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Trajectory Smoothing for Multiple Extended Objects

Batch estimation based on the random matrix model and expectation maximization
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Department of Electrical Engineering
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Abstract

From the combination of the fact that modern sensors get better resolution, and
that close range tracking applications, where the objects are close to the sensor, are
becoming more and more common, the field of tracking multiple extended objects
arises. The property of obtaining multiple measurements per scan violates the clas-
sical assumptions. This implies that classical tracking approaches cannot be applied
directly.

Object tracking can be performed in many ways, depending on the method
that is utilized. In some tracking applications, and in data annotation, Bayesian
smoothing is an important tool to infer as much as possible from accumulated data.

This thesis presents two alternative smoothing methods for tracking objects
and their spatial extension; the conditional random matrix model and the factorized
random matrix model. These models are a natural extension to already existing work
in the Bayesian forward filtering framework for extended objects using the so called
random matrix model. The linear conditional model is compared to both a linear
version and a nonlinear version of the factorized model. The performance of all
three models are evaluated.

The models show better robustness to missed detections and few measure-
ments, and yield better results than the existing forward filtering approaches. The
linear conditional model and linear factorized model perform very similarly to one
another, and outperform the nonlinear factorized model in the case when the ground
truth is linear motion. In the case of non-linear ground truth motion, the results
are the opposite: the nonlinear factorized model performs better. However, overall
the conditional model and the linear factorized model perform better than the non-
linear factorized model, mainly due to the additional approximations needed in the
nonlinear factorized model.

Keywords: extended objects, random matrix approach, Gaussian Inverse-Wishart,
multiple extended objects, tracking, data association, Bayesian smoothing, Bayesian
filtering, expectation maximization.
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1

Introduction

This chapter gives a short background to the research field of tracking and motivates
the work done in this thesis. It addresses relevant works and presents a formal
problem description.

1.1 Motivation

Estimation and tracking have a wide application area. One common estimation
application is tracking with the usage of radar. With the help of electromagnetic
waves and tracking algorithms, the position and velocity of objects are being tracked.

The conventional tracking algorithms that are utilized rely on some assump-
tions. One of the most common is the assumption of point object. The point object
assumption means that we do not model the spatial extent of the object that is
being tracked. In other words no matter the size, all the object’s attributes are
concentrated to a single point, similar to the point particle assumptions made in
classical Newtonian mechanics [39].

The number of measurements obtained from the sensor depends mainly on
three factors; the sensor resolution, size of the object and the distance between the
sensor and the object. The point object assumption implies that there is, at each
time instance, at most one measurement per object. The assumption was valid at
the time when the first successful tracking applications were invented, such as the
Kalman filter developed in the middle of the 20th century by Rudolf E. Kalman
[38].

1.2 Object Tracking

Object tracking is in this thesis divided into two parts: tracking of a single extended
object and tracking multiple objects. This is to tackle the problem from different
levels of abstractions.

1.2.1 Single Extended Object Tracking

Technical development has improved the quality of the sensors that typically are
used for tracking, and it has also reduced the cost of the sensors. In contrast to old
sensors, modern ones have better resolution and thus have the ability to get multiple
data readings per object at each time instance [33]. This violates the assumption
that there is only one data point at each time instance. Multiple measurements
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makes it possible to model the spatial extent of the object and this means that the
classical point object tracking approaches cannot be applied directly.

Some typical tracking applications today are airspace surveillance and position
localization from a satellite (GPS). Both of these are usually long range tracking
where the objects are far away from the sensor, and thus the point object assumption
is still valid.

Situations when the point assumption is ungainly are when the extent of the
objects contain valuable information that otherwise would be disregarded. For in-
stance if the estimate is used to determine the maneuvering actions of a vehicle in a
tight traffic situation, then the size is of utmost importance. The environment per-
ception of vehicles, especially autonomous vehicles, are a typical example of a close
range tracking application where the distances between the sensor and the objects
are small in relation to the sensor resolution.

1.2.2 Multiple Extended Object Tracking

For the vehicle example above, the ability to avoid collisions and fatal accidents
requires knowledge of both the positions of the surrounding objects and their sizes.
Besides, there is seldom only a single vehicle on the road, but rather multiple ones.

If there are several objects where the object size is of interest and there is a
possibility of obtaining multiple measurements per object, then the problem is a
tracking of multiple extended objects. In other words, multiple object tracking is
the problem of estimating both the kinematic attributes and the extent of several
objects.

1.2.3 Smoothing Problems

When the application is not a real time online application, and there is an interest
in extracting as much information as possible from accumulated data the Bayesian
filtering technique known as smoothing is desirable. Smoothing applications are
typical in surveillance, but can also be of great interest in data annotations. For
instance when creating training data for a machine learning algorithm.

1.3 Contribution

This thesis makes contributions to both single extended object smoothing, and mul-
tiple extended object smoothing, under the assumption of random matriz model
or a Gaussian-Invese Wishart distribution. Firstly there is a theoretical deriva-
tion of two different smoothing models, a conditional random matriz model and a
factorized random matriz model. Both models are then evaluated in a simulated
environment in the case of only a single extended object and for different levels of
difficulty. Thereafter both models are also evaluated for the case of tracking mul-
tiple extended objects. The contribution acts as an intuitive extension of existing
work in a Bayesian forward filtering framework, where the so called random matrix
approach is utilized, see, e.g. [25, 42,9, 9, 9, 30].

2
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1.4 Related Work

In the field of multiple extended object tracking there is a lot of ongoing research.
For the extended object tracking field there is an elaborate overview presented in
[15]. According to this article there are two main approaches to model extents. The
first is to use simple geometric shapes such as straight lines [17], rectangles [11, 20],
circles [23] and ellipses [18, 25, 9]. The other approach is that the extent may be
modeled with more complex shapes, either as a parametric curve [2, 7, 22] or as a
combination of ellipses [14, 27].

For Bayesian filtering of extended objects, the random matrix approach was
first introduced in [25]. This work was developed further by several other researchers
such as in [8]. An new update step for the Bayesian random matrix framework is
developed in [9]. The update step was then further developed in [33]. A new
prediction step was presented in [19]. In [41] the fusion of multiple sensors are
introduced to the Bayesian Random matrix framework and in [40] a comparison of
the existing multiple measurement approaches is done. Further in [13] the possibility
of spawning and combinations of objects are introduced in the Bayesian random
matrix framework.

The next step was to implement the extended object tracking work for the case
of several objects. A theoretically elaborate article about the field is presented in
[30]. Multiple object tracking based on the random matrix approach was developed
by [42] and further related works were presented, such as [12].

When it comes to the multiple object case there are different approaches to
cope with the association problem. Such as the Probability hypothesis density fil-
ter (PHD) in [12, 30], or the Maximum Likelihood-Probabilistic Data Association
(MLPDA) in [5], the Probabilistic Multi-Hypothesis Tracking (PMHT) in [26, 42, 43].
Other filters for multiple object tracking are cardinalized probability hypothesis den-
sity (CPHD) in [45], §-Generalized Labeled Multi Bernoulli (d-GLMB) filter in [34]
and Poisson multi-Bernoulli mizture (PMBM) filter in [16].

The EM-algorithm used in this thesis, is a general method for finding maximum
likelihood estimates and has many applications. In some of the related works to this
thesis the EM algorithm have been used for informational extraction in different
tracking applications. For example in [23] where the EM is used to track the contour
of an object with EM based on noisy point clouds. In [24] the EM algorithm is
compared to a Gaussian Random Hyper Surface Model in a tracking situation where
the extent is modeled as a star-convex shape. Other attributes, of the objects, rather
than extents are estimated with the EM algorithm in [6]. EM is also used in [29]
for a different aspect of tracking; to solve the association problem while estimating
a map based on radar readings.

1.5 Thesis Outline

The rest of the thesis is structured in the following way: chapter 2 is the general
tracking theory chapter where all the essential theory needed for understanding
general tracking is presented. Chapter 3 gives the specific tracking theory needed to

3
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understand the contents of the report and it assumes some background knowledge in
the field of tracking in a Bayesian framework. The method of the thesis is presented
in chapter 4. It describes the experiments and how the evaluations are structured.
Chapter 5 presents the obtained results from the experiments together with the
corresponding analyses. The sixth and last chapter contains the conclusion of the
presented work and ends with a discussion about possible future work.
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Background Theory

This chapter gives a brief overview of general Bayesian filtering and smoothing.
Here the transition and measurement models, that will be used in this thesis, are
presented. The clustering algorithms utilized to solve the association problem and
the Kullback Leibler Divergence are also presented.

2.1 State Space Modelling

The target state can be viewed as the unknown parameters that are of interest for an
object. When tracking an object, one usually collects parameters, such as position
and velocity, in a state vector zj, where k denotes the time instance. In Bayesian
probability the unknown parameters are modelled as random and in classical track-
ing approaches it is common to model the distribution of the unknown state as a
Gaussian distribution,

p(ar) = N (@r; mgp, Pep), (2.1)

where my; and Py denotes the mean and covariance of the state at time £ given
information up until time .

Since tracking consists of the problem of estimating the states of objects over
time, the relationship between states from different time instances is of interest.
Similarly the relation between the gathered data about the objects and the objects’
states must also be considered. This is done by models or more specifically, state
space models.

Models are used as an abstraction to explain relationships between different
quantities. Hence the concept of models is huge. In this thesis the relationship
between states over time are modeled with transition models and the relationship
between the states and obtained data are modeled with measurement models.

2.1.1 Transition Model

A transition model is used to model how the state evolves in time. There exists
both linear and nonlinear transition models, and the choice of model depends on
the type of time evolution that is desirable for the state. The two different transition
models that are used in this thesis are the linear constant velocity model (CV) and
the nonlinear coordinated turn model (CT), see, e.g., [38, Chapter 4] and [36]. A
common way to mathematically write a general transition model is

Tk = foo1(Th—1) + qu—1, (2.2)

5
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where fi_; is the transition function of the state and p(qx_1) = N(0,Qx_1) is the
process noise and is assumed to be a Wiener Process increment, in other words white
Gaussian noise.

2.1.1.1 Constant Velocity Model

The discrete constant velocity model is a linear kinematic motion model where the
position update is based on a linear dependency of the velocity and the velocity is
modeled as a random walk,

Vk+1lk = Vklk T ks (2.3)

where p(qi,) = N(0,02) is the process noise.

The kinematic state vector has the form x;, = [rk I"k]. Where r;, denotes the
Cartesian position and r; the velocity. Since the problem considered in this thesis
is in 2D, the dimension of each component is ry, 1, € R? where d = 2. The CV
model can be written on the form

Tk = Py + ar, (2.4)

where F}, is the transition matrix, and p(qx) = N(0,Qy) is once again the process
noise and is assumed to be a Wiener Process increment with covariance Q. If we
denote the time increment between two time steps by h and the variance of the
velocity as o2, then the one dimensional discrete CV transition and corresponding
process noise covariance matrices can be written as

e P e (25)

2.1.1.2 Coordinated Turn Model

The coordinated turn model is a nonlinear motion model. The kinematic state
vector in the CT model has the form z; = [ri ry v Ok wk}, where r¥ and r}
are the Cartesian position coordinates at time k, vy is the speed scalar, 6 is the
heading and wy, is the turn-rate. The CT model takes the form

Trp1 = f(Tr) + i, (2.6)

where p(qr) = N(0,Qy) is the process noise with the corresponding Wiener as-
sumption as above. The transition function and noise matrix for the CT model are
defined as

e ¢ + huy cos(6)
T ry + huy sin(6y)
Thp1 = fi(zr) = | g | = Uk . Qr= diag({() 0 ho? 0 hai})
O+ 01, + hwy,
Wk+1 Wk

(2.7)

Here o2 is the velocity variance and o2 is the turn-rate variance.

6
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Forward filtering

Figure 2.1: The visualization of the Bayesian forward filtering. The cyan coloured
arrows are the prediction to move forward in time by utilizing the transition model.
The magenta coloured arrows represents the measurement update based on the
obtained measurements Z; obtained at time k. &, denotes the object state at time
k.

2.1.2 Measurement Model

The measurement model is used to model the relationship between the state and
the measurement. A general measurement model is usually mathematically denoted
as

2 = hk(ﬂfk) -+ Yk, (28)

where p(7x) = N (0, Ry) is the measurement noise and is also assumed to be a Wiener
Process increment with covariance Rj. A common linear measurement model where
hy : x) — Hpxp that only measures the position is

2k = Hpxp + Y, (2.9)

where Hj, is the measurement matrix that extracts the position form the state.

2.2 Bayesian State Estimation

When the Bayesian inference framework is applied to tracking problems, such as the
classical Kalman filter, it consists of a prediction step, followed by a filtering step.
This is referred to as forward filtering or filtering, see Figure 2.1. When forward
filtering has been performed for a batch of data a backwards smoothing step can be
performed. This is done so that each estimate is based on as much information as
possible.
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To be able to perform the prediction, filtering and smoothing steps there is a
need for both transition and measurement models. When performing forward pre-
diction and backward smoothing, the calculation is based on a dynamical transition
model of the state and the filtering uses the measurement model to merge the new
information to the old.

2.2.1 Filtering

Here the general Bayesian forward filtering equations are given together with the
prediction and filtering steps obtained by solving the equations in the linear case.
The prediction and filtering steps given here are the ones in a classical Kalman filter
(38].

2.2.1.1 Prediction

The prediction step works as a connection over time and utilizes a transition or
dynamical motion model to make a prediction into the future based on the current
calculated estimate. Definition of the transition models used in this thesis can be
viewed in Section 2.1.1. A transition model can be seen as a function that maps a
state estimate at one time instance to the next, i.e f : 51 — f(xp_1). The predic-
tion can mathematically be expressed as the solution to the Chapman—Kolmogorov
equation, see, e.g., [38],

Pl 251 = [ plarloe)plee i 25 o, (2.10)

where Z*~1 denotes all the accumulated information up until time instance k — 1.
Given the linear transition model in (2.4) the solution to the Chapman-Kolmogorov
equation gives the following linear prediction equations for the moments of the
Gaussian distributed state,

Mpjk—1 = Fempr, (2.11)
Prjg—1 = kakfl\klelZ + Qr, (2.12)

where xy,—; and Py, are the mean vector and covariance matrix of the state
vector at time k given information up until time instance £ — 1. Here @)} is the
covariance matrix of the process noise. Similar update equations for the nonlinear
transition model in (2.7) can be obtained with a similar approach, but then some
approximation are needed, such as linearization, see, e.g., [38].

2.2.1.2 Update

The filtering step combines the prediction with the latest measurements to yield a
better estimate by using a measurement model and Bayes rule, see, e.g., [32],

p(zkln, ZF N )p(ay| Z51)
p(zx|ZF1) ’

where z; is the new measurement, Z* is the accumulated measurement up until
time k. With the linear measurement model given in (2.9) along with the Gaussian

p(x] 2%) =

(2.13)

8
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distribution assumption of the state, the following linear measurement update for
the moment of the state is obtained

Mgk = Mpjp—1 + KpSg, (2.14)
Py = Pt — KpSeK)L (2.15)
Ky, = Py H' S}, (2.16)
Sk = 2k — Hpxpp—1, (2.17)
Sy = H,Pys—1H + Ry. (2.18)

2.2.2 Smoothing

The smoothing makes a step similar to the prediction, but backwards in time. This
enables the estimates at each time instance to rely on as much information as pos-
sible. The general backward soothing is calculated according to

pleri|ze)p(era | Z7)
(41| ZF)

By using the linear transition model in (2.4) the following smoothing update equa-

tions are obtained,

p(xklZ5) = p(ai| Z2")

dﬂjk+1 (219)

Gr = PupFy Py, (2.20)
M|k = M|k + Gk(mk+1|K - mk+1\k> (2.21)
Prux = Pur — Gr(Pegajp — Pera) Gy (2.22)

This equations are the ones in a Rauch-Tung-Striebel Smoother, see e.g., [38].

2.3 K-means Clustering

The K-means algorithm is a deterministic clustering technique that generates the
clusters based on a distance metric. The whole idea boils down to a two step iterative
algorithm that in its first step associates the data points to the closest cluster center,
then in the second step the cluster centers are updated based on their assigned data
points. This is then repeated until convergence or some termination criterion is
fulfilled. We denote z;, as the data point r at time instance k. Binary associations
variables are defined as

(2.23)

1, If data point r is assigned to cluster m
a _=
" 0, Otherwise

The variable p,, is the center of cluster m and is calculated based on its assigned
data points. By using a Euclidean metric, the distortion measure, or object function,
that is optimized can be written as

ng M
J=22 amllzg - il [® (2.24)

r=1m=1
In other words, the goal is to minimize J with respect to a,,, (the first step) and
fm (the second step). Here ny is the total number of obtained data points at time
k, and M is the total number of clusters (or objects).
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2.4 Expectation Maximisation

In contrast to K-means algorithm, which is a deterministic clustering technique,
the Ezpectation-Mazimization algorithm (EM) is a probabilistic inference technique
that can be used as a probabilistic clustering technique. The difference between
the two clustering techniques is that the EM uses a probabilistic approach for the
associations, in this situation it can be viewed as an probabilistic extension of the
K-means algorithm.

The EM algorithm is a general technique for finding maximum likelihood so-
lutions. In the EM framework the problem is solved by introducing the hidden
variables or latent variables. The introduction of the latent variables are to create
a complete likelihood that is assumed to be easier to optimize than the incomplete
likelihood (without the latent variables),

p(Z|X) = p(Z,A|X), (2.25)
A

where Z denotes all the accumulated data, X are a set of parameters and A is the
set of all latent variables. Here p(Z, A|X) is the complete likelihood and p(Z|X)
denotes the incomplete likelihood that is obtained by marginalizing over the latent
variables.

Just like the K-means algorithm, the EM algorithm is an iterative algorithm
consisting of two different steps. The first is the Ezpectation step (E-step) where the
optimization of the joint likelihood is done based on the latent variables A, and since
they are unknown, the step has the structure of an expectation. The second step
is the Mazimization step (M-step) where the optimization is based on the known
parameters X'. What the parameters and the latent variables are, depends on the
applications.

