

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

Göteborg, Sweden, October 2011

Visualizing Database for Better User Interaction
Using data visualization approach to visualize Volvo Common

Logging and MISP database

Master of Science Thesis in the Programme Interaction Design

ZHONGHAO CAI

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

Visualizing Database for Better User Interaction

Using data visualization approach to visualize Volvo Common Logging and MISP

database

ZHONGHAO CAI

© ZHONGHAO CAI, October 2011.

Examiner: FANG CHEN

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden October 2011

 1

Abstract

Over the last decade, as the amount of information has exploded, data visualization has

been used as one of the most important presentations for displaying information in an

easy to understand way. From the traditional approaches like tables and bar charts to

modern approach that a lot of graphics are used, the development of data visualization

reflects the changing requirements that people perceive data. Nowadays, graphics are

used widely in data visualization and the presentation of data is more elegant and

descriptive than before.

This thesis work completed at the Integration team at Volvo Information Technology

aims at visualizing complex database in graphics, and users who work with the database

can view the connections between components clearly from the interfaces and benefit

by its user-centered interactions and graphical presentations.

The current practices were analyzed, and the theories and methods were studied. The

thesis work started with finding out stakeholders’ requirements, followed by several

designing iterations. During the process stakeholders actively participated in providing

fruitful suggestions and helped to test the prototypes for better revisions. One project

has been deployed successfully in the production, while the other is still in progress.

Future work is needed, but the concept of the thesis work has been handed over to the

team for later implementation.

Key words: Data Visualization, Prototype. Microsoft Expression Blend, Silverlight.

 2

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisors at

Volvo IT, John Kaber and Patric Kronberg, who help me understand the thesis work and

guide me along the process; Anders Wikström, who has patiently shared his experience

and taught me the knowledge in the real-life environment. Without their support and

encouragement, the thesis would not have been possible.

Many thanks to all the current members in the integration team at Volvo IT for their

participation in helping me complete my work over the year: Mats Andersson for

introducing me to the thesis work and explaining the complex tasks in an easy to

understand way; Mats Erkenstam, Lars Grestam, Roger Andersson, Ing-Marie

Perneblad for their active participation in the interviews and fruitful discussions.

I am grateful to Ramon Nurman and Hua Qu for their support and friendship. Sincere

thanks to them for giving me advice on the way of thinking about my career

development and also the essence of life. Thanks for them treating me like friends and

cheering me up when I encountered problems during the work.

I would also like to acknowledge my examiner at Chalmers, Fang Chen for guiding me

the matters I should pay attention to both in the working process and in the report. Her

suggestions have allowed me to make the work more qualified in the scientific field.

Thanks to all the people in the Department of Interaction Design for giving me a solid

background in the field.

Finally, sincere thanks to my friends for all the support and care they have shown me. I

would like to extend my thanks to friends all over the world. In particular, my better

half, Datong Li deserves special thanks for comforting me when I was depressed and

encouraging me to move on. Warmest wishes to Hongming Cai families who have made

my stay in Sweden a pleasurable experience.

Zhonghao Cai

Oct, 2011

 3

Table of Contents

Abstract ... 1

Acknowledgements .. 2

1. Introduction .. 5

2. Background ... 7

2.1 Other Practices .. 7

2.1.1 Flickr Time .. 7

2.1.2 Fidg’t Visualizer .. 7

2.2 Theories .. 8

2.2.1 Ambient Findability ... 8

2.2.2 The Laws of Simplicity ... 9

2.3 Methods .. 9

2.3.1 Agile Methodology .. 9

2.3.2 M-V-VM Pattern ... 11

2.3.3 User Requirement Analysis ... 12

3. Work Process .. 14

3.1 Preparation .. 14

3.1.1 Review of Internal Documents .. 14

3.1.2 Software ... 14

3.1.3 Subversion ... 15

3.2 Interviews ... 15

3.2.1 Identifying Stakeholders .. 15

3.2.2 Conducting Interviews ... 16

3.2.3 Analysis & Discussion .. 16

3.3 GUI Design ... 17

3.3.1 Preparation ... 17

3.3.2 Icons for Different Components .. 18

3.3.3 First Iteration for VCL Visualization .. 21

3.3.4 Second Iteration for VCL Visualization .. 25

3.3.5 Summary and Final Design for VCL visualization 27

3.3.6 First Iteration for MISP Visualization ... 29

3.3.7 Second Iteration for MISP Visualization... 33

3.4 Implementation ... 35

3.4.1 Technical problems.. 35

3.4.2 VCL visualization in Silverlight .. 36

3.4.3 MISP Visualization in Silverlight ... 39

4. Results .. 40

4.1 Final Design for VCL Prototype in Silverlight .. 40

4.2 Final Design for MISP Prototype in Silverlight ... 41

5 Discussion .. 43

5.1 Method .. 43

5.2 Results .. 43

5.3 Limitations .. 44

5.4 Collaboration .. 44

5.5 Scientific Contribution ... 45

5.6 Future Work .. 45

 4

References .. 47

Appendices ... 50

Appendix I. Outline of Stakeholder Interview ... 50

Appendix II. Stakeholders’ Requirement Wish List .. 51

Appendix III. Sample MISP Visualization Use Case ... 53

 5

1. Introduction

Volvo Information Technology (Volvo IT) has a large amount of data stored in a

database called MISP (Managing Integration Solution Provisioning), and the data is

stored with all the information regarding servers, names, users, etc. Authorized users are

able to access the data through MISP, add new users to existing applications, or order

new applications and configuration items (CI) [1]. Several roles used in MISP include

 Application Support

 Integration Specialists

 Infrastructure Specialists

 Configuration Administrators

Each role works in different fields and is responsible for one or more specific services.

Application support works with applications and connections to the integration

backbone by VCOM and WebSphere MQ (WMQ); integration specialists work with

integration tools like message broker (WMB) and process servers; infrastructure

specialists handles the integration infrastructure; while configuration administrators

have high authority in MISP and work with infrastructure specialist as well.

Because different components are carried with different information and the amount of

data is massive, it is difficult for users to see the complex relations among the

components or the landscapes of a service or application. Therefore, the thesis work

MISP Visualization is proposed with the purpose of visualizing the data in a clearer way,

which allows users to be able to view the connections and dependencies of different

components in MISP.

To get a better understanding of what functions stakeholders wish to have and how they

would like them to be implemented, interviews were conducted at the first place and

twenty-six requirements were gathered from one-to-one interviews, live meeting, and a

sum-up from a workshop. After that, the requirements were analysed and grouped into

different use cases. However, due to the shortage of time, not all the requirements were

able to be implemented. In a meeting with one main stakeholder and two developers,

two use cases were put in the highest priority and were decided to be carried out in the

first stage. The reasons to have them implemented first were that they were the base for

other use cases, and a large number of users could benefit after the implementation.

Ambient Findability and The Laws of Simplicity were the two main theoretical books

for directing the design concept, and some other books and guidelines were also used as

references. Iterative design methodology was applied during the design process in order

to show the concept to the stakeholders, get feedback in time and refine the prototype

accordingly to meet users’ expectation. From flat pictures to interfaces with

navigational functions, the stakeholders’ requirements were taken into consideration in

each designing iteration, while improvements and refinements were made to meet these

requirements.

The designing process lasted for three months, and then the work moved onto another

stage: implementation. This required interface designer and software developer to work

together and convert the work to functionally usable. Problems occurred such as

 6

different versions being incompatible and some controls not working as expected.

Under such circumstances the developing team had to decide either to compromise by

removing some of the functions in order to make it work, or to find solutions to solve

the problems. It was hard to determine which functions deserved to live and which

deserved to die, but the core concept remained the same, that was designing what

stakeholders wanted and making them feel comfortable to use.

 7

2. Background

2.1 Other Practices

Data visualization, as its name indicates, means visualizing data. According to the

description of Vitaly Friedman, data visualization aims at seeking ways to present data

effectively and convey the information clearly [2]. The traditional ways of visualizing

data include line, bar, and pie charts and tables for example, which are functional but

relatively boring. However, the modern approaches do not mean to make the data look

fancy or sophisticated. Instead, Friedman suggested that the balance between

functionality and aesthetic need to be considered carefully during the design. Graphical

presentation is a means to deliver the information, and the main purpose shall not be

misled by the complicated and fascinating design.

In Friedman’s article, Data Visualization: Modern Approaches, he listed some examples

showing what kinds of approached can be applied in graphical presentation [3]. As the

thesis was about displaying data and its connections, I focused on reviewing the

examples of these two kinds. Two typical examples of using modern approaches to

present data are as follow.

2.1.1 Flickr Time

Flickr Time is a tool of showing a

collection of uploaded images in Flickr

and presents them in the form of a

clock with current time [4]. To get a

large view of the image, simply move

the mouse over it and the image will

be displayed in a tooltip window as

Figure 2-1 shows. If users want to see

more information about the image, like

who took it or other works from the

same photographer, just click on the

thumbnail and a new window will

open, navigating to the normal flicker

page that the image belongs to.

This approach of showing data is unique and the data, which in this case are images, are

clear to the eye. Unlike the normal way of putting images in rows and columns or under

separate albums, it finds a new and interesting approach of collecting the thumbnails

into a form of clock and all the images are real-time. However, because the images are

displayed randomly, users are not able to view which categories they belong to or

choose their preferred category.

2.1.2 Fidg’t Visualizer

Fidg’t Visualizer is an application to display connections between users and their

friends. Users create magnet tags through the tags in Flicker and LastFM, and these

magnet tags will generate a network of all the friends with the same tags, as the example

demonstrates in Figure 2-2 on next page [5]. By using this application, users can see

who share the same interest with them in music and photos, what the most popular

Figure 2-1. Screen shot of Flickr Time.

Resource from: http://www.hottoast.org/convexstyle/flickrtime/

 8

Figure 2-2. Screen shot of Fidg’s Visualizer.

Resource from http://www.fidgt.com/visualize

music type is and which kind of photos people

prefer more. It helps discover the common

interests in the same network, and allows users to

learn the unfamiliar areas from each other as well.

Fidg’t Visualizer displays data connections in a

simple and direct way. The friends’ list and their

interests are visualized graphically. However, one

concern about this type of visualization is that

once the number of data increases, the network

will become much more complex and the lines

connecting between friends and the magnet tags

will become closer and hard to see eventually.

One possible solution to that is adding a zooming slider to control the view size, so

when the connections are complicated, users can zoom in and get a bigger view.

Based on the two examples above, it can be noticed that graphical approaches have been

applied to data visualization in both websites and applications. They are becoming more

and more popular, because users are no longer getting satisfied with only the pure data,

but they also require it to be displayed in a good manner, in graphics, for example. Just

like what Friedman described, ‘data presentation can be beautiful, elegant and

descriptive,’ and the means of delivering the message to the end users do not have to be

simple tables, pie charts and bar graphics that have been used for years [2]. Therefore,

graphical approaches are adopted widely, seeking for creative ways to visualize data.

2.2 Theories

2.2.1 Ambient Findability

The book Ambient Findability, published in 2005 by Peter Morville, offers insights of

how to help people find their way through an age of information overload and combine

streams of complex information to filter out only the parts they want [6]. To be more

specific, it explains some principles of information interaction that make designers start

to think what people need and in which form they would like to perceive the

information. To start the discussion, Peter first defines three terms that has been

mentioned frequently: data, information, and knowledge. According to him, the

definitions of the three terms are as follows (obtained from Chapter 3 in the book)：

 Data. A string of identified but unevaluated symbols.

 Information. Evaluated, validated, or useful data.

 Knowledge. Information in the context of understanding.

