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Control Allocation for Vehicle Motion Control:
Maximizing Traction and Steering Capabilities Under Different Road Conditions
BJÖRN KÄLLSTRAND
Department of Signals and Systems
Chalmers University of Technology

Abstract
Safe handling of heavy vehicles is crucial in demanding work environments. Loss of
traction can occur in extreme conditions, significantly reducing a vehicle’s maneu-
verability and safety. It is common for vehicles frequently exposed to such conditions
to come equipped with systems designed to provide added traction. Traction control
has been subject to extensive study, and many different approaches exist, but most
control strategies are designed for specific driving situations, such as slip control dur-
ing acceleration or emergency braking, and are decoupled from the primary motion
control actuators until certain conditions are fulfilled and the controller activates.

Within this thesis, control allocation is investigated as a means of coordinating
motion actuators to achieve added traction. The benefit of the suggested controller
structure is that a single controller can be used across a variety of driving situations
where traction control is of importance. The proposed control system also serves as
a complete vehicle motion controller, capable of smoothly transitioning into traction
control when needed. Furthermore, the general motion requests and actuator signals
are separated. This means that the controller structure is highly modular and can
be reused with minimal effort when the vehicle configuration is altered.

The proposed control structure is tested and verified in simulation for four different
test scenarios. The results indicate that the control structure is capable of coordi-
nating the available actuators as to control wheel slip levels to within acceptable
limits across a multitude of driving situations. Additionally, the controller structure
is compared to a software-in-the-loop version of a traction controller used in pro-
duction trucks. The results indicate that the suggested control structure exhibits
similar performance to its software-in-the-loop counterpart.

Keywords: traction control, control allocation, motion control system, open differ-
entials, predictive control.
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1
Introduction

Within this thesis different approaches to traction control by coordination of actua-
tor signals are investigated for heavy vehicles. The coordination is carried out using
control allocation, an optimization based method. The focus throughout this work
is to design control strategies within the control allocation formulation and to verify
whether the control structure presents a viable approach to achieve improved trac-
tion while balancing steerability. The following sections will present the background
and motivation for studying control allocation as a means of traction control.

1.1 Background

Heavy machines, such as construction trucks, operate in demanding and often ex-
treme work environments. It is therefore natural that these types of vehicles are
equipped with stronger chassis in comparison to baseline trucks, along with suspen-
sion and braking systems designed to sustain the increased work load. To handle
difficult road conditions, construction trucks are also fitted with additional systems
to improve traction. These systems include multiple driven axles, varying levels
of differential locking, and computerized traction control; all allowing the vehicle
to navigate rougher terrains. The systems for added traction do not only serve to
improve maneuverability of the truck, but also to provide safer handling on work
sites. These safety aspects apply to the operator of the vehicle as well as workers in
close vicinity to the truck.

The differential gears, often referred to as open differentials, allow different rota-
tional velocities for the wheels on driven axles. The differential gears therefore help
reduce tire wear during cornering maneuvers, since the tires on the inner radius of
the curve travel a shorter distance in comparison to the outer tires. In off-road
situations however, the differential gears can cause reduced traction capabilities.
The differential gears always transfer torque to driving forces equally across the
output shafts. In effect, if one tire has limited capacity to produce driving forces,
either due to low friction coefficient or reduced normal load, the opposite side will
also be limited in how much force can be produced. Applying excessive torque will
only lead to spinning of the tire with limited traction. Thus, if the total amount of
force produced is not enough to achieve propulsion the vehicle is rendered stationary.

To address the limited traction capabilities of open differentials when driving off-
road, the differential gears can be locked together, effectively forcing the output

1



1. Introduction

shafts to rotate with the same angular velocity. This means that a low friction tire
cannot start slipping independently, allowing the high friction side to maintain driv-
ing forces. However, by locking the differentials, the cornering capabilities of the
vehicle are impaired due to the fact that the wheels cannot travel freely through-
out the curve. For vehicles with several lockable rear axles, such as heavy trucks,
steering capability is practically non-existent when the differentials are locked. Fig-
ure 1.1 shows experimental data collected from a driving test performed in an 8x4
truck, and illustrates the differences in steering ability when using open or locked
differentials.

X, [m]
0 5 10 15

Y
,
[m

]

0

1

2

3

4

5

6

7
Open differentials

Locked differentials

Figure 1.1: Global position of an 8x4 truck, highlighting the maximally obtained
cornering capabilities when using open (blue), or locked (red) differentials. The
experimental data was collected while driving on dry asphalt.

To alleviate the trade-off between steerability and traction which occurs with locked
differentials, many different control strategies exist, generally designed to control
wheel slip, the quantity used to describe the level of sliding occurring between wheel
and road surface. Such control strategies include fuzzy logic control [3], sliding mode
control [13], and gain-scheduling [15]. Some works have also investigated slip control
using predictive methods, such as [21], where a model predictive controller is imple-
mented in a brake-by-wire system. Most control strategies are designed for specific
driving situations, such as slip control during acceleration or emergency braking, and
are decoupled from the primary motion control actuators until certain conditions are
fulfilled and the controller activates. To reduce complexity and development costs
it would hence be favorable to have a single controller capable of handling several
driving situations.

Rigid (i.e. single unit) trucks will be studied within this thesis. These types of
vehicles are produced in a multitude of configurations; with varying numbers of
axles, actuators, and differential gears. Furthermore, the number of driven axles
and the axle disposition can differ between vehicle configurations. It can therefore
be problematic to reuse motion controllers between configurations.
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1. Introduction

Control allocation is a novel approach to ground vehicle motion control. The method
was originally designed for aerospace applications, see e.g. [9], but can be applied
to most over-actuated systems, i.e. systems that have more motion actuators than
controlled states. In essence, control allocation is comprised of two steps. Firstly, a
primary motion controller for the vehicle system is designed. The control signals for
the primary controller are formulated in terms of generalized forces acting upon the
vehicle body. Secondly, the vehicle configuration is considered, and the actuators
are coordinated to generate the general forces demanded by the primary controller.
An overview of the control allocation method is shown in Figure 1.2.

v u

y

Primary

Controller

Control

Allocator

Actuator

Dynamics

Vehicle

Dynamics

Control System Vehicle Plant

Figure 1.2: Functional overview of control allocation. The control system consists
of the primary controller and the control allocator. The primary controller uses
feedback of current sensor data y to produce a set of generalized forces v, which are
sent as requests to the control allocator. The control allocator then coordinates the
actuators to achieve the demanded forces contained in v. The coordinated actuator
signals u are then sent to the vehicle plant. The process is repeated at each sampling
instant.

This control structure has the benefit of being highly reusable across vehicle plat-
forms, since the primary controller only dictates motion by use of global forces,
which are independent between vehicle setups and can thus be used for all kinds of
ground vehicles. The coordination, or allocation, of actuator signals is carried out by
solving an optimization problem in real-time. This adds further benefits to the con-
trol system, as actuator constraints and energy consumption can be accounted for
when choosing control signals. Furthermore, the control system becomes adaptive,
as the current status of any given actuator can be accounted for, and capabilities
may be adjusted accordingly.

