
DF

Vehicle Communication
A study of vehicle communication in a modeled environment

Bachelor’s thesis in Computer Science and Engineering

Mattias Sikvall Källström
Eric Rylander

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2020

DEGREE PROJECT REPORT

A study of vehicle communication in a
modeled environment

How robots can be used to model a traffic situation with an
intersection and avoid collisions between multiple robots

Mattias Sikvall Källström
Eric Rylander

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2020

A study of vehicle communication in a modeled environment
How robots can be used to model a traffic situation with an intersection and avoid
collisions between multiple robots
Mattias Sikvall Källström
Eric Rylander

© Mattias Sikvall Källström, Eric Rylander, 2020.

Examiner: Jonas Duregård, Chalmers University of Technology, Department of
Computer Science and Engineering

Supervisor: Sakib Sistek, Chalmers University of Technology, Department of Com-
puter Science and Engineering
Supervisor: Henrik Lundqvist, Cybercom

Department of Computer Science and Engineering
Chalmers University of Technology / University of Gothenburg
SE-412 96 Göteborg
Sweden
Telephone: +46 (0)31-772 1000

The Author grants to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish theWork electronically and in a non-commercial
purpose make it accessible on the Internet. The Author warrants that he/she is the
author to the Work, and warrants that the Work does not contain text, pictures or
other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this agree-
ment. If the Author has signed a copyright agreement with a third party regarding
the Work, the Author warrants hereby that he/she has obtained any necessary
permission from this third party to let Chalmers University of Technology and Uni-
versity of Gothenburg store the Work electronically and make it accessible on the
Internet.

Cover: Photo of the modeled environment.

Typeset in LATEX, template by David Frisk
Department of Computer Science and Engineering
Gothenburg 2020

iv

Abstract
This report deals with the topic of vehicle communication which includes communi-
cation between vehicles and other entities such as infrastructure. The purpose of the
report is to modulate a vehicle environment where communication between vehicles
and infrastructure can be tested. With studies from both literature and experiments,
this report aims to answer the question of how safety, efficiency and environmental
impact can be improved with the help of vehicle communication. With the aid of
existing hardware and proprietary software, tests have been developed to test vehicle
communication. Four applications have been developed for the project, one for the
integrated system in the vehicles, one system for the vehicle computers, one system
for the infrastructure and finally a debugging software. These systems have made
it possible to answer the research questions. The results of the tests show that in
the modulated environment it is possible to eliminate collisions from occurring. The
tests also show how waiting time and throughput transpires at the intersection based
on the application of different algorithms. With a queue algorithm it is possible to
get a better flow at the intersection than it does with an algorithm that mimics
a traffic light. Conclusions that can be drawn from the project are that vehicle
communication can improve road safety and efficiency. Vehicle communication can
be implemented in infrastructure so that a significant reduction in accidents occurs.
Implementations can also save the environment and be implemented in an ethical
way.

Keywords: Vehicle Communication, ICWS, V2I, V2X, Intelligent Traffic, IoT.

v

Sammandrag
Denna rapport behandlar ämnet fordonskommunikation som innefattar kommunika-
tion mellan fordon och andra entiteter så som infrastruktur. Syftet med rapporten
är att modulera en fordonsmiljö där kommunikation mellan fordonen och infras-
truktur kan testas. Med studier från både litteratur och experiment önskar denna
rapport svara på frågan hur säkerhet, effektivitet och miljöpåverkan kan förbät-
tra med hjälp av fordonskommunikation. Med hjälp av existerande hårdvara och
egenutvecklad mjukvara har tester kunnat tas fram för att testa fordonskommunika-
tionen. Fyra applikationer har utvecklats för projektet, en för det integrerade system
i fordonen, ett system för fordonsdatorerna, ett system för infrastrukturen och slut-
ligen en felsökningsprogramvara. Dessa system har gjort det möjligt att besvara
frågeställningen. Resultaten från testerna visar att i den modulerade miljön går
det att eliminera kollisioner från att inträffa. Testerna visar också på hur väntetid
och genomströmning sker i korsning utifrån att olika algoritmer tillämpas. Med en
kö-algoritm går det att få ett bättre flöde i korsningen än vad det gör med en algo-
ritm som efterliknar ett trafikljus. Slutsatser som kan dras utifrån projektet är att
fordonskommunikation har möjligheten att förbättra trafiksäkerhet och effektivitet.
Det går att implementera fordonskommunikation i infrastruktur så att en markant
minskning av olyckor sker. Implementationer kan också innebära en besparing av
miljön och genomförs på etiskt sätt.

Keywords: Fordonskommunikation, ICWS, V2I, V2X, Intelligent Trafik, IoT.

vi

Acknowledgements
This project was performed by students at the bachelor programs with a specializa-
tion in Computer Science and Engineering and we want to thank Chalmers Univer-
sity of Technology for our years there. We would like to give a big thank you to our
supervisor Sakib who has given us valuable insights about technology and also about
life in general. Thanks should also be directed to Cybercom who has provided us
with the resources that enabled the project. Thanks also for the competent guidance
from our Cybercom supervisor Henrik. We would also like to thank our respective
partners and families who supported us during this time.

Mattias Sikvall Källström, Eric Rylander, Gothenburg, 2020

vii

Acronyms

AWT Average waiting time
FHSS Frequency hopping spread spectrum
ICWS Intersection Collision Warning System
IEEE 802.11 Standards for WLAN communication
IEEE 802.11p / WAVE Standard transmission protocol for vehicle communication
ITS Intelligent Transportation System
JSON JavaScript Object Notation
JVM Java Virtual Machine
MAC Media access control
mCore Custom Arduino Uno board for mBot
RPi Raspberry Pi
RSU Road Side Unit
RTT Round Trip Time
UML Unified Modeling Language
V2I Vehicle to Infrastructure
V2V Vehicle to Vehicle
V2X Vehicle to Everything

Contents

1 Introduction 1
1.1 Purpose . 1
1.2 Scope . 1
1.3 Delimitation . 2

2 Background and Theory 3
2.1 Vehicular Communication . 3
2.2 Communication technologies . 4
2.3 Hardware . 7

3 Methods 9
3.1 Modeling . 9
3.2 Debugging software . 12
3.3 Tests . 13
3.4 Languages . 13

4 Architecture 15
4.1 RSU software . 15
4.2 mBot RPi software . 17
4.3 mBot Arduino software . 18
4.4 Debugging software . 19
4.5 JSON messages . 21
4.6 Track . 21

5 Results 23
5.1 Tests . 23

6 Discussion 25
6.1 Test anomalies . 25
6.2 Traffic efficiency . 25
6.3 Driving experience . 26
6.4 Traffic safety . 26
6.5 Environmental aspects . 27
6.6 Ethics . 27
6.7 Critical Discussion . 27

ix

Contents

6.8 Future development . 28
6.9 Conclusion . 29

Bibliography 31

A Appendix 1 I

B Appendix 2 V

x

1
Introduction

The driving force behind developing vehicles that can communication with the out-
side world comes from a desire to make traveling safer, more efficient and a better
experience for the driver [1]. This type of communication is called Vehicle to Every-
thing (V2X) [2]. When vehicles communicate with infrastructure, the infrastructure
is called a Road Side Unit (RSU). This project has been made on the behalf of the
company Cybercom Group AB in Gothenburg. Cybercom has worked with V2X-
technology for many years and wishes to demonstrate this upcoming technology in
a model car track and this is something the purpose of this project aims fulfill.

1.1 Purpose

The purpose of this report is to model a vehicle environment where communication
between vehicles and infrastructure can be tested. With studies from both literature
and experiments this report wishes to answer the following questions.

• How can V2X technology be used to reduce traffic accidents in modeled inter-
sections?

• What impact does the implementation of V2X have on the efficiency of inter-
sections?

• How can V2X technology be used to reduce environmental impact?

