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Collision rate of spheroids in turbulence
SCHNITZER BARBARA
Department of Physics
Chalmers University of Technology and Gothenburg University

Abstract
Collisions of particles are of great importance in different processes in fluid flows,
like water droplets colliding in cumulus clouds forming rain, but also dust grains
that eventually form a planet. As a continuation of work that was done on spherical
particles I studied the collision rate of small spheroids in three qualitatively different
flows, namely in the kinetic limit, where particles move ballistically, in the shear
flow, where particles move uniformly, but can overtake each other, and in a smooth
random flow, which is a model for the small scales in turbulence. A corresponding
theoretical model that describes the two-dimensional collision rate was presented
and compared to simulation results. It was found that the particle shape has a
great influence on the collision rate in all cases. In general an increasing elongation
leads to a higher collision rate, while the two-dimensional shear flow was found to
be an exception in the sense that the collision rate approaches zero instead. Three-
dimensional systems were investigated by simulations but not supported by a theory.

Keywords: fluid dynamics, random flow, shear flow, spheroids, collisions.
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1
Introduction

How does rain form in clouds? How do dust grains become a planet? What are the
preconditions that certain chemical reactions happen? But also how do microorgan-
isms like plankton eat or mate in the ocean?
At first glance these questions seem mostly unrelated to each other, but having a
closer look they have indeed something in common. The underlying microscopic
processes are in all cases based on particles moving and colliding in a fluid flow, by
what they become bigger and can form macroscopic structures. So in order to give
an answer it is necessary to study how particles behave when they are subjected to
a flow, what mechanisms make them approach each other and finally collide, and
moreover how often they do that.

There has been done a lot of research on many similar questions aiming to under-
stand the problem, for instance in [18, 1, 11]. However, many aspects remain not
understood. In the case of organisms in water streams in the ocean [16, 9], rain
formation in cumulus clouds [20, 3, 8] or even the coalescence of dust particles in ac-
cretion disks around stars in the early stages of planet formation [29, 2] it is believed
that the underlying fluid is turbulent on the small scale. Turbulence is extremely
hard to deal with, but there have been developed statistical models [12] that make it
possible to nevertheless investigate it further, which will also be part of this thesis.

Factors that influence the collision rate can, for example, be the spatial and tem-
poral distribution of positions determined by the flow. Under given circumstances
particles might cluster together after some time, but they might also stay uniformly
distributed. Furthermore the actual collision process and what happens afterwards,
e.g. scattering or coalescence processes or chemical reactions, is a crucial aspect.
In addition the shape of the particles has an essential impact. So far particles
are often assumed to be spherical [10, 11], which is in many cases a very good
approximation, but sometimes it is very idealistic. A simplest example of a non-
spherical particle is obtained by ellipses of revolution, so called ’spheroids’. Spheroids
are still a caricature of real molecules but studying them provides the possibility to
apply the theories to a much wider range of problems, which one has to pay with
more complicated algorithms and equations.

The goal of my work is to investigate and provide basic tools to find an expression for
the collision rate of small spheroids in fluid flows depending on the particles’ shape
as a continuation of work that has been done on spherical particles. The impor-
tant difference to spherical particles is that the rotational velocity is an additional
factor that has to be included in the calculations. Even though such particles have

1



1. Introduction

been studied before [6, 7, 13], in particular their equations of motions and angle
distributions, the collision rate has not yet been investigated.
The focus of my research lies on the collisions of advected particles, which corre-
sponds to the very early stage of the previously given examples, where the particles
are still very small such that their velocities can be approximated by the flow veloc-
ities. As soon as they become heavier advection is not an appropriate description
anymore, because particles might belong to another size class or species and inertial
effects will become more and more significant. Investigating such systems is another
interesting research field, although it is not of importance here.
After this introduction I give a short overview of the terminology and basic concepts
within fluid dynamics in chapter 2. This should provide all necessary background in
order to understand the physics of the work. In chapter 3 I present previous work
that has been done on the collision rate of spherical particles with respect to two
particular examples, the shear flow and the random flow, which are taken up again
later but for spheroids. Chapter 4 is providing all the technical details about how
spheroids move and rotate in a fluid. The key words here are the Jeffery equations.
In addition, two approaches how collisions between such particles can be detected
are discussed and using that it is proposed a model how the analytical equation has
to be modified when dealing with spheroids instead of spherical particles.
In chapter 5-7 results for three different flows are presented. At first particles in
the kinetic limit with a constant velocity were investigated, followed by advected
particles in the shear flow and last but not least advected particles in the random
flow. The latter is very much related to appendix A, which provides a description
of the statistical model of turbulence that was used.
In the thesis I look at the problem from two different perspectives. On the one hand
the collision rates were extracted from simulations that were built up from scratch.
On the other hand I tried to approach the problem from a more theoretical point
of view starting from a basic definition of a collision. In the end the goal was to
support the theory with simulations. However, not in all cases a theory was found,
especially in three dimensions, but then the simulations still provide an idea of how
the shape of the spheroid influences the collision rate.
To round everything off I conclude in chapter 8 and give some ideas for the contin-
uation of this project.
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2
Prerequisites

This chapter is going to provide an overview of the terminology and basic concepts
underlying all the simulations and calculations contained in the thesis. It is supposed
to give a reader with a different background the chance to catch up. The aim is
not to overwhelm with mathematical details, it is rather to create an appropriate
framework.
The compilation is based on different publications on elementary fluid dynamics
[5, 24, 15, 23, 6, 10].
The first question one might ask is, what is a fluid flow and how must it be charac-
terized? It is defined as a liquid or a gas in motion consisting of interacting particles
that move around in space. Consequently the fluid has a velocity field u(r, t), where
r is the position of a fluid element, which consists of many individual particles with
average velocity u. The fluid element is basically a volume element around the point
r which has certain properties. It is not straight forward why this is a correct de-
scription. It is justified by the Continuum Hypothesis [15] assuming that the size of
the element is small enough compared to the whole system but at the same time big
enough so that it contains sufficiently many particles in order to define a reasonable
average.
The velocity gradient A(r, t) is the Jacobi matrix of u and describes how the ve-
locities change in time and space. Usually it is divided into a symmetric and an
antisymmetric part, S and O, as they correspond to different interpretations. The
symmetric part is responsible for the shearing and deformation whereas the anti-
symmetric part gives rise to rotations of the individual fluid elements.

A(r, t) = ∇uT (r, t) = 1
2(A(r, t) + AT (r, t))︸ ︷︷ ︸

≡S(r,t)

+ 1
2(A(r, t)− AT (r, t))︸ ︷︷ ︸

≡O(r,t)

Looking at small time scales the changes of the velocity field are usually considered
to be small.
The density ρ defines how many particles are in a given test volume of the flow.
In many cases it is assumed that the density is constant. This does not mean that
the particles always stay inside this volume but that as soon as particles leave the
volume other particles have to enter it. In mathematical terms this means that the
divergence of the velocity field vanishes, which is directly connected to the fluid
gradients:

∇ · u(r, t) = Tr(A(r, t)) = 0. (2.1)

3



2. Prerequisites

Such a flow is called atmospheric or incompressible.
Incompressibility is often a realistic assumption and throughout my work I only deal
with those kinds of fluids.
Evolving in time fluid elements are constantly subject to forces that act from all
sides and that result in deformations.
In general it is the stress tensor o(r, t) that defines the force per unit area on the fluid
element. One distinguishes between normal stresses, that describe the forces that
act perpendicular on the surface and that are in direct relationship to the pressure p,
and shear stresses, that define the forces in other directions and that are connected
to the symmetric part of the fluid gradients, as seen before.
If the flow is incompressible the deformations are volume preserving. And moreover
the fluid is a so-called Newtonian fluid if the stress tensor is linearly dependent on
the dynamic viscosity µ and the pressure in the following way:

o(r, t) = −p(r, t)1 + 2µS(r, t).

In general, the (vector) velocity and the (scalar) pressure field can be calculated at
any time using the Navier-Stokes equations. In an incompressible Newtonian fluid
flow they can be derived from Newton’s second law of motion F = ma (derivation
in [15]) which results in

ρ

[
∂

∂t
u(r, t) + u(r, t) · ∇u(r, t))

]
= −∇p(r, t) + µ∇2u(r, t) + f = ∇o(r, t) + f.

The equation also takes into account external forces f, e.g. gravitational forces,
which are however neglected in my work fo reasons of simplicity.
In principle it is a huge success to have an equation that describes something non-
trivial like a fluid, but there is a drawback: it is extremely hard to solve as it is a
non-linear equation. It has to be treated numerically and even then it is mostly not
possible with today’s computer power. For that reason it has become very successful
to use statistical models instead. Especially in turbulent flows those models are quite
useful which is why all calculations and simulations in this thesis are dealing with
those principles instead of solving Navier-Stokes. From many points of view they
represent real turbulence both qualitatively and even quantitatively in an accurate
way [12] even though it is basically only an idealised caricature of the real world,
which of course includes special situations or regimes where it is not a sufficiently
good model.
But what indicates turbulence? Very primitively it is something that looks chaotic
and not ordered or uniform, nevertheless there are smaller structures like vortices
or shears. Turbulence is in general very sensitive to the initial conditions.
As those are vague statements one uses dimensionless parameters in order to quantify
the nature of turbulence. The concept of these parameters takes an important role
in fluid dynamics. Often it does not help at all to have information about a certain
variable because in order to make any statement one needs to set it into relation to
a scale. For instance, from a microscopic point of view a particle in a fluid might be
big, but compared to the whole system it is very tiny.
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2. Prerequisites

The Reynolds number Re of a fluid is such a dimensionless variable linking the
characteristic time tf of the flow to adapt to external disturbances to the time t0
the fluid needs to travel one characteristic length scale l of the system, which could
be a certain particle size or even the diameter of a pipe depending on the problem.
In other words it connects the viscous and the inertia forces.

Re = tf

t0
=

ρl2
µ
l

u0

= lu0

ν

u0 = l

t0
is the characteristic flow speed and ν = µ

ρ
the kinematic viscosity which

connects the dynamic viscosity and the density.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 2.1: Shear flow

A laminar flow is created if Re is small. Here the
viscous forces dominate. This means that disturbances
do not have the chance to survive in a long time (on
the characteristic time scale), because the fluid is able
to damp the perturbations out before the fluid element
has moved on the characteristic length scale, i.e. t0 �
tf . What results is a smooth and linear flow. A very
easy and but nevertheless fundamental example for a
laminar flow is the shear flow. 2.1 illustrates it in two
dimensions. Further discussions are in chapter 3 and
6.
Increasing Re the flow becomes more turbulent, i.e.
the inertial forces dominate over viscous forces, meaning that disturbances affect
the fluid considerably. This is because the time it takes to ’correct’ disturbances is
too long compared to the characteristic time scale. A high viscosity limits the fluid
to react as it has high inertia, i.e. tf � t0. Consequently eddies are created.
Another important dimensionless parameter that is also related to turbulence is the
Kubo number Ku. It is defined a

Ku = u0τ

η
.

It relates the characteristic flow speed u0 to the speed η
τ
where τ and η, called

correlation time and length, characterize the small scales of the flow. The correlation
length indicates the size of the smallest eddies in the turbulence, the correlation time
on the other hand stands for the lifetime of these eddies. η

τ
then describes the velocity

of the flow fluctuations.
Therefore Ku is a measure how fast the fluid velocities fluctuate compared to the
typical flow speed. Ku = 1 is a fully developed turbulence which corresponds to a
real physical turbulence. If Ku < 1 then the the fluctuations are much faster than
the flow speed, thus the flow can be considered slow. In contrast if Ku > 1 the flow
is fast as the fluctuations are considerably small.
A subsequent question that arises after having defined a fluid flow is what happens
with a particle that moves in the flow. It is influenced by the flow but at the
same time it also changes the flow creating perturbations, which then may affect
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2. Prerequisites

the particle again. Consequently the whole history of the fluid flow and the particle
movement influences the situation at every time makes the whole problem extremely
complicated. Therefore it is necessary to make more simplifying assumptions or
investigate certain limits.
Considering a test particle in the fluid it is assigned a Stokes number St. It is
another dimensionless parameter that is given by the quotient of the characteristic
time of the particle to adapt to the flow tp and the characteristic time of the fluid
to change on small scales τ as defined before. It thus relates to inertia effects.

St = tp

τ

If St is very high particles will detach and consequently not feel the flow. In this case
the fluid adapts much faster than the particle is able to. If in contrast the particle
adapts much faster than the fluid changes (St � 1), the particle is advected by the
flow. Usually this is referred to the particle being small.
And if the particle is sufficiently small the history as well as the influences of the
particle to the flow can be neglected. It simply follows the flow’s streamlines, i.e.
its velocity can be approximated by the fluid velocity:

ṙn = u(rn, t).

