
Vehicle data analysis using cloud-based
stream processing

Master’s thesis in Computer Systems and Networks

MORHAF ALARAJ

PHILIP BOGDANFFY

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2018





Master’s thesis 2018

Vehicle data analysis using cloud-based stream
processing

MORHAF ALARAJ
PHILIP BOGDANFFY

Department of Computer Science and Engineering
Division of Networks and Systems

Distributed Computing and Systems Research Group
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2018



Vehicle data analysis using cloud-based stream processing
MORHAF ALARAJ
PHILIP BOGDANFFY

© MORHAF ALARAJ, 2018.
© PHILIP BOGDANFFY, 2018.

Master’s Thesis 2018
Supervisor: Vladimir Savic, Department of Computer Science and Engineering
Supervisor: Philippas Tsigas, Department of Computer Science and Engineering
Supervisor: Jonas Thorsell, Volvo Group Trucks Technology
Examiner: Marina Papatriantafilou, Department of Computer Science and Engi-
neering

Department of Computer Science and Engineering
Division of Networks and Systems
Distributed Computing and Systems Research Group
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2018

iv



Vehicle data analysis using cloud-based stream processing
MORHAF ALARAJ
PHILIP BOGDANFFY
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
In the automotive industry, maintenance planning can be seen as a set of strategies
that aims to increase the uptime of vehicles. Unexpected events such as if a vehicle
suddenly stops due to internal component failures or due to a flat tire are in the
context of maintenance planning referred to as unplanned stops. For transport ve-
hicles, unplanned stops are critical and will in most cases lead to late deliveries and
possibly damaged goods and can in the worst case imply dangerous consequences
for the driver of the vehicle. As data become more and more available and the
connectivity in vehicles get better, more advanced techniques can be applied when
it comes to maintenance planning.

The demand of creating self-learning or automated systems that can predict un-
planned stops is increasing due to the big amounts of data that are generated by
today’s systems. Manually analyzing vehicle data is becoming an unsustainable
approach and it is hard for humans to keep up with the digitised systems due to
increased complexity and big data amounts in the vehicles.

In this thesis, we propose a concept that enables stream processing on vehicle data
on a remote machine. The implementation of the proposed concept is built us-
ing state-of-the-art streaming components, namely Apache Spark Streaming and
Apache Kafka. This thesis focuses more on the design of the system architecture
and the components of the concept.

The results show that it is possible to create machine learning models that con-
tinuously evolves and learns from data streams. Implementations of the proposed
concept can for example be used to detect anomalies in vehicle components remotely
without re-configuring any software inside the vehicles. The machine learning mod-
els that were trained with a Volvo data set did not deliver the desired prediction
accuracy for the area of maintenance planning. Future work in this area would re-
quire further research in which online machine learning algorithms that best fits this
vehicle data and also how features should be chosen to be able to predict anomalies
in vehicle data.

Keywords: Anomaly detection, Stream processing, Machine learning, Maintenance
planning
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1
Introduction

Data streams are unbounded flows of data that have been created from one or many
sources. The concept of processing data streams is called stream processing and is an
alternative to the processing of data that can be found in a database-management
system. Today, stream processing is widely used in applications that require analy-
sis on continuous data as for example monitoring Twitter data in order to discover
trending topics.

In this thesis, the concept of stream processing will be investigated in the automo-
tive industry in order to propose a new concept that includes processing of vehicle
data using stream processing. An implementation of this concept could for example
be used to monitor vehicles health remotely. It could also be used in order to predict
component failures in vehicles using machine learning.

In the automotive industry, maintenance planning can be seen as a set of strate-
gies that aims to increase the uptime of vehicles. In contrast to uptime, we have
downtime which is a result of unexpected events such as a flat tire or a sudden com-
ponent failure. These events are referred to as unplanned stops and for transport
vehicles, unplanned stops are critical and will in most cases lead to late deliver-
ies and possibly damaged goods, which is the motivation for preventing unplanned
stops [17]. The most common strategy today for increasing the uptime of transport
vehicles requires human expert knowledge and includes scheduled workshop visits
according to vehicle component life-time statistics. The increasing amount of data
generated by the digitised systems in the vehicle makes it difficult for humans to
keep up with the increased amount of data. Analyzing vehicle data manually is not
a viable approach due to the massive amounts of data that are generated, therefore
the digitised systems in vehicles needs to implement efficient data processing and
self-learning models. [8]

Recent studies [25] shows that it is possible to predict failures for specific components
in transport vehicles using machine learning techniques. However, the fact that
each component in the vehicle is unique in its characteristics makes it difficult to
implement a generic model that will predict faults for every component in the vehicle.
Therefore, the aim of this work is to propose a concept that enables cloud-based
processing of on-board vehicle data in order to predict unexpected behaviour. The
motivation for using cloud-based stream processing is that powerful remote machines
have more computing power than what is available on-board and analyzing the data
off-board also enables finding correlations between different vehicles in order to

1



1. Introduction

predict anomalies. Moreover, in case of software changes, only the software in the
remote machines needs to be re-configured, instead of each vehicle. Volvo Trucks
have provided a data set containing vehicle data that will be used in this work. By
enabling communication between vehicles and a remote machine, we believe that it
will be valuable for future maintenance planning strategies. To demonstrate this, a
proof of concept will be presented where we apply machine learning techniques on
data streams with the goal to show that it is possible to perform anomaly detection
on vehicle data.

1.1 Context and Motivation
Unplanned stops for transport vehicles are very costly for both the vehicle manu-
facturers and also their customers [24]. In addition to this, an unplanned stop can
in the worst case imply dangerous consequences for the driver. Damaged goods,
dissatisfied customers and the cost of towing the vehicle to a safe place are also con-
sequences of unplanned stops. Mitigating work in the area of maintenance planning
today is performed manually [16]. Even though research in the area has been suc-
cessful and proved that the cost reduction will increase significantly using advanced
predictive maintenance methods [25], the market is way far behind today’s research.
The ability to send vehicle data to external systems is limited mostly due to limita-
tions in connectivity since transport vehicles cross border regularly. Huge amounts
of collected vehicle data are manually analyzed by experts in the field and therefore
the need for automation and learning in this process is necessary since the number
of connected devices and the amount of transmitted data will continue to increase
[11]. Manually analyzing vehicle sensor data requires human expert knowledge and
as the digitised systems inside the vehicles become more complex, this becomes an
unsustainable approach.

This research is necessary in order to evaluate the possibilities of implementing
anomaly detection in vehicle data using stream processing and machine learning
techniques. It is also necessary in order to evaluate the performance of evolving
machine learning models that uses stream processing. By enabling efficient compu-
tation of vehicle data on a remote machine, i.e a back-office system, we believe that
future maintenance planning methods can benefit from this approach. One reason
for this is that software and hardware in vehicles would not have to be patched as
new models are implemented. Instead, new models can be implemented on a pow-
erful remote machine which also can scale up in order to handle much more data
from multiple vehicles simultaneously.

1.2 Goals and Challenges
The main goal in this thesis is to propose a new concept of cloud-based processing
of vehicle data. An implementation of the concept will be performed in order to
evaluate the performance and capabilities of the proposed concept. The concept

2



1. Introduction

includes two-way communication between a vehicle and a remote machine, vehicle
data collection and cloud-based stream processing.

The implementation will evaluate how the proposed concept performs in production
as well as providing a use case for vehicle maintenance purposes including machine
learning techniques. The goal with the machine learning is to show that it is pos-
sible to predict anomalies in vehicle data by implementing the proposed concept.
A successful implementation of the proposed concept should be able to process
vehicle data with high throughput and low latency. The stream processing engine
Apache Spark Streaming will be used in the implementation in order to process data
streams generated by vehicles. Apache Spark Streaming was preferred over other
stream processing engines due to the fact that it supports online machine learning
and provides an intuitive API. However, the only streaming machine learning algo-
rithms that are available for Apache Spark Streaming are Streaming K-Means and
Streaming Logistic regression. These algorithms will be used for the second part of
the implementation.

Our contribution is a concept that implements cloud-based stream processing of
on-board vehicle data that enables researchers and engineers within the area to
implement models that can be used for analyzing a vehicles health. For example,
new machine learning techniques could be tested and evaluated in order to detect
whether a component in a vehicle is likely to fail or not.

1.3 Stream processing engine

Two stream processing engines were evaluated in an early experimental stage of this
thesis, namely Apache Storm and Apache Spark Streaming. The requirement for
the stream processing engine was that it should provide many integrations out of
the box, such as with data pipelines and machine learning frameworks. This was
a requirement because the concept and the system architecture was not specified
and we needed to be able to quickly evaluate and test different system architec-
tures. The first candidate, Apache Storm, was used with the extension Trident-ML
in order to try using online machine learning with stream processing. Unfortunately
Trident-ML was not compatible with newer versions of Apache Storm and the code
contribution on Github for the project had decreased. Trident-ML was then inte-
grated with an older version of Storm, version 0.8.3. However, trying to integrate
Trident-ML with the data pipeline Apache Kafka in this version was not successful.
The next step was to evaluate Apache Spark Streaming. The installation and setup
was made quickly due to the rich documentation. In order to try out the online ma-
chine learning functionality, MLlib was installed and could easily be integrated with
Apache Kafka. Since Spark Streaming met the requirements, it was the obvious
choice for this thesis.

3



1. Introduction

1.4 Thesis Structure
Chapter 2 will present the background of the main topics in this thesis, namely
stream processing, machine learning and maintenance planning. The proposed con-
cept is described in Section 2.5. We also present work related to the fields mainte-
nance planning and anomaly detection in Section 2.6. Moreover, Chapter 3 presents
our implementation of the proposed concept. The experimental results and evalua-
tions are presented in Section 4. Finally, the Discussion and Conclusion is presented
in Chapter 5.
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2
Background

This Chapter introduces the main topics in this thesis, namely stream process-
ing, machine learning and maintenance planning. The first sections present the
paradigms and techniques that are later used in the proposed concept which is de-
scribed in Section 2.5.