1.2 Scope

The project includes a track for autonomous vehicles that contains a four-way in-
tersection. Network communication shown in Figure 1.1 enable the intelligent in-
frastructure to transmit drive and stop signals to the vehicles and in turn result in
an effective traffic flow. Each vehicle is equipped with a computer that handles the
V2X communication. The intelligent infrastructure is modeled by another computer
that acts as an RSU. Each vehicle has a field of view, that is implemented with an
ultrasonic sensor.

1

1. Introduction

local sensors local sensors

Vehicle
Computer

Integrated
System

RSU

Figure 1.1: A flowchart of the system

Four applications have been developed for the project, one for, the embedded
system, the vehicle computer, the RSU and the debugging software. Testes have
been defined and run to test the efficiency of the intersection using different algo-
rithms.

1.3 Delimitation
Tests in the project are not be performed on real vehicles, only on vehicles models.
The vehicles can only drive straight through the intersection and neglects other
crossing vehicles. Ultrasonic sensors are only used to give the vehicles vision in
front of them and therefor the ultrasonic sensor can only eliminate crashes with
other vehicles that are straight in front of them. No practical implementation of
computer security regarding outside threats to the system, nor will it be discussed.
Only preexisting hardware and drivers are used in the project.

2

2
Background and Theory

This chapter aims to provide an overview of the technologies and their usages in
intelligent transportation. Furthermore, it describes the current research and de-
velopment in this field as well as describing the technologies behind the projects
system. Since 1997 the department of transportation in Sweden has aimed to to-
tally eliminate deaths in traffic, a vision called “Nollvisionen” [3].

2.1 Vehicular Communication
The driving force behind developing vehicles that are able to communication with
the outside world comes from a desire to make traveling safer, more efficient and a
better experience for the driver [1]. Other cars may have information that is useful
for a driver. Examples of this type information are how the conditions are further
down the road, if there has been a collision or if there is an obstacle that is hidden
on the road. This type of information could be vital to the driver and could be
obtained by other vehicles, sensors positioned along the road or cloud connected
services. Vehicle communication has been developed and researched for the last
couple of decades, some recent research has begun to look in to the environmental
aspects of the technology [4][5].

2.1.1 Vehicle to Everything and Vehicle to Vehicle
Vehicle to everything or V2X for short is a general term that describes the com-
munication techniques that takes part between one vehicle and another entity of
any kind [1]. These entities include but are not limited to other vehicles, pedestri-
ans and infrastructure. To this day most development in vehicular communication
has been towards technologies in the Vehicle to Vehicle (V2V) field, this is mainly
due to this being the field where car manufacturers needs fewer standardization’s
and agreements between participants in order to actualize implementations of V2X
technology. One example of V2V technology is a warning system that Volvo Cars
are developing, it will be made available as a standard feature on all 2020 models
[6]. The warning system comes into action when a car activates its hazard warning
lights, a warning signal is then transmitted so that it can be received by all Volvo
Cars connected to the cloud service. This is an example of a V2X/V2V applica-
tion, safety among efficiency and driving experience are the main field of actions for
V2X-communication [1].

3

2. Background and Theory

2.1.2 Vehicle to Infrastructure and Road Side Units
Vehicle to Infrastructure or V2I for short, also known as Road to Vehicle (R2V) is
the communication between vehicles and entities that are part of the infrastructure
[2]. These entities are base stations or access point and are called a RSU:s. A
RSU could provide vehicles with Internet access or inform vehicles about relevant
traffic information. This information could be handled directly by the vehicle or
the information could be passed on to the driver via a sound system or a monitor.
In March 2020 Volkswagen claims to be the first car manufacturer to release a V2I
capable car on the European market [7]. Volkswagen’s new Golf can send and
receive messages from other cars and infrastructure in a vicinity of 800 meters using
WAVE technology, WAVE is a communication technology that will be explained
in section 2.2.1. Other usages for RSU:s could be intelligent traffic lights, systems
that provides warnings about hazardous road conditions and systems that assists
the driver with finding parking spot [2].

2.1.3 Intersection Collision Warning System
A Collision Warning System (CWS) is a system that uses sensors to detect obstacles
between vehicles and other entities. If such a collision risk is detected the system
transmits some form of warning signal to the entities at risk. A CWS-system applied
in an intersection is called an Intersection Collision Warning System (ICWS). Such a
system could be created by positioning a radar in the intersection and allow vehicles
to connect to it, creating a form of RSU. Test that have been made on ICWS-systems
shows that collisions can be decreased by 18-26% [8].

Other studies on V2X communication in intersections with bicycle crossings
showed the potential to reduce the number of accidents by 30-50% [9]. Another
study has been performed by the United States department of transportation. This
study shows that the use of V2I communication has the potential to reduce more
than 250 000 accidents and 2 000 fatalities each year [4].

2.1.4 Environmental Impact of Vehicular Communication
Vehicle communication is not only beneficial for reducing accidents, research also
shows that it could reduce pollution [4]. One example is a report from the United
States Department of Transportation. This report shows that implementing traffic
flow optimization using V2I has the potential reduce travel times by 6-27%. It also
showed CO2 emission and fuel consumption reductions by up to 11%. Another study
on the subject shows that these types of systems could reduce CO2 emissions by
around 5% [5].

2.2 Communication technologies
Many different communication technologies can be used for V2X communication and
they all come with different advantages and disadvantages. V2X creates a difficult
environment for communication since transmissions must be sent between moving

4

2. Background and Theory

destinations and sources as well through varying weather conditions. This generates
the need for a robust and quick communication technology. This section present
communication technologies that can be used for vehicle communication and the
communication technology used in the projects system [2].

2.2.1 WAVE
WAVE is a modified version of the LAN protocol IEEE 802.11a, adapted for use
in vehicular communication. The modifications were necessary in order to re-
duce the overhead time [2]. The modifications resulted in a new standard named
IEEE 802.11p, but it is more commonly referred to as WAVE. There are two main
differences between IEEE 802.11a and WAVE, these lie in the physical and Media
Access Control (MAC) layers of the protocol. WAVE:s physical layer uses a reduced
channel bandwidth of 10 Mhz instead of the generally used 20 Mhz in WAVE.
The use of smaller bandwidth allows larger guard bands between adjacent channels.
Thereby reducing the chance of interference. The MAC layer has a new mode of
operation, the operation allows for transmission without association of a basic ser-
vice set in emergency situations. This allows for quicker exchanges and with low
overhead.

2.2.2 5G
5G is an upcoming technology that proposes great potential for V2X communication
[10]. The technology is set to replace the current 4G network and will improve on
it in almost every way. This means that 5G has the potential to be the network
technology that can bind the Internet of Things (IoT) together. For vehicles and
infrastructure this means that data concerning transport and traffic-related sensors
can be shared in higher quantities and more frequently. China who is an early
adopter of 5G plans on putting 5G connected sensors on 90% of their highways in
the year 2020. Even though current cellular networks provides potential for many
V2X functions, 5G will make it possible for vehicles to behave as smart clusters
rather than individual units [11].

2.2.3 IPv4 and TCP
IPv4 and TCP are two protocols that can be used in combination to transmit data
over the internet [12]. This is one of the most used communication techniques for
Internet communication. IPv4 belongs to what is called the network layer. TCP is a
layer on top of the network layer and is called the transport layer. Another example
of techniques that uses the transport layer is the User Datagram Protocol (UDP).

IPv4

IPv4 is the fourth version of the Internet Protocol [12]. It is used to manage the
transmission of packages between sources and destinations on the Internet. Every
connected host is assigned an IP-address. This address identifies the destination a
package would have to be assigned in order to reach the correct host. Apart from

5

2. Background and Theory

the destinations IP-address, the IPv4 part of a package also contains the IP-address
of the source, as well as other information that is required for well-functioning trans-
missions on the internet.

TCP

TCP is a transport communication protocol the builds on the IP layer [12]. When
establishing a new TCP connection host A, sends a sync message to another host B.
When host B receives the sync message it replies to A with a sync and acknowledge
message. Now host A knows that it can both receive and send messages to host B
and host A informs host B about this by responding with an acknowledge message.
This process is known as a handshake and is described in figure 2.1.