2.5 Kullback Leibler Divergence

The derivation of the smoothing algorithms, requires distribution approximations.
They are based on minimization of what is known as the Kullback—Leibler divergence
(KL). KL is a measure of how close two distributions are. It is mentioned here for
completeness of the theory that has been utilized. For continuous densities, the KL
is defined as

KLipll) =~ o) {57 b (2.26)

It can be shown that KL(p||q) > 0 and that equality holds if, and only if, p(z) =
q(z). Note that the Kullback-Leibler divergence is not a symmetrical quantity, i.e.
KL(p||q) # KL(q||p). For further properties see, e.g., [4].

10
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Extended Object Tracking

This chapter goes through the theory that is needed to understand the tracking
research field and the contributions of this thesis. It gives a definition of extended
objects and how tracking of extended objects is implemented in a Bayesian frame-
work.

3.1 Extended Object Tracking

The difference between the Bayesian forward filtering and the Bayesian smoothing is
that the filtering computes the estimates based on current and historical data while
the smoothing estimates the states using both previous and future data. Thus, the
smoothing uses more information at each estimate [38].

In the presence of difficulties, such as missed detections, smoothing should
thus yield better results. The true extent might either be rigid and only change
in orientation, but for example in the case of group tracking the shape might also
vary with time. Group target tracking arises when the sensor resolution can not
distinguish between individual targets that move collectively in a group. Thus it is
possible to consider them as one large object with multiple measurements instead
of considering the internal data association problem [15].

Since the spatial extent of the object are of interests, it needs to be estimated
in some fashion. This is done using a model of the extent. As noted in Section
1.4 there are different models to choose among. The model used in this thesis is
presented next.

3.1.1 Random Matrix Approach

In this work the so called Random Matriz approach (RM approach) is utilized, [25, 9].
It models the extent of the object as ellipses. It might seem like a crude model to
assume elliptic shapes for the extent, especially in a typical tracking example such
as vehicle tracking. Elliptical vehicles are not that common, but the assumption is
appropriate in other applications, such as naval surveillance and tracking of groups
consisting of several smaller objects [15].

Ellipses can be represented as symmetric positive definite (SPD) matrices X €
R¥*4, The tracking in this thesis is in 2D, thus the matrix dimension is d = 2. There
exist many different matrix distributions that could be utilized, but since the aim
is to incorporate the extent into a Bayesian framework, the Inverse Wishart (IW)
distribution is beneficial since it is the conjugate prior for a Gaussian measurement
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3. Extended Object Tracking

likelihood with unknown covariance matrix [9, 4]. By using this model the extent
becomes an additional state X7 to be estimated along with the kinematic state 7.
Note that in contrast to the kinematic state, the extent state matrix entries lack a
direct physical interpretation and must be understood in a context.

3.1.2 Model

At every time instance k € 0,..., N the estimated information about an object
j € 1,...,M is contained in the tuple state & = {2}, X]}, where ] € R" is
referred to as the kinematic state and X € R the extent state. Here N is the
total time instances in the batch of data, M is the total number of objects present
in the batch, n is the size of the kinematic state and d is the dimension of the
square extent state matrix. The density of the unknown states can mathematically
be written as

p(&1Z") = p(a, X7|Z") = p(ai| X3, Z")p(X,|Z"). (3.1)
The state tuple is assumed to be distributed according to a Gaussian-Inverse
Wishart (GIW) distribution. This particular choice of model is the conjugate prior
of a multivariate Gaussian distribution with unknown mean and covariance matrix.
Since a common assumption is that the measurement likelihood is Gaussian, the
GIW model is very useful.
The great benefit of this property is that the forward filtering performed in
a Bayesian framework then preserves the densities and thus reduces the amount
of approximation needed. Besides this, the assumption enables the possibility to
use the well known Bayesian framework of Kalman filter and Rauch-Tung-Striebel
smoothing for the kinematic state [38].
The model in (3.1) gives some possibilities. By utilizing different assumptions,

several different models can be obtained. Here two different models will be presented,
denoted the Conditional Model (CM) and Factorized Model (FM).

3.1.3 Conditional Model

The so called conditional model was first defined in [25], for CM the following state
density is used,

p(E1ZY) = p(t, X1 Z") = p(af) X], Z")p(Xi| ZY) (32)
= N (@ mpy, Pl @ X7) < IV a( X707, Vil)-

Here ® is the matrix Kronecker product, see, e.g., [28] and [35] for a more thorough
view of the theory. This yields a linear dependency for the kinematic covariance
matrix on the extent state.

3.1.4 Factorized Model

The factorized model assumes that the distribution of the kinematic and extent state
are independent, i.e. p(z7| X7, Z") = p(x}]Z") and Y3 = Py For FM the following
density is used,

12



3. Extended Object Tracking

p(&12") = p(ay, X[ Z") = p(xp| X, Z)p(Xi|Z")
~ p(xl| Z)p(X5| ZY) (3-3)
= N(z}; mi”, Plg\l) X IWq(X}; Uiua iju)-

3.1.5 Assumptions

The following assumptions are made in [25]. Here the superscript j is omitted since
the assumptions and following models hold for all objects.

Assumption 1 The time evolution of the kinematic state is a first order Markov
process,

P(@rg1 | Xis1, Ty Xie) = P(@hgr | Xpg1, T (3.4)

Assumption 2 The time evolution of the extent state is assumed to be indepen-
dent of the kinematic state,

P(Xit1|2k, Xi) = p(Xig1| Xi). (3.5)

Assumption 3 The extent state changes slowly with time,
Xy ~ Xy, (3.6)

such that for the kinematic state, conditioned on the extent state, the following
holds,

P(Trs1| Xi1) = p(@p41| Xk), (3.7)
p(rr| Xi) = p(op] Xpq1). (3.8)

The validity of the above assumptions 2 and 3 are discussed in [25], but are
mainly used for mathematical convenience. The following assumption is for FM and
was mentioned previously in Section 3.1.4 but is stated here for completeness.

Assumption 4 The time evolution of the kinematic state is independent of the
extent state,

P(Tpp1 | Xig1, 1) = p(@hpr| 7). (3.9)

3.2 Transition Model

As stated in Section 2.1.1 the transition model is used to model the states evolution
over time. Here the transition models used for the conditional and factorized model
is presented.
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3. Extended Object Tracking

3.21 CM

The transition density is modelled as Gaussian-Wishart,

P( @1 | X1, o) P( X1 | X))
= N(ps1; (Fr @ Lo)zg, Q @ Xjy1) (3.10)
X Wa(Xkt1; 0k, Xi/0k)

where @ and Fj, are defined as in (2.5) and the matrix I, is the identity matrix of
size d X d.

The transition model for the kinematic state, due to the conditioning on the
extent state in (3.2), must be a linear motion model [25]. The motion model used
in this thesis is the CV model defined in Section 2.1.1.1.

The time evolution of the extent state is modeled as a matrix generalization to
the random walk used for the velocity in (2.3). In other words, it is expected that
the extent does not change much over time. The transition density has the form of
a Wishart density as can be seen in (3.10). The parameter 0 in (3.10) is a design
parameter and is analogous to the process noise statistic used in the Kalman filter,
[25].

3.2.2 FM

Due to the additional independence assumption for FM, it is possible to utilize more
complex transition models, both for the kinematic and for the extent state. In this
thesis two different models will be evaluated for FM.

e Same linear motion as for CM, will be referred to as FM,

o Nonlinear motion, will be refereed as the FMNL.

3.2.2.1 Linear FM

The kinematic covariance matrix’s dependency on the extent state must be removed
from the model used in CM, if the same model is to be applied to FM. The motion
model is a CV model as above with the same matrix definitions as in (2.5). Thus
the linear transition density for FM is

P(Trg1 | Xy 1, Tr)D(Xpeg1 | X))
= N (g1 (Fr @ Ip)xg, Qr @ 1) (3.11)
X Wa( X415 0k, Xi/ k)

3.2.2.2 Nonlinear FM (FMNL)

Here the motion model for the kinematic state is the CT model. Due to the fact
that the heading and turn-rate is included in the kinematic state, it is possible to
make the time evolution of the extent state dependent on the turning. Thus the
following transition density, from [19], is used for FMNL,

("’“"’“)X’fMT(”)), 1)
Ok

P(&r+1lk) = N (zrgrs fr(@r), Qr) X Wy (Xk+1; O, M
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3. Extended Object Tracking

where the matrix product M (zy)XpMT (z}) is the similarity transformation, see,
e.g., [28]. Here the matrix valued function M (xy) is defined as the rotational matrix,

cos(hwy) — sin(hwy)

M(zy) = sin(hwy)  cos(hwy)

, (3.13)

where h is the sampling time as above.

3.3 Measurement Model

In both extended object tracking and group target tracking, there is an issue arising
from multiple measurements. The problem is that in a group consisting of several
point objects that are spatially close to each other, some of the objects might get
blocked by other objects and do not give rise to any measurements at the current
time instance. The number of measurements obtained at each time instance is
unknown and needs to be modelled. Other scenarios when the number of obtained
measurements are unknown are when the object, that are being tracked, moves in
such a way that, depending on its orientation, its extent vary or the distance to the
sensor changes. Scenarios such as these might lead to different sensor readings each
time.

When dealing with multiple measurements, there are several different mea-
surement models that can be used. One common model that is used, e.g. in [9], is
a two part model. The first part is that a measurement has a spatial distribution of
the point, known as scattering point, on the object that yield the measurement and
then the second part is the pure measurement noise.

The model used in this thesis is introduced here and is similar to the one used
in [25]. It assumes that the measurements are spread over the extent of the object
and that the pure sensor noise is so small that the covariance is assumed to be zero.
Thus with the random matrix approach, the extent estimate is similar to fitting a
Gaussian distribution to a set of samples, [3].

To perform the measurement update step in the Bayesian forward filtering, a
model is needed that connects the states to the measurements. The measurement
model used in this thesis is assumed to be linear. If a nonlinear measurement model
were to be used, then it could, e.g., be linearized. So for simplicity it is assumed
that the measurement model is linear and only measures the Cartesian positions.
The position of the sensor is assumed known.

3.3.1 Assumptions

There are some assumptions made regarding the measurements such as the number
of obtained measurements at each time instance k, denoted as ny. The assumptions
are
1. There are no clutter measurements
2. ng is unknown and modeled as a Poisson random variable with a constant
arrival rate or meausrement rate \, i.e. p(ny) = Pois(\)
3. It is assumed that the number of measurements is independent of the states,

ie. p(ng|) = p(nk).
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3. Extended Object Tracking

4. At each time instance k there is a probability of detection (P,) for each object
5. All objects are detected at the first time instance.

The first assumption is due to simplicity, but could be removed in a future
extension of this work. The second assumption is to model the fact that sensors
that have the ability to generate several measurements at each scan might give dif-
ferent number of measurements each time. The independence assumption between
the number of measurements and the states might seem like a crude assumption,
since it is likely that the larger an object is and the closer it is to the sensor, the
more measurements it would yield. But a dependency would also yield a more com-
plicated estimation task to tackle and might remove the focus from the smoothing
performance.

The fourth assumption is to model the probability of successfully detecting an
object. There are many likely situations that might result in a missed detection,
such as occlusion of the the object. The last one is probably the weakest assumption,
since in a real tracking application one can not simply assume that all the objects
are being detected at the first time instance. But since there are no models of when
new objects occur, object birth, or vanishes, termination, i.e. that the number of
objects is assumed to be fixed during the whole batch of data, this assumption is
needed to ensure convergence of the algorithm.

3.3.2 Measurement Likelihood

To include the extent in a logical way in the measurement likelihood, the following
approach is introduced in [25] and [42]. Since it is common that sensor readings
often are located all over the extent of the object, the approach is to model the
spread as Gaussian with covariance dependent of the extent state. In other words
it is assumed that each measurement is a measurement of the object’s centroid with
a spread proportional to the extent.

Z; = Hpxp + v with Hp = |1 den—d] , (314)

where 7, is a white Gaussian measurement noise with density p(vz) = N (0, X}).
Note that the measurement matrix H changes in size depending on which motion
model is used. For the CV the state vector dimension is n = 4 and for the CT n = 5.

Since it is assumed that all the measurements are of the objects centroid it is
possible to calculate two sufficient statistics, based on the obtained measurements

at time k,
> I & r 7 < T > r >
Zr=—> 2z and Zy=Y (2 — Z)(z — z)". (3.15)

Ny r=1 r=1

The sufficient statistics are the sample centroid measurement and the sample scat-
tering matrix.

3.4 Forward Filtering

Forward filtering for extended objects with the random matrix approach has been
covered substantially in various literature such as [25, 9, 19, 33]. The key update
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3. Extended Object Tracking

equations are summarized here for convenience. The notation A®7) denotes the ijth
element of matrix A.

3.4.1 CM

The forward filtering equations for CM are presented in Table 3.1. Fj and @), are
the transition and process covariance matrix from (2.5). I is the identity matrix of
size d. The kinematic prediction equations can be found in [25] and [38].

For the extent state the prediction equations are based on a matrix distri-
bution approximation. When evaluating the Chapman—Kolmogorov equation [38,
Chapter 3] for the extent state, with the transition model given in (3.10), the dis-
tribution of the predicted extent state is a General Beta density type 2 [25], see
Appendix A.1. To receive the desired Inverse Wishart distribution, the Beta den-
sity is approximated according to Corollary 1 in [19] and the following prediction
equations, in Table 3.1, are obtained. Here vy and Vi, are the scalar degrees
of freedom and scale matrix of the extent state at time k + 1 given information up
to time k. The extent process noise is denoted dy..

CM

Prediction

Kinematic state:
Mpy1jk = (Fre @ La)mp
Peja = FkPk\kaT + Dy,

Extent state:

-2
Vg1l = (d + 1)%1_522
Vi _ (vkﬂ‘k—d—l)(ék—d—l) (‘/k“g)
k+1]k e —d—1 5,
op —d—1
Cl N Uk\k —d-—1
Ok
CQ_ Uk‘k—Qd—Q

Filtering

Kinematic state:
Mgy = Miglk—1 + Wije—1 @ L) (2 — Hmyjp—1)
Py = Pyjj—1 — Wk\k_15k|k_1wg\k,1

1
Sir—1 = ()" Pyyp—rel + —
ng

Wijg—1 = Pk|k—16551;‘;i_1
Extent state:
Vik = Vi1 + Nijp—1 + Zi
Vklk = Vklk—1 + Nk
Nyjg—1 = Sk_lli_l(fk — Hgp—1) (2 — Hmk|k71)T

Table 3.1: The Forward filtering algorithm for CM.
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In Table 3.1, (e})” is the first identity vector of size d, e.g. (e})T = [1 O} when
d = 2. Here Wy x— corresponds to the Kalman gain and Sy;—; to the innovation
covariance matrix in the classical Kalman filter. The kinematic state measurement
update equations are from [25]. Here the synthetic measurements from (3.15) are
used. The update equations for the extent state are also from [25], where Nyj_q is
the innovation matrix at time k given information up until time £ — 1.

3.4.2 FM

The forward filtering equations for FM model are presented in Table 3.2. For FM
with linear motion, the prediction equations for the kinematic state are almost the
same as for CM in Table 3.1 with only a slight difference. In the kinematic state
update equations for FM in Table 3.2, Y is a proportionality matrix that connects
the precision of the synthetic measurement with the extent. The extent state update
equation for FM comes from [9], where Nk’l 4—1 and Z are the symmetric counterpart
of the innovation and scattering matrix with the additional proportionality matrix
included. Here the notation B'/? of a matrix is the matrix squared root. It is defined
such that a matrix A = B'/? is the square root of a matrix B if B = AT A, see, e.g.,
[28] and [35].

3.4.3 FMNL

The forward filtering equations for FMNL model are presented in Table 3.3 and
3.4. The kinematic state prediction for FMNL is taken from the Extended Kalman
filter [38], where f; denotes the Jacobian matrix of fi evaluated at myp_1, [38].
The update for both the kinematic and extent state in FMNL is exactly the same
as for FM in Table 3.2 with the only difference that the size of the measurement
matrix H is changed. In the kinematic state update equations for FMNL Yy is
a proportionality matrix that connects the precision of the synthetic measurement
with the extent. The extent state update equation for FMNL comes from [9], where
N, klk—1 and Zk are the symmetric counterpart of the innovation and scattering matrix
with the additional proportionality matrix included.

3.5 Smoothing

The smoothing equations for the three models are presented here. The kinematic
state equations resembles the Rauch-Tung-Striebel smoother (RTS), see, e.g., [38,
25, 42]. The derivation of the smoothing equations for the extent state, that are
developed in this thesis, are moved to the Appendix A.3 and A.4 for convenience.
The smoothing algorithm for CM can be seen in Table 3.5.

FM smoothing equations for the kinematic state are given in Table 3.6. The
matrix Uy and scalar uy are defined in Appendix A.3. The algorithm for CM and
FM resemble each other since they are based on the same models.

The smoothing algorithm for FMNL can be seen in Table 3.7 and 3.8. The
matrix M is defined as the rotational matrix in (3.13). The smoothing equations
for the kinematic state for FMNL are taken from the Eztended Rauch-Tung-Striebel
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FM

Prediction
Kinematic state:

Me1k = kak|k

Peii = FuPap B + Qy,
Extent state:

-2
Uik = (d + 1)%1 — CC;
v _ (Uk+1|k —d—- 1)(5k —d— 1) (Vk|k>
k+1|k Vklk — d—1 5k
op —d—1
Cl N Uk|k —d—1
Ok
<2_ Uk|k—2d—2

Filtering
Kinematic state:
M = Mie—1 + Wik—1(Ze — Hmpjp—1)
Prjie = Prji—1 — Wigk—1 k-1 Wil
~ 1
Slk—1 = HPk\kleT +Y,—

n
Wijk—1 = Pk|k—1HTS];‘]i,1
Vi = Xkjk—1
Extent state:
Vitk = Vigho1 + Nijpo1 + 2
Vk|k = Vk|k—1 + Nk
Npjg—1 = Sai_l(fk — Hrgp—1) (2 — ka\kfl)T
N1 = Xy SNk (S 20T ()"
Zi = Xl Ve P2V O )"

Table 3.2: The Forward filtering algorithm for FM.

(ERTS) smoother, see, e.g., [38]. The matrix L, and scalar [, are defined in Ap-
pendix A.4.

