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Abstract
A random forest is a random graph (V,E) with a set of vertices V = N2

0 and a set
of edges E = {ev, v ∈ V } satisfying the following property: if v = (x, t + 1), then
ev = (v, v′), where v′ = (x′, t) and x′ = ϕt(x) is an increasing stochastic process in
x. For a given forest, there is a unique way to draw a dual forest. These forests
can be used as a graphical representation of discrete time reproduction processes
forward and backward in time. They also serve to introduce a new concept, ranked
Galton-Watson processes, where individual reproduction depends on the position
in the population. A main result is that the dual process to a Galton-Watson
process in varying environments with immigration is a Galton-Watson process in
varying environments if and only if the reproduction and immigration laws of the
first process are linear fractional.

Keywords: Random reproduction processes, Galton-Watson processes, ranked re-
production models, dual Galton-Watson processes, Markov chains, immigration
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Notation

For future reference, we give a list of notation which does not contain all information.

f t The function f iterated t times.

N0 The set of non-negative integers.

Φ Set of increasing functions φ : N0 → N0.

Φ0 Set of increasing functions φ : N0 → N0 such that φ(0) = 0

ϕt Random process taking values in Φ0.

ϕ̂t Generalized inverse of ϕt, taking values in Φ.

(Z(x)
t , t) Dual lineage.

Z
(x)
t = ϕ̂t−1(Z(x)

t−1) Primary reproduction model.

(Ẑ(y,b)
t , t) Primary lineage.

Ẑ
(y,b)
t = ϕt(Z(y,b)

t+1 ) Dual reproduction model.

Xt,i Offspring variable.
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1
Introduction

A branching process is a stochastic process in discrete or continuous time. It starts
with N individuals and as time elapses each individual may have children or perish
independently of each other, according to some probability law. In this thesis we
present graphically what we call random forests1. These can be used as a graphical
representation of discrete time reproduction processes, which are the ones consid-
ered here.

In Chapter 2 we present the well known Galton-Watson process, which is a pil-
lar for this work. Main results can be found in Chapters 3, 4, and 5. In Chapter
3 we build up what we call primary and dual forests wich can be interpreted as
forests of reproduction trees forward and backward in time. The primary and dual
reproduction models are introduced.

Chapter 4 states conditions for the primary forest to have a Galton-Watson struc-
ture or in other words, when the primary reproduction model is a Galton-Watson
process. We also investigate when the dual process has a Galton-Watson structure
if the primary has it. In Chapter 5 we generalize the Galton-Watson processes to
what we call ranked Galton-Watson processes. These differ from the classical case in
that individuals take more or less favoured positions in the population, with regard
to reproduction. We give an upper estimate of the expectation of such processes
and some examples. Concluding remarks form a final chapter.

1Should not be mistaken for the machine learning concept.
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2
The Galton-Watson Process

The simplest discrete time branching processes are the Galton-Watson processes. In
these individuals live exactly one time unit. This chapter presents the necessities
for coming chapters. There is very much written about Galton-Watson processes. If
any derivations or further explanations are desirable see for example [2], [4], or [6].

2.1 Definition
Definition 1 Let ((Xt,i)∞t=0)∞i=1 be a double sequence of iid non-negative integer val-
ued random variables. Define recursively

Z0 = z0 ∈ N0 = {0, 1, 2, ...}, Zt+1 =
Zt∑
i=1

Xt,i.

Then (Zt)t≥0 is called a Galton-Watson process, or a GW process for short. If the
distribution of Xt,i is allowed to depend on t, then (Zt)t≥0 is a Galton-Watson process
in a varying environment.

It is convenient to introduce a random variable X d= Xt,i in the time homogeneous
setting and Xt

d= Xt,i otherwise. A GW process is often presented graphically as in
Figure 2.1.

3



2. The Galton-Watson Process
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Figure 2.1: A realisation of a Galton-Watson process.

2.2 Generating functions
A fundamental tool in the study of positive integer valued stochastic variables, X,
is the probability generating function,

f(s) = E[sX ] =
∞∑
i=0

siP (X = i).