Time Time

Host A Host B

Syn

Syn-Ack

Ack

Data

Figure 2.1: Example of handshaking in the TCP protocol

After a handshake has been performed data transmissions can be started between
the two hosts. The receiving host will acknowledge every package it receives. If a
sent package is not acknowledged it will be sent again in the next sending sequence.
This guarantees that no data is lost. The TCP-connection needs to have predefined
source and destination port. These ports are used to separate communication from
different connections.

2.2.4 Bluetooth
Bluetooth is a wireless short way communication technology that allows transmission
of data between devices [13]. It was conceived as an alternative to RS-232 data
cables. Bluetooth uses the 2.4 GHz band, a band that is globally available for
unlicensed low power use. In each network a Bluetooth device is connected to, the

6

2. Background and Theory

device is either defined as master or slave. As master the Bluetooth devices can
connect to multiple slave devices at the same time. Contrarily a slave device is
only connected to the master. The architecture of Bluetooth defines two types of
networks, Piconet and Scatternet. Piconet is defined as one master connected to
up to seven slaves. A Scatternet is a combination of Piconets [13]. The nets are
connected by a device that is slave and master at the same time. These slave-masters
are often called bridge-slave.

The device connection process is divided in to three stages, inquiry, pairing and
connected [14][15]. A Bluetooth device uses the inquiry request to discover other
devices within range. If there are any nearby devices listening, the requesting devices
will receive a response containing the other’s address and name. If a connection is to
be established, a paring process is initiated. During the paring process the devices
exchanges secret keys that are used for future communication. After this stage the
devices are said to be paired. Two paired devices can also be bonded, this means
that the devices store each other’s communication resources for future use. This
means that they are able to auto-connect the next time they are within range of one
each other. After the pairing stage the devices can connect to one another.

Bluetooth uses Frequency Hopping Spread Spectrum (FHSS) protocol to change
operating frequencies during communication [13]. FHSS operates between seventy-
nine predefined channels that exists in the frequency’s spectrum of 2.402 GHz to
2.480 GHz. These operations occur 1600 times per second. The use of FHSS allows
the connection between two devices to perform with less interference. Each channel
can use 1 MHz of bandwidth.

The Bluetooth frame is divide in to three parts, access code, header and data, as
shown in figure 2.2. The destination device uses the access code to identify the source
of an incoming transmission. The header contains an identifier for the intended
destination, an identifier for the type of data, a flow control bit, an acknowledgement
bit, a sequence bit for detection of re-transmission of the data and a checksum for
error detection. Furthermore, the header is repeated three times in the frame. The
last part of the frame is the application data that is to be transmitted [13].

Figure 2.2: Bluetooth frame.

2.3 Hardware
The underlying sections describes the hardware used in the modeled environment.
The modeled environment consists of vehicles and infrastructure. Raspberry Pis are

7

2. Background and Theory

used for computational power and network communication on the different entities.
The robots embedded systems are modeled with mBots.

2.3.1 Raspberry Pi
A Raspberry Pi (RPi) is a single-board computer built to be an educational tool for
people to learn programming [16]. The first RPi launched in 2012 and contained a
single-core CPU and 256 MB of RAM. The latest released RPi has a quad-core CPU
and up to four gigabytes of RAM. RPi uses an ARM processor and the operating
system Linux. The uses of RPi:s are many and since they are easily modified thanks
to their easy to use General purpose input-output (GPIO) connectors. The GPIO
connectors allows for several different accessories to be connected. LEDs, switches
or analog sensors are some of the accessories that could be used. Which has made
the RPi a popular computer to use in projects.

2.3.2 mBot
A mBot is a STEAM educational robot that is constructed of motors, sensors and a
micro controller. [17]. The mBot used in the project consists of two line-follower sen-
sors and an ultra-sonic sensor. It is also equipped with a battery pack, two motors,
a Bluetooth module and a micro controller. The micro controller is a redesigned
Arduino Uno, called mCore. It features onboard LEDs, IR receiver and RJ25 ports
for expandability. An Arduino is an open-source micro controller that is made to be
a tool for fast prototyping and a cheaper alternative. Arduino can be used with most
operating systems and provides a simple and effective programming environment,
the Arduino IDE. The programming language used for Arduino is based on AVR-C
and is easily expandable with C++ libraries [18]. The Arduino IDE can be used to
develop software for the mCore. The software requires both the Arduino’s standard
library as well as the mCore’s standard library [19].

8

3
Methods

This chapter aims to motivate the choices made in the development process. Decision
had to be made on what hardware, software, positioning, intersection handling and
communication technologies that were to be used. Tests has been constructed and
performed on the system.

3.1 Modeling

To achieve the purpose and scope of the project a modeled environment had to be
constructed.

3.1.1 Vehicle

mBots was chosen to model the vehicles. The decision to use mBots was made based
on them being available, simple to program and easy to expand upon with additional
hardware[17]. This allowed the project to produce results in the early stages. With
the help of sensors, it is possible for the mBot to model vehicles within an acceptable
degree to reach the purpose of the project. Other vehicles were considered but due
to them either being too complex or too few in quantity, they were not a viable
option.

3.1.2 Line tracking and positioning

To model an intersection, a predefined track seen in Figure 3.1 and a system for
positioning the vehicles is necessary. For positioning on the track, a method using
two dashed lines were developed where the vehicle counts the lines it passes. Other
systems considered for position were Ultra Wide Band and image recognition. How-
ever, these systems were deemed to be too complicated and time consuming for
the projects scope. To keep the vehicles on the predefined track a solid lines was
used, with a linefollower-sensor the solid line could be followed. The two lines were
combined in to a two line system.

9

3. Methods

S

N
W

E

E
n
te

r
W

e
st

E
n
te

r
S

o
u
th

E
n
te

r
N

o
rt

h

E
n
te

r
E
a
st

E
x
it

S

o
u
th

E
x
it

E
a
st

E
x
it

N

o
rt

h

E
x
it

W

e
st

-C

-C
A

C
-

A
C

-

Figure 3.1: The track design with two two lanes and an intersection in the middle.
The solid lines are used for keeping the vehicle on the track while the dashed lines
are used for positioning.

Two line system

The two line system uses one solid line to keep the vehicle in the driving lane and
one dashed line to calculate the position. The system counts the number of past
dashed lines. Combining this information with the system-time makes it possible to
calculate the vehicles position. This system used to design the first and following
tracks.

Track design

The decision to make the track formed as an eight was based on the requirement
to have an intersection that the vehicle could return to repeatedly. The track is
designed in Inkscape, a vector graphics editor and printed on wide format printer.
For a detailed view of the track see Appendix A.3.

During the development process different track designs were used. The first
design was a single lane, one way track see Appendix A.1, this track laid the ba-
sis for the coming track designs. The single lane track didn’t realize our scope of
having traffic traveling in both directions. This led to the second design found in
Appendix A.2. This second design was the first track to support cars in differ-
ent directions. The second track designed had problems with vehicles losing their
positions. These flaws were later fixed in the third and final design.

3.1.3 Vehicle Computer
A Raspberry Pi 3B+ was chosen for use as vehicle computers for the mBots. Due to
its small size and cost, while still having plenty of computing power for the projects
purpose. The RPi zero was a strong candidate for usage as vehicle computer, but
resource limitations due to COVID-19 made it so that only RPi 3B+ were available.
No other microcomputer than RPi models was considered since the authors were
accustomed to working with RPi:s.

10

3. Methods

3.1.4 Vehicle state machine

In order to make the vehicles perform in a desired manner a state machine was
developed. The different states represent the vehicles position relative to the line
section it is currently passing. Two different state changes were constructed. One
in the mBot and one in the RPi. The one used in the mBots software contained
all possible states for the line-follower sensor that was used to count the dashed
lines. It was used to differentiate when the sensor passed a line and if the line
should be counted. These states can be seen in Figure 3.2. The HALFOUTSIDE
and HALFINSIDE states was required for the one-line system to work and was kept
in the two-line system since that the precision was seen as an asset. The two-line
system would work just as well running only with the INSIDE and OUTSIDE states.