3.6 Multiple Extended Object Tracking

The framework for tracking extended objects, introduced above in Section 3.1, can
be expanded to the case of multiple extended objects tracking, [42, 12, 30]. When
introducing the possibility of multiple objects a new kind of issue arises: the data
association problem.
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FMNL
Prediction
Kinematic state:

My = fe(Mip—1)

Py, = f;QPmkflféT + Qy
Extent state:

-2
Uik = (d + 1)% — éj
v (kg — d— 1) (ke — d — 1) Skpg
klk =
o 201411k Vlk
Spip —d — 1
(="
k-+1|k
. Sk|k
2 20p 4 1jk—d—1
v—d-—1
by = —
1
Sk = —Crpr
Sk|k

Sk|k is the solution to

1
0= dlog( ’“’“) 21/) (W) +C; —log|Cr]
C[ %10g|Vk‘k|

B A A
Cyr = M~ (mig) h) Vigp M~ (m,(j}h)% 1 21

" Pk(lfz,s))
Ay =202(VED = Ve — av P

A = —AP (VG = Ve + Vi e

= 2R Ve Ve

¢ = cos(mk”)h) sm(ml(jl)h)

cy = Cos(mk”)h) — Sln(ml(jll)h)g

2@
GG
 G—d—1
S_Uk|k—d—1
Ok
C4:Uk|k—2d—2
?}k|k—d—1

=9
7k|k k (Uklk — d — 1)(5k — d — 1)

Table 3.3: The prediction algorithm for FMNL.

3.6.1 Assumptions

For this thesis there are some assumptions made regarding the multiple object case.
The assumptions for the single object case given in Section 3.3 are all still valid in
20
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FMNL
Filtering
Kinematic state:

M = Mije—1 + Wik—1(Ze — Hmpgjp—1)
Pujk = Pejp—1 — Wigr—1.Skir—1 Wi
~ 1
Shlk—1 = HPk\kleT + Yknf
k
Wiik—1 = Pk|k—1HTS;Z‘i,1
Vi = Xkjk—1
Extent state:

Vik = Vipe—1 + Nip—1 + Zi,

Vk|k = Vklk—1 + Nk
Npjg—1 = Sai_l(fk — Hrgp—1) (2 — H!Ek\kq)T
& w12 a-1)2 12T/ v 1/2 T
Nijr—1 = Xk|k715k|k71Nk(Sk\k71> (Xk|k71)

A A

5 1/2 —-1/2 5 —1/2 1/2
Zi = X2 VP20 X )T

Table 3.4: The filtering algorithm for FMNL.

the multiple object case. There is a need for some additional assumptions. They
are
e the number of objects is known
« all objects are present during the whole batch, although they might not be
detected at each time instance.

3.6.2 Data Association

The reason for the new problem is due to the fact that given a measurement scan
Zy = 24, ..., 2" at a time k, there is no telling which object yields which measure-
ment. In the more general setting there is no deterministic way of determining how
many objects that are detected during the current measurement scan.

The association problem has many aspects. In this case when the number of ob-
jects are known and deterministic, one can regard the problem as a classical machine
learning clustering problem. This enables the use of several well known clustering
algorithms. The ones utilized here are the K-means algorithm and Expectation-
Maximization algorithm, see, e.g., [4, 37, 21, 1]. The k-means algorithm is used as
an initialization to the EM algorithm that solves the association problem iteratively.

3.7 Multiple Extended Object Tracking cast as an
EM-problem

The definition of multiple object tracking follows mainly the elaborated framework
given by [42]. We denote the set of estimates for object j for the whole batch as
== {g,..., &} and the set of all objects estimates as X = {Z!,...,ZM}. The

21



3. Extended Object Tracking

CM
Smoothing
Kinematic state:

My = Mgk + (Waikg1 ® La) (M1 — M)
Pt = Pajie + Wigkat (Pegait — Prosre) Wil
Wigkr1 = PurFy Py
Extent state:

Vi = Vi + Ui
Vk|l = Vk|k 1 Uk
Oklk—1
U, = —d—-1)(b,—d—-1)By———
k (uk )(k ) k5k|k—1_d_1

uy, is the solution to

0 Zd: [w“”(“"’ —2d — z> +¢(°><bk +21 — i)_

=1

O (‘Sfflk—lgd—lﬂ ~ dlog (“k‘zd—l) N

Oklk—1—d—
BiOgje—1 M(Bk(skk—ﬁ_l‘
By = Vi (br(vgpp —d — 1))

b is the solution to

+ log + log

d . .
0=y [wm)(bk - Z) n w(o><”k+ll‘d‘lﬂ+
pt 2 2
+ dlog(@) — log [Viey1i| + dlog(2) + log Vi
2 Uk+1|l —2d —2

Table 3.5: The backward smoothing algorithm for CM.

set of all the accumulated measurement data is denoted as Z. The goal of multiple
object tracking, in the EM-framework given in (2.25), can be written mathematically
as

A

X = argmax p(X|Z). (3.16)
X

The difficulties are as mentioned above the unknown assignments. Here we
denote the set of assignments as A = {a;}_, of measurements to objects, a; =
{a}t azk}, with af, € {1,..., M}. The assignments are discrete random vari-
ables that map the measurements r € {1,...,n,} at time k to one of the objects
m € {1,...,M}. In the EM framework the assignments are the latent variables and
the parameters are the object estimates. As noted before, the hidden variables are
unknown, so instead of calculating the optimal assignments A, the EM algorithm
calculates the distribution over the space of A.

The EM algorithm can be interpreted as a lower-bound maximization [4, Chap-
ter 9]. The E-step consists of calculating the optimal lower bound with respect to
the posterior weights defined as p(A|Z, X®) for each possible value of A. Here i
denotes the current EM iteration number, thus X'® denotes the current guess. Thus
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FM
Smoothing
Kinematic state:

Mt = Mg + Wikt (Mar1i — Migrjr)
Pt = Pajie + Wigkat (Pegait — Prosre) Wil
Wiik1 = Pk\kFgPI;rlHk
Extent state:

Vi = Vi + Uy
Vk|l = Vk|k 1 Uk
Oklk—1
U = —d—-1)(b,—d—-1)By—"——
k (uk )(k ) k5k|k—1_d_1

uy, is the solution to

0 Zd: [w“”(“"’ —2d — z> +¢(°><bk +21 — i)_

=1

O (‘Sfflk—lgd—lﬂ ~ dlog (“k‘zd—l) N

Oklk—1—d—
BiOgje—1 M(Bk(skk—ﬁ_l‘
By = Vi (br(vgpp —d — 1))

b is the solution to

+ log + log

d . .
by — 1 Vg1 —d — 1
0= Ein(5 ) ve( )
2 [w 2 )t 2 *
by, Vit
dlog(—) — log |V, dlog(2) +1
+ dlog(5) = log |Viepay| + dlog(2) + log Vg — 2d — 2
Table 3.6: The backward smoothing algorithm for FM.
the optimal lower bound takes the following form
Q(X; XY) =3 log(p(X, A, Z)) x p(A|Z, X?). (3.17)
A

Note that (3.17) is an expectation with respect to a discrete random variable, which
is the reason why the first step is called the expectation step.

During the M-step, the maximization is carried out based on the parameter
X given the previously calculated assignments, which then gives the next improved
estimate X(+1). This estimate is then used in the following E-step to calculate the
new assignments etc.

The EM algorithm continues until Q converges or some termination criterion
is set. The proof that each iteration of the EM indeed yields an improvement (if
there is any improvement that can be done) is found in [4]. But it is important to
note that the algorithm might get caught at a local maxima.

In summary, the E-step calculates the optimal assignments between measure-
ment and object, and the assignment weights used are the probability of the assign-
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FMNL
Smoothing
Kinematic state:

My = Mk + Wik (Magap — mMie)
T
Py = Py + Wk\k+1(PI~c+1|l = Poy1je) Wi

Wk|k+1 Pk|k<fk) k+1\k
Extent state:

Vi = Vi + L,
Ukt = Uk + i
ISk
Ly=(,—d—1 —d—1)—F—F—
k=l )(sk )hk—d—l
l;, is the solution to
d . .
-3 [¢(o> <lk—d—2) 4O (Sk“_’l))_
= 2 2
hy —d—1 l,—d—1
— @ (’M)} —dlog(t—— ")+
2 2
hy —d—1
+ log |gxSk| + log sl,:—d—l(gksk)_l‘
1
Sy =—Cyr
Sk
s, is the solution to
5 1—3
0= dlog(sz—k) — Zw(0)<5k+2l> + Cr —log |Cy;
i=1
C; = log (W}

A A
Crr ~ M~ (m{) )W M~ (m,gﬁl’h)+[ A; Aj P

Ay =202 (W — W )ep — 4w e,
Ay = —an? (W —w ey + wie
Ag = 202(WD — WD) ey + aw 2)01
= cos(ml(jl) h) sin(m,(jl) h)
cy = (308(771],(;72h)2 - Sln(mk”)h)

(hy —d—1)(wp —d—1)

5k+1|k—d—1

gk =

Continues in Table 3.8

Table 3.7: The backward smoothing algorithm for FMNL.

ments, i.e.
wy™" = P(af, = m|Z,&, ") (3.18)

where w;m(i) is the assignment probability and W,Zn(i) is the prior assignment proba-
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FMNL
Smoothing
Extent state cont.:
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Table 3.8: The backward smoothing algorithm for FMNL.

bility at time &, that measurement r is assigned to object m.

In the M-step the estimated trajectories and extents are optimized with re-
spect of the current assignments. The M-step is carried out by applying the above
presented forward backward smoother in Section 3.1, with the only difference that
the total number of measurements n; at time k for an object are replaced by its
estimate, Y™, w;™@. Thus the maximization of the posterior distribution of the
states is equivalent to calculating the maximum likelihood in the M-step according

to [42].
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4

Simulation Scenarios and
Performance Evaluation

This chapter gives an overview of the different scenarios the three derived models
are being evaluated in. First a summary of the models is given, next it goes through
the single object case, and finally the multiple object case.

4.1 The Models

Of the three models, CM is the model of these three that is closest to the general
model in (3.1), i.e., it relies on the least number of assumptions. The drawback is
that it demands a linear transition model and can not have nonlinear dependencies
between the states. FM is included to enable a comparison of the conditional model
and the factorized model with the same selection of transition and measurement
models. FMNL is evaluated to see if the benefits of the factorized model weigh up
the additional assumptions and approximations needed to obtain the model.

4.2 Extended Object Tracking

The extended object smoothing models that were derived in Section 3.1 for ex-
tended objects are first evaluated in the single object case. This initial evaluation
is to examine if the smoothing calculations do indeed yield a better result than the
filtering and prediction calculation from [25] and [9]. In other words, this is to see
if smoothing is worth the extra effort that it costs in computational terms.

4.2.1 Test Perspectives

There are two main perspectives that need to be examined, namely

1. the difference between smoothing and the forward filtering results made within

the same model

2. the difference between smoothing performances for the three models.
The first perspective is to evaluate whether extra computational cost of the smooth-
ing calculations is worth the effort in comparison to the existing forward filtering. In
theory the smoothing should outperform the forward filtering since it utilizes more
information at each time estimate. But since these derived smoothing algorithms are
based on some additional assumptions and approximations, it can not be assumed
that it is better than the filtering. The second perspective is interesting since the
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Extension model: Elliplse

< Semi-minor axis

{ Direction Arrow

1 Semi-major axis

Figure 4.1: An example ellipse of the extent model and its direction arrow and
the definition of the axis names.

evaluation consists of three models: CM, FM and FMNL. If it turns out in the first
perspective that the smoothing is worth the extra effort, then it is interesting to see
how well they perform in relation to each other in different scenarios.

4.2.1.1 Extent

The random matrix approach, see Section 3.1.1, that is used to model the extent,
models the shape of the extent estimate as an ellipse. Here the true extent is also
shaped as an ellipse. No matter if the extent area and shape are changing or not, the
true ellipse is always orientated such that the semi-major axis always is in parallel
with the heading of the object. For definitions of the axes, see Figure 4.1.

In the case of time varying extent, the length of both the semi-major axis and
semi-minor axis are a function of time. Due to Assumption 3 in Section 3.1.5, the
true extent is thus changing slowly over time.

4.2.1.2 Probability of Detection

The probability of detection Py, Section 3.3, is a way to model the properties of the
sensor. In a real situation there is a line of sight of a sensor, and the objects might
not always bee detected. The reasons for this could be many, such as technical
issues of the sensor that make it unable to generate any measurements at a given
time instance. It could also be that an object is being covered by either an obstacle
or another object. Furthermore, it could also be that the sensor has blind spots or
that an object momentarily is escaping the line of sight of the sensor.

To model these situations there are at every time instance a sampling from
a Bernulli distribution with the probability of success equal to Py, this is to see if
there should be any measurements at all of an object. Note that in this thesis there
are no explicit obstacles.

If the sampling of the detection yields a detection at time k then the number
of obtained measurements n; at time k are generated by a Poisson distribution with
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a measurement rate A, see Section 3.3. An important remark is that there are two
ways that there might be no measurements at a given time k, either there are no
detection or the number of obtained measurements given a detection is zero. By
denoting the probability of that the number of obtained measurements are zero by
Pn,, = P(ng = 0), then the total probability of not obtaining any measurements can
mathematically be expressed as

P(No measurements) = (1 — Py)py, + (1 — Py)(1 — pp,) + Pipn, - (4.1)

4.2.1.3 Measurement Rate

The measurement rate is the Poisson parameter used for the number of obtained
measurements if a detection is made at a certain time instance. It is denoted A. If
A is high, each measurement scan has a higher probability of containing much infor-
mation, so the measurement rate thus gives a notion about the expected information
density at each detection.

4.2.2 Test Scenarios

For each of the two perspectives of the evaluation, a total of five scenarios are tested.
Each scenario consists of two cases, a linear case and a nonlinear case. The results
from each scenario are based on 100 Monte-Carlo simulations, see, e.g., [3]. In the
linear case the true trajectory in each Monte-Carlo iteration is randomly generated
by a linear motion model, the CV model. The same holds for the nonlinear case, but
with the difference that the motion model is the nonlinear CT model. The scenarios
are structured as follow
First scenario: P; = 1, A = 8 and constant extent
Second scenario: P; = 1, A = 8 and time-varying extent
Third scenario: Py = 0.75, A = 8 and time-varying extent
Fourth scenario: P; € {0.5,0.25}, A = 8 and time-varying extent

5. Fifth scenario: P; = 0.75, A € {3,1} and time-varying extent
Note that both scenario four and five actually consists of two scenarios each, where
P; and X takes on two different values respectively, but are put together due to
similarity.

=

4.2.3 Evaluation

The performance is measured with the Gaussian Wasserstein Distance (GWD), see
Section 4.2.3.1. The unit of the position is measured in meter [m|, the velocity is
measured in [m/s|, heading in [rad] and turn-rate [rad/s]. The output from the
GWD is in [m?], but the units are omitted in the tables below.

4.2.3.1 Performance Metric

In the case of extended object tracking there are many different techniques to use as
performance metrics, see the discussions in [15, 44]. To evaluate the outcome of the
results in this thesis the Gaussian Wasserstein Distance is utilized. It was shown in
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[44] that the GWD is a good choice for evaluating estimates of elliptically shaped
objects. The squared Wasserstein distance between two multivariate Gaussians,

Nz(x;my, X)) and N3 (2;mg, Xz), is defined as

daw Ny N3 = || — ma| |2 + Tr<2x FY, -2 @zm@> (4.2)

Where T'r denotes the matrix trace, || - [|* denotes the Euclidean vector norm and

/- denotes the matrix squared root similar as in Table 3.2.

To get a numerical representation for a simulation to simplify the comparison of
the three models with each other for different scenarios, the following value is calcu-
lated by taking the median of the summarized GWD estimation error over the whole
time batch for each Monte-Carlo simulation. This numerical result represents the
median of the cumulative error for all Monte-Carlo simulations, and thus works as an
intuitive measure on the performance of the models during a 100 Monte-Carlo sim-
ulation. It can be expressed as the median of e, where A € {CM, FM, FMNL},
es € RMC with MC is the total number of Monte-Carlo simulations and ey is
defined as

T
k,1 k,2 k,MC
€a = [Zk eGWD 2kC€GWD e 2k eGWD7] ) (4.3)

where et is the GWD error for time instance k € {1,..., N} and Monte-Carlo
simulation ¢ € {1,..., MC}.

4.3 Multiple Extended Object Tracking

The three models introduced in Chapter 3 are also evaluated in multiple extended
object scenarios. A new aspects that arises in the multiple object case, as compared
to the single object case, is the data association problem or clustering problem, see
Section 3.6.2. Its complexity varies, and one of the main factors that has a direct
impact on the complexity is the distance between the objects. A large distance
makes the clustering easier, while for narrow spaces the data points overlap and it is
more difficult to distinguish the clusters from one another. If the number of objects
is unknown, then this situation is extra tricky due to the fact that the obtained data
might either be from one large object or several small objects that are close to each
other. In this thesis the number of objects, denoted M, is assumed to be known.

As stated in Section 3.6.2 the data association problem is iteratively solved with
the EM-algorithm. At each integration, EM calculates new assignment weights for
each data point to each object. The weights are calculated by the previous iterations
best estimate, thus the smoothing estimate. The weights are then used in both the
subsequent forward filtering and smoothing in the next EM iteration and this leads
to a difficulty in comparing the filtering and smoothing estimates, since the filtering
is dependent on the smoothing. For this reason, the evaluation performed in the
multiple extended case only concerns the different smoothing results.
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4.3.1 Ground Truth

In the evaluation of the models when there is only one object, there are always
two cases. Either the true motion is randomly generated from a linear model or it
is randomly generated by a nonlinear model. In the multiple object case the true
trajectories of the objects are deterministic. This is because it enables the possibility
to examine the situations with different distances in a more elaborate way.

In Figure 4.2 the true trajectories are shown in the case when the number of
objects is M = 2, and object distance, denoted A, is larger than 100. Here o is the
standard deviation of the true extent, and A > 10c¢ is thus considered as a large
distance since 99.7% of the distribution mass of a Gaussian distribution is within
30.

True trajectroies, Number of Objects: 2
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X-position

Figure 4.2: The shape of the true trajectories for the case when M = 2 and
A > 100

4.3.2 Scenarios

The evaluation consists of the following three scenarios:
1. the distance A decreases from > 100 to o and %0 for time varying extent and
constant extent, respectively.
2. the impact of different values of P; and A,
3. the impact of different values of A\ and A.