Advected particles are much more convenient to deal with than inertial particles
and even in my work I only look at the limit of vanishing or infinite St number.
How particles actually move in the flow additionally depends on their shape. A
spherical particle is completely symmetric in all directions and it is defined only
by its radius r. Symmetries are always an important aspect which simplify given
problems tremendously. A spherical particle can be rotated in any way but it will
still look the same and behave in the same way. But as soon as symmetries are
lost rotations indeed play an important role and the whole set up becomes more
complicated.
The species that is dealt with in this thesis are spheroids. They are still rotationally
symmetric, however only in one direction n. This is classified as axisymmetric. The
radius is exchanged with a semi axis b, being the characteristic length along n, and
another semi axis a , being the characteristic length in the two perpendicular axes
to it. The aspect ratio is defined as λ = b

a
. There are three qualitatively different

shapes that come out of this.

� = 1 � < 1� > 1

Figure 2.2: Sphere, prolate and oblate
spheroid

If λ < 1 the spheroid’s form is like a
disk (oblate) and if λ > 1 it is rod-
like (prolate). An UFO (unknown fly-
ing object) would correspond to the first
case, whereas an egg, for instance, would
rather be an example of the latter case.
The very special case λ = 1 ⇔ b = a
reflects a spherical particle.
In two dimensions λ ≥ 1. There exists
a circle (=) or an ellipse (>).
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2. Prerequisites

An even further generalization would be an ellipsoid where there is no rotational
symmetry anymore, thus there are three instead of two axes, but those particles are
not considered here.
To summarize, this chapter gave an introduction to elementary fluid dynamics. It
introduced physical quantities of a fluid flow, e.g. the velocity field and its gradients,
the density and the Navier-Stokes equations. Different types of fluids like laminar,
shear and turbulent flows were presented. Also the concept of dimensionless param-
eters was outlined as it gives rise to important features of the flow. Here the key
words are the Reynolds, the Kubo and the Stokes number. The latter is important
when dealing with particles moving in the flow, whereas the other two are mainly
properties of the flow. Last but not least spheroids, which will be the investigated
objects, were introduced.
Next I present previous work that has been done on collision rates of spherical
particles in different flows before I try to generalize those concepts to spheroids.
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3
Previous work - Collision rate of

advected spherical particles

In order to understand how spheroids behave in a flow it is a good start to investigate
advected spherical particles. There has been done a lot of work on this subject,
for instance from Smoluchowski in 1917 [21], Saffman and Turner in 1956 [18] or
Abrahamson in 1975 [1]. They looked at advected particles in laminar or turbulent
fluid flows and found an analytical expression for the collision rate of those particles.
Recently this work was further improved by Gustavsson et al. [10], who showed that
the Saffman-Turner expression is just an upper bound to the actual collision rate in
the case of time dependent turbulent flows. However, dealing with constant flows,
like the shear flow, the expressions are still exact. In this chapter I want to sketch
the approach that was used by [18, 10] and present the resulting expressions for the
collision rates for two particular examples, namely the shear flow and the random
flow.

3.1 Theory
In the model used the only aspect that is of interest is how often particles in the
flow meet each other. Whatever happens after the actual collision, i.e. scattering or
coalescence processes, is not taken into account. The reason for this assumption is
that in a typical realistic system the density of colliding particles is considered low.
Another way of justifying that assumption is to see the collision as a merging process
of two particles. Afterwards they belong to another species or size class and they
are not of interest anymore.
Computationally there are different approaches to deal with this. In [10] particles
were removed which leads to a drop of the collision rate. The number density can
be kept constant by adding new particles again, which might give better statistics
in the end compared to the way I handled the situation, keeping all particles and
let them move through each other. Particles that overlap are not allowed to collide
with each other again, only as soon as they separated again. But of course, what
is the better or worse solution depends very much on the specific problem that is
looked at.
No matter which method is used simulations with high particle numbers densities
can still be done in order to get better statistics. An alternative but inconvenient
way would be to actually use a low number density and make very long simulations
instead. If particles do not influence each other both ways are equivalently describing

9



3. Previous work - Collision rate of advected spherical particles

the model.

-2 -1 1 2 3
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Figure 3.1: Exemplary schematic
view of two colliding spherical parti-
cles.

Under the circumstances outlined above two
particles with radius a collide if their relative
distance becomes smaller than 2a. This im-
plies that their relative velocity in the nor-
mal direction ∆vξ = (v2 − v1)ξ is negative
while touching. They approach each other.
For spherical particles the normal direction
at the contact point is always the same as
the relative position r = r2− r1 = 2aξ̂ , and
thus ∆vξ = ∆vr. The hat indicates that
the vector is normalized and by convention
pointing in the same direction as r.
As will be seen later for elliptical particles the direction ξ̂ may differ from r and
moreover the velocity will also be influenced by the angular movement, which makes
the calculation less straight forward.
Nevertheless for small spherical particles (small Stokes number) in a flow that is char-
acterized by a velocity field u(r, t) and a rate of strain matrix A(r, t), as introduced
in chapter 2, it is possible to approximate the relative velocity using v = u(r, t) ≈ Ar
assuming that u(r, t) varies only little for small particle separations |r| � η.

∆vr = ∆vξ = ξ̂ T (v2 − v1) = ξ̂ TA(r2 − r1)
= 2a ξ̂ TAξ̂ .

In order to take all possible collisions for a given test particle into account it is
necessary to integrate over the whole surface Ω, which for the upper case corresponds
to a circle (2d) or sphere (3d) with radius 2a.
The one-particle collision rate is defined as how often a given test particles collides
per time unit. For a system of spherical particles with radius a and particle number
density n0 it is equivalent to the influx through Ω:

R0(a, n0) = −n0

∫
dΩ ∆vξ(2a,Ω, t) Θ(−∆vξ(2a,Ω, t)) χ(2a,Ω, t)

= −2an0

∫
dΩ ξ̂ TAξ̂ Θ(− ξ̂ TAξ̂ ) χ(2a,Ω, t). (3.1)

In general the rate can be time-dependent but usually the stationary or average
collision rate is considered. The Heaviside step function Θ takes care of selecting
negative velocities only and the last factor, χ(2a,Ω, t), is an indicator function which
is especially important in the random flow. It is a binary function and compensates
for fluctuations in time through which particles might collide more than once in a
very short time. This should not influence the collision rate modelled as explained
before, because the actual meeting of two particles is the essential event. Therefore
χ is 1 only if the particle reaches a surface element at time t and has not previously
entered it, otherwise it is 0. The indicator function is the major difference to the
expression that Saffman and Turner published and makes the latter to an upper
bound to the actual rate [10].

10



3. Previous work - Collision rate of advected spherical particles

However, in an approximation where χ ≈ 1 and the flow is considered incompressible
(constant density), which is exactly the limit that is looked at, (3.1) can be estimated
in terms of the Eigenvalues of the symmetric part S of the strain matrix A according
to [10]. The rotational part O does not contribute and can be neglected. Spherical
particles do indeed rotate, but as they are considered perfectly symmetric this does
not affect any collision, if and only if the particles have a small Stokes number and
therefore do not significantly change the surrounding flow.
By diagonalizing the symmetric matrix S using an orthogonal transformation TSDTT

the collision rate can be expressed in terms of the Eigenvalues σ1 ≤ ... ≤ σd of S.
Since T corresponds to a rotation and it is integrated over all directions it is also
valid to drop the transformation matrices and only use SD:

R0 = −2an0

∫
dΩ ξ̂ TTSDTT ξ̂ Θ(− ξ̂ TTSDTT ξ̂ )

≡ −2an0

∫
dΩ ξ̂

′ TSDξ̂
′ Θ(− ξ̂′ TSDξ̂

′ )

= −2an0

∫
dΩ ξ̂ TSDξ̂ Θ(− ξ̂ TSDξ̂ ) .

In two dimensions the integral can be easily estimated using spherical coordinates
ξ̂ = (cos(u), sin(u))T , and respectively ξ̂ = (sin(v) cos(u), sin(v) sin(u), cos(v))T in
3d.

2d: R0 = −2an0

2π∫
0

du (2a) [σ1 cos(u) + σ2 sin(u)] Θ(−(σ1 cos(u) + σ2 sin(u)))

3d: R0 = −2an0

π∫
0

2π∫
0

du dv (2a)2 sin(v) [σ1 sin(v) cos(u) + σ2 sin(v) sin(u)

+σ3 cos(v)] ·Θ(−(σ1 sin(v) cos(u) + σ2 sin(v) sin(u) + σ3 cos(v)))

Taking into account the incompressibility (2.1), i.e. Tr(A) = Tr(S) = ∑d
i=1 σi = 0,

the collision rate simplifies to

2d: R0 = −2an0

2π∫
0

du (2a) σ1 [cos(u)− sin(u)] Θ(−σ1(cos(u)− sin(u)))

= −(2a)2n0σ1

2π∫
0

du [cos(u)− sin(u)] Θ(cos(u)− sin(u))

= −2(2a)2n0σ1 (3.2)

3d: R0 = −(2a)3n0

π∫
0

2π∫
0

du dv sin(v) [σ1(sin(v) cos(u)− cos(v)) + σ2(sin(v) sin(u)

− cos(v)] ·Θ(−(σ1(sin(v) cos(u)− cos(v)) + σ2(sin(v) sin(u)− cos(v)))
(3.3)

The collision rate therefore depends linearly on the number density n0 of the system
as well as quadratically/cubically on the particle radius a. The coefficient depends

11



3. Previous work - Collision rate of advected spherical particles

on the respective flow, more specific on the Eigenvalues of the symmetric part of its
strain matrix A.
The total collision rate of the system is then given by

R = n0 − 1
2 R0

avoiding double counting and collisions of particles with itself.

3.2 Explicit examples

In the following two special examples will be presented, the shear flow and the
random flow. Later non-spherical particles in those flows are investigated, which is
why this is an important starting point, not only to test the simulations but also to
understand the dynamics.

3.2.1 Shear flow

The first and easier example is the shear flow (see figure 2.1). The shearing is
happening in one special direction which is without loss of generality chosen to be
the y-direction. In this case particles only move along the x-axis with a velocity
that is determined by the y-coordinate and the shear rate s. Moreover the flow is
not changing in time.

v = ṙ = u =

sy0
0

 , A =

0 s 0
0 0 0
0 0 0

 , S =

0 s
2 0

s
2 0 0
0 0 0

 .

The relative velocities between particles, which make them collide, only depend on
the relative y-coordinate.
The Eigenvalues of the symmetric part S are easily calculated as there are only two
non-zero elements. The collision rate can then be obtained by (3.2) and (3.3):

2d: σ1 = −s2 , σ2 = s

2 R0(s, a, n0) = 2(2a)2n0
s

2 (3.4)

3d: σ1 = −s2 , σ2 = 0, σ3 = s

2 R0(s, a, n0) = 4
3(2a)3n0s. (3.5)

Figure 3.2 shows the result of simulating the one particle collision rate of spherical
particles in a shear flow in a cubic box with length L in comparison to the previously
described theoretical curve. Both coincide very well.

12
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(a) (b)

Figure 3.2: One-particle collision rate for spherical particles with radius a in a
shear flow. Uniform initialization. Markers represent the mean of 100 independent
simulations. The standard error is too small to be visible. Lines show the theory.
(a) 2d simulation with (3.4). (b) 3d simulation with (3.5). Parameters: s = 25,
n0 = 2000, box volume Ld with L = 1, dt = 0.0005, 10000 time steps.

3.2.2 Random flow
The next example I want to show is the collision rate in an isotropic incompressible
random flow. Instead of numerically solving the Navier-Stokes equations for turbu-
lence the flow can be modelled using a random Gaussian function Ψ(r, t). The fluid
velocities are not only time-dependent now but also the movement is in higher than
one dimension, like it was in the shear flow.

Ψ(r, t) = (2π)d/4 ηd/2+1u0√
Vdd(d− 1)

∑
k
ak(t) exp

[
ik · r− k2η2

4

]
.

All details how to construct a flow from this function including the correlation
function C(|r − r′|, |t − t′|) = C(R, T ) = 〈Ψ(r, t)Ψ(r′, t′)〉, the flow velocity u(r, t)
and its gradient A(r, t) are provided in Appendix A.
For the collision rate the correlation function C(R, T ) is actually the determining
ingredient. R0 can in principle be calculated by using (3.2 - 3.3). But it turns out to
be much easier to use the general equation (3.1) as the rotational symmetry of the
particles as well as some properties of the flow simplify the problem significantly.

As the first step to get a time- and space-independent collision rate the average of
(3.1) is used. Moreover an isotropic flow is rotationally invariant and also the influx
should be the same as the outflow, which yields to

R0 = −2an0〈
∫

dΩ ξ̂ TAξ̂ Θ(−ξ̂ TAξ̂)〉

= −2an0 ·
(
−1

2

)
〈
∫

dΩ |ξ̂ TAξ̂|〉. (3.6)

13
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So instead of integrating over all u leading to a negative relative velocity component
in the normal direction, it is valid to integrate over the absolute value with a factor
of −1

2 , which takes into account that only the influx, i.e. negative relative velocities,
is important.
Additionally (3.6) is integrated over all directions, which are symmetric. Therefore
it is without loss of generality equal to just use one particular direction now chosen
to be in the x-direction. Furthermore by the assumption that the distance between
particles |r| during the collision are much smaller than the correlation length η
(requiring that the particle radius a � η, remember that η is a measure of the
smallest eddies in the system) one can series expand the equation for the correlation
function around |r| = R = 0 and what remains is the term

R0 = an0〈|Axx(0, 0)|〉
∫

dΩ = an0〈|Axx(0, 0)|〉 · Ad(2a).