Control allocation has successfully been applied to a multitude of motion control
strategies in vehicles, for different purposes and objectives. The work presented in
[12] elaborates on how motion control schemes can be designed in over-actuated
vehicle systems by use of control allocation. Furthermore, the work describes in
detail the background of the optimization formulation needed in the allocator, and
emphasizes the advantages of the proposed control structure such as easy reconfig-
urability for different vehicle setups. The work done in [18] describes how control
allocation can be applied to improve roll stability in heavy vehicles, i.e. to reduce
the risks of roll-over of the vehicle during critical driving situations. The work also
investigates the real-time performance of control allocation based on the choice of
different solver algorithms. Control allocation has also been successfully applied to
improve stability and maneuverability in long heavy vehicles as described in [19].
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1. Introduction

Clearly, control allocation presents a convenient and innovative approach to vehicle
motion control, especially if improved road safety is considered.

Literature covering control allocation as a means to achieve improved traction is
sparse, and no previous works on traction control for heavy vehicles using control
allocation has been found.

1.2 Purpose
The purpose of this work is to investigate control allocation as a means of traction
control in heavy vehicles. More specifically, the work aims to derive general control
structures for added traction within the allocation formulation, preferably applicable
across a variety of heavy vehicle configurations. The key issue is the quantification
of the term traction, necessary for the formulation of the optimization problem.
Traction concerns the longitudinal forces generated in the interaction between each
tire and the road surface, and is therefore closely related to longitudinal wheel slip.
Hence, it is necessary to investigate how wheel slip can be represented in the control
allocation formulation, and if a slip controller could be incorporated in the control
allocation formulation.

1.3 Scope
The scope of this thesis is limited to the following:

• The vehicle model and controller design will be developed solely for single
unit, i.e. rigid, trucks. Additionally, only planar motion of the vehicle will be
considered.

• The actuators considered are; individual brakes for each wheel, engine, and
front and rear axle steering.

• Only traction control using open differentials is investigated. This choice will
be motivated in later chapters.

• The derived controller structures should primarily be validated in simulation
by use of Volvo’s VTM (Virtual Truck Model) library [20]. If simulations
show promising results, and time permits, the testing can be extended to
cover physical trucks.

• The developed controllers might require state observers to operate. The focus
throughout this thesis will not be filter design, and only simple state estimators
will be used.

• The real-time performance and choice of algorithms in solving optimization
problems will not be considered.
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1. Introduction

1.4 Test Scenarios
Four test cases are considered to verify the performance of the designed controller
formulation. Firstly, acceleration and braking are considered on split friction sur-
faces, i.e. surfaces where the friction coefficients differ between the left and right
hand side of the vehicle. These two test cases are used to validate whether a sin-
gle controller can improve traction for both driving scenarios. The third test is an
uphill acceleration on a split friction surface, designed to verify the ability of the
designed controller to improve traction capability in challenging terrain. Lastly, an
uphill cornering test is considered, where the designed controller should preferably
maintain steerability while providing traction.

1.5 Disposition
This thesis is outlined as follows; in Chapter 2 the vehicle model is presented, and
the necessary dynamics of the system derived, including the modeling of tires and
open differentials. Based on the derived system dynamics, the focus is turned to
control design in Chapter 3, where several approaches to optimization based traction
control are presented. In Chapter 4 the test cases are defined in greater detail, and
the simulation results are presented and commented on. Lastly, some concluding
remarks, including suggestions for future work, are given in Chapter 5.
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2
Modeling

In order to design and apply model based control strategies to a heavy vehicle, a
general description of the dynamics of the system needs to be derived from mechan-
ical principles. The following sections will elaborate on the modeling of the truck at
hand, an 8x4 rigid truck. Firstly, the general equations of motion of the truck are
derived. The modeling method is based on Newtonian mechanics, expressed in body
fixed coordinates, similar to the approach presented in [11]. Secondly, the modeling
of tire dynamics is presented. Traction control is closely connected to the forces
generated in the interaction between tire and road surface. Hence, a thorough back-
ground of the methods used in describing these interaction forces is needed. Lastly,
a model of an open differential system is presented. Open differentials allow for dif-
ferent wheel speed at the driven axles, ensuring better cornering capabilities and less
tire wear. However, on rougher roads the open differentials pose a challenge from
a traction perspective due to limitations in how much torque can be transferred to
the road, thus motivating the need for a detailed model of the dynamics.

2.1 Vehicle Dynamics
In order to describe the motion of the vehicle system, a coordinate frame has to be
introduced. Figure 2.1 shows the body fixed frame of reference, denoted xyz. The
coordinate frame follows the definitions of ISO 8855, which specifies the principal
terms used for road vehicle dynamics. For future reference, the world frame in which
the truck moves will be referred to as XY Z.

Figure 2.1: Body fixed coordinate frame of the rigid 8x4 vehicle system.
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2. Modeling

With a frame of reference in place, physical states of interest can be defined. To
model the system using Newtonian mechanics, the translational and angular veloc-
ities of the vehicle, expressed in xyz, are introduced as:

v =

vx

vy

vz

 and ω =

ωx

ωy

ωz

 . (2.1)

For the remainder of this thesis, all vectors will be denoted by bold letters. As the
coordinate frame is body fixed, the modified equations of motion [5] are given by:

m(v̇ + ω × v) =
∑

i

Fi (2.2a)

Iω̇ =
∑

i

ri × Fi =
∑

i

Mi (2.2b)

where ∑i Fi denotes the resulting forces in the principal directions of xyz. ri is
the position vector to the point where the force Fi is applied, and I and m are
respectively the inertia matrix and the total mass of the vehicle.

For ground vehicle motion control applications, the longitudinal and lateral dynam-
ics, as well as the yaw motion are of the most interest. For these states Equation
(2.2) can be expanded as follows:

m(v̇x − vyωz) =
∑

i

Fx,i (2.3a)

m(v̇y + vxωz) =
∑

i

Fy,i (2.3b)

Izzω̇z =
∑

i

Mz,i (2.3c)

In the above equations, the assumption of slow vertical dynamics, in addition to slow
roll and pitch movements, has been made, such that vz = ωx = ωy = 0. Figure 2.2
shows a more detailed overview of the vehicle system. Note that the lengths l1–l4
depend on the position of the center of gravity which needs to be estimated and
adapted while driving. The location of the center of gravity can be found by current
axle loads, see the estimation method presented in [8], and since the lengths between
axles are fixed, the lengths l1–l4 can thereafter be calculated. This methodology will
add to the generality of the modeling of the vehicle, since the estimation of physical
measurements can be easily modified to suit a new vehicle configuration.

The equations given in (2.3) form the nonlinear state space model upon which the
controller algorithms presented in this thesis will be based. To further expand the
model, the force and torque components acting on the vehicle, given by Fx,i, Fy,i

and Mz,i, need to be explained.
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2. Modeling

w1

l1

w2

l2

w3

l3

w4

l4

x

y

Fx,1

Fy,1

Fx,2

Fy,2

δ1 δ2

Fx,3

Fy,3

Fx,4

Fy,4

Fx,5

Fy,5

Fx,6

Fy,6

Fx,7

Fy,7

Fx,8

Fy,8

−δ7 −δ8

Figure 2.2: Overview of the vehicle system, including physical measurements and
force definitions. Depicted are the eight tires of the vehicle system, distributed
across four axles. The axles have corresponding track widths w1–w4. The second
and third axles are driven. The first axle is steered, as is the fourth axle. For future
reference, the fourth axle will be referred to as the tag axle.
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2. Modeling

2.2 Tire Dynamics
All major forces acting upon the vehicle are produced in the interaction between tire
and road surface. Braking torques or torques applied by the engine to the driveline
are transferred as longitudinal forces, while steering angles or sliding motions of the
vehicle generate lateral forces. Both types of forces are produced by friction. By
definition, friction forces Ff are given by:

Ff = µFz (2.4)

where µ is the friction coefficient and Fz is the normal load. In general however,
the dynamics of how the friction forces are generated are very complex, due to
factors such as elasticity of the tire, road surface conditions, etc. Tire modeling has
been subject to extensive study and several models of varying complexity have been
developed over the years, both from analytical and empirical perspectives. Typical
for most tire models is to express friction coefficients as functions of one of two
ratios; longitudinal and lateral slip. Friction forces are then described by:

Fx = µx(κ)Fz (2.5a)
Fy = µy(α)Fz (2.5b)

where κ and α are the longitudinal and lateral slip ratios respectively, and µx and
µy are the friction coefficients in directions x and y with corresponding friction force
component Fx and Fy. The definitions of the slip ratios are given in later sections.
Figure 2.3 shows an example of a friction curve as a function of the slip ratio κ.

