which will produce an image which might have an increased
dynamic range. As such, the concept of an high dynamic range (HDR) image will
denote an image simulating a high dynamic range imaging sensor, not just an image
containing a large number of distinct intensity values.

1.2 Earlier related work

Methods for conducting HDR imaging in photography is a relatively well-explored
area, see e.g. [2, 3, 4] . Work has also been conducted to develop HDR techniques in
the area of optical microscopy [5, 6, 7]. In general these methods utilize a so-called
camera transfer function (CTF) f , generally defined as

Ij = f(Qj) (1.1)

where I is the registered intensity and Q is the total incident radiant energy for
pixel j. The CTF is typically a non-linear function which is estimated using the
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1. Introduction

data contained in the LDR images. Linear CTFs have been used by e.g. [8] but are
only appropriate when modelling the raw data (i.e. unprocessed data) produced by
the image capturing device. One of the more straightforward ways of estimating f
is to solve an optimization problem which has been done by e.g. [9] and [10]. The
idea is to write eq. (1.1) on the form

Ii,j = f(xjti +Ni,j) (1.2)

where j is the pixel index as before, i denotes the image index, ti is the exposure time
for image i, xj is the scene irradiance (radiant flux received by a surface per unit area)
and Ni,j is a noise term. The goal is then to model Ni,j so that xj can be estimated
from a series of observations. Ideally, modelling of Ni,j should be done by carefully
examining the noise contribution of the different electrical components of the image
capturing device. However, this turns out to be rather complicated to do in practice,
which is why a more simple approach is generally used. For example, [9] model the
noise Ni,j as independent zero-mean Gaussian random variables with variances σi,j
and uses a ML approach. This optimization problem is solved iteratively and yields
estimates of the CTF as well as the irradiance values xj which can subsequently
be used as pixel values in the HDR image estimation. More general theory for the
CTFs can be found in [11] which lists a number of parametric equations for possible
CTFs and in [12] which provides a detailed model for the space of both theoretical
and practical CTFs.

When the CTF is known (i.e. it has already been estimated using e.g. the above
outlined method), it can then be used along with a weighting function to determine
the pixel value contribution of each LDR image towards the generated HDR image.
The choice of weight function differs between different papers, for example [2] and
[5] used the derivative of the CTF, [3] used a triangular function peaking at the
center of the domain (at pixel value 0.5) whilst [9] used a Gaussian function. What
all of these choices of weighting functions have in common is that they diminish the
impact of pixel values close to the edges of the domain (i.e. pixel values close to
either 0 or 1), instead favoring the pixel values closer to the middle of the range. The
motivation behind the choice of these kinds of weighting functions is clear, namely
that we would like to avoid using underexposed or overexposed pixels for the HDR
composition as they contain less information than observations closer to the middle
of the intensity domain.

If the generated HDR image is to be displayed on e.g. a computer monitor, the image
has to undergo tone mapping before it can be properly displayed. Tone mapping is
a process in which the large dynamic range of an image is mapped onto a smaller
dynamic range. This is necessary since most monitors have a limited dynamic
range of the intensity which they can accurately display, much like camera sensors
have a limited dynamic range of intensities which they can accurately capture. In
photography, it is common that a tone mapping used for this purpose utilizes models
of the human visual system in order to obtain an image which resembles how the
human eye would have processed the scene. However, in the case of CLSM this
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1. Introduction

isn’t useful as the images are supposed to first and foremost provide quantitative
information and display that information accurately – not to create images which
look appealing in a subjective sense.

When it comes to the subject of HDR acquisitions from CLSM images there is, to
the best of our knowledge, no papers published on the subject. Thus, although
there is inspiration to be found in the works related to photography and optical
microscopy, the subject of this thesis is largely uncharted territory.

1.3 Aim

To develop and implement an HDR algorithm for image data obtained using a
confocal laser scanning microscope with different sensor types.

1.4 Delimitations

The images used in this work will be captured using a limited number of different
sensors. As such the main focus of the work will be to model these specific sensor
types which could potentially limit the area of application of the produced models
and algorithms. We also choose to neglect the impact of small movements of the
sample during acquisition of images.

4



2
Theory

This section outlines the relevant theoretical background. First, an introduction to
the CLSM technique is given, along with a description of the two sensor types that
will be considered. Some relevant but non-essential mathematical theory can be
found in Appendix C.

2.1 Confocal laser scanning microscopy

The main advantage of confocal microscopy over common optical microscopy is the
pinhole, a spatial filter which eliminates light from sources outside the focal plane,
hence increasing resolution and contrast. In order to measure the local intensities
the microscope uses point scanning which is a procedure where a focused laser beam
is run over the sample. The pattern which the beam follows as it moves over the
sample is called a raster and usually goes one row at a time from top to bottom.
The photons coming from the focal point enter the pinhole unobstructed whilst the
photons coming from objects out-of-focus are spread out over a larger area. This
means that the photons coming from an out-of-focus object which reach the sensor
are only a fraction of the photons emitted from said object. The sensor produces
a voltage which is a function of the number of incoming photons. As the laser
beam moves along the raster the produced voltage will vary, resulting in an analog
signal. The analog signal is converted by an analog-to-digital (A/D) converter which
generate the pixel values which make up the generated image. [13, Ch. 13]

Another reason why CLSM is useful is because it requires no preparations (possibly
apart from staining with fluorescent dyes) at the same time as it does very little
damage to the sample. The latter is particularly important for the application of
HDR imaging as the process requires capturing several images which means that
the sample will be under exposure for an extended period of time. Long exposures
typically lead to photobleaching, a process in which photochemical changes causes a
dye to stop being fluorescent. Since a non-fluorescent molecule won’t be detectable
through the microscope this means that photobleaching will make the captured im-
ages darker over time. In other words, photobleaching will cause the image intensity
to be time-dependent. The fundamental assumption of this thesis is that all images
are captured under equal conditions, thus the experiments will be designed such
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that the effect of photobleaching is negligible.

2.1.1 Sensor types

This section will give a short description of the sensors used in the experiments.

2.1.1.1 Photomultiplier tube

The photomultiplier tube (PMT) operates as follows. When a photon reaches the
sensor, the cathode absorbs the photon and consequently has a chance of emitting a
free photoelectron. The chance that an electron is released due to the absorption of a
photon is called the quantum efficiency which is a property of the sensor. Assuming
that an electron is released at the cathode it is subsequently guided by an applied
electric field through a number of dynodes. At each dynode every incoming electron
which hit the dynode is multiplied, causing a non-deterministic number of secondary
electrons to be emitted. When the electrons have passed the last dynode they are
absorbed at the anode where the charge is measured, resulting in a pixel intensity
value. [14]

Figure 2.1: A conceptual visualization of the PMT. Image courtesy of [1].

The number of secondary electrons emitted by the dynode for each incoming electron
is a random quantity. The gain of the PMT is defined as the total number of electrons
collected at the anode due to a single electron emitted at the cathode. The gain
of the PMT is thus a random variable where the expected gain is a function of the
total voltage of the dynodes. Through the multiplication process occuring at the
dynodes, additional noise is generated since all passing electrons will have the same
chance of being multiplied at the dynodes. This noise can be expressed through the
excess noise factor (ENF) Fe, defined as

Fe = M2

M
2 (2.1)

whereM is the gain (which is a random variable) and the bar (·) denotes the average
of a quantity. For a PMT the ENF can be shown to be (equation (38) in [15])
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Fe = 1 + Var(δ1)
δ1

2 +
m∑
i=2

Var(δi)

δi
2 ·

i−1∏
k=1

δk

(2.2)

where δi is the emission of secondary electrons at dynode number i, m is the number
of dynodes and Var(·) is the variance operator. The voltage which produces the gain
is typically equally distributed among the dynodes, although in some situations a
higher voltage is applied at the first dynode (with all the subsequent dynodes having
an equal voltage). One motivation for using a higher voltage at the first dynode can
be found by looking at equation (2.2); all non-constant terms in the equation are
inversely proportional to the average number of multiplications occurring at the first
dynode. Increasing the voltage at the first dynode is thus typically the most efficient
way of decreasing the noise generated through the multiplication process.

Since the electrons travelling through the tube can take different paths to reach the
anode, they don’t necessarily arrive there at the same time. This gives rise to an
output pulse which has a relatively large width. The wider the output pulse the
more difficult it will be to distinguish between individual events (signals). The fact
that electrons take different paths also lead to some electrons missing the subsequent
dynodes and they are thus not collected at the anode. This further increases the
variability in the number of electrons registered at the anode for a single electron
emission at the cathode.

PMTs suffer from a so-called dark current, created despite a lack of incoming pho-
tons, hence a low-amplitude signal is observed even if the device is operated in
complete darkness. Consequently, a signal which is weaker than or in the same
order as the dark current will be difficult to accurately detect. Effectively, the dark
current puts a lower bound to the dynamic range of the PMT.