2.1 Stream Processing

Data streams are unbounded flows of data, i.e. unbounded sequences of tuples that
share the same schema. Examples of data streams are network traffic and sensor
data. In stream processing, a tuple can be seen as a stream element and a schema
is composed by attributes A1,...,An [9]. The concept of data streams processing
is called stream processing and is an alternative to the processing of data that can
be found in a database-management system (DBMS). Stream processing is distin-
guished by that the rate of arriving items is not under control by the system, while
the rate of arriving items are limited by the disc speed in a DBMS. In stream pro-
cessing, the following assumptions are made [15]:

1. If the arriving data from a stream or streams is not stored or processed im-
mediately, it is lost forever.

2. Data arrives so rapidly that it is not viable to store it in a conventional
database.

2.1.1 Definitions

Figure 2.1 presents a Data Stream Management System and a stream processing
engine that processes the arriving tuples and output a new stream. The data that
the stream processing engine is working with is temporarily stored in the working
storage. In stream processing, queries are continuously executing on a data stream
by a stream processing engine. These queries are called continuous queries. Contin-
uous queries in the context of data streaming are defined as Directed Acyclic Graphs
(DAGs) of internally connected operators and are executed by the stream process-
ing engine in order to perform computations on the data. [9] A sliding window is a
bounded part of the data stream, e.g. the most recent n elements or the items that
arrived the last x minutes. Sliding windows are used due to the unbounded nature
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2. Background

of data streams [9].

Figure 2.1: Data Stream Management System

A stream operator is a function that processes tuples in order to output new mod-
ified tuples. An example of a stream operator is a filtering function that removes
unnecessary tuple elements in an incoming stream. A stream operator that perform
this kind of filtering is called a stateless operator, which means that it does not
maintain any state in order to perform the filtering. There exist another type of
stream operator, namely a stateful operator, which maintains a state of the incoming
tuples and uses this in order to compute the result. An example of a stateful opera-
tor is the count function that counts the number of occurrences for elements in the
incoming stream. In order to count the elements, we need to maintain a state for
each element so that we know how many times it has appeared. Stateful operators
are also used when applying machine learning techniques on data streams in order
to achieve evolving machine learning models that learn over time.

2.1.2 Micro-batch processing

Stream processing is often compared to batch processing. In batch processing, the
entire data that will be processed is available at launch time and grouped into dif-
ferent batches. This means that no new data will considered in the processing when
the batch processing starts. In stream processing, the goal is to process incoming
data as soon as it arrives. Micro-batch processing, i.e. micro batching, is consid-
ered as the intersection between stream processing and batch processing. In micro
batching, the incoming data that arrived within the explicitly defined batch interval
is grouped into small batches. In micro batching, we can also have a sliding window
in order to specify how much of the historical data that should be included in each
batch. Figure 2.2 shows how micro batching relates to stream processing and batch
processing. The stream processing engine that is used in this work, namely Apache
Spark Streaming, implements the concept of micro-batch processing.

6



2. Background

Figure 2.2: Intersection of stream processing and batch processing, micro
batching

2.1.3 Apache Spark Streaming
Spark Streaming is a stream processing engine that enables scalable processing of
data streams. It is scalable in that sense that it is possible to add more computa-
tional power using additional machines, i.e. computational nodes. Spark Streaming
processes tuples in a micro-batching manner as described in 2.1.2. Spark Stream-
ing is an extension of the Spark Core API. It can be used together with machine
learning libraries in order to perform machine learning techniques on data streams.
Spark Streaming API’s can be used in the programming languages Java, Scala and
Python. Spark Streaming applications can be submitted to a Spark Streaming clus-
ter in order to start processing data streams. Different cluster managers exist which
aims to allocate resources across the deployed Spark Streaming applications. One
example of a cluster manager is Spark’s built in standalone cluster manager. When
the application is submitted to the cluster, Spark Streaming obtains executors on
the computational nodes in the cluster. Finally, the packaged code is internally
distributed to all executors by the cluster manager.

Receivers in Spark Streaming receives data from the data pipeline in parallell and
buffers it to the memory in the computational nodes. A data stream in Spark
Streaming is called a Discretized Stream and is implemented as a continuous se-
quence of Resilient Distributed Datasets (RDDs) objects. RDDs are immutable,
distributed and partitioned collections of objects in Spark Core API. RDDs can be
operated in parallell on different clusters which implies scalability. A RDD contains
all the data that belongs to one micro-batch, in other words, each one of the RDDs
contains parts of the data that were received during a specific period of time.

In the case of using multiple computational nodes, it is important to consider the
order of data and determinism in the output since the order of the output can be crit-
ical in some application areas. Using two computational nodes that are responsible
for counting and aggregating the number of visitors in two different locations, one
of these nodes can fall behind which means that a snapshot of their states indicates
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2. Background

inconsistency.
Using a Discretized Stream, the output RDDs for each interval includes all of the
data received in the same interval or previous intervals, therefore this eliminates the
issue [2].

RDDs are fault tolerant and can recover fault tolerant data without the use of repli-
cation. The lineage graph that consists of the deterministic operations that were
used to create the RDD is stored. In other words, the data can be recomputed de-
terministically. When data is not consumed from a fault tolerant data storage, such
as HDFS or S3, the data is replicated in executors in the cluster. Spark Streaming
also offers write ahead logs which stores data to a fault tolerant data storage in order
to recover data.

Spark Streaming offers a web user interface named Spark UI that is used for visu-
alizing different streaming metrics such as processing throughput and read rates for
different data streams. Spark Streaming integrates with a machine library called
MLlib. MLlib is built on Spark and is used for performing machine learning tech-
niques on incoming data streams. It provides supervised and unsupervised machine
learning techniques and can be used for online machine learning. The algorithms
Streaming K-Means and Streaming logistic regression are available in MLlib.

2.1.4 Apache Kafka
Apache Kafka is a distributed streaming platform [3] that is used for establishing a
reliable data streaming pipeline. Kafka uses a publish-subscribe architecture and is
fault tolerant. Figure 2.3 shows how messages are exchanged in Kafka. A producer
tags a message with a topic while the consumer subscribes to that specific topic in
order to consume it.

Figure 2.3: Kafka message passing

A topic is where the data is exchanged by the producer and consumer. A topic
can be split into partitions and it can be used in order to scale up the storage.
Each one of the partitions is ordered and contains immutable sequences of data.
Records of data is appended to the partitions in a time ordered manner. In order
to identify each record in a partition, an offset value is set for every record. Kafka
brokers are systems that are responsible for handling the data published to the
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2. Background

topics. Spark Streaming provides a Kafka Direct API that enables exactly once
processing of records when used.

2.2 Machine Learning
Machine learning is about giving machines the ability to learn without being explic-
itly programmed to have a certain behaviour [19]. In practice, machine learning is
used for extracting information from data from which decisions are made. Machine
learning algorithms not only extracts and summarizes data, they also build a model
based on the data in order to learn something from it and discover something that
can be observed in the future [15]. Online machine learning is a form of machine
learning where new data is used to dynamically update the machine learning model
in an online fashion, while the traditional batch learning uses a static data set to
learn from the data.

Feature selection is a method that can be used for selecting the most important fea-
tures in a data set. Before submitting input data to a machine learning algorithm
it is often necessary to modify the data in order to have a compatible data set. As
an example, consider a classifier that will act as an e-mail spam detector. There
are multiple ways of classifying an e-mail as spam. One approach is to analyze each
word in the e-mail. Another approach is to look at other useful information, e.g.
from which host the e-mail was sent. Spam is often sent from certain hosts that
could be spammers, or hosts that are included in a botnet [15]. Adding the host
in the feature selection could be a better approach to build the classification model
than to analyze each word in the e-mail.

Two major different paradigms exist in machine learning, namely supervised and
unsupervised learning. These paradigms will be described further in the following
sections. Semi-supervised learning is a combination of the supervised and unsuper-
vised learning, this paradigm is not covered in the following sections.

2.2.1 Supervised learning
Supervised learning is used when we want to classify data into a predefined class or
classes based on parameter values of the data. It is possible to train a supervised
algorithm with the use of training data. The training data contains labels so that
the algorithm will learn which class similar data will belong to. In other words, the
supervised learning algorithm is trained with the correct results and expect the clas-
sifier to predict the class of new data. For example, a training set could consist of a
list of fruits with different properties such as color, weight and shape, but also the
actual fruit name, i.e the class. In this case, the supervised algorithm can determine
if new data has similar properties as the data in the training set in order to classify
new data. Cross validation can be used in order to get the prediction accuracy of
the trained model. For example, the training set can be split into two data sets,
one containing 90% of the data, and the other containing 10% of the data. The first
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2. Background

data set can be used in order to train the supervised machine learning model, while
the other data, i.e. validation set, can be used in order to observe the prediction
accuracy of the trained model. Since the labels of the validation set are known, it
is possible to calculate the accuracy of the predictions. With cross validation this
procedure can be applied n times with a different training and validation set each
time and then the average prediction accuracy can be extracted from the n obser-
vations.

The training data contains a set of pairs (x,y) and is used to build the model that
will be used for future predictions. The value x is called the feature vector and can
be numerical or categorical. The value y is the label, which is the class of the data.
The goal with classification is to predict the y-value associated with values of x,
namely a function y = f(x).

Decision tree classifiers is a family of classification algorithms. A decision tree con-
tains a set of nodes that are arranged as a binary tree where each node contains a
condition that needs to be fulfilled in order to traverse the tree in a specific order.
The classification starts with visiting the root node and evaluating its condition. If
the expression is evaluated true, the left child of the root is visited, otherwise the
right child of the root is visited. This process is repeated until a leaf is reached,
which contains the result of the classification. Figure 2.4 presents an example of a
binary decision tree.