-1 -0.5 0 0.5 1

κ

-1

-0.5

0

0.5

1

µ
(κ
)

Figure 2.3: Tire slip curve illustrating how the frictional coefficient µ varies with
increasing longitudinal slip ratio.

To properly describe the quantities involved in defining wheel slip ratios, the wheels
need to be described in their own frames of reference, relative to the vehicle’s coor-
dinate frame xyz. Figure 2.4 shows an example of one of the reference frames used
for the wheels.
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2. Modeling

x

y

r1

xw1

yw1

δ1

Figure 2.4: Tire frame definition for tire 1, with corresponding steering angle δ1.
All other wheels are assigned similar coordinate frames.

2.2.1 Longitudinal slip

Longitudinal slip is defined as follows:

κ = Reωi − vx,i

Reωi

if Reωi ≥ vx,i (2.6a)

κ = Reωi − vx,i

vx,i

if Reωi < vx,i (2.6b)

where ωi is the angular velocity of tire i, vx,i is the longitudinal velocity of the
tire, expressed in the coordinate frame of the wheel, and Re is the effective rolling
radius of the tire [14]. Intuitively, the two cases can be seen to correspond to
accelerating and braking situations respectively. Furthermore, by including two
definitions for longitudinal slip numerical issues due to division by zero are avoided,
with the exception of a wheel at standstill, for which neither cases are defined. As
seen, the longitudinal slip is bounded by κ ∈ [−1, 1] under the assumption that the
longitudinal velocity vx,i and peripheral velocity Reωi share the same sign.

2.2.2 Lateral slip

Lateral slip α is derived from the difference between the body slip angle β of the
tire and the current steering angle δ. The slip angle is spanned by the longitudinal
and lateral velocity components of the wheel hub, expressed in the vehicle frame
xyz, which from Figure 2.2 depends both on the position in relation to the center
of gravity, and the current vehicle state. The slip angle β is thus given by

βi = tan−1
(

vy,hub,i(ri, v, ω)
vx,hub,i(ri, v, ω)

)
(2.7)

which gives the lateral slip ratio

αi = βi − δi. (2.8)
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2. Modeling

2.2.3 Force generation

2.2.3.1 Linear models

For many purposes it is adequate to assume linear models for the longitudinal and
lateral tire forces. The assumption of linear dynamics holds for smaller values of κ
and α, for which the resulting forces then can be defined as:

Fx = Cxκ (2.9a)
Fy = −Cαα (2.9b)

where Cx is the longitudinal tire stiffness and Cα the tire cornering stiffness. Note
the inclusion of a negative sign for the lateral component. This is due to the fact
that Equation (2.8) defines lateral slip as negative for the case when the steering
angle exceeds the slip angle β. Hence, to produce a force in the correct direction,
the sign needs to be negative.

For the longitudinal forces, an even simpler tire force mapping than that of Equation
(2.9a) can be obtained by assuming negligible rolling resistance and disregarding the
inertia of the wheel. Then the produced tire force can be approximated as

Fx = T

Re

(2.10)

where T is the total supplied torque to the tire, in form of engine torque and braking
torque.

All tire forces are defined in the coordinate frame of the respective wheels. To
express the forces in the frame of reference of the vehicle, matching the definitions
of Figure 2.2, the forces can simply be rotated by use of the rotation matrix

R(δi) =
[
cos δi − sin δi

sin δi cos δi

]
, i ∈ [1, 8]. (2.11)

For larger slip values, the assumption of linear tire dynamics no longer holds. For
these situations a more complex description of the slip to force relationship must be
used. As previously mentioned, many different tire models of varying complexity
exist, derived from either analytical or empirical assumptions, or a combination of
both.

2.2.3.2 Magic tire formula

The magic tire formula is a semi-empirical model, and uses a set of parameters to fit
a general expression of the slip-force curve to measured data. The model was created
by H.B. Pacejka at Delft University of Technology in collaboration with Volvo in the
mid 1980’s, and has since become extensively used in research as well as industry
[14]. The magic tire formula will serve as the tire model used for control design
throughout this thesis. Several versions of the model exist, with varying numbers
of parameters. In general however, the main expression of the formula is given by:

F (x) = D sin (C arctan (Bx − E (Bx − arctan Bx))) (2.12)

12
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where x is the slip value κ or α, D is the peak value of the slip curve, often equivalent
to µFz or simply µ, and B, C, E are shape factors. The curve shown in Figure 2.3
is a typical example of the graphs produced by Equation (2.12).

As mentioned, several versions of the magic tire formula exist. Following the works
of [2], a simplified model will be used for the remainder of this thesis. The slip-force
relations read:

Fx(κ, α) = µxFz sin
(

C arctan
(

B

√
κ2 + α2

µx

))
κ√

κ2 + α2
(2.13a)

Fy(κ, α) = µyFz sin
(

C arctan
(

B

√
κ2 + α2

µy

))
α√

κ2 + α2
(2.13b)

As Equation (2.13) shows, the slip-force relations are functions of both κ and α. The
force components are therefore not generated independently of each other. Such
models are used to describe tires subject to combined slip.

2.2.4 Combined slip

Thus far, the friction forces described have been assumed to be generated indepen-
dently of each other, such that longitudinal slip does not affect lateral slip or vice
versa. However, many driving scenarios involve simultaneous steering and accelera-
tion/braking. In such situations the friction forces in the x- and y-directions of the
tire are not decoupled, and a large slip ratio in one direction will directly affect the
available friction force in the other direction. This phenomenon is called combined
slip.

2.2.4.1 Friction ellipse

A straightforward approach to modeling combined slip behavior is the friction ellipse
[11]. In this model the total magnitude of the friction force vector, spanned by lateral
and longitudinal components, is limited by the maximum available friction levels.
This limitation can be expressed as:

(
Fx

µxFz

)2

+
(

Fy

µyFz

)2

≤ 1 (2.14)

This simple model ensures that as the friction force grows in the x-direction, the
maximum available force is limited in the y-direction and vice versa. For the case of
equal friction coefficients in both x- and y-directions, the ellipse reduces to a circle,
see Figure 2.5.
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xw

yw

µFz

Fxw

Fyw

Fw

Figure 2.5: Friction circle, where the force components have been indicated in the
frame of reference of the wheel, i.e. the system xyzw. Also indicated is the total
friction force Fw produced by the wheel, and the radius of the friction circle, given
by µFz.