Figure 3.2: The states controlling dashed line counter.

The other state machine was implemented in the RPi:s software, these states
was also used in the positioning of the mBot. These separated the track into sections
and changed according to the section that the mBot were in. These can be seen
in Figure 3.3. These states were divided up in two parts, enter and exit after the
four cardinal directions used to divide the track. These were named and divided
after the cardinal directions to make the positioning system accurate and easy to
understand and debug.

11

3. Methods

Figure 3.3: The states used for positioning.

3.1.5 Road Side Unit

To model the Road Side Unit an application that could calculate and predict if two
or more vehicles were about to collide was developed. This program was made using
a prediction algorithm that could define if a vehicle is allowed to drive through the
intersection or not. For this algorithm to work a communication with the different
vehicles were needed, as well as message protocols. Two criteria was constructed
for the algorithm, no collisions were allowed in the intersection and it needed to be
scalable.

Network Communication

A decision was made to let all communication with RSU be performed over WiFi
with the TCP protocol. This goes against much of the conventional research that
exists about RSU:s, which often uses WAVE or other specially developed protocols
for vehicular communication. Communications with an RSU and a vehicle some
package loss must be accepted. However, in the modeled environment that has been
constructed, WiFi and the TCP protocol is used since WiFi is a cheap and accessible
technology. While the technology, such as WAVE needs special hardware that was
unavailable to the project.

3.2 Debugging software

A debugging software was developed to facilitate the developing during the project.
It was used to test the Bluetooth transmissions between the mBot and the program,
which helped to test and define protocols of transmission to save valuable time
during run time. It was also used to run the system with a single computer instead
of a different RPi for each mBot. This allowed for faster debugging of the code and
allowed the project to proceed quicker.

12

3. Methods

3.3 Tests
To answer the project questions, three different tests were constructed. Each test
ran for ten minutes and was repeated three times. Ten minutes was deemed as
an acceptable time frame for the test due project limitations and the fact that the
driving pattern of the vehicles became repeatable. The tests were done with one
to three vehicles to ascertain what effect the amount of vehicles on the track had
on the result. The tests seen in Table 3.1 where performed once for each algorithm
N. Where CW and ACW shows how many vehicles should be traveling in each
direction, clockwise and anticlockwise.

Algorithm Test # # Vehicles CW ACW # Runs Period [min]
Algorithm N 1 1 1 0 3 10
Algorithm N 2 2 1 1 3 10
Algorithm N 3 3 2 1 3 10

Table 3.1: The test settings

Two measurements were created in order to be able to assess the result, the
Average Waiting Time (AWT) and throughput. When calculating the AWT time
frames are used, they consist of the time it takes from when a mBot gets a stop
signal till it gets a drive signal from the RSU. The average waiting time is calculated
by taking the sum of all the time frames and divide it by the number of cars on the
track. This is shown in Equation 3.1 where k is the number of time frames, S is the
stop time, D is the drive time and C is the number of cars on the track.

AWT =
∑k

n(Dn − Sn)
C

(3.1)

The throughput is the number of vehicles that drives through the intersection
each minute. The Equation 3.2 shown how the throughput is calculated.

Throughput = vehicles passing through intersection

test duration
(3.2)

3.4 Languages
Languages that are both understood by humans and computers are vital tools in all
software development projects. In the following sections a motivation of the chosen
languages C, Java and JSON are given. These languages were all used to develop
the system that this report aims to describe.

3.4.1 Programming Languages
Programming languages was chosen based on the requirements of the hardware and
the experience of the developers. C was chosen for writing the embedded system
application and Java for writing the applications for the vehicle computer and RSU.

13

3. Methods

C

C is high-level programming language that was created in the early 1970s [20]. The
main features of C are that it provides low-level access to memory and the usage
of simple syntax. C were used to develop the software running on the mCore, as it
only supports C or Scratch, a block-based programming language. C were chosen
based on that it being an industrial standard for embedded systems which scratch
is not.

Java

Java is a general purpose programming language that was first released in 1994 [21].
The reasons we chose java as our developing language is that Java is an object-
oriented language and it manages all memory handling, eliminating the source for
many bugs and performance issues. It also has the benefits of the JVM that allows
compiled code to execute on multiple platforms. Additional to this benefit the
JVM also works as an extra layer of security. Java is also designed with concurrent
programming as one of the main design goals. The developers of the applications
were also used to working with Java. The problems with Java is that its proven to
function poorly when used in real time applications resulting in poor performance
and communication delays. However the benefits of using Java was considered to
out weight the negative.

3.4.2 JavaScript Object Notation
JavaScript Object Notation (JSON) is an independent language based on a subset
of JavaScript. It is a lightweight data-interchange format designed for human read-
ability and writability. While being fast for computers to parse and understand [22].
These are the reasons why JSON was used as a data-interchange language for the
system.

14

4
Architecture

The basic setup consists of mBots, a track and a RSU. The RSU communicates via
WiFi and TCP with the RPi, which in turn communicates via Bluetooth with the
Arduino. The Arduino is connected to sensors and motors that allows it to drive
around the track and calculate its position relative to the track. The RPi interpreters
the data from the Arduino and updates the RSU with the mBot’s position. The
RSU is used to avoid collisions in the tracks intersection and does this by performing
a collision avoidance algorithm every time a mBot updates it with its position value.
In order to test the system thoroughly a debugging software has been constructed.
All data being sent between the different modules in the system uses messages
written in JSON.

4.1 RSU software
The purpose of the RSU is to make sure that no collisions take place in the tracks
intersection. It does this by communicating over LAN with every mBot on the
track and performing a collision avoidance algorithm that determines if a mBot is
allowed to drive or if it has to stop. The architecture of the software is described in
Figure 4.1.

Figure 4.1: UML class diagram of the RSU software

The software consist of one main controller that handles the communication with
the mBots and performs the algorithm for collision avoidance. The RSU works as a

15

4. Architecture

server and continuously listens for new connections. Each server connection is using
the TCP protocol and runs on its own thread in the form of the ControllerLAN class,
this class makes it possible for the ControllerRSU to observe incoming messages and
send messages to the mBots.

4.1.1 Collision avoidance algorithms

Two different collision avoidance algorithms were developed to be tested with the
RSU. The first was an algorithm that mimic a intersection with traffic lights. This
was especially used during the development and debugging of the network commu-
nication and positioning. Another algorithm using queues was also developed. The
algorithms are executed on a set time interval and each execution the vehicle is
informed of the result.

The traffic light has three states closed, north-south open and east-west open.
The states switches from closed to north-south open to closed to east-west open and
then repeats the process. Different times can be set for how long the intersection
is open and closed. The traffic light Algorithm 1 uses the traffic light state to
determine if an incoming vehicle is allowed to continue or not.

if (East-West green AND Entering East-West) OR (South-North green AND
Entering South-North) then

Continue driving;
else

Stop driving;
end

Algorithm 1: Traffic light algorithm in pseudocode.

The queuing algorithm uses two queues, one for south-north and one for east-
west. A mBot continuously sends updates on it whereabouts to the RSU. The
algorithm uses this information to check what direction the mBot is traveling in
and adds it to the right queue. It then checks if the other queue in the crossing
direction is empty, if it is then the RSU sends driving messages to the mBot. If the
other queue is not empty the RSU sends stop messages and the mBot awaits a drive
message from the RSU. When a mBot leaves the intersection, the algorithm removes
it from the queue and checks if the queue is empty. This algorithm is described in
pseudo code in Algorithm 2.

16

4. Architecture

switch Vehicle direction do
case Enter from south/north do

Add vehicle to south-north queue;
if east-west queue is empty then

Open south-north direction and close other;
end

end
case Enter from east/west do

Add vehicle to east-west queue;
if south-north queue is empty then

Open east-west direction and close other;
end

end
otherwise do

Make sure that vehicle exist in no queue;
end

end
if vehicle is not in closed direction then

Continue driving;
else

Stop driving;
end

Algorithm 2: Queuing Algorithm in pseudocode.