Ad(2a) is the surface area of a d-dimensional sphere with radius 2a. Especially for
advected particles this turns out to be a very good approximation.
There is one more fact that can be used. As the components of A are Gaussian dis-
tributed random numbers, 〈|Axx(0, 0)|〉 can be replaced by

√
2
π

√
〈Axx(0, 0)Axx(0, 0)〉.

Finally the collision rate reduces to

R0 = n0√
2π
· Ad(2a) · 2a ·

√
〈Axx(0, 0)Axx(0, 0)〉 (3.7)

and from appendix (A.3): 〈Axx(0, 0)Axx(0, 0)〉 = u2
0

d · η2 .

Applied to two and three dimensions

2d: A2(2a) = 2π · 2a

⇒ R0(a, n0, u0, η) = n0√
2π
· 2π · 2a · 2a ·

√√√√ u2
0

2η2 = 8n0
√
πa2u0

η
(3.8)

3d: A3(2a) = 4π · (2a)2

⇒ R0(a, n0, u0, η) = n0√
2π
· 4π · (2a)2 · 2a ·

√√√√ u2
0

3η2 = 32√
6
n0
√
πa3u0

η
. (3.9)

Both cases can be reproduced very well by the simulations. Note that the result
is indeed the Saffman-Turner expression in this case. For Ku = 0.1, 1 the collision
scheme where particles are allowed to recollide after they have been separated by 2a
is χ = 1, which is why both theories coincide.
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(a) (b)

Figure 3.3: One-particle collision rate for spherical particles with radius a in a
random flow for different Ku. Uniform initialization. Markers represent the mean
of 100 independent simulations. The standard error is too small to be visible. Lines
show the theory. (a) 2d simulation with (3.8). (b) 3d simulation with (3.9). Sim-
ulation parameters: n0 = 2000, η = 0.1, τ = 0.1, box volume Ld with L = 1,
dt = 0.0005, 5000 time steps.
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4
Methods

The next step towards the goal of this project, to find the collision rate of spheroids
in a random flow, is to build up both a set of appropriate tools for simulating the
scenario and also a foundation for a theory.
Regardless of the actual collisions there must be certain mechanisms that drive the
motion of spheroids in a flow and underlie the fact that they collide at all. In the
early 1900s Jeffery was concerned with this problem and in 1922 he answered the
question, how advected spheroids behave in fluid flows [13]. He proposed a set of
equations that reflect their motion, called the Jeffery equations. Adapted to our
specific problem they are outlined in the first part of this chapter.
Next an important ingredient is to investigate when two spheroids actually collide.
It cannot be as trivial as for spherical particles due to less symmetry, but in the
second part an algebraic condition for two spheroids to touch, which is equivalent to
them colliding if additionally the relative velocity of the contact point is negative,
is given. This algorithm is the basis of all simulations that were performed.
The third part is dealing with a geometric approach to find a collision condition
which was later used to generalize the theoretical collision rate for spherical to
axisymmetric particles making it possible to compare simulations to an analytic
expression. The last part shows how to include the angular movement of the particles
in the equation for the collision rate. In the last two sections it is concentrated on
the two dimensional problem only.
To put it in a nutshell, this chapter is supposed to give more technical details and
insight in the methods used.

4.1 Equations of motion - Jeffery’s equations

The position of a spheroid in a flow is always defined by the coordinates of it centre as
well as the unit vector in its rotation symmetry axis n(t). Using spherical coordinates
{r, φ, θ} it is parametrized by

n(t) =
(
sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)

)T
.

Note that n(t) has to be normalized at any time, which is why the radius component
can be neglected.
An advected particle has no inertia and its motion is only determined by the fluid
velocity. This is actually a consequence of Stokes law in the limit of St → 0. Its
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translational movement through the flow is therefore easily determined by

dr(t)
dt = u(r, t).

Now comes the more difficult part: how does n change? In other words, how does
the orientation of the spheroid change while moving through a fluid?
To answer this question one has to investigate Jeffery’s equations published in 1922
[13]. Furthermore Jonas Einarsson gave a great summary and explanation of those
equations and their consequences within his Licentiate Thesis in 2013 [6]. Never-
theless the most important aspects are summarized again in the following.
The equation of motion of n(t) is a non-linear expression which depends on the fluid
gradient A = S + O and the aspect ratio λ, as defined in chapter 2.

dn(t)
dt = On(t) + λ2 − 1

λ2 + 1︸ ︷︷ ︸
≡Λ

(
Sn(t)− n(t)nT (t)Sn(t)

)
(4.1)

Here the shape parameter Λ is introduced. Λ ∈ (−1, 1) and governs if the spheroid
is oblate (Λ < 0) or prolate (Λ > 0). Λ = 0 corresponds to a spherical particle.
Moreover in two dimensions from λ ≥ 1 follows Λ ≥ 0.
For a general matrix Aij and using spherical coordinates (φ, θ) (4.1) is equivalent to

φ̇ = 1
2

{
(A01 − A10) + Λ(A01 + A10) cos(2φ)− Λ(A00 − A11) sin(2φ)

+ cos(θ) cos(φ)
sin(θ) · ((A12 − A21) + Λ(A12 + A21))

− cos(θ) sin(φ)
sin(θ) · ((A02 − A20) + Λ(A02 + A20))

}
(4.2)

θ̇ = 1
4

{
Λ sin(2θ) · (A00 + A11 − 2A22 + (A00 − A11) cos(2φ) + (A01 + A10) sin (2φ))

+ 2 sin(φ) · ((A12 − A21) + Λ(A12 + A21) cos(2θ))

+ 2 cos(φ) · ((A02 − A20) + Λ(A02 + A20) cos(2θ))
}
. (4.3)

As a side remark, sin(θ) has roots for θ = kπ, k ∈ Z, which could lead to big changes
in φ for those particular θ according to (4.2). However, the changes are in fact not
noticeable because they correspond to a rotation around the symmetry axis.
Even though (4.2 - 4.3) are non-linear the underlying motion is indeed not. It is
a consequence of the normalization of n(t). And it can be shown that there are
three regimes of possible behaviour depending on the Eigenvalues of the matrix
B = ΛS + O. Either n(t) is aligning with the strongest Eigendirection (largest
Eigenvalue), or it spirals in to or out of this direction. The phase transitions happens
at specific values.
Another interesting result is that the change from rod like particles to disk shaped
ones is precisely equivalent to the change from Tr(B3) to −Tr(B3) (Tr is referring
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to the trace of the matrix), i.e. in a flow where rods spiral in, disks would spiral
out, and vice versa.

THE JEFFERY EQUATION AND ITS SOLUTIONS 27

�10 0 10
TrB3

�10

0

10

TrB2

Aligning

Spiral out Spiral in

(TrB2)3 = 6(TrB3)2

Figure 2.3: Map of the three possible types of particle motion, as
determined by the eigensystem of B=O+⇤S.

parameters: TrB2 and TrB3. In Fig. 2.3 I illustrate how the three
cases outlined above correspond to different values of TrB2 and
TrB3. The boundary curve of the region of three real eigenvalues
is where the discriminant� of the characteristic equation is zero:

�=
�
TrB2
�3�6
�
TrB3
�2
= 0.

In the region where there is a pair of complex eigenvalues, the
two cases of spiral in or out are separated by TrB3 = 0. Now, what
follows is one of the key observations in our argument in Paper C.
For any given flow gradient, changing the particle from rod-like to
disk-shaped (or vice versa) transforms TrB3!�TrB3 and there-
fore change the qualitative dynamics from aligning to rotating (or
vice versa). This transformation may be understood because

TrB3 = 3⇤TrOOS+⇤3TrSSS.

The other combinations of S andOwhich could be expected to
contribute, such as TrOOO, vanish identically because of sym-
metries ofO and S. As explained above, changing a particle from

(a) Time evolution of n(t) with respect
to the strongest Eigendirection of B =
ΛS + O

THE JEFFERY EQUATION AND ITS SOLUTIONS 29

(a) (b)

(c)

x̂ ŷ

ẑ

(d)

Figure 2.4: (a-c) Illustrations of how the trajectories q (t ) (red) pro-
duces the Jeffery orbits n (t ) (blue) upon projection onto the unit
sphere. (d) Sample of resulting Jeffery orbits with coordinate sys-
tem. All trajectories correspond to a particle of aspect ratio �= 5 in
a simple shear flow.

(b) Examples for paths of n(t) in a
shear flow

Figure 4.1: source: [6]

In a simple shear flow (A defined as in 3.2.1) Tr(B3) = 0 and Tr(B2) < 0. It is
therefore precisely on the boundary which leads neither to periodically going away
nor approaching but to a stable tumbling shown in figure 4.1b. As n(t) is always
a unit vector the trajectories conditioned on the initial state lie on a unit sphere.
They are called Jeffery orbits.
All in all the movement of spheroids advected in a flow is defined by equation (4.1).
It depends on their shape and the velocity gradients A. In contrast to advected
spherical particles, which only follow the streamlines and where rotations are not
relevant, spheroids might also end up in a periodic movement called tumbling. Fur-
thermore there is a connection between disks and rods with the same axis lengths.

4.2 Algebraic collision detection
Dealing with spherical particles the only condition for a collision is that the distance
between their centres is smaller than the sum of their radii. In contrast, it is not
that easy anymore when dealing with spheroids. The way their angles are relative
to each other is an essential ingredient. Even though two ellipsoids are potentially
close to each other their angular movements can cause that they nevertheless do not
collide. They are able to avoid each other in an elegant manner. At the same time,
particles that move away from each other can still rotate into each other.
In 2001Wang et al. [26, 17] proposed an algorithm which gives an algebraic condition
that allows to distinguish between overlapping, touching and separated ellipsoids
based on their positions and tilts. The motivation of their work was however coming
from a total different perspective, namely gaming industry. Objects in games are
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often approximated by many connected spheroids and, in order to find out if those
objects touch or if a body can move in a certain direction without colliding with
others, such algorithms are needed. In 2009 they complemented their previous work
[27] and applied it to the same problem that is faced in this work, the collision
detection of ellipsoids. It is even more general as spheroids are special ellipsoids.
It is a very powerful and computationally cheap algorithm which is moreover exact.
The basic idea is illustrated in the following.
A canonical ellipsoid E0 is centred at the origin with semi axes a, b and c in the x-,
y- and z-directions respectively and moreover a ≤ b ≤ c. Its surface is given by the
equation

E0 : xTEx =
(
x y z 1

)
1
a2 0 0 0
0 1

b2 0 0
0 0 1

c2 0
0 0 0 −1



x
y
z
1

 = 0

The interior of the ellipsoid is instead described by xTEx < 0.
A general ellipsoid is however centred at xc, yc and zc and additionally tilted by θ
and φ defined precisely like the angles in spherical coordinates. In this case an affine
transformationM consisting of a rotation R followed by a translation T has to be
applied to E.

M = T (xc, yc, zc) · R(θ, φ) = T (xc, yc, zc) · Rz(φ) · Ry(θ)

=


1 0 0 xc
0 1 0 yc
0 0 1 zc
0 0 0 1




cos(φ) − sin(φ) 0 0
sin(φ) cos(φ) 0 0

0 0 1 0
0 0 0 1




cos(θ) 0 sin(θ) 0
0 1 0 0

− sin(θ) 0 cos(θ) 0
0 0 0 1



RyRz

T

xy

z

Figure 4.2: TransformationM.

Likewise it is valid to apply M−1 to the coor-
dinate vector x. This leads to a more general
equation for E .

E : xT (M−1)TEM−1x ≤ 0 (4.4)

If two ellipsoid E1 and E2, each defined by (4.4)
with transformationsM1,2, collide it means that
they have exactly one common point, the touch-
ing point. If they overlap they share parts of
their interior.
In [26] it was shown that these statements are
equivalent to investigating the number of nega-
tive roots in µ of the characteristic equation

f(µ) = det
[
µ(M−1

1 )TEM−1
1 − (M−1

2 )TEM−1
2

]
= 0.

1. Two ellipsoids are separate if and only if the characteristic equation has two
distinct negative roots.
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2. They are touching each other if and only if the characteristic equation has a
negative double root.

3. Otherwise they are overlapping.

Consequently, one has to solve a polynomial equation of order 4. However, it is not
necessary to have the full knowledge about the roots. It’s is sufficient to know their
signs. This can easily be done by counting the sign changes of the Sturm Sequence
of f(µ) between −∞ and 0. In [4, p.288ff.] it is explained in detail how it works.

So, if two ellipsoids touch they have according to these rules a negative double root
mu0. The touching point x0 is uniquely defined and fullfills

(µ0E − E)x0 = 0.