Combined slip can also be modeled using more sophisticated methods. Below follows
a review of the brush model. The model itself will not be applied to control design
in this thesis, but is instead meant to present an analytical approach to combined
slip situations and the conclusions that follow.

2.2.4.2 Brush model

The brush tire model was extensively used before the introduction of empirical mod-
els [17]. The model is developed from physical assumptions, and is fairly simple in
terms of derivation. The following section is based on the works found in [14] and
[17]. First, the pure slip cases are presented, before applying the results to the com-
bined slip case.

The brush tire model assumes that the portion of the tire found in the contact
patch is comprised of thin, elastic bristles, similar to those of a brush. Each bristle
travels though the contact patch as the wheel is turning, entering at the leading edge
and exiting at the trailing edge. In the model, the bristles are allowed to deflect
longitudinally and laterally with respect to a reference frame located at the center
of the contact patch, oriented similarly to the reference frame of the wheel. It is
further assumed that the contact patch is divided into two regions; one adhesive
region where bristles generate forces by static friction, and one sliding region where
bristles are subject to dynamic friction.

xw

zw

qz(x)

aa

Bristles

Side view:

xw

yw

dmax

α

(xs, dmax)

x

AdhesiveSliding

2aλ
Bristles

Top view:

Figure 2.6: Side and top view of brush model tire under purely lateral slip.
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Lateral slip
Figure 2.6 shows a top and side view of the tire system, with definitions of the
quantities used in deriving the tire model for lateral forces. Starting from the leading
edge of the contact patch, a line is drawn parallel to the slip angle α. The point
where the line intersects the bristle deformation limit, given by point xs, marks the
end of the adhesive region. In the adhesive region, the deformation of a bristle at
position x is given by:

dy(x) = −(a − x) tan α (2.15)

If a bristle stiffness cpy is introduced, the total lateral force produced in the adhesive
region can be found by:

Fy,a = −cpy

a∫
xs

dy(x) dx = −cpy tan α

a∫
xs

(a − x) dx (2.16)

However, to calculate this integral the point xs needs to be found. To find this point,
assume a normal load distribution:

qz(x) = 3
4

Fz

a

(
1 − x2

a2

)
(2.17)

From Equation (2.4) it then follows that the largest possible lateral force distribution
q̄y is given by:

|q̄y(x)| = µqz(x) = 3
4

µFz

a

(
1 − x2

a2

)
(2.18)

At x = xs the friction forces reaches this limit, such that the following must hold:

cpy(a − xs)| tan α| = 3
4

µFz

a

(
1 − x2

s

a2

)
(2.19)

Solving for xs, one finds:

xs = a

(
4
3

a2cpy

µFz

| tan α| − 1
)

(2.20)

For convenience, define:

θy = 2
3

a2cpy

µFz

. (2.21)

The distance from the leading edge of the contact patch to xs can then be expressed
by the ratio λ as:

a − xs = 2aλ =⇒ λ = 1 − θy| tan α| (2.22)

To find the lateral slip ratio αs where only sliding occurs, set λ = 0 and solve for α:

| tan αs| = 1
θy

(2.23)

15



2. Modeling

Finally, the forces generated by lateral slip can be calculated by integration over the
adhesive and sliding regions. For α ≤ αs, the lateral force is given by:

Fy(α) = −

 xs∫
−a

q̄y(x) dx + cpy tan α

a∫
xs

(a − x) dx

 (2.24a)

= −3µFzθy tan α
(

1 − θy| tan α| + 1
3θ2

y tan2 α
)

(2.24b)

For total sliding, i.e. α > αs, the lateral force is found as:

Fy(α) = − sign α

a∫
−a

q̄y(x) dx = −µFz sign α (2.24c)

Figure 2.7 shows a resulting slip curve based on the results from the lateral force
equations.
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Figure 2.7: Lateral slip curve based on the brush tire model.

From Figure 2.7 and the expressions given by Equation (2.24), one major problem
of the brush tire model is made clear; for large slip values the model still generates
friction forces corresponding to peak friction values, a property not reflected in re-
ality, thus motivating the use of more empirical models.

Longitudinal slip
The derivation of longitudinal forces follows closely the method used for lateral
forces. Figure 2.8 shows a side view of the system where the slip point S has been
indicated.

xw

zw

S

vsx

Re vr
x

a

Side view:

Figure 2.8: Side view of brush model tire under purely longitudinal slip. The
scenario depicts slip during braking.
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Define the slip speed as
vsx = vx − Reω (2.25)

where vx is the velocity of the rim of the wheel, Re is the effective radius and ω is
the angular velocity of the wheel. The base points of the bristles move from the
leading edge to the trailing edge of the contact patch with speed vr = Reω. The
distance a single base point travels, given by a − x, in a specific time interval ∆t
then becomes:

a − x = vr∆t ⇐⇒ ∆t = a − x

vr

(2.26)

During the same time interval, the end point of the bristle, moving with the slip
velocity vsx, has formed a deformation according to:

dx(x) = −vsx∆t = −vsx
a − x

vr

(2.27)

Rewriting Equation (2.27) in terms of the slip definition found in Equation (2.6)
yields:

dx(x) = (a − x) κ

1 + κ
(2.28)

By defining theoretical slip as σx = κ/(1 + κ), Equation (2.28) can be seen to have
the same structure as found for the lateral bristle deflections, see Equation (2.15).
Again, stiffness coefficient cpx and parameter

θx = 2
3

a2cpx

µFz

. (2.29)

can be introduced. This leads to the same conclusions found for the lateral model,
with total sliding occuring for

|σx,s| = 1
θx

=⇒ κs = − 1
1 ± θx

. (2.30)

The final expressions for the longitudinal forces then become:

Fx(σx) =

3µFzθxσx

(
1 − θx|σx| + 1

3θ2
xσ2

x

)
if |σx| ≤ |σx,s|

µFz sign σx if |σx| > |σx,s|
(2.31)

Combined slip
For the combined slip case, the assumption of equal bristle stiffnesses and friction
coefficient are made, such that

cpx = cpy = cp (2.32a)
µx = µy = µ. (2.32b)

Again, the base points of the bristles move through the contact patch with velocity
vr, and cover a distance a − x in the interval ∆t:

∆t = a − x

vr

(2.33)
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By defining the slip speed vector

vs =
[
vsx

vsy

]
, (2.34)

the deflection of any given bristle can be expressed in vector form as

d(x) =
[
dx(x)
dy(x)

]
= −vs∆t = −vs

a − x

vr

. (2.35)

The expression given by Equation (2.35) can be simplified by again defining theo-
retical slip values:

σ =
[
σx

σy

]
=
[

κ
1+κ

− tan α
1+κ

]
(2.36)

The theoretical slip values defined in Equation (2.36) are the key quantities in the
combined slip model. When using the model, finding the vector σ, calculated from
the slip definitions of Equations (2.6) and (2.8), serves as the first step in calculating
the friction forces.