The three scenarios work as an extension to the analysis made for the single
object case. The focus lies on the new difficulty and the new parameter, namely the
data association problem and the object distance. In the first scenario Py = 1, A = 8
and A varies. For the second scenario A = 8 and both P; and A varies. Finally in
the third scenario P; = 1 and both A and A varies.
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Results

This chapter presents the results obtained based on the simulation of the models in
the different scenarios. First the single object case with its five scenarios is presented,
followed by the multiple object case with its corresponding three scenarios. There is
a colour coding used in the following figures, in the case when the three models are
compared to each other CM is always blue, FM green and FMNL red. In the case
when a model is compared within it self with its prediction, filtering and smoothing
results, the prediction is cyan coloured, filtering magenta and the smoothing black.

5.1 Extended Object/ Single Object

Some of the resulting figures are moved to Appendix B for convenience, since many
of the simulated scenarios gave quite similar results. In this chapter the more inter-
esting results are highlighted.

5.1.1 First Scenario

The first scenario works as a baseline. Since it is the easiest scenario it should yield
the smallest error. The upcoming scenarios can then be compared to this first one.

5.1.1.1 Linear Case

In contrast to the traditional assumption that there is only one measurement at each
time instance, the multiple measurements case gives a lot more information about
the object. The estimate can thus yield a better performance, similar to the result
obtain when fusing multiple sensors readings [38].

One direct consequence of this is that in the case where the probability of
detection is P; = 1, there are measurements obtained at each time instance, except
when n; = 0. The standard forward filtering does yield a very good performance
and the smoothing producing almost the same estimates.

The scenario is the same for both nonlinear and linear true motion, with P; = 1
and the extent is constant. Here the number of obtained measurements at each
time instance is, as noted in Section 3.3, Poisson distributed with parameter A = 8.
The fact that the extent is constant enables the extent estimate, both for forward
filtering and smoothing, to converge. This makes the difference between filtering and
smoothing even smaller. In the case where the true motion is linear, the difference
between the forward filtering and smoothing for the three models, CM, FM and
FMNL can be seen in figures (a), (b) and (c) in Figure 5.1.
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Figure 5.1: (a) is CM, (b) FM and (c) FMNLL. (a), (b) and (c) shows the internal
error comparison for each model between its prediction, in cyan coloured curves,
filtering, the magenta coloured curves, and the black smoothing curves. (d) compares
only the three smoothings where blue is CM, green FM and red FMNL. Here the
true motion is linear, P; = 1, A\ = 8 and the extent is constant. The solid curves of
all figures are the median GWD error for each time instance based on 100 Monte-
Carlo simulations. The dashed lines are the corresponding 5- and 95-percentiles of

the GWD error.

The numerical results of the above simulations are listed in Table 5.1.

Linear P; =1, ext = const, A =8 ‘ Prediction ‘ Filtering ‘ Smoothing

CM 17607.3 113.3 132.5
FM 17652.2 109.6 114.3
FMNL 28736.8 112.5 131.4

Table 5.1: The numerical calculation based on (4.3) in the case of linear true
motion, P; = 1, the extent is constant (denoted ext = const) and A = 8.

An important remark is that in the case where the true motion is linear, FMNL
has a natural disadvantage since its dynamical model is the nonlinear CT-model,
that is beneficial in turning motions. Both CM and FM use the linear CV-model
which is the one used to generate the true trajectories. The reason why the filtering
yield a better performance, in Table 5.1, than the smoothing of all the three models
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in this simple case is due to the additional approximations that are being done in
all the smoothing calculations to keep the algorithms mathematically tractable.

It is also worth noting that the numerical error presented here is a median of
a cumulative error over time. Thus the median difference in filtering and smoothing
error at each time instance is of order of magnitude 107!, which is also quite clear
by looking at figures (a) and (b) in Figure 5.1. It can be seen that for both CM
and FM, the smoothing error curves lie almost on top of the filtered result. But the
filtering with FMNL shows a more even behaviour than the smoothing in Figure
(c) 5.1. FMNL calculation is also the one of the three models that needs the most
approximations.

At an example run, with these settings, all the filtering and smoothing esti-
mates lie almost on top of each other and it is hard to distinguish the estimates
from each other, as can be seen in Figure 5.2.

True trajectroies, Number of Objects: 1 True trajectroies, Number of Objects: 1
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X-position X-position

(a) Whole trajectory (b) Scaled trajectory

Figure 5.2: (a) is a typical run of a randomly generated linear trajectory when
P; =1, A = 8 and the extent is constant. Here it is almost impossible to distinguish
the different estimation from each other. The blue is CM, green FM, red FMNL and
black is the ground truth. (b) show a zoomed in version of (a), here the filtering
and the smoothing can be seen. The filterings are the dashed lines with the same
colour coding and the smoothing the solid ones.

A zoomed in version of the typical run presented in Figure (a) 5.2 of the three
models where the prediction is omitted can be seen in Figure (b) 5.2. The solid lines
are the the smoothing estimates and the dashed lines are the filtering estimate. The
blue curves are CM, green FM and red FMNL.

To get a view of how the different smoothing algorithms are performing in
comparison to each other, CM, FM and FMNL smoothing are plotted together
in Figure (d) 5.1. As concluded from the numerical calculations in Table 5.1 are
that the performance are very similar to each other, and FMNL performs slightly
indifferent comparing to the other two. The solid curves are the median error and
the dashed lines are the 5- and 95-percentiles. Blue curve are CM, green FM and
red FMNL.
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5.1.1.2 Nonlinear Case

With the same setup as above with P; = 1, constant extent and A\ = 8 but with a
nonlinear true motion, a similar result as in the linear case, holds for all the models.
For brevity only the numerical results are presented, which can be seen in Table 5.2
and the corresponding plots are in Appendix B.1.1 since they are almost the same
as Figure 5.1.

Nonlinear P; = 1, ext = const, A =8 ‘ Prediction ‘ Filtering ‘ Smoothing

CM 9326.8 348.1 124.2
FM 9212.7 351.9 155.5
FMNL 6482.5 350.5 130.1

Table 5.2: The numerical calculation based on (4.3) for the case of nonlinear true
motion, P; = 1, the extent is constant and A = 8.

Here in Table 5.2 the filtering estimates have a slightly worse performance than
all the smoothing calculations, but the order of magnitude of the results are basically
the same. Since there are detections at every time instance, the filtering preforms
similarly to the smoothing estimates. The contingent benefit of the nonlinear motion
model of FMNL does not make a clear difference here when P; =1 and A = 8. The
performance is thus better for FMNL in relation to the other smoothing estimates
here in the nonlinear case than in the above linear case.

A typical run in the nonlinear motion case can be seen in figure (a) and (b) in
Figure 5.3. As expected, the performance for this case is similar to the linear one
with the same parameter settings. The solid lines are the smoothing, the dashed
line the filtering. The blue is CM, green FM, red FMNL and black is the ground
truth. Here the prediction is omitted.
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Figure 5.3: (a) is a typical run of a randomly generated nonlinear trajectory when
P; =1, A = 8 and the extent is constant. Here it is almost impossible to distinguish
the different estimation from each other. The blue is CM, green FM, red FMNL and
black is the ground truth. (b) show a zoomed in version of (a), here the filtering
and the smoothing can be seen. The filterings are the dashed lines with the same
colour coding and the smoothing the solid ones.
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A zoomed in version of Figure (a) 5.3 can be seen in Figure (b) 5.3. Here it
is easier to see the different estimates. The blue curves are CM, green FM and red
FMNL. The black curve and ellipse represents the ground truth. Note here how
much better the red FMNL, both its filter and smoothing, is fitting the true extent
than the two linear models.

5.1.2 Second Scenario - Extent

As mentioned above, the extent does not necessarily need to be rigid and constant
over time. Here the three models are evaluated in the case when the true ellipse
changes slowly over time.

5.1.2.1 Linear Case

CM Linear True motion, MC =100, P, =1, EXT = time varying FM Linear True motion, MC =100, P,, =1, EXT = time varying
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Figure 5.4: (a) is CM, (b) FM and (c) FMNLL. (a), (b) and (c) shows the internal
error comparison for each model between its prediction, in cyan coloured curves,
filtering, the magenta coloured curves, and the black smoothing curves. (d) compares
only the three smoothings where blue is CM, green FM and red FMNL. Here the
true motion is linear, P; = 1, A = 8 and the extent time varying. The solid curves
of all figures are the median GWD error for each time instance based on 100 Monte-

Carlo simulations. The dashed lines are the corresponding 5- and 95-percentiles of
the GWD error.
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A direct advancement in difficulties from the first scenario in Section 5.1.1 is
the case when the extent is changing in size. The velocity of the extent change for
the true object is quite slow compared to its kinematic velocities, which are a factor
102. For the case when the true motion is linear the numerical results for the models
are summarized in Table 5.3.

Linear P; = 1, ext = varying, A =8 ‘ Prediction ‘ Filtering ‘ Smoothing

CM 19562.6 760.3 772.1
FM 19716.8 770.5 778.5
FMNL 28444.6 874.6 1115.3

Table 5.3: The numerical calculation based on (4.3) for the case of linear true
motion, P; = 1, the extent is time varying and A\ = 8.

In comparison to the values in Table 5.1 the errors are larger here, which is
expected due to the more difficult task since the extent estimate never gets the
chance to converge. This can bee seen in the figures that show the median of the
GWD estimation error over time in figures (a) (b) (c¢) in Figure 5.4. Note that
FMNL gives a worse performance than the other two, since here the true motion is
linear. Also note that the error here is the cumulative over time and the difference
is not that big at each time estimate.

When comparing the models’ results from the first scenario in Section 5.1.1 in
figures (a), (b) and (c) in Figure 5.1 with the ones here in figures (a), (b) and (c)
in Figure 5.4 it is obvious that here there is a periodic change in the error. The
true extent is changing periodically with different speeds on its semi-major axis and
its semi-minor axis. But the change is deterministic and is thus the same at each
time instance for each Monte-Carlo simulation. That is the reason why the error
curves appear to have the same periodicity. The points, where the error is small,
are at the same time instances for all three models. They occur around the times
k = {14, 30,78,108}.

Since the prediction step performed for the extent state is a random walk,
it assumes that the shape of the extent is similar between the time steps. Thus
the yet slowly changing true extent is changing too quickly for the three models.
So the models’ estimates do follow the shape changing, but not fast enough. The
time instances with low error all have in common that the true extent, which has
a deterministic change, has either been big and is going back to be small and thus
coincide with the estimates, that are still growing in size due to the previous increase
of the true extent. This is true also in the opposite case where the true extent has
been small and is growing again, and at the time instances with low errors, it
coincides with the shrinking estimates. To compare the different smoothings with
each other, their estimate errors are shown in Figure (d) 5.4.

Once again FMNL has the disadvantage of using a nonlinear motion model
in contrast to the other two models, and even though it uses a more advanced
temporal change model that takes turning in to account for the extent estimate in
its smoothing, it does not give much help since in the linear case there are not much
turning going on, see for instance Figure 5.2.
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5.1.2.2 Nonlinear Case

With the same parameter settings: P; = 1, ext = varying and A = 8 but with
nonlinear true motion, FMNL does give the best performance. This can be seen by
comparing the numerical results between Tables 5.3 and 5.4. This can also be noted
by comparing the three smoothing models together, see Figure (b) 5.5. It might
also be interesting to compare Figure (c) 5.4 and Figure (a) 5.5 to see that in the
nonlinear case, the performance of FMNL is much more even than in the linear case.
The corresponding model plots for CM and FM can be found in Appendix B.1.2.

Nonlinear P; = 1, ext = varying, A = 8 ‘ Prediction ‘ Filtering ‘ Smoothing

CM 154681.5 | 1308.7 1346.0
FM 147807.4 1321.5 1119.4
FMNL 8186.0 1115.1 898.1

Table 5.4: The numerical calculation based on (4.3) for the case of nonlinear true
motion, P; = 1, the extent is changing over time and A = 8.

FMNL Non-Linear True motion, MC =100, P, =1, EXT = time varying Smoothing Comparison NL true movement, MC =100, P, =1, EXT = time varying
T T T T T FMNL 2 T T T T T T

L Median Pred 10 ——Ch-median

— fan Fil FM-medi

(a) FMNL (b) Smoothing

Figure 5.5: (a) is FMNL and shows the internal error comparison between its
prediction, in cyan coloured curves, filtering, the magenta coloured curves, and the
black smoothing curves. (b) compares only the three smoothings where blue is CM,
green FM and red FMNL. Here the true motion is nonlinear, P; = 1, A = 8 and the
extent time varying. The solid curves of all figures are the median GWD error for
each time instance based on 100 Monte-Carlo simulations. The dashed lines are the
corresponding 5- and 95-percentiles of the GWD error.

5.1.3 Third Scenario - Probability of Detection

So far it seems like, based on the numerical values of Tables 5.1, 5.2, 5.3 and 5.4
that the smoothing does not yield a better performance. But so far the cases have
been nice, since P; = 1 there is always available information and A = 8 so that
the available information is comprehensive and the filtering does yield a very good
performance.
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If it happens, for some reason, that the measurements at a certain time instance
are absent, then the forward filtering has noting to do rather than keep the prediction
as the updated result. So the filtering result is without any actual update, since
it only based its estimates on previous data up to current time. The smoothing
estimates on the other hand do not suffer from this disadvantage and can, regardless
of whether detections are missed or not, carry on its estimation. In the case where
P; < 1 the performance difference between the forward filtering and the smoothing
might be more interesting.

Since the goal is to be able to cope with as difficult situations as possible, i.e.
to mimic the real world, the extent is from now on, for the single object case, always
time varying with the slow periodic change. For this scenario Py = 0.75. This is to
model the chance of not getting any detection at a time instance.

5.1.3.1 Linear Case
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Figure 5.6: (a) is CM, (b) FM and (c) FMNLL. (a), (b) and (c) shows the internal
error comparison for each model between its prediction, in cyan coloured curves,
filtering, the magenta coloured curves, and the black smoothing curves. (d) compares
only the three smoothings where blue is CM, green FM and red FMNL. Here the
true motion is linear, Py = 0.75, A = 8 and the extent time varying. The solid curves
of all figures are the median GWD error for each time instance based on 100 Monte-

Carlo simulations. The dashed lines are the corresponding 5- and 95-percentiles of
the GWD error.
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For the case of true linear motion, P; = 0.75, extent is varying with time and
A = 8, the numerical results are presented in Table 5.5. Since it is linear true motion
FMNL does not yield a performance as good as CM and FM. When comparing
the difference between filtering and smoothing results, there is as expected, a clear
difference in performance for all models. The disadvantage that the nonlinear motion
model of FMNL yield is now obvious when comparing the numerical errors for the
predictions between CM, FM versus FMNL. Since without some detection FMNL’s
prediction predicts a turning motion that is more correct in this situation while CM
and FM predicts a more straight motion.

Linear P; = 0.75, ext = varying, A =8 ‘ Prediction ‘ Filtering ‘ Smoothing

CM 49910.8 9945.2 1802.2
FM 50286.0 9928.5 1803.2
FMNL 97315.3 18327.4 2176.6

Table 5.5: The numerical calculation based on (4.3) for the case of linear true
motion, P; = 0.75, the extent is changing over time and A = 8.

The GWD estimation error plots over time can be viewed in figures (a), (b) and
(c) in Figure 5.6. Although the numerical results in Table 5.5 might demonstrate a
major performance difference between filtering and smoothing, it is clear by viewing
the error figures in Figure 5.6 that the median difference is still not that big. Since
the 95-percentiles of all the filtering lie almost a factor 10 above the smoothing 95-
percentile, it implies that the smoothing is more reliable than the filtering in this
case. Especially when comparing how the percentiles lies on top of each other in
figures (a), (b) and (c) in Figure 5.4 and hence imply that in the previous scenario,
the filtering has the same reliability as the smoothing.

In this linear case the difference between the three smoothing models are de-
picted in Figure (d) 5.6. Here it is easy to see that FMNL has a more difficult time,
due to the nonlinear nature of FMNL.

5.1.3.2 Nonlinear Case

The results for the same situation as in the previous linear case with parameters
P; = 0.75, extent is varying with time and A = 8 but now with nonlinear true
motion can be seen in Table 5.6.

Nonlinear P; = 0.75, ext = varying, A = 8 ‘ Prediction ‘ Filtering ‘ Smoothing

CM 408614.1 | 76661.5 1523.1
FM 402077.0 | 75186.6 1260.2
FMNL 18173.5 2357.0 932.5

Table 5.6: The numerical calculation based on (4.3) for the case of nonlinear true
motion, P; = 0.75, the extent is changing over time and A = 8.

Now FMNL is the model that does gives the best performance. This is expected
since the motion model of FMNL outperforms the linear one used in CM and FM.
The GWD estimate error plots can be viewed in Appendix B.1.3.
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Figure 5.7: Here is a typical run for the nonlinear true motion when P; = 0.75,
A = 8 and the extent is varying with time. It is zoomed in on a curve where there
is no detection made at the third the time instances, counted from the left. The
blue colored curves are CM, green color is FM and red is FMNL. The solid lines
are the smoothings, the dashed lines are the filtering and the dotted lines are the
predictions. The black curves are the ground truth.

To get a view of a typical run for this scenario, see Figure 5.7. Here it is
possible to distinguish how the different models cope with a turn where there is
no detection made at the second and third time instances, counted from left. The
linear models, CM and FM, predict straight lines and lie almost on top of each other,
the dotted blue and green curves. FMNL prediction, red dotted curve, predicts a
turning motion with a similar turn-rate as before the missed detection, and thus
follows the true motion better. Here it is also possible to see how the filtering (the
dashed lines) of all models first follows theirs corresponding prediction in the case
of missed detection, but as soon as there are any measurements available at the
next time instance it corrects the estimate, while the prediction carries on for one
more time instance. The solid lines are the smoothing, and they use all available
information both after and before the point of no detection and thus yield a good
estimate.