In general these principles are easily applied to spheroids by setting a = b for prolate
and b = c for oblate spheroids. Furthermore the two-dimensional case is expressed
by a = b and θ = π

2 . After the rotation Ry(θ = π
2 ) the cut through the x-y-plane

would precisely result in an ellipse with major axis c and minor axis a = b.

With the scheme outlined above collisions are easily checked in the simulation. It
can be even further optimized by using a basic sweep-and-prune algorithm [22]. By
tracking the objects in a sorted list in each direction only those that are sufficiently
close to each other are checked for collision. In addition to that the insertion sort
algorithm for almost sorted lists can be used in each time step because it is assumed
that the positions do not change much within a small time interval.
The combination of those methods builds a powerful basis of the computational part
of this work.

4.3 Geometric collision condition
The collision rate is defined as influx through a certain surface around a test particle.
Going from spherical particles, where the surface is again a sphere (with radius 2a),
to spheroids the description becomes more complicated. The previously described
algebraic method should in principle also define this surface. However, this turned
out to be extremely hard to solve, which is why in this section another approach
is presented. The calculations are shown in two dimensions for ellipses with major
axis c and minor axis a where the surface corresponds to a line.
The first goal is to find an expression for the positions of the ellipses’ centres (xc, yc)
such that they touch a given canonical test ellipse, because it constitutes a necessary
condition for a collision. The expressions will now be dependent on the difference
of their orientations φ = φ2 − φ1.
A general ellipse at point (xc, yc) rotated by φ is given by the parametrized equations(

x
y

)
=
(
xc + c cos(u) cos(φ)− a sin(u) sin(φ)
yc + c cos(u) sin(φ) + a sin(u) cos(φ)

)

where u ∈ [0, 2π). Moreover it is sufficient to consider the relative angle φ ∈ [0, π)
due to the symmetry of the ellipse. Throughout the calculation those restrictions
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are considered. However, because of the periodicity other angular ranges of length
π would still give correct results.
For φ = 0 and xc = yc = 0 this reduces to the canonical ellipse. If a canonical and
a general ellipse touch each other this means that(

c cos(u)
a sin(u)

)
︸ ︷︷ ︸

can. ellipse

=
(
xc + c cos(ũ) cos(φ)− a sin(ũ) sin(φ)
yc + c cos(ũ) sin(φ) + a sin(ũ) cos(φ)

)
︸ ︷︷ ︸

gen. ellipse

.

The parametric angles u and ũ are not necessarily the same for both bodies strongly
depending on φ. The solution for (xc, yc) is then given by(

xc
yc

)
=
(
c cos(u)− c cos(ũ) cos(φ) + a sin(ũ) sin(φ)
a sin(u)− c cos(ũ) sin(φ)− a sin(ũ) cos(φ)

)
. (4.5)

Now the idea is to find an expression for ũ which is dependent on u resulting in
the wanted parametric curves for the centres. This can be done by investigating
another touching condition: if the ellipses touch their tangential angle α at the
touching point has to be the same. But one has to pay attention to the fact that
there are always two solutions, shown by the green lines in figure 4.3b. Think about
moving the tilted ellipse counter clockwise around the other one such that they
constantly touch. While doing so the relative position of the two centres r draws
the two lines in figure 4.3a, depending on which side of the ellipse is used (dashed or
solid line). Dealing with colliding rigid bodies the interesting solution is of course
the outer curve.

-6 -4 -2 2 4 6

-4

-3

-2

-1
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3

(a) Two curves for (xc, yc) because
there are always two solutions for the
same tangential angle.
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�ũ

(b) Schematic view of the impor-
tant angles.

Figure 4.3

The following calculation presents how to find ũ and therefore get a closed form
solution of (xc, yc). The tangential angle at u is given by

− tan(u) = a

c
cot(α).

For the same u the tangential angle for the tilted ellipse is

− tan(u) = a

c
cot(α + φ) = a

c

cot(α) cot(φ)− 1
cot(α) + cot(φ) . (4.6)
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The aspect ratio is defined as λ = c
a
.

As we are looking for the angle ũ which is the parametric angle where the rotated
ellipse has the tangential angle α equation (4.6), is solved for cot(α) resulting in

1
λ

cot(α) =
− tan(u) cot(φ) + 1

λ

cot(φ) + λ tan(u) =
1
λ

cos(u) sin(φ)− sin(u) cos(φ)
cos(φ) cos(u) + λ sin(φ) sin(u) ≡ − tan(ũ)

⇔ ũ = π + arctan 2
(

sin(u) cos(φ)− 1
λ

cos(u) sin(φ),

cos(φ) cos(u) + λ sin(u) sin(φ))

≡ π + arctan 2 (h(u, φ), g(u, φ)) . (4.7)

Figure 4.4: Equation (4.7) for
λ = 3.

The arcus tangent 2 is defined as

arctan 2(y, x) =



arctan( y
x
) if x > 0

arctan( y
x
) + π if x < 0 ∧ y ≥ 0

arctan( y
x
)− π if x < 0 ∧ y < 0

π
2 if x = 0 ∧ y > 0
−π

2 if x = 0 ∧ y < 0
undefined if x = 0 ∧ y = 0

and therefore gives values between −π and π.

Additionally it was chosen to add π in (4.7) which does not affect α but determines
the correct side of the ellipse (see green lines in figure 4.3a). Finally the outer curve
is chosen instead of the inner.
Inserting the result from (4.7) into the general equation for (xc, yc) (4.5) one gets
the wanted curve using basic trigonometric identities.

xc = a

λ cos(u) + λ cos(φ)g(u, φ)− sin(φ)h(u, φ)√
g(u, φ)2 + h(u, φ)2

 (4.8)

yc = a

sin(u) + λ sin(φ)g(u, φ) + cos(φ)h(u, φ)√
g(u, φ)2 + h(u, φ)2

 (4.9)

The solutions are in general non-trivial and one has to be very careful with the
construction of ũ.
Examples for the curves for different relative angles φ are shown in figure 4.5.
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Figure 4.5: Different curves (xc, yc) for λ = 3. Left: φ = π
2 . Middle: φ = π

4 . Right:
φ = 0.

In the special case of φ = 0 the curve is just an ellipse with major axis c′ = 2c and
minor axis a′ = 2a because only then ũ is a linear function given by ũ = u+ π.
In order to get the whole circumference for each φ the line integral over infinitely
small line segments has to be performed. In general the curves are rotationally
symmetric by π and for that reason it is enough to perform the integration over u
from 0 to π and double the result.

l = 2
π∫
0

√√√√[dxc
du

]2

+
[
dyc
du

]2

︸ ︷︷ ︸
≡∆l

du (4.10)

Those integrals are hard to solve exactly. However, numerically one can perform
the integrations for different values of φ. What I find is that the length of the
curve l does not dependent on the value of φ, which corresponds to the difference of
the orientation of the ellipses. This is a rather unexpected and non-intuitive result
simplifying the whole problem a lot. In some cases it makes the integration for all
values of φ redundant. Instead it is sufficient to perform the integral for one specific
φ, e.g. the simplest case φ = 0.
Mathematically the statement is expressed by

l = const. ⇔ dl
dφ = 0. (4.11)

As the function is continuous and differentiable within the integration boundaries it
is allowed to exchange the integral and the derivative.

(a)

��������
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ϕ = π /5

ϕ = π /2

(b)

Figure 4.6: (a) Change d∆l
dφ of l with respect to φ as a function of φ and u. (b)

Example curves of d∆l
dφ for different φ each dependent on u
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Looking at figure 4.6a the speculation would be that for every φ the integrand is odd
which would lead to the whole integral being zero. Unfortunately it is not generally
like that, as seen in figure 4.6b. Only for φ = 0 and φ = π

2 it is actually the case.

The derivatives of xc and yc with respect to u after some simplifications are

dxc
du = a

−λ sin(u) +
(λ cos(φ)h(u, φ) + sin(φ)g(u, φ)) · (h(u, φ)∂g(u,φ)

∂u
− g(u, φ)∂h(u,φ)

∂u
)

(g(u, φ)2 + h(u, φ)2) 3
2


= a

(
−λ sin(u) + λ sin(u) · (−1)

(g(u, φ)2 + h(u, φ)2) 3
2

)

= −aλ sin(u)
(

1 + 1
(g(u, φ)2 + h(u, φ)2) 3

2

)

dyc
du = a

cos(u) +
(− cos(φ)g(u, φ) + λ sin(φ)h(u, φ)) · (h(u, φ)∂g(u,φ)

∂u
− g(u, φ)∂h(u,φ)

∂u
)

(g(u, φ)2 + h(u, φ)2) 3
2


= a

(
cos(u) + − cos(u) · (−1)

(g(u, φ)2 + h(u, φ)2) 3
2

)

= a cos(u)
(

1 + 1
(g(u, φ)2 + h(u, φ)2) 3

2

)
.

Only a factor of (−λ tan(u)) distinguishes the two expressions. Therefore (4.11) can
be further simplified.

dl
dφ = 2

π∫
0

d
dφ


√√√√[dyc

du

]2

(λ2 tan2(u)) +
[
dyc
du

]2
 du

= 2
π∫
0

d
dφ


√√√√[dyc

du

]2

(λ2 tan2(u) + 1)

 du

= 2
π∫
0

d∆l
dφ du != 0 (4.12)

Solving equation (4.12) is not trivial and goes beyond the scope of this work. Nu-
merical calculations nevertheless show that (4.12) vanishes.

After all, using this statement the pure integration over the surface for every φ can
be exchanged by a simple elliptic integral with major axis 2c and minor axis 2a
corresponding to φ = 0. The canonical ellipse’s circumference E0 is defined by the
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parametric curve xc = 2c cos(u) and yc = 2a sin(u).

∫
E0

dΩ =
2π∫
0

du

√√√√[dxc
du

]2

+
[
dyc
du

]2

=
2π∫
0

du
√

(2c)2 sin2(u) + (2a)2 cos2(u)

= 4

π
2∫
0

du
√

(2c)2 sin2(u) + (2a)2(1− sin2(u))

= 4(2c)

π
2∫
0

du
√

1− k2 sin2(u) k2 ≡ 1− a2

c2 = 1− 1
λ2

= 4(2c)E(k2) = 4λ(2a)E(k2) = 8λaE(k2) (4.13)

with E(k2) being a complete elliptic integral of second kind. k is equivalent to the
eccentricity of the ellipse.
The curves for (xc, yc) as well as the result that the lengths of the curves do not
depend on the relative angle φ were used in order to calculate the actual collision
rates for the systems investigated in the following chapters.

In three dimensions the simulations presented in chapter 5 indicate that the surface
area is indeed dependent on the relative angle. The strategy to build up those
integrals is equal to two dimensions. However, it becomes more complicated and
would be worth another individual project. Thus, in the theoretical part of this
work I concentrate on the lower dimensional case.

4.4 Collision rate including the angular velocity

So far only the situation where rotations do not matter, as for spherical particles,
were discussed. In the following I want to show how to include the angular momenta
of elliptical particles with minor axis a and aspect ratio λ in the theoretical model
for the collision rate (see chapter 3). Also here the focus is only on two dimensions.

The most important change is that the influx is no longer only determined by the
relative translational velocity ∆v, but also the relative velocity of the contact point
∆ω due to the angular velocity ζ plays a substantial role, meaning that

R0(a, λ, n0) = −n0

∫
dΩ (∆vξ + ∆ωξ) Θ(−(∆vξ + ∆ωξ)) . (4.14)

The indicator function is dropped here assuming χ ≈ 1. An example of the situation
is shown in figure 4.7.
So even if a particle enters the previously described surfaces they might still not
collide in case they rotate away from each other, i.e. the projection of ∆v+ ∆ω on
the normal axis ξ̂ is not negative even though the projection of ∆v is.
A further difficulty here is that ξ̂ at the collision point is no longer parallel to the
relative radius r = r2− r1. For a canonical ellipse E0 defined by x2

λ2a2 + y2

a2 − 1 = 0 ≡
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f(x, y) it becomes

ξ̂ = 1
|∇f(x, y)|∇f(x, y) = 1∣∣∣∣∂f(x,y)

∂x

2
+ ∂f(x,y)

∂y

2
∣∣∣∣
(∂f(x,y)

∂x
∂f(x,y)
∂y

)

= 1√
x2

λ4 + y2

(
x
λ2

y

)
= 1√

cos2(u)
λ2 + sin2(u)

( cos(u)
λ

sin(u)

)
,

considering the parametrization of E0 as in the previous section.
For any vector O its component in this direction is then given by

∆Oξ = ξ̂
T∆O = 1√

cos2(u)
λ2 + sin2(u)

(
∆Ox

cos(u)
λ

+ ∆Oy sin(u)
)
. (4.15)

The translational velocity ∆v can usually be solved in the same way as for spherical
particles. Especially when advected particles are considered, as this is the case in
the thesis, the velocity is approximated by the fluid velocity.
Including rotations one additionally has to solve the velocity ω. The first thing to do
is to actually define what is meant by ω. It connects the angular velocity ζ, which
indicates how much the angle changes in a given time interval, with a certain point.
As rigid bodies are the investigated object, the interesting points are precisely on
the surface of the particle and ω is at every point rs on this surface given by the
cross product of ζ, which is pointing in the z-direction in the two-dimensional case,
and the vector to this point rs.