In the case of a PMT, the dynamic range is defined to be the ratio between the
saturated signal and the background noise which can be measured in either volts or
electrons. The available dynamic range of the PMT is usually of 5 to 7 orders of
magnitude. If this dynamic range is greater than what can be represented by the
desired bit depth, the signal has to undergo dynamic compression before it is stored
digitally. This is done in one of two ways. Either a logarithmic amplifier is used to
scale the signal after it has been registered at the anode or the PMT is operated in
a compressed-output mode in which the signal is directly registered in compressed
form [14].

2.1.1.2 Photon counting sensor

The sensor used for photon counting is a Leica hybrid detector (HyD) (Leica Mi-
crosystems, Wetzlar, Germany). The design of the sensor is as follows. A photon
is absorbed at the photocathode which generates a free electron. The electron is
accelerated in a vacuum at a voltage of 8 kV. It then hits the semiconductor mate-
rial where the energy is first converted into approximately 1500 charge pairs. These
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pairs are subsequently amplified in a multiplication layer by a factor of about 100
after which the signal becomes a measurable pulse. The photon counting is done
by thresholding the measured electrical pulses and classifying them as binary events
[1].

One of the advantages of the HyD compared to the PMT is that the width of output
pulses are reduced by a factor of about 20 (the pulse is about 1 ns for the HyD and
around 20 ns for the PMT). The pulses are also typically more homogeneous as the
variation of emitted secondary electrons are decreased. The design also reduces dark
current-type noise as it eliminates the dark currents which arise in the PMT due to
the secondary electrons which miss the dynodes [1].

Figure 2.2: A conceptual visualization of the HyD. Image courtesy of [1].

2.1.2 Potential sources of noise in images

The dark current of a PMT, mentioned in section 2.1.1.1, and the noise introduced by
the variation of the gain occurring at each dynode are sources of noise which depend
on the hardware. The dark current is typically measured by the manufacturer of the
microscope making it possible to make adjustments for or at least obtain an estimate
of its influence. The statistical variation of gain occurring at the dynodes, however,
is more difficult to model. Parts of this noise is the ENF which can be estimated
using equation (2.2), but a more detailed analysis requires knowledge about the
underlying statistical distribution which is discussed in section C.2.

If the sample were to move in space during the image acquisition this would introduce
a variation between observations which could be classified as spatially varying noise.
For the datasets considered in this thesis no such movements have been detected
during visual inspection of the raw images. For all these datasets it is possible to
identify a distinguishable object in one frame and then find the object to be located
at the same pixel coordinates in both preceding and subsequent frames. As such
it is reasonable to assume that if any such movements in space occur, the effects
will have negligible impact on the final results of our processing. It should be noted
that if the physical lengths corresponding to the size of a pixel were to change,
e.g. by using a higher resolution for the same physical area or if a greater zoom was
used, then these effects could potentially become large enough to affect the resulting
images. This is important to keep in mind when setting up the microscopy for data
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acquisition.

The number of photons emitted from an object per time unit is a random quantity
which often can be modelled by a Poisson process. This variation in the photon
flux creates noise called photon shot noise. The influence of this noise source can
often be limited by frame averaging, i.e. taking the average of multiple frames to
create a single image where the effects of photon shot noise is reduced. In fact,
the signal-to-noise ratio increases in proportion to the square root of the number of
frames used in the averaging [13, Ch. 13]. It is thus one of the noise sources whose
effect could potentially be reduced through an HDR composition which utilizes data
from many images.

The A/D converter potentially introduces noise in the observations as the measured
signal has to be (linearly) mapped to a limited number of intensity values. This
number depends on the bit depth b, i.e. how many bits are used to store the image.
Since the maximum number of distinct signal values which can be stored is equal
to 2b, there will in some situations be signals which are initially measured to have
different values but stored as being equal due to the limited bit depth, generating so
called truncation noise. In general, truncation noise approximately follows a normal
distribution. Increasing the bit depth is the best way of decreasing this noise, which
is often small in practice given that a sufficient bit depth is used.

Objects which lie outside the focal plane of the CLSM will in theory introduce noise
in the captured images as some of the photons emitted by these objects will reach
the sensor. As mentioned in section 2.1, the out-of-focus photons that reach the
sensor are only a fraction of those received from the focal region and as such the
contribution from this noise source is assumed to be small, which will be the case
given that the pinhole width has been set at an appropriate level.

2.1.3 Mechanical adjustments of the microscope

For CLSM, there are several mechanical adjustments which can be made in order
to change properties such as brightness and resolution of the generated image. In
order to generate an HDR image it is important that the parameter settings used
for acquiring the LDR images are identical except for a parameter controlling the
intensity, which is varied by either controlling the emitted light or controlling the
sensor sensitivity to light. As such it is assumed that parameters such as laser scan
rate, electronic zoom factor, lens, resolution etc. remain constant throughout a
series of images. To this end, the most interesting adjustments to study in our case
are those which affect the image intensity. These include adjustments of the laser
and gain/offset of the sensor in the case of a PMT.

An acousto-optic tunable filter (AOTF) can be used to select which wavelength is
desired for a system having several laser wavelengths. The power level at which a
laser operates (specified as a percentage of its full capacity) can be adjusted through
the software connected to the microscope. In practice a laser is typically operated
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on a power level which lies far below its maximum power. The reason behind this
is twofold. One reason is that the lifetime of the laser as well as some other parts of
the microscope is shortened when the laser is operating at a high power level. The
other reason is that you want to avoid causing damage to biological samples and
minimize photobleaching. [13, Ch. 13]

The gain and offset of the PMT can be changed in order to adjust the light intensity
of the images. The offset is an adjustment representing the addition of a fixed
voltage (negative or positive) to the signal and should be set such that for a suitable
background signal the sensor output is approximately 0 V. Once the offset has been
set it’s appropriate to adjust the gain (defined in section 2.1.1.1). Adjustments are
typically made so that the intensities match the full dynamic range of the sensor.
Normally the gain should be balanced such that there are as few underexposed pixels
(value close to 0) and as few overexposed pixels (value close to 1) as possible [13,
Ch. 13]. In our case, however, the gain will be varied such that some of the LDR
images may have a large fraction of underexposed or overexposed pixels.
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3
Methods

This section covers the methods used when developing and testing the modelling
of the different sensor behaviours and the HDR acquisition. It also contains the
experimental setup used to capture images, covered in section 3.1, as well as a list
of the datasets used, section 3.2.

3.1 Method and materials for data acquisition

The microscope used to obtain the images is a Leica TCS SP5 (Leica Microsystems,
Wetzlar, Germany). The laser is a 100 mW argon laser with emission maximum
at 488 nm, operating at a power level of 25%. The laser beam passes through an
AOTF which is used to control the laser/illumination intensity. Whenever the laser
intensity of a dataset is presented it’s in fact the percentage at which the AOTF
is set which is given. The pinhole width was 53.1 µm with a zoom of 1.0 (i.e. no
digital zoom).

The PMT used has a multialkali photocathode and consists of 9 dynode stages. The
HyD sensor has a GaAsP photocathode.

3.2 Datasets

This section gives a list of the different datasets which have been acquired and
analyzed for this thesis. Example images from some of the datasets can be found in
Appendix B. Note that the omitted equipment and equipment settings specifications
follow the settings outlined in (3.1).

1. pc_1 : 250 images of a fixed, static sample (PUR foam) captured in succession
using the photon counter sensor. Laser intensity was fixed at 16% for all
images.

2. pc_2 : 16 images of a fixed, static sample (PUR foam) captured using the
photon counter sensor. The laser intensity for these images started at 2.5%
and was increased in increments of 2.5% until 40% was reached (one image
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was captured at each increment).

3. pmt_1 : 250 images of a fixed, static sample (PUR foam) captured in succes-
sion using the PMT sensor. Gain was fixed at 893 V for all images.

4. pmt_2 : 25 images of a fixed, static sample (PUR foam) captured using the
PMT sensor. The gain for these images started at 50 V and was increased in
increments of 50 V until 1250 V was reached (one image was captured at each
increment).

5. pmt_3 : 1312 images of a fixed, static sample (PUR Foam) captured using
the PMT sensor. The gain for these images started at 0 V and was increased
linearly until 1250 V was reached (one image was captured at each gain level).

6. pmt_3_trunc: a truncated version of the dataset pmt_3 where the first 600
images are omitted (the gain used for these 600 images are so low that the
raw images are very close to being completely dark). The first image of this
dataset is captured using a gain of 571.13 V.

7. pmt_4 : 2500 images of a fixed, static sample (PUR Foam) captured in suc-
cession using the PMT sensor. Gain was fixed at the same voltage for all
images.

8. wheat_bran: 150 images of a fixed, static sample (wheat bran) captured in
succession using the PMT sensor. The gain interval used was [500, 800]. The
physical length is 1.516 µm (2x zoom) per pixel for both directions and the
AOTF was set to 10 %.