It has the following important properties

f (k)(0)
k! = P (X = k), f(1) = 1 and f (k)(1) = E[X(X − 1) · · · (X − k + 1)],

where f (k) is the k:th derivative. Further, the generating function of a sum of inde-
pendent random variables is equal to the product of the generating functions of the
random variables in question.

If z0 = 1 it holds for a GW process in varying environments that

E[sZt ] = f1 ◦ f2 · · · ◦ ft(s), (2.1)

where fj(s) = E[sXj ]. In the time homogeneous case equation (2.1) simplifies to

E[sZt ] = f ◦ f · · · ◦ f︸ ︷︷ ︸
t

(s) = f t(s). (2.2)

Thus, f t denotes iterations rather than powers. Iterations like those in equation
(2.1) and (2.2) are often suitable for computers. There is one well known non trivial
case when equation (2.2) is computable analytically. This is when the reproduction
law, the distibution of the offspring numbers, is linear fractional1, which means that

P (X = 0) = p0, P (X = k) = (1− p0)(1− p)pk−1, k = 1, 2, ..., p ∈ (0, 1).
1Another name is geometric distribution modified at zero.
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2. The Galton-Watson Process

Generally, the equation f(s) = s has at most two roots, q and 1 (provided f ′(0) < 1).
If f ′(1) = m < 1, then q > 1, if m = 1, then q = 1 and if m > 1, then q < 1. In the
case of a linear fractional reproduction law the right hand side in (2.2) becomes

fn(s) = 1−mn 1− q
mn − q

+
mn( 1−q

mn−q )
2s

1− (mn−1
mn−q )s

, m 6= 1,

fn(s) = np− (np+ p− 1)s
1− p+ np− nps

, m = 1.

2.3 Basic properties
The GW process is a Markov chain. Writing E[X] = m and V [X] = σ2 in the time
homogeneous case we have that

E[Zt] = z0m
t

and

V [Zt] =

σ2mt−1(mt−1)

m−1 z0 if m 6= 1
tσ2z0 if m = 1.

This process is called subcritical ifm < 1, critical ifm = 1 and supercritical ifm > 1.

The probability of extinction is the smallest non-negative root Q of the equation
s = f(s). In the subcritical and critical cases Q = 1, which means that such pro-
cesses always go extinct. A supercritical process does not necessarily die out.

In varying environment, E[Xt,i] = mt and

E[Zt] =
t−1∏
j=0

mj. (2.3)

We refrain from a variance formula in the time inhomogeneous case.

2.4 Extensions
A natural extension is to allow immigration into the population. A GW process
with immigration, a GWI process, is defined in the same manner as the GW process
but with an independent non-negative integer valued immigration component,

Z0 = I0, Zt+1 =
Zt∑
i=1

Xt,i + It.

For convenience we write

Z0 = X0,0, Zt+1 =
Zt∑
i=0

Xt,i, (2.4)

5



2. The Galton-Watson Process

and interprete Xt,0 as the number of immigrants.

We can also allow migration, i.e. immigration and emigration. There is not much
written about this in textbooks but some in research articles. [9] defines it in the
following way

Z0 = 0, Zt+1 =

 Xt,1 + · · ·+Xt,Zt+ζt if Zt + ζt > 0
0 if Zt + ζt ≤ 0,

where ζt is integer valued and independent from Xt,i for all t, i ≥ 0. We will call a
GW process with migration a GWM process.

6



3
Random Forests

Inspired by how [3] interpreted the time-reversed GW process as a random reallo-
cation of balls in boxes together with the stochastic recursion presentend in [1], we
construct a random forest on a graph. In a similar manner we build up what we
call a dual forest. These forests can be used as a graphical representation of discrete
time reproduction processes. We begin with the duality concept.

3.1 Duality for Markov chains

The concept of duality originates in ideas of mirroring a given process, in order
better to understand it or to get a new interesting process. It is used in different
areas such as interacting particle systems and queueing theory. It is also common
to use duality in the study of random systems forward and backward in time. This
is what concerns us in this paper. More about the concept of duality can be found
in [8] or [5].