Figure 2.4: Binary decision tree

There exist different types of supervised learning techniques, e.g. classification and
regression. Examples of supervised learning algorithms are Support Vector Machines
(SVM), K-Nearest Neighbor (KNN) and logistic regression. Logistic regression is
a statistical regression model with binomial output which is more of a probabilis-
tic model compared to decision trees. Since the output is binomial, it is used for
classification. In logistic regression, the aim is to fit a model to the feature space
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in order to predict the output of new data points based on this model [4]. The
logistic(sigmoid) function is a S-shaped curve with the output values between 0 and
1. The sigmoid function is displayed in Equation 2.1.

p = 1
1 + e−z

(2.1)

The learning of the logistic regression model is about finding the coefficients for
the sigmoid function that minimizes the squared mean distance between the sig-
moid function and the data points in a data set. This distance can for example
be minimized using gradient descent [13] where we apply the gradient descent op-
timization algorithm to recursively minimize the error for each feature in a sample.
The gradient descent algorithm is applied until convergence to a local minimum.
The convergence time of gradient descent is determined by a learning rate α which
affects the step size when converging to a local minimum.

Streaming logistic regression with stochastic gradient descent is the Spark Stream-
ing version of logistic regression. Here, the algorithm does not converge for every
training iteration. Instead, a variable numIterations specifies how many times the
gradient descent algorithm should iterate when the model is trained.

2.2.2 Unsupervised learning
In unsupervised learning we do not know the output of a machine learning function.
In other words, our training set does not contain a label for each observation. Un-
supervised training is used when we know little about the data and want to discover
patterns in the data.

There exist different unsupervised learning techniques, e.g. Clustering, Neural net-
works and Principal Component Analysis (PCA). Clustering can be used for group-
ing data into different clusters based on the features of the data. For example, the
data set [1, 2, 3, 10, 20, 30] could be grouped into two clusters, one cluster that con-
tains data points smaller or equal to 3, and one cluster that contains data points
larger or equal to 10. Points in the same cluster will in the ideal case have a short
distance between them. A common distance measure that can be used is the n-
dimensional Euclidean space. In this distance measure, points are vectors of n real
numbers.

An example of an unsupervised learning algorithm is called K-Means clustering. The
idea of K-Means clustering is to assign each data point in a data set to the appropri-
ate cluster. Initially, k number of cluster centroids are assigned to the model. The
variable k is application specific and defined by the model creator. The position of
the clusters could either be randomly chosen or chosen by a mathematical function.
Then, each data point in the data set is assigned to the cluster with the shortest
euclidean distance to the respective data point. When all data points have been
assigned to a cluster, the positions of the cluster centroids are re-calculated using
the mean value for all data points in each cluster, until convergence [20]. Streaming
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K-Means is an online version of the K-Means algorithm. When using this in the
context of data streaming, the clusters are updated dynamically when new data ar-
rives. The difference between the Streaming K-Means algorithm and the K-Means
algorithm is that clusters centers are calculated continuously as data arrive due to
the nature of data streaming. Due to the streaming behaviour, the streaming algo-
rithm does not converge when only trained once. A new cluster is updated according
to Equation 2.2 [10].

ct+1 = ctnt + xtmt

nt +mt

(2.2)

The previous center for the cluster is defined as ct and nt is updated dynamically
and contains the number of points assigned to the cluster so far. The new cluster
center calculated from the new data stream is defined as xt while mt is the number
of points that has been assigned to the cluster in the current data stream.

2.2.3 Anomaly detection

Anomaly detection in the context of data streams is the problem of finding de-
viating patterns in a data stream, i.e. patterns that does not conform with the
expected behaviour [6]. Today, anomaly detection is widely used in many areas
such as network intrusion detection systems and safety critical systems. Anoma-
lies in data streams can have a different impact on different application areas. In
the area of cyber-security, an anomaly can translate to a non authorized attempt
to access confidential data. In safety critical systems in the automotive industry,
an anomaly could indicate that an underlying electronic vehicle component is faulty.

Machine learning can be used in order to detect anomalies. Machine learning
paradigms such as supervised learning, unsupervised learning and semi-supervised
learning can be used in order to perform anomaly detection.

For example, a supervised classification algorithm can be used in order to train a
machine learning model that finds anomalous behaviours. In this case, a training set
that contains both anomalous and normal data is used as input to the algorithm.
Unsupervised machine learning can also be used in order to find anomalies. For
example, clustering can be used for grouping points that differ from the majority into
small clusters. An assumption in this scenario is that small clusters are representing
anomalous data, since they differ from the majority. Figure 2.5 presents different
clusters in a 2-dimensional data set. Assuming that anomalous behavior is not
observed as frequent as normal behaviour, groups G1 and G2 contains points with
normal behaviour.
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Figure 2.5: Anomalies in a 2-dimensional data set

2.3 Volvo Trucks

This Section describe different maintenance strategies that are relevant for the area
of predictive maintenance. It also provides background information for the vehicle
components used in this work.

2.3.1 Maintenance strategies
In the automotive industry, maintenance planning can be seen as a set of strategies
that aims to increase the uptime of vehicles. Uptime is defined as the time period
that the vehicle is fully operational, i.e. the vehicle is healthy. In contrast to uptime
there is downtime which is a result of different unexpected events such as if a vehicle
suddenly stops due to internal component failures or due to a flat tire. These kind
of events are referred to as unplanned stops and for transport vehicles, unplanned
stops are critical and will in most cases lead to late deliveries and possibly damaged
goods [17].

Today, Volvo Truck vehicles are scheduled to visit workshops based on maintenance
plans designed by Original Equipment Manufacturers. These plans are often de-
signed according to basic vehicle observations as for example a vehicles mileage [25].
As data become more and more available and the connectivity in vehicles get better,
more advanced techniques can be applied when it comes to maintenance planning.
For example, data mining on big data was not a suitable maintenance prediction
strategy only a few years ago. In [25], the authors state that due to limited con-
nectivity in the vehicles, the collected data would vary too much from vehicle to
vehicle, making it difficult to extract appropriate data. The accessibility of data is
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therefore directly related to the quality of maintenance prevention.

There are multiple strategies for the area of maintenance planning. Among these,
we can find corrective, preventive and predictive maintenance. Corrective and pre-
ventive maintenance are widely seen in many applications today and are considered
with human actions, i.e repairs or replacements. The difference between the two
methods are that in corrective maintenance, a repair or replacement is applied after
a fault has occurred. The latter method can be viewed as a countermeasure to an
unplanned stop. In preventive maintenance, a component is for example replaced
when a vehicle visits a workshop at a scheduled time, before the vehicle has signaled
for any faults, i.e a planned stop. Predictive maintenance is similar to preventive
maintenance in the sense that both of principles aim to prevent unplanned stops. On
the other hand, predictive maintenance does not include any unnecessary replace-
ments of components and therefore also prevents unnecessary planned stops. This
makes predictive maintenance the most profitable maintenance planning method in
terms of cost, assuming that the predictions are reliable.

2.3.2 Instrument cluster

An instrument cluster is an electronic panel located inside the vehicle. The Human
Machine Interface (HMI) is located in the instrument cluster and displays vehicle
information such as for example current speed, mileage and notifications. The in-
strument cluster that is programmed and used in this work runs a Linux operating
system. Notifications to the driver can be triggered programmatically and can con-
tain messages to the driver. This is further described in section 3.1

2.3.3 APX framework

APX [12] is a client-server architecture software for sending AUTOSAR [7] signal
data to non-AUTOSAR applications. Communication between APX clients and
APX Server occurs via sockets. Figure 2.6 illustrates the client-server architecture
in APX, where the sockets are represented by squares.
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Figure 2.6: Block diagram for the APX framework.

The APX API enables APX clients to provide and subscribe to signals. For example,
client A can subscribe to signal X and provide signal Y and client B can subscribe
to signal Y and provide signal Z. If client A sends data from signal Y on the socket
between itself and the APX Server, client B will receive this data from the socket
between itself and APX Server. The VS client uses APX Client in order to set up
the socket between itself and the APX Server.

The server part of VS is responsible for receiving data from RSS and to communicate
with the HMI-interface which is a part of the instrument cluster. The implementa-
tion details of VS is described in Section 3.1.

2.4 Web components
Apache Tomcat is an open source web server and Java Servlet container that can
be used for deploying Java web applications based on servlets. A Java servlet is a
program that runs on a Servlet container. The servlet acts as a middle layer and
handles the requests between HTTP clients and the applications on the server side.
The Tomcat element Connector is responsible for the communication with the client,
e.g. a HTTP Connector is responsible for handling HTTP traffic. Furthermore, the
element Context refers to a web application and is based on a web application archive
(WAR). A web application is deployed on Tomcat by simply placing the generated
WAR file that contains the web application in the webapps directory in Tomcat.

The Grails web framework is an open source Groovy-based web framework for the
Java platform. Groovy is a programming language for the Java platform developed
by the Apache foundation. Grails is built for the Java Virtual Machine (JVM) and
Grails web applications can be deployed on Tomcat. Java libraries can be imported
which enables building extensive web applications.

1. Controller
Grails controllers handles the HTTP requests.
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2. Service
Grails services handles business logic and can be called directly from a con-
troller.

3. Urlmappings.groovy
Maps URL’s to controller functions.

4. Build.gradle
External dependencies, such as Java libraries, are defined in this file.

5. Bootstrap.groovy
This file is launched upon application startup and can be used for starting
services.

Grails applications can be packaged to a WAR file using command line scripts
proviced by Grails, i.e. grails war, which will generate a WAR file that can be
deployed on Tomcat.

2.5 Concept

In this section we will present the data processing concept that this work is based
on. The main idea in the concept is to process on-board vehicle data efficiently on a
remote machine using stream processing. In order to enable processing of on-board
data on a remote machine, two software components are required, namely Vehicle
Software (VS) and Remote Server Software (RSS). VS runs inside a vehicle’s instru-
ment cluster while RSS runs on a machine in the cloud. The purpose with using VS
is to collect vehicle data and transmit the data to the remote machine while that
is further processed by RSS. VS is also responsible for vehicle signal collection and
displaying pop-up messages in the instrument cluster display.