9. emmer : 150 images of a fixed, static sample (emmer wheat) captured in suc-
cession using the PMT sensor. The gain interval used was [500, 800]. The
physical length is 1.011 µm (3x zoom) per pixel for both directions and the
AOTF was set to 10 %.

10. toilet_paper : 150 images of a fixed, static sample (toilet paper) captured in
succession using the PMT sensor. The gain interval used was [650, 1100]. The
physical length is 1.516 µm (2x zoom) per pixel for both directions and the
AOTF was set to 20 %.

11. lens_paper : 150 images of a fixed, static sample (lens paper) captured in
succession using the PMT sensor. The gain interval used was [500, 800]. The
physical length is 1.516 µm (2x zoom) per pixel for both directions and the
AOTF was set to 20 %.

12. foam: 150 images of a fixed, static sample (PUR foam) captured in succession
using the PMT sensor. The gain interval used was [600, 1000]. The physical
length is 3.033 µm (1x zoom) per pixel for both directions and the AOTF was
set to 30 %.

Datasets 1-4: 1024x1024 resolution with a physical length of 1.5 µm per pixel in
both directions. A 12 bit depth for the intensity values was used. The lens used was
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a HCX PL APO CS 10.0x0.40 DRY UV.

Datasets 5-7: 1024x1024 resolution with a physical length of 3 µm per pixel for both
directions. A 16 bit depth for the intensity values was used. The objective used was
a HCX PL FLUOTAR 5.0x0.15 DRY.

Datasets 8-12: 512x512 resolution with a 16 bit depth for the intensity values was
used. The lens used was a HCX PL APO CS 10.0x0.40 DRY UV. The gain was
increased linearly starting at the lower endpoint of the interval and finishing in the
upper endpoint

3.3 Modelling of the sensors

3.3.1 The photon counter sensor

In order to correctly model the behavior of the measured image intensities it’s use-
ful to investigate the probability distribution which produces the intensity values.
According to theory the observed intensities for a photon counting sensor should be
Poisson distributed, although this assumption could sometimes fail in practice e.g.
if there is too much electronic noise in the vicinity of the microscope. A first step in
the modelling process is thus to investigate the assumption of an underlying Poisson
distribution.

Qualitatively, the Poisson assumption can be investigated by comparing the observed
samples (images) to generated samples coming from a Poisson distribution where λ
is estimated from the observations. Quantitatively, the Poisson assumption can be
investigated e.g. by checking the validity of eq. (C.2) for the observed samples.

Given that the Poisson assumption is valid, the next step is to model how the
expected intensity λ in a given pixel varies as the laser intensity is adjusted. One
way of doing this is to plot the observed intensity as a function of the laser intensity
and try to find a curve which fits the observed data well. To this end several different
functions such as polynomials of different degrees and exponential functions were
tested. The best fit observed during this testing is given by a polynomial on the
form

Ii = αi · Lγi (3.1)

where I is the observed intensity, i is the pixel index, L is the laser intensity and α
and γ are model parameters. The parameters are fitted using regular LS.

With a bit-depth of 12 bits the photon counter has not been close to saturating.
Thus, the main improvements which could be expected to be reached through an
HDR image in the case of a photon counter is to increase the detail in under-exposed
regions and to reduce the noise in observations. From experiments it has been noted
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that the maximum laser intensity of 40% used in practice (due to concerns about the
life length of the sensor) is typically too low to utilize the full dynamic range of the
sensor. In other words, the dynamic range of this sensor is not the limiting factor
in practice, which means that there is no need to increase it. Due to these practical
circumstances, an HDR algorithm for the photon counter has not been developed,
although it would potentially be useful in a scenario where a higher laser intensity
could be utilized.

3.3.2 The PMT sensor

For the PMT the underlying statistical variation which govern the variation ob-
served in the images is more difficult to model in detail than in the case of the
photon counting sensor. As stated in section C.2 the stage gain of the PMT does
likely not follow the traditionally assumed Poisson distribution but should instead
more accurately be modelled by a Polya distribution. The parameters of this Polya
distribution would have to be estimated through carefully designed experiments
which require a great deal of knowledge about the technical specifications of the
PMT. Not only would this process be complicated and time-consuming but it would
also require access to information which in the present case is confidential and thus
not revealed by the manufacturer of the microscope. Due to the highly impractical
nature of this process a decision was made against doing detailed modelling of each
individual noise source listed in section 2.1.2. Instead, a simplified approach will be
taken where we assume that the total noise contribution to the measured signal can
be modelled as independent Gaussian (normal distributed) random variables. This
approximation of the total noise is also employed by e.g. [9, 16] when conducting
HDR imaging in photography and is often used to model image noise in more general
imaging applications.

Recall that since the sensor of the microscope has a limited dynamic range, the
observed intensity value will sometimes be saturated. In statistics, this is known as
censoring. Censored data means that a value is only partially known, e.g. in the
case of observing a pixel value equal to 1, we know that in reality the area has a
brightness which corresponds to a pixel value greater than or equal to 1, but due to
the limited dynamic range of the sensor we cannot observe the true value. This is an
important aspect to keep in mind during the modelling process and a decision has
to be made regarding how this behaviour should be implemented into the model.

3.3.2.1 The LS method

An investigation concerning a potential model for the observed intensity as a function
of the sensor gain was performed on the dataset pmt_2 consisting of 25 images with
a gain in the range 50-1250 V. Different relations such as low-degree polynomials, a
gamma curve (I(x) = α+β ·xγ), exponential functions as well as sigmoid functions
were tested. Out of these functions, the sigmoid functions seemed to give the best
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fit in general, although it was difficult to qualitatively evaluate which of the sigmoid
functions had the best fit. With I(x) denoting the observed intensity of a given
pixel at gain x, the following functions were tested

List 3.1

(1) The error function: I(x) = α · erf(γ(x− β)) + δ

(2) The hyperbolic tangent: I(x) = α · tanh(γ(x− β)) + δ

(3) The arctangent function: I(x) = α · arctan(γ(x− β)) + δ

(4) The Gudermannian function: I(x) = α · gd(γ(x− β)) + δ

(5) An algebraic function: I(x) = α · γ(x−β)√
1+(γ(x−β))2

+ δ

(6) A special case of the logistic function: I(x) = (1 + αe−γ(x−β))−1 + δ

(7) Another algebraic function (the function [11] primarily uses): I(x) =
(

eαxγ

eαxγ+1

)β
(8) The minimum of an exponential function and 1: I(x) = min(α · eβx + γ, 1)

The parameters were estimated by solving the corresponding non-linear LS problem.
Note that the parameters α, β, γ and δ should be estimated independently for
each model and each pixel. It should be mentioned that an exponential function,
I(x) = αeβx + γ, seemed to be a good fit for pixel values which had no or very few
saturated values. This could be interpreted as the exponential model being a good
model for the ”true” signal, before it is detected, processed and thereby (potentially)
censored due to the limited dynamic range of the sensor. This observation is what
motivated the inclusion of function (8) of List 3.1, a function which is not found in
the literature (and technically is not a sigmoid).

In order to get more extensive data on which the function of List 3.1 could be tested,
another dataset was collected. pmt_3 contains a series of 1312 images captured at
distinct gain levels in the interval [0, 1250]. From this dataset it is clear that the
saturation occurs rather abruptly and the curve more closely resembles a cut-off
exponential function than a smooth sigmoid. As such, function (8) of List 3.1 is not
unexpectedly found to be the best fit for the pixels which have several saturated
values.

When testing the sigmoid functions for this dataset it also became clear that the de-
viations from the suggested models seemed to start off small for gains corresponding
to poorly exposed pixels, then increase with gain until the pixels started to satu-
rate, at which point the deviations became small again. This observation has two
implications. First, since the residual (and thus also the noise) varies with the gain,
a regular LS method might not be the best way to estimate the model parameters
as it assumes that the noise is constant. Secondly, it implies that the current model
fitting seemed to have the poorest performance for intensity values close to the mid-
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point of the available range. This area should in theory be the region where we
have the most confidence in the accuracy of the observations as the limited dynamic
range of the sensor is not affecting the observations. It was therefore hypothesized
that an ML method might be able to produce a more suitable model which, among
other benefits, can handle arbitrary variance models.

3.3.2.2 The ML method

A natural way of improving the results obtained from an LS model fitting is to in-
stead use an ML method of estimating model parameters. Assume that there exists
a sample S = {xi : i = 1, 2, .., n} of n observations which are independent and iden-
tically distributed. Suppose further that all observations come from a distribution
with an unknown probability density function (PDF) f0 = f(· | θ0) but that the
distribution belongs to some known family of distributions D = {f(· | θ) : θ ∈ Θ},
where θ is the vector of parameters for the specific distribution. In order to estimate
the unknown θ0, the estimate θ̂ is desired. We note that the joint density for all
observations in S is given by

f(S | θ) =
n∏
i=1

f(xi | θ) (3.2)

since the observations are independent and identically distributed. The likelihood
function L is defined as

L(θ ; S) = f(S | θ) =
n∏
i=1

f(xi | θ) (3.3)

which means that the log-likelihood function, the natural logarithm of L, can be
written

log(L(θ ;S)) =
n∑
i=1

log(f(xi | θ)) (3.4)

The goal is to find the θ̂ which maximizes L(θ;S) since this implies that f(·; θ̂)
will be the PDF which is the most probable given the observed sample for the
assumed family of distributions D. The maximum likelihood estimation (MLE) is
thus defined as

{θ̂} ⊆ {argmax
θ∈Θ

L(θ ;S)} (3.5)

given that a maximum exists. Note that maximizing log(L(θ ;S)) is equivalent to
maximizing L(θ;S) due to the monotonicity of the logarithm function. Therefore
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log(L(θ ;S)) is maximized instead of L to find θ̂ in practice, since it is generally
easier to find the optimum of a sum than of a product.