In the following definition lower case x and y denote the initial states of the pro-
cesses X and Y , and T some set of indices.

Definition 2 Let X = (Xx
t )t∈T and Y = (Y y

t )t∈T be Markov procesess with state
spaces E1 and E2 respectively and let H : E1 ×E2 → R be a bounded function. The
process X is H-dual to Y if

E[H(Xx
t , y)] = E[H(x, Y y

t )] (3.1)

for all x ∈ E1, y ∈ E2 and t ∈ T.

Clearly, if X is H-dual to Y then Y is dual to X with respect to F (y, x) := H(x, y).
If we use I{x≤y} (or I{x≥y}), the indicator, as the duality function then (3.1) results
in

P (Xx
t ≤ y) = P (x ≤ Y y

t ). (3.2)

This is known as Siegmund duality, and closely related to the duality we establish
in Section 3.4.

7



3. Random Forests

3.2 The primary forest
Let Φ0 be the set of all functions φ : N0 → N0 such that

φ(x+ 1) ≥ φ(x) for all x ∈ N0, φ(0) = 0, lim
x→∞

φ(x) =∞,

and let Ψ0 be the set of all stochastic processes taking values in Φ0, i.e. a realisation
of an element in Ψ0 is a function in Φ0. A typical realisation of such a process is
presented in Figure 3.1.

φ(x)

x

Figure 3.1: A realisation of an element in Ψ0, or simply a function in Φ0.

Definition 3 Let (ϕi)∞i=0 be a sequence of elements in Ψ0. For every v = (x, t+1) ∈
N0 × N, denote vϕ = (ϕt(x), t), and define a set of edges in N2

0 by

Eϕ = {(v, vϕ), v ∈ N0 × N}.

The resulting random graph (N2
0, Eϕ) will be called a primary forest.

A (part of a) realisation of a primary forest is presented in Figure 3.2.

8



3. Random Forests
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Figure 3.2: A realisation of a random forest, for 0 ≤ t ≤ 9 and 0 ≤ x ≤ 9.5.

For each (y, b) ∈ N0 × N, the set of vertices {(Ẑ(y,b)
t , t), 0 ≤ t ≤ b}, where

Ẑ
(y,b)
t = ϕt ◦ ϕt+1 ◦ . . . ◦ ϕb−1(y), 0 ≤ t ≤ b− 1, Ẑ

(y,b)
b = y, (3.3)

is connected by the edges Eϕ forming a random primary lineage of the correspond-
ing forest. Due to the definition of Φ0 these lineages branch upwards and merge
downwards, and every random forest has a straight vertical lineage going through
the vertices {(0, t), t ∈ N0}. This lineage is dashed in Figure 3.2 and will be called
the stem lineage. Following the random forest upwards we see that lineages either
split or vanish.

3.3 The dual forest
According to the definition of Φ0 in the beginning of section 3.2, every function
φ ∈ Φ0 has a unique generalized inverse, cf. Lemma 2.1 in [1],

φ̂(y) = max{x : φ(x) ≤ y}. (3.4)

Such an inverse is not nessesarily an element of Φ0 since φ̂(0) can take any values
in N0. It belongs to the set of functions φ : N0 → N0 such that

φ(x+ 1) ≥ φ(x) for all x ∈ N0, lim
x→∞

φ(x) =∞,

which we will denote Φ. The inverse of the realisation in Figure 3.1 is presented
below.

9



3. Random Forests

φ̂(y)

y

Figure 3.3: The generalized inverse of the realisation in Figure 3.1

Now let Ψ be the set of all stochastic processes taking values in Φ.

Definition 4 Let (ϕi)∞i=0 be a sequence in Ψ0 and (ϕ̂i)∞i=0 be a sequence in Ψ such
that Equation (3.3) is satisfied for all realisations, and each element in the sequences.

For every v = (y, t) ∈ N2
0, denote v̂ϕ = (ϕ̂t(y), t + 1), and define a set of edges

by
Êϕ = {(v, v̂ϕ), v ∈ N2

0}

The random graph (N2
0, Êϕ) will be called a dual forest.