For a bristle in the adhesive region the local force vector is then given by

d(x) = (a − x)σ =⇒ q(x) = cp(a − x)σ (2.37)

By assuming a parabolic pressure distribution, similar to Equation (2.17), point xs

where sliding starts can be found. At x ≥ xs one has

|q(x)| =
√

qx(x)2 + qy(x)2 ≥ µqz(x) (2.38)

The force contributions in the sliding region can be then found by

q(x) = µqz(x) σ

|σ|
. (2.39)

To find the start of the sliding region, it can again be realized that at point xs one
must have

cp|d(xs)| = µqz(xs). (2.40)
Again, the same procedure as for the lateral and longitudinal cases can be applied.
The slip magnitude for which total sliding occurs is found to be

σs = 1
θ

, where θ = 2
3

a2cp

µFz

. (2.41)

By integration, the expressions for the total force magnitude can be calculated:

F (σ) =

3µFzθ|σ|
(
1 − θ|σ| + 1

3θ2|σ|2
)

if |σ| ≤ σs

µFz if |σ| > σs

(2.42)

The individual force components can then be generated by

Fx = σx

|σ|
F (σ) (2.43a)

Fy = σy

|σ|
F (σ) (2.43b)
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Figure 2.9 shows some examples of how friction forces develop when one slip ratio
is held constant, while the other is gradually increased.
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Figure 2.9: Left: Reduction of lateral forces due to increasing longitudinal slip.
Right: Reduction of longitudinal forces due to increasing lateral slip.

The effect of combined slip situations on friction force components becomes even
clearer if both lateral and longitudinal forces are plotted in the same graph. Figure
2.10 shows how the friction force components for a given lateral slip ratio develop
as the longitudinal slip increases.
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Figure 2.10: Longitudinal and lateral force components for given lateral slip as
longitudinal slip increased.

As Figures 2.9 and 2.10 show, tires under combined slip are subject to considerable
reductions in available friction forces as one slip ratio becomes very large. Depend-
ing on the driving situation these results can have substantial implications. For
example, in the case of emergency braking it may be favorable to maintain ma-
neuverability to let the driver bypass obstacles. In these cases the longitudinal slip
cannot be allowed to grow too large, or else the available lateral force reduces sig-
nificantly, leading to loss of steerability.
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With an understanding of how tire forces are generated, and an insight into how
different slip conditions affect the saturation of force components, the tire modeling
is complete. In terms of planar vehicle dynamics, the nonlinear model given by
Equation (2.3) will be revisited when the controller formulation and structure are
explained in later sections, and when available actuator signals are explained. Next,
the system of differentials found on the 8x4 truck will be presented and modeled in
detail.
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2.3 Differentials
The differentials distribute torque supplied from the engine through the transmis-
sion. Depending on whether the differentials are open or locked, different torque
distributions across the tires will be obtained. As the torques applied to the wheels
produce the driving forces, it is important to understand the dynamics of the dif-
ferential in order to design traction control strategies. The following sections will
cover modeling of differentials.

The 8x4 truck used in this thesis is equipped with three differentials: one inter-axle
differential and two inter-wheel differentials. A functional diagram of the differential
system can be seen in Figure 2.11.

Rear axle 1

Rear axle 2

Inter-axle diff.

Inter-wheel diff. 1

Inter-wheel diff. 2

Tin

T1

T2

T12T11

T22T21

Figure 2.11: Functional diagram of torque distribution across the three differentials
equipped for the two driven rear axles.

As seen in Figure 2.11, the torque supplied by the engine through the driveline serves
as an input to the inter-axle differential. At the inter-axle differential the torque is
split, and supplied to the inter-wheel differentials, where the torque is again split
and supplied to the drive axles, which in turn produce driving forces.

2.3.1 Open differentials
As discussed in earlier chapters, for most driving situations, open differentials are
preferred. The open differentials allow for different wheel speeds across all driven
wheels, which greatly reduces tire wear during cornering. An open, symmetric dif-
ferential will always distribute the input torque equally across the output shafts,
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such that torque is split 50/50 (this torque split is proven in later sections). There-
fore, the drive shafts of the 8x4 truck will receive 50% of the input torque to the
inter-wheel differentials, which corresponds to 50% of the torque supplied to the
inter-axle differential, for a total of:

Tij = Tin

4 , ij ∈ {11, 12, 21, 22}. (2.44)

However, with open differentials the amount of torque transferable to driving forces
at any given wheel is limited by the tire with the lowest available friction level, that
is:

F̄x,i = min(µi(κi)Fz,i) (2.45)

This means that the total transferable force that can be produced with open differ-
entials is limited to

T̄trans = 4Re min(µij(κij)Fz,ij). (2.46)
If a larger torque is applied, the excess torque will only lead to increased wheel slip
of the low friction wheel. From previous sections, high slip values will lead to further
reductions in available friction levels, which further limits the maximum transferable
torque. In effect, as soon as one wheel starts slipping, traction is lost and the total
force produced at the tire might not be sufficient to propel the vehicle. In rougher
terrains, where the vehicle can be subject to rapid changes in friction and normal
loads, driving with open differentials and without any form of traction control can
therefore be problematic.

2.3.2 Locked differentials
For the considered vehicle setup, two levels of differential locks can be applied; only
across the inter-axle differential, or across all differentials. If a differential lock is
applied, the output shafts are forced to rotate at the same angular velocity as the
input shaft. In terms of traction this means that a low friction wheel cannot start
spinning independently, which ensures that high friction tires can still produce driv-
ing forces, a favorable property during off-road driving situations. For the different
levels of differential locks, traction is therefore only lost for the following cases:

• One wheel on both rear axles spinning (inter-axle locked)
• All wheels spinning (fully locked differentials).

However, with locked differentials no conclusions can be made beforehand regarding
how much torque is distributed across the locked differential. Consider the case of a
single, locked differential gear, where one of the tires is completely suspended in the
air and cannot produce any driving forces. In this case all the torque supplied to
the differential will be distributed to the tire still in contact with the road surface.
A different driving situation might have the two tires on a road with homogeneous
friction conditions, but the load distribution shifted towards one wheel. Suppose
the high load tire can support 1000 Nm, while the other tire can support only 300
Nm. If 1300 Nm are sent into the differential, the torque distribution will hence be
roughly 77/33. Hence, when a differential lock is applied, the torque distribution
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becomes much more uncertain. Furthermore, since the tires can no longer travel
different distances during cornering, severe understeer might be introduced, leading
to the handling capabilities of the vehicle becoming impaired.

Due to the uncertain nature of the distribution of torque when using locked dif-
ferentials, and the desire to maintain steering capabilites in off-road situations, only
open differentials will be considered during the traction control design in following
sections. However, to properly evaluate the effects of open differentials on low fric-
tion surfaces, a more detailed model is needed. The following section will present
the modeling of an open differential based on Newtonian mechanics, following the
naming conventions presented in [5] where:

• Ωj is the angular velocity vector of coordinate frame j.
• ωbj

is the angular velocity vector of body b, expressed in frame j.
• αbj

is the angular acceleration vector of body b expressed in frame j.
• (r)xyz is the position vector r expressed relative to frame xyz.