Now, consider an arbitrary pixel i of an LDR image and let

Y (x,θ) = h(g(x),θ) (3.6)

where g(x) is the observed intensity of pixel i observed for gain x, θ is a vector of
model parameters specific to pixel i and h(·,θ) is a family of transformations which
depend on θ (leaving out the i subscripts). Furthermore, assume that Y (x,θ) can
be modelled through

Y (x,θ) = I(x,θ) + ε(x,θ) (3.7)

where I(x,θ) is a mean function and ε(x,θ) ∼ N(0, σ2(x,θ)). In other words,
Y (x,θ) is a normally distributed random variable with mean value E[Y (x,θ)] =
I(x,θ) and variance Var[Y (x,θ)] = σ2(x,θ).

The fact that g(x) is censored at 1 means that Y (x,θ) is censored as well, but at a
different level. Since g(x) = 1 is equivalent to Y (x,θ) = h(1,θ) := l we have that
the censoring level for Y (x,θ) is given by l.

The aim is to fit the model given by eq (3.7) to data and thereby obtain an estimate
of the uncensored intensity. To this end, consider an image series S consisting of
n LDR images which differ only by the gain xj, j = 1, 2, .., n, used to capture the
images. Let P be the set of pixels which are studied and let A = {x : x ∈ {xj}nj=1}
be the set of observations for pixel i which will be used to estimate the coefficients
of the model.

The likelihood function for this problem takes on a special form due to the censoring
of data which occurs for high intensity values. To account for the censored data we
adopt a likelihood method similar to that used in [17] (see in particular equation
(12)). Let A1 = {x ∈ A : Y (x,θ) < l} and A2 = {x ∈ A : Y (x,θ) ≥ l} be the sets
of observations which are uncensored and censored, respectively. The log-likelihood
function is then given by

L = L1 + L2 (3.8)

where

L1 =
∑
x∈A1

log [fY (Y (x,θ))] =
∑
x∈A1

log
[ 1
σ(x,θ)φ

(
Y (x,θ)− I(x,θ)

σ(x,θ)

)]
(3.9)

and
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L2 =
∑
x∈A2

log [P (Y (x,θ) ≥ l)] =
∑
x∈A2

log [1− P (Y (x,θ) ≤ l)] =

=
∑
x∈A2

log [1− FY (x,θ)(l)] =
∑
x∈A2

log
[
1− Φ

(
l − I(x,θ)
σ(x,θ)

)]
(3.10)

where fY (·) and FY (·) are the PDF and cumulative distribution function (CDF) of
Y (x,θ) respectively and φ(·) and Φ(·) are the standardized normal PDF and CDF
respectively. The expression in eq (3.8) should be maximized in order to find the
ML estimate θ̂. Note that this is a constrained optimization problem as we require
that I(x,θ) is an increasing function and σ2(x,θ) > 0. Note also that since θ is
pixel dependent, the MLE is performed independently for each pixel.

Possible choices of transforms h(·,θ) of the observed pixel intensities g(x) are the
identity transform,

Y (x,θ) = g(x), (3.11)

or the shifted logarithmic transform,

Y (x,θ) = log (g(x)− λ), (3.12)

or the Box-Cox transformation,

Y (x,θ) = g(x)′(λ), (3.13)

where the prime (·)′(λ) denotes the Box-Cox transformation

x′(δ) =


xδ−1
δ

if δ 6= 0
log (x) if δ = 0

. (3.14)

A list of possible mean functions I(x,θ) is given in List 3.2 and a list of possible
variance functions σ2(x,θ) is given in List 3.3.

List 3.2

(1) I(x,θ) = αeβ(x′(δ)−x0) + γ

(2) I(x,θ) = αeβx
2+ϕx+x0 + γ

(3) I(x,θ) = αeβx + γ
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List 3.3

(1) σ2(x,θ) = c

(2) σ2(x,θ) = axb + c

(3) σ2(x,θ) = ax2 + bx+ c

(4) σ2(x,θ) = aebx

(5) σ2(x,θ) = aebx + c

(6) σ2(x,θ) = aeb(x−d) + c

(7) σ2(x,θ) = aebx
′(δ) + c (same δ as for the mean function if applicable)

(8) σ2(x,θ) = aebx
′(δ2) + c (δ2 6= δ with δ from the mean function if applicable)

(9) σ2(x,θ) = aep2x2+p1x+p0 + c

With the 3 different possible transformations given by equations (3.12), (3.14) and
(3.11) as well as the different functions in Lists 3.2 and 3.3 this makes for a total of
75 distinct combinations (for mean functions (2) and (3) variance functions (7) and
(8) are the same). A majority of these combinations have been tested on data by
means of solving the corresponding ML optimization problem and comparing the
model response to observed data. Those combinations which have not been tested
have been ruled out based on previously obtained results. For example, if a given
data transformation h and mean function I gave virtually the same results (in terms
of quality) using variance function (4) and variance function (6) there is no need to
test variance function (5) as (6) contains (5) as a special case (d = 0).

When judging the quality of the different models they were assessed based on three
different criteria. The most important criteria is how accurately the model agree
with observed data, known as the model fit or the accuracy of the model. Having an
accurate model predicting the intensity response as a function of gain is the single
most important piece of the puzzle when constructing an HDR image. The second
most important criteria is the number of model parameters which are necessary to
estimate. If too many parameters are used there is a risk of model overfitting which
makes the model unreliable in areas where there is no data available, e.g. between
obtained data points or for points which lie outside the observable set of points.
As such, if there are two models that have negligible differences in accuracy and
require different number of parameters the model with the fewest parameters will
be preferred over the model with additional parameters. This is the reason as to
why lists 3.2 and 3.3 not only include the most general forms of each model. The
third criteria is the computational performance of the model, i.e. how much cpu
time is needed to solve the model. Although having a computationally fast model
is certainly preferable, it is in this particular case proposed that speed improvement
should not come at the cost of model accuracy.

In order to improve the quality of the model with respect to the second criteria,
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that the number of model parameters estimated for each pixel should be as few as
possible, a parameter reduction procedure was carried out. For this procedure, the
model

I(x, i) = αeβ(x′(δ)−x0) + γ

σ2(x, i) = aebx
(3.15)

for identity transformed data (eq. (3.11)) was chosen as the foundation model. This
choice was made based on the fact that the model proved to provide very accurate
fits but also had some pairs of model parameters which turned out to be strongly
correlated. Therefore, for one parameter at a time, it was tested whether or not a
given parameter could be omitted completely (i.e. be set to 0 or 1 depending on the
parameter in question) or if it was possible to find a different constant parameter
value which could be set prior to the estimation of the other parameters and thereby
be used for all pixels whilst still resulting in an accurate model. In the case of
estimating a constant parameter value, this estimate was obtained by letting the
parameter be fitted independently for each pixel along with the other parameters
and then choosing the fixed parameter value to be either the mean or the median
(depending on how large the variations were) of these estimates. This parameter
reduction procedure resulted in the model

I(x, i) = αie
βi(x′(δ)−x0)

σ2(x, i) = aie
bx

(3.16)

where only the 3 parameters αi, βi and ai need to be fitted individually for each
pixel (denoted by the subscript i), the parameters δ, x0 and b are pixel-independent
parameters and γ in eq. (3.15) is removed (set to 0). This model is faster to solve and
does not have strongly correlated parameters whilst providing fits indistinguishable
in terms of accuracy from those produced by the model given by eq. (3.15). It should
be noted that although the values of δ, x0 and b are fitted from data coming from
a single sample, these values have subsequently been used for several other samples
and has provided accurate fits in all cases. As such, it is sufficient to determine δ,
x0 and b once and then use the same obtained values in all subsequent estimations.

Once a model has been fitted it will be used to estimate the true (non-noisy and
non-censored) response of the camera sensor for a given pixel. For pixels which do
not saturate and thus are not censored the main benefit of the HDR composition
will be noise reduction. This noise reduction is achieved by interpolating the fitted
model within the range of observed values. For pixels which do saturate the main
benefit of the HDR composition is the ”un-censoring” of data. This un-censoring is
achieved by using the fitted model to extrapolate to intensities greater than 1, i.e.
outside the range of observable values. With regard to extrapolation one should be
very careful with how far from the observable data the extrapolation is carried out.
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Clearly, we do not know what happens outside of the observable range of intensities.
It is a sound assumption that the behaviour of the observed data is continued after
the point where we can no longer observe it, and for a reasonable model this should
be the case for a relatively long range outside the observable range. However, it is
still good practice to be reasonably conservative when doing model extrapolation as
there are no means of experimentally validating the results.