4.2 mBot RPi software

The RPi software works in close collaboration with the Arduino software. It comple-
ment the Arduino with network communication, system timing and extra computing
power. An overview of the RPi software is demonstrated in Figure 4.2.

The network card makes it possible to establish a TCP connection to the RSU
and update the RSU with the current state of the mBot, this is performed each
time a position change is notified by the Arduino. In this modeled environment,
the mBot has a continuously open connection stream between itself and the RSU.
The RPi software communicates with the Arduino via a Bluetooth connection. The
Arduino updates the RPi software with information about its state, position, base
speed, etc. and the RPi software stores this information in a model class called
MBotModel. The position value in combination with system time makes it possible
to calculate the vehicles position on the track. It does this by calculation how many
tracking lines the mBot has passed within a set amount of time. The calculated
position is then used to determine which of the different cardinal direction states
the mBot is located in. In turn the RPi software updates the Arduino with stop
and drive instructions it gets from the RSU’s collision avoidance algorithm, stop
messages can also be transmitted if objects are in front of the mBot.

17

4. Architecture

Figure 4.2: UML class diagram of the mBot RPi software

MBotModel represents the real time state of a mBot. Different states are rep-
resented by enums. A MBotModel is update via it’s controller that gets Bluetooth
updates from the mBot and sets the MBotModels values correspondingly. The two
enums are PositionState and LineState, PositionState represents the mBot state rel-
ative to track while PositionState represents the mBot state relative to the position
tracking lines on the track.

4.3 mBot Arduino software
The software that is controlling the Arduino (mCore) is written in C and its task
is to run four different functions after each other in repeat. The Arduino program
is split in two parts, a setup and a loop. The setup is the boot up sequence, it sets
the communication and resets the LEDs. While the loop run continuously until the
mBot is turned off, this is where the four functions are located.

The purpose of the mCore software is to control the mBot and handle the com-
munication between the mBot and the RPi. These responsibilities is split up in
four different functions: bluetoothReceiver, lineFollower, lineCounter and ultra-
Sonic. The communication updates to the RPi is transmitted every 150 system-
loops, with a complete update message containing all relevant information about
the mBot. An activity diagram of the Ardunio software can be seen in Figure 4.3.

The bluetoothReceiver listens for messages from the RPi. The receiving process
is separated into two functions, reading messages and finished reading messages.
It reads messages until it receives a end of transmission character “\n”. Then the
message is handed over to a JSON parser that extracts all the information and the
message is interpreted.

The lineFollower is responsible to make sure that the mBot stays on the line
and follow the predefined path. Reading data from one of the linefollow-sensors
allows the mBot to adjust after the line. The data from the linefollow-sensor has

18

4. Architecture

Figure 4.3: UML activity diagram of the mBot Arduino software

four states, on the line, off the line, right off and left off. By checking what state is
active, the function sets the motors to the right effects until the state on the line is
active.

The lineCounter uses the data from the other linefollow-sensor to count how
many dashed lines it has passed. The state machine seen in Figure 3.2 can determine
when and how the mBot passes over the dashed lines. A total of six different
states is used to help the program determine when it has passed a dashed line.
The lineCounter function decreases the communication intervals by increasing the
system-loop counter, each time it determines a increase in counted lines. Thereby
reducing the time between update messages to the RPi, this is done to assure that
the communication happens at a higher interval when the mBot is passing dashed
lines.

The ultraSonic function reads the data from the ultrasonic sensor and saves the
value. The value is then transmitted to the RPi along with all other data in the
update message.

4.4 Debugging software
The debugging software works by providing an actor with the opportunity to ob-
serve and modify the communication between RSUs and mBots. The application
is developed in Java and meant to be run in Windows. The software structure is
described in Figure 4.4.

19

4. Architecture

Figure 4.4: UML class diagram of the debugging software

A more detail overview of the classes ControllerRSU and ControllerMBot are
provided in Figure 4.1 and respective Figure 4.2. The software follows the MVC
model that has been extended to deal with Bluetooth and LAN communication. On
initialization the software reads a setting file with information about the mBots that
are to be used. From this information instances of ControllerMBot are constructed
by the controller. A RSU server is run locally on the system and each instance of
ControllerMBot communicates using local host.

The controller consists of one main controller that in turn handles two different
types of controllers, these are ControllerRSU and ControllerMBot. Both of these
sub-controllers are identical to the software that are running on the mBots and the
RSU. The controller has support for one RSU and multiple mBots. On creation
of a mBot it is connected to the RSU via localhost and the predefined Bluetooth
address. Both controllerRSU and ControllerMBot are identical to the classes used
in the RSU software and the RPi software. It’s possible for the controller to handle
multiple mBots, but is only able to handle one RSU. The controller handles input
from the user via the GUI, LAN messages from the RSU and Bluetooth messages
from the mBot. The controllerMBot uses a extended version of the MBotModel,
that has a propertyChangeSupport that the GUI can listen to.

The GUI was constructed using standard Java Swing components. In Figure 4.5
a screenshot of the GUI running is displayed. The GUI shows information about
the mBots, the intersection queues and the the traffic light states. It also allows the
actor to send messages directly via Bluetooth to the mBots. An actor can connect
to a mBot with the debugging software by pressing the connect button. Using the
GUI the actor can set mBot standard speed, ping the Bluetooth connection and

20

4. Architecture

set if the mBot is driving in clockwise or anticlockwise direction. The information
displayed in the GUI is updated when changes are fired by the MBotModel.

Figure 4.5: The GUI of the debugging software

4.5 JSON messages
All communication over LAN and Bluetooth is sent via messages written in JSON.
For each message that is to be sent a JSON object is created that consists of a
varying number of data types. A receiver of a messages checks each variable name
individually and performs corresponding action with the given value. If a message
isn’t recognized by the receiver no action is taken. The communication uses only
simple JSON objects that consist of Numbers, Strings or Booleans. An object or an
array in the base JSON object would simply be ignored. In the Ardunio software
no objects are used, instead the JSON messages are constructed using strings.

4.6 Track
The track proportions are 105.0 times 194.0 centimeters and it is formed after two
intersecting eights, where a four-way intersection is created in the center of the
eights. The dashed lines are six by one centimeter with one centimeter white space
separators, see Figure 3.1. These dashed line are strategical places around the track
in order to position the mBots. The solid path line has a width of three centimeters.

The section of dashed lines in the top and bottom of the track is there to help
the mBot position itself after it has started. The sections of dashed lines in the
middle is used by the mBot to calculate its position inside the intersection. An
algorithm counts continuously lines during a specific time, this allows the mBot to
precisely know where on the track it is located. This algorithm is dependant on the
mBot knowing what direction its driving in on the track, clockwise or anticlockwise.
A larger view of the track can be found in Appendix A.3.

Positioning the cars on the track was made by dividing the track in to different
sections. The entrances to the intersection are named after the four cardinal direc-
tions. This created two travel directions through the intersection, south-north and
east-west. Exit sections from the intersection entrances was created at the top and
the bottom of the track. A vehicles position state is dependant on it traveling in

21

4. Architecture

a clockwise or anticlockwise direction, see Figure 3.3. A vehicles traveling on the
clockwise track would go from exit north, to enter west, to exit west, to enter north,
and then return to exit north. A vehicles traveling on the anticlockwise track would
go from exit east, to enter south, to exit south, to enter east, and then return to
exit east.

22

5
Results

To answer the question regarding what impact the implementation of ICWS have
on the efficiency of intersections, three questions have been defined to explain how
the efficiency of an intersection is to be measured. These are:

• How long did the vehicle wait in front of the intersection described in percent-
age of total driving time?

• What throughput can the algorithm give described in vehicles per minute
passing through the intersection?

• How does different number of vehicles on the track affects the throughput and
percentage?