2.3.3 Defining reference frames

An open differential consists of five principal bodies: the crown wheel, two planetary
gears, and two sun gears connected to the drive shafts. The crown wheel connects
to the carrier, to which in turn the planetary gears are connected, see Figure 2.12.
The planetary gears in turn drive the sun gears to which the drive/output shafts are
connected. For simplicity, and without loss of functionality, only one planetary gear
will be used in the modeling. Furthermore, in this ideal model each gear is assumed
to be a thin disk, interlocking perfectly with other disks, such that interaction forces
only act in the respective tangential directions of the bodies. The figure also defines
the three input torques to the system; engine torque Tin and combined braking and
friction torques T2 and T3.

a

b

c

d

e

θ0

Tin

θ1

θ2

T2

θ3T3

x0

y0 z0

Figure 2.12: Model of an open differential. Depicted: a) Crown wheel, b) and
c) planetary gears, d) left sun gear and output shaft, e) right sun gear and output
shaft.
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2.3.3.1 Crown wheel and planetary gear

The body fixed crown wheel reference frame xyz0 is placed in the very center of the
differential. This frame will act as the origin for all other reference frames. To the
xyz0 frame, the body fixed system xyz1 of the planetary gear is appended, also at
the center of the differential, see Figure 2.13a. The rotation matrix from xyz0 to
xyz1 can thus be defined as:

R0→1(θ1) =

1 0 0
0 cos θ1 sin θ1
0 − sin θ1 cos θ1

 (2.47)

2.3.3.2 Sun wheels and output shafts

Again, body fixed coordinate frames are used for the sun wheels, see Figures 2.13b
and 2.13c. The rotation matrices from system xyz0 to xyz2 and xyz3 then become:

R0→i(θi) =

cos θi 0 − sin θi

0 1 0
sin θi 0 cos θi

 , i = 2, 3 (2.48)

(a) Frame xyz1 in re-
lation to xyz0.

(b) Frame xyz2 in re-
lation to xyz0.

(c) Frame xyz3 in re-
lation to xyz0.

Figure 2.13: Frame definitions.

2.3.4 Physical properties
Figure 2.14 illustrates the physical quantites used in the model. In addition to the
definitions found in Figure 2.14, the inertia matrices are defined as:

Icw =

Icwx 0 0
0 Icwy 0
0 0 Icwz

 , Ipg =

2Ipgx 0 0
0 2Ipgy 0
0 0 2Ipgz

 (2.49a)

IL =

ILx 0 0
0 ILy 0
0 0 ILz

 , IR =

IRx 0 0
0 IRy 0
0 0 IRz

 (2.49b)
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where IL and IR are the lumped inertias for the left and right output shaft respec-
tively. These inertias can be chosen to include sun wheel and half shaft inertias, as
well as wheel inertias depending on the modeling purposes. The inertia matrices of
the crown wheel and planetary gear are given by Icw and Ipg respectively. Note that
the planetary gear is defined to have twice the mass and inertia. This is due to the
modeling choice of only including a single gear.

Icw2mpg

Ipg

IL

IRrs

rp

rc

x0

y0
z0

Figure 2.14: Definitions of the physical properties of the open differential model.
The following quantities are defined; sun wheel radius rs, lumped output shaft in-
ertias IL and IR, planetary gear radius rp, planetary gear mass mpg, planetary gear
inertia Ipg, crown wheel spacing rc, and crown wheel inertia Icw.

2.3.5 Equations of motion
With all necessary quantities defined for the modeling of the open differential, the
equations of motion can be considered. The dynamics of the system are derived
below.

2.3.5.1 Crown wheel

From the perspective of modeling, all reference frames are assumed stationary and
will not experience translational motion. Considering the crown wheel first, a free
body diagram is shown in Figure 2.15. The following forces and moments acting in
xyz0 are defined:

F0 = F0x ex0 + F0y ey0 + F0z ez0 (2.50a)
F10 = F10xex0 + F10y ey0 + F10z ez0 (2.50b)
M0 = M0x ex0 + 0 ey0 + M0z ez0 (2.50c)
M10 = 0 ex0 + M10xey0 + M10zez0 (2.50d)

where F0 and M0 are reaction forces and moments in the mounting point of the
crown wheel, F10 and M10 are forces and moments generated in the interaction
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between crown wheel and planetary gear, and ei are basis vectors. Now, since the
crown wheel does not move in space, one finds:

0 =
∑

Fcw = F0 + F10 (2.51)

For the angular momentum Lcw:

ωcw = Ω0 = θ̇0ey0 =⇒ (2.52a)
Lcw = Icwωcw =⇒ (2.52b)

L̇cw = δLcw

δt
+ Ω0 × Lcw =

 0
Icwy θ̈0

0

 =
∑

i

Mcw,i (2.52c)

For the sum of moments, the free body diagram gives:∑
Mcw = M0 − M10 + Tiney0 + 0 × F0 + (rsex0 − rcey0) × F10 (2.53)

Summarizing the equations found:0
0
0

 =

F0x + F10x

F0y + F10y

F0z + F10z

 (2.54a)

 0
Icwy θ̈0

0

 =

 M0x − rcF10z

−M10y − rsF10z + Tin

M0z − M10z + rcF10x + rsF10y

 (2.54b)

Figure 2.15: Free body diagram of the crown wheel.

2.3.5.2 Planetary gear

A free body diagram of the planetary gear is shown in Figure 2.16, where additional
reaction forces, all acting in xyz0, have been introduced:

F21 = 0 ex0 + 0 ey0 + F21zez0 (2.55a)
F31 = 0 ex0 + 0 ey0 + F31zez0 (2.55b)
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For the angular velocity of the xyz1 system and the planetary gear system one finds:

ωpg1 = Ω1 = R0→1(θ1)Ω0 + θ̇1ex1 =⇒ (2.56a)

αpg1 = δωpg1

δt
+ Ω1 × ωpg1 (2.56b)

Since the xyz1 system is stationary and the center of mass of the planetary gear
does not move in the reference frame, one can find the position of the center of mass
rcm as:

(rcm)xyz1 = rsex1 (2.57)

The acceleration of the planetary gear then becomes:

apg1 = αpg1 × (rcm)xyz1 + ωpg1 × ωpg1 × (rcm)xyz1 (2.58)

Since all forces acting on the planetary gear are defined in the xyz0 system, the
acceleration of the planetary gear is for simplicity rotated by the inverse of the
rotation matrix. The translational equations of motion thus become:

2mpgRT
0→1(θ1)apg1 =

−2mpgrsθ̇
2
0

0
−2mpgrsθ̈0

 =
∑

i

Fpg,i (2.59)

where ∑
Fpg = −F10 + F21 + F31 (2.60)

The angular momentum is given by:

Lpg1 = Ipgωpg1 =⇒ (2.61a)

L̇pg1 = δLpg1

δt
+ Ω1 × Lpg1 (2.61b)

Again, rotating to the xyz0 frame gives:

RT
0→1L̇pg1 =

 2Ipgx θ̈1
2Ipgy θ̈0

−2Ipgx θ̇0θ̇1

 =
∑

i

Mpg,i (2.62)

where ∑
Mpg = M10 + rpey0 × F21 − rpey0 × F31 (2.63)

Above, the assumption of a symmetric planetary gear has been made, such that
Ipgz = Ipgy . In total, the following equations of motion are found for the planetary
gear: −2mpgrsθ̇

2
0

0
−2mpgrsθ̈0

 =

 −F10x

−F10y

−F10z + F21z + F31z

 (2.64a)

 2Ipgx θ̈1
2Ipgy θ̈0

−2Ipgx θ̇0θ̇1

 =

rp(F21z − F31z)
M10y

M10z

 (2.64b)
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Figure 2.16: Free body diagram of the planetary gear.