From the histograms of individual pixels from the dataset pmt_1 (250 images, con-
stant gain) it seems that the normal distribution of pixel intensities might be a
reasonable choice. For the data in pmt_4 (2500 images, constant gain) the nor-
mal distribution provides a good model for the data. This conclusion is reached by
comparing the histograms of individual pixel intensities throughout the image series
and comparing the shape of the histograms to the shape of the PDF of the normal
distribution when the parameters of the distribution are estimated using MLE. This
is especially the case for pixels whose mean intensity isn’t close to either censoring
point (intensity values 0 and 1) which indicates that the normality assumption ap-
plies for data which isn’t censored. For pixels which have censored observations the
ML estimation will fit a truncated normal distribution. We can neither confirm nor
deny the normality assumption for these pixels based on the observed data since the
true data is not observable.
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4.1 Photon counter

The dataset pc_1 was analyzed in order to investigate the assumption that the
intensities registered by the photon counter sensor are Poisson distributed. To this
end, we consider all pixels for which the mean intensities are greater than Elim. For
these pixels, the ratio R given by eq. (C.3) is calculated after which statistics such as
the min/max and mean values (of the set of all pixels having sample mean greater
than Elim). The results of these calculations are found in table (4.1). Note that
increasing Elim means that the pixels have to be increasingly bright (on average) in
order to be considered.

From the data provided in the table it seems that R = 1 is a very reasonable
approximation, in particular for the higher (average) intensity values. For Elim = 0
the maximum value 71.0 is clearly much larger than what you would expect if the
intensity is indeed Poisson distributed. These outliers are due to the fact that there
exist pixels whose intensity is very low (0 or 1 where the whole range is [0, 2b − 1]
where b is the bit depth) for all images but one where the registered intensity is
high (50-80). These pixels will have low sample averages, but large variance due to
a single large value, leading to a large value of R. The large intensity observed only
once in the whole series of 250 images is likely due to a very slight temporary shift
in either the sample or some part of the microscope. This kind of observations are
extremely rare when looking at the data as a whole, suggesting that their occurrence
do not contradict the R = 1 hypothesis. It should also be noted that pixels with low
average intensity are difficult to analyze due to their nature as the low intensities

Elim min max mean median nbr of pixels
0 0.65 71.0 1.01 0.98 1045691
1 0.65 22.9 1.01 1.00 163280
5 0.66 9.79 1.00 0.99 15013
10 0.66 1.58 1.00 1.00 448

Table 4.1: Statistics obtained for the ratio R given by eq. (C.3) for the dataset
pc_1. For each calculation only pixels having sample mean greater than Elim were
considered.
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indicate that very little data is available, hence the estimator R̂ has a higher variance.
As such, the very dark pixels generating samples which do not seem to be Poisson
distributed do not necessarily contradict the Poisson hypothesis either, and these
pixels should rather be treated as samples for which it is not possible to confirm nor
deny the hypothesis.

As Elim is increased, more and more of these outliers are filtered out, as can be seen
in table (4.1) by looking at the max value, which decreases. It should be noted that
for all values of Elim, tested at least 95% of the considered pixels have R values
which lie in the interval [0.8, 1.2] which indicate that the R = 1 assumption seems
very reasonable for the vast majority of pixels. This in turn speaks in favor of the
Poisson distribution.

The model Ii = αi ·Lγi (eq. (3.1)) was proposed in section (3.3.1) as the relationship
between the observed image intensity and the laser power used to illuminate the
sample. Graphical representation of the results of the curve fitting for the images
of dataset pc_2 can be found in figures (4.1) and (4.2). The model fits the data
quite well for pixels which have a relatively high average intensity. For darker pixels
(lower average intensity) the intensity does not necessarily show the same increasing
behaviour as that in Figures (4.1) and (4.2). Instead, these pixels have intensities
whose variation more resemble those observed when studying dataset pc_2, i.e. the
laser intensity is constant and the variations are well described by a Poisson process
with constant λ. As such, some of these darker pixels would need to be observed
under greater illumination (higher laser intensity) in order to obtain sufficiently
detailed measurements to do the curve fitting. For other pixels which actually are
very dark (i.e. there is nothing but air there to measure) the observed intensity
variations will be due to noise for which the modelled gamma curve will not be
appropriate.
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Figure 4.1: Data compared to the fitted function I = α ·Lγ for a pixel with average
intensity greater than 95% of the pixels in the dataset pc_2.
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Figure 4.2: Data compared to the fitted function I = α · Lγ for the pixel with
highest average intensity in the dataset pc_2.
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4.2 PMT

The LS and the ML methods of estimating the signal outlined in sections 3.3.2.1 and
3.3.2.2, respectively, have been tested for several datasets. As there is no quantitative
measure which can be used to evaluate the accuracy of the results they will instead
be evaluated based on a visual inspection of plots and generated images. In some
cases the images will be presented using another colormap than the traditional
grayscale colormap in order to better visualize the results, in particular in the dark
regions (low pixel intensity). Whenever this is done, a colorbar relating the displayed
colors to numerical values will be shown along with the image. Note that changing
the color map is purely a visual aid - the intensity values are not changed by this
operation, only the color, to which a certain value is mapped.

The assumption that the images remain static throughout the image capturing pro-
cess has been investigated by visually inspecting cropped images. For each of the
datasets that the HDR algorithm has been applied to (presented in the following
sections) there exists a corresponding calibration dataset. This calibration dataset
was captured directly after the capturing of the primary dataset and was conducted
in exactly the same manner as when capturing the primary dataset except that the
gain was kept constant. Thus, this calibration dataset can be used to investigate
movement between images since the number of images captured and the total time
of capturing the images is the same as for the primary dataset. Based on this in-
vestigation it seems that the assumption of static samples is valid as no signs of
movements could be detected, neither between the first image and the last image of
a dataset nor between consecutive images. Examples of some of the figures evaluated
during this calibration process can be found in section B.3.

4.2.1 Results of the LS modelling

Results for individual pixels when applying the LS model on the images in dataset
pmt_3 can be found in Figure 4.3. As is seen in the figure the function I(x) =
min(αeβx + γ, 1) provides a reasonable model for how the observed pixel intensity
varies with gain. It is therefore possible to generate images which simulate any
specific gain by first fitting the parameters α, β and γ for each individual pixel and
then evaluate I(x) for the desired gain level, yielding the predicted pixel intensity.
An image generated in this manner will have reduced noise compared to the original
LDR images, since raw data from several images are used to fit the parameters.
Thus, this process is conceptually similar to frame averaging. Comparisons between
the original image and a generated image simulating the same gain can be found in
Figures 4.4 and 4.7 for two different gain levels. These figures show that the gener-
ated image does indeed have reduced noise, giving it a smoother appearance. The
effect of the noise reduction can be clarified further from Figure 4.6 where the varia-
tion of intensity as a function of gain is plotted for the pixels which have the largest
differences between original and generated image. For the specified gain (699.2 V)
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these pixels have an observed intensity which is very different from the intensity
observed for slightly smaller and larger gains, indicating that the observation for
this particular gain is very noisy. The intensity predicted by I(x) (marked in the
figure with a blue star) is much more likely than the observed intensity to be an
accurate prediction of the true intensity.
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Figure 4.3: Results of modelling the observed pixel intensity (blue) by the model
I(x) = min(αeβx + γ, 1) (red) where x is the gain for a few different percentiles of
average pixel intensity. The model parameters are estimated individually for each
pixel using LS. The model has been applied to the dataset pmt_3_trunc.

From Figure 4.3 it is also clear that the model leaves room for improvement. For
percentiles 86.2876, 75.5853 and 64.8829 the first parts (approximately gain x ∈
[571.13, 800]) of the fitted functions are not as good as for other percentiles. This
means that for these pixels the predicted pixel intensity might be slightly inaccurate
if an image were to be simulated for x ∈ [571.13, 800]). One way of working around
this would be to simulate an image for a gain slightly higher than 800, where the fit
is more accurate. This should however be done with care, as the brightest pixels of
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this dataset (percentile greater than 96.99) might have saturated before gain 800,
meaning that for these pixels an evaluation at gain greater than 800 might require
a rather long extrapolation. A detailed examination of the dataset shows that it is
only the very brightest pixel of the dataset which clearly saturates before gain 800.
This implies that in this case there is only one pixel in the whole dataset for which
the extrapolation is very long, meaning that we are putting a lot of stress on the
regression model, and the validity of the model at this range is in question for this
particular pixel.