Note that the dual forest is uniqely determined by the primary forest. In Figure 3.3
below a realisation of the dual forest corresponding to the primary in Figure 3.2 is
presented.

10



3. Random Forests
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Figure 3.4: A realisation of the dual forest corresponding to the primary forest in
figure 3.2, for 0 ≤ t ≤ 9 and 0 ≤ x ≤ 9.

In the same manner as the primary forest, the dual forest is built by the dual lineages
{(Z(x)

t , t), t ≥ 0}, where

Z
(x)
t = ϕ̂t−1 ◦ ϕ̂t−2 ◦ . . . ◦ ϕ̂0(x), t ≥ 1, Z

(x)
0 = x, x ≥ 0. (3.5)

Comparing Figure 3.2 and 3.3 we see that the dual forest has a similar structure
downwards as the primary has upwards. To clarify the relationship between the
primary and dual forest we will depict the dual forest on

N̂0 × N0, N̂0 = {x+ 1
2 , x ∈ N0}. (3.6)

With (3.6) in our mind we put the two forests together and present them in Figure
3.5.
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3. Random Forests
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Figure 3.5: A realisation of a random forest in black and its dual forest in red, for
0 ≤ t ≤ 9 and 0 ≤ x ≤ 9.5.

The structure is clear: black (primary) lineages branch upwards, while red (dual)
lineages branch downwards. The black and red lineages do not cross.

3.4 Random forests of reproduction trees

If we look at Figure 3.5 we see that black trees have their roots at each positive in-
teger 1,2,...,9, and that each tree can be interpreted as a reproduction tree starting
with one individual. Of course we can consider x black trees at time t = 0 and in-
terpret those as one reproduction tree starting with x individuals. The stem lineage
at x = 0 is an imigration source. In a similar manner, but backward in time, we
can interpret the red trees. By convention there is a difference between the red and
black forest: the black forest has an immigration source at x = 0 (which of course
can be identically 0) while the red forest has no immigration. As compensation each
individual at x = 0 is included in the dual (red) forest.

The key idea when turning to reproduction models is that a dual (red) lineage
starting at (0, x) determines the size of the black tree starting at t = 0 with x in-
dividuals at any time t ≥ 0. Similarly a primary (black) lineage starting at (b, x)
determines the size of the red tree, which branches backward in time, starting at
time b with x individuals at any time t ∈ {b, b−1, ..., 0}. As example, follow the dual
(red) lineage in Figure 3.5 from (0, 2) to (9, 3), the corresponding black population
tree starts with 2 individuals and consisting, due to immigration at time t = 8, of 3

12



3. Random Forests

individuals at time t = 9. Let us define the primary and dual reproduction model.

Definition 5 The primary reproduction model, or for short the primary process, is
defined as

Z
(x)
t = ϕ̂t−1(Z(x)

t−1), t ≥ 1, Z
(x)
0 = x, x ≥ 0. (3.7)

Definition 6 The dual reproduction model, or for short the dual process, is defined
as

Ẑ
(y,b)
t = ϕt(Z(y,b)

t+1 ), 0 ≤ t ≤ b− 1, Ẑ
(y,b)
b = y, (3.8)

That is, the primary reproduction model (3.7) is defined through dual lineages.
These where presented on the line preceding Formula (3.5). The dual reprodcution
model (3.8) in its turn was defined through primary lineages, cf. the line before
Formula (3.3).

Since primary and dual lineages do not cross it is clear that

Ẑ
(y,b)
b ≤ Z

(x)
b ⇐⇒ Ẑ

(y,b)
t ≤ Z

(x)
t for all t ∈ N0.

Hence, trivially
P (Ẑ(y,b)

t ≤ Z
(x)
0 ) = P (Ẑ(y,b)

b ≤ Z
(x)
t ),

which is a time reversed Siegmund duality, see Equation (3.2).

13



3. Random Forests
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4
Random Forests and the
Galton-Watson Process

In the first section of this chapter we show that the primary reproduction model
(3.7) is a GWI or GW process under some assumptions. In the second section we
investigate when the dual process (3.8) has a GW structure if the primary has it.