Figure 5.8 shows the GWD estimation error for the tree models smoothing
result. The blue curves are CM, green FM and red FMNL. The solid lines are the
median error and the dashed are the 5- and 95-percentiles respectively. As mentioned
above, the periodic behaviour of the curves are due to the periodic change of the
true extent. But more importantly is to note that FMNL outperforms the other
two smoothing models in the nonlinear case, which is emphasized by the numerical
result in Table 5.6.
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Figure 5.8: Here are all the three smoothing result compared together for the case
of nonlinear true motion and P; = 0.75, extent = varying and A = 8. The blue solid
line is CM, and the dashed blue lines are its corresponding 5- and 95- percentiles.
The same goes for the green solid and dashed lines but are for FM and the red
curves are FMNL.

5.1.4 Fourth Scenario - Probability of Detection

To stretch the difference between the filtering and smoothing even further, here the
case with P; = 0.5 and P; = 0.25 will be evaluated. Since there is no clutter or
any external noise sources in the measurement model, the situation when P, gets
small might be one way to see if the smoothing models can cope with the difficult
situation. Here A = 8 to ensure that when a detection is made the information does
contain a reasonable amount of information.

5.1.4.1 Linear Case

For the linear true motion case when P; = 0.5 and P; = 0.25 the result can be seen
in Table B.1 and B.2 in Appendix B.1.4. To compare the results form Tables 5.3,
5.5, B.1 and B.2, a visual representation of the four tables can be seen in Figure 5.9.

In Figure 5.9 the decrease of the probability of detection does yield a larger
difference between the filtering and smoothing. Note that the y scale is logarithmic,
blue curves are CM, green FM and red FMNL. CM and FM lies almost on top of
each other and hence it is hard to distinguish the difference. But here in the linear
case both CM and FM performs better than FMNL. Indeed a smaller value of P,
does not only make the forward filtering estimate error to increase, but also increases
the smoothing estimation error. As can be viewed in Figure (a) 5.10 in the case of
P; = 0.5 that the estimation is quite good even though, on average, every second
detection are missed. In Figure (b) 5.10 a zoomed version of Figure (a) 5.10 can
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Figure 5.9: The error comparison between the filtering and smoothing for different
values of Py for linear true motion. FM lies on top of CM.

be seen. Here there is a sequence of four missed detection in a row. This gives the
forward filtering a hard time to deal with, while the smoothing does, as expected, a
better performance. Note that FMNL is predicting a turning arc and consequently
gets a larger error in the linear case.

For the case when P; = 0.25, an example trajectory can be seen in Figure
(a) 5.11. FMNL is at an extreme limit, and has difficulties of following the true
trajectory since its prediction estimate gives large errors. CM’s and FM’s predictions
are still very well fitting and thus enable both the filtering and the smoothing to
follow the true trajectory quite well in this extreme case. A zoomed in version of
what happens can be seen in Figure (b) 5.11 where there is a sequence of 11 missed
detections, then a single detection occurs and is followed by additional 6 missed
detections. FMNL prediction is ill fitted and FMNL filtering is shifting rapidly
and thus FMNL smoothing gets its wave-like appearance when it combines the long
sequence of predictions that are turning away and the point where a single detection
is obtain. For linear true motion with P; = 0.25 FMNL gives a poor estimate that
is not to rely on in comparison to CM and FM models.

In Appendix B.1.4 the GWD estimation error figures for the three models are
shown in the case of P; = 0.5 and in Appendix B.1.5 the corresponding error figures
for the three models are depicted for the case of P; = 0.25. Figure (a) 5.12 compares
the three smoothing estimates when P; = 0.5 based on 100 Monte-Carlo simulations.
The median of FMNL is the red solid line and emphasizes the analysis made above,
that FMNL has a difficult time in the linear case in comparison to the other two,
CM in blue and FM in green. It is important to remark the big difference in the
95-percentiles between the models. FMNL rises far above the other two models and
implies that there are a lot of cases of the 100 Monte-Carlo simulations where FMNL
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Figure 5.10: (a) is a typical run of a randomly generated linear trajectory when
P; = 0.5, A = 8 and the extent is time varying. Here it is almost impossible to
distinguish the different estimation from each other. The blue is CM, green FM,
red FMNL and black is the ground truth. (b) show a zoomed in version of (a), here
the filtering and the smoothing can be seen. The filterings are the dashed lines with
the same colour coding and the smoothing the solid ones. The trajectories showing
here have a series of 4 missed detections in a row, and thus it is possible to see how
the prediction moves according to its assumed motion, and the filtering follows the
prediction up until there is an detection while the smoothing has a nice estimate
just next to the true trajectory.
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Figure 5.11: (a) is a typical run of a randomly generated linear trajectory when
P; = 0.25, A = 8 and the extent is time varying. The blue is CM, green FM, red
FMNL and black is the ground truth. (b) show a zoomed in version of (a), here the
forward filtering and the smoothing can be seen. The filterings are the dashed lines
with the same colour coding and the smoothing the solid ones. There is a series of
11 missed detections in a row followed by an additional 6.

gives unreliable estimates in the case of P; = 0.5 with linear motion.

The corresponding error figure is depicted in Figure (b) 5.12 for linear motion
and P; = 0.25. For this level of detection FMNL is almost completely unreliable for
the linear case. By comparing CM and FM, both in Figure (a) 5.12 and in Figure
(b) 5.12 they do lie almost on top of each other, but there is a significant difference
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Figure 5.12: (a) is a comparison between the smoothings when P; = 0.5, A = 8
and the extent is time varying. (b) is a comparison between the smoothings when
P; =0.25, A = 8 and the extent is time varying.

in error level between the situations. So although the situation of having P; = 0.25
is an extreme case, for linear true motion, CM and FM performs well enough to be
reliable.

5.1.4.2 Nonlinear Case
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Figure 5.13: The error comparison between the filtering and smoothing for differ-
ent values of P; for nonlinear true motion.

By comparing the numerical results from Tables 5.4, 5.6, B.3 and B.4, a similar
conclusion as in the linear case, can be drawn regarding the relationship with an
decreasing P; and an increasing difference between the filtering and smoothing. A
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visual representation of the four tables can be seen in Figure 5.13. Here in the
nonlinear case, in contrast to the linear case in Figure 5.9, FMNL gives the best
performance and note how much better FMNL filtering result is in comparing to
CM and FM filtering. This is due to that the nonlinear model is beneficial in the
nonlinear case.
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Figure 5.14: (a) is a typical run of a randomly generated nonlinear trajectory
when P; = 0.5, A = 8 and the extent is time varying. The blue is CM, green FM,
red FMNL and black is the ground truth. (b) show a zoomed in version of (a), here
the filtering and the smoothing can be seen. The filterings are the dashed lines with
the same colour coding and the smoothing the solid ones.

To show what happens when P, goes from 0.5 to 0.25 in the nonlinear case, it is
examined by looking at typical runs of the two cases. In Figure (a) 5.14 the trajectory
estimates are shown for the nonlinear case with P; = 0.5. In comparison to Figure
5.10 the first observation is that CM’s and FM’s predictions are disadvantageous, the
blue and green dotted straight lines. According to previous analysis, and stressed
by the result in Figure 5.13, that FMNL performs best of the filters in this case.
For a better understanding, Figure (b) 5.14 shows a scaled version of the trajectory
in Figure (a) 5.14 where a similar behavior of the three models can be observed as
appeared in Figure 5.10.

To compare the three models in this case with a more statistical reliable foun-
dation their GWD estimation error based on 100 Monte-Carlo simulation are shown
in Figure 5.15. In figure (a) in Figure 5.15, where P; = 0.5 it is clear that FMNL
performs better than the other two for this case, since its median lies below the other
two. But be aware of the 95-percentiles of FMNL that for early time instances does
overshoot the percentiles of both CM and FM. Thus it implies that there situations
appear when the performance of FMNL is poor. For the corresponding error plots
for each model see Appendix B.1.6.

When P; = 0.25, the models have difficulties on tracking the objects since on
average 75% of the detection’s are missed. Based on the difference between figures
(a) and (b) in Figure 5.15, the case of P; = 0.25 is a very difficult situation for
the filters. For this case all three models perform similarly, but it is possible to
see that while CM and FM diverge over time, FMNL converges. This is due to
the nonlinear transition model. FMNL makes in this situation much better predic-
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Figure 5.15: (a) is a comparison between GWD estimation error for the smoothing
of the three models in the case of nonlinear motion, P; = 0.5, time varying extent
and A = 8. (b) is a comparison between GWD estimation error for the smoothing
of the three models in the case of nonlinear motion, P; = 0.25, time varying extent
and A = 8. The blue curves are CM model, green FM and red FMNL. Solid line are
the median error and the dashed lines are the 5- and 95-percentiles.

tions between the detections and thus yield a better performance than the linear
predictions performed by CM and FM.

A typical run for this nonlinear case is shown in Figure (a) 5.16. It is impor-
tant to remark how different FMNL performs in this case and in the linear case in
Figure 5.11 with the same settings. The blue and green straight lines pointing out
almost everywhere are CM and FM predictions and filterings when the detections
are missed. FMNL prediction does also wander away over time, but not as dras-
tically as the linear predictions which can be seen in the zoomed in version of the
trajectory in Figure (b) 5.16.
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Figure 5.16: (a) is a typical run of a randomly generated nonlinear trajectory
when Py = 0.25, A = 8 and the extent is time varying. The blue is CM, green FM,
red FMNL and black is the ground truth. (b) show a zoomed in version of (a), here
the filtering and the smoothing can be seen. The filterings are the dashed lines with
the same colour coding and the smoothing the solid ones.
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In the case of small value of P,;, the smoothing is beneficial over the forward
filtering estimates. The GWD estimation errors for each models are shown in figures
(a), (b) and (c) in Figure 5.17. Here in all three figures, there is a large difference
between the filtering errors and smoothing errors. Besides that the 95-percentiles of
the filtering for all the models are almost the same as the prediction’s 95-percentiles.
This is because that in many time instances the filtering is equal to the prediction,
since there are no detections at those times. So it is thus clear that in the case of
small P; the smoothing option is to prefer.

CM Non-Linear True motion, MC =100, P, =0.25, EXT = time varying FM Non-Linear True motion, MC =100, P, =0.25, EXT = time varying
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Figure 5.17: (a) is CM, (b) FM and (c) FMNL. (a), (b) and (c) shows the internal
error comparison for each model between its prediction, in cyan coloured curves,
filtering in magenta, and the black smoothing. Here the true motion is nonlinear,
P; = 0.25, A = 8 and the extent is time varying. The solid curves of all figures are the
median GWD error for each time instance based on 100 Monte-Carlo simulations.
The dashed lines are the corresponding 5- and 95-percentiles of the GWD error.

5.1.5 Fifth Scenario - Measurement Rate

In scenario four above the difference between filtering and smoothing became clear
when a lot of detections were missing. But once a detection is made, it did contained
a lot of information, since A = 8. From this, the question arises how well the models
perform when each detection contains less information. Note that when A\ = 1 the
situation is similar to the classic approach when there is at most one measurement
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per time instance. This makes the estimation of the extent very difficult.

5.1.5.1 Linear Case
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Figure 5.18: The error comparison between the filtering and smoothing for differ-
ent values of A for linear true motion.

In comparison to the result obtained in Table 5.5 where A = 8, here are the
results when A = 3 and A = 1. The numerical result is summarized in Table B.5
and B.6 in Appendix B.1.7. A visual representation of the Tables 5.5, B.5 and B.6
can be seen in Figure 5.18.

Here in Figure 5.18 it is possible to see a similar trend as in the case when Py
was reduced in Figure 5.9. The less number of measurements obtained at each scan,
the larger the performance difference between smoothing and filtering is. The preci-
sion of the measurements are proportional to the number of obtained measurements
[9]. So a smaller number of measurements at each scan implies that the measure-
ment update step in the forward filtering is less accurate and the prediction plays
a greater part in both the filtering and smoothing estimate. The performance of
FMNL is worse in the linear case than for CM and FM. This can bee seen in the
GWD estimate error plots in figures (a), (b) and (c) in Figure 5.19. The shape of the
prediction can be seen in both the filtering and smoothing curves as a consequence
of its increased importance. In comparison to the figures (a), (b) and (c) in Figure
5.6 where instead the filtering and smoothing curves share the same shape, since the
prediction plays a smaller part. Note also that the 95-percentiles of the prediction
and filtering are almost the same, since by decreasing the number of measurements
the difference between the filtering and the prediction gets smaller.

The comparison between the smoothing estimates for the case of A = 3 and
A = 1 is shown in Figures (a) 5.20 and Figure (b) 5.20. Here it can again be

50



5. Results

CM Linear True motion, MC =100, P, =0.75, EXT = time varying FM Linear True motion, MC =100, P, =0.75, EXT = time varying
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Figure 5.19: (a) is CM, (b) FM and (c) FMNL. (a), (b) and (c) shows the internal
error comparison for each model between its prediction, in cyan coloured curves,
filtering in magenta, and the black smoothing. The true motion is linear, P; = 0.75,
A = 1 and the extent time varying. The solid curves of all figures are the median
GWD error for each time instance based on 100 Monte-Carlo simulations. The
dashed lines are the corresponding 5- and 95-percentiles of the GWD error.

seen, and emphasized by Figure 5.18, that in the linear case FMNL has problems,
comparing to the other two. For the error plots for each model in the case of A = 3
see Appendix B.1.7

5.1.5.2 Nonlinear Case

For the Monte-Carlo simulations based on the nonlinear motion, the results are in
Tables B.7 and B.8. They can be seen in Appendix B.1.8 and are the cases when
A = 3 and A = 1 respectively. A visual representation of the Tables 5.6, B.7 and
B.8 can be seen in Figure 5.21.

Note in Figure 5.21 that FMNL performance difference between smoothing
and filtering does increase for decreasing A. To see the GWD estimation error for
FMNL in the case of A = 1 see Figure (a) 5.22. Here it is possible to see that the
shape of the filtering estimation error, magenta curve, does resemble the shape of
the prediction rather than that of the smoothing. As in the linear case, this is due
to the higher importance of the prediction when the number of measurements gets
small. This is also stressed by the fact that the filtering 95-percentiles are closer to
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Figure 5.20: (a) is the comparison between GWD estimation error for the smooth-
ing of the three models in the case of nonlinear motion, P; = 0.75, time varying
extent and A = 3. (b) is the comparison between GWD estimation error for the
smoothing of the three models in the case of nonlinear motion, P; = 0.75, time
varying extent and A = 1. The blue curves are CM model, green FM and red FMNL.
Solid line are the median error and the dashed lines are the 5- and 95-percentiles.
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Figure 5.21: The error comparison between the filtering and smoothing for differ-
ent values of A\ for nonlinear true motion.

the prediction percentiles that the smoothing and hence the performance difference
between forward filtering and smoothing is large. The same properties can bee
found in the corresponding figure when A = 3, see Figure (b) 5.22, but here it is
more difficult to see the impact of the prediction to the filtering, since there are more
measurements at each time instance. Which also makes the overall performance of
the model better when A = 3 than A = 1.
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Figure 5.22: (a) is FMNL model for nonlinear true motion, P; = 0.75, A = 3
and the extent is varying with time. (b) is FMNL model for nonlinear true motion,
P; =0.75, A = 1 and the extent is varying with time. The black curve is the median
GWD estimation error for each time instance based on 100 Monte-Carlo simulations
of the smoothing estimate. The black dashed lines are the corresponding 5- and 95-
percentiles of the GWD error. The magenta and cyan coloured lines have the same
properties as the black ones but are based on the forward filtering estimation error
and the prediction estimation error.

What is important from this analysis is that this shows how much the amount
of information matters, i.e. the improvement that the smoothing can perform to
on the filtering result is dependent on the amount of available information. Which
is quite obvious, because in the extreme case where there are no detection’s at all,
the filtering estimate are equal to the prediction, and since there is not any future
information either, the smoothing result will also be equal to the prediction and
hence can not do any improvement from the filtering.

Here the benefit of the smoothing comes forth, since it is obvious that the
smoothing copes with sparse information much better than the forward filtering.
Just like in the case of information loss in Section 5.1.4. For both CM and FM
models the filtering goes from resembling the smoothing shape in Figures (a) 5.23
and (a) 5.24 to look more like the prediction.

As expected, FMNL has a better performance in the nonlinear case when the
information density decreases than CM and FM, and vise versa in the linear case. It
can be seen in the comparison of the three smoothing models when A = 3 in Figure
(a) 5.25 and when A = 1 in Figure (b) 5.25. One important notice is that here when
the information loss is decreasing the performance of CM and FM does not resemble
each other as much as they have in all previous scenarios. It might be surprising
to see that FM yields a better performance than CM, although they are based on
the same models. But as introduced in Section 3.1 FM and FMNL uses a different
extent update formula, from [9], than the one used in CM, from [25]. So what is
important is that it seems like in the nonlinear case, FM is a bit more robust to few
measurements than CM.
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Figure 5.23: (a) is CM model for nonlinear true motion, P; = 0.75, A = 3 and the
extent is varying with time. (b) is CM model for nonlinear true motion, Py = 0.75,
A = 1 and the extent is varying with time. The black curve is the median GWD
estimation error for each time instance based on 100 Monte-Carlo simulations of
the smoothing estimate. The black dashed lines are the corresponding 5- and 95-
percentiles of the GWD error. The magenta and cyan coloured lines have the same
properties as the black ones but are based on the forward filtering estimation error
and the prediction estimation error.

FM Non-Linear True motion, MC =100, P,, =0.75, EXT = time varying FM Non-Linear True motion, MC =100, P, =0.75, EXT = time varying
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(a) FM P;=0.75and A =3 (b) FM P, =0.75and A =1

Figure 5.24: (a) is FM model for nonlinear true motion, P; = 0.75, A = 3 and the
extent is varying with time. (b) is FM model for nonlinear true motion, P; = 0.75,
A = 1 and the extent is varying with time. The black curve is the median GWD
estimation error for each time instance based on 100 Monte-Carlo simulations of
the smoothing estimate. The black dashed lines are the corresponding 5- and 95-
percentiles of the GWD error. The magenta and cyan coloured lines have the same
properties as the black ones but are based on the forward filtering estimation error
and the prediction estimation error.