The concept comes with two different architectures for the data flow; full architecture
and bypassed architecture that are provided in Figure 2.7 and Figure 2.8 respectively.
In the full architecture, VS interacts with RSS by sending HTTP POST messages
to the RSS web server. The web server then produces the collected vehicle data to
a data pipeline. In the bypassed architecture, VS produces collected data directly
to the data pipeline in RSS in order to avoid the latency from the web server. The
main difference between the two architectures is therefore how data is transferred
to the data pipeline.

In both of the architectures, a stream processing engine consumes from the same
data pipeline that the web server produced to in the full data architecture and that
VS produced to in the bypassed data architecture. Moreover, when the stream pro-
cessing engine has calculated a result, the result is produced to another topic of the
data pipeline. The web server consumes from the pipeline and sends the results
back to each vehicle if required.
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Figure 2.7: High level full architecture of the proposed concept.

Figure 2.8: High level bypassed architecture of proposed concept.

2.6 Related Work

2.6.1 Maintenance planning
The past decade, the department of Advanced Technology & Research (ATR) at
Volvo Group Trucks Technology has proposed different machine learning methods
aimed at preventing unplanned stops. Prytz et. al has proposed a predictive main-
tenance method based on supervised classification algorithms, namely KNN, C5.0
and Random Forest [17]. This method is designed to be used as a complement
to scheduled workshop visits and aims to predict air compressor and turbocharger
failures based on historical data. The classification is performed before a workshop
visit while in our implementation, we detect anomalies on-the-fly in a data streaming
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fashion using machine learning techniques. The results showed that the proposed
predictive maintenance method reduced the maintenance cost, but the classification
quality was not great. The authors argue for that the classification quality is highly
related to the amount of data that is available. In our work, we will evaluate how
the classification quality relates to the amount of training samples and available data.

Another predictive maintenance approach is Consensus Self-Organising Models (COSMO),
which is an unsupervised method for performing on-board anomaly detection [8].
COSMO transmits compressed on-board data to a remote machine in order to find
deviations among different vehicles. It simply points out a vehicle that deviates from
the majority and classifies that one as faulty, i.e finding consensus among vehicle sig-
nals. Faulty vehicles are also matched against a database containing vehicle service
records in order to increase the prediction accuracy. In this predictive maintenance
method, the authors aim to transmit the relationship between signals to the remote
machine rather than transmitting the signal value itself. This means that it is up
to the on-board software to find the relationships between the signals and decide
which signals are interesting. Thus, the feature selection will filter out only signals
that are related to each other and consider the other ones as not interesting. The
COSMO method were able to predict fifty percent of air compressor faults in a case
study with the population of 19 vehicles.

The above mentioned predictive maintenance methods implements a fixed approach
or model in order to detect anomalies, while the goal in our work is to provide
a concept which enables implementation of different models using a generic and
modular approach. Relating to our contribution, our contribution is a concept of
remote processing of on-board vehicle data that enables researchers and engineers
to implement models that can be used for analyzing a vehicles health in an efficient
manner on a remote machine. In Section 3.3.2, we demonstrate the use of both
supervised and unsupervised machine learning techniques.

2.6.2 Anomaly detection
In the past decade, anomaly detection in data streams has engaged many researchers
in academia. The motivation for using stream processing is the big amounts of data
that are generated by today’s digitised systems and applications. There exist differ-
ent approaches for performing anomaly detection on data streams. Ahmad et al. [1]
states that detecting anomalies in data streams using machine learning techniques is
a difficult task since the detector needs to process data in real time in order to pre-
dict and simultaneously learn from the data streams. In our work, this is achieved
by Spark Streaming and MLlib, where the learning is performed online.

Rettig et. al [18] proposed an online anomaly detection pipeline. Their approach
is to combine two metrics in order to dynamically detect anomalies in large-scale
telecommunication networks. The two metrics are relative entropy and Pearsons
correlation. State-of-the art streaming components were used in their work. Apache
Kafka is used as a data pipeline while Apache Spark Streaming is used as a micro-
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batching framework. Kafka and Spark Streaming are used in order to meet the
requirements generality and scalability and these components are also used in the
implementation of the proposed concept in this work. Compared to our work, Spark
Streaming runs on top of YARN cluster manager.

Soni et al. [22] performs anomaly detection on telepresence robots using supervised
machine learning techniques, namely KNN, SVM and Random Forest. Sensor data
and log files are analyzed in the cloud in order to lower the computational load on the
robots. The authors mention that it is a tedious process to identify all component
failure types, therefore cloud based data analysis would be a viable option. Moreover,
for future work they mention that as the amount of data that needs to be analyzed
increases, a distributed machine learning platform would be needed.
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3
Design and Implementation

In this chapter we will present an implementation of the proposed concept in order
to provide a practical demonstration of what is possible by implementing this con-
cept. Also, the implementation allows us to perform evaluations in order to identify
potential bottle necks in the concept architecture.

3.1 Vehicle Software
VS is a client-server architecture software and is built using the programming lan-
guage Python. The reason for using Python is because the instrument cluster widely
supports Python. In VS we have two components; VS-Server and VS-Client, where
VS-Server is a web server that listens for incoming requests. Once VS-Server receives
data, it creates a VS-Client that is responsible for either:

1. Collecting real-time signal data and transmit the data to the RSS.
2. Displaying pop-ups in the instrument cluster display.

The signal collection is performed using APX, which is described in Section 2.3.3.
The reason for implementing VS with client-server architecture is because it is the
paradigm used in APX and also that we both want to send data from vehicles as
well as receiving data. The block diagram of VS is illustrated in Figure 3.1.

Figure 3.1: Block diagram for the Vehicle Software.

In VS server, we implemented two application entry points, i.e endpoints, that is
used to trigger different functions in the software. An endpoint in this context is
an URL that can be accessed by HTTP messages from RSS. One of the endpoints
is used for creating a VS client that collects signal values and the other endpoint
is used for sending notifications to the vehicle. The following two endpoints are
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implemented in VS:

1. /client, that expects data that contains the attribute signals_require, which
value is an array of signals. Each signal has four properties as provided in
Table 3.1. An example of data that is sent to the /client endpoint is available
in Appendix A.1.

2. /popup, that expects data that contains the attribute signals_provide. This
attribute contains the same data properties as for the client endpoint. One
endpoint triggers the functionality of providing signals, while the other end-
point enables the functionality of requiring or listening to signals. The HTTP
messages that triggers these endpoints contain JSON data. An example of
data that is sent to the /popup endpoint is available in Appendix A.1.

Table 3.1: Data properties for signals when creating clients in Vehicle Software

Attribute Type
name String
apx_signature String
value Integer
num_samples Integer
sample_rate_ms Integer

In order to prevent blocking from the VS server main thread, each VS client runs
in a separate thread. A VS client thread will be terminated as soon as it has sent
the same number of signal samples as specified in the attribute num_samples. We
do not want to keep states for each VS client in RSS and therefore each sample
will be stored locally in a list of samples for each VS client until it has received
num_samples samples. Before client termination, the list of samples is sent either
as JSON to the RSS web server using HTTP POST (full architecture) or directly
to the Spark Streaming application using Kafka (bypassed architecture). JSON was
used because it is convenient to work with in the web application.

We created two different classes in VS called PopupManager and VSClient. These
classes are provided in Appendix A.4 and Appendix A.5. PopupManager creates
an APX client, connects to APX server and sends data on the socket between the
APX client and APX server. Finally it closes the connection to APX server and
terminates the current thread. The VSClient also creates an APX client and then
connects to APX server. The difference between the two classes is that VSClient
implements a data listener provided by APX and for each received signal it stores
the value and timestamp in memory. By sending all samples from VS to RSS in the
same request we also reduce network communication overhead.
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3.2 Remote Server Software

RSS is responsible for receiving data streams from the vehicles and process these as
well as sending data back to vehicles when necessary. It is composed by the following
components:

1. Apache Tomcat and Grails Web framework [23]
Tomcat is used as web server and the Grails web application is deployed on
Tomcat.

2. Apache Spark Streaming [21]
Spark Streaming is used as stream processing engine.

3. Apache Kafka [3]
Kafka is used as a data pipeline for message passing.

The web components in RSS were chosen over others due to previous experience
with these components. As illustrated in Figure 2.7, the web application in RSS is
responsible for receiving tuples and sending them to the data pipeline, i.e. to Kafka.
The stream processing engine Spark Streaming consumes from Kafka and processes
the data and performs machine learning techniques on the stream using MLlib. The
result is sent back to the data pipeline and is read by the web application in order to
send data back to the vehicle that initially generated the data stream. An example
of data that is sent to RSS from a VS-Client is available in Appendix A.2.

3.3 Experiment

We implemented an experiment that consisted of two different parts; system per-
formance for simulated data (part I) and system performance for production data
(part II). In part I we studied how the different components in RSS contributes to
the stream processing throughput and the overall latency. The goal with part I was
to measure how the stream processing throughput depends on different streaming
parameters. For this purpose data was simulated in VS using a Python script A.6
which made it easier to tweak the parameters such as tuple dimension and tuple
size. Table 3.2 show the different streaming parameters that we included in the
evaluation. The evaluation was performed by selecting different values for the in-
cluded parameters to observe the processing throughput. The remote machine that
RSS was deployed on is a laptop running the operating system Linux Ubuntu 16.04
on a dual core (2 physical/4 logical) Intel i5-6200U CPU at a speed of 2,3 GHz per
core with 8 GB of RAM. The vehicle software was deployed on the same laptop,
simulating real hardware.
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Table 3.2: Parameters that affects the stream processing throughput

Parameter
Stream input rate
Number of tuples
Tuple dimensionality
Number of processing cores
Number of Kafka partitions
Batch interval

The goal with part II was to show that with our implementation of the proposed
concept, supervised and unsupervised machine learning techniques can be used in
order to perform anomaly detection on vehicle data. For this, we used a data set
provided by Volvo Trucks in order to show a valuable use case for the concept.
The data set contains vehicle data and a label that indicates if a vehicle has an air
compressor fault. Examples of features in this data set are pumped air volume since
last compressor change, cruising time mean and fuel consumed in Drive.