5.1 Tests

The tests were performed with the two collision avoidance algorithms described in
the Architecture chapter. Three different mBots were used in a total of eighteen
tests. The three tests shown in Table 3.1 was run for ten minutes and repeated three
times. The first test with one mBot, the second with two mBots and the final with
three mBots. The tests were run once for each algorithm. The details regarding the
collected data can be found in Figure B.1 in Appendix 2.

5.1.1 Traffic Light Algorithm

The tests start with the all directions closed and then switches to open the south-
north direction. The south-north direction is then open for seven seconds and after
that all direction are closed for three and a half second. Thereupon the east to west
direction is open for seven seconds time, thereafter it all directions closes three and
half second. Then the process repeats.

Table 5.1 shows that AWT did not change much between the tests except for a
slight decrease in AWT in the test with three vehicles. After the second test with
three vehicles, vehicle two had not registered any waiting time and this could be an
anomaly. The tests also show that by increasing the number of vehicles on the track
the throughput decreases.

23

5. Results

Algorithm # Vehicles Avg. waiting time [%] Throughput [vehicle/min]
TrafficLight 1 21 3.17
TrafficLight 2 21 3.03
TrafficLight 3 20 2.81

Table 5.1: The test result of the Traffic Light algorithm

5.1.2 Queuing Algorithm
The queuing algorithm directly gives priority to a vehicle entering the intersection
when no other vehicle is present. It also gives priority if another vehicle already
is passing through the desired direction. The tests with Queuing Algorithm seen
in Table 5.2, shows that with an increases number of vehicle that AWT increases
while the throughput decreases. When only a single vehicle drove on the track no
AWT-time was measured. These test were run with no anomalies detected.

Algorithm # Vehicles Avg. waiting time [%] Throughput [vehicle/min]
Queue 1 0 4.07
Queue 2 1 3.90
Queue 3 4 3.64

Table 5.2: The test result of the Queuing algorithm

24

6
Discussion

This chapter discusses real world applications of V2X and its impact on society. It
also discusses the result of the tests that was performed and the development of the
software. The chapter ends with a conclusion of the project. The following sections
provides a discussion on how V2X communication impacts traffic if it is implemented
in a real scenario. Intelligent transportation systems are discussed from the aspects
of driving experience, efficiency, safety, environment and ethics.

6.1 Test anomalies
Only one anomaly was detected in our test results and this anomaly is shown in
Table 6.1. It shows the results of vehicle 2 in the tests with the traffic light algorithm
and three vehicles. As described in the result, the second test result shows a waiting
time of zero, a result that stand out compared to the other two tests. We recognize
this is due to the vehicles moving in different speeds and one vehicle getting stuck
behind the other. This vehicle congestion result in that the vehicle behind does not
register a waiting time, due to it stopping for the vehicle in front of it and not the
ICWS. Since this only happened once and the result is still relevant and its valid
enough for conclusions to be based on it.

Algorithm Test nr Wait time[s] Intersections pass
TrafficLight 1 116.07 36.00
TrafficLight 2 0.00 28.00
TrafficLight 3 183.29 28.00

Table 6.1: Vehicle twos result from the tests with three vehicles, using the Traffic
Light algorithm.

6.2 Traffic efficiency
The result in Table 5.1 and Table 5.2 shows that V2I technology can be applied in
intersections and improve the traffic efficiency in a small scale modeled environment.
When the queuing algorithm is effective and what would happen if we continued to
add vehicles to the track is to be discussed.

Queue algorithms could be used to speed up an intersection that uses traffic
lights, especially in low traffic areas. As the results show queuing algorithms could
reduce the waiting time by up to 16% and increase throughput by up to 30%. This is

25

6. Discussion

something that an autonomous vehicle could handle, however it is worth questioning
how a human driver would handle the quick signal changes required in the algorithm.
It is also worth to mention that different communication delays may have a impact
on the efficiency of the algorithm. Other research show that V2X-communication
has the potential to reduce travel times by 6-27% [4].

The result shows that both the values of AWT and throughput in the two
algorithms approaches each other as the number of vehicles on the track increases.
It is reasonable to assume the as more vehicles were added to the track, the results
from the different algorithms would keep getting closer to one another and finally
even out to the same values. This is because it should be possible for both algorithms
reach close to the physical max throughput of the intersection. The Traffic Light
algorithm would most likely still perform worse however, since it has a state where all
directions are closed. The only hard delay that doesn’t allow the queuing algorithm
to reach the physical max throughput is the time it takes for the RSU to inform a
vehicle that the intersections is free.

6.3 Driving experience

When implementing an ICWS-system it’s important to take the people traveling
in the vehicle in account. Whether the system is implemented for a autonomous
vehicle or giving directions to the driver, many aspects of driving experience needs
to be considered. For example, the vehicles need to ease in when it brakes, and it
also needs to provide the driver with the feeling that the system is a helpful tool. No
such driving experience tests were performed during our testing process, mostly due
to the simplicity of the modeled environment. However, adding a simulated breaking
distance to the vehicles could have helped with providing a more meaningful result
considering driving experience.

6.4 Traffic safety

The goal of “Nollvisionen” is that none will be seriously harmed or killed in traffic in
Sweden [3]. For this goal to be reached we think that innovative V2X-technological
solutions are the future for traffic safety. For example, other research that imple-
ments an ICWS audio warning system for drivers results in a decrease of collisions
by 18-26% [8]. While another test shows a potential of reducing accidents by 30-50%
in intersections with bicycle crossings [9]. Our project has shown the potential of
limiting accidents and increase the safety in intersections by adding an extra layer
of security that could stop a vehicle that is inbound for a collision. This could
help unobservant drivers and facilitate the development of security functions in au-
tonomous vehicle. Security features from V2X-technology would not be limited to
ICWS-systems but could also create safer pedestrians or bicycles crossings and road
safety in general.

26

6. Discussion

6.5 Environmental aspects
ICWS-systems and V2X in general show potential for lessening the pollution from
vehicles. Implementing V2X algorithms will increase traffic flow in intersections,
resulting in less stops and shorter waiting times. This has the potential to reduce
emissions as a vehicle would have to spend less time idling and reduce the number
of stop-start sequences that has heavy impact on fuel economy. This is confirmed
by our result that show decrease in AWT. This is further backed with the earlier
mentioned research that show how V2X communication could reduce CO2 emissions
and fuel consumption with up to 11% [4]. It could have been a good idea to measure
the number of stops in our tests and in that way get another measurement on
environmental effect. Since these types of technologies aims to increase driving
experience and efficiencies it is natural to assume that people would use these types
of services more often. Even thought these vehicles would be more environmental
than today’s vehicles an increased usage may have a grander total impact on the
destruction of the environment.

6.6 Ethics
Our tests never considered how a collision would be handled, since it was assumed
that all collisions would be avoided. Therefore, no ethical choices in course of a
collision needed to be considered. However, ethic is an important subject in traffic
and if testing were to be performed on a larger scale this is something that should
be taken in consideration.

Research points out that not all crashes could be avoided with an ICWS-system,
an ethical choice that the ICWS system could face is what instructions it should
give when a crash is inevitable. For example, it could have to decide what or who
a vehicle should crash in to. One viewpoint is that if the vehicle is non autonomous
the driver should handle all ethical choices he or she may face in traffic. V2X could
be an important puzzle piece for developing autonomous vehicles and this could in
turn lead to increased unemployment among professional drivers.

Ethically we choose a utilitarian approach to evaluate the ethics behind V2X
implementation. It is our firm believe that the benefits from having safer traffic
and lower environmental impact out weight the disadvantages of increased unem-
ployment. History has plenty of examples of rises in unemployment due to the
implementation of new technology, still no one seems to want to go back.

6.7 Critical Discussion
If we were to redo the project with all the knowledge, we have today there are a few
things that we would have done differently.

• Even though we achieved success with the mBot, other technologies for model-
ing vehicles exists. Developing the mBots took a lot of time and it is reasonable

27

6. Discussion

to assume that the same result could have been achieved with a toy railed car
track.