These definitions reveal the interconnections between these terms and then the author

brings up the concept that with effective and efficient communication the human society

is tightly connected. As the information is ambient it is therefore important to choose

appropriate ways for communicating the information in an understandable approach.

Moreover, only delivering the information cannot satisfy people; a higher requirement

comes out with the demand that the information carrier should be user friendly.

 9

A critical element of designing in a user-centred method is making things easy to find,

or in other words, enhance the usability in terms of the ease of finding what people need.

Several approaches are highlighted by Peter, and to conclude from the book, ambient

findability means to provide insights into human behavior and design from this

perspective. Seeking for what people need most in the most appropriate way will make

users feel comfortable when using the products or navigating on the interface. Therefore,

this book is beneficial for the thesis work in the way of designing from users’

perspective by applying these approaches.

2.2.2 The Laws of Simplicity

A review of the book The Lows of Simplicity commented that ‘simplicity is the soul of

design while the author, John Maeda uses the concept of simplicity to get at the nature

of human thought and perception’ [7] . At the beginning of the book, John brings the

argument that technology has made people’s life full, but in some cases it is overloaded,

therefore it is necessary to simplify the information by providing only the most

important.

John introduces ten laws and three keys to achieve simplicity, of which the most helpful

ones for the thesis work are described in the following:

 Reduce. The simplest way to achieve simplicity is through thoughtful reduction.

 Organize. Organization makes a system of many appear fewer.

 Learn. Knowledge makes everything simpler.

 Differences. Simplicity and complexity need each other.

 The one. Simplicity is about subtracting the obvious, and adding the meaningful.

It is normal that during the process people want to put the cool and fancy functions in

the design but ignore the key fact of whether these functions are necessary. John

describes a lot of scenarios that unused functions are a waste of space in design and

money in production, which should be avoided through effective reduction and

organization. However, not all could be removed; the most important ones should be

kept and carefully designed in the way that suits users’ perceptions and usage.

The laws are especially helpful for distinguishing which designing elements are

meaningful and which are not necessary. Moreover, the principles discussed in the book

direct the basic concept of the design to be simplified. Instead of making the interfaces

look seemingly functional, it is more important to remain only what users need most to

accomplish their tasks. In addition, with the guidelines of the first book, Ambient

Findability, all the objects in the interfaces will be designed from the consideration of

making users comfortable to use in an easy-to-navigate manner.

2.3 Methods

2.3.1 Agile Methodology

The traditional methodology, waterfall, is a linear and sequential approach that is

largely based on predictability. When the users know what they want, the requirements

are clear and rarely changing in the later phases, waterfall process can be an effective

tool to guide the process. However, as Martin Fowler discussed in his article The New

Methodology, the software development is unpredictable, and it is normal that the

 10

requirements always change [8]. Since ‘changes are the norms’, how people cope with

them appropriately and timely becomes important. In such cases, the late deployment in

the waterfall process hides ‘lurking risks’ [9]. For instance, technological problems may

occur that different parts cannot work together, or conceptual problems may happen that

the final product is not what users exactly want, as users do not see anything real until

the very end.

The development methodology the project followed is agile method, which is people-

oriented and specification changes are allowed. The agile

method works in cycles that the project is divided into tasks

that need to be implemented in different iterations as

Figure2-3 demonstrates. The iterations are short time frames,

each one lasting for one to four weeks. However, these

iterations involve a full developing cycle that includes

planning, requirement analysis, designing, etc. [10], and at

the end of each iteration, users are able to see part of the

functionality and give suggestions or demand any

requirement changes. This timely feedback minimizes the

risks and allows the plans to be adjusted in order to adapt to

the changes. The agile method solves the problem of

software development being hard to predict as Martin Fowler pointed out and helps

reducing overheads from project management perspective as well.

By applying it to the data visualization project, several benefits were revealed. First of

all, the schedule was flexible to change and easy to be adapted. When making schedules

for the project, unexpected situations were not taken into consideration and once

unpredictable problems occurred, the schedule was delayed. Under such circumstances,

a longer period of time was needed to accomplish the tasks in that iteration. As the

project was broken into several iterations at the beginning, it was possible to prolong

one or more of the working duration, solve the problems in time and postpone the

following iterations.

Secondly, changes that users wanted to make regarding the design or functionality and

requirements that users came up during the process could be implemented in the next

iterations. In the working cycle, after an iteration users were involved to provide direct

feedback to the prototype. The input from users was beneficial for designers to make

changes accordingly, and displayed to the users in the next iterations. Same to the

changes, any new requirements that users wanted to add were feasible, because each

iteration included a complete process and the new added functionality did not interfere

the existing ones as long as they could technologically work together.

Thirdly, at the end of each iteration a self-adaptive process was conducted as the regular

reviews of the project. Questions such as ‘what did we do well’, ‘what have we learned’,

‘what can we do better’, and ‘what puzzles us’ helped the developing team proceed in

the next iterations and avoid making the same mistakes [8]. Moreover, the process was

beneficial for self-improvement as well as keeping the project as scheduled, because, as

discussed before, not all the situations were considered carefully and under control. In

Figure 2-3. Model of agile

iteration design methodology

 11

such cases, every improvement within an iteration could help increase the maturity of

the team, and reduce the chances of going to the wrong path.

2.3.2 M-V-VM Pattern

The user interface development involves a series of activities: data, interaction design,

visual design, connectivity, security, validation, unit testing, etc. [11]. However,

interaction designers are focused more on the graphical and visual perspectives and do

very less coding or data binding, while the software developers work with data and

coding behind the interface. In order to let designers and developers work independently

but keep the cooperation as a team as well, it is important that a platform is available to

support all the functions. Microsoft was using Model-View-ViewModel (M-V-VM)

pattern internally to develop Windows Presentation Foundation (WPF) applications

such as Microsoft Expression Blend, which provides a platform to build user interfaces

through a simple, independent and developer-approval pattern [11].

The M-V-VM design pattern is an architectural pattern used in software engineering,

and it was introduced by John Gossman on his blog in 2005, who worked as a WPF and

Silverlight architect at Microsoft [12]. It was developed in a way to help create user

interface easier by its data binding infrastructure, which will be explained later in this

part. The Model in M-V-VM represents the data that stores the real state content with

codes or data. The View stands for all the elements displayed in the user interface, the

buttons, graphics, windows, for instance. By creating the elements on the interface,

XAML will be generated automatically behind, which means that designers do not need

to care about the coding. Instead they can focus on the graphical parts.

The ViewModel, which can be interpreted as ‘the Model of the View’, serves in data

binding function between the Model and the View. According to Gossman, the

‘ViewModel contains data-transformers’ that could transfer the View type to the Model

type and allow the View to interact with the Model. In other words, the ViewModel is

bound with properties on the View, and once the value of elements on the Model is

changed, the data is exposed to the View through ViewModel. He then gave an example

to further explain the role that ViewModel acts in the pattern. In the Model, there is

some pre-defined data that has been bound with the View, but there are also certain

types of data that cannot be controlled directly. If complex operations are needed to

perform on the user interface or the View, some code is required for implementation.

However, the non-predefined code may be too specific to put in the Model, and as a

result, the ViewModel plays a role of connecting the controller between the View and

the Model. Through this data binding infrastructure, the user interface can be bound

with the code and interface designers do not need to take care of the code anymore.

In the data visualization project, the earlier prototypes were built in WPF, where the M-

V-VM pattern played an important role for the designer and developers to work

independently. The designer focused only on the graphics, the elements and how they

could be placed in the interfaces without any disturbance of coding or programming.

While the elements were created as the View, XAML was generated in the Model at the

same time. For complex functionalities such as selecting, showing and hiding, it was

controlled in the ViewModel by some more advanced controllers. All of these could be

achieved in the Expression Blend under WPF application.

 12

Later in the implementation phase, it turned out that prototypes built in WPF could not

be converted into Visual Studio; the Silverlight projects were supported but not the

WPF ones. Silverlight is another application platform developed by Microsoft, initially

released in 2007, and it is powered by .NET framework that is compatible in different

browsers [13]. The downside of using Silverlight instead of WPF to build projects in

Expression Blend is that there is no animation-editing panel in Silverlight, and the only

similar functionality is navigation. In such cases, the solutions were either to remove

some of the animated functionalities or write code in the ViewModel to trigger

animations in the View.

2.3.3 User Requirement Analysis

To get full understanding of users’ requirements and design new interfaces that fit their

needs and benefits neatly, it is important to gather and analyse their requirements

carefully in advance before moving to the designing phase. Several methods used to

gather information and analyse user requirements include:

 Review of useful documents

 Stakeholder interview

 Use cases

 Prototyping

 Usability testing

2.3.3.1 Review of Documents

Review of useful documents in this case refers to studying the internal documents that

provide information for the existing system, the specifications of the components, their

functions, and how they work together. This process is helpful for knowing the

background knowledge and forming a general picture of what kind of system the

designer is dealing with. Though graphical designers do not have to know the technical

theories like which component plays in what kind of role, it is better to have a rough

idea in mind so when designing the icons or interfaces, the graphics can exactly reveal

the most typical characteristics and let users distinguish them easily. For instance,

VCOM products are used as basic transport and connectivity [14], and therefore the

design of the VCOM icon should reflect the function and show these two characteristics.

2.3.3.2 Stakeholder Interview

Stakeholder interview not only means talking to the persons or getting feedbacks, but it

also includes a series of preparation work such as stakeholder identification and

interview structure. Reading background documentation also helps with the preparation.

The stakeholders that participate in the interview need to be carefully selected, as they

need to represent other users and they have the current working knowledge of the area

to be discussed. The interview is better to be semi-structured with some prepared

questions to start up the mind, and then the interviewers and interviewees continue with

the subjects they are most interested. The process of conducting the interviews will be

found in detail in the next section.

2.3.3.3 Use Case

Use cases give detailed realistic examples of how users may carry out their tasks in a

specified context [15]. In other words, they are used to describe the steps that users need

to perform in order to complete a task. By showing each step, designers can see if any

unnecessary steps can be removed or if it is too complicated to use. The value of use

 13

cases, as Craig Larman indicates in his book, is that they focus on the user goals and

perspectives, and it is more user-centric [16]. However, in this thesis work, the use

cases were firstly considered as a way to analyse users’ requirements but then decided

not to use, because users were very aware of what they wanted to be implemented.

2.3.3.4 Prototyping

Instead of writing use cases, paper and computer prototypes saved more time and

stakeholders could give instant feedbacks, which was more beneficial to the designers

and project preparation; therefore, were widely used for the usability testing in the

designing iterations. Prototyping is the process of building models by designers in order

to let users manipulate. Prototyping comes in many forms, according to Professor Sauter,

from low technique sketches such as paper screens to high technique systems like

computer-aided software engineering, and generally speaking the low techniques are

used in the initial stages to get user feedbacks and later on based on the comments

designers develop operational prototypes during the design stage [17]. The advantages

of using prototyping include having user involved, getting immediate feedback,

fulfilling higher satisfaction, etc.

2.3.3.5 Usability Testing

Usability testing is a technique used to ensure that users are able to perform intended

tasks effectively and efficiently [18]. Participants include the designer and a

representative user, or in this case stakeholder in each testing session, and the purpose is

to find the difficulties users encounter while carrying out the tasks. In this thesis work,

four usability testing sessions were conducted, and the comments regarding

improvements were helpful for the final design of the projects. Examples of project

prototypes and revisions after usability testing in each developing iteration will be

included in later sections.

 14

3. Work Process

3.1 Preparation

3.1.1 Review of Internal Documents

Like mentioned above in the User Requirement Analysis section, review of internal

documents helped with understanding the existing system, the specifications of the

components, their functions, and how they work together. This process was beneficial

for knowing the background knowledge effectively, and through reading these

documents a general impression of the system was formed. The reviewed documents are

stored in TeamPlace, which is a web-based solution that deals with the collaboration

within a team, enabling team members to share documents, links, discussions and other

forms of information regardless of time and location [19].