2.3.5.3 Left output shaft

A free body diagram of the left sun wheel is shown in Figure 2.17. The figure
includes mounting forces and moments F2 and M2 acting in xyz2:

F2 = F2x ex2 + F2yey2 + F2z ez2 (2.65a)
M2 = M2x ex2 + 0 ey2 + M2zez2 (2.65b)

Similarly to the crown wheel, the left sun wheel does not move in space. Therefore
the acceleration must be zero:

0 =
∑

i

FL,i = F2 − R0→2(θ2)F21 (2.66)

For the angular momentum one finds:

ωL = Ω2 = θ̇2ey2 =⇒ (2.67a)
LL = ILωL =⇒ (2.67b)

L̇L = δLL

δt
+ Ω2 × LL =

 0
ILy θ̈2

0

 =
∑

i

ML,i (2.67c)

From the free body diagram the sum of moments becomes:∑
i

ML,i = M2 + T2ey2 + 0 × F2 + R0→2(θ2) [rsex0 × (−F21)] (2.68)

Summarizing, the six equations governing the motion of the left sun wheel are given
by: 0

0
0

 =

F2x + F21z sin θ2
F2y

F2z − F21z cos θ2

 (2.69a)

 0
ILy θ̈2

0

 =

 M2x

rsF21z + T2
M2z

 (2.69b)
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Figure 2.17: Free body diagram of the left sun wheel. For clarity the figure has
been rotated 180 degrees around the z0-axis.

2.3.5.4 Right output shaft

A free body diagram of the right sun wheel is shown in Figure 2.18. As defined on
the left side, the figure includes mounting forces and moments F3 and M3 acting in
xyz3:

F3 = F3x ex3 + F3yey3 + F3z ez3 (2.70a)
M3 = M3x ex3 + 0 ey3 + M3zez3 (2.70b)

Since the sun wheel is stationary, the translational equations of motion simplify to:

0 =
∑

i

FR,i = F3 − R0→3(θ3)F31 (2.71)

For the angular momentum one finds:

ωR = Ω3 = θ̇3ey3 =⇒ (2.72a)
LR = IRωR =⇒ (2.72b)

L̇R = δLR

δt
+ Ω3 × LR =

 0
IRy θ̈3

0

 =
∑

i

MR,i (2.72c)

From the free body diagram the sum of moments becomes:∑
i

MR,i = M3 + T3ey3 + 0 × F3 + R0→3(θ3) [rsex0 × (−F31)] (2.73)

Summarizing, the six equations governing the motion of the right sun wheel are
given by: 0

0
0

 =

F3x + F31z sin θ3
F3y

F3z − F31z cos θ3

 (2.74a)

 0
IRy θ̈3

0

 =

 M3x

rsF31z + T3
M3z

 (2.74b)
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Figure 2.18: Free body diagram of the right sun wheel.

2.3.5.5 Constraint equations

An open differential exhibits only two degrees of freedom. In the modeling however,
four coordinates have been used in obtaining the equations of motion. Hence, two
equations relating the chosen coordinates must be included.

Starting with the two sun wheels, if the crown wheel is rotated through an angle θ0
while the planetary gear is kept fixed, the following must hold:

θ0 = θ2 = θ3 (2.75)

If instead the crown wheel is kept fixed while the planetary gear is rotated by an
angle θ1, the sun wheel angles are given by:

θ2 = −rp

rs

θ1 (2.76a)

θ3 = rp

rs

θ1 (2.76b)

Summarizing the two contributions to the sun wheel angles, the constraints of the
open differentials are given by:

θ2 = θ0 − rp

rs

θ1 =⇒ θ̈2 = θ̈0 − rp

rs

θ̈1 (2.77a)

θ3 = θ0 + rp

rs

θ1 =⇒ θ̈3 = θ̈0 + rp

rs

θ̈1 (2.77b)

In total, the open differential model contains 24 equations of motion; Equations
(2.54), (2.64), (2.69) and (2.74), and two constraints; Equation (2.77), for a total of
26 equations. If the input torques Tin, T2 and T3 are considered known, the model
also contains 26 unknowns in the form of second derivatives θ̈i, i ∈ [0, 3] in addition
to all reaction forces and moments.
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Solving the system of equations produces very large expressions for all unknowns.
The general expressions for θ̈i, i ∈ [0, 3] can be found in appendix A.1. Under the
assumption of symmetric output shafts, i.e ILy = IRy = Ihs, the complexity of the
expressions reduces significantly and the equations can be written as:

θ̈0 = T2 + T3 + Tin

2mpgr2
s + Icwy + 2(Ipgy + Ihs)

(2.78a)

θ̈1 = rprs(−T2 + T3)
2(r2

sIpgx + r2
pIhs)

(2.78b)

θ̈2 =
r2

p(T2 − T3)
2(r2

sIpgx + r2
pIhs)

+ T2 + T3 + Tin

2mpgr2
s + Icwy + 2(Ipgy + Ihs)

(2.78c)

θ̈3 =
r2

p(−T2 + T3)
2(r2

sIpgx + r2
pIhs)

+ T2 + T3 + Tin

2mpgr2
s + Icwy + 2(Ipgy + Ihs)

(2.78d)

The equations of most interest are (2.78c) and (2.78d), which define the dynamics
of the left and right output shafts respectively. Another interesting result can be
found by neglecting the inertias and masses for the crown wheel and planetary gear
and assuming that the lumped output shaft inertias consist solely of wheel inertias
Iw. For this case Equations (2.78c) and (2.78d) reduce to

Iwθ̈2 = T2 + Tin

2 (2.79a)

Iwθ̈3 = T3 + Tin

2 (2.79b)

which confirms the initial assumption of a 50/50 torque split across the open dif-
ferential. It should further be pointed out that the results of the differential gear
modeling resemble those found in [6], which derives the dynamics by use of Bond
graphs.

With the open differential modeling complete, all needed dynamics for the vehi-
cle system have been derived. In the next chapter, the focus is instead directed to
control design.
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3
Control Design

The following chapter will elaborate on the control design strategies used for trac-
tion control in this thesis. Firstly some of the background and theory of control
allocation is presented, followed by some approaches to traction control that were
tested during the early phases of the thesis.

Secondly, model predictive control, abbreviated MPC, is presented along with some
trials using the open differential model derived in Chapter 2.

Lastly, control allocation is revisited and the most promising traction control strat-
egy of this work is presented. This control strategy is then merged with model
predictive control.

3.1 Control Allocation
The following section will explain the issues that control allocation (CA) addresses,
and how the problem formulation has been utilized for motion control in previous
works. The material provided in these sections follows the work presented in [9].

3.1.1 Background
To illustrate the concepts of control allocation, consider the general state space
formulation of a dynamic system, described by

ẋ = f(x, u) (3.1)

where x ∈ Rn is the vector of system states, with corresponding time derivatives ẋ,
u ∈ Rm is the vector of control inputs, and f(.) is the state transition function. For
many systems however, an approximate, control affine form can be found by use of
linearization techniques, such that

ẋ = g(x) + h(x)u or (3.2a)
ẋ = g(x) + Bu (3.2b)

where g(.) and h(.) are non-linear functions, and B ∈ Rn×m is the control efficiency
matrix.

Now, consider Equation (3.2b) in the case when m > n, i.e. when the system has

33
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more control inputs than controlled states. Such a system is called over-actuated,
meaning that the same control of states can be achieved by use of several different
sets of control inputs u. To circumvent this non-uniqueness, the controller design
can be performed on a simplified system formulation:

ẋ = g(x) + v (3.3)

where v ∈ Rn is called the virtual control input. Essentially, the actuator signals of
the real system are abstracted into v, and the controller design performed on the
virtual system model, where the number of controlled states are equal to that of the
virtual inputs. This approach simplifies the controller design process, which then
can be split into two parts:

1. Design a primary controller which dictates the virtual control signal v.
2. Find a unique mapping between v and the physical actuator signals contained

in u.