3.3.1 System performance for simulated data
Here we created different evaluations based on the parameters presented in Table
3.2. The different data sets were simulated with different combinations of number
of samples and dimensions. The different number of sample sizes was 100, 1.000,
10.000, 100.000 and 1.000.000, and for each sample size we generated a data set
with one of the following data dimensions: 2, 10, 50, 100, 500. Table 3.3 shows the
different data sets used for the different evaluations. Note that each sample size for
the same dimension is evaluated separately, meaning that we evaluated 25 different
data sets. We also performed an evaluation that measured how the throughput
relates to the batch interval for batch interval values between 1 and 10. The Spark
Streaming application code is available in A.8.

Table 3.3: Data sets used for System performance for simulated data.

Sample size Dimensions
[100, ..., 1.000.000] 2
[100, ..., 1.000.000] 5
[100, ..., 1.000.000] 10
[100, ..., 1.000.000] 100
[100, ..., 1.000.000] 500

The evaluations was performed using two different Kafka topics, with two different
configurations. One configuration where the topics were created with the same
number of partitions as the number of available cores on the remote machine and
one configuration with only one partition per topic. The reason for this was to
evaluate how the Kafka topic configurations affect the stream processing throughput.
Table 3.4 shows the different Kafka topics used for part I of the experiment. The
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different configurations were tested independently, meaning that we first used the
topic training_1, collected the results and then performed the same routine with
training_4.

Table 3.4: Kafka topics and partition configuration used for part I of the experi-
ment.

Topic Partitions
training_1 1
training_4 4

We initialized these evaluations by deploying the web application on Tomcat. The
Spark application was deployed in standalone mode. Moreover, we created two dif-
ferent Kafka topics as specified in Table 3.4. This procedure was performed both
when using one and four Kafka topic partition(s). For simplicity, the two different
topics are referred to as training. Secondly, we created two VS clients; one that
provided the data sets from Table 3.3 one that required the data. The providing VS
client was only created in order to be able to simulate data. The code for the VS
client creation is provided in Appendix A.7 and the VS code for generating simulated
data is provided in Appendix A.6. Once the VS client that required data receives
data, it sends the data to the RSS web server over HTTP. The RSS web server then
produces the data to the data pipeline which the Spark Streaming application was
configured to consume from.

For all of the evaluations, the Spark Streaming application was programmed to loop
through each incoming tuple and count the occurrence of each value in the tuple.
The code for the Spark Streaming application is provided in Appendix A.8. Finally,
the processing throughput for the full architecture was observed in Spark UI. The
results are presented in section 4.2.1.

Recalling the system architecture from Figure 2.7 we see that data is sent from
VS to the RSS web server and thereafter produced to the data pipeline. Here, we
studied how the overall streaming throughput was affected by bypassing the RSS
web server. This alternative architecture means that VS produces data directly to
the data pipeline on RSS. Figure 3.2 and 3.3 shows how data flows when using the
full architecture and the bypassed architecture respectively.

Figure 3.2: Full architecture
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Figure 3.3: Bypassed architecture

3.3.2 System performance for production data
This evaluation was performed by training two different machine learning algorithms;
one supervised learning algorithm and one unsupervised. As mentioned in Section
3.3, the goal here was to show a valuable use case for the proposed concept. We
trained the two machine learning models based on an existing data set from a Volvo
database with the aim to train a model with the characteristics of an air compressor
fault. We used the algorithm Streaming logistic regression for the supervised learn-
ing and streaming K-Means clustering for the unsupervised learning. The Spark
Streaming application code for the Streaming K-Means implementation is available
in A.9 and the code for the streaming logistic regression is available in A.10.

In order to have vehicles with similar conditions in the training data set we extracted
vehicles that operates in the same country and with the same chassis type and ended
up with a data set of 54 features and 2271 samples. Examples of features in this
data set are pumped air volume since last compressor change, cruising time mean
and fuel consumed in Drive. Finally, we removed samples that had missing values
for any of the features and ended up with 800 samples; 400 samples with an air
compressor fault and 400 samples without an air compressor fault. An important
point here regarding the validation data set is that we were not able to receive all
features from this data set in VS using APX since not all features are available in
APX. Therefore, we created two VS clients; one that provides simulated signals for
10% of the data set and one that subscribes to these signals. Therefore, we initial-
ized two VS clients; VS-C1 and VS-C2 by sending a HTTP POST message from
RSS to VS server for each client.

We initialized part II of the experiment in the same way as for part I, i.e by deploying
the RSS web application on Tomcat and deploying Spark Streaming in standalone
mode. We split the data set into a training set and a validation set. The training
set represents 90% of the data set and the validation set represents 10%.

For the clustering model, two clusters were created when initializing an instance of
the class StreamingKMeans with the argument k equal to two using the MLlib API.
One cluster represents vehicles with air compressor faults and one cluster represents
healthy vehicles. Here we also specify the dimensionality of the data set and the
source of the training and validation data. The training set was specified to come
from a text file while the validation set was sent using Kafka. Upon a consumed
message from the specified Kafka topic, the model runs the method predictOnValues
on the stateful K-Means clustering model object that returns which cluster the tuple
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was assigned to along with the label of the cluster.

For the logistic regression model we used the MLlib API’s StreamingLogisticRegres-
sionWithSGD class in order to create a model and train it with the training set. The
data sources here was the same as for the clustering model. The difference was that
the training set in this model was labeled while the validation set was not. Upon
a consumed message from the specified Kafka topic, the model runs the method
predictOnValues on the stateful logistic regression model object that returns the
prediction along with the label for the incoming data. This output was later used
in order to find the accuracy for the classification algorithm.

When RSS receives samples from VS-C2 it produces the data to a Kafka topic named
validation, which the stream processing engine is configured to consume from.

If the sample from VS-C2 is predicted as faulty, i.e. an air compressor fault, the
stream processing engine produces this data to a Kafka topic called detection which
the RSS Grails service is configured to consume from. Upon a consumed message
from detection, Grails sends a HTTP POST message to VS server in the vehicle on
the endpoint popup. This will launch a VS client using the class PopupManager
which will send data on the socket provided by the "name" attribute and a pop-up
will be shown in the driver’s display. Since this is a signal that we provide and not
subscribe to, we only need to send one sample in order to trigger a pop-up.

The machine learning implementation was validated by substituting the Volvo pro-
vided data set against the Statlog (German Credit Data) data set [5]. First we
used the Matlab classification learner to observe the prediction accuracy for dif-
ferent machine learning algorithms and then we used the same data set with our
implementation in order to validate the correctness.
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4
Results

This chapter presents the results for the different evaluations presented in Section
3.3. Section 4.1 presents the resulting implementation and the capabilities with
the proposed concept. Moreover, section 4.2 presents the results of the experiment
where we include metrics for the stream processing. The evaluations within the
experiment were performed ten times and the metrics were averaged.

4.1 Concept
The proposed concept of cloud-based stream processing of vehicle data was suc-
cessfully implemented in a prototype software. Real-time signal collection was suc-
cessfully performed by utilizing the APX framework. By utilizing the data pipeline
Apache Kafka we could either pass vehicle data directly from vehicles to the data
pipeline, i.e the bypassed architecture or through the RSS web server and then to the
Apache Spark Streaming application using the full architecture. The pros and cons
with the two different architectures are discussed in Chapter 5. Our implementation
of the proposed concept is capable of doing the following:

1. Collect vehicle signal data and send it to RSS
2. Process vehicle data in a scalable and fault-tolerant way using Spark Streaming
3. Perform machine learning techniques on vehicle data
4. Trigger HMI-popups from RSS based on the machine learning results

The following Sections presents the results from the different evaluations for our im-
plementation of the proposed concept. Other application areas are further discussed
in Chapter 5.

4.2 Experiment
The evaluation of the processing throughput was as mentioned in 3.3.1, performed
by simulating different streams of data from VS which represents a fleet of vehicles
that continuously transmits data to RSS. In these results we observe how the stream
processing throughput depends on the stream input rate, tuple dimensionality, num-
ber of processing cores, number of Kafka partitions and batch interval. In all of the
observations we consider processing time as the total time it takes to process a fixed
amount of tuples. Moreover, the streaming operation in all of the observations was
a function that counts the occurrence for each value in a tuple. The time complexity
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for the used streaming operation is linear.

In part II of the experiment, we show a use case of how our implementation of
the proposed concept could be used for future predictive maintenance strategies by
using machine learning.

4.2.1 System performance for simulated data

Figure 4.1 shows the throughput for the Spark Streaming application for the by-
passed and the full architecture. The number of tuples represents the whole simu-
lated stream.

Figure 4.1: Processing time evaluation for the two different architectures.

Figure 4.2 shows the throughput for the Spark Streaming application with respect to
tuple dimension when performing a function that counts the occurrence of each value
in a tuple on the simulated data stream that was sent from VS. The throughput
here was measured using 4 partitions for the Kafka topic, 4 cores for processing
data and a batch interval of 5 seconds. The increase in processing time is linear
with the number of tuples and dimensions since the streaming operation used in
this observation is a linear function.
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Figure 4.2: Processing time for the different data sets with respect to tuple
dimension.

In Figure 4.3, we performed a similar evaluation but instead observed how the
throughput is affected by changing the number of Kafka partitions and processing
cores. The tuple dimensionality in this evaluation was 10. As mentioned in Section
2.1.3, it is important to consider the order of data and determinism in the output
since the order of the output can be critical in some application areas. By using
multiple Kafka partitions we increase the throughput of the processing by paral-
lelizing the consumption of messages. However the order of the messages is not
preserved and does therefore not guarantee consistency when using multiple Kafka
partitions. This is an issue related to the interleaving of the incoming input tuples
from different sources.