4.1 The primary process
Proposition 1 If (ϕi)∞i=0 is a sequence in Ψ0 defined by

ϕt(x) = min{n :
n∑
j=0

Xt,j ≥ x},

where Xt,j are mutually independent, non-negative, non-null, and identically dis-
tributed for fixed t and j ≥ 1 with Xt,0 possibly having a different distribution.
Then, the primary process, Z(x)

t , is a GWI process.

Proof. By equation (3.4) we have that

ϕ̂t(y) = max{x : min{n :
n∑
j=0

Xt,j ≥ x} ≤ y}

It is clear that min{n : ∑n
j=0 Xt,j ≥

∑y
j=0 Xt,j} ≤ y. On the other hand

min{n : ∑n
j=0 Xt,j ≥

∑y+1
j=0 Xt,j} > y if Xt,y+1 > 0. If Xt,y+1 = 0 then∑y

j=0 Xt,j = ∑y+1
j=0 Xt,j.

Hence, ϕ̂t(y) = ∑y
j=0 Xt,j, and

Z
(x)
t+1 = ϕ̂t(Z(x)

t ) =
Z

(x)
t∑
j=0

Xt,j, Z
(x)
0 = x. (4.1)

This is the recursion for the GWI process (2.4). Due to the assumptions on the Xt,j

the proof is complete.

15



4. Random Forests and the Galton-Watson Process

Corollary 1 If Xt,0 ≡ 0, then the primary process, Z(x)
t , reduces to a GW process

Proof. It follows from (4.1).

The graphical interpretations follows in Figure 3.4 below, for Proposition 1 to the
left and its corollary to the right.

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9 0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

Figure 4.1: Two realisations of primary forests and their duals. The t-axis is
vertical and the x-axis horizontal. In the right panel ϕt(1) ≥ 1, which must hold if
Xt,0 ≡ 0 as in Corollary 1.

4.2 The dual process
Since the red forest has a similar branching structure downwards as the black forest
has upwards, we ask the question: is the dual process a GW process if the primary
has a GW structure? The answer is generally no.

Theorem 1 Let the primary process (Z(x)
t )t≥0 be a GWI process in a varying envi-

ronment. Its dual (Ẑ(y,b)
t )t≥0 is a GW process in a varying environment backward in

time if and only if immigration and reproduction laws are linear fractional, i.e.

P (Xt,j = 0) = p0,t, P (Xt,j = k) = (1− p0,t)pt(1− pt)k−1 k ≥ 1 (4.2)

and
P (Xt,0 = k) = pt(1− pt)k, pt ∈ (0, 1], p0,t ∈ [0, 1). (4.3)

Given (4.2) and (4.3) the dual reproduction laws are also linear fractional, but with
parameters p̂0,t = 1− pt and p̂t = 1− p0,t.

Proof. Since ϕt(0) = 0, we have that

ϕt(x) =
x∑
j=1

ϕt(j)− ϕt(j − 1).

16



4. Random Forests and the Galton-Watson Process

Let Yt,j = ϕt(j)− ϕt(j − 1), then

Ẑ
(y,b)
t = ϕt(Z(y,b)

t+1 ) =
Z

(y,b)
t+1∑
j=1

Yt,j. (4.4)

Omitting the index t we note that

(X1, X2, . . .)

can be uniquely described by

(0, . . . , 0︸ ︷︷ ︸
ξ1

, µ1, 0, . . . , 0︸ ︷︷ ︸
ξ2

, µ2, . . .), (4.5)

where ξ1 = k iff X1 = X2 = ... = Xk = 0 and Xk+1 > 0. Then the first nonzero
component µ1 has the same distribution as Xk+1 given that Xk+1 > 0. In the same
manner ξi, i = 2, 3, ... is the number of zeros between the strictly positive compo-
nents µi−1 and µi.