From Figures (4.5) and (4.8), which show the absolute difference between the original
image and the generated image, two interesting observations can be made. First,
the main features of the structure which can be seen in the original and generated
images are also visible in the difference between the two images. Hence, where
the largest differences occur is where there is a structure to be observed which in
turn implies that the greatest benefit obtained from the noise reduction is more
accurate information about the material itself. Second, the differences between the
generated image and the original seem to be increasing with gain. This is in line
with expectations since the variation in pixel intensities (and thus the noise) for a
fixed pixel increases with gain as can be seen by carefully studying the graphs where
pixel intensity is plotted as a function of gain (Figures (4.3) and (4.6)).
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Figure 4.4: The actual image captured at gain 850.5 V (left). The gener-
ated (computer simulated) image for gain 850.5 V (right). The function I(x) =
min(αeβx + γ, 1) was fitted individually for each pixel and the generated pixel value
was obtained by evaluating I(x) at the specific gain level. The images are taken
from dataset pmt_3_trunc.
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Figure 4.5: The absolute difference between the two images in Figure 4.4.
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Figure 4.6: Plots of the observed pixel intensity (y-axis) as a function of gain (x-
axis) for the observed data (blue dots) and the fitted function (red line). The pixels
shown here are the pixels which in Figure 4.5 have a high intensity, i.e. pixels for
which large differences are observed between the reference image and the generated
image. By using the interpolated value (red star) instead of the observed value (blue
star), a noise reduction is achieved.
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Figure 4.7: The actual image captured at gain 1000.2 V (left). The gener-
ated (computer simulated) image for gain 1000.2 V (right). The function I(x) =
min(αeβx + γ, 1) was fitted individually for each pixel and the generated pixel value
is obtained by evaluating I(x) at the specific gain level. The images are taken from
dataset pmt_3_trunc.
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Figure 4.8: The absolute difference between images in Figure 4.7. Differences are
in general much larger for this gain (1000.2 V) than for a lower gain of 850.5 (Figure
4.5), except for the (on average) brightest pixels which saturate in both cases and
thus have a difference equal to 0.

From Figures (4.9)-(4.11) it is clear that the applied LS model has produced an image
with less noise and simulates a camera sensor with satisfactory dynamic range to
capture the whole range of intensities necessary. In the zoom-ins we see that small
and very thin thread-like details are now visible which could not be seen in the
original image. Some areas which appear completely dark in the original image now
shows structures which appear to be part of the material which lie on a different
z-level than the confocal plane, i.e. on a different physical depth.
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Figure 4.9: The original image captured with the microscope at gain 850.5 V (left).
This image has approximately 6 · 104 saturated pixels. The generated (computer
simulated) image for the same gain (right). The function I(x) = min(αeβx + γ, 1)
was fitted individually for each pixel (using the whole image series as data) and
the generated pixel value was obtained by evaluating αeβx + γ (i.e. I(x) without
the minimum operator) at the specific gain level. The image was tone mapped
using a logarithmic operator and subsequently shifted such that the lowest recorded
intensity is 0. This image has no saturated values. The images are taken from
dataset pmt_3_trunc.
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Figure 4.10: Zoom-in of an area of Figure 4.9, both subfigures display the same
area.
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Figure 4.11: Zoom-in of an area of Figure 4.9, both subfigures display the same
area.
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Figure 4.12: The original image captured with the microscope at gain 752 V
(left). The generated (computer simulated) image for the same gain (right), obtained
through the LS method. Both images use the same color axis where 1 represents the
largest intensity (marked with white color) but are normalized by the largest value
in each respective image. Images are taken from dataset wheat_bran.
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Figure 4.13: The original image captured with the microscope at gain 952 V
(left). The generated (computer simulated) image for the same gain (right), obtained
through the LS method. The generated image was tone mapped using a logarithmic
operator and subsequently shifted such that the lowest recorded intensity is 0. Both
images use the same color axis where 1 represents the largest intensity (marked
with white color) but are normalized by the largest value in each respective image.
Images are taken from dataset foam.
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Figure 4.14 shows that the censoring is removed using the proposed LS method.
Whereas the original intensities were limited to the interval [0, 1], the generated
image has pseudo-intensities with unlimited range and as such recreates information
which is lost in the LDR images due to the censoring.
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Figure 4.14: Histogram of the pixel intensities of the reference image, i.e. left
image in Figure 4.9 (upper). Truncated histogram of the pixel intensities of the
generated image, i.e. right image in Figure 4.9 (lower). Note that the y-axis has a
logarithmic scale which differs between the two subfigures.

4.2.2 Results of the ML modelling

4.2.2.1 The 7 parameter model

Comparing Figure 4.15 to Figure 4.3 we can in particular note that for percentiles
86.2876, 75.5853 and 64.8829 the first parts (approximately gain x ∈ [571.13, 800])
of the results obtained through the ML method clearly fit the data better than the
results obtained using the LS method. For gains larger than 800, the differences in
numerical values are generally quite small. However, the fact that the ML results
seems to be the best fit overall indicates that for large gains the ML results are to be
preferred over the LS results even though their numerical values are very similar. In
other words, the results of Figures 4.15 and 4.3 show that the ML method provides
a fit which is always better than or on par with the fit provided by the LS method.
For the observed data the variation of pixel intensity does not seem to be constant
with gain, which the LS method assumes, meaning that the ML method provides a
model which better fits data. The ML method also provides a more natural way of
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modelling the limited dynamic range of the sensor through the use of the likelihood
function L2, equation (3.10), in comparison to the LS method where this behaviour
was modelled through the use of the minimum operator.

From Figure 4.16 which compares the results of the LS method to those of the ML
method, we note that the overall appearance of the images are quite similar. The
ML method generates a larger range of numerical values for the pixel intensities and
in order to make the images comparable they are both color scaled using this larger
range of values. From Figures (4.15) and (4.16) we can note that the images are
similar also on a smaller scale.

600 800 1000 1200

0

0.2

0.4

0.6

0.8

1

96.99th percentile 

600 800 1000 1200

0

0.2

0.4

0.6

0.8

1

86.2876th percentile 

600 800 1000 1200

0

0.2

0.4

0.6

0.8

1

75.5853th percentile 

600 800 1000 1200

0

0.2

0.4

0.6

0.8

1

64.8829th percentile 

600 800 1000 1200

0

0.2

0.4

0.6

0.8

1

54.1806th percentile 

600 800 1000 1200

0

0.2

0.4

0.6

0.8

1

43.4783th percentile 

600 800 1000 1200

0

0.2

0.4

0.6

0.8

1

32.7759th percentile 

600 800 1000 1200

0

0.2

0.4

0.6

0.8

1

22.0736th percentile 

600 800 1000 1200

0

0.2

0.4

0.6

0.8

1

11.3712th percentile 

600 800 1000 1200

0

0.2

0.4

0.6

0.8

1

0.33445th percentile 

Figure 4.15: Modelling of the observed pixel intensity (blue) through the ML
approach outlined by equations (3.6) and (3.7) for a few different percentiles of
average pixel intensity. The 7 parameter ML model given by eq. (3.15) has been
used. The model has been applied to the dataset pmt_3_trunc.
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Figure 4.16: The image obtained through the use of the LS method (left, this is
the same image as the left image in Figure 4.9 but with another colorscale). The
image obtained through the use of the 7 parameter ML model eq. (3.15) (right).
The images are tone mapped using a logarithmic operator and subsequently shifted
such that the lowest recorded intensity is 0 in each image. The images are taken
from the dataset pmt_3_trunc and simulate a gain of 850.5 V.
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Figure 4.17: Zoom-in of an area of Figure 4.16, both subfigures display the same
area.
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Figure 4.18: Zoom-in of an area of Figure 4.16, both subfigures display the same
area.

Although computational time is not a primary concern, it’s still interesting to note
that there are large differences in the amount of cpu time required to estimate the
coefficients of the different models. For the LS model, roughly 14 hours of cpu
time (single core of an Intel i5-4570 at 3.2 GHz) is needed in order to estimate the
coefficients based on the 700 images of dataset pmt_3_trunc. When using the ML
model eq. (3.15), for the same dataset, roughly 27 500 hours of cpu time (running
on an AMD Opteron 6220 1.4 GHz) is needed. It should be noted that since the
model parameters in both cases are estimated individually for every pixel it is very
straightforward to parallelize the code.