• We would realize the importance of having a modular message structure earlier
and thereby reducing allot of the problems we had in the first part of the
project. It would also have been helpful to do better research on Bluetooth
and realize its limits and potential.

• The C software could have been given more planning and structure. It only
uses simple techniques and more advanced programming methods could have
been used to make the code more effective and readable.

• The Java applications requires more computing power than what seems rea-
sonable. Testing the different modules of the Java program better would most
likely have resulted in a more resource effective program.

Viewing our tests and system from a critical standpoint there are a few issues
that may have affected the results. These are important to take in consideration
when considering at the results.

• The modeled vehicles have a probability of syncing with the traffic lights,
meaning that when they approaches the traffic light it transmits the same
signal as last time it approached the intersection.

• The queuing algorithm could result in a race condition, were one queue gets
blocked indefinitely. This could happen with the track design used in these
test since the vehicles never returns directly to the same queue. However with
a different track design this would become a problem.

• The modeled vehicles have different max speeds that depended on their motors,
this was not adjusted for. This resulted in that if two vehicles are in the same
direction and one is faster than the other the faster one gets stuck behind the
slower one. This could result in that the calculated intersection stop time is
low even though it waited in front of the intersection in the same manner as
the vehicle in front of it.

6.8 Future development
If we had more time to continue developing our modeled environment these are the
points that we see as the next step in developing the system:

• The light switching time used on the traffic light algorithm was arbitrarily
chosen and was only adjusted slightly during the development process. A more
scientific approach for deciding the time could have been more advantages, for
example machine learning could have been used in order to find a light switch
time for optimal vehicle flow.

• Implement a adjustment for vehicle speed, that would make each vehicle adapt
motor power to match a set speed as this might have had an impact on our
result.

• The vehicle computer was never mounted to the mBot during the tests, a
future implementation could be to construct a mounting section for the RPi

28

6. Discussion

and power supply on the bot itself. This would provide a more realistic test
rig and allow testing the RSU communication with moving targets.

• Changing the LAN communication to use UDP instead of TCP, this would
probably give more realistic test results as the communication in vehicular
environments does not use TCP. The next step after UDP would be to test
it with WAVE, as it is the standard set for vehicular communication and
would provide a better picture of how the system would perform in realistic
environments.

6.9 Conclusion
Implementing V2X technology is something that could improve traffic in general
and according to us this is the future of infrastructure. We firmly believe that a
distinct improvement of safety and efficiency in traffic would be associated with the
implementation of V2X. The environment would also benefit of V2X.

Our tests show that the traffic light algorithm may be the slowest, but we think
that it is the most reliable. If the project where to be scaled up and more complexity
added we are unsure if the queuing algorithm would still work, but we are feeling
confident that the traffic light algorithm would do its job. This is to say that
if breaking distance, reaction time and weather conditions where to be factored
in an optimized version of the traffic light algorithm would be our recommended
implementation. Since this study almost exclusively approached the software and
communication aspects of ICWS-systems further research on how intersections are
handled today is required, this include what requirements that exists and what that
means for effective algorithms.

29

6. Discussion

30

Bibliography

[1] G. Dimitrakopoulos and G. Bravos, Current Technologies in Vehicular Com-
munication. Springer, 2017.

[2] S. F. Hasan, N. Siddique, and S. Chakraborty, Intelligent transportation sys-
tems: 802.11-based Vehicular Communications. Springer, 2017.

[3] Trafikverket, “Det här är nollvisionen,” Jan 2020, accessed 23 May. 2017. [On-
line]. Available: https://www.trafikverket.se/resa-och-trafik/Trafiksakerhet/
det-har-ar-nollvisionen/

[4] J. Chang, G. Hatcher, D. Hicks, J. Schneeberger, B. Staples, S. Sundarajan,
M. Vasudevan, P. Wang, K. Wunderlich et al., “Estimated benefits of
connected vehicle applications: dynamic mobility applications, aeris, v2i
safety, and road weather management applications.” United States. Department
of Transportation. Intelligent Transportation . . . , Tech. Rep., 2015, accessed
19 April. 2020. [Online]. Available: https://rosap.ntl.bts.gov/view/dot/3569

[5] F. Outay, F. Kamoun, F. Kaisser, D. Alterri, and A. Yasar, “V2v and v2i
communications for traffic safety and co2 emission reduction: A performance
evaluation,” Procedia Computer Science, vol. 151, pp. 353–360, 2019, accessed
19 April. 2020.

[6] A. Frost, “Volvo introduces v2v warning systems on new mod-
els across europe,” Apr 2019, accessed 17 April. 2020. [On-
line]. Available: https://www.traffictechnologytoday.com/news/safety/
volvo-introduces-v2v-warning-systems-on-new-models-across-europe.html

[7] Volkswagen, “Technical milestone in road safety: experts praise
volkswagen’s car2x technology,” Mar 2020, accessed 17 April. 2020. [On-
line]. Available: https://www.volkswagen-newsroom.com/en/press-releases/
technical-milestone-in-road-safety-experts-praise-volkswagens-car2x-technology-5914

[8] S.-H. Chang, C.-Y. Lin, C.-C. Hsu, C.-P. Fung, and J.-R. Hwang, “The effect
of a collision warning system on the driving performance of young drivers at
intersections,” Transportation research part F: traffic psychology and behaviour,
vol. 12, no. 5, pp. 371–380, 2009, accessed 19 April. 2020.

[9] C. Sommer and F. Dressler, Vehicular networking. Cambridge University
Press, 2015.

[10] N. Sequeira, “What 5g means for the future of internet of things,” Jan 2019,
accessed 5 May. 2020. [Online]. Available: https://www.5gtechnologyworld.
com/what-5g-means-for-the-future-of-internet-of-things/

[11] T. L. Ericsson, “5g and v2x ecosystem,” Sep 2019, accessed 5 May. 2020.
[Online]. Available: https://www.ericsson.com/en/news/2019/9/5g-and-v2x

31

https://www.trafikverket.se/resa-och-trafik/Trafiksakerhet/det-har-ar-nollvisionen/
https://www.trafikverket.se/resa-och-trafik/Trafiksakerhet/det-har-ar-nollvisionen/
https://rosap.ntl.bts.gov/view/dot/3569
https://www.traffictechnologytoday.com/news/safety/volvo-introduces-v2v-warning-systems-on-new-models-across-europe.html
https://www.traffictechnologytoday.com/news/safety/volvo-introduces-v2v-warning-systems-on-new-models-across-europe.html
https://www.volkswagen-newsroom.com/en/press-releases/technical-milestone-in-road-safety-experts-praise-volkswagens-car2x-technology-5914
https://www.volkswagen-newsroom.com/en/press-releases/technical-milestone-in-road-safety-experts-praise-volkswagens-car2x-technology-5914
https://www.5gtechnologyworld.com/what-5g-means-for-the-future-of-internet-of-things/
https://www.5gtechnologyworld.com/what-5g-means-for-the-future-of-internet-of-things/
https://www.ericsson.com/en/news/2019/9/5g-and-v2x

Bibliography

[12] J. F. Kurose and K. W. Ross, Computer networking: a top-down approach.
Addison Wesley, 2005.

[13] U. Dalal, Wireless Communication and Networks. Oxford University Press,
Inc., 2015.

[14] D. Thakur, “Bluetooth,” 2017, accessed 4 May. 2020. [Online]. Available:
https://piembsystech.com/bluetooth/

[15] Sony, “What is bluetooth pairing?” 2019, accessed 25 May.
2020. [Online]. Available: https://www.sony.co.uk/electronics/support/
wireless-headphones-bluetooth-headphones/wf-1000xm3/articles/00196698

[16] R. Pi, “Teach, learn, and make with raspberry pi – raspberry pi,” 2020,
accessed 15 May. 2020. [Online]. Available: https://www.raspberrypi.org/

[17] Makeblock, “mbot,” 2020, accessed 5 May. 2020. [Online]. Available:
https://www.makeblock.com/mbot

[18] Arduino, “Arduino - introduction,” 2020, accessed 4 May. 2020. [Online].
Available: https://www.arduino.cc/en/guide/introduction

[19] Makeblock, “mcore - steam kid robotics projects | makeblock,” 2016, accessed
4 May. 2020. [Online]. Available: https://www.makeblock.com/project/mcore

[20] J. Skansholm, C från början. Studentlitteratur AB, 2016.
[21] A. Binstock, “Java’s 20 years of innovation,” 2015, accessed 5 May.