5.2 Multiple Extended Objects

The natural extension of tracking a single extended object, is to track several objects.
As noted in Section 4.3 the number of objects are assumed to be known and fixed
M = 2. The same principles hold for M > 2..
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Figure 5.25: (a) is the comparison between GWD estimation error for the smooth-
ing of the three models in the case of nonlinear motion, P; = 0.75, time varying
extent and A = 3. (b) is the comparison between GWD estimation error for the
smoothing of the three models in the case of nonlinear motion, P; = 0.75, time
varying extent and A = 1. The blue curves are CM model, green FM and red FMNL.
Solid line are the median error and the dashed lines are the 5- and 95-percentiles.

5.2.1 First Scenario - Object Distance

The data association problem that inevitable comes with the multiple object case
give the models a more difficult situation to deal with. When the objects are sep-
arated by a large distance, the problem becomes easier and resembles the case of
tracking two single objects. In Figure 5.26 the GWD smoothing estimation error is
plotted for the two objects in the case of large object distance, denoted A > 100,
P; = 1, constant extent and A = 8. Note that the error curves look alike and have
the same order of magnitude as the ones in Figures 5.1 and B.1.

5.2.1.1 Numerical Result

Model\Object | m=1 | m=2
CM 14283.3395 | 16505.5526
FM 14337.0347 | 16849.5079

FMNL 14647.2667 | 16825.3441

Table 5.7: The numerical results for the case of A = 100, P; = 1 and A = 8 and
the extent is constant.

The corresponding numerical results, calculated as in (4.3), for this case are
shown in Table 5.7. Here the numerical errors seem to bee a lot higher than for the
single object case with similar settings in Tables 5.3 and 5.4. The reason for this
can be seen by comparing the Figures 5.26 with 5.1 and B.1, where it can be noted
that the median at time k£ = 1, i.e. the initial estimation error, is a lot higher for
the multiple case. For the rest of the time the error’s order of magnitude is similar.
Hence it is not, with this performance measure, intuitively to compare the single
object case with the multiple object case. The cause of the initialization errors are
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Figure 5.26: The GWD smoothing estimation error for the case of A > 100,
P; = 1, constant extent and A = 8. The upper figure is for object m = 1 and the
lower figure is for object m = 2. This case resembles the first scenario in Section
5.1.1, and as expected the performance is good and similar to both of the objects.

that in the single object case, the initialization is done more nicely. This is to avoid
problems with the nonlinear motion model in FMNL. The CT model used in FMNL
is sensitive to large initial errors for the heading angle. Depending on the turn-rate
noise it takes some time to correct the error, and during that time the estimation is
poor.

The initialization used for the multiple object case is done in a different way to
instead avoid initial associations mistakes. The way this is done is that the objects
are initialized randomly around the center of all measurement, thus in the middle
of everything, and hence does the initial numerical error grow with increased true
object distance. The initialization gives a bias in the numerical value.

To avoid this bias problem, the same numerical results as in (4.3) is used, but
with omitted first time instance, since it is dependent of the true object distance.
The new numerical results for the same case as in Table 5.7 then gets the following
shape, see Table 5.8. Now the result is of the same order of magnitude as for the
single object case and a comparison can be done with the single object case in Tables
5.1 and 5.2. Still, note that the initial error is included in the single object cases and
hence tends to be a little larger than the numerical result for the multiple object
case.

To represent the total error from a simulation, the sum of all the object errors
will be used in the following scenarios. Thus if a comparison is made with respect
to the single object case above, the numerical results here are approximately twice
as big, since there are two objects.
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Model\Object | m=1 | m=2
CM 139.557 | 140.3281
FM 125.4169 | 127.7367
FMNL 134.7245 | 134.9685

Table 5.8: The numerical results for the case of A > 100, P; = 1, extent is constant
and A = 8 with the omitted first time instances that created a bias error.

5.2.1.2 Object Distances

When the distance gets smaller, the association becomes more tricky and there is
always a risk of association mistakes. In the measurement model introduced in
Section 3.3 there is no elaborated model for outliers or clutter measurements. This
leads to the problem that when association mistake are made, the models consider
them as fully trustworthy measurements as the other ones. The only thing that
reduces the outliers’ influence in the estimation is that each measurement is weighted
with its association probability when creating the synthetic centroid measurement
in (3.15). The further away a measurement is, the less probable is it and the less
impact does it have on the estimate.

Below follows the results for different distances, namely A € {> 100, 40, 30, 20,0}
for the case where P; = 1, extent is constant and A\ = 8. The numerical error is
summarized in Table C.1 and C.2 in Appendix C.2. A visualization of the two tables
can be seen in Figure 5.27.

The distances between the objects that are used here are, as previously intro-
duced, proportional to the standard deviation . When the true extent is varying
with time, the value of the true o also varies. To avoid that the true objects overlap
but still are as close as possible the object distance has the constant numerical value
of ¢ = 6 which is the value of the standard deviation of the true extent when it is
at its largest value. So all other distances are proportional to this fixed value o.

In the situation when the true extents are constant over time, it is possible to
narrow the true object distance down further. Thus the situation of A = %0 and
A = %a will be considered. Especially the situation A = %a, since it is the case
where the constant true extents lies next to each other and is thus a similar difficult
case as A = o for the time varying extent case.

A typical run when A = 40 can be seen in Figure (a) 5.28. Up in the left
hand corner, the initial position for the models can be seen. They are all oriented
around the mean of all the first measurements, and thus quite far away from the true
trajectories. This is the step that cause the bias error before. All the estimations lie
almost on top of each other when there are detections at every time. A zoomed in
version can be seen in Figure (b) 5.28 where it is possible to see the three models’
smoothing results, the blue CM, green FM and red FMNL. The black curves are
the true trajectories and extents.

The distance A = 40 it is considered a large distance, both for the case
of time varying extent and especially for the constant extent case, since 99.7% of
the probability mass lies inside of 30. In the upper figure of Figure 5.27 this is
emphasized by that the numerical errors are approximately the same for the cases
A > 100, A =40, A = 30 and even A = 2¢0. For the time varying extent, in the
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Figure 5.27: The upper figure is a visualization of Table C.1 where the extents
are constant. The lower figure is a visualization of Table C.2 where the extents are
time varying. For the case of varying A, P; =1 and A =8

lower figure of Figure 5.27 the error is approximately the same only for the cases
when A > 100, A = 40 and A = 30. The extent is generally larger in the time
varying case, than in the constant case.

The errors are larger when the extent is time varying since it is a harder
situation to track. The analysis is the same as for the single object case in Section
5.1.2.

Trajectories, Number of Objects: 2 Traji ies, Number of Objects: 2
T T T T T T T A28 T T T T T T
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(a) Whole trajectory (b) Scaled trajectory

Figure 5.28: (a) is typical run with the case A = 40, P; = 1, extent is constant
and A = 8. The black curves are the true trajectory and extent, the blue is CM,
green FM and red FMNL. (b) is a zoomed in version of the trajectory in (a).

In both of the figures in Figure 5.27 the errors make a step, from ~ 300 to
~ 750 when A goes from 20 to ¢ for constant extent and from = 1300 to ~ 3700
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when A goes from 3o to 20 for the time varying extent. This happens because when
the distance is too small some unwanted situations occurs.

The main cause of the increased error when distance reduces is due to false
associations. This means that one object gets another object’s measurement. The
association is performed with respect to both the position of the objects and the
extents, in a Gaussian sense. The position of the centroid works as the mean and
the extent works as the covariance of a multivariate Gaussian distribution. Thus an
object with a larger extent is more likely to have more measurements. But in this
thesis it is assumed that the measurement rate is constant over time and equal for
all objects no matter how the extent grows. This is due to the fact that the true
objects are identical.

The true track consist of both linear and nonlinear parts, the different models
thus have both instances with advantage and with disadvantage due to their different
motion models. The disadvantage are mainly that the prediction of the trajectory
might end up close to the other object, or sometimes even at the other object. This
makes the calculations of the association cumbersome and may lead to unwanted
situations.

There are mainly two situations that occurs. The first situation is that the
objects switch place with one another, i.e. that they take over each others mea-
surements, see Figure (a) 5.29. The second situation is that one of the object might
claim all the measurements and thus become one large object, while the other object
gets small since it gets no data, see Figure (b) 5.29. The claiming situations do not
occur that often when P; = 1, even though A = o for the time varying extent and

A = %O’ with constant extent.

Extended trajectoria and measurements

Y-position
Y-position
8

90 100 110 120 130 140 150 160 180 200 220 240 260 280 300
X-position X-position

(a) Crossed objects (b) Object claim all data

Figure 5.29: (a) is an example situation that might occur when object gets too
close to each other. What happens is that they may switch measurements with each
other and thus switch trajectory. This is for the case when P; = 1, A = o, the
extent is time varying and A = 8. In this plot are the extent estimates omitted to
make it more visible how a switching of state might look like. (b) is an example
when one object, here it occurred for FMNL in red, claims all the measurements
and dominates. This is for the case when P; = 1, A = o, the extent is time varying

and A\ = 8.
In figures (a) and (b) in Figure 5.30 the GWD estimation error for the smooth-
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ing of all three models can be seen. In (a) the extent is constant and the distance is
such that the true extents are touching, A = %0. In (b) the extent is varying with
time and the distance is also such that the true extents are touching, A = o.

These figures indicate that the median of the error do not tell the full truth.
What happens in Figure (a) 5.30 is the following. FMNL, red curves, has a disad-
vantage when the true track makes a transition from moving in a straight line to
suddenly move in a curve with constant turn-rate. The turn rate makes an instant
step from zero to a nonzero value. At the end of the turn the same thing happens
again where the true trajectory transition form moving in a curve towards moving
straight.

At the true trajectory in Figure 4.2, this transitions occurs at four places for
each object. When the object distance is small the two transitions in the middle
are extra tricky, around time instance 60. In Figure (a) 5.30 when A = 10 there
is a chance that an object will claim all the measurements. The other object gets
stuck within an endless prediction, without any filtering updates (since it does not
get any measurements), while the other object carries on as one big object, see the
example in Figure (b) 5.29. What happens then is that the error for the omitted
object grows linearly with time and yields the logarithmic trend that can be seen
by the 95-percentiles.

For the other two models in Figure (a) 5.30, CM in blue and FM in green, there
is more common that a switch of trajectories occurs. So when the true tracks starts to
move away from each other, at time instance around 100, the errors for both objects
grow linearly in time and thus yield the logarithmic shape of the corresponding
95-percentiles. An example of the switching can be seen in Figure (a) 5.29.

The risk of the unwanted situations are higher in the case when the extent is
varying with time. This is due to the fact that at some time instances the extents
grow towards each other. In Figure (b) 5.30 for all three models, in some of the sim-
ulations, there are objects that claim all the measurements at around time instance
40. What happens at that time instance is that it is the first point where the true
extents grow in to each other and touches. The reason that both the blue CM and
green FM error 95-percentile wanders of to increasing values are due to its linear
prediction. As time goes on, the object that did not get any measurements will only
move further and further away in a straight line while the red FMNL prediction
stays in a constant turn and thus stays closer to the true track and yield a smaller
erTor.

It seems that FM is the model that deal with this situation the best since it
is more common that a switching occurs rather than that an object claims all the
measurements. FM seems to be better of keeping track of the two objects and does
not mix them together like the other two models.

5.2.2 Second Scenario - Probability of Detection

In the single object case the effect of missed detections was mainly that the esti-
mation lost track of the true object. But here in the multiple object case, losing
track of the true object means that the two unwanted situations mentioned above in
Section 5.2 become more common. Since each object has, at each time instance, a
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Smoothing median error, MC = 100, Py=1, A = 1o, EXT = constant

(a) Pr=1,A=8and A = 30 (b) Pb=1,A=8and A = 1o

Figure 5.30: (a) is the comparison between GWD estimation error for the smooth-
ing of the three models in the case of constant extent, P; = 1, A =8 and A = %a.
(b) is the comparison between GWD estimation error for the smoothing of the three
models in the case of time varying extent, P; = 1, A = 8 and A = 1. The blue
curves are CM model, green FM and red FMNL. Solid line are the median error and
the dashed lines are the 5- and 95-percentiles. The error is the sum over all objects.

probability of detection, it might happen that either; all objects are detected, only
one or non of the objects are detected.

If all the objects get detected, the situation is the same as in the first scenario in
Section 5.2. If non of the objects are detected there can be no association problems,
since there is nothing to associate. But if only one of the objects get detected and
the object distance is small enough, the unwanted situations are likely to occur.

There is no probability of detection model included in the association calcula-
tion, so at each time there is a detection only for one or both objects, the association
calculations always believes that all objects are detected. In other words, each object
will claim measurements as long as there are any to associate with.

The numerical result for different cases of object distances and probability of
detection are listed in Tables C.3, C.4 and C.5 in Appendix C.3.1. To get a visual
comparison between the three tables, see Figure 5.31. Here it is clear that CM and
FM generally perform better than FMNL, for this specific true trajectory.

When P; =1 in the upper left corner, the performance is similar between all
the models. But as P, reduces, in the other three figures in Figure 5.31, the difference
between the models becomes more distinct. The bad result of FMNL resembles its
performance in the single object case when the true trajectory where linear. So
apparently the nonlinear transition model in FMNL is very disadvantageous for
this particular true trajectory. When the distance decreases and there are absent
measurements, FMNL estimation gets worse, and the unwanted situation is much
more common. The reason that the error decreases again when the distance gets
small, is due to that the error is proportional to the true object distance.

It is also possible to see that FM during most of the cases perform slightly
better than CM. Since the scales in Figure 5.31 are logarithmic one can note that
the change in P; has a much stronger effect on the error than the change of the
object distance A. The impact a reduced P, has on all the models’ performances
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Figure 5.31: A visualization of the three Tables C.3, C.4 and C.5, for different
values of the object distance A and Probability of detection P;. CM is blue, FM
green and FMNL red. The plot in the upper left corner is for different values on
the A and P; = 1. The upper right most figure is different A and P; = 0.75. Lower
left most figure is different values on A and P; = 0.5 and the lower right figure is
varying A and Py = 0.25. This is for constant extent.

in the multiple object case is analogous to the analysis in Sections 5.1.3 and 5.1.4.
That both the smoothing and filtering must rely more on the prediction and hence
the risk of unwanted situations are much larger.

Note the trend of the error in the curves, that for a reduced P, the object
distance can not be too small for the models to give a reasonable performance. In
Figure 5.32 the three models performance is shown in the case when A = 8, P; = 0.75
and A = 0. When the extent is constant A = ¢ corresponds to the case when
the true three standard deviations touches and it is harder to see the discrepancy
between the measurement clusters. The risk of association mistakes of the kind such
that one object claims all the measurements are more common and thus yield the
shape of the 95-percentiles in Figure 5.32. When P, gets even smaller the prediction
performance is crucial, and since the true track consists of both linear and nonlinear
parts, non of he models has any large advantage or disadvantage with respect to
their motion models. Thus the risk of one object will claim all measurements are
more common even though the distance is quite large between the objects.

For the situation when the extent is varying with time, the corresponding
numerical results can be seen in Tables C.6, C.7 and C.8 in Appendix C.3.2. To
see a visual comparison between the three models for all the tables see Figure 5.33.
From the Figure 5.33 one can see that a decrease in the object distance does not has
a great impact on the result as the changing in P; does. Here the difference between
the models are similar to the situation in Figure 5.31, where FMNL gives the worst
performance. FMNL gives a similar performance for all the cases when P; = 0.75,
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Figure 5.32: The three models smoothing performance in the case of constant
extent, P; = 0.75, A = 8 and A = o. Blue curves are CM, green FM and red
FMNL. Solid lines are the median error per time instance and the dashed lines are
the corresponding 5- and 95-percentiles.

P;=0.5 and P; = 0.25.

For each value of P; there are a corresponding value of the object distance
where the performance gets significantly worse. An example case, when P; = 0.75,
A =40 and A = 8, can be seen in Figure 5.34. Here, although the distance is quite
large, at the time around k = 40, then the extent is growing toward each other
there is a high risk of an object claiming all the measurements and/or a switching
of objects.

The reason why the solid red FMNL error curve increases drastic at the lats
time instances is due to the fact that since the track is difficult for the nonlinear
motion model in FMNL the unwanted situations are more common. They are so
common that they occur at the majority of the 100 Monte-Carlo simulations, espe-
cially the switching situation. Thus at the end, either the error is already large due
to that one object is dominating or the error increases in the end because there have
been a switch of trajectories and the trajectories are moving apart.
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Figure 5.33: A visualization of the three Tables C.6, C.7 and C.8 for different
values of the object distance A and Probability of detection P;. CM is blue, FM
green and FMNL red. The plot in the upper left corner is for different values on
the A and P; = 1. The upper right most figure is different A and P; = 0.75. Lower
left most figure is different values on A and P; = 0.5 and the lower right figure is
varying A and Py = 0.25. This is for time varying extent.

5.2.3 Third Scenario - Measurement Rate

As in Section 5.1.5, the direct consequence of the measurement rate’s A decrease is
that the expected number of obtained measurements during a detection is reduced.
As noted in Section 4.2.1.2, the probability of getting no measurements at all depends
on both the probability of detection but also on the sampling of ny. When \ €
{8,3, 1} the probability of getting no measurements, given that there is a detection
are

AT

P(No measurements) = p,, = P(n, =0) = '6’_)\ = e ® ~0.034%
N (nx=0, A\=8)
ATtk

P(No measurements) = p,, = P(n =0) = —‘e_’\ = ~ 4.979%
Nng: (nk=0, \=3)
AT

P(No measurements) = p,, = P(n =0) = —e > = e ' ~ 36.788%
ny! (np=0, A\=1)

(5.1)

The total probability of getting no measurements for different values of P; and
A are shown in Table 5.9. Here it can be noted that the reduction of A\ does not
only reduces the expected information density of each detection but also has the
same impact on the obtained measurements as the P;. So to examine the impact
of the measurement rate in the multiple object case, it is investigated for the case
when P; = 1. The numerical results for different values of the object distance and
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Figure 5.34: The three models smoothing performance when the extent is varying
with time, P; = 0.75, A = 40 and A = 8. The solid lines are the median error over
time, and the dashed lines are the corresponding 5- and 95-percentiles. Blue is CM,
green FM and red FMNL.