The likelihood function is optimized using a built-in MATLAB routine called fmincon.
This routine can be used to solve very general forms of constrained optimization
problems and is, as most routines used to numerically solve optimization problems,
very sensitive to the initial point which is used to solve the problem. Since we in
the general case have limited prior knowledge of the range of plausible parameter
values the optimal parameter values might lie, the initial point is chosen to be a
vector of uniformally distributed random values. Due to the sensitivity of the initial
guess we have to perform many iterations for each pixel, where one iteration is a
random initialization of the optimization routine. When computing the parameters
which ultimately were used to create the right image of Figure 4.16, 450 iterations
were performed for each pixel. The reason why a static number of iterations has to
be chosen instead of e.g. iterating until some termination criteria is met is because
it is impossible to construct a reasonable termination criteria. Since the likelihood
value is only determined up to a multiplicative constant, it can only be used to
compare the fit between two choices of model parameters - it can never provide an
absolute measurement of the level of fit provided by the particular choice of model
parameters. As such, it’s not a suitable quantity to use in a termination criteria.
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The use of a static number of iterations means that there is potentially too few
iterations run for certain pixels, meaning that a satisfactory solution might not be
found. By carefully examining Figures 4.17 and 4.18 we note that for the ML model
there is a bit of so called pepper noise present in the form of some pixels having a
pixel value which is much smaller than their nearest neighbours. When plotting the
fitted I(x, θ̂) for these pixels it is clear that the optimization routine hasn’t found a
solution which is close to a global optimum and has instead found a solution which
underestimates the value of I(x,θ), which is why the pixel is so dark compared to
its neighbours. When some additional iterations are run we obtain a solution which
fits the observed data better and which generates an estimated pixel value which
better fits the pixel’s immediate neighbourhood. In other words, the suboptimal fit
for these pixels have to do with the randomness of the initial guesses. It is therefore
safe to assume that this pepper noise is due to the practical difficulties of solving the
proposed model and not because the model in itself performs poorly. With a static
number of iterations there is also the possibility of running an excessive amount
of iterations for certain pixels which means that computational time is effectively
wasted. If a proper termination criteria existed it would thus be possible to obtain
a result which not only has less noise but also requires less computational time to
obtain.

4.2.2.2 The 3 parameter model

The 3 parameter ML model was sought for on the basis of speeding up the solving of
the ML model as well as reducing the correlation between parameters and thus avoid-
ing overfitting the model. This reduced model takes the form I(x, i) = αie

βi(x′(δ)−x0),
σ2(x, i) = aie

bx where αi, βi and ai are fitted individually for each pixel and δ = 0.18,
x0 = 13.69 and b = 0.02 are constants which were estimated prior to the estimation
of αi, βi and ai. This section displays the results obtained for primarily 3 datasets:
wheat_bran, emmer_wheat and foam. Some additional results can be found in Ap-
pendix A.

As seen when comparing Figures 4.19 and 4.20 there is virtually no difference in
terms of accuracy between the 7 parameter model and the 3 parameter model. Note
that the predetermined parameters (δ, x0 and b) only needs to be estimated once
and can then be used for other datasets with good results, as shown in Figure 4.21.
The 3 parameter model also has the added benefit that the minimum number of ob-
servations (images) needed in order to fit the model is lower than for the 7 parameter
model as more parameters mean that more observations are needed. Decreasing the
number of LDR images needed will not only speed up computations but also make
the method more applicable for samples which are sensitive to photobleaching as
the total time for capturing the images is reduced.
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Figure 4.19: Results when using the full model given by eq. 3.15 (7 parameters
fitted for each pixel): I(x, i) = αeβ(x′(δ)−x0) + γ, σ2(x, i) = aebx. Data comes from
the dataset pmt_wheatbran.
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Figure 4.20: Results for the same data shown in Figure 4.19 when using the
reduced model give by eq. 3.16 (3 parameters fitted for each pixel).
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Figure 4.21: Results when applying the model used in Figure 4.20 (using the same
values for the constant parameters) to a different dataset, emmer_wheat.

As noted in Figure 4.3 and the surrounding text the LS method is typically the least
accurate for low gains. This is further is exemplified in Figure 4.22 which shows that
the ML method performs much better in this gain region and is able to distinguish
between background (air) and sample (foam).

The accuracy of the estimated pixel intensity predicted by the model can be further
investigated by applying the method to artificially censored data. To this end we
pick a number of random pixels and choose a threshold less 1. For each observed
pixel value which is greater than the threshold value, we set the observed value to
be equal to the threshold value. This means that we’re effectively simulating what
would have been observed if a sensor with reduced dynamic range had been used to
capture the images. The artificially censored data is then used to estimate the true
pixel intensities using the 3 parameter ML model. We can then compare the fit for
the artificially thresholded data to the original data in order to see how accurately
the ML model predicts the censored values. The results of this test can be found
in Figures 4.23 and 4.24. In particular, Figure 4.24 shows that the model is able to
accurately predict the artificially censored values which means that the model should
also be able to accurately predict the true values of the (not artificially censored)
observed data.

For an accurate model Figure 4.23 should contain straight lines which ideally are
quite thin for larger values of the threshold but grows wider the more the threshold
is increased (meaning that more and more data is censored). Since the data is
quite noisy we will in practice not observe a thin, straight line as even though the
estimate model fits data well there will always be observations which lie quite far
from the estimated curve. It should be noted that for these figures we have restricted
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Figure 4.22: The image obtained through the use of the LS method (left). The
image obtained through the use of the 3 parameter ML model (right). The tone
mapping of the images is based on the right image: the axis scale is obtained by
taking the logarithm of the estimated values and subsequently linearly shifting all
values such that the lowest value is 0. The images are taken from the dataset foam
and simulate a gain of 600 V (the lowest gain used when capturing the images).

43



4. Results

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0.9

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0.8

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0.7

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0.6

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0.5

Figure 4.23: Scatter plot of the results obtained when applying the 3 parameter
ML model on dataset pmt_emmer_wheat where different artificial thresholds have
been introduced. The x-axis denotes the observed (not artificially censored) intensity
values and the y-axis denotes intensity value which has been estimated based on the
artificially censored data. Note that it is the minimum of the estimated intensity
and 1 which is plotted since the observation are censored at 1. The threshold used
is noted above each subfigure.

ourselves to picking pixels which have relatively high average intensity in order to
consider data which is actually affected by the artificial threshold introduced. A
pixel with low average intensity will be unaffected by the artificial thresholding and
is thus not of interest for this procedure.

Although the 3 parameter ML model is faster to solve than the 7 parameter model,
it is still much slower than the LS model. For the LS model, roughly 2.4 hours of
cputime (single core of an Intel i5-4570 at 3.2 GHz) is needed in order to estimate
the coefficients based on the 150 images of dataset wheat_bran. When using the 3
parameter ML model, for the same dataset, roughly 1680 hours of cputime (running
on an AMD Opteron 6220 1.4 GHz) is needed to complete 400 iterations. For the
same model and dataset it takes roughly 205 hours to complete 50 iterations (running
on the same AMD Opteron 6220 1.4 GHz) and a comparison between the results
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can be found in Figure 4.26. From this figure we note that although running 50
iterations instead of 400 iterations results in an image which has some regions with
more noise, the overall appearance of the images are quite similar and there doesn’t
seem to be any major loss of details present. The reason why different processors
were used for the LS and the ML model is the fact that the LS model can be solved
in reasonable time on a standard desktop computer whilst the ML model is better
handled by a computer cluster, which had different hardware.
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Figure 4.24: Results of applying the 3 parameter ML model to data which is
censored at the threshold (0.5) marked by the black line (this figure is an alternative
representation of the data shown in the bottom-right subfigure of Figure 4.23). The
fitted curve (green line) which is estimated from the artificially censored data is a
good fit to the observed (not artificially censored) data (blue dots) and is also close
to the curve fitted to the observed data (red line).
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Figure 4.25: The original image captured using the microscope (left, same images
as the left image of Figure 4.12). The image obtained through the use of the 3
parameter ML model (right). Both images use the same color axis where 1 represents
the largest intensity (marked with white color). Note however that these pixel values
are normalized by the largest value in each respective image and as such the values
are only comparable in the relative sense and not in the absolute sense. The images
are taken from the dataset wheat_bran and simulate a gain of 752 V.
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Figure 4.26: Same scenario as that shown in Figure 4.25. Results after 50 iterations
(left) compared to the results after 403 iterations (right, same image as the right
subfigure of Figure 4.25) using the 3 parameter ML method.
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5
Conclusion

Two methods for constructing HDR images based on several LDR images has been
proposed: the LS method and the 3 parameter ML method. The proposed methods
have been shown to produce HDR images which do not have any saturated pixel
values and contain less noise than their LDR counterparts. As such, the constructed
HDR images contain more accurate information about the sample at hand and
for some of the tested datasets the HDR images reveal details about the studied
material which were not visible in the original LDR images. The methods have
been successfully applied to several different types of samples which shows that it
is applicable for imaging of a wide variety of materials.

The proposed ML model generally fits data better than the proposed LS model. The
two main reasons for this is that the ML model doesn’t assume constant variance and
that a likelihood model for censored data better models the saturation of pixels than
simply applying the minimum operator, as is done in the case of the LS model. On
the other hand, this makes the model more complicated and it is considerably more
computationally expensive to solve. In its current state the ML model will in some
situations be too expensive to solve within reasonable time on an average desktop
computer and instead requires a more powerful setup such as a computer cluster.
As such, there are some things concerning this work which could be improved upon.