2020. [Online]. Available: https://www.forbes.com/sites/oracle/2015/05/20/
javas-20-years-of-innovation/#2607927e11d7

[22] D. Crockford, How JavaScript Works. Virgule-Solidus, 2018, accessed 5 May.
2020.

32

https://piembsystech.com/bluetooth/
https://www.sony.co.uk/electronics/support/wireless-headphones-bluetooth-headphones/wf-1000xm3/articles/00196698
https://www.sony.co.uk/electronics/support/wireless-headphones-bluetooth-headphones/wf-1000xm3/articles/00196698
https://www.raspberrypi.org/
https://www.makeblock.com/mbot
https://www.arduino.cc/en/guide/introduction
https://www.makeblock.com/project/mcore
https://www.forbes.com/sites/oracle/2015/05/20/javas-20-years-of-innovation/#2607927e11d7
https://www.forbes.com/sites/oracle/2015/05/20/javas-20-years-of-innovation/#2607927e11d7

A
Appendix 1

I

A. Appendix 1

START

START

S

N

Enter North

Exit NorthExit North

Exit South

Enter South

Figure A.1: The first track design

II

A. Appendix 1

S

NW

E

Figure A.2: The second track design

III

A. Appendix 1

S

NW

E

Enter
West

Enter
South

Enter
North

Enter
East

Exit
South

Exit
East

Exit
North

Exit
West

-C

-CAC-

AC-

Figure A.3: The final track design

IV

B
Appendix 2

V

B. Appendix 2

A
lg

. T
yp

e
Te

st

N
r o

f C
ar

s
C

W
A

C
W

W
ai

t t
im

e
(0

)
[s

]
W

ai
t t

im
e

(1
)

[s
]

W
ai

t t
im

e
(2

)
[s

]
A

vg
. w

ai
t

tim
e

[s
]

Pr
op

or
tio

na
l

w
ai

t t
im

e
[%

]
In

te
rs

ec
tio

ns

pa
ss

 (0
)

In
te

rs
ec

tio
ns

pa

ss
 (1

)
In

te
rs

ec
tio

ns

pa
ss

 (2
)

C
ar

s
pe

r m
in

th

ou
gh

 th
e

in
te

rs
ec

tio
n

Tr
af
fic
Li
gh
tA
lg

1
1

1
-

-
10
5,
19

-
10

5,
19

17
,5

3%
-

38
,0
0

-
3,

80
Tr
af
fic
Li
gh
tA
lg

2
1

0
-

10
1,
88

-
-

10
1,

88
16

,9
8%

28
,0
0

-
-

2,
80

Tr
af
fic
Li
gh
tA
lg

3
1

2
-

-
-

17
0,
17

17
0,

17
28

,3
6%

-
-

29
,0
0

2,
90

Tr
af
fic
Li
gh
tA
lg

1
2

1
2

-
11
9,
13

13
3,
96

12
6,

54
21

,0
9%

-
36
,0
0

37
,0
0

3,
65

Tr
af
fic
Li
gh
tA
lg

2
2

0
1

10
0,
55

13
3,
91

-
11

7,
23

19
,5

4%
27
,0
0

27
,0
0

-
2,

70
Tr
af
fic
Li
gh
tA
lg

3
2

0
2

87
,8
3

-
16
9,
45

12
8,

64
21

,4
4%

27
,0
0

-
28
,0
0

2,
75

Tr
af
fic
Li
gh
tA
lg

1
3

0,
1

2
15
5,
10

17
1,
48

11
6,
07

14
7,

56
24

,5
9%

25
,0
0

28
,0
0

36
,0
0

2,
97

Tr
af
fic
Li
gh
tA
lg

2
3

1,
2

0
82
,9
1

13
7,
54

0,
00

73
,4

8
12

,2
5%

28
,0
0

27
,0
0

28
,0
0

2,
77

Tr
af
fic
Li
gh
tA
lg

3
3

0,
2

1
10
3,
47

12
7,
97

18
3,
29

13
8,

25
23

,0
4%

26
,0
0

27
,0
0

28
,0
0

2,
70

Tr
af
fic
Li
gh
tA
lg

A
VG

1
-

-
10
1,
88

10
5,
19

17
0,
17

12
5,

74
20

,9
6%

28
,0
0

38
,0
0

29
,0
0

3,
17

Tr
af
fic
Li
gh
tA
lg

A
VG

2
-

-
94
,1
9

12
6,
52

16
9,
81

12
4,

14
20

,6
9%

27
,0
0

31
,5
0

32
,5
0

3,
03

Tr
af
fic
Li
gh
tA
lg

A
VG

3
-

-
11
3,
83

14
5,
66

99
,7
9

11
9,

76
19

,9
6%

26
,3
3

27
,3
3

30
,6
7

2,
81

Q
ue
ue
A
lg

1
1

1
-

-
0,
00

-
0,

00
0,

00
%

-
41
,0
0

-
4,

10
Q
ue
ue
A
lg

2
1

0
-

0,
00

-
-

0,
00

0,
00

%
38
,0
0

-
-

3,
80

Q
ue
ue
A
lg

3
1

2
-

-
-

0,
00

0,
00

0,
00

%
-

-
43
,0
0

4,
30

Q
ue
ue
A
lg

1
2

1
2

-
16
,8
1

3,
66

6,
58

1,
10

%
-

37
,0
0

44
,0
0

4,
05

Q
ue
ue
A
lg

2
2

0
1

0,
00

6,
25

-
6,

25
1,

04
%

39
,0
0

38
,0
0

-
3,

85
Q
ue
ue
A
lg

3
2

0
2

14
,4
9

-
6,
90

10
,7

0
1,

78
%

35
,0
0

-
41
,0
0

3,
80

Q
ue
ue
A
lg

1
3

0,
1

2
0,
00

3,
29

51
,7
2

18
,3

4
3,

06
%

38
,0
0

37
,0
0

39
,0
0

3,
80

Q
ue
ue
A
lg

2
3

1,
2

0
25
,7
3

4,
13

1,
46

10
,4

4
1,

74
%

37
,0
0

35
,0
0

37
,0
0

3,
63

Q
ue
ue
A
lg

3
3

0,
2

1
1,
75

24
,1
6

77
,9
7

34
,6

3
5,

77
%

35
,0
0

35
,0
0

35
,0
0

3,
50

Q
ue
ue
A
lg

A
VG

1

-
-

0,
00

0,
00

0,
00

0,
00

0,
00

%
38
,0
0

41
,0
0

43
,0
0

4,
07

Q
ue
ue
A
lg

A
VG

2

-
-

7,
25

11
,5
3

5,
28

7,
84

1,
31

%
37
,0
0

37
,5
0

42
,5
0

3,
90

Q
ue
ue
A
lg

A
VG

3
-

-
9,
16

10
,5
3

43
,7
1

21
,1

3
3,

52
%

36
,6
7

35
,6
7

37
,0
0

3,
64

Figure B.1: All tests performed
VI

	Introduction
	Purpose
	Scope
	Delimitation

	Background and Theory
	Vehicular Communication
	Communication technologies
	Hardware

	Methods
	Modeling
	Debugging software
	Tests
	Languages

	Architecture
	RSU software
	mBot RPi software
	mBot Arduino software
	Debugging software
	JSON messages
	Track

	Results
	Tests

	Discussion
	Test anomalies
	Traffic efficiency
	Driving experience
	Traffic safety
	Environmental aspects
	Ethics
	Critical Discussion
	Future development
	Conclusion

	Bibliography
	Appendix 1
	Appendix 2