P\ A=8 | A=3 | A=1

Pi=1 | 0033% | 4.979% | 36.788 %
Py=0.75 | 25.025 % | 28.734% | 52.590 %
Py=05 | 50.017 % | 52.489 % | 68.394%
Py=0.25 | 75.008 % | 76.245 % | 84.197 %

Table 5.9: The Probability of getting no measurements for different values of P,
and A, based on P(No measurements) = (1 — Py)py, + (1 — Py)(1 — pn,) + Papn, -

measurement rate, while the extent is constant can be viewed in Tables C.9, C.10
and C.11 in Appendix C.4.1. To get a visual comparison between the three tables
see Figure 5.35. Here the blue curves are CM, green FM and FMNL red.

The corresponding tables for the same situation but when the extent is varying
with time can be seen in Tables C.12, C.13 and C.14 in Appendix C.4.2. For an
easier comparison between the three tables see Figure 5.36. In both the Figure 5.35
and 5.36 there is a distinct step in the curves where the error makes a significant
change in the error. So clearly for a smaller value of A the distance between the
object can not be too narrow without any of the unwanted situation occurs.

In the case when the extent is constant, in Figure 5.35, CM yields the best
performance over all setups, and FM gives a similar performance. Similar to the
case in Section 5.2.2 where FMNL does not give an equally good performance as
the other two. In Figure 5.35, when A = 8 and A = 3 the distance may go down to
A = 20. But when A = 1 the large error jump occurs when A goes from 40 to 3o.
When the number of obtained measurements decreases, the measurement clusters
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Figure 5.35: The visualization of the three Tables C.9, C.10 and C.11. With
P, =1, constant extent and for different values of A and A. The upper left figure is

A = 8, upper right A = 3 and lower figure \ = 1.
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Figure 5.36: The visualization of the three Tables C.12, C.13 and C.14 with P; = 1,
time varying extent and for different values of A and A. The upper left figure is

A = 8, upper right A = 3 and lower figure \ = 1.

are not easily distinguished.
In Figure 5.37 the GWD errors for all three models for this boundary case

is shown, P, = 1, A = 0 and A\ = 3. The shape of all models curves indicate
that there are often an object that claims all the measurements. When A = 1
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the only situations when the models gives a reasonable performance are when the
object distance is far away from each other, i.e. A > 100 and A = 40. Here the
performance is similar to the case of single object tracking in Section 5.1.5.

According to Table 5.9 when A = 1 and P; = 1 on average 36% of the time
instance there are no measurements and when measurements are obtained, they
are few. This means that the prediction plays a greater part and when the object
gets closer, the risk of association mistakes increases. Since the average number of
measurements, over the time instances when there are a detection, is equal to 1, the
association is tricky. The risk of an object claim all measurements are huge since
there often is only one measurement. Thus it is common that already in early time
instances there is one object that dominates. This is also true for when A = 3 in
Figure 5.37, but the trend is more obvious for A = 1.

6 Smoothing median error, MC = 100, P;=1, A = 1o, EXT = constant
10 T T T T T
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---py
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Figure 5.37: The comparison of all three models in the case of constant extents at
the boundary case when P; = 1, A = ¢ and A = 3. Blue curve are CM, green FM
and red FMNL. The solid lines are the median error at each time instance and the
dashed lines are the corresponding 5- and 95-percentiles.

Comparing the constant extent with the case when the extent is varying with
time, it is possible to note that there is a interesting difference. In the lower Figure
5.36 the performances between the models are reversed. Thus similar to the single
object case for nonlinear true motion in Section 5.1.5 CM yields a worse performance.
Here especially when the the object distance is small does FMNL performs best.

Overall, the error trend is similar to the constant extent case. That when
A = 8 the object may be close to each other and the largest risk is that there is a
switching of measurements. As soon as A reduces, the object must be further away
for the models to be able to track the objects. The case when A = 3 and A = 30
corresponds to the situation when the true 3 standard deviations touches. In Figure
5.38 the performance of the models can be seen, and it is clear that when there are
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few measurements and the objects gets close, the association becomes poor. The
most common situation is here the same as for the constant extent case, that one
object claims all the few measurements available, and thus the other object wanders
off and yields the large error.

When A\ = 1 there are so few measurements that precisely as in the constant
extent case, one object claim them all as soon as the object are close to each other.
So here there is only when A > 100 that the models gives a reliable result.

The differences in performance between the three models are smaller here in
the case of decreased A and fixed P; = 1 than in the case of decreased P; and fixed
A = 8. The reason for this is that since there are detections at each time instance
FMNL does not need to rely to much on its nonlinear transition model, that is
disadvantageous for this deterministic true track. This yield a better performance
than in the situation of missed detections.

Smoothing median error, MC = 100, P;=1, A = 30, EXT = varying
T T T

7
10 == CM-median !

---pg
6"~ Pes -
10 FM-median -

ps 0 a=- ="

5 Pgs .-
10” |=——FMNL-median -

---pg

Gaussian Wasserstein error

120

Figure 5.38: The comparison of all three models in the case of time varying extents
at the boundary case when P; =1, A = 30 and A = 3. Blue curve are CM, green
FM and red FMNL. The solid lines are the median error at each time instance and
the dashed lines are the corresponding 5- and 95-percentiles.
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Conclusion

Here the conclusions, based on the analysis and results in previous chapters, are
presented. First for the case of only one object, then for the case of multiple objects.
Afterwards follow some suggested future works.

6.1 Single Extended Object

In the ideal situation when there are always available measurements and they are
many, the smoothing calculations does not pay off in performance, compared to the
three models’ corresponding forward filtering results. But as soon as the situation
includes more complex setups, such as; changing extent, probability of detection
smaller than one or/and measurement rate closer to one, the difference between all
the three forward filterings and smoothings increases. It is then justified to spend
the extra computational power on the smoothing algorithms.

The models, as they are developed in this thesis, rely on assumptions about
the extent. None of the models included a model where the extent might change in
shape over time, and thus it resulted in a difficult task to cope with. The nonlinear
transition model used in FMNL only considers rotations of the extents and no change
of the extents’ shapes. But not surprisingly, all the smoothing results still performed
better than the filter results.

The probability of detection makes a distinct difference between the estima-
tions. Since it confines the measurement information needed for the filtering algo-
rithms to perform good estimates. As mentioned in Section 4.2.1.2 the reasons why
a detection could be missed are many and also quite common. Thus it is an impor-
tant aspect to include in an analysis like this. The direct impact of the detection
probability is that the prediction gets more important, especially for the forward
filtering since it is equal to the prediction when a detection is missed. Here, the
difference between smoothing and filtering becomes very distinct.

The impact of a reduced value of the measurement rate, decreases the precision
of the the measurement update. In contrast to the probability of detection, where
the filtering becomes equal to the prediction, here the filtering only resembles the
the prediction more and more the fewer measurement that are obtained. As noted
in Section 5.2.3 a low measurement rate has also a similar influence as the P, since
there might be a detection but the number of generated measurements are equal to
Zero.

For the situation when the expected information density of each detection
is reduced, it is more clear that the smoothing does contain more information at
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each time instance and does in general yield a better performance than the forward
filtering. But the sensitivity to information density is larger than the sensitivity
towards probability of detection, since each scan contains more information once
they occur in the latter case. The number of obtained measurements are a key
element in extended object tracking, since there are more degrees of freedom for the
estimate than in the case of point object tracking.

6.2 Multiple Extended Objects

The evaluation performed in this thesis for the multiple object case is based on a
deterministic track. The reason for this is due to the fact that it enables a better
control of the new situations that arises when dealing with multiple objects. As
mentioned in Section 3.6.2 the data association problem that comes with the multiple
objects gives new perspective to the difficulties mentioned above. The parameter
that has the largest influence of the complexity of the association problem is the
object distance. To be able to control the distance as well as possible, the track was
chosen to be deterministic.

The track was designed is such a fashion that it was supposed to be beneficial
for all three models, and in the same time enable the evaluation of what happens
when objects move close to each other and then move apart.

In the case when only the distance changes, all models performed almost iden-
tical when the extent is constant. For time varying extent, the extent estimation gets
more difficult, and the association as well, since it depends on the extent estimation.
If the objects extent estimate are of different sizes, the difference can make a crucial
association difference in the narrow case. All models perform similarly except for
the closest case where FMNL’s performance diverge from the other two. This is a
consequence of that the true track, even though it was designed to be beneficial for
all three models, it is the least beneficial for FMNL. Thus in the narrow cases CM
and FM performs significantly better than FMNL.

The probability of detection makes the association difficult in the sense that
the association does not have an elaborated strategy to use when there are no
detection for one of the object. This leads to the drastic step change in performance
of the models, in Figures 5.31 and 5.33, when the distance gets to small. Once
again FMNL shows the weakest performance, and one of the main reasons are due
to its disadvantageous motion model for this specific track, no matter if the extent
is constant or varies in time.

When the measurement rate gets small, each obtained scan contains on aver-
age less information and thus, similarly to the case of probability of detection, the
prediction plays a greater part in the estimation. So in a similar way that the prob-
ability of detection makes the association difficult, the measurement rate yield some
additional difficulties. In addition to the missed detections, each detection does also
contain a smaller number of measurements. This makes each measurement more
important and increases the estimation’s sensitivity to association mistakes. The
object distance can for this reason not be too small, if the measurement rate is
small. This is why it is possible to see a similar significant step in the error as for
the probability of detection, in Figures 5.35 and 5.36, when the object gets too close
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to each other.

6.3 Summary

From the analysis, it is clear how important the general information about the
tracking applications is. In other words, to have at least a coarse knowledge about
how the track is going to be benefits the choice of model drastically. The three
models are evaluated in both linear and nonlinear environments, and as expected, the
linear models outperform the nonlinear model in the linear environment, while the
nonlinear model outperforms the linear models in the nonlinear environment. But
it must be emphasized that nonlinear cases are more difficult to cope with. So even
though the nonlinear model, FMNL, has a clear advantage when the environment
is nonlinear, the calculations are based on a series of approximation to make the
algorithm tractable.

So when dealing with nonlinear cases, one needs to bee more careful since it is
more unforeseeable and unforgivable than the linear cases. More knowledge about
the application is thus needed to make sure that the result is reliable. If this is
possible, then the nonlinear model will perform much better than any linear model.
Another way to put it is that the linear models are more robust, but lack of expertise
in the nonlinear case.

The overall performance of CM and FM are almost the same while FMNL
drags behind in both the single object case and the multiple object case. It is
important to emphasize that there are some situations, especially for the multiple
object case, when FM outperforms CM. So in general, in the experiments performed
in this thesis, FM seems to be the most reliable and robust model to work with.

6.4 Future Work

There are of course a lot of extensions and improvements that can be made to the
work in this thesis. Here, some of the possibilities are presented.

6.4.1 Models

The motion model used in FMNL is the CT model with its velocity vector in polar
form. It is very sensitive to initialization of the heading angle and turn-rate. To
make FMNL more robust and remove the need of a good initialization, such as prior
knowledge about the heading, a different nonlinear motion model should be utilized
in FMNL, e.g. the coordinated turn model with Cartesian velocity vector.

The measurement model used in this thesis neglects the pure sensor noise and
the impact of scattering points, that are in many real world applications a common
case. Thus to make the analysis of the models performance more general, a more
general measurement model would be important to consider. Right now, CM with
its extent dependency on the kinematic state performs well, but that is not sure to
be the case when sensor noise is included.
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The assignment calculation does not consider the situation of missed detection
and always tries to assign measurements to all objects. To make the performance
more robust and reliable, it would be beneficial to include a model for the association
calculation where the possibility of missed detection is included.

Here the number of obtained measurements, given a detection, is modeled as
a Poisson random variable with a constant arrival rate. For a more general setting
it would be possible to consider a model where the measurement rate is dependent
on the true states, e.g., such that if the extent grows then the expected number
of obtained measurements increases increases as well. Another possibility would be
to consider if the object moves closer to the sensor then the number of expected
measurements could increase. In this thesis the sensor position is omitted and is
assumed to be external, such as a satellite.

The Poisson assumption about the number of obtained measurements are not
always the best model when modeling a real sensor, since the Poisson distribution
has a variance equal to the mean, i.e., if the mean is high, then so is the variance.
So given a detection the number of measurements varies much from detection to
detection. A more reasonable model would maybe be one where the variance is
smaller. If there is knowledge about what kind of sensor that is being utilized in
the application, than an even more specific model is beneficial.

Of course it is also possible to utilize a complete different extent model, than
the random matrix approach used in this thesis. Note though that it would also
require new derivation of the smoothing algorithms.

6.4.2 Computational Tools

To solve the data association problem, the EM algorithm is utilized in this thesis.
It is a strong tool but has some drawbacks. The major issue with EM is that
it easily gets stuck in local maxima. So to get an even more robust and general
setup it would be beneficial to consider some of the possible extensions of the EM
algorithm such as the Ezpectation-Conditional Maximization algorithm (ECM) or
Expectation-Conditional Mazimization either algorithm (ECME) from [31]. There
is also the possibility of using some other probabilistic multi-hypothesis tracking
(PMHT) algorithm or probability hypothesis density (PHD) algorithm, e.g. from
[43], [30] or [10].

In this thesis the K-means algorithm is used to initialize the first time instance
for the EM algorithm. For the initialization to work, all objects must be detected
the fist time instance. Hence a natural extension is to include a initialization for the
assignments that does not need that all objects are detected simultaneously at the
first time instance.

In the case when A\ decreases the importance of a good prediction increases.
Thus the assumption made regarding the simple prediction step for the extent in
[25] is violated if A gets small. So it might be worth the extra computational power
to utilize a more advance dynamical extent model.
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6.4.3 Ground Truth

In the cases dealt with in this thesis, it is assumed that the number of objects are
known and fixed. Naturally the extension for this is to include a model of unknown
number of objects. Thus the possibility of object spawning and termination could
also be included to make the case more general, such that all the objects do not
need to be present during the whole batch.

6.4.4 FEvaluation

The Gaussian Wasserstein distance measure used in this thesis is a good performance
measure, since it includes both the kinematic state and the extent. As noted in
Section 5.2, the median of the error over all the Monte-Calo simulations does not
tell the full truth in the multiple object case. Thus the inclusion of a better trajectory
performance metric that enables separate examination of both the location error and
the switching error would be interesting in the multiple object case.

According to the analysis above the performance between the models in the
multiple object case FMNL does not get a fair evaluation. Thus to consider the
situation similar to the single object case, where the true trajectory is, both linearly
and nonlinear, randomly generated at each Monte-Carlo iteration, would yield a
more statistically reliable result.
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Appendix 1

A.1 Matrix Variate Distributions

A.1.1 Wishart Distribution

Let Si . be the set of symmetric positive definite d x d matrices. The random matrix
X e Si + is Wishart distributed with degrees of freedom n > d — 1 and d x d scale
matrix N € S?_ if it has probability density function (pdf)

p(X) =Wy(X;n,N) =

|X|(nfd71)/2 { 1
etr{ —

le}. Al
2nd/2rd(g)’]\]|n/2 9 ( )

Where |-| denotes the matrix determinant and etr(-) is an abbreviation for exp(tr(-)),

where tr(-) denotes the trace of a matrix. For a > %1, T'y(a) is the multivariate

gamma function. It can be expressed in terms if the ordinary gamma function as

d

Ty(a) = 7D T[T (a— (i —1)/2) (A.2)

Let A;; denote the ¢,j:th element of a matrix A. The expected value and
covariance of the Wishart distributed matrix X are defined as
C(Xij, Xu) = n(NiNji + NuNj). (A4)

A.1.2 Inverse-Wishart Distribution

The random matrix X € S?_ is inverse Whishart distributed with degrees of freedom
v > 2d and inverse scale matrix V € S?__if it has pdf

X) = W (X0 V) = 2 DR L1y A5
p(X) = (X5, )_Fd((v—d—l)/2)|X|v/2etr{_2 } (A.5)

The expected value and covariance of X are

Vis
2(v —2d — 2)" "W Vig + Vie Vi + Vi Vig

T (w—2d-1)(v—2d—2)(v—2d—4)

v—2d—4>0 (A7)
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The Wishart distributions main appearance in a Bayesian framework is that
it is the conjugate prior of the precision matrix, i.e.Inverse of the covariance matrix,
of a multivariate Gaussian random variable [4]. If a random matrix X is Wishart
distributed then the inverse X ~! is Inverse Wishart distributed.

A.1.3 Generalized Beta Distribution type 2

Let S‘i be the set of symmetric semi-positive definite d x d matrices. The random
matrix X € Si + is generalized matrix variate Beta type II distributed with matrix
parameters ¥ € Si, ) > W and scalar parameters a and b, if it has pdf

|X o \I]|(2a7d71)/2|Q + X|f(a+b)
Ba(a,b)|Q2+ ¥~ ’

p(X) =GB (X;a,b,Q,0) = X>U. (A8)

Where, for a > (d —1)/2 and b > (d — 1)/2, the multivariate beta function is as

~ La(a)Tq(b)

ﬁd(avb) - Fd((l+b) . (A9)

Let 04 be a d x d all zero matrix. If ¥ = 0g4, the first and second moment of
X are

2a
T —d— 19”
2a "
2 —d)(2b—d—1)(2b—d—3)
<(2a(2b A 2) + 2)Q 0 + (20426 — d — 1)(Q 0 + Qilej))

2b—d—3>0.