ω = ζ × rs =

 0
0
dφ
dt

×
xsys

0

 = dφ
dt

(
−ys
xs

)
= dφ

dt

(
−a sin(u)
aλ cos(u).

)

Consequently the relative velocity ∆ω of two touching ellipses is obtained by

∆ω = ω2 − ω1 = dφ2

dt

(
−ys2
xs2

)
− dφ1

dt

(
−ys1
xs1

)

= dφ2

dt

(
−ys1 + yc
xs1 − xc

)
− dφ1

dt

(
−ys1
xs1

)

=
(
dφ
dt

)(
−ys1
xs1

)
− dφ2

dt

(
−yc
xc

)
(4.16)

with the relative angle φ = φ2 − φ1.
So ∆ω does not only depend on the relative orientation and the angular velocity
of the two particles when they collide, but also on the individual angles. This all
results from the fact that |r| is not constant any more, like it is for spherical particles
where the ω1/2 are always parallel and additionally orthogonal to the ξ̂-axis, such
that the projection of the superposition ∆ωξ always vanishes.
In general dφ

dt can be obtained by the Jeffrey equations in spherical coordinates. In
easier, however more unrealistic, cases the value will also be a constant only.
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Figure 4.7: Exemplary schematic view of the vectors and directions involved.

Putting all the knowledge gained in the previous abstracts together equation (4.14)
can be explicitly written down. For a given relative angle the general collision rate
is

R0(n0, a, λ, φ,∆v,∆ω, r) = −n0

2π∫
0
du P (φ,∆v,∆ω, r(u))

·∆l
(∆vx + ∆ωx) cos(u)

λ
+ (∆vy + ∆ωy) sin(u))√

cos2(u)
λ2 + sin2(u)

·Θ(−(∆vx + ∆ωx)
cos(u)
λ
− (∆vy + ∆ωy) sin(u)).

Note that both ∆l (4.10), ∆vi, ∆ωi (depending on the problem) and implicitly
(x1s, y1s)T and r = (xc, yc)T (arbitrary rotation of a canonical ellipse E0 and respec-
tively (4.8 - 4.9)) are in general dependent on a, λ, u and φ. P (φ,∆v,∆ω, r(u)) is
the joint distribution that the particles are at a separation r such that they touch
and that the particles have relative angle φ as well as relative translational and ro-
tational velocity v and ω at the contact point. Thus, the total one-particle collision
rate is

R0(a, λ, n0) =
∫∫∫

dφ d∆v d∆ω R0(n0, a, λ, φ,∆v,∆ω, r). (4.17)

Depending on the circumstances (4.17) will be adapted. Nonetheless, obviously by
including the angular velocity the whole situation becomes more tricky. In many
cases it is also not that trivial to get the distribution of relative angles. In the three
cases that I investigated I already faced a lot of challenges even though the first two
are in particular relatively simple fluid flows.

In summary, in this chapter the used methods and concepts were presented. At first
the governing equations that determine the behaviour of spheroids in a fluid flow,
the Jeffrey equations, were described. Followed by that it was given an algebraic
equation which defines exactly when two spheroids touch. The last part concentrates
on the two dimensional problem because there the surfaces that have to be integrated
over can be solved analytically by using a geometric condition. Moreover it was seen
that the length of those curves does not depend on the relative angle. This result
will be used in later calculations.
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Last but not least it was described how to include rotations in the actual equation
for the collision rate and therefore all needed tools were collected such that in the
next chapters I am going to present results for three different fluid flows, the kinetic
limit, the shear flow and the random flow.
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5
Particles in the kinetic limit

The first system that was investigated consists of N spheroids in a unit box with
random velocities u(i), i ∈ 1...N sampled from a normal distribution in each di-
mension. It is therefore nevertheless equally likely to find a particles in a certain
direction. In particular two types of systems were studied, non-rotating particles
and particles with constant rotation rates dφ

dt and dθ
dt .

The assumption that they have a constant velocity is physically related to a very
large Stokes number. They keep their movement without noticing an underlying
flow. However, in real flows the particles would rather have angular movements,
that would moreover be time-dependent, which would definitely have an impact on
the collision rate. For now, this is good starting point where the two-dimensional
theoretical value can be calculated and compared to the simulations.

5.1 Spherical particles and non-rotating spheroids

The collision rate is the influx through the surface derived in section 4.3. Only
negative relative translational velocities contribute now as there are no angular
velocities. In the next section this will not be the case any more and they play
an important role in the calculations. For now it is sufficient to define the collision
rate like in (3.1).
If the velocities are randomly distributed the probability distribution of the relative
velocity of two particles ∆v = v2 − v1 is needed. In general if two variables are
normally distributed with mean µ1 and µ2 and variance σ1 and σ2 their difference is
also normally distributed, however with mean µ = µ2−µ1 and variance σ2 = σ2

2 +σ2
1.

In d dimensions this means

P (∆v) = 1
(
√

2πσ2)d
exp

[
−
∑d
j=1(∆vj − µ)2

2σ2

]
.

The coordinate system is chosen to have one unit vector along the relative position
vector r = r2− r1 and the rest orthogonal to that. As the direction of the velocities
is uniformly distributed, and the choice of the system is only a rotation of the
Cartesian coordinates, this can be done without any further problem.
The solutions for the one-particle collision rate with µ2 = µ1 = 0 and σ2

2 = σ2
1 = σ̃2

is calculated below.
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5. Particles in the kinetic limit

R0(a, λ, n0) =− no
∫
Ω

dΩ
∫

d∆v P (∆v) ∆vr Θ(−∆vr)

=− no

(
√

4πσ̃2)d
∫
Ω

dΩ
∫

d∆v exp
[
−
∑d
j=1 ∆v2

j

4σ̃2

]
∆vrΘ(−∆vr)

=− no√
4πσ̃2

∫
Ω

dΩ
0∫
−∞

d∆vr exp
[
−∆v2

r

4σ̃2

]
∆vr

=− no√
4πσ2

∫
Ω

dΩ
(
− 1

2 · 1
4σ̃2

)
= n0σ̃√

π

∫
Ω

dΩ. (5.1)

The surface integral is the only variable left, as it depends on the shape of the
particles. To start with I am going to show the simulation results for spherical
particles in comparison to the solution of equation (5.1) before I go over to non-
rotating spheroids.

5.1.1 Spherical particles

For spherical particles the integral over the surface Ω is either the circumference of a
circle with radius 2a with a being the radius of the particles in two dimension or the
surface of the sphere with the same radius in three dimensions. Their orientations
do absolutely not matter due to their rotational symmetry. The collision rate is
easily calculated by

2d: R0(a, 1, n0) = n0√
π

∫
dΩ = n0√

π
· 2(2a)π = 4a

√
πn0 (5.2)

3d: R0(a, 1, n0) = n0√
π

∫
dΩ = n0√

π
· 4(2a)2π = 16a2√πn0. (5.3)

The variance of ∆vr is chosen to be σ̃2 = 1 in all simulations.
Consequently the one-particle collision rate depends linearly on the density and the
particle radius in 2d, whereas it depends on a2 in 3d. The performed simulations
confirm these statements (figure 5.1).
This also coincides with what would be expected from basic kinetic gas theory and
collision theory [1, 28]. The particle velocities then follow a Maxwell-Boltzmann
distribution being proportional to exp [−c · v2] like in the upper case. The cross
section (2(2a) for d = 2 and (2a)2π for d = 3) is the determining parameter when
it comes to collisions. By the choice of the distribution the prefactor can of course
deviate, but the dependencies on the particle radius and the number density are
precisely what one gets out the approach used here. Note that in kinetic gas theory
the collision process itself is not neglected, but as elastic collisions do not result in
a change of the distribution of velocities, both descriptions are equivalent.
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5. Particles in the kinetic limit

(a) (b)

Figure 5.1: One-particle collision rate for spherical particles with radius a with
constant random velocity in each direction (Gaussian distributed, µ = 0, σ = 1).
Uniform initialization. Markers represent the mean of 100 independent simulations.
The standard error is too small to be visible. Lines show the theory. (a) 2d simu-
lation with (5.2). (b) 3d simulation with (5.3). Simulation parameters: n0 = 2000,
box volume Ld with L = 1, dt = 0.0005, 5000 time steps.

5.1.2 Spheroids
As shown in section 4.3 the surface that has to be integrated over in the case of
axisymmetric particles is a non-trivial function of λ and φ. Nevertheless the fact
that the length is not dependent on the relative orientation φ allows to find analytical
expressions here. Only the solutions of (xc, yc)T are available according to (4.8 - 4.9),
which is why the theoretical part is limited to two dimensions.

As the orientations are uniform random numbers between 0 and π, and so are the
relative orientations due to the periodicity, the one-particle collision rate from (5.1)
reduces to

2d: R0(a, λ, n0) = n0√
π

π∫
0

dφ′
∫

dΩP (φ′) = n0√
π

∫
dΩ

π∫
0

P (φ′)dφ′

︸ ︷︷ ︸
=1

(4.13)= n0√
π
· 4(2a)λE(k2) = 8√

π
n0aλE(k2) (5.4)

with E(k2) = E(1− 1
λ2 ) being a complete elliptic integral of second kind and a the

minor axis of the ellipse. No matter what P (φ) is, the integral over it will always
be one due to the normalization condition. Thus the distribution of the relative
orientations is actually irrelevant.
The interesting fact is, and that confirms the latter statement and the assertion
made in section 4.3, it does not matter which relative orientations the particles
have, the collision rate remains the same. Besides simulations with ellipses with
random orientation I checked the cases φn = 0 for all ellipses and half of the ellipses
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5. Particles in the kinetic limit

with φn = 0 and the other half φm6=n = π
2 . However (5.4) is valid for all possible

distributions of relative angles due to the fact that the integrals are the same.
In all simulations ellipses have the same area A = acπ = a2λπ = const. and therefore
the packing density stays constant. Here (5.4) is slightly modified.

R0(A, λ, n0) = 8√
π
n0aλE(k2) = 8√

π
n0

√
A

λπ
λE(k2) = 8

π
n0
√
AλE(k2). (5.5)

Last but not least the collision rate of ellipses was compared to corresponding rates of
circles with a radius equal to the minor and to the major axis. They represent upper
and lower bounds to the collision rate of the axisymmetric particles. According to
(5.2) those curves are defined by

Rmin
0 (A, λ, n0) = 4

√
A

λπ

√
πn0 = 4

√
A

λ
n0 = R0 ·

π

2λE(k2) (5.6)

Rmax
0 (A, λ, n0) = 4λ

√
A

λπ

√
πn0 = 4

√
Aλn0 = R0 ·

π

2E(k2) . (5.7)

with E(k2) being strictly positive if a, b > 0, but ellipses with vanishing or negative
semi axes are not physical anyway.

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Figure 5.2: Ellipses with
their corresponding spheri-
cal particles for two differ-
ent λ (black and blue).

It might be misleading that in figure 5.3 the curves
for spherical particles are shown as a function of λ as
spherical particles always correspond to λ = 1. How-
ever, in this case the aspect ratio λ is the one that
describes the ellipses not the spherical particles. The
radii of the spherical particles are precisely chosen such
that they depend on this aspect ratio in the previously
shown way. Figure 5.3a illustrates the results.
The general proportion of (5.6)-(5.5) to (5.5)-(5.7) for
λ > 1 is

Rmax
0 −R0

R0 −Rmin
0

=
π

2λE(k2) − 1
1− π

2E(k2)
< 1.

This means that the collision rate for the ellipses in
this system has a tendency to be closer to the one for

circles with radius λa.
Moreover it is remarkable that the collision rate for growing aspect ratio increases
even though the area of the particles stays constant. A possible explanation for
that is by making the particles thinner but longer the chance that particles collide
increases, because the cross section is in general larger, as can be seen in figure 5.2.
In three dimensions the collision rate does indeed depend on the relative angles of
the particles, which can be concluded from the fact that the curves in 5.3b do not
coincide. Then the integral over surfaces cannot be exchanged with the integral over
φ, in contrast to (5.4), and the results differ. All simulated spheroids have the same

34



5. Particles in the kinetic limit

volume V(prolate) = 4
3πa

3λ(prolate) = const. = V(oblate) = 4
3π

a3

λ2
(oblate)

. Together with
(5.3) the curves for spherical particles that were compared with are:

R
(1)
0 (V, λ, n0) = 16

( 3V
4πλ

) 2
3 √

πn0 =̂

prolate: min
oblate: max

(5.8)

R
(2)
0 (V, λ, n0) = 16

(
3V λ2

4π

) 2
3 √

πn0 =̂

prolate: max
oblate: min

. (5.9)

The simulations show that also here the collision rate grows by increasing (prolate
spheroids) or decreasing (oblate spheroids) the aspect ratio and additionally tends
to be closer to spherical particles with r = a. Additionally the initial condition has
a smaller effect on the collision rate of oblate spheroids than of prolate ones.