The Global Integration Infrastructure was the mostly used TeamPlace for searching

document and retrieving information [20]. It includes the links to the archives that all

the released notes and manuals of different components can be found. Moreover, it

displays the architecture of these components in different layers, which makes the

abstract concepts very easy to understand.

Another useful TeamPlace is ADT (Application Development Techniques), and it

includes various materials regarding the methods and Volvo GUI design principles.

Even from school methods like prototyping and usability testing have been lectured, it is

good to read the principles from the company’s perspective. The methods are basically

the same, but the designing principle is detailed described. For instance, in the

document named Volvo Group Icon Visual Style [21], it defines the general guidelines

of creating new icons, their types (clickable or non-clickable), styles, colors, and sizes.

In the tips on how to develop new icons, it has one tip of ‘using existing icons as a

foundation’. It is very helpful, because on one hand it indicates that existing icons are

more familiar to the users and on the other hand it also reminds me to create something

easy to be distinguished.

3.1.2 Software

The software applications used in this thesis project for designing the graphics and

interfaces are Adobe Illustrator and Microsoft Expression Blend. The first one is well

known among Interaction Design students as it is a professional tool to create vector

graphics. One of the important parts in the project is to create icons for the components,

and during the designing process Adobe Illustrator was widely used, with the reason of

vector graphics being able to be scaled without degrading quality.

The latter one is not very popular at school, or at least new to me, and because the

project is in close relation to the production, the finished designs should be able to be

compelled in Microsoft Visual Studio for launching on the website. With this demand,

Microsoft Expression Blend is the ideal software for user interface design tool. The

benefits of using it are various. First of all, it is an interactive design tool, and it includes

all the basic graphical functions for rapid prototyping and complex design, which gives

designers ‘What You See Is What You Get’ instant feedback [22]. Secondly, it

generates XAML (Extensible Application Markup Language) automatically, so

 15

graphical designers do not need to bother about writing codes. Thirdly, as it is an

application for web interface design, it can be compelled with Microsoft Visual Studio

that is also a Microsoft developed product for interactive user experiences based on

WPF (Windows Presentation Foundation) or Silverlight application, so software

developers are able to implement the designs to the production [13].

Microsoft Expression Blend was not difficult to use in my first expression, as the

interface was similar to the default graphical editing software Paint, with the graphical

editing panel on the left and property panel on the right as Figure 3-1 presents. However,

it was not enough to use only

the fundamental functions for

high fidelity prototypes, and it

was important to have

something realistic for end

users to try out and discover

what was valuable and what

was not useful [23]. From the

graphical part it should have

more pixel effects that are close

to the final design, and from the

interactive part the prototype

should be partly clickable. Therefore I started to dig deep to the functions that I was not

familiar with, first by tutorial videos and then experienced designers’ blogs and forums.

It took some time to explore. While learning I created prototypes simultaneously, and

looked for answers in online postings and tips when problems occurred. In the end,

although I was still not an expert in this software, the final prototype was able to be

compelled to Microsoft Visual Studio and to the production.

3.1.3 Subversion

Subversion is an open-source and centralized version control system that enables users

to upload files and share them with other authorized users and they can also edit the

files by checking them out to their local disk and update the revisions with a traceable

history [24]. The biggest advantage of using it compared with other network disk is that

subversion allows users to trace the changes in the ‘show log’ so users are able to see

the changes in different revisions and compare them. Once the files are uploaded to

subversion they are kept in a network disk that will not get lost if the computers crush.

Every time if users need to edit anything they only need to check the files out and then

check in again after editing. Updated files will replace the old ones automatically in the

systems, and when other users check out the files, they are synchronized with the latest

version. Because of these advantages and ease of use, it was used for sharing files and

applying changes in the thesis work.

3.2 Interviews

3.2.1 Identifying Stakeholders

According to TrueSolution, identifying stakeholder is critical, and stakeholder refers to

‘any person or organization that is actively involved in a project, or whose interests may

be affected positively or negatively by the execution of the project’ [25]. The topic of

Figure 3-1. Screenshot of the interface in Expression Blend

 16

the thesis is to visualize MISP database, and therefore the stakeholders include all the

users that have impacts on MISP database and also the ones that might be impacted by.

The identified stakeholders in this project represented a diversity of users involved in

the project, from product manager to maintenance manager, from application owners to

security administrators. The selection was done by the supervisor in the company, who

had rich knowledge of the stakeholders’ influences and responsibilities on MISP. In

total, five interviews in person with one sum up from a workshop of thirteen attendees

and one phone interview were made. The interviewed stakeholders represented roles of

two product managers, one maintenance manager, one security administrator, and one

software architect. They not only have great involvement in MISP database, but they are

also experienced users who are aware of the work process and its functions. Different

from ordinary users, they are in a relatively higher position and have the right to look

from a bigger perspective and have connections from both the application owners and

developers. Therefore they were considered to represent the users’ group as well as the

main stakeholders’ group.

3.2.2 Conducting Interviews

The interviews were semi-structured, with some prepared questions to help understand

the interviewee’s role in the project and the tasks he/she needed to perform. The

advantage of semi-structured interview, according to the in-class lecture of Method of

Interaction Analysis, is that certain topics are guaranteed to be covered but the exact

order or formulation depends on the actual situation. The prepared interview outline is

attached in Appendix I. After asking some structured questions, I was clearer to the

background information, and based on it I started to ask more specific questions such as

their daily tasks on performing the system, the steps in order to accomplish a goal, the

user experience for the current system and suggestions for improvements.

During the interviews, it was very beneficial to me that the stakeholders demonstrated

their performing processes, because the processes clearly reflected the steps they took to

accomplish familiar tasks. Some repeated actions indicated that unnecessary steps could

be removed, and some steps could be improved to be simpler. Meanwhile, while

performing the tasks from the beginning to the end, stakeholders could be able to point

out more existing problems that might be ignored or forgotten if they only recalled from

memories, and they could also show their wished improvements at some specific

circumstances. Moreover, it was a great opportunity for me to observe the stakeholders’

habits, understand their preferences, ask questions, and make clarification immediately.

In average, each interview took one hour and five to ten requirements were collected, of

which some were from a general perspective and some were from the demands of

specific roles.

3.2.3 Analysis & Discussion

After conducting interviews with the stakeholders, twenty-six requirements were

gathered in total. It was impossible to implement all the requirements in the period of

thesis work; therefore it was necessary to determine the priorities. A table was made to

display the stakeholders’ corresponding requirements in Appendix II. Similar

requirements were coded in the same colour as the attachment shows. However, it was

still not well organized for categorizing and analyzing these requirements.

 17

Card sorting was applied in the process of grouping and defining which requirements

belonged to the same category. By printing out each requirement on a piece of paper,

requirements that were considered to be under the same category were put together.

This process was finished together with the supervisor, as some technical information

was involved and it was more accurate to work together with a person who has

professional knowledge. Five categories were created as follows:

 General requirements, such as choosing between a list view and a graphic view,

and being able to export data to local computer in Excel files.

 Visualization, such as visualizing the message path between components, and

Volvo Common Logging.

 Application landscape, such as the objects belonging to the same application,

and displaying the changes in the landscape and tracing them.

 Security, such as what approved accesses a user has, and who has authorized to a

certain application.

 Application network, such as the connections between infrastructures and

components.

A discussion was made to determine which tasks to be implemented in the first phase,

and two stakeholders, a product manager and a global manager together with me and the

supervisor attended the meeting. Two requirements were decided in a high priority in

the thesis work: visualizing Volvo Common Logging (VCL), visualizing application

landscape and visualizing application network in MISP database. The reasons to choose

them were that they were the basis for other requirements, and a lot of users could

benefit from their implementation.

3.3 GUI Design

3.3.1 Preparation

Before coming to the actual designing part, I started with analyzing the three

requirements first. The purpose was to estimate how much work was needed and what

characteristics were common and different among them. Visualizing VCL required a

traceable message path to be displayed in graphics. In addition to the current list view,

users would be able to view the components in sequences in a more direct graphical

way. Application landscape required more work; the connections of one application to

other components and (or) to other applications should be displayed. Compared with the

message path in VCL, it was more like a

collection of putting all the related paths

together and showing the relations between

each other. Application network would be a

much bigger collection of having all the related

applications organized in a network and

displayed their connections. Figure 3-2

demonstrates these relations in a simple way.

Based on the complexity, I decided to start with VCL. It was easier because it did not

involve too many items in the design, and the message path could be used in the other

two cases as well. The style should be consistent in all the designs, and therefore it was

very important that the message path was clear and simple so as to fit into complex

relations.

Figure 3-2. Relations of three use cases

 18

As users were familiar with the current VCL system, it would be a challenge to change

what they already got used to. It took time to adapt to changes, and I personally felt the

same way too. For instance, I used to go to a website for weather forecast every day, but

one day I found that a new version was launched to replace the one I had been checking

for over a year as Figure 3-3 shows. My first reaction was that the old version worked

fine, why did they change it?

Then I spent some time looking through the new version and found that the new version

organized information in a more reasonable way. For example, the new version put the

most important data, current temperature, wind speed and direction, and the time for

sunrise and sunset on the first row, following with the next five days’ forecast on the

next row. The sequence was logical for most users. The old version, in contrast, took up

the whole page with two columns presenting the information, today’s data on the left

and the future’s on the right. Since the right column was wider, it was more visible to

the eye. The left column, however, presented the information that most users needed to

see, so the focus of the interface was not arranged appropriately.

From the example above, it can be seen that users’ habits are hard to change, and

according to the book About Face 3, the authors also mention this by listing a design

principle that ‘significant changes must be significantly better’ [26]. Therefore, it

required cautious consideration about changing current features or adding new functions

to the existing interfaces. My concept was that new graphical views could be added to

the current VCL interface by changing as minimum as possible.

3.3.2 Icons for Different Components

One important task of the thesis work was to create icons for different components. The

current icons were

shown in Figure 3-4.

Because Volvo IT uses

software from IBM,

WMQ for instance,
VCOM VCOMMQGW WMQ WMB MQFT

Figure 3-4. Current icons for different components

 (a) (b)

Figure 3-3. The comparison of the old (a) and new (b) versions of a weather forecast website

 19

and as a result, some icons were directly taken from IBM products while others were

made up. The good part of the these icons was that they could be distinguished by

different colors and shapes even in a very small size, as Figure 3-5 shows a screenshot

from the system. The image presents the actual size displayed in the screen, and users

could easily tell what components are by looking

at the icons.

However, to show a message path graphically, it

would be better to have the icons in the same style

and when putting them together it would look

consistent. Moreover, the icons should have

reflections on their functionalities. For instance,

WMB works as a routing and transformation tool

and the icon should have it reflected somehow.

For VCL visualization project, five main components were used in the system and

needed to be presented graphically. Their basic functions, which are retrieved from

Global Integration Infrastructure TeamPlace [20], are listed as follows:

 MQFT: a Volvo made file transfer tool, which uses WMQ (details can be

found on the following section) as a transport layer to receive and send

messages between applications or customer files. A scenario of MQFT is

demonstrated in Figure 3-6.

 VCOM: a Volvo made data transfer tool, which allows processes to exchange

data without concerning the different transferring technologies or operating

systems. The scenario of VCOM is similar with MQFT, sending data from an

application and then transferring it to others.

 VCOMMQGW: a gateway between VCOM and WMQ as the name indicates.

It functions as a gate that allows information to be passed from one to another.

 WMB: an IBM product used for delivering transformation, routing and

connectivity services. The functions include, for instance, transforming

between different formats, and intelligently routing a message to a destination

based on its content.