Figure 4.3: Processing time for the different data sets with respect to the number
of Kafka partitions and the number of used cores.

A notable point for this part of the experiment is that the total throughput is a
function that depends on the processing throughput and also the Kafka throughput,
where the Kafka throughput is the rate of how many tuples the stream processing
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engine can consume from a Kafka topic. If we convert the total throughput to
latency, we get the following latency for RSS:

L(RSS) = L(Kafka) + L(Processing) (4.1)

where

L(Processing) = L(Computing) + batch_interval (4.2)

Here, L(Computing) is a function that depends on parameters in Table 3.2, where
the parameter batch_interval is a constant value.

In Figure 4.4 we show the Kafka latency for different tuple input sizes. Here, we
observe that the throughput is constant at 7500 tuples/s, making the Kafka latency
linear with the amount of tuples. Recalling Figure 4.3 we can see that for any of the
configurations regarding number of used cores and Kafka partitions the processing
throughput is over 13.000 tuples/s.

Figure 4.4: Kafka consuming throughput for different data sets.

In Figure 4.5 we can see how the processing time decreases with higher values for
the batch interval. We can also see that this only applies for large data sets when
using this specific hardware and scaling architecture. In this evaluation, we used a
tuple dimension of 5.
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Figure 4.5: Processing time for two different data sets with respect to the batch
interval.

4.2.2 System performance for production data

We performed 10-fold cross validation on the data set provided by Volvo Trucks in
order to validate the prediction accuracy for the two different online machine learn-
ing algorithms that are available in Spark MLlib. The goal here was to show that
the machine learning models are getting higher prediction accuracy as we train the
algorithms with more and more data. The validation set contained 80 samples of
equally distributed classes, i.e 40 with label 0 and 40 with label 1. As mentioned in
Section 3.3.2 the training set covered 90% of the complete data set.

The two different algorithms used in this experiment were streaming logistic re-
gression and streaming K-Means Clustering. For the logistic regression model we
used the parameters specified in Table 4.1 and here we elaborated with different
parameters in order to find the best configuration among those that were tested.
For the K-Means clustering model, we set the k value to 2 due to the characteristics
of the data set. For both of the algorithms we submitted the complete training set,
validated the model with the validation set and observed the prediction accuracy
for different model parameters.
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Table 4.1: Prediction accuracy in relation to number of training samples

Number of iterations Gradiant descent step size Prediction accuracy
1 0.1 50%
10 0.1 50%
100 0.1 50%
1000 0.1 50%
1000 0.01 53%
1000 0.001 50%
10000 0.01 50%

We wanted to observe if the trained model was evolving as it received more training
samples and therefore the training set was divided into 5 different subsets according
to Table 4.2 where we iteratively trained and validated the model for each subset.

Table 4.2: Subsets of the Volvo training set

Number of samples % of training set
20 3%
40 5.5%
80 11%
160 22%
620 58%

For the Volvo data set the results matched the desired behaviour with both of the
two different algorithms, i.e the prediction accuracy increased as the model was
iteratively trained. The prediction accuracy with respect to number of training
samples for the streaming K-Means Clustering model is presented in Table 4.3.

Table 4.3: Prediction accuracy for the logistic regression model for the Volvo data
set.

Training samples Average prediction accuracy
20 50%
40 50%
80 50%
160 50%
620 57.5%

The prediction accuracy with respect to number of training samples for the stream-
ing K-Means Clustering model is presented in Table 4.4.
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Table 4.4: Prediction accuracy for the streaming K-Means Clustering model for
the Volvo data set.

Training samples Average prediction accuracy
20 52.5%
40 52.5%
80 55%
160 55%
620 57.5%

Figure 4.6 shows a comparison between the two different algorithms.

Figure 4.6: Prediction accuracy in relation to number of training samples for the
Volvo data set.

Due to the low prediction accuracy for the Volvo data, we performed the same
evaluation on the Statlog (German Credit Data) data set [5] in order to find out
whether the problem was with the implementation or the initial data set. This data
set contains 24 features and 1000 samples and we performed the same test as for the
Volvo data set, i.e 10-fold cross validation with increasing amount of training data
for each training iteration and 10% validation data. This data set was only tested
with the logistic regression algorithm with the same model parameters as for the
Volvo data set. The results when using the Statlog data set are presented in Table
4.5 and visualized in Figure 4.7.

Table 4.5: Prediction accuracy in relation to number of training samples for the
Statlog data set.

Training samples Average prediction accuracy
10 59%
60 74%
260 76.66%
460 77.33%
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Figure 4.7: Prediction accuracy in relation to number of training samples for the
Statlog data set.
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5
Discussion and Conclusion

The main goal in this thesis was to propose a new concept for cloud-based processing
of vehicle data on a remote machine. The motivation is that an implementation of
this concept does not require any vehicle software re-configuration once the software
is installed. The idea is that each implementation is unique in its behaviour while
the concept components are not modified. We evaluated an implementation of the
proposed concept-architecture would perform with respect to throughput and la-
tency. The implementation was made using state-of-the-art streaming components,
namely Apache Spark Streaming and Apache Kafka, and our implementation shows
that it is possible to collect vehicle data that is further processed on a remote ma-
chine using stream processing. We have also showed that it is possible to implement
the proposed concept using machine learning to perform anomaly detection on data
streams. As mentioned in the related work, Section 2.6, the prediction accuracy of
the machine learning techniques is highly related to the amount of data that is avail-
able and also the quality of the data. The more data we can use for learning the
characteristics of unplanned stops, the better predictions. The proposed concept
enables two-way communication between a vehicle and a remote machine, which
opens up many possibilities and new ways of working with predictive maintenance.
The driver could for example engage in the process by following instructions sent
from RSS, like pumping up the air break pressure to a certain level. The signals
that represents the air break pressure signals would then be sampled and sent to RSS.

We presented a use case where the goal was to predict air compressor faults with
both unsupervised and supervised machine learning techniques using the same data
set. We also saw how two different data sets gave completely different results as the
models were more and more trained. Not only are the model parameters important
to get as high prediction accuracy as possible, but also the data itself. The resulting
prediction accuracy for the Volvo production data set was in the best case slightly
above 50%, which is not considered as reasonable for vehicles in production. A pos-
sible reason for this result is that the Volvo data set was imbalanced, i.e. the rows
in the training data with the label "faulty" were not as many as the rows labeled
"non-faulty". This is a natural behaviour for vehicles since they are more likely to
be in a healty state than in a faulty state. In a complex mechatronic system such
as a transport vehicle, identifying and mapping vehicle parameter values with an
actual labeled fault is not a trivial task. There are many parameters that can be
associated with an air compressor fault and in order to identify these, humans with
expert knowledge are required. However, it is hard for humans to keep up with the
digitised systems due to increased complexity and big data amounts in the vehi-
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cles. With our concept, these experts would instead implement their models, let the
concept components do the processing and learning and then the output could be
observed.

Recalling Equation 4.1 and Equation 4.2, we know that the total RSS latency is
strictly related to the processing throughput of the stream processing engine and
since our implementation operates with micro batching, each Spark Streaming ap-
plication needs to be initialized with a batch interval which adds a constant value
to the processing latency. Therefore the ideal case would be if a test were processed
in only one micro batch so that the batch interval latency only gets added to the
total latency once. However, if we increase the batch interval we also increase the
total latency.

For one batch, Spark Streaming can only consume 7500 ∗ batch_interval(s) for the
hardware setup used in this work. This means that if the batch interval is for ex-
ample 1 second, the stream processing engine would need to two micro-batches for
13.000 tuples. For every new micro batch, overhead is added in terms of scheduling
and memory mapping and therefore Kafka is the bottleneck for total latency.

For our implementation, we evaluated the processing throughput for two different
architectures; the bypassed and the full architecture. The results showed clear ad-
vantages in terms of throughput and latency with the bypassed architecture, i.e by
sending data directly from VS to the data pipeline. The main reason for this is the
memory overhead that is created for each connection between VS and the RSS web
server. The bypassed architecture did not meet our goals with low latency and high
throughput processing. This issue is of course strictly related to the hardware of the
remote machine but the bypassed architecture would in any case outperform the full
architecture. However, we believe that the remote web server is a valuable concept
component with other purposes than to pass data. For example, the remote web
server application can be used as a supervisor between VS and the Spark Streaming
application.

The streaming components Spark Streaming and Kafka both provides fault tolerant
mechanisms for handling loss of data. Our experiment did not cover the fault tol-
erance aspect, but we observed that given the concept components, fault tolerance
and data loss prevention can be achieved, if the application area requires it.

We observed that guaranteeing consistency when parallelizing the data processing
using Kafka was challenging when we used four partitions and four cores. This
needs to be further investigated in future work since it is vital to parallelize the
computations when working with distributed systems.
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5.1 Future work

In production, an implementation of the proposed concept would need an admin-
istrative web interface that can monitor the different components. Moreover, we
would also need a database that keeps track of which Kafka topics are used for a
certain Spark Streaming application. This database would be used mostly by the
RSS web application in order to look up which topics and Spark Streaming applica-
tion that belongs to a certain machine learning model. Assuming that we have an
administrative interface where all the vehicles for a specific population are displayed,
we would also want to retrieve data from this database regarding available signals
and already created tests in order to re-use them.

Supervised and unsupervised machine learning techniques can be used to find poten-
tial anomalies in vehicle data. When the vehicle data is suspected to be anomalous,
different in-vehicle diagnostics tests can be initialized from RSS since the concept
enables two-way communication. We think that these detailed and in-depth diag-
nostics tests that are executed in the vehicle will have a better accuracy than what
would be possible using classification.

The prediction accuracy was not satisfying for the area of predictive maintenance.
Future work in this area would require further research in balancing the data set
and how features should be chosen to be able to predict anomalies in vehicle data.
Moreover, future research would need to study how the machine learning algorithms
respond to for example up-sampling the data set in order to balance the data set or
maybe using algorithms that are not that sensitive to unbalanced data sets.