(a) (b)

Figure 5.3: One-particle collision rate for non-rotating elliptical particles with
aspect ratio λ and constant random velocity in each direction (Gaussian distributed,
µ = 0, σ = 1) for different initial conditions. Markers represent the mean of 100
independent simulations. The standard error is too small to be visible. Lines show
the theory. The black lines illustrate the curves for the corresponding spherical
particles with radius a =

√
A
λπ

and λa (2d) or a =
(

3V
4λπ

) 1
3 and λa (3d) according

to (5.6 - 5.9). Dashed lines emphasize the value for λ = 1. (a) 2d simulation
together with (5.5), particle area A = 0.0052π. (b) 3d simulation, particle volume
V = 4

3 · 0.013π. Simulation parameters: n0 = 2000, box volume Ld with L = 1,
dt = 0.0005, 5000 time steps.

5.2 Spheroids with a constant rotation rate
Letting the particles rotate adds another degree of freedom to the system. For now
it is assumed that the rotation rate φ̇n is constant in time for each particle n.
R0 is given by equation (4.17). However, some more simplifications can be done by
choosing the distributions of ∆vi and ∆ωi. In particular there are two cases that
were investigated.
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5. Particles in the kinetic limit

In the first case, to simplify the situation, the translational velocity is set to 0.
Therefore only the rotational movement contributes to the collision rate. The ro-
tation rate is chosen constant and either the same for all particles or it is sampled
from a normal distribution with mean µ = 0 and variance σ2 = π. The system
itself is not physically relevant but still it gives rise to a better understanding of
the equations as well as helps to test the simulation code, because the theoretical
equations do exist. As the angles are initially distributed randomly and furthermore
stay distributed randomly P (φ) = 1

π
. ∆ωξ is a complicated function given by (4.16)

depending on u, φ̇1, φ̇2 and φ.

R0(a, λ, n0) = −n0

∫
dφ
∫

dΩ
∫

dφ̇1

∫
dφ̇2 P (φ, φ̇1, φ̇2) ∆ωξ Θ(−∆ωξ)

= −n0

π

π∫
0

dφ
2π∫
0

du
∞∫
−∞

dφ̇1

∞∫
−∞

dφ̇2 ∆ωξ Θ(−∆ωξ)

·


δ(φ̇1 − c1) · δ((φ̇2 − φ̇1)− c2) if φ̇1 = c1, φ̇2 − φ̇1 = c2

1
2π3 exp

[
− φ̇2

1+φ̇2
2

2π2

]
if sampled rotation rates

(5.10)

In the second case the particles will also have a constant velocity sampled from a
normal distribution with µ = 0, σ2 = 1. Then∫

d∆vξ P (∆vξ) (∆vξ + ∆ωξ) Θ(−(∆vξ + ∆ωξ))

=
∆ωξ∫
−∞

d∆vξ
1√
4π

exp
[
−

∆v2
ξ

4

]
(∆vξ + ∆ωξ)

=
∆ωξ∫
−∞

d∆vξ
1√
4π

exp
[
−

∆v2
ξ

4

]
∆vξ + ∆ωξ

∆ωξ∫
−∞

d∆vξ
1√
4π

exp
[
−

∆v2
ξ

4

]

= − 1√
π

exp
[
−

∆ω2
ξ

4

]
+ ∆ωξ

2 erfc
[

∆ωξ
2

]
,

and therefore analogous to (5.10)

R0(a, λ, n0) = n0

π

π∫
0

dφ
2π∫
0

du
∞∫
−∞

dφ̇1

∞∫
−∞

dφ̇2

[
1√
π

exp
[
−

∆ω2
ξ

4

]
− ∆ωξ

2 erfc
[

∆ωξ
2

]]

·


δ(φ̇1 − c1) · δ((φ̇2 − φ̇1)− c2) if φ̇1 = c1, φ̇2 − φ̇1 = c2

1
2π3 exp

[
− φ̇2

1+φ̇2
2

2π2

]
if sampled rotation rates

.

(5.11)

All results are presented in figures 5.4 - 5.5.
First of all, for rotating particles with no translational velocity the collision rate
increases by increasing λ, because of the rotation the effective cross section grows
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and thus the chance that particles collide. Depending on the actual φ̇ the change
of the collision rate with respect to λ is bigger or smaller. Spherical particles will
naturally never collide. In general it is sufficient to simulate one period of the
movement because then the movement just repeats and the statistics stay the same.
Therefore the 2d theory coincides very well with the simulation if the rate is a
constant for all particles and one can define the period easily, but it deviates con-
siderably if the rate is sampled. Here another problem was faced in the simulations.
When φ̇ follows a normal random distribution the effect of quasi periodicity affects
the result a lot as the simulation time is limited and it is hard to find a time where
all particles have passed one period as the relative period of two particles φ2 − φ1
could be large or even infinite. Some particles will have passed several periods while
others have not even completed one. So the stationary collision rate can actually
only be covered in infinite time and this could explain why the measured collision
rate is deviating. The effect is smaller if λ is close to 1.
In three dimensions the particles not only have a constant φ̇ but also θ̇, which
are similarly chosen as in two dimensions. The effect of quasi periodicity is also
expectable here, which is why it can be assumed that the simulation results presented
in figure 5.4b are again deviating from reality in the case of random sampling of φ̇
and θ̇, whereas this should not be the case φ̇ = θ̇ = π.

Including a translational velocity v in the test case the effect can be neglected
because it is not leading anymore. Here it was observed that the collision rate does
not change by distributing the rotation rates differently. This holds even in 3d where
the surfaces are not equally big, as discussed in the previous section.
One can conclude that the integrations from (5.11) are redundant and the whole
equation collapses to (5.5). Only numerical errors have led to some deviation.
Figure 5.5 presents this result. By dividing the collision rate by n0 this plot also
supports the linear dependency on n0 as even those data points collapse to the same
value.
This can be explained by the symmetry of the whole system. The velocities are
sampled randomly without favouring any direction, and as all particles have the
same preconditions the stationary collision rate should on average be the same,
particularly not affected by the velocity, the rotation rate or the initialization, as seen
before. Nevertheless it is a remarkable result because it would have been intuitive
that if particle rotate extremely fast they effectively act like spherical particles with
radius λa (ellipses, prolate spheroids) respectively a

λ
(oblate spheroids) and moreover

that it does not make a difference if particles do not rotate at all or with a certain
rate. But as the simulations and calculations show, it is not the case. Furthermore it
is striking that in all situations oblate spheroids collide less often compared to prolate
ones with the same axis lengths. Keeping the volume constant disks with λoblate = a

c
,

a < c, will always have a bigger surface than rods with λprolate = 1
λoblate

= c
a
and the

ratio grows with increasing |Λ|. This would rather point towards a higher collision
rate.

Concluding, in all cases by increasing the shape factor |Λ| the collision rate grows.
This holds both for non-rotating and rotating particles in the kinetic limit.
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5. Particles in the kinetic limit

(a) (b)

Figure 5.4: One-particle collision rate for elliptical particles with aspect ratio
λ with no translational velocity and different choices of constant rotation rates.
Random rotation rate refers to a normal random number with mean 0 and standard
deviation π for φ̇ and π

2 for θ̇. Crosses represent the mean of 100 independent
simulations. The standard error is too small to be visible. Diamonds show the
respective theory. (a) 2d simulation with (5.10) for different c1, c2, particle area A =
0.0052π. (b) 3d simulation, particle volume V = 4

30.013π. Simulation parameters:
n0 = 2000, box volume Ld with L = 1, dt = 0.0005, T

dt
or 5000 time steps.

(a) (b)

Figure 5.5: One-particle collision rate for elliptical particles with aspect ratio
λ with constant random velocity in each direction (Gaussian distributed, µ = 0,
σ = 1) and different choices of constant rotation rates or particle numbers. Random
rotation rate refers to a normal random number with µ = 0 and σ = π. Markers
represent the mean of 100 independent simulations. The standard error is too small
to be visible. Lines show the theory. Dashed lines emphasize the value for λ = 1.
(a) 2d simulation with (5.11), particle area A = 0.0052π. (b) 3d simulation, particle
volume V = 4

30.013π. Simulation parameters: box volume Ld with L = 1, dt =
0.0005, T

dt
or 5000 time steps.
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6
Advected spheroids in the shear

flow

Collisions between spherical particles with vanishing St in a shear flow with shear
rate s were already discussed in section 3.2.1. In this chapter spheroids under the
same conditions are investigated. The translational movement is still fairly easy and
moreover uniform. However, the particles start tumbling, i.e. the vector n(t) along
the symmetry axis changes. As introduced in section 4.1 the tumbling is determined
by Jeffery’s equations, which simplify to

dr
dt = u(r, t) =

sy0
0


dn
dt = On(t) + Λ

(
Sn(t)− n(t)nT (t)Sn(t)

)

=

 0 s
2 0

− s
2 0 0

0 0 0

n(t) + Λ


0 s

2 0
s
2 0 0
0 0 0

n(t)− n(t)nT (t)

0 s
2 0

s
2 0 0
0 0 0

n(t)



= s

2


ny (1 + Λ(1− 2n2

x))
nx
(
−1 + Λ(1− 2n2

y)
)

−2Λnxnynz


in the shear flow. The shear is chosen to be in the y-direction as it was in section
3.2.1, but in general choosing any direction is equivalently. In two dimensions the
motion in the z-direction is neglected. The shape factor Λ is the parameter that
is used in the Jeffery equations instead of the aspect ratio λ. As Λ = λ2−1

λ2+1 , both
descriptions are equivalent.
Using the spherical coordinates φ and θ ṅ can be rewritten according to (4.2 - 4.3).

φ̇ = s

2 (−1 + Λ cos(2φ)) (6.1)

θ̇ = sΛ sin(θ) cos(θ) sin(φ) cos(φ) = s

4Λ sin(2θ) sin(2φ). (6.2)

(6.1 - 6.2) represent what was described earlier in section 4.1 that particles tumble
on stable periodic orbits with period time

T = 4π
s
√

1− Λ2
. (6.3)
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6. Advected spheroids in the shear flow

In the following I explain how particles in a shear flow act in more detail as this is a
crucial part in understanding the behaviour of the collision rate with respect to the
aspect ratio.
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(a) Two-dimensional Jeffrey or-
bits in shear flow.

(b) PDF of angles Φ.
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(c) Exemplary scheme of the dif-
ferences in ∆y (green) and ωi
(black) depending on the orienta-
tion in the flow while having the
same relative angle and touching
point.

Figure 6.1

One can observe that the shape factor Λ has
an important impact on the period length T .
The bigger its absolute value is the longer
the period will be. In the limiting cases
where |Λ| = 1, there is even a stable steady
state, i.e. it exists a value for φ and θ such
that φ̇ = θ̇ = 0 and moreover T →∞.
In particular, this is the case for φ∗ = kπ,
k ∈ Z, for ellipses and rods, and φ∗ =(

1
2 + k

)
π for disks. In those cases θ̇ = 0

follows automatically, no matter what θ ac-
tually is.
Furthermore θ∗ = k π2 will also lead to θ̇ = 0
for any Λ and φ (however φ̇ is not neces-
sarily 0). This is very special case actually
corresponding to the two-dimensional situa-
tion when cutting through the x-y-plane, in
which all particles then lie.

In other words ellipses will prefer to have
n parallel to the velocity field, referred to
being aligned. Sooner or later (depending
on Λ) they will flip around. This is shown in
figure 6.1a. Infinitely long particles will stay
in this state as soon as they reach it. For
each aspect ration there is only one Jeffery
orbit that the particles follow.

Rods and disks move on different Jeffrey or-
bits illustrated in 4.1 determined by the ini-
tial condition. Infinitely long and thin rods
will end up in a steady state where φ is a
multiple of π but θ can in general be every-
thing. The same holds for disks except that
φ is a multiple of π added to π

2 . Keep in
mind that the n vector is along the symme-
try axis of the particle, which results in this
shift. Disks therefore have their thin side
facing the flow, rods their ’nose’. Neverthe-
less finite particles always have a periodic
movement in the third dimension, which po-
tentially gives rise to much more collisions.