 WMQ: an IBM product used to exchange information on either an IBM

platform or other platforms and integrate new applications to the existing

systems, according to IBM official website.

Generally speaking, the functions and relations of these components can be grouped as

Figure 3-7 shows on the next page.

Figure 3-5. Screenshot from VCL system

Figure 3-6. MQFT sends a file and another MQFT receives it.

 20

Based on the description above, I analyzed these components’ characteristics and

functions, and endeavored to show them in a simply but direct way in the graphics. It

was a tough task because the icons should not look too complicated, while many

messages need to be delivered properly. Table 3-1 illustrates the final design compared

with the current ones.

The concepts behind the design were that,

firstly, all the icons should be consistent

in style. Instead of using different colors,

I chose only cyan and grey for the main

colors. Reducing the colors would not be

a problem for color-blindness, because

the shapes vary a lot and users could

distinguish the components by their

different shapes. The benefit of reducing

colors was that when showing a message

flow with several components, it doesn’t

look too dazzled. Secondly, the functions

were reflected by the simplest shapes. For

instance, MQFT and WMB both work as

transfer tool, and the word ‘transfer’,

meaning moving something from one

place to another, could be graphically

shown as a wheel rolling forward. WMB,

compare with MQFT is more intelligent,

being able to route messages as stated

above. Therefore the design for WMB was like a gear wheel, which implies that WMB

offers more accurate engagements at work. Data is being processed by VCOM and

WMQ. A vertical cyan cylinder represents databases, and the two small grey cylinders

in WMB indicate the process of data being transferred from one database to another.

 New designed Current

MQFT

VCOM

VCOMMQGW

WMB

WMQ

Figure 3-7. The Integration Infrastructure Reference Architecture

Source from: https://teamplace.volvo.com/sites/global-integration/default.aspx

Table 3-1. Comparison of new designed icons and

current icons

 21

3.3.3 First Iteration for VCL Visualization

For problem determination, a tool called VCL is used in order to track messages [21]. In

the current logging system, the collected messages and their tracing sequences are

displayed in tables as Figure 3-8 shows. The task was to visualize message path in

graphics. As the new icons were ready, the next step was to find a way to put all the

information together. My direct reaction was to display components in a row. Then a

question came up: how to deal with the texts? It was apparently not possible to fit

everything in a small size and keep them readable; therefore, a solution needed to be

carried out to make the texts clear to the eye.

3.3.3.1 First Prototype

I firstly did simple sketches on paper to show the concept before drawing any graphics.

It was beneficial at the initial stage, as discussed in User Requirement section; the low

tech prototype saved more time and still could get some instant feedback. Viewed from

the sketches, it seemed possible to put the

icons in a row, while the texts were

distributed both above and below the icons.

Then I tested the idea in Illustrator, which

is shown in Figure 3-9. The intention was

that the texts were not displayed initially;

only the collected components were shown.

If users wanted to know more, they could

click on the four buttons representing Time, Location, From Address and To Address on

the left column for detailed information.

Although the message path was now displayed in graphics, it had many downsides. First

of all, it did not make much sense to users if they only saw the components; there were

millions of the same components that belong to different applications. Secondly, there

were too many clicks before users could see all the texts, which in most of the cases

were useful and important to see. Thirdly, the graphics in the middle were separated

from the texts, but they should be related together. Based on the analysis, the first

prototype was rejected.

Figure 3-8. A screenshot from VCL

Figure 3-9. First VCL prototype

 22

3.3.3.2 Second Prototype

Instead of creating the second prototype in a completely different concept, I checked the

first one and sought other possibilities to have the texts displayed in a more clear way

while remain the graphics in a row. I then remembered an online store I used to visit,

and their method of presenting items on one page was very inspiring as Figure 3-10

illustrates. The red circle

highlights the zooming function,

which allows users to choose the

image size they prefer to view on a

page, three rows, two rows or only

one row. It provides options for

users to view based on their

preferences, which highly reflects

the user-centered approach. If there

was a zooming function for the

message path, would the

unreadable small texts be possible

to be solved? With that question in

mind, I started my second prototype.

The basic layout of putting components together was similar with the first one, but the

major changes were that a slider was added to the interface so that users were able to

zoom in for details or zoom out for a complete view. The interfaces of the second

prototype are presented in Figure 3-11. The reason that the interface was split in two

rows was that in the

lower part, users could

see the complete message

path. While in the upper

section, a slider was

available on the left to

adjust the size. The first

picture demonstrates the

initial state. Once the

users decided to zoom in,

they could move the

zoom bar to get up to

four times bigger images

as figure 3-11 (b) shows.

Apparently only a part of

the message path could

be fit into the upper

section after zoomed in;

therefore the horizontal

scrollbar was functional.

Moreover, in the lower

part a grey shade was

covered on the first five

Figure 3-10. Screenshot from an online store using slider to

enhance user interaction.

Source from Marc by Marc Jacobs.
http://www.marcjacobs.com/marc-by-marc-jacobs/

Figure 3-11. Interfaces of second prototype built in Illustrator

(a) Initial state

(b) Magnified view

 23

components, corresponding to the upper area and indicating that they were currently

visible. Users could also drag the grey shade left and right, and see the next components.

Both the shade and scroll bar worked as a navigation tool, and users could choose either

one according to their preferences.

A few things also needed to be pointed out in this prototype. First of all, the first two

components were placed tightly next to each other, while the others were in separate

frames. This was because sometimes messages could not be successfully traced.

Referring back to the screenshot from the actual system in Figure 9, it had only two

traceable messages and others unsorted. The connected and unconnected frames

revealed this information in the graphics. Furthermore, the different background meant

that another message path also passed through the same component. For instance,

mostly the message paths are in a row, from a starting point to a destination. However,

there are exceptions that more than two paths pass thought the same component. Figure

3-12 gives a sample of the different types of paths. The left image illustrates the most

common path, while the right one also

exists in the system. Therefore, another

background color could make users be

aware that this particular component can

also be found in other message paths.

Compared with the first prototype, some improvements could be noticed in the second

prototype. First of all, the graphics was presented in a row, which was correspondent

with the concept of showing the message in a graphical flow, while the details were

included in the grids as individual components, so there was no need to click on icons

for details. Second, the texts could be read by dragging the slider for zoom-in, and if

users want to see the whole path they did not need to zoom out, as the complete path

was always available on the lower part. Third, with different colored background, users

could see if it was a linear path or a complex one. However, the graphics took large

space, and the idea of putting traceable components together and unsorted ones separate

did not seem very clearly. Revisions of the prototype were still needed, but the slider for

large view was considered a solution to deal with the texts.

3.3.3.3. Third Prototype

After the analysis of pros and cons for the second prototype, I decided to make some

improvements by removing the constraints such as large space required. How to show

the message path with zoom functions while the graphics still remained in one row?

Then an idea came to mind, which was the ‘mouse over’ function. If users placed the

cursor on top of one component, it could enlarged automatically; while users removed

the cursor to other places, the enlarged component changed back to the original size.

This solution did not require users to click the mouse; only by moving the mouse

around they could get details in a bigger view. To make the prototype work with the

mouse over function, flat pictures could not fully reflect the advantages and

disadvantages. Therefore Expression Studio was used to create a simple prototype that

allowed users to interact with.

Although in the first iteration of design the primary purpose was to choose the best

design concept that could fulfill user needs, it was necessary to let users partly interact

Figure 3-12. Sample of different types of paths

 24

with the interface so it gave a more real design of what users would use in the future,

and also could get more thorough feedback on what was good and what needed

improvement. In such case, the prototype built in Expression Blend was not for

implementation, but only for presenting the design and generating feedback. With the

function of importing files from Adobe Illustrator, the software allows users to directly

import the graphics designed in Illustrator to Blend as a WPF application. The drawback

of it is that even the imported files are still grouped the same way as they are in

Illustrator, the items are transferred into paths, and a result of it is that a square can be

stored as more than ten paths, which is difficult for further modification. However, with

only showing the mouse over function to each component, it did not need much change

to each item. By adding the animation to the whole group of paths, the mouse over

could be achieved. Figure 3-13 demonstrates the different screens: Figure (a) is the

initial path, and Figure (b) is when the cursor is placed on top of the second component.

This prototype did not need two rows to present the message path, and users were able

to view the complete path directly while get an enlarged image of a particular

component in detail. But an obvious constraint was that there was no way to have two

or more components in enlarged views together. If users wanted to see details of the

whole path, they had to move the mouse on top of every component and had a good

memory; otherwise they had to move around many times until they found what they

wanted to see.

3.3.3.4 Feedback Interview

Although each prototype had its advantages and disadvantages, it was important to

know what stakeholders thought useful and what they wanted to improve, and some

more requirements may be acquired based on the current possible designs. Therefore a

stakeholder interview for generating feedbacks and suggestions was conducted after

three prototypes were created. Participated stakeholders included a global manager, a

product manager, an application architect and they all share the rich knowledge of the

thesis work and its impact to the whole users.

The first thing to discuss was the new icons. Comparing with the original ones, these

icons were considered more consistent, and both stakeholders participating in the

interviews had no difficulties identify the components that the icons presented. They did

not give any comments on improvements, so the icons were kept the ways they were.

Next I discussed with stakeholders about the prototype individually and the feedback I

got included in the following aspects: the layout of message path, and the functions that

might be useful. They were satisfied with the way that the components were displayed

in a row, and the zoom function was especially helpful for those who had small screens,

or needed to read the texts. Although the mouse over offered a similar function,

stakeholders were more comfortable with the whole path enlarged.

(a) Initial state (b) Mouse over function

Figure 3-13. Screenshots of third prototype from Expression Blend application

 25

Furthermore, by color coding the different components users could be able to see the

differences between components. However, one thing that could cause confusion was

that users may understand the colors in a different way. They might think components

in the same locations were grouped in the same color, for instance. Therefore the usage

of background color should be carefully reconsidered.

3.3.4 Second Iteration for VCL Visualization

The overall feedback from the interview was positive, and they were satisfied with the

layout that the components were shown in rows to represent the concept of message

flow. The most difficult part was still the display of the text information in a readable

and clear way. To seek for more inspirations, I checked a website named ‘Visual

Complexity’ where many complex data has been visualized graphically [27]. There are

many examples of data visualization, and some are quite revolutionary. However, they

cannot be fit into the VCL context, as the VCL interfaces need to be formal, and

corresponding to other systems. Therefore I decided to focus on presenting what users

needed most in a plain and clear way rather than creating fancy graphics.

What was the most frequently used method to deal with text information? One possible

answer would be tables. Tables have been used in presenting large amount of

information for many years, and although it is not a modern method for data

visualization, it is still considered one of the most effective ways. In the current system

the result was shown in a big table, which can be reflected back in Figure 3-8. If the

table could be somehow embedded with the graphical path, then the texts could be

readable in a clearer way. With this thought in mind, I did some simple sketches on

paper, trying to find a good combination. There seemed to have two ways of presenting

tables in the graphics, one was to place the components horizontally and the other was

to place vertically. I started with the horizontal one for the fourth prototype and the

vertical one for the fifth.

3.3.4.1 Forth Prototype

The idea of this prototype, as described above, was focused on showing information in

an easy-to-read approach. Meanwhile, the mode of graphical path that had been created

in the previous prototypes would be kept with

slight modifications so as to adapt to the new

design. Furthermore, the table would be

embedded with user interactions so that the

traditional method would fit in the overall

design neatly. To discover the pros and cons

of the interactions, Expression Blend was

used for the development, which partly

allowed me and users to interact with the

prototype.