The dual reproduction variables

(Y1, Y2, . . .)

can also be uniquely described by zeros and nonzeros. Since they are totally deter-
mined by the primary reproduction it must hold that

(0, . . . , 0︸ ︷︷ ︸
X0

, ξ1 + 1, 0, . . . , 0︸ ︷︷ ︸
µ1−1

, ξ2 + 1, 0, . . . , 0︸ ︷︷ ︸
µ2−1

) (4.6)

describes (Y1, Y2, . . .) uniquely.

If (4.2) and (4.3) hold, then by (4.5) we have that

P (ξi = k) = P (X > 0)P (X = 0)k = (1− p0)pk0

and
P (µi = k) = P (X = k | X > 0) = p(1− p)k−1.

That is, for the variables counting zeroes in (4.6) we have,

P (µi − 1 = k) = P (X = k | X > 0) = p(1− p)k and P (X0 = k) = p(1− p)k

according to the assumptions. For the non zeros in (4.6) we have that

P (ξi + 1 = k) = (1− p0)pk−1
0 .

Hence, (4.5) and (4.6) have exactly the same structure, which implies that Y1, Y2, ...
are iid. Since P (Y = k | Y > 0) = P (ξi + 1 = k) we have, reinserting t, that

P (Yt,j = k) =

1− pt if k = 0
pt(1− p0,t)pk−1

0,t if k ≥ 1.
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4. Random Forests and the Galton-Watson Process

That is, (4.4) is a GW-process in a varying environment with linear fractional re-
production with the parameters p̂0,t = 1− pt and p̂t = 1− p0,t.

If (Ẑ(y,b)
t )t≥0 is a GW process in a varying environment, now dropping t again, then

Y1, Y2,... are iid. Let p = P (Y > 0). We have by (4.6) that P (X0 = k) = p(1− p)k
that is (4.3) except the index t. On the other hand for k > 0, P (X = k | k > 0) =
P (µi = k) = P (Y = 0)k−1P (Y > 0) = (1− p)k−1p. That is (4.2) and (4.3) hold for
the primary process.

In a similar manner as in Theorem 1 it can be shown that the dual to a GW
process with linear fractional reproduction is again a GW process with linear frac-
tional reproduction but with an ”eternal” individual. See the right picture in Figure
4.1. These results are related to, but stronger than, the duality relation presented
in Proposition 3.6 in [7].
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5
The Ranked Reproduction Model

So far we have considered the primary process when the reproduction variables are
independent and identically distributed for fixed t. In this chapter the primary
reproduction variables may have different distributions even for fixed t. This idea
gives a possibility to differentiate the reproductive power of individuals by their
ranks, which can be seen as reflecting their position in the population. Due to the
rank dependence this process is harder to study. In Section 5.2 we present an upper
bound for the expectation of a ranked GW process.

5.1 Definition
Definition 7 We call the primary process,

Zt+1 =
Zt∑
i=0

Xt,i,

a ranked GWI (or ranked GW if Xt,0 ≡ 0) if the Xt,i are mutually independent and
their distributions may depend on i (and may depend on t).

Obviously, for the ranked GW process formulas (2.1) and (2.2) are not valid since
the Xt,i may have different distributions for fixed t. In Figure 5.1 we present a
primary forest with its dual where the ranks are highlighted in black and red.
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Figure 5.1: A realisation of a random forest in black and its dual forest in red, for
0 ≤ t ≤ 9 and 0 ≤ x ≤ 9.5. Ranks are highlighted in red and black respectively.

According to the discussion in Section 3.4 primary individuals located at x = 1 have
rank 1, while the dual individuals located at x = 0 have rank 1 and so on.

Example 1 Let Xt,i
d= Xi ∼ Poisson(M/i) for some M > 0 and all i > 0, then it

is clear that we expect the first ranked individual to have most children. Hence, the
individual at rank 1 can be seen as an alpha (fe)male in the population.

You can think of many kinds of rankings yourself.

5.2 Expectation of a ranked Galton-Watson pro-
cess

Due to independence between Zt and Xt,i, i = 1, 2, ..., the conditional expectation
of Zt+1 given Zt is

E[Zt+1|Zt] = E[
Zt∑
i=1

Xt,i|Zt] =
Zt∑
i=1

mt,i

where E[Xt,i] = mt,i.