In the following I only proceed the calcu-
lations in 2d. However, the simulated 3d
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6. Advected spheroids in the shear flow

results are presented afterwards, which is why it is essential to understand the be-
haviour and limits there as well.
By solving the Fokker-Planck equation [25] the stationary probability density func-
tion of φ of this dynamical system can be obtained. As everything is deterministic
the diffusion part can be neglected and it simplifies to

0 != ∂P (φ)
∂t

= − ∂

∂φ
(φ̇P (φ)) +

��
�
��
�HHH

HHH
D∂

2P (φ)
∂φ2 = −P (φ)∂φ̇

∂φ
− φ̇∂P (φ)

∂φ
. (6.4)

(6.4) can easily be solved and with the probability normalized to unity the distribu-
tion is given by

P (φ) = 1
π
·
√

1− Λ2

1− Λ cos(2φ) . (6.5)

(6.5) not only proofs that ellipses in the shear flow tend to be aligned with the flow,
but also it is an important factor in the calculation of the theoretical collision rates.
Now both the translational and rotational velocities can be determined by the equa-
tions presented above. There is no random component anymore. However, now it
does not only play an important role which relative orientation the particles have
but also which individual orientations they have. For instance, for a given relative
angle two particles can have both different relative positions ∆y, which influences
∆v, and also different ṅ depending on how the particles lie relative to the flow
direction (see figure 6.1).
Thus the collision rate should depend on the initial condition, because the movement
after the initialization is only dependent on the shape (which is the same for all
particles). For some chosen initializations

R0(a, λ, n0) = −n0

∫
dφ1

∫
dφ2

∫
dΩ P (φ1, φ2)

· (∆vξ + ∆ωξ) Θ(−(∆vξ + ∆ωξ))

= −n0

∫
dφ1

∫
dφ2

∫
dΩ (∆vξ + ∆ωξ) Θ(−(∆vξ + ∆ωξ))

·

δ(φ2 − φ1) · P (φ1) if φ0 = 0
P (φ1) · P (φ2) if φ0 random

. (6.6)

It was obtained a decreasing collision rate with increasing aspect ratio, keeping the
area constant. On the one hand particles will more and more be aligned and the
flipping will happen much faster. On the other hand particles that are thinner but
longer also have the chance to hit a lot more particles while turning. In the end it
is a balance between those two mechanisms. However, for λ→∞ the collision rate
should approach the one for spherical particles with a radius that is equivalent to
the minor axis a of the ellipse, and should naturally vanish while a→ 0.
All in all I investigated two different cases, either particles have a random initial
angle or all start at φ0 = 0. The latter automatically induces that particles will have
the same angle at any time (according to (6.1 - 6.2)) and consequently the relative
angle between the particles vanishes at all times simplifying (6.6) further (implicitly
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6. Advected spheroids in the shear flow

∆vξ and ∆ωξ). Despite that it is again an unphysical assumptions, it is easier to
calculate and helps to understand the system. In the limit λ → ∞ the two cases
should however coincide. Figure 6.2 present the main results.
In the simulations the behaviour explained above can be observed very well in 2d.
The collision rates approach the curve for spherical particles with radius a = A

λπ

and eventually zero. The numerical solution of (6.6) can be reproduced by the
simulations. In the case where all particles are initially randomly distributed it
is not the case for unclear reasons. The simulated collision rate is systematically
smaller than the solution of the integral.
It does indeed make sense that the simulation tends to underestimate the actual
collision rate for growing aspect ratios as the time steps are kept constant and the
periods will increase. In general it is reasonable to let the simulation run for a
certain time that is defined by a multiple of T (in my simulations I used exactly
one period). Only then the full statistics can be covered. Especially for high aspect
ratios, where the particles are aligned with high probability, it makes a big difference
if one stops the simulation earlier. Simulations up till λ = 18 were performed, but
until then the deviations can definitely not be explained by that.
However, with the latter choice of initialization the solution of the numerical inte-
gration of (6.6) seems to be unstable, which becomes apparent especially for large
aspect ratios, where the theoretical curve shows fluctuations. Therefore one might
also suspect that the numerical solution of the integral using Mathematica is respon-
sible for the deviation, but in order to give a profound reason further investigations
are required. However, there is no other explanation so far.
In three dimensions the collision rate does not approach zero with increasing aspect
ratio, because the Jeffery orbits in 3d allow a lot more collisions, especially for long or
big particles, and moreover the particles will move on orbits according to their initial
condition, whereas in 2d they all follow the same orbit only with a possible time
shift. I investigated the collision rate for some defined initial conditions as well as a
random initialization. It can be seen that besides the shape the initial condition has
a big influence to the collision rate, which is expected. A very special case though is
φ0 = θ0 = 0 where the collision rate is just a constant, not depending on the aspect
ratio. However, this is a very trivial case as then θ̇ vanishes. There is still a motion in
φ direction but as θ = 0 it corresponds to a rotation around the symmetry axis, and
consequently it is not noticeable. There is only the one-dimensional translational
movement that counts. Because the volume of the particles is constant, changing
the aspect ratio makes them thicker in one direction but thinner in the other, which
is why in total the collision rate stays constant. Furthermore there is no general
connection between rods and disks with the same axis lengths a and λa.
Finally, the simulations confirm the theory in two dimensions, predicting that the
collision rate will approach 0 with increasing aspect ratio, however there is a sys-
tematic deviation when the particles are initialized randomly that is probably a
consequence of the unstable numerical solution. Moreover the initial condition in-
fluences the rate even though given a λ all particles follow the same Jeffery orbit. In
three dimensions the collision rate in contrast increases for increasing shape factor
|Λ|. The initial condition has an even higher impact on R0 as it also determines
according to which Jeffery orbit the particle rotates.

42



6. Advected spheroids in the shear flow

(a) (b)

(c) (d)

Figure 6.2: One-particle collision rate for elliptical particles with aspect ratio λ in
the shear flow. Markers represent the mean of 100 independent experiments. The
standard error is too small to be visible. Lines show the theory. The black lines
illustrate the curves for the corresponding spherical particles with radius a =

√
A
λπ

and λa (2d) or a =
(

3V
4λπ

) 1
3 and λa (3d) according to (3.4 - 3.5). The dashed

lines emphasize the value for λ = 1. (a) 2d simulation for different initializations
with (6.6), particle area A = 0.0052π, n0 = 2000. (b) 2d simulation divided by
n0 for different particle number densities with (6.6), particle area A = 0.0052π,
uniform initialization. (c) 3d simulation for different initializations, particle volume
V = 4

30.013π, n0 = 2000. (d) 3d simulation divided by n0 for different particle
number densities, particle volume V = 4

30.013π, uniform initialization. Simulation
parameters: s = 25, box volume Ld with L = 1, dt = 0.0005, T (λ)

dt
time steps.
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7
Advected spheroids in the random

flow

The last case that I am going to describe is a flow that is a statistical model for
small scales in turbulence which was already presented in chapter 3.
On the one hand it is the most interesting case in this thesis, but at the same time
it is also the most difficult case. The equation of motion is fully determined by
the assumption that the particles are advected (v(r, t) = u(r, t)) together with the
corresponding Jeffery equations from (4.2 - 4.3). The random flow is constructed
precisely as described in appendix A. In each time step the flow has to be evaluated
for every particle at a certain position r. This is a very time consuming procedure.
As shown in the appendix A the flow velocities and gradients are the result of
a random Gaussian function that takes into account a certain number of Fourier
modes depending on the box length L, the correlation length η and the desired
precision p (equation (A.4)).

It is important to find a balance between the right choice of parameters according
to the time and length scales in the system and computation time. In the derivation
of the flow it was assumed that L � η. Additionally a, c � η. For instance, in
a unit box and η = 0.1 there are 10 Fourier modes that have to calculated for
each dimension (precision of 8 digits). Influencing the number of Fourier modes
corresponds to increasing η or decreasing L. As the focus lies on the collision rate,
it is more reasonable to chose the second alternative, because then particles collide
more often and the statistics become better. At the same time it is important
to not decrease it too much as then the flow will not be fully isotropic anymore
and additionally the correlation functions will no longer agree with what would be
expected, because the length scales of the system are too similar.
Both in figure A.1 (〈Axx(0, 0)Axx(r, 0)〉) and in 7.1 (R0) it was confirmed that L =
0.5 is a good compromise, even though one has to keep in mind that especially
for big distances compared to the particle size the correlations are not represented
sufficiently good by this choice, but as collisions happen at small distances the
collision rate is not significantly influenced. The number of Fourier modes that has
to be calculated for each dimension drops to 5, which results in a significant gain in
computation time.

It is not straight forward to include all the facts and properties of the random flow in
the equation for the collision rate, because it cannot be reasoned in the same way as
in section 3.2.2 as the problem is not symmetric in all directions any longer. Because
the flow is ideally homogeneous and isotropic it is nevertheless expected that the
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7. Advected spheroids in the random flow

stationary spatial distribution is uniform, and the same holds for the distribution of
angles. Eventually there is no theory to compare with and only simulation results
are presented which still give an idea of how the collision rate changes with respect
to the shape.
In two spatial dimensions by increasing the aspect ratio and keeping the particle area
constant the collision rate first drops and then increases again according to figure
7.1. This can be the result of different behaviours that are more or less distinctive
for different shapes.
The drop of the collision rate indicates that there could be some sort of alignment,
like it happened in the shear flow, leading to a decrease of the collision rate as
the minor axis becomes smaller. But at the same time the larger the aspect ratio
becomes the more the effect of the fluctuations of the flow could encourage collisions
due to the fact that particles recollide in a short period of time, which is related to the
function χ described when the collision rate was introduced, and which is actually
an unwanted behaviour that should not be included in the collision rate. Also
thinking about an axisymmetric particle moving along a vortex it seems reasonable
that a very elongated particle would get the chance to hit more particles than an
approximately spherical one, especially when it rotates at the same time. By further
increasing λ the latter two effects might be more significant than the alignment and
therefore the collision rate increases again.
Furthermore the simulations confirm a linear dependency on the particle number
density n0, however the dependency on the Kubo number Ku and the particle area
A are not linear anymore. In chapter 3 it was seen that for spherical particles
the collision rate is direct proportional on Ku and A, which is also validated by
all simulations for λ = 1. When the aspect ratio is close to 1 linear dependencies
appear to be a good approximation though.
Simulated collision rates in three dimensions are presented in figure 7.2. The biggest
problem faced here is the computation time. All in all it was only possible to produce
results for one independent experiment. Therefore it is questionable if the results
resemble the actual collision rates, but in previous cases it was observed that 100
independent experiments are actually more than necessary and the standard error is
extremely small, which supports at least the tendencies that are illustrated in figure
7.2.
The main observation that can be made is that the collision rate increases by in-
creasing |Λ| while oblate spheroids collide less often than prolate ones. With only
one simulation it is not possible to make a proper statement on the dependencies
on Ku, n0 or V , but at least the simulation points to support the hypothesis made
for the two-dimensional system.
In general it is qualitatively not completely understood how axisymmetric particles
move in the random flow, as there are no deterministic equations like there are in the
shear flow, for example. To study the collision rate can give hints to what happens
but in many cases it is a superposition of different effects so that in the end it is hard
to find a definite explanation, but only speculations. One can nevertheless conclude
that the shape, i.e. Λ, has a great impact on the collision rate and leads in general
to an increase the more elongated the particle are if the volume is kept constant.
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(a) (b)

(c) (d)

Figure 7.1: One particle collision rate for two-dimensional elliptical particles with
aspect ratio λ in the random flow. Random initialization of positions and angles.
Markers represent the mean of 100 independent experiments. The standard error is
too small to be visible. The black lines illustrate the curves for the corresponding
spherical particles with radius a =

√
A
λπ

and λa according to (3.8). The dashed lines
emphasize the value for λ = 1. (a) Effect of the box length L, Ku= 1, A = 0.0022π,
n0 = 2000. (b) Effect of the Kubo number Ku, L = 0.5, A = 0.0022π, n0 = 2000.
(c) Effect of the particle number density, L = 0.5, A = 0.0022π, Ku= 0.1. (d) Effect
of the particle area A, L = 0.5, Ku= 0.1, n0 = 2000. Further simulation parameters:
η = 0.1, τ = 0.1, u0 = Ku·η

τ
, box volume L2, dt = 0.0005, 5000 time steps after an

initial transient of 100
dt

time steps.
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(a) (b)

(c)

Figure 7.2: One particle collision rate for three-dimensional spheroidal particles
with aspect ratio λ in the random flow. Random initialization of positions and
angles. Markers represent only 1 independent experiment. The black lines illustrate
the curves for the corresponding spherical particles with radius a =

(
3V
4λπ

) 1
3 and λa

according to (3.9). The dashed lines emphasize the value for λ = 1. (a) Effect of
the particle volume V , L = 0.5, Ku= 1, n0 = 1000. (b) Effect of the Kubo number,
L = 0.5, V = 4

30.0053π, n0 = 1000. (c) Effect of the particle number density n0,
L = 0.5, V = 4

30.0023π, Ku = 0.1 . Further simulation parameters: η = 0.1, τ = 0.1,
u0 = Ku·η

τ
, box volume L3, dt = 0.0005, 5000 time steps after an initial transient of

100
dt

time steps.
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8
Conclusion and future ideas