We tested the implementation of VS on a simulated hardware and the software was
never integrated with a testing vehicle environment or a real vehicle. It would be
interesting to further research in the vehicles capabilities of sending data and how
to compress that data efficiently in order to reduce network latency. Moreover, the
work in this thesis did not include the security aspect. Messages exchanged by VS
and RSS are not encrypted and neither the VS or RSS validates the source of in-
coming messages. Also, internal errors in the VS must not affect any other software
in a vehicle and would therefore be preferred to run in a sand-boxed environment.
This thesis also leaves room for further research in how to parallelize the stream
processing engine and how to distribute the components on a powerful cluster.

5.2 Conclusion

The proposed concept shows that it is possible to collect vehicle data that is further
processed on a remote machine using stream processing. Our results show that it
is possible to create machine learning models that continuously evolves and learns
from data streams. However, a system that detects anomalies in vehicle data would
require at least 99% prediction accuracy, which we were not able to show with
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the Volvo data set. The Volvo data set used in this work was not suitable for
real-time anomaly detection. With implementations that provides at least 99%
prediction accuracy, the proposed concept can be used to detect anomalies in vehicle
components remotely without re-configuring any software inside the vehicles.
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Appendix 1

A.1 Vehicle Software data

Example JSON data for the VS-Server /popup endpoint:

1 {
2 "signals_provide": [
3 {
4 "name": "Signal1",
5 "value": "4",
6 "num_samples": "1",
7 "sample_rate_ms": 300
8 }
9 .

10 .
11 .
12 {
13 "name": "Signal2",
14 "value": "1",
15 "num_samples": "1",
16 "sample_rate_ms": 300
17 }
18 ]
19 }

Example JSON data for the VS-Server /client endpoint:

1 {
2 "signals_require": [
3 {
4 "name": "Signal1",
5 "num_samples": "5",
6 "sample_rate_ms": 300
7 }
8 .
9 .

10 .
11 {
12 "name": "Signal2",
13 "num_samples": "5",
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14 "sample_rate_ms": 500
15 }
16 ]
17 }

A.2 Remote Server Software data
Example JSON data that is sent to RSS from a VS-Client after being sampled:

1 {
2 "data": [
3 {
4 "signal_name": "Signal1",
5 "samples": [
6 {
7 "timestamp": "2017-05-05 10:00:00",
8 "value": 32
9 },

10 {
11 "timestamp": "2017-05-05 10:00:20",
12 "value": 50
13 }
14 ]
15 },
16 {
17 "signal_name": "Signal2",
18 "samples": [
19 {
20 "timestamp": "2017-05-05 11:10:00",
21 "value": 10
22 },
23 {
24 "timestamp": "2017-05-05 11:11:00",
25 "value": 50000
26 }
27 ]
28 }
29 ],
30 "vehicle_ip": "192.0.0.1"
31 }

A.3 Vehicle Software Server endpoint functions

1 @require_http_methods(["POST"])
2 @csrf_exempt
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3 def spawn_vsclient_popup(request):
4 body_unicode = request.body.decode(’utf-8’)
5 body = json.loads(body_unicode)
6 popupmanager.PopupManager(body)
7

8 return HttpResponse("OK")
9

10 @require_http_methods(["POST"])
11 @csrf_exempt
12 def spawn_vsclient(request):
13 body_unicode = request.body.decode(’utf-8’)
14 body = json.loads(body_unicode)
15 content = body
16

17 rss_ip_port = content.get(’rss_ip’)
18 signals_provide = content.get(’apx_signals_provide’) or []
19 signals_require = content.get(’apx_signals_require’) or []
20 apx_node_name = content.get(’apx_node_name’)
21

22 apx_signals_provide = []
23 apx_signals_require = []
24

25 #These provide signals are only used for simulating signals.
26 for signal in signals_provide:
27 apx_signal = {}
28 apx_signal[’name’] = signal[’name’]
29 apx_signal[’name_signature’] = ’"’+signal[’name’]+’"’+signal[’signature’]
30 apx_signal[’sample_rate_ms’] = signal.get(’sample_rate_ms’) or 0
31 apx_signal[’num_samples’] = signal.get(’num_samples’) or 0
32 apx_signals_provide.append(apx_signal)
33

34 vsc = vsclientprovide.VSClient("Node"+str(randint(1,10000)), apx_signal)
35 t = Thread(target = vsc.run, args = ())
36 t.start()
37

38 for signal in signals_require:
39 apx_signal = {}
40 apx_signal[’name’] = signal[’name’]
41 apx_signal[’name_signature’] = ’"’+signal[’name’]+’"’+signal[’signature’]
42 apx_signal[’sample_rate_ms’] = signal.get(’sample_rate_ms’) or 0
43 apx_signal[’num_samples’] = signal.get(’num_samples’) or 0
44 apx_signals_require.append(apx_signal)
45

46 if len(signals_require) > 0:
47 vsc = vsclientreq.VSClient(apx_node_name, apx_signals_require, rss_ip_port)
48

49 return HttpResponse("OK")
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A.4 Vehicle Software PopupManager class

1

2 class PopupManager():
3

4 def __init__(self, content):
5 self.node = apx.Node(content[’node_name’])
6 node_name = content[’node_name’]
7 signal_name = content[’name’]
8 signal_signature = content[’signature’]
9 signal_default_value = "=0"

10 signal_value = content[’value’]
11

12 self.node.append(apx.RequirePort(’require’,’C’))
13 self.node.append(apx.ProvidePort(signal_name,
14 signal_signature, signal_default_value))
15

16 self.apx = apx.Client(self.node)
17 if self.apx.connectTcp(’127.0.0.1’, 5000):
18 print("Successful connect")
19 self.apx.write_port(signal_name, signal_value)
20 self.apx.stop()
21 print("Successful popup")

A.5 Vehicle Software VSClient class

1 @apx.DataListener.register
2 class VSClient(apx.DataListener):
3 def __init__(self, node_name, signals_require, rss_ip_port):
4 self.name = node_name
5 self.has_listener = True
6 self.samples = []
7 self.samples_counter = 0
8 self.node = apx.Node(node_name)
9 self.send_rate_ms = None

10 self.signals_require = signals_require
11 self.rss_ip_port = rss_ip_port
12

13 for signal_require in self.signals_require:
14 signal_require[’samples_counter’] = 0
15 self.node.append(’R’ + signal_require.get(’name_signature’))
16

17 self.apx = apx.Client(self.node)
18 self.lock = threading.Lock()
19

20 if len(signals_require) > 0 and self.has_listener:
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21 print("Adding listener")
22 self.apx.set_listener(self)
23

24 if self.apx.connectTcp(’127.0.0.1’, 5000):
25 print("Successful connect")
26

27 def is_sample_limit(self, signal_counter, signal_num_samples):
28 if signal_counter >= signal_num_samples:
29 return True
30 else:
31 return False
32

33 def all_samples_done(self):
34 for signal_require in self.signals_require:
35 if signal_require.get(’num_samples’) >
36 signal_require.get(’samples_counter’):
37 return False
38 return True
39

40

41 def add_sample(self, data, signal_name):
42 sample = {}
43 sample[’time_stamp’] = time.strftime("%Y-%m-%d %H:%M:%S")
44 sample[’value’] = data
45 sample[’name’] = signal_name
46 self.samples.append(sample)
47 print("Adding %s to samples with value: %s"%(signal_name, str(data)))
48

49 def on_data(self, port_id, port_name, data):
50 print("Recieved data from: %s with value: %s"%(port_name, str(data)))
51

52 for signal_require in self.signals_require:
53 if signal_require.get(’name’) == port_name:
54 current_signal = signal_require
55 break
56 if self.all_samples_done():
57 print("Test complete!")
58 #self.apx.stop()
59 remote_obj = {}
60 remote_obj[’data’] = self.samples
61 remote_obj[’vehicle_ip’] = socket.gethostbyname(socket.gethostname())
62 self.send_data_remote(remote_obj)
63

64 raise SystemExit
65 else:
66 current_signal_is_limit = self.is_sample_limit(
67 current_signal.get(’samples_counter’), current_signal.get(’num_samples’))
68 if current_signal_is_limit is False:
69 if current_signal.get(’timer’) is not None and
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70 current_signal[’timer’].isAlive():
71 print("Timer alive, waiting...")
72 #self.timer.join()
73 else:
74 print("Starting timer...")
75 current_signal[’samples_counter’] = current_signal.get(’samples_counter’) + 1
76 current_signal[’timer’] = Timer(int(current_signal[’sample_rate_ms’])/1000,
77 self.add_sample, (data, port_name))
78 current_signal[’timer’].start()
79

80

81 def send_data_remote(self, data):
82 r = requests.post("http://"+self.rss_ip_port+"/ProcessIncoming", json=data)
83 print(r.status_code, r.reason)

A.6 Vehicle Software Data Generation

1 def generate_and_send(self):
2 for _ in range(self.num_samples):
3 data = []
4 for i in range(dimensions):
5 data.extend([randint(1, 255)])
6 data_to_string = ’, ’.join([str(x) for x in data])
7 data_to_string_array = ’[’ + data_to_string + ’]’
8 try:
9 time.sleep(self.signal_provide.get(’sample_rate_ms’)/1000)

10 self.apx.write_port(self.signal_provide.get(’name’), data_to_string_array)

A.7 Vehicle Software Client creation

1 def __init__(self, node_name, signal_provide):
2 self.name = node_name
3 self.node = apx.Node(node_name)
4 self.send_rate_ms = None
5 self.signal_provide = signal_provide
6 self.num_samples = signal_provide[’num_samples’]
7 self.num_dimensions = signal_provide[’num_dimensions’]
8 self.apx = apx.Client(self.node)
9