For t ∈ N define gt : N0 → N0 by gt(0) = 0 and

gt(k) =
k∑
i=1

mt,i.
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5. The Ranked Reproduction Model

It is clear that
E[Zt+1|Zt] = gt(Zt).

Now recall Jensen’s Inequality for a random variable X and a concave function h

E[h(X)] ≤ h(E[X]).

Proposition 2 Suppose there exists a concave and increasing function h such that
h(k) ≥ gt(k) for all k ∈ N0 and all t ∈ N. Then E[Zt] ≤ h ◦ h · · · ◦ h︸ ︷︷ ︸

t

(z0) = ht(z0).

Proof. By the law of total expectation

E[Zt] = E[E[Zt|Zt−1]] = E[gt−1(Zt−1)].

Since h(k) ≥ gt(k) for all k ∈ N0 and all t ∈ N

E[Zt] = E[gt−1(Zt−1)] ≤ E[h(Zt−1)].

Applying Jensen’s Inequality to the concave function h yields

E[Zt] ≤ E[h(Zt−1)] ≤ h(E[Zt−1]).
Since h is increasing

E[Zt] ≤ E[h(Zt−1)] ≤ h ◦ h(E[Zt−2])

and finally
E[Zt] ≤ h ◦ h · · · ◦ h︸ ︷︷ ︸

t

(z0) = ht(z0).

Example 2 If mt,i ≤ 1 for all t and i let h be the identity function and conclude
that E[Zt] ≤ z0.

This example is obviously trivial since such a process is dominated by a time homo-
geneous Galton-Watson process with reproduction mean one.

Proposition 3 For a continuous, increasing and concave function h such that h(0) ≥
0 and h(x∗) = x∗ for some x∗ ≥ 0 with the property that h(x)<x for all x > x∗ we
have that limt→∞ h

t(z0) ≤ x∗ for any z0 ≥ 0.

Proof. If z0 ≤ x∗ it follows that h(z0) ≤ f(x∗) = x∗ and ht(z0) ≤ x∗ since h is
increasing. Due to the concavity and that h(0) ≥ 0 we have that h(z0) ≥ z0, and
ht(z0) ≥ ht−1(z0). Hence, ht(z0) is increasing and bounded by x∗ which implies its
limit exists, and is less than or to equal x∗.

If z0 > x∗ then ht(z0) ≥ x∗ and ht(z0) is decreasing. Hence limt→∞ h
t(z0) = x̄,

for some x̄ ≥ x∗. Since h(x̄) = x̄ it follows by the assumptions that x̄ = x∗.
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5. The Ranked Reproduction Model

Example 3 Assume that mt,i = mi and there exists a constant N such that mi

≤ K < 1 for all i > N. Let

h(x) =

x
∑N
i=1 mi if x ≤ N

N
∑N
i=1 mi +K(x−N) if x ≥ N.

It is easy to see that this function satisfies the assumptions in Proposition 2 and
3. Hence, even though N is arbitrarily large and (mi)Ni=1 grows arbitrarily fast,
lim supn→∞E[Zn] is finite.

There is a theorem, see p.110 in [4], which implies that a Markov chain for which
zero is the only absorbing state, and the probability to hit zero from each state is
strictly positive, then either the process absorbs at zero or goes to infinity. If the
ranked GW process has a bounded expectation it will not go to infinity. That is,
Propositions 2 and 3 can be used to determine if a ranked GW process goes extinct.

22



6
Concluding Remarks

The next step in this work should be to reverse time in the dual process, Ẑ(y,b)
t ,

in order to fullfill Definition 2. In the ranked setting it would be interesting to
see if there are non trivial cases where calculations can be made. At the time of
writing, we investigate if the dual to a ranked GWI process can be a GW process.
The ranked GW process can be generalized further if we allow dependence between
individuals. Here too one can study the dual characteristics. Another interesting
question is whether there are cases where the dual process is easier to study and
therefore can be used to draw conclusions about the primary process.
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