Figure 3-14 illustrates the basic idea of how

the graphical path would look like. In the

initial state the graphics were displayed in a

row, representing the message flowing from

the start to its destination. When users placed

(a) Initial state

(b) Details shown when putting mouse pointer on

top of any graphics

(c) Details remaining when the pin clicked

Figure 3-14. Screenshots of fourth prototype

built in Expression Blend

 26

(a) Initial state

(b) Details shown by clicking on the

expand arrow

Figure 3-15. Screenshots of fifth prototype

built in Expression Blend

mouse pointer on top of any graphics, the details were shown in a table, with each

column corresponding to the component above. If the pointer was removed from the

graphical area, the table would be folded with only graphics remaining in the interface.

For some users they would need to work with the texts in order to detect the path or

solve problems. In such cases, having to keep pointer within the graphical area could be

very annoying. To avoid this situation, I added a ‘pin’ button on the right top corner of

the interface, which allowed the tables to remain when the mouse was moved away

from the graphical area. The purpose of this ‘pin’ function was that if users only needed

to get an overall idea of the message flow, then they could control whether the table was

displayed or not; for those who needed to deal with the details, it was convenient to

have them always visible.

The primary benefit of this prototype was that it could fulfill the demands of all the

users, needing or not needing to read the details in a plain and easy way. With the

combination of table and graphics, the size of the texts was big enough to read, while

the message flow was still clearly presented. Moreover, the pin function offered users

an option of dealing with the table by clicking or not clicking on the button. On the

other hand, in its initial state without having mouse over, only the components were

shown. As discussed in previous prototypes, components were stored in different

locations and only seeing the type of component did not give much information. In

addition, although the tables were a means of visualizing data, new approaches could be

found for better replacement. Therefore, this prototype, together with the next one

provided different concepts for stakeholders to choose.

3.3.4.2 Fifth Prototype

This prototype, similar with the fourth one, was designed in order to have clear data

visualization in a table. The layout of the components, unlike the previous one, was

displayed vertically. However, instead of the mouse over and pin function, in this case I

used zoom function together with expanding

command. The purpose was to try different

types of interactions and seek for the most

satisfied one.

The interfaces of this prototype were illustrated

in Figure 3-15 on the next page. The first one

presented the initial state when users got a

sorted message sequence. On the right column

in the center where the area was highlighted by

a red circle, an expand arrow indicated that

more information could be found when the

arrow was expanded. Once clicking on the

arrow, a table was revealed with all the details

shown in each column as the second image

demonstrated. The magnified glass on top of the

graphics was the zoom button, which could

enable the whole interface to be enlarged to 4

times bigger. Different from the slider in the

second prototype, the zoomed in size was

 27

predefined and users could not control the size they wanted the interface to be.

Furthermore, the ‘from address’ and ‘to address’ were combined in the same column in

two rows, the top one referring to the ‘from address’ and the bottom one referring to the

‘to address’. Because the addresses were usually long and if they were placed in parallel,

the table could be very wide.

Both the fourth and fifth prototypes were built in Expression Blend as WPF applications,

which supported all the interactions mentioned above (mouse over, pin, expand, and

zoom) for stakeholders to navigate. From my experience of using Expression Blend to

build prototype, the most beneficial thing was that the intended interactions could be

practically tried out, which could better simulate the actual working situation and get

more real feedback compared with the flat pictures in Illustrator.

3.3.4.3 Feedback Interview

After finishing two more prototypes, I started another stakeholder interview for

feedbacks on VCL visualization. It was important to know how stakeholders felt about

using tables for visualization and which type of interactions they preferred before more

time was spent on similar solutions. Two stakeholders, the global manager and a

product manager who also joined the previous iteration participated in the interview,

and they offered effective responses based on their experiences.

The first issue being discussed was the manner of displaying the components. Both

stakeholders considered the horizontal way was better in terms of reading and

conventional habits. The next one, regarding the interactions of showing data, they

thought that the zoom function was functional as people had the feeling of controlling it

themselves. Moreover, as the screen size varied, in a small screen it might be hard to

read texts even in tables. The good part in the fourth prototype was that with the pin

button people could save the current page. That could be used in a different way,

snapping the current screen for instance. Compared with tables displayed while mouse

over or clicked by the expand button, they still thought that having all the components

and information shown together was easier and more direct.

During the interview I asked if all the information was equally important, and my

intention was that if not all the four categories had to be shown to the users, then some

texts could be hidden in some way and when users needed, they could click, a button for

example, to display all the information. The response to the question was that some

users might just get an overview of the path so they would just look at the time, but for

application or system administrators they would read the details, especially when

problems occurred. Therefore all the information had to be presented directly.

A function that could be added to the graphical view was to visualize the paths that went

from one component to different destinations. It was not enough to just point out the

particular component, and users could benefit more if the other paths could somehow be

visualized too.

3.3.5 Summary and Final Design for VCL visualization

Based on the feedbacks and suggestions, some functions should be kept and

improvements should be made so they could fit together. The most favorable way to

 28

present the message path was placing components horizontally, with texts presented in a

readable way. The interactions should be simple; unnecessary clicks or navigations

should be removed. To conclude from the analysis, the layout of the message path was

in a row, with the texts around the component icon, while the appropriate function for

better visual effect was the zooming slider, which allowed users to adjust the size of the

path for larger views.

The next step was choosing where to put the graphical path. Currently the on the result

page, 25 results were shown at one time, leaving the bottom of the page blank, as shown

in Figure 3-16 (a) on the left. If that space could be used to display the message

sequence, then users would not need to be directed to a new page for a complete

collected message as the right image illustrates. Tabs were a good choice for moving a

whole page to a limited space. With two tabs, one for collected message and the other

for traceable or unsorted message sequence, users could be able to see all the

information on the result page, no need to go back and forth when trying to select

different components. For switching between list view and graphical view, radio button

could be used, which was different from having tabs to switch between two list views.

In addition, a slider was automatically added when the graphical view was selected, so

the graphical path could be zoomed in and out. The final design of VCL interfaces were

presented in Figure 3-17.

(a) Search result page (b) Collected message page

Figure 3-15. Screenshot of current search result and collected message pages

Resource from: http://atlas-a1.it.volvo.net/vcl/Default.aspx

 (a) Search result page with collected trace messages (b) Search result page with message sequence

 29

When users select one component for more information, they click on it in the upper

area and the message path that contains the chosen component is on the lower area. On

the interfaces two tabs are used to display the message lists that were originally shown

in a new window. By default ten tab items are visible directly in the lower area, and

when there are more than ten messages being collected, a vertical scroll bar appears

automatically on the right side. One tab enables users to see a complete list of the entire

collected message while the other is sorted list, giving users different options to view

the list based on their needs.

On the right top of the lower area, two radio buttons are designed for switching between

list view and graphical view. By click on the graphic button, the message path is

presented in graphics, while a slider appears automatically next to the two radio buttons,

indicating that magnification is enabled. Moreover, the different background colors

imply that the message flows to different destinations, and in the default view the other

paths can be found on top of or under the main path. On the right bottom corner a

navigation panel provides users the option to see the whole structure, with a highlighted

square corresponding to on the current visible view, and users could drag the square to

change the visible area. When the graphical path is magnified, the main path takes up

the whole height, but the other paths can still be observed from the navigation panel.

The final prototype reflected stakeholders’ requirements gathered from the interviews,

the message path displayed in graphics, and the paths to different destinations visible.

Not so many interactive functions were used here, as the design should be simple and

easy to use. Therefore, unnecessary interactions were removed, only the most functional

remained, which confirmed the theories described in the book The Laws of Simplicity

[7].

3.3.6 First Iteration for MISP Visualization

The second use case, as discussed in previous section, was to visualize MISP. As a

complex database with components connecting to each other in different ways, it was a

very difficult task to present it in organized graphics while fulfill user requirements. To

get a better idea of what visualization has been used, I started the brainstorming with the

help of projects in visualcomplexity [27].

(c) Graphical path showing the traceable path (d) Graphical path being magnified

Figure 3-17. Screenshots from final design for VCL visualization

 30

Figure 3-19. Concept demo for MISP Visualization

3.3.6.1 Brainstorming

A project called Graphopt on the website is an example of visualizing multi-domain

representation [28]. It builds models for connecting different nodes and presenting it in

a big view so that users are able to see the connections between nodes, as illustrated in

Figure 3-18.

The concept of this project is similar with the MISP visualization. Both aim at

visualizing complex data and showing the relations between the nodes and the

applications, and how the applications relate to each other. The left picture is a

landscape view while the right one is a detailed view. Technically all the relations are

displayed in the graphic, but the question is how to find the ones users want to see in

detail? One possible answer is to use a slider for magnification and minification, but

when there’re too many nodes, the landscape picture could be only dots and lines, which

are meaningless and unorganized, and require many more actions to be taken before

finding the part users need most. Therefore, this method of visualization does not fit in

this situation.

3.3.6.2 First Prototype

After reviewing current visualizing projects, I noticed that most of the projects were

focused on delivering the new concepts, but the practical purposes were not valuable.

Considering the relations between MISP and VCL message path, which is illustrated in

Figure 3-1, graphical path that was used in VCL visualization could be used as the base

for the intricate connections.

To combine the new concepts with the current system, I started to analyze the

characteristics of the project. The most important part was to visualize the connections,

and at the same time information such as components’ name and location, and the group

they belonged to had to be shown in a readable way. With so many details to be

presented, my first design was a trail of using 3D models for visualization.

Displayed in Figure 3-19, the

first prototype designed in

Illustrator was to show the

connections spatially. To be

more specific, the

information was displayed

(a) Detailed view (b) The overall structure

Figure3-18. Graphopt project for visualizing complex data connections

Resource from: http://www.schmuhl.org/graphopt/

http://www.schmuhl.org/graphopt/

 31

in three dimensions, each one representing one type. For instance, on the bottom of the

layer the color coded groups that components belong to were shown, and on the back

the components’ information could be found. The components were placed in the

middle of the layer connected by blue lines, indicating there were connections between

them.

When the components were structured in a linear dimension, the 3D modeling method

could be useful. However, when components were connected in a complex network, it

was difficult to organize them in multiple layers while keeping the texts visible.

Moreover, it would require a proper way to navigate within the network so users could

see the landscape clearly. To achieve this, animation could be a possible solution that

supports functions like rotating so that users will be able to view the structure in

different angles. The first prototype was not feasible both technically and practically,

nevertheless it demonstrated a way that had potential to improve.

3.3.6.3 Second Prototype

In order to make a doable design that reflected user requirements, I referred back to the

current document for showing the application landscape. A sample use case for MISP

Visualization is attached in Appendix III, which is an existing landscape created by

Microsoft Visio for demonstrating the

connections and between different

components under an application.

Figure 3-20 presents a screenshot from

the use case. All the components and the

connections are drawn manually and it

will be very beneficial if all the relations

could be displayed automatically and

presented in interfaces that allow users

to navigate and filter based on their

demands. Focusing on that part, I started

designing the second prototype with the

current design as a reference.

The basic structure was similar with the current one, while new functions were added in

the prototype. Figure 3-21 presents the interfaces created in Illustrator, and these

Figure 3-20. Screenshot from a sample MISP

visualization use case

(a) Initial state (b) Detailed view of a chosen component

Figure 3-21. Interfaces from second prototype of MISP visualization

 32

interfaces were based on the sample use case. The overall style is similar with VCL

visualization, with the purpose of being consistent. The left one illustrates the initial

status of a chosen application, which name is on the top of the page. The whole image

of connections is on the left part, while at the bottom of this part Details-on-Demand is

where a specific message path is shown. Once users click on any of the component, a

complete message flow that contains the selected component is displayed, which is

similar with the graphical view in VCL visualization project.