E[X,] (A.10)

E[X;; X)) =

(A.11)

A.2 Preliminary Results

Lemma 1: The product of two inverse Wishart pdfs is proportional to an inverse
Wishart pdf,

IWy(X;a, AYIW4(X;b,B) x IW4(X;a+b, A+ B) (A.12)

Lemma 2: The fraction of two inverse Wishart pdfs is proportional to an inverse
Wishart pdf,
IWy(X;a, A)

X;a—b,A—B .
IWd(X;b,B)OCIWd( ;a— b, ) (A.13)

Lemma 3: For Wishart and Inverse Wishart pdfs, the following holds,

T
Wa(Y;n, M) o IWa(X;n,nM =YY (M—H)T) (A.14)

n
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Lemma 4:

MXMT

w n—d-—1
n

/Wd(Y; n, YWal(Y's w0, W)dY o GBY! (X, MY (M = o)

(A.15)

Lemma 5: For two random variables ¢ and y, with joint density p(x,y), the fac-
torized density q(x)q(y) that minimizes the Kullback-Leibler divergence to p(x,y)

argminK L(p(z, y)[|q(x)q(y)) (A.16)
is given by the marginals,

q(z) = /p(w, y)dy

(A.17)
q(y) = /p(x, y)dzx

A.3 Derivation of Smoothing Equation for CM
and FM

Wa(Xit15 0k, 55 ) IW i X1 V156 Vier1]x0)
XulZ5) = Do X vt Vi / : dX
PIXHZT) (X Vit Vi) IWi( Xiet1; Vi 1es Vs k) e
Lemma 2
(0.8

Xk
o WX v Vi) | Wal X6, 55)
IWa(Xis1; Vi1 — Vk1ls Vit |k — Vi) dX e
Thm 3 in [13]

Xk
~ IWa( Xk Vkik, Vie) /Wd(XkH; Ok ?)Wd(XkJrl} We1, Wig1)dX ki1

k
Lem:ma 4
w 0p —d—1
= IWa(X; Ok, Vi) GB (Xk; ];H, u 5 ;O Wiy, ¥ = 0)
Thm 1 in [19]
~ IWa(Xi; Vi, Vi) IWa( X; ur, Us)
Lemma 1
0.8 IWd(Xk, Vk|k + ug, Vk|k + Uk)
(A.18)
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A.4 Derivation of Smoothering Equation for FMINL

(Xisa| T, X )p(Xpia| 25
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Appendix 2

B.1 Plots from the different scenarios in the sin-
gle object case

B.1.1 First scenario with nonlinear true motion

CM Non-Linear True motion, MC =100, P,, =1, EXT = constant FM Non-Linear True motion, MC =100, P, =1, EXT = constant
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Figure B.1: (a) is CM, (b) FM and (¢) FMNL. (a), (b) and (c) shows the internal
error comparison for each model between its prediction, in cyan coloured curves,
filtering, the magenta coloured curves, and the black smoothing curves. (d) compares
only the three smoothings where blue is CM, green FM and red FMNL. Here the true
motion is nonlinear and P; = 1, A = 8 and the extent is constant. The solid curves
of all figures are the median GWD error for each time instance based on 100 Monte-

Carlo simulations. The dashed lines are the corresponding 5- and 95-percentiles of
the GWD error.
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B.1.2 Second scenario with nonlinear true motion

CM Non-Linear True motion, MC =100, P,, =1, EXT = time varying FM Non-Linear True motion, MC =100, P =1, EXT = time varying
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Figure B.2: (a) is CM, (b) FM and (¢) FMNL. (a), (b) and (c) shows the internal

error comparison for each model between its prediction, in cyan coloured curves,
filtering, the magenta coloured curves, and the black smoothing curves. (d) compares
only the three smoothings where blue is CM, green FM and red FMNL. Here the
true motion is nonlinear and P; = 1, A = 8 and the time varying extent. The
solid curves of all figures are the median GWD error for each time instance based
on 100 Monte-Carlo simulations. The dashed lines are the corresponding 5- and
95-percentiles of the GWD error.
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B.1.3 Third scenario with nonlinear motion
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Figure B.3: (a) is CM, (b) FM and (c¢) FMNL. (a), (b) and (c) shows the internal
error comparison for each model between its prediction, in cyan coloured curves,
filtering, the magenta coloured curves, and the black smoothing curves. (d) compares
only the three smoothings where blue is CM, green FM and red FMNL. Here the
true motion is nonlinear and P; = .75, A = 8 and the time varying extent. The
solid curves of all figures are the median GWD error for each time instance based
on 100 Monte-Carlo simulations. The dashed lines are the corresponding 5- and
95-percentiles of the GWD error.
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B.1.4 Fourth scenario with linear motion for P; = 0.5

CM Linear True motion, MC =100, P, =0.5, EXT = time varying FM Linear True motion, MC =100, P, =0.5, EXT = time varying
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Figure B.4: (a) is CM, (b) FM and (¢) FMNL. (a), (b) and (c) shows the internal
error comparison for each model between its prediction, in cyan coloured curves,
filtering, the magenta coloured curves, and the black smoothing curves. (d) compares
only the three smoothings where blue is CM, green FM and red FMNL. Here the true
motion is linear and P; = .5, A = 8 and the time varying extent. The solid curves of
all figures are the median GWD error for each time instance based on 100 Monte-

Carlo simulations. The dashed lines are the corresponding 5- and 95-percentiles of
the GWD error.

Linear P; = 0.5, ext = varying, A = 8 ‘ Prediction ‘ Filtering ‘ Smoothing

CM 195264.9 | 88511.6 7660.7
FM 195939.9 | 88412.1 7670.7
FMNL 1192663.1 | 659188.0 | 40280.8

Table B.1: The numerical calculation based on (4.3) for the GWD estimation
error in the case of nonlinear true motion, P; = 0.5, the extent is changing over
time (denoted ext = varying) and measurement rate A = 8.
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Linear P; = 0.25, ext = varying, A = 8 ‘ Prediction ‘ Filtering ‘ Smoothing

CM 1017708.2 | 705560.2 93590.5
FM 1023482.6 | 705595.8 53709.8
FMNL 4413152.2 | 3143278.1 | 2651117.6

Table B.2: The numerical calculation based on (4.3) for the GWD estimation error
in the case of nonlinear true motion, P; = 0.25, the extent is changing over time
(denoted ext = varying) and measurement rate A\ = 8.

B.1.5 Fourh scenario with linear motion and P; = 0.25

CM Linear True motion, MC =100, P,, =0.25, EXT = time varying FM Linear True motion, MC =100, P =0.25, EXT = time varying
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Figure B.5: (a) is CM, (b) FM and (¢) FMNL. (a), (b) and (c) shows the internal
error comparison for each model between its prediction, in cyan coloured curves,
filtering, the magenta coloured curves, and the black smoothing curves. (d) compares
only the three smoothings where blue is CM, green FM and red FMNL. Here the true
motion is linear and Py = .25, A = 8 and the time varying extent. The solid curves
of all figures are the median GWD error for each time instance based on 100 Monte-

Carlo simulations. The dashed lines are the corresponding 5- and 95-percentiles of
the GWD error.
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B.1.6 Fourth scenario with nonliear motion and P; = 0.5

CM Non-Linear True motion, MC =100, P, =0.5, EXT = time varying X FM Non-Linear True motion, MC =100, P,, =0.5, EXT = time varying
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Figure B.6: (a) is CM, (b) FM and (¢) FMNL. (a), (b) and (c) shows the internal
error comparison for each model between its prediction, in cyan coloured curves,
filtering, the magenta coloured curves, and the black smoothing curves. (d) compares
only the three smoothings where blue is CM, green FM and red FMNL. Here the
true motion is nonlinear and P; = .5, A = 8 and the time varying extent. The
solid curves of all figures are the median GWD error for each time instance based
on 100 Monte-Carlo simulations. The dashed lines are the corresponding 5- and
95-percentiles of the GWD error.

Nonlinear P; = 0.5, ext = varying, A = 8§ ‘ Prediction ‘ Filtering ‘ Smoothing

CM 2025576.6 | 887291.1 6210.8
FM 2017601.0 | 883095.0 5277.6
FMNL 52467.7 21713.2 1751.5

Table B.3: The numerical calculation based on (4.3) for the case of nonlinear true
motion, P; = 0.5, the extent is changing over time and A\ = 8.
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Nonlinear P; = 0.25, ext = varying, A = 8 ‘ Prediction ‘ Filtering ‘ Smoothing

CM 925459.2 | 6154974 | 227530.6
FM 10098216.1 | 7009829.8 | 552678.2
FMNL 10141541.0 | 6920408.8 | 555675.4

Table B.4: The numerical calculation based on (4.3) for the case of nonlinear true
motion, P; = 0.25, the extent is changing over time and A = 8.

B.1.7 Fifth scenario with linear motion and )\ = 3

CM Linear True motion, MC =100, P, =0.75, EXT = time varyi FM Linear True motion, MC =100, P, =0.75, EXT = time varying
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Figure B.7: (a) is CM, (b) FM and (¢) FMNL. (a), (b) and (c) shows the internal
error comparison for each model between its prediction, in cyan coloured curves,
filtering, the magenta coloured curves, and the black smoothing curves. (d) compares
only the three smoothings where blue is CM, green FM and red FMNL. Here the true
motion is linear and Py = .75, A = 3 and the time varying extent. The solid curves
of all figures are the median GWD error for each time instance based on 100 Monte-

Carlo simulations. The dashed lines are the corresponding 5- and 95-percentiles of
the GWD error.
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Linear P; = 0.75, ext = varying, A = 3 ‘ Prediction ‘ Filtering ‘ Smoothing

CM 67936.8 17903.5 2978.4
FM 68172.6 17986.8 3073.4
FMNL 158036.9 | 36980.9 7782.8

Table B.5: The numerical calculation based on (4.3) for the case of linear true
motion, P; = 0.75, the extent is changing over time and A = 3.

Linear Py = 0.75, ext = varying, A =1 ‘ Prediction ‘ Filtering ‘ Smoothing

CM 262393.9 | 116079.7 | 8176.5
FM 261823.7 | 115512.9 8574.2
FMNL 1713518.5 | 710902.7 | 326815.2

Table B.6: The numerical calculation based on (4.3) for the case of linear true
motion, P; = 0.75, the extent is changing over time and A = 1.

B.1.8 Fifth scenario with nonlinear motion and \ = 3

Nonlinear P; = 0.75, ext = varying, A = 3 ‘ Prediction ‘ Filtering ‘ Smoothing

CM 2030412.3 | 522449.3 | 38933.0
FM 1959646.3 | 504364.9 | 29826.6
FMNL 30618.6 7419.7 2630.9

Table B.7: The numerical calculation based on (4.3) for the case of nonlinear true
motion, P; = 0.75, the extent is changing over time and A = 3.

Nonlinear P; = 0.75, ext = varying, A =1 ‘ Prediction ‘ Filtering ‘ Smoothing

CM 4065746.7 | 1926297.4 | 45483.5
FM 3944307.6 | 1861930.5 | 39466.2
FMNL 149125.0 66254.6 6912.8

Table B.8: The numerical calculation based on (4.3) for the case of nonlinear true
motion, P; = 0.75, the extent is changing over time and A = 1.
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Appendix 3

C.1 Results from the different scenarios in the
multiple object case

C.2 First scenario - Only Distance

Object\case | A>100 [ A=40 | A=30 |A=20 | A=0 |A=20|A=1i0

CM 279.4 270.2 282.8 281.2 745.7 | 762.6 760.7
FM 255.2 242.0 255.9 251.5 729.5 735.4 736.3
FMNL 268.7 261.5 275.4 275.8 754.1 748.0 763.5

Table C.1: The numerical errors for the models for different distances A, with
P; =1, extent is constant and A = 8.

Object\case | A> 100 | A=40 | A=30|A=20| A=0

CM 1287.9 1288.9 | 1328.5 | 3750.7 | 4189.6
FM 1004.9 988.8 1023.0 | 3465.9 | 3843.1
FMNL 1259.2 1259.2 | 1234.3 | 3706.7 | 27569.4

Table C.2: The numerical errors for the models for different distances A, wiht
P; =1, extent is time varying and \ = 8.
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C.3 Second scenario - Probability of Detection

C.3.1 Constant Extent

Case\Pd szl Pd:075 Pd:O5 Pd:025
CM: A > 100 | 2794 320.1 425.0 776.2
CM: A =40 | 270.2 327.5 1634.9 66803.0
CM: A =30 | 28238 324.5 21775.1 78661.4
CM: A =20 | 281.2 746.0 13455.8 | 150418.4

CM: A=o¢ 745.7 850.7 8910.1 149782.2
CM: A = %a 762.6 853.6 26685.2 | 126421.0
CM: A = %a 760.7 863.9 58675.3 | 118124.8

Table C.3: The numerical errors for CM model for different probability of detection
and distances A, with Py, extent is constant and A = 8.

Case \Pd szl Pd2075 Pd:05 Pd:()25
FM: A > 100 | 255.2 297.9 402.8 739.9
FM: A =40 | 242.0 305.9 1134.2 78452.0
FM: A =30 | 255.9 302.8 13159.9 | 80600.3
FM: A =20 | 251.5 731.4 12619.0 | 75261.7

FM: A=o¢ 729.5 809.8 10584.3 | 158218.5
FM: A = %0 735.4 809.8 24598.1 | 94849.0
FM: A = éa 736.3 863.2 17701.0 | 51794.7

Table C.4: The numerical errors for FM model for different probability of detection
and distances A, with P;, extent is constant and A = 8.

Case \Pd Pd =1 Pd =0.75 Pd =0.5 Pd =0.25
FMNL: A > 100 | 268.7 398.3 1131.8 10364.0
FMNL: A =40 | 261.5 364.4 89151.4 | 955118.7
FMNL: A =30 | 275.4 420.2 180004.8 | 954103.0
FMNL: A =20 | 275.8 818.7 404232.2 | 1139133.1

FMNL: A =0 754.1 58146.6 | 527425.3 | 1073118.3
FMNL: A = 25 | 748.0 45278.8 | 471982.0 | 1068376.0
FMNL: A = ga 763.5 17293.4 | 196699.0 | 1227619.9

Table C.5: The numerical errors for FMNL model for different probability of
detection and distances A, with P, extent is constant and A = 8.
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C.3.2 Time varying Extent

Case\Pd Pd:1 Pd:075 Pd:O5 Pd2025
CM: A > 100 | 1287.9 1453.0 1707.4 2649.0
CM: A =40 | 1288.9 4377.5 131461.3 | 2966307.9
CM: A =30 | 1328.5 4614.9 204141.4 | 3617944.1
CM: A =20 | 3750.7 | 4810.5 | 301042.6 | 1146592.7

CM: A =0 | 4189.6 5165.0 94687.7 | 4362873.4

Table C.6: The numerical errors for CM model for different probability of detection
and distances A, with Py, extent is time varying and A = 8.

Case \Pd Pd:1 Pd:()75 Pd:O5 Pd:()25
FM: A > 100 | 1004.9 1184.6 1451.5 2339.1
FM: A =40 | 9888 4078.2 25133.0 | 3807862.0
FM: A =30 | 1023.0 | 4162.8 42655.4 | 3827197.4
FM: A =20 | 3465.9 4218.4 167987.8 | 1413322.1

FM: A=0 | 3843.1 4228.8 93690.2 | 2961858.0

Table C.7: The numerical errors for FM model for different probability of detection

and distances A, with Py, extent is time varying and A = 8.

Case \ Py P,=1|FP;=07| P;=05 | P,=0.25
FMNL: A > 100 | 1259.2 1735.0 4467.0 35024.6
FMNL: A =40 | 1259.2 | 85734.1 | 1597880.6 | 3862260.2
FMNL: A =30 | 1234.3 | 709450.2 | 1682435.0 | 3668876.3
FMNL: A =20 | 3706.7 | 750672.2 | 1528366.1 | 3645698.2

FMNL: A =0 | 27569.4 | 696204.7 | 1385337.0 | 3816754.8

Table C.8: The numerical errors for FMNL model for different probability of
detection and distances A, with Py, extent is time varying and A = 8.
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C.4 Third scenario - Measurement Rate

C.4.1 Constant Extent

A\ A=8] A=3 | A=1
CM A > 100 | 2794 | 577.9 | 1113.6
CM A =4 | 2702 | 567.0 | 1451.5
CM A =30 | 2828 | 580.8 |53813.6
CMA=20 | 281.2 | 5942 | 78589.0

CMA=0c | 745.7 | 118791.2 | 59828.3
CM A =25 | 762.6 | 31317.0 | 71879.5
CM A =1¢ | 760.7 | 53267.3 | 79815.2

3

Table C.9: The numerical result for CM when the extent is constant and P; = 1
for different values of the object distance A and the measurement rate \.

A\ A=8| A=3 ] A=1
FM A > 100 | 255.2 | 488.0 | 9354
FM A =40 | 242.0 | 4753 | 1587.2
FM A =30 | 255.9 | 4849 | 69308.4
FM A =20 | 251.5 | 498.6 | 99775.5

FM A =c¢ | 7295 | 77200.4 | 87411.0
FM A = 25 | 735.4 | 65065.7 | 103660.8
FM A =15 | 736.3 | 91236.1 | 98366.2

Table C.10: The numerical result for FM when the extent is constant and P; =1
for different values of the object distance A and the measurement rate .

A\ A=8| A=3 | r=1
FMNL A > 100 | 268.7 | 5714 | 1474.1
FMNL A =40 | 261.5 | 561.6 | 38144.3
FMNL A =30 | 2754 | 576.8 | 286066.5
FMNL A =20 | 2758 | 6272 | 280652.3

FMNL A =0 | 754.1 | 268400.0 | 334280.5
FMNL A = 25 | 748.0 | 122177.2 | 221571.8
FMNL A = I | 763.5 | 502512.9 | 208335.8

Table C.11: The numerical result for FMNL when the extent is constant and
P; =1 for different values of the object distance A and the measurement rate \.
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C.4.2 Time varying Extent

A\ A=8| A=3 A=1
CM A > 100 | 1287.9 | 2454.3 4590.6
CM A =40 |1288.9 | 2607.5 | 18252654.7
CM A =30 | 1328.5 | 1444222.1 | 12230553.1
CM A =20 | 3750.7 | 1787940.1 | 13418794.3

CM A =0 | 4189.6 | 2360928.4 | 21476642.1

Table C.12: The numerical result for CM when the extent is varying with time
and P; = 1 for different values of the object distance A and the measurement rate

A

A\X

A=38

A=3

A=1

FM A > 100
FM A =40
FM A =30
FM A =20
FMA=o¢

1004.9
988.8
1023.0
3465.9
3843.1

1679.0
1770.6
439391.1
962858.0
1800690.4

3475.0
5736411.0
6006137.0
8901773.4
9990356.9

Table C.13: The numerical result for FM when the extent is varying with time
and P; = 1 for different values of the object distance A and the measurement rate

A

A\X A=8 | A=3 A=1
FMNL A > 100 | 1259.2 | 2452.2 | 6843.1
FMNL A =40 | 1259.2 | 2695.1 | 5394262.1
FMNL A =30 | 1234.3 | 1907358.3 | 3454064.5
FMNL A =20 | 3706.7 | 1708219.3 | 4096796.2

FMNL A = o | 27569.4 | 1690706.0 | 3310880.4

Table C.14: The numerical result for FMNL when the extent is varying with time
and P; = 1 for different values of the object distance A and the measurement rate

A
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