10 self.apx.connectTcp(’127.0.0.1’, 5000)
11

12 if signal_provide:
13 self.node.append(’P’ + signal_provide.get(’name_signature’))
14 self.node.append(’R’ + ’"require"C’)
15 else:
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16 self.node.append(’R’ + signal_provide.get(’name_signature’))
17 self.apx.set_listener(self)

A.8 Spark Streaming Application Code - Word
occurrences

1 import kafka.serializer.StringDecoder
2 import org.apache.spark.{SparkConf}
3 import org.apache.spark.streaming.{Seconds, StreamingContext}
4 import org.apache.spark.streaming.kafka._
5 import java.util.Properties
6

7

8 object Streamer {
9

10 def Streamer(kafkaTopic: String, batchInterval: Int, nrCores: String, appName: String) {
11 val conf = new SparkConf().setAppName(appName)
12 conf.setMaster(nrCores)
13 val ssc = new StreamingContext(conf, Seconds(batchInterval))
14

15 val kafkaTopicSet = Set(kafkaTopic)
16

17 val kafkaBrokers = "localhost:9092"
18 val kafkaParams = Map[String, String]("metadata.broker.list" -> kafkaBrokers)
19

20 val kafkaProperties = new Properties()
21 kafkaProperties.put("bootstrap.servers", kafkaBrokers)
22 kafkaProperties.put("value.serializer",
23 "org.apache.kafka.common.serialization.StringSerializer")
24 kafkaProperties.put("key.serializer",
25 "org.apache.kafka.common.serialization.StringSerializer")
26

27 val kafkaMessages = KafkaUtils.createDirectStream[String, String, StringDecoder,
28 StringDecoder](
29 ssc, kafkaParams, kafkaTopicSet)
30

31 kafkaMessages.foreachRDD( rdd => {
32 rdd.collect().foreach(tuple => {
33 var occurenceMap:scala.collection.mutable.Map[String,Int] = scala.collection
34 .mutable.Map()
35

36 val featureArray = tuple._2.split(",")
37 featureArray.foreach(v => {
38

39 if (occurenceMap.get(v).isEmpty) {
40 occurenceMap += v -> 1
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41 } else {
42 occurenceMap(v) = occurenceMap(v) + 1
43 }
44 })
45 })
46 })
47

48 ssc.start()
49 ssc.awaitTermination()
50 }
51

52 def main(args: Array[String]): Unit = {
53 Streamer(args{0}, Integer.parseInt(args{1}), args{2}, args{3})
54 }
55 }

A.9 Spark Streaming Application Code - Stream-
ing K-Means

1 import kafka.serializer.StringDecoder
2 import org.apache.spark.SparkConf
3 import org.apache.spark.streaming.{Seconds, StreamingContext}
4 import org.apache.spark.streaming.kafka._
5 import java.util.Properties
6

7 import org.apache.kafka.clients.producer.{KafkaProducer, ProducerRecord}
8 import org.apache.spark.mllib.clustering.StreamingKMeans
9 import org.apache.spark.mllib.regression.LabeledPoint

10

11 object Streamer {
12

13 def Streamer(kafkaTopicTraining: String,
14 kafkaTopicTesting: String,
15 kafkaTopicVisualization: String,
16 slidingWindow: Int,
17 nrDimensions: Int,
18 nrCores: String,
19 appName: String,
20 stepSize: String,
21 k: Integer) {
22

23 val conf = new SparkConf().setAppName(appName)
24 conf.setMaster(nrCores)
25 val ssc = new StreamingContext(conf, Seconds(slidingWindow))
26 var vehicleIp = ""
27
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28 val trainingTopic = Set(kafkaTopicTraining)
29 val testingTopic = Set(kafkaTopicTesting)
30

31 val kafkaBrokers = "localhost:9092"
32 val kafkaParams = Map[String, String]("metadata.broker.list" -> kafkaBrokers)
33

34 val kafkaProperties = new Properties()
35 kafkaProperties.put("bootstrap.servers", kafkaBrokers)
36 kafkaProperties.put("value.serializer",
37 "org.apache.kafka.common.serialization.StringSerializer")
38 kafkaProperties.put("key.serializer",
39 "org.apache.kafka.common.serialization.StringSerializer")
40

41 val kafkaProducer = new KafkaProducer[String, String](kafkaProperties)
42

43 val kafkaMessagesTesting = KafkaUtils.createDirectStream[String, String,
44 StringDecoder,
45 StringDecoder](
46 ssc, kafkaParams, testingTopic)
47

48 val kafkaMessagesTraining = KafkaUtils.createDirectStream[String, String,
49 StringDecoder,
50 StringDecoder](
51 ssc, kafkaParams, trainingTopic)
52

53 val testData = kafkaMessagesTesting.map(_._2).map(x => LabeledPoint.parse(x))
54 val trainingData = kafkaMessagesTraining.map(_._2).map( x => LabeledPoint.parse(x))
55

56 kafkaMessagesTesting.foreachRDD(x => {
57 if (x.count() > 0) {
58 vehicleIp = (x.collect()(0)._2 split "-" take 2)(1)
59 }
60 })
61

62 val model = new StreamingKMeans()
63 .setK(k)
64 .setDecayFactor(1.0)
65 .setRandomCenters(nrDimensions, 0.0)
66

67 model.trainOn(trainingData.map(p => p.features))
68 val mdl = model.predictOnValues(testData.map(lp => (lp.label, lp.features)))
69

70 mdl.foreachRDD { rdd =>
71

72 if (rdd.count() > 0) {
73 val prediction = rdd.collect()(0)._1
74 if (prediction == 1.0) {
75 val record = new ProducerRecord("anomaly", "key", vehicleIp)
76 kafkaProducer.send(record)
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77 }
78 }
79 }
80

81 kafkaProducer.close()
82

83 ssc.start()
84 ssc.awaitTermination()
85 }
86

87 def main(args: Array[String]): Unit = {
88 Streamer(
89 args{0},
90 args{1},
91 args{2},
92 Integer.parseInt(args{3}),
93 Integer.parseInt(args{4}),
94 args{5},
95 args{6},
96 args{7},
97 Integer.parseInt(args{8})
98 )
99 }

100 }

A.10 Spark Streaming Application Code - Stream-
ing Logistic Regression

1 import kafka.serializer.StringDecoder
2 import org.apache.spark.SparkConf
3 import org.apache.spark.streaming.{Seconds, StreamingContext}
4 import org.apache.spark.streaming.kafka._
5 import java.util.Properties
6

7 import org.apache.kafka.clients.producer.{KafkaProducer, ProducerRecord}
8 import org.apache.spark.mllib.classification.StreamingLogisticRegressionWithSGD
9 import org.apache.spark.mllib.linalg.Vectors

10 import org.apache.spark.mllib.regression.LabeledPoint
11

12 object Streamer {
13

14 def Streamer(kafkaTopicTraining: String,
15 kafkaTopicTesting: String,
16 kafkaTopicVisualization: String,
17 slidingWindow: Int,
18 nrDimensions: Int,
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19 nrCores: String,
20 appName: String,
21 numIterations: Integer,
22 stepSize: Double) {
23

24 val conf = new SparkConf().setAppName(appName)
25 conf.setMaster(nrCores)
26 val ssc = new StreamingContext(conf, Seconds(slidingWindow))
27 var vehicleIp = ""
28 val initialWeightsVector = Vectors.zeros(nrDimensions)
29

30 val trainingTopic = Set(kafkaTopicTraining)
31 val testingTopic = Set(kafkaTopicTesting)
32

33 val kafkaBrokers = "localhost:9092"
34 val kafkaParams = Map[String, String]("metadata.broker.list" -> kafkaBrokers)
35

36 val kafkaProperties = new Properties()
37 kafkaProperties.put("bootstrap.servers", kafkaBrokers)
38 kafkaProperties.put("value.serializer",
39 "org.apache.kafka.common.serialization.StringSerializer")
40 kafkaProperties.put("key.serializer",
41 "org.apache.kafka.common.serialization.StringSerializer")
42

43 val kafkaProducer = new KafkaProducer[String, String](kafkaProperties)
44

45 val kafkaMessagesTesting = KafkaUtils.createDirectStream[String, String,
46 StringDecoder,
47 StringDecoder](
48 ssc, kafkaParams, testingTopic)
49

50 val kafkaMessagesTraining = KafkaUtils.createDirectStream[String, String,
51 StringDecoder,
52 StringDecoder](
53 ssc, kafkaParams, trainingTopic)
54

55 val testData = kafkaMessagesTesting.map(_._2).map(x => LabeledPoint.parse(x))
56 val trainingData = kafkaMessagesTraining.map(_._2).map( x => LabeledPoint.parse(x))
57

58 kafkaMessagesTesting.foreachRDD(x => {
59 if (x.count() > 0) {
60 vehicleIp = (x.collect()(0)._2 split "-" take 2)(1)
61 }
62 })
63

64 val model = new StreamingLogisticRegressionWithSGD()
65 .setInitialWeights(initialWeightsVector)
66 .setNumIterations(numIterations)
67 .setStepSize(stepSize)
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68

69 model.trainOn(trainingData)
70 val mdl = model.predictOnValues(testData.map(lp => (lp.label, lp.features)))
71

72 mdl.foreachRDD { rdd =>
73

74 if (rdd.count() > 0) {
75 val prediction = rdd.collect()(0)._1
76 if (prediction == 1.0) {
77 val record = new ProducerRecord("anomaly", "key", vehicleIp)
78 kafkaProducer.send(record)
79 }
80 }
81 }
82

83 kafkaProducer.close()
84

85 ssc.start()
86 ssc.awaitTermination()
87 }
88

89 def main(args: Array[String]): Unit = {
90 Streamer(
91 args{0},
92 args{1},
93 args{2},
94 Integer.parseInt(args{3}),
95 Integer.parseInt(args{4}),
96 args{5},
97 args{6},
98 Integer.parseInt(args{7}),
99 args{8}.toDouble

100 )
101 }
102 }
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