On the right of the interface is a navigation panel with different categories. The

categories were designed based on the contents of different attributes, but it required

further discussions with stakeholders to find out their requirements and most proper way

to divide them. Search boxes and check boxes are two assets used here, because for

experienced users they know the name and attributes of the components they want to

see and by typing in the values they could quickly find what they look for, and for

inexperienced users they could scroll down the list and find which one seems familiar

and then select by checking or not checking the boxes in front of each option.

Furthermore, as some categories might contain many options, it is not possible to show

the long list directly. Therefore, expanding buttons are embedded at the bottom of the

frames in categories with long lists. By default four to five options are visible on the

screen depending on the frequency users need to select, and a complete message can be

viewed by clicking on the expanding buttons. Consequently, a vertical scroll bar appears

on the right, which enables users to see all the categories when one or more lists are

expanded.

Some details in the prototype need to be mentioned. First of all, when none of the

components are selected, the space for detailed view is empty; while any component is

clicked, the message path is displayed together with a slider on the title bar, allowing

users to zoom in and zoom out for detailed views. Meanwhile, a gray shade on the

landscape view covers the part that has been selected, indicating which groups these

components belong to. When the detailed path is magnified, the shade is changed

accordingly, which could be referred to in Figure 3-22. As in the detailed view only six

components are visible, the shade on the

landscape view also covers the groups the

six components are in. Furthermore, in

the detailed view the frame of the

components are color coded, meaning

that they are in different groups. However,

these colors are not corresponding to the

landscape view, as in the latter view all

the frames are in the same color. One

consideration of not being consistent is to

avoid using too many colors on the

interface and making it over fancy that

leads to dazzling and unprofessional. In

order to show the reason of not using

color coding in the landscape view to the

stakeholders, I also added the colors to the frames in this prototype for comparisons for

later stakeholder feedback interview.

Figure 3-22. Interface from second prototype of

MISP visualization with magnified path

 33

3.3.6.4 Feedback Interview

Instead of conducting feedback interview after creating different versions of prototypes,

in this project I decided to get instant feedback from stakeholders in order to save

unnecessary time as well as keep the design as the way they wanted. Therefore, I invited

two stakeholders, who actively provided sufficient feedback in previous iterations for

reviewing current design and gathering their thoughts towards the visualization project.

Their impression of the visualization work was positive, and they both thought that the

way of presenting the landscape was clear. Because the overall layout did not change

much compared with the current drawings created in Visio, they believed that users

would not have any difficulties of using it. Furthermore, the global manager considered

the detailed view was beneficial when the landscape was complex. With the help of

slider they would be able to extract things they needed out of the complexity. In short

they were quite satisfied with the design.

They also offered some suggestions to improve the prototype. The first one was

regarding the navigation panel. They did not think the categories I divided into were

appropriate according to their experience, and consequently they gave me better

opinions on how to define the categories in the navigation panel, which will be reflected

on the next prototype. As for the colors of the frames, they did not have special

preferences and considered either way had its advantages. However, if there were many

colors for different groups, the choice of colors should be careful; otherwise people

might get confused about why this specific color was connected with the specific group.

3.3.7 Second Iteration for MISP Visualization

After the feedback interview, I got some suggestions on the navigation panel as well as

the way of presenting the graphical path. The ways of presenting the application

landscape was approved by the stakeholders, so in the next prototype I focused on

improving the interface by combining their suggestion in the new design.

3.3.7.1 Third Prototype

I created the interfaces in Illustrator first, as it was easier to use a graphical designing

tool to see how the graphics could be arranged. After that I imported the files to

Expression Blend and added some interactions to allow users navigate through different

functions. The interfaces of the prototype built in Blend are illustrated in Figure 3-23.

The basic concept of this prototype was similar

with the previous one, while the layout was

reorganized in a way that every part could fit

more properly. For intense, according to the

stakeholders’ suggestions, the navigation panel

is now divided into categories of Filter Panel,

Application, Implementation, Environment

and Correctness, and these categories takes up

less space than the previous navigation panel.

Rather than having to reserve the whole space

on the right of the interface for navigation

panel, the spare place could be used for the Figure 3-23. Screenshots from prototype 3

built in Expression Blend

 34

detailed view. The detailed view is wider, which allows two more graphical components

to be displayed at the initial stage and one more when the path is magnified. Although

adding one or two more components does not seem to be a big change, it is helpful

when the message path contains too many components and users feel more comfortable

to work with by reducing the distance of horizontal movement.

By importing Illustrator files to Expression Blend with a function called WPF

SketchFlow Application that supports navigations within different pages, interactions

were added and reflected in a SketchFlow Map, shown in Figure 3-24. The lines

connecting different tabs indicate that

there is navigation between the two

pages. The more navigation exists, the

complex the lines become. For instance,

when users click on the first icon in the

first row, a graphical message path

would appear in the bottom of the page, indicating which path the clicked component

belongs to as the left image presented in Figure 3-25. Same as the second prototype, a

shade appears on the top area, corresponding to the detailed view by covering all the

components contained in the message path. Furthermore, in the graphical path the

detailed properties of each component can be found, and the texts being too small to

read are solved by adding a slider to magnify the whole path up to 2 times bigger. Users

could change the value of the slider to adjust the size of the path, and although this

function is not achieved because everything is made of graphical paths, a substitute for

it is that once users click on the slider they will be navigated to a page with a magnified

path, illustrated in Figure 3-25 (b).

3.3.7.2 Feedback Interview

This feedback interview was very fast because the third prototype was a revision based

on the second one, and in order to get more stakeholders’ opinions about it, four people

participated in the interview process, two from the previous sessions, the global

manager and a product manager, and two new stakeholders, an application architect and

another global manager who also worked with the application-to-application

connections closely.

Figure 3-24. SketchFlow Map in Expression Blend

(a) Detailed graphical path (b) Graphical path being magnified

Figure 3-25. Detailed graphical path and its magnification in prototype 3

 35

All the participants were very satisfied with the new design, and they considered that if

it could be implemented it will bring many advantages to users and application owners.

The only thing they were concerned was that because there was too much data in the

database and it was not organized very well at this moment, problems might occur in the

implementation. However these technical difficulties did not belong to the designing

category, and they were software developers’ job to find solutions to the problems. Thus

the graphical design for MISP visualization reached to a close.

3.4 Implementation

My main responsibility of the thesis work was to design interfaces, and apart from that I

could also work with implementation team to help with integrating the design into

production. In the original thesis proposal another student should be responsible for

working with the implementation part together with me at the beginning, but for some

reason the other student quit the project, so I did not have the opportunity to talk these

thoughts with a software developer and ask her opinions from a developer’s perspective.

When the final designs were approved, the stakeholders decided to choose an in-house

developer for the implementation and consequently, I got a chance to continue working

with the projects, starting with VCL visualization.

 3.4.1 Technical problems

After I uploaded the prototypes built in Expression Blend to subversion and the

software developer checked them for compelling with Microsoft Visual Studio for

developing Internet based systems, technical problems occurred. In Visual Studio

elements should be ready to be programmed, but in WPF SketchFlow Application as its

framework they were only paths and graphics, not real scroll bars or sliders. Even

Expression Blend could generate code behind the interfaces and the codes could be

recognized by Visual Studio, it was impossible to program with non-programming

elements. Therefore I had to redo the prototypes with real elements under Silverlight

Application in Expression Blend and make sure to use the actual elements for buttons,

scroll bars, check boxes and the others.

The differences between WPF application and Silverlight application are various, both

from the development’s perspective and the GUI designing’s perspective. As a non-

expert in development field, the differences could be summarized as WPF can be

deployed to desktop or run in Internet Explorer, while Silverlight can be deployed to

more platforms. In short Silverlight has a ‘broader reach’ that could be accessed from

many systems and browsers [29]. From the GUI designing side, WPF provides more

functions than Silverlight; keyboard or mouse events are only available in WPF

applications. Compared with WPF, Silverlight losses some functions and among these

some could be achieved by developers manually adding in the control tree, but still

Silverlight limits the choice of interactions by GUI designers.

As the discussion above indicates, WPF and Silverlight have their own advantages and

disadvantages, but for applications run in such a big company, it is necessary to develop

in a broader sense in order to avoid potential technical difficulties in other systems.

Therefore, to be compatible with Visual Studio for development under Silverlight, the

prototype had to be changed.

 36

Figure 3-27. Layout types

in Expression Blend

3.4.2 VCL visualization in Silverlight

To change the type of prototypes, I first sought the possibilities to convert existing

projects into Silverlight application but it did not work, so I had to start over the entire

projects. I first began with the VCL visualization coordinated by the experienced

software developer, and along this process I also learnt a lot about how to make

Silverlight prototypes compatible for production.

3.4.2.1 Basic Structure of VCL Prototype in Silverlight

The first step was to create the initial interface in Silverlight that contained every

element in the exact same size and color as the previous prototype. Instead of simply

drawing rectangles or ellipses for buttons and scroll bars, this time I needed to choose

the programming elements in the project. Expression Blend has

a default set of assets and a toolkit of extensions prepared for UI

designers so all I had to do was add the correct ones to the

proper position on the interface. The elements were all in default

color and shape, only the texts editable, as Figure 3-26 presented

the most common ones. The styles could be changed through

editing templates without coding, which is a convenient way for

interface designers to focus on the style instead of bothering

with the code.

It was not a difficult task to put the elements in the right position, but the difficult part

was how to organize them appropriately. Similar with Illustrator that users could group

many paths, graphics or sub-layers into a layer, Expression

Blend also offers this function. However, there are several

layout types to choose, and some look quite similar on the

interface. Therefore I chose the most common one, grid, which

works as a big frame to have everything filled inside without

changing any individual values, to group elements according to

the categories they belonged to: the banner on top of the

interface, the result list view, and the list/graphical view. Other

layout types include Canvas, StackPanel, ScrollViewer, Border,

and Viewbox, and the icons for each type show the typical

characteristics, which could be found in Figure 3-27.

3.4.2.2 Review of VCL prototype in Silverlight

The major changes in this prototype, as mentioned above, were to create the interface

with real programming elements. Therefore, scroll bars, tabs, radio buttons, and sliders

were used in VCL visualization prototype built in Silverlight as the replacement of the

false ones made up of graphical paths. The initial design of building the structure of the

prototype was almost finished, only remaining customized elements.

Then I asked the software develop to look it over, and some problems revealed. Firstly,

grid was not always the choice when a better option was available. For instance, when

placing the result item one after another, it was easier to use StackPanel instead of grid,

because as the name indicates, StackPanel behaves like a stack that controls the items

inside in a vertical or horizontal order. The advantage of having StackPanel was that the

100 items retrieved from each search could be automatically placed in a horizontal order,

Figure 3-26. Default styles

in Expression Blend

 37

so there was no need to manually place the items one by one. However, it was not

enough to only use StackPanel for the result list, because not all the 100 items could be

shown at the same time, and a scroll bar was necessary when the items went beyond the

visible space. A suggestion to build the structure was to group the items in a StackPanel

and place it in a ListBox, which could generate scroll bars when the list items were

more than the displayed space.

Secondly, in the lower area where the collected list messages and graphical paths were

displayed, the layout needed to be clearly defined. For example, in the list view all the

items were collected in tab controls, while in the graphical view the graphical path

should also be collected in a type of control that could be triggered by changing the

value of the slider. To be more specific, the control that the graphics were in should be

connected in some way to the slider so that once users moved the slider the size of the

graphics could be increased or decreased. Grid did not support that function, and neither

did StackPanel, so it was necessary to find a control that allowed a connection to be

built so that the intended function could be achieved.