In the thesis the collision rate of axi-symmetric particles in several fluid flows was
discussed as a continuation of work that has been done on spherical particles and
it was observed that the shape of the particles has a tremendous impact on the
collision rate. In particular, particles in the kinetic limit, the shear flow and the
random flow model were investigated.
In two spatial dimensions an ansatz of a theoretical collision rate was presented. The
collision rate depends on the surfaces that are drawn by the centres of two touching
ellipses. It was found that the curves have the same length no matter which relative
angle the ellipses have, which affects and simplifies the collision rate as well. The
surfaces were not investigated in three dimensions, however the simulations indicate
that the surfaces do no longer have the same area.
It was seen that the collision rate for particles that have a random velocity, both
translational and rotational, results in the collision rate that is known from kinetic
gas theory. It was seen that changing the shape factor Λ to a non-vanishing value
while keeping the particle volume constant leads in general to an increase of the
collision rate. Due to symmetries in the system (isotropy) the rotation rate is not
influencing the collision rate.
The shear flow, which is a laminar and deterministic flow, could be solved for ad-
vected (St = 0) particles. Even though there are still unexplained deviations from
the theory, progress was made in understanding the behaviour of those particles. In
two dimension the collision rate is expected to approach zero, as particles tend to
be aligned with the flow the longer they are. In three dimension it was seen that
this is not the case anymore. The three dimensional Jeffery orbits give rise to much
more collisions. Moreover it was found that the initial configuration of the particles
is determining the collision rate.
The most interesting example is the random flow, imitating the small scales of turbu-
lence. Increasing the shape factor |Λ| results in a higher collision rate, even though
in two dimensions it first drops a bit. It was concluded that several mechanisms,
like fluctuations but also the bigger collision radius of more elongated particles, can
reason the behaviour.
In order to verify the simulations further, it would be necessary to investigate easier
cases where it is also possible to solve the integrals. However, one also has to note
that the numerical solution of the integral, that was done by Mathematica, is not
exact and can contain errors. Moreover it is not possible at this point to compare
to any theory in three dimensions.
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Therefore future steps could be to find a parametrization of the surfaces drawn by
the centres of touching spheroids, as this turned out to be even more complicated.
Nevertheless it would be an interesting task because in the end it would give rise
to the theoretical expression for the collision rate in three dimensions. The ansatz
would be very similar to the way it was presented in my work.
One could also think about transforming one spheroid into a sphere and investigate
the collision between those two bodies which would obviously be much easier. It is
not assured that this transformation fulfills all requirements, i.e. that the second
spheroid actually stays a spheroid not deforming in a strange way, such that one
can easily check for collisions. It would be a very elegant way of dealing with the
problem. A two dimensional attempt was previously given in [30].
Likewise inertial particles could be considered. The Jeffery equations for weakly in-
ertial particles was already found in [6], so it would be straight forward to investigate
this using the results of this thesis.
Also, while introducing the Navier-Stokes equation in chapter 2 additional external
forces were neglected. They can basically be everything, but gravitational forces
seem to be the most natural choice to begin with. The particles will not only move
according to the flow but at the same time they will settle.
Further on the results from the random flow could be compared to real turbulence
data obtained by direct numerical simulations in order to see if the they coincide.
This corresponds precisely to the case that was discarded from the beginning, i.e.
resolving the flow by finding (numerical) solutions to the Navier-Stokes equations.
To find a theoretical expression however is a rather tough task to solve in both cases.
In conclusion, the work done within this project investigates the problem from a
fundamental point of view and can be used to approach more physical situations
by including more realistic assumptions both from a theoretical but also from a
computational perspective.
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A
Statistical model of turbulence

Solving the Navier-Stokes equation for turbulence can be tedious work to do in order
to get the underlying flow field. The parameter space is immense, the equations are
non-linear and therefore the computer power needed exceeds today’s resources in
many cases.
For that reason it has become a successful method to approximate turbulence by
a random flow field instead. The model is such that it has the same statistical
properties, e.g. the flow speed u0, the correlation length η, the correlation time τ ,
as the actual turbulence. The beauty with it is that it can be easily implemented
and it was shown in many comparisons to direct numerical simulations that the
results are qualitatively the same and help us to understand basic mechanisms.
The topic of the last part of the thesis is finding the collision rate of spheroids in
an incompressible random flow. Thus it is essential to say some words about how
to generate it. In [10] a detailed description is given but the important aspects are
summarized in the following.

A.1 Creation of a random velocity field

The model in d dimensions is based on time-dependent random Gaussian functions
of form

Ψ(r, t) = (2π)d/4 ηd/2+1u0√
Vdd(d− 1)

∑
k
ak(t) exp

[
ik · r− k2η2

4

]
. (A.1)

In two dimensions k = 2π
(
nx
Lx
, ny
Ly

)T
, n ∈ Z. The box volume V2 = LxLy is char-

acterized by its side lengths Lx and Ly. In other dimensions these variables are
analogous.
Ψ is a Fourier series and the Fourier coefficients ak(t) are complex Gaussian random
numbers with properties

〈ak(t)〉 = 0
〈ak(t)a∗k’(t)〉 = δkk’

a∗k(t) = a-k(t).

The last conditions results in (A.1) being real which is absolutely crucial.
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A. Statistical model of turbulence

In order to update the function in time only the coefficients are updated using
another set of complex Gaussian random numbers bk.

〈bk(t)〉 = 0

〈bk(t)b∗k’(t)〉 =
(

1− exp
[
−δt
τ

])
δkk’ ≈

2δt
τ
δkk’.

Finally the update rule is

ak(t+ δt) = exp
[
−δt
τ

]
ak(t) + bk ≈ (1− δt

τ
)ak(t) + bk.

All this results in 〈Ψ(r, t)〉 = 0 and a correlation function

〈Ψ(r, t)Ψ(r′, t′)〉 = η2u2
0

d(d− 1) exp
[
−(r− r′)2

2η2 − |t− t
′|

τ

]

= η2u2
0

d(d− 1) exp
[
− R

2

2η2 −
T

τ

]
≡ C(R, T ),

if the correlation length η is small compared to the system size Li. Figure A.1
shows the importance of the condition η � Li, as if the condition is not fulfilled
the correlations of the Gaussian function and its derivatives deviate. For η = 0.1
Li ≥ 1 would be a good choice. If Li = 0.5 the correlations are reproduced well
only on the small scale, and by further decreasing the box length, e.g. Li = 0.25,
the correlations are getting completely wrong.
The prefactor of the random function is chosen such that 〈u(r, t)u(r, t)〉 = u2

0 which
represents the characteristic flow speed. If this had not been the case, one would
have had to take care of the right normalization. Eventually the velocity field u(r, t)
and its gradient A(r, t) of the random flow in two and three dimensions is constructed
as follows.

2d : u(r, t) =
(
∂yΨ
−∂xΨ

)

A(r, t) = ∇uT (r, t) =
(
∂x∂yΨ −∂2

xΨ
∂2
yΨ −∂y∂xΨ

)

3d : u(r, t) = ∇×Ψ =

∂x∂y
∂z

×
Ψ1

Ψ2
Ψ3

 =

 ∂yΨ3 − ∂zΨ2
−∂xΨ3 + ∂zΨ1
∂xΨ2 − ∂yΨ1



A(r, t) = ∇uT (r, t) =

∂x(∂yΨ3 − ∂zΨ2) ∂x(−∂xΨ3 + ∂zΨ1) ∂x(∂xΨ2 − ∂yΨ1)
∂y(∂yΨ3 − ∂zΨ2) ∂y(−∂xΨ3 + ∂zΨ1) ∂y(∂xΨ2 − ∂yΨ1)
∂z(∂yΨ3 − ∂zΨ2) ∂z(−∂xΨ3 + ∂zΨ1) ∂z(∂xΨ2 − ∂yΨ1)

 .
Ψ = (Ψ1,Ψ2,Ψ3)T consists of three independent (i.e. 〈Ψm(r, t)Ψn(r′, t′)〉 = δmnC(R, T ))
random Gaussian functions of the previously described type. Obviously Tr(A) = 0.
This is an equivalent statement to∇·u(r, t) = 0 which confirms the incompressibility
of the flow.
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A. Statistical model of turbulence

The correlation functions of the components of u and respectively A are in two and
three spatial dimensions then given by

〈ui(r, t)uj(r′, t′)〉 = (−δij(∆− ∂2
i ) + (1− δij)∂i∂j) C(R, T )

=
[
−δij

(
−d− 1

η2 + R2 − (ri − r′i)2

η4

)

+(1− δij)
(ri − r′i)(rj − r′j)

η4

]
C(R, T )

〈Aij(r, t)Akl(r′, t′)〉 = 〈∂jui(r, t)∂luk(r′, t′)〉
= (−1)δjl∂j∂l 〈ui(r, t)uk(r′, t′)〉.

δij is the Kronecker-Delta and i, j, k, l ∈ x, y, z and ∂i the partial derivative with
respect to i. ∆ = ∇2 is the Laplace operator.
In particular,

〈Axx(r, t)Axx(r′, t′)〉 = ∂2
x(∆− ∂2

x) C(R, T )

= (η2 − (rx − r′x)2) [(d− 1)η2 − (R2 − (rx − r′x)2)]
η8 C(R, T )

(A.2)

〈Axx(0, 0)Axx(0, 0)〉 = u2
0

d · η2 . (A.3)

With this it was presented how to generate a random incompressible flow with a
velocity field u(r, t) and velocity gradients A(r, t) which obeys the properties of a
turbulent flow with characteristic flow speed u0, correlation length η, correlation
time τ and Kubo number Ku = u0τ

η
.

(a) (b)

Figure A.1: Correlation function 〈Axx(0, 0)Axx(r, 0)〉 in two dimensions for two
different boxes with length L = 0.25 (a) and L = 0.5 (b) in each dimension. Three
different constraints on the distance r, i.e. on dx = rx−r′x and dy = ry−r′y . Markers
represent the mean of 300000 independent experiments with each 100 particles. The
error is significantly small. Lines show the theory from (A.2). Parameters: Ku = 1,
η = τ = 0.1.
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A. Statistical model of turbulence

A.2 Optimisation

Besides the theoretical concept of a random flow it is also important to think about
a reasonable implementation of it. For this reason the upcoming part shows further
practical simplifications of (A.1) used in the simulations.
In the implementation of the flow depending on a Gaussian random function as
(A.1) the equation was further optimised in order to avoid complex numbers and
gain computation speed. The main idea is to rewrite the sum. The basic property
that allows this is a∗k(t) = a-k(t). To make the calculation more clearly k ≡ (m,n)T
and ak(t) ≡ amn is used.

∑
k
ak(t) exp

[
ik · r− k2η2

4

]

=
∞∑

m,n=−∞
amn exp

[
i(mx+ ny)− (m2 + n2)η2

4

]

= a00 +
∑
m 6=0

am0 exp
[
imx− m2η2

4

]
+
∑
n 6=0

a0n exp
[
iny − n2η2

4

]

+
∑

m,n 6=0
amn exp

[
i(mx+ ny)− (m2 + n2)η2

4

]

The individual sums can be simplified further. It is shown for only one case. How-
ever, the principles are exactly the same for all other sums.

∑
m 6=0

am0 exp
[
imx− m2η2

4

]

=
∑
m>0

(am0 exp [imx] + a−m0 exp [−imx]) exp
[
−m

2η2

4

]

=
∑
m>0

(am0 exp [imx] + a∗m0 exp [−imx]) exp
[
−m

2η2

4

]

=
∑
m>0

((am0 + a∗m0) cos [mx] + i(am0 − a∗m0) sin [mx]) exp
[
−m

2η2

4

]

= 2√
2
∑
m>0

(<(am0) cos [mx]−=(am0) sin [mx]) exp
[
−m

2η2

4

]

considering Euler’s formula and that both the real and imaginary part of amn are
real Gaussian random numbers having the same mean and variance as amn. This
leads to an additional factor of 1√

2 .
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A. Statistical model of turbulence

Using the same trick for all sums the two dimensional Φ(r, t) becomes

Φ(r, t) ∝ a00 +
[

2√
2
∑

m,n>0
(<(am0) cos [mx]−=(am0) sin [mx]) exp

[
−m

2η2

4

]
δn, 2π

Ly

+ (<(a0n) cos [ny]−=(a0n) sin [ny]) exp
[
−n

2η2

4

]
δm, 2π

Lx

+
(
<(amn) cos [mx+ ny]−=(amn) sin [mx+ ny]

+ <(am−n) cos [mx− ny]−=(am−n) sin [mx− ny]
)

exp
[
−(m2 + n2)η2

4

] ]
.

Merging everything together to one sum there arise two delta functions in order to
avoid multiple counting of the sums where one index vanishes.
This sum is theoretically still up to infinity. Indeed it is possible to find criteria
where to stop the sum in each dimension of k in order to get a certain precision p.
The summands decay exponentially with k ergo the sum converges to a value. For
instance, the threshold for m is given here. Again the procedure is the same in the
other dimensions.

exp
[
−m

2η2

4

]
≤ 10−p ⇔ m2η2

4 ≥ p ⇔ m ≥
2√p
η

Summands with m bigger than this value do not contribute within precision p.
Equivalently holds

m = 2π
Lx
nx ≥

2√p
η

⇔ nx ≥
Lx
πη

√
p. (A.4)

With this one can control the number of Fourier modes that are taken into account
in the evaluation of the flow. But note that while Li

η
decreases (i.e. less Fourier

modes are used) the statistical model successively loses qualitative properties that
are very important in order to imitate turbulence.
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