The LS model is solved using a built-in MATLAB routine (nlinfit) which performs
iterative nonlinear LS in order to estimate the model coefficients. This problem is of
a much less general nature than optimizing an arbitrary function as fmincon does
and as such this routine utilizes a more highly specialized and efficient algorithm in
order to perform the computations. A potentially large speed-up of the computa-
tion time for the ML method could thus be reached by writing a more specialized
algorithm for solving the optimization problem. As the LS routine is not nearly as
sensitive to the starting guess as the optimization routine is, it has for all tested
cases always been enough to run a single iteration in order to obtain a reasonable
solution. The ML model, on the other hand, requires several iterations in order to
obtain a reasonable solution. It might be possible to reduce the number of iterations
required by finding smaller subdomains of the feasible parameter space to which the
initial guesses could be restricted.

Although the proposed ML models fits data well there is no known physical inter-
pretation of the model parameters. The validity of the model could thus be further
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verified if it were possible to find a connection between the model parameters and
some property of the microscope and/or the sample. If a physical interpretation was
available the numerical parameter values by themselves would provide valuable in-
formation about the sample, thus increasing the amount of information which could
be obtained through the proposed method.

Throughout this work a fundamental assumption has been that the movement of a
sample is negligible between images and thus that the sample can be considered to
be fully static. If this is not the case, i.e. if it is desirable to capture scenes where
movements occur, some form of movement compensation technique would need to be
utilized before the parameter estimation procedure is carried out. The development
of such a technique would broaden the area of application of the proposed method.

The constant parameters δ, x0 and b of the 3 parameter ML model were fit based
on a single dataset and then found to be applicable for all other datasets tested.
However, one could possibly obtain better estimates of these parameters by simul-
taneously fitting the parameters for data coming from several different datasets.
These parameter estimates would presumably be better in the sense that it would
be easier to find good estimates of the remaining 3 (pixel-dependent) parameters,
potentially increasing the accuracy of the model slightly but primarily making it
faster to solve.
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A
Results for additional datasets

This section contains the generated HDR images for two additional datasets: lens_paper
and toilet_paper.

0

1

2

3

4

5

6

7

8

9

Figure A.1: The original image captured using the microscope (left). The image
obtained through the use of the 3 parameter ML model (right). The right image
was tone mapped using a logarithmic operator and the values were subsequently
linearly shifted such that the minimum intensity is 0. The images are taken from
the dataset lens_paper and simulate a gain of 1052 V.
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Figure A.2: The original image captured using the microscope (left). The image
obtained through the use of the 3 parameter ML model (right). The right image
was tone mapped using a logarithmic operator and the values were subsequently
linearly shifted such that the minimum intensity is 0. The images are taken from
the dataset toilet_paper and simulate a gain of 752 V.
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B
Images

This appendix contains example images captured using the CLSM.
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B.1 pmt_1

Dataset contains 250 images captured with the PMT at constant gain.

Figure B.1: Image number 1 (first image) of the dataset pmt_1.
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Figure B.2: Image number 125 (image in the middle) of the dataset pmt_1.
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Figure B.3: Image number 250 (last image) of the dataset pmt_1.

B.2 pmt_3

Dataset contains 1312 images captured with the PMT at varying gain (0 V to 1250
V). The pixels corresponding to percentile 100, 95 and 90 (of average intensity
throughout all images) are marked with red, magenta and blue circles respectively.
The pixel coordinates are (row, col)=(294, 94), (row, col)=(794, 718) and (row,
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col)=(315, 85) respectively.

Figure B.4: Image number 550 (images with lower number are more or less com-
pletely dark when visualized) of the dataset pmt_3. The pixels corresponding to
percentile 100, 95 and 90 (of average intensity throughout all images) are marked
with red, magenta and blue circles respectively
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Figure B.5: Image number 900 of the dataset pmt_3. The pixels corresponding to
percentile 100, 95 and 90 (of average intensity throughout all images) are marked
with red, magenta and blue circles respectively
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Figure B.6: Image number 1312 (last image) of the dataset pmt_3. The pixels cor-
responding to percentile 100, 95 and 90 (of average intensity throughout all images)
are marked with red, magenta and blue circles respectively
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B.3 Calibration images

Figure B.7: Zoom-ins of the same area (pixel coordinates) for three consecutive im-
ages from the dataset pmt_4. Since the microscope settings (gain, physical lengths,
resolution etc.) are constant this figures demonstrates the variation of noise between
consecutive images.

Figure B.8: Same circumstances as in Figure B.7 but for a different area.
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Image number 1 Image number 2 Image number 300

Figure B.9: Zoom-ins of the same area (pixel coordinates) for three images from
the dataset pmt_4. The center of the images have been marked (red star) in order
to make the images more easy to compare.

Image number 1 Image number 2 Image number 300

Figure B.10: Zoom-in of Figure B.9.
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C
Mathematical theory

C.1 The Poisson distribution

Let X be a discrete random variable. X is said to be a Poisson distributed random
variable with parameter λ > 0 if its probability mass function can be expressed as

f(k) = P(X = k) = λke−λ

k! (C.1)

where k is a non-negative integer. The Poisson distribution gives the probability
distribution of the number of events which occur in a fixed time interval, assuming a
fixed average rate (λ) and assuming that events occur independently of each other.
An important property of a Poisson distributed random variable is that

E[X] = Var[X] = λ (C.2)

One way of obtaining an indication on whether or not data might have an underlying
Poisson distribution is thus to compute the coefficient of variation R(X) which is
defined to be the ratio between the variance and the expected value, viz.

R(X) = Var[X]
E[X] (C.3)

which in theory should be close to one if the data does indeed come from a Poisson
distribution.

For a photon counting sensor the number of photons (i.e. the intensity in the
captured image) observed during a fixed time frame can in theory be modelled
by a Poisson distribution [18]. This implies that for an image captured using a
photon counter the observed pixel values can be considered to be a realization of
independant Poisson-distributed random variables.

C.2 The Polya distribution

Let X be a discrete random variable. X is considered to belong to a Polya distri-
bution with parameter 0 ≤ b ≤ 1 if its probability mass function is given by
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P(X = x) = µx

x! (1 + bµ)−x−1/b
x−1∏
i=1

(1 + ib) (C.4)

where µ is the mean of the distribution. The generating function is given by

G(s) = [1 + bµ(1− s)]−1/b (C.5)

The Polya distribution is also called a compound Poisson distribution and is a special
case of the negative-binomial distribution. In the case of a PMT sensor a Poisson
distribution has been used to model the individual stages of the multiplication pro-
cess, e.g. by [19], [20], [21], [22]. However, as observed by [23], experiments show
that data typically doesn’t agree with the Poisson model but instead more resemble
an exponential distribution. Thus an alternative model based on the Polya distribu-
tion is sometimes used, for example by [24]. Since the Polya distribution has both
the Poisson distribution (b = 0) and the geometric distribution (b = 1) as special
cases it is a suitable alternative to the Poisson distribution in the case of a PMT.

It’s unclear whether this non-Poissonian distribution is observed because the mul-
tiplication process is indeed non-Poissonian or because of the fact that in practise
all PMTs are non-ideal. It has been suggested by [24] that an ideal PMT could
have multiplication stages which are in fact Poisson distributed but that all practi-
cal implementations produced so far yield dynodes which are inhomogeneous, thus
producing output which isn’t Poisson distributed.

C.3 The normal distribution

Let Z be a continuous random variable. Z is said to be standard normally distributed
with mean 0 and variance 1 if the PDF of Z is given by

φ(x) = 1√
2π
e−x

2/2 (C.6)

and the CDF is given by

Φ(x) = 1√
2π

x∫
−∞

e−t
2/2dt (C.7)

for a more general normally distributed random variableX with mean µ and variance
σ2 the PDF is given by

f(x) = 1
σ
√

2π
e−

(x−µ)2

2σ2 (C.8)
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and the CDF is given by

F (x) = Φ
(
x− µ
σ

)
(C.9)

Note that X can be expressed through Z as

X = µ+ σZ (C.10)

C.4 Sigmoid functions

A sigmoid function generally refers to a function shaped like an ’S’. The exact nature
of the curve varies between different sigmoid functions but they are all well-suited
to describe phenomena where censoring occurs in both ends (i.e. for values which lie
outside a closed interval). It is therefore possible that some kind of shifted sigmoid
function could be appropriate to use when modelling the observed intensity value in
an image as a function of exposure since for low and high exposure the intensity will
be truncated at the pure noise level (close to 0) and 1 respectively. Sigmoid functions
have been used by [11] as the model for a CTF and many authors report estimated
CTFs whose curves closely resemble the characteristics of a sigmoid function, see
[3] [9]. Examples of sigmoid functions are the error function erf(·), the arctangent
function arctan(·) and the Gudermannian function Gd(·), where the Gudermannian
function is defined as

Gd(x) = 2 · arctan(tanh(x/2)) (C.11)

and the error function is defined as

erf(x) = 2√
π

x∫
0

e−t
2
dt (C.12)
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