Thirdly, as the data was dynamic, the prototype should not contain the fixed data, but

instead use templates for each item and then through programming to fit the actual data

in the templates. This work required programming skills, and the software developer

would be responsible for it. This one had no conflict with the first two, for the reason

that choosing the proper ways of grouping items was the fundamental of building

templates, and with fixed ‘fake’ data how the actual interfaces would look like could be

simulated.

3.4.2.3 Further development of VCL Prototype in Silverlight

After the review, I was clearly instructed about the elements that needed revisions and

improvements, and my next focuses were to embed the first two problems discussed

above into the prototype.

The characteristic of ListBox is that when the size the ListBox is set to a fixed number,

all the items inside are stretched to fit the width, while the height is a default number

that could be changed in the template. Once the height of items is more than the fixed

height of the ListBox, a scroll bar is generated that allows users to scroll down and see

all the items. A brief example is illustrated in Figure

3-28, in which nine items were added to the ListBox

with the height of only showing seven rows directly.

The function that ListBox provides could be applied

to the result list, in which 100 results are displayed,

as Figure 3-18 demonstrates in the upper area.

Setting a proper height and width to the ListBox that

exactly replaced the original grid and adding

components to the ListBox made the upper area look

the same as before, but the biggest difference was

that the number of components added to the list

could be dynamic while only 20 were shown at one time.

Figure 3-28. An example of illustrating

how a ListBox works

 38

Finishing with the result list in the upper area, the next task was to find a control to

group the graphics that enables graphics to transform along with the change of value of

the slider in the lower area. By looking up on the Internet a tutorial of Silverlight

toolkits introducing the use of ViewBox was found that could be used to resize the

graphics and therefore achieve the intended purpose [30]. ViewBox could resize itself

based on the content, and as the number of components in a message path was dynamic,

it was not certain how many images would be collected in the graphical view, therefore

the characteristic of ViewBox precisely fit to the need.

During several pilot tests of using different controls to build the structure of the

graphical view, the final one was that the detailed texts and the graphical icon were

grouped in a grid as an individual component, and these components were grouped in a

StackPanel, which was placed inside a ViewBox. The reason to build a structure like

this was because a grid worked as a collection of objects that did not change any

attributes inside it, and as a result the position of the grid was fixed. In this scenario the

components should be placed one after another in a row, and with the help of

StackPanel the components were collected in a stack, without the need to manually

align them. Meanwhile StackPanel also worked as making the grids as a whole so they

could be treated as one ‘image’ in a ViewBox. It avoided the trouble of linking the

transformation individually to each grid for magnification.

In addition to the two major improvements, during the collaboration with the software

developer, I found that a problem exists in the current system that should be solved

appropriately. That was when the texts of the FromAddress or ToAddress in the list

view were too long to be

displayed in some cases, they

were just cut off. In Figure 3-

29 the long texts are

highlighted. Even if the cut-

off happened occasionally, it was not a good way to deal with the long texts. After

discussing this issue with the software developer, we decided to use GridSplitter to

solve this problem. GridSplitter is a control that allows users to resize dynamically the

width or height of grid cells [31], and adding it to the columns between FromAddress

and ToAddress would let users drag the border of the column left or right to increase the

width of right or left column. It was not the best solution, because dragging requires

horizontal movement that is in the opposite direction of scroll bars and users prefer one

direction movements rather than moving around. However, as mentioned above this

situation does not occur often, this design was the most convenient to develop based on

the current prototype and not much extra work was needed.

By completing the changes and improvements on switching from the original WPF to

Silverlight, the prototype was able to be compelled in Visual Studio for the preparation

of implementation. The software developer built the templates of the structure of the

layout based on the prototype, and then bound the data to the prototype so it was

deployed in the production.

Figure 3-29. Example of list view containing long texts

 39

3.4.3 MISP Visualization in Silverlight

Unlike the finished VCL visualization project, MISP visualization is still in process for

the reason that so much data in the database needs to be sorted out before building the

interfaces to show the relations and connections. Therefore my task in this one did not

include the collaboration with the software developer for the production. However, I

was still required to build the prototype in Silverlight with all the elements

programmable, so that they could use it in the future when the data sorting process is

complete.

With the experience of creating VCL project in Silverlight, the majority went smoothly.

The only difficult part of shifting it to Silverlight was that the structure of showing the

landscape, as the data was very dynamic so was the number of columns and rows. To

build the logic behind the interface I firstly did some simple sketches to show the

concept, and the final decision was that since everything could not be fixed, it had to be

achieved with the help of coding. I discussed this issue with the software developer and

he considered that it was doable but would need some effort to work on it.

 40

4. Results

4.1 Final Design for VCL Prototype in Silverlight

After months of working on the project, the final design for VCL visualization was

deployed in the system, which will be launched to replace the current one soon.

Compared with the previous prototypes, the final design built in Silverlight did not have

much difference, but behind the interfaces the structures and the use of programming

elements enabled the integration to be carried out successfully. Figure 4-1 presents

some screenshots from the Internet Explorer in the left column, which demonstrates

how the interfaces will look like in the real working environment. The right column

explains the screenshots in detail, with the focus on the designing area.

The home page of VCL

system offers several options

to filter the search criteria.

The interface of the home

page was designed by another

in-house developer who is

also responsible for changing

the system from an old

structure to Silverlight.

A result page appears after

clicking on the search button

on the home page. One

hundred results can be

retrieved at each search, and

on each page 25 is presented

directly. The arrows on the

second column of the

interface will lead to the page

where the message sequence

will be displayed.

After clicking on the arrows

as mentioned above, the

interface with traceable and

unsorted messages is shown

both in list and graphical

view. In the left case, as only

two messages were sorted,

there were only two graphical

components in the graphical

view.

(Continued on next page)

 41

The slider in the middle

allows users to adjust the size

of the graphics up to four

times bigger than the original

ones, and by magnification

users are able to read the

detailed texts on the graphics.

By switching between two

radio buttons, users are also

able to see the components

and their details in the lower

area. The expanding button at

the beginning of each row

allows users to see the details

in a table.

The graphical path in the final design is placed differently from the original design, as

the initial intention was by putting the graphics on the bottom of the page, users did not

need to navigate back and forth to see the message path a selected component is in;

however, during the implementation phase, it was decided to be placed on the next page,

with the consideration that some users might not have screens big enough to show a

complete view. At the current stage the graphical path was displayed together with the

list of message sequence, while some modifications would be applied later to adjust the

content of the interface so that the graphical path could fit into the screen.

4.2 Final Design for MISP Prototype in Silverlight

As discussed in previous section 3.4.3,

MISP visualization project is still under

progress, and the interfaces I created for the

thesis work will be implemented later once

the data is organized well. Figure 4-2

depicts the final design by a screenshot from

the Internet Explorer with fake data in it. In

the figure the landscape was not complex,

so users were able to see everything clearly,

but if there were over 100 components in a

landscape, it was hard to see the connections,

so by using the filter panel users could

select which components they wanted to be

displayed in the interface, and some

Figure 4-1. Screenshots of final design of VCL visualization project presented in Internet Explorer

Figure 4-2. Final design for MISP visualization

project built in Silverlight

 42

unwanted data could hence be filtered out. To enhance the usability, four categories of

filtering data were provided based on users’ demands. Moreover, the detailed view in

the lower area allowed users to select a specific component and see the connections the

component has, and not only graphical path was shown, the attributes of the component

could also be found in the detailed view.

There are no interactive functions in the current Silverlight prototype, as it is not built

with templates and synchronized with actual system yet. After building the project in

Silverlight and designing the elements to be integrated in the production, I handed it to

the software developer and explained the concept of how the interaction should work.

He will continue the work by compelling the project with Visual Studio, adding the

logics behind the interfaces and using animations to show the complex relations.

 43

5 Discussion

5.1 Method

Some methods have been introduced in classes of Interaction Design Methodology and

Method of Interaction Analysis, and to sum up from these different methods, the basic

idea is to find what users need in questions based or observation based methods. The

most common ones are interviews, questionnaires, focus groups and participatory

observations, for instance. Each method has its advantages and based on the course

lecture, they are served to investigate needs and requirements, because in most of the

cases users do not know what they really want, and it is the designers’ responsibility to

find out the most important information.

In the working environment while the thesis work is conducted, however, the situation

is different from the course lecture, as the stakeholders in the company are clear about

what they want to be implemented and how it should look like. Although they did not

have a specific picture of every element, during the interviews they expressed their

wishes in details and gave personal suggestions on what the interface could be like. It is

not contradictory with the class work, as in this case they already had the topic of the

thesis work in mind and the task was about their daily work which they are familiar with.

In addition, the experience of conducting interviews in the company is different from

the ones in school for course assignment. The biggest difference is that when

interviewing other students at school, they normally do not have a very clear focus and

their answers can be whatever comes up to the minds. Yet in the company all the

interviewees knew the topic and had plenty of experience, so their feedbacks were more

from the perspective of the difficulties they encountered during the work.

Another major difference is that the interviewing process is mostly led by the

interviewees in the company, while at school participants only answer to the questions.

The reason to cause this difference is that because in the thesis work when the

stakeholders attended the interview, they did not only answer questions, they also

demonstrated their tasks and by doing that they could discover more problems they

would like to be taken care of. In other words, they hold the initiatives in the interviews

to provide information that is useful for the design and development of the thesis work.

5.2 Results

The final designs of VCL visualization and MISP visualization are presented in section

4, and because there is not much time left for implementing the latter one, only the first

one has been carried out in the production with the collaboration between me and the in-

house software developer. Although it is deployed successfully, and the problems

during the integration of the project from Expression Blend to Visual Studio have been

solved finally, there are still some compromises in the VCL visualization project.

During the thesis work, I was not aware that the new VCL system was under

development and due to the lack of communication, some inconsistency occurred on the

interfaces, the expanding arrows for instance. It was not noticed until the integration

was finished, and when we attempted to change the styles correspondingly, some

technical errors happened in the style template and it might take longer time to fix them.

 44

As a result the inconsistency is still there on the interface, and Figure 5-1 gives the

example of the expanding arrows. On the two pictures highlighted by a red circle, the

left one is a square with

a plus sign in the middle,

and when it is expanded,

the plus sign turns into a

minus sign; while the

right one is a square with

an arrow pointing at the

bottom, and when it is expanded, the direction of the arrow is changed to the top as the

image indicates. Although it is not a problem of using the function, all the elements

should be consistent in styles so there are not confusions about the different functions

these arrows would trigger [32].

5.3 Limitations

The major limitation is that data visualization, as a newly sprung method, does not have

many relevant references to learn for this thesis work, especially in terms of visualizing

massive data and its daedal relations, while at the same time making the interface in a

user friendly way to reflect users’ requirements. Although tables, bar charts and flow

diagrams have been used for many years to show data in different forms, these

traditional visualizations are used to show simple data, with the purpose of comparison

or presenting information. However, in this work, the data is more complex and the

purposes are various according to the users’ role and their different requirements.

Therefore, finding an appropriate way to present data is a challenge throughout the

whole designing and developing process. In the specific working environment the

requirements are relatively higher than concept designs, for instance the design

shouldn’t be over fancy or sophisticated. As a result, lacking of effective references

makes the final results present the data in a graphical approach whilst still restricted

within the traditional method of tables and flow charts.

Another limitation is to build prototypes in an unfamiliar application, Microsoft

Expression Blend and work together with the production for integrating the project into

practical use. As introduced in previous section, the application is not difficult for

drawings simple graphics or creating interactions in animation, but the interactivities are

restricted depending on which mainframe users choose. In the process the prototypes

were firstly built in WPF that offers more interactive events. When integrating the

prototype into production, it had to be turned into Silverlight framework to be able to

deploy successfully, and some mouse or keyboard events had to be removed. As an

interface designer, I did not focus much on the production side and ignored the fact that

different frameworks would cause different result. For this reason, revisions were made

at the beginning of implementation and after collaborating with the software developer

the problems were eliminated. Lack of experience firstly became a barrier to deploy the

project but as more practices were made, the limitation could be avoided.

5.4 Collaboration

Although the process of the thesis work has been delayed due to the absence of another

student being responsible of the software development work, it was nevertheless a

practical and valuable experience of working on reallife tasks together with an in-house

Figure 5-1. Expanding arrows in different styles on the interface

 45

developer who joint in the work after the designing process finished. The collaboration

was very helpful in terms of effective communication and patient instruction.

With little knowledge of Silverlight framework, I encountered many difficulties like

choosing the right programming elements and arranging elements in different layout

types. The help from an experienced developer was not only solving the current

problem, but also let me know how to handle with similar situations. Moreover, because

the application Expression Blend was used in the development for the first time, when

some technical problems occurred during the implementation, we had to search for

solutions on the Silverlight forums and fortunate enough most of the problems were

resolved properly.

In addition, the effective communication allowed the collaboration to go smoothly and

it avoided the waste of time caused by misunderstandings or miscommunication

efficiently. The software developer is not only experienced in his profession, but he

plays the role of being a mentor as well. The collaboration reflects the reallife situation

when people work together on the task and it is an important experience I learned from

the thesis work.

5.5 Scientific Contribution

The biggest contribution the thesis work could provide to future scientific research is

that it uses a modern data visualization approach to visualize complex data in an on-the-

job environment, which could be used as a reference of how the modern approach could

be applied in the real life tasks. Nowadays, most of the graphical designs stay in the

concept designing stage, and it is time to promote them into practices. However, the

problem of using the concept designing is that in most cases the designs are too

sophisticated and could not be applied directly. How to make the designs more feasible

and usable is an important topic in the field of data visualization, especially in terms of

graphics and the complexity of data.

Although the final result of the thesis work did not fully reflect the concept of using

pure graphics to visualize data, it could arouse discussions in the scientific field of how

to balance the design to meet the requirements that companies may have, as well as

whether the graphical designs should be a compromise between the usability and the

production. As in most cases the graphical or interface designers and the software

developers are different groups of people, and when the design is too complex to be

implemented, the developers tend to seek easier ways to get work done. These issues

require further research to be carried out in order to find better solutions when using

data visualization for practical tasks.

5.6 Future Work

Although VCL visualization project has been successfully deployed in the system, there

are some modifications that can be applied to the interface look better. As all the styles

of different elements are stored in the project, it is possible to make the elements

coherent in styles and the interface will look more consistent.

The data in MISP needs to be sorted out in order before the MISP visualization takes

into implementation. It requires a lot of time and effort, and unfortunately it cannot be

 46

finished during the thesis work. The prototype has been handed over to the in-house

developer, and once the data is organized logically, the project can be deployed and the

user experience will be enhanced by visualizing the components, their connections and

the application landscape in graphics.

 47

References

[1] Help for Managing Integration Solution Provisioning. MISP Help Center. Volvo IT

Internal Site. Retrieved on Sep. 20, 2011.

[2] V. Friedman. Data Visualization and Infographics. 2008. Smashing Magazine.

Available at: http://www.smashingmagazine.com/2008/01/14/monday-inspiration-data-

visualization-and-infographics/. Retrieved on Aug. 23, 2011

[3] V. Friedman. Data Visualization: Modern Approaches. 2007. Smashing Magazine.

Available at: http://www.smashingmagazine.com/2007/08/02/data-visualization-

modern-approaches/. Retrieved on Aug. 23, 2011

[4] Flickr Time. Available at: http://www.hottoast.org/convexstyle/flickrtime. Retrieved

on Mar. 3, 2011

[5] Fidg’t Visualizer. Available at http://www.fidgt.com/visualize. Retrieved on Mar. 3,

2011

[6] P. Morville. Ambient Findability. 2005 1
st
 edition. O’Reilly Media, Inc.

[7] J. Maeda. The Laws of Simplicity. 2006 1
st
 edition. The MIT Press.

[8] M. Fowler. The New Methodology. 2005. Martin Fowler. Available at:

http://martinfowler.com/articles/newMethodology.html. Retrieved on Feb. 19, 2011

[9] Lecture 4 Process and Method: an Introduction to Rational Unified Process. ADT

TeamPlace. Volvo IT Violin. Retrieved on Dec. 4, 2011

[10] B. Kent. Agile Software Development. 1999. PM Briefcase. Available at:

http://www.pmbriefcase.com/methodologies/50-software-development/55-agile-

software-development.html. Retrieved on Dec. 7, 2011

[11] J. Smith. WPF Apps with the Model-View-ViewModel Design Patten. 2009.

MSDN Magazine. Available at: http://msdn.microsoft.com/en-

us/magazine/dd419663.aspx. Retrieved on Jan. 9, 2011

[12] J. Gossman. Introduction to Model/View/ViewModel Pattern for Building WPF

Apps. 2005. MSDN Blogs. Available at:

http://blogs.msdn.com/b/johngossman/archive/2005/10/08/478683.aspx. Retrieved on

Jan. 9, 2011

[13] About Silverlight. Microsoft Silverlight. 2011. Available at:

http://www.microsoft.com/silverlight/what-is-silverlight/. Retrieved on Apr. 10, 2011

[14] VCOM, Operation Level Specification. 2009. Volvo IT Violin. Retrieved on Feb. 5,

2011

[15] M. Maguire and N. Bevan. User Requirement Analysis. 2002. Kluwer Academic

Publishers. Available at: citeseerx.ist.psu.edu. Retrieved on Mar. 9, 2011

 48

[16] C. Larman. Applying UML and Patterns. 2005 3
rd

 edition. Prentice Hall.

[17] V. Sauter. What is Prototyping? 1999. University of Missouri-St. Louis. Available

at: http://www.umsl.edu/~sauterv/analysis/prototyping/proto.html. Retrieved on Mar. 3,

2011

[18] G. Gaffney. What Is Usability Testing? 1999. Information & Design. Available at:

www.infodesign.com.au. Retrieved on Mar. 3, 2011.

[19] TeamPlace: What? Why? When? Volvo IT Violin. Available at:

https://teamplace.volvo.com/info/default.aspx. Retrieved on Dec. 2, 2011

[20] Global Integration Infrastructure. TeamPlace. Volvo IT Violin. Available at

https://teamplace.volvo.com/sites/global-integration/default.aspx. Retrieved on Aug. 5,

2011

[21] Next generation integration OS platform. Volvo IT. 2010

[22] Volvo Group Icon Visual Style. Design & Usability. Volvo IT Violin. 2007

Available at: https://teamplace.volvo.com/sites/application-development/default.aspx.

Retrieved on Aug. 5, 2011

[23] What Is Expression Blend. Microsoft Expression Blend. 2010. Available at:

http://www.microsoft.com/expression/products/Blend_WhatIsExpressionBlend.aspx.

Retrieved on Aug. 12, 2011

[24] M. Cagan. High-fidelity Prototypes. 2008. Silicon Valley Product Group. Available

at http://www.svproduct.com/high-fidelity-prototypes/. Retrieved on Aug. 5, 2011.

[25] Apache Subversion. About Subversion. 2011. Available at:

http://subversion.apache.org/. Retrieved on Oct. 5, 2011.

[26] T. Bergmann. Identify Stakeholders. Ultimate PMP® Exam Prep Study Guide.

Available at http://www.truesolutions.com/pdf/identify_stakeholders.pdf. Retrieved on

Aug. 14, 2011

[27] A. Cooper. About Face 3: The Essentials of Interaction Design. 2007 3
rd

 edition.

Wiley Publishing, Inc.

[28] Visual Complexity. Available at: http://www.visualcomplexity.com/. Retrieved on

Mar. 23, 2011.

[29] Graphopt. Visual Complexity. Available at: http://www.schmuhl.org/graphopt/.

Retrieved on May. 10, 2011.

[30] J. Marsman. When Should I Use WPF vs. Silverlight? MSDN Blogs. 2008.

Available at: http://blogs.msdn.com/b/jennifer/archive/2008/05/06/when-should-i-use-

wpf-vs-silverlight.aspx. Retrieved on Aug. 13, 2011

http://www.schmuhl.org/graphopt/

 49

[31] J. Angel. Silverlight Toolkit: ViewBox. Justin myJustin. 2008. Available at:

http://blogs.silverlight.net/blogs/justinangel/archive/2008/11/06/silverlight-toolkit-

viewbox.aspx. Retrieved on Aug. 3, 2011

[32] N. Raychev. Using the GridSplitter control in Silverlight. Silverlight Show. 2008.

Available at: http://www.silverlightshow.net/items/Using-the-GridSplitter-control-in-

Silverlight-2-Beta-1.aspx. Retrieved on Aug. 3, 2011

[33] J. Tidwell. Designing Interface. 2005 1
st
 edition. O’Reilly.

 50

Appendices

Appendix I. Outline of Stakeholder Interview

General Questions

1. How often do you use MISP?

2. Do you consider yourself as an expert user?

3. Do you think it is easy to use?

4. Have you ever had any difficulties of ordering tools in MISP? If yes, what are they?

5. Do you think the current functions are enough? If not, what should be added?

6. What do you think should be kept on current interface?

7. What do you think needs to be changed?

8. What relevant information do you expect to see on the interface?

9. How would you want it to be visualized? (in text, graphics, or others)

10. What suggestions or comments do you have regarding MISP, its interface and ease

of use?

Predefined tasks Questions

 Visualize the sequences 1. Do you think it is necessary to view the message

sequences/information flow? Why?

2. Can you describe under what circumstances you

would need to view the sequence?

3. Will it be used frequently?

4. How would you wish it to be visualized?

5. What information do you think needs to be

included and what needs to be visualized?

6. What sequences do you prefer to be visualized?

7. Can you prioritize them?

8. Do you prefer to have all the information

visualized at the same time on the screen? Or do

you prefer to have different views that you can

choose which to be displayed?

9. Where do you prefer to have the sequences

displayed? (In a new window, in a pop-up window,

etc.)

10. What do you think is the benefit of visualizing the

sequence?

 Visualize the infrastructure 1. Why do you think the infrastructure needs to be

visualized?

2. When do you need to view the infrastructure? How

frequently?

3. What do you expect to be displayed regarding

infrastructure?

4. How do you like the infrastructure to be

visualized?

 51

5. Do you prefer to have all the information shown at

the same time on the screen? Or do you prefer to

have different views that allow you to customize?

6. Where do you want it to be displayed?

7. What is the benefit of visualizing the

infrastructure?

 Visualize the connections

of components

1. What connections do you wish to be displayed?

2. What information shall be included?

3. When do you want it to be displayed? i.e. do you

want it to be shown as a sort of instruction before

you do anything or as a feedback after you select

any components?

4. Do you expect to see only the chosen components

and their connections or all the available

components and their connections?

5. How do you want the connections to be visualized?

(tables, pictures, texts, etc.)

 Visualize the services and

implementation

1. What are the functions/usages of displaying

services?

2. What information needs to be displayed?

3. How do you prefer to visualize the services?

4. What function is it to visualize the services? i.e. is

it as a supplement to help users decide which

service to choose?

5. What do you think is the benefit of showing the

implementation? (being able to trace what’s been

done, for instance?)

6. How to show the implementations? (a series of

pictures, tables, lists, etc.)

 Create icons for

components

Appendix II. Stakeholders’ Requirement Wish List

The stakeholders’ requirements are summarized in a table as the next page illustrates.

Similar requirements are color coded.

 52

 53

Appendix III. Sample MISP Visualization Use Case

This use case is designed in Microsoft Visio, showing the application landscape.