To realize the virtual forces described by v, the over-determined system of equations

v = Bu (3.4)

needs to be solved for u.

3.1.2 Optimization
One method for finding a unique solution for u is to use an optimization based
approach. This also allows actuator limitations, such as saturation limits and rate
constraints, to be considered when v is mapped to u. The optimization problem
can be formulated as

u = arg min
u∈Ω

||Wu(u − ud)||22 (3.5a)

Ω = arg min
u
¯

≤u≤ū
||Wv(Bu − v)||22 (3.5b)

where ud is the vector of desired actuator signals, used to specify setpoints for the
actuators. For example, the brakes should preferably be used as little as possible to
ensure minimal brake pad wear. The setpoint for the brake actuators can therefore
be set to zero. Wv and Wu are weighting matrices used to assign priority to partic-
ular virtual or physical control signals respectively, and u

¯
and ū are the actuator

limitations. These limitations are given by maximum and minimum values

umin ≤ u ≤ umax (3.6)

as well as rate constraints
∆umin ≤ u̇ ≤ ∆umax (3.7)

The two-step optimization problem given by Equation (3.5) can be reduced to a
weighted least square (WLS) problem, for which the problem formulation becomes

u = arg min
u
¯

≤u≤ū

[
||Wu(u − ud)||22 + γ||Wv(Bu − v)||22

]
(3.8)
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In Equation (3.8) the weighting parameter γ has been introduced. This is a design
parameter used to assign priority to minimizing the term containing Bu − v. Thus,
γ is usually chosen as a large constant, but numerical instability might be introduced
in solving the WLS problem if inner dimensions are not considered [18]. Hence, the
parameter γ should be chosen with care.

3.1.3 Vehicle application
To apply control allocation as a means of motion control of a heavy vehicle, the
virtual control vector v needs to be defined. Based on the choice of virtual control
signals, the control vector u and control efficiency matrix B can then be found.
Previous works on motion control by use of control allocation, see [8, 12, 18, 19],
have used total, also referred to as global, forces and torques acting on the vehicle
as the virtual control signal:

v =


∑

i Fx,i∑
i Fy,i∑
i Mz,i

 ,

Fx

Fy

Mz

 (3.9)

where the forces are defined in Figure 2.2. The general state space model of the
vehicle system, given by Equation (2.3), can thus be written

mv̇x = mvyωz + Fx (3.10a)
mv̇y = −mvxωz + Fy (3.10b)

Izzω̇z = Mz (3.10c)

which can be seen to resemble the general state space formulation ẋ = g(x) + v. To
use the control allocation formulation, the control efficiency B matrix needs to be
found based on the available actuators.

The actuators available for the 8x4 truck are:
• Individual braking torques Tb,i, i ∈ [1, 8]. For the tag axle only one brake

actuator is available for both wheels, i.e. Tb,8 = Tb,7 , Tb,t.
• Engine torque Te, which is supplied to the differential gear. During most

driving scenarios the engine torque will remain positive, but if engine braking
is considered, the engine torque will also take negative values.

• Front and rear steering angles δf and δr.
Only one steering angle is used for the respective axles due to the fact that the
wheels are mechanically linked and can therefore not be controlled individually.

By use of the simplest tire force models, where individual tire forces are given by

Fx,i = Ti

Re

(3.11a)

Fy,i = −Cααi, αi ≈ −δi (3.11b)
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the control efficiency matrix can be constructed

B =


1

Re

1
Re

1
Re

1
Re

1
Re

1
Re

2
Re

1
Re

0 0
0 0 0 0 0 0 0 0 2Cα 2Cα

− w1
2Re

w1
2Re

− w2
2Re

w2
2Re

− w3
2Re

w3
2Re

0 0 2Cαl1 −2Cαl4

 (3.12)

with corresponding control vector

u =
[
Tb,1 Tb,2 Tb,3 Tb,4 Tb,5 Tb,6 Tb,t Te δf δr

]T
. (3.13)

In Equation (3.12) above, the assumption of small angles has been made, such that
the rotation matrix R(δi), given by Equation (2.11), reduces to the identity matrix
and the coordinate frames of the wheels match that of the vehicle system.

This approach to motion control has shown promising results for both single unit
trucks [8, 12, 18], as well as long vehicle combinations [19], and will be revisited and
expanded further in later parts of this chapter.

To generate the global forces, a motion controller for the complete vehicle model
needs to be included. This controller can either be the operator of the vehicle, who
by use of accelerator/brake pedals and steering wheel angle requests how the vehicle
should move, or, in the case of an autonomous vehicle, any general control law ca-
pable of driving the vehicle. The reference signals sent by the motion controller are
then used to generate the global forces and desired actuator signals. An overview
of the complete control loop is shown in Figure 3.1.

r
v

ud

u

y

Motion

Controller

Target

Generator

Control

Allocator

Vehicle

System

Control System

Figure 3.1: Functional overview of the control loop.

For the considered vehicle application, the reference signal r is comprised of a lon-
gitudinal acceleration request areq

x and desired front steering angle. The target gen-
erator then calculates the virtual control signal Fx as:

Fx = mareq
x (3.14)

For the front steering angle, which in most situations should seldom deviate from the
angle specified by the motion controller, the allocated control signal should hence
match the requested steering angle. To ensure this, both the desired actuator usage
ud and the global force and torque requests Fy and Mz can be utilized as follows.
First, the desired rear steering angle is generated based on Ackerman conditions
[11]:

δdes
r = − arctan

[
l4
l1

tan δreq
f

]
(3.15)
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where δreq
f is the front steering angle requested by the primary controller. Secondly,

the virtual control signals and desired actuator signals are generated as

Fy = 2Cαδreq
f + 2Cαδdes

r (3.16a)
Mz = 2Cαl1δ

req
f − 2Cαl4δ

des
r (3.16b)

and
ud =

[
. . . δreq

f δdes
r

]T
(3.17)

respectively. This feed-forward approach, first described in [8], ensures the correct
actuator usage for the front and rear steering angles.

3.1.4 Actuator dynamics
For many applications of control allocation it is sufficient to neglect the dynamics
of the actuators, such that the transient behavior that occurs when an actuator
signal is requested is disregarded. For these cases no distinction is made between
the requested and actual actuator outputs. However, to properly reflect a physical
system the actuator dynamics should be considered, and the controllers designed
using control allocation within this thesis will be tested for the case when actuator
dynamics are included. The actuator behaviors will be assumed to be dictated by
first order filters, such that the transient behavior of a given actuator is given by

U(s) = 1
1 + sτ

U cmd(s) (3.18)

where U cmd is the commanded actuator output and τ is the time constant of the
filter. Based on the actuator dynamics, the rate limitations of a given actuator can
be found by considering the local behavior of the actuator at the current operating
point:

∆umax = Ts

τ
[−u∗ + umax] (3.19a)

∆umin = Ts

τ
[−u∗ + umin] (3.19b)

where u∗ is the current actuator level and Ts is the controller sampling rate. The
multiplication by Ts is motivated by the fact that the rate constraint is otherwise
expressed per second, and not per sampling time.

With the background of control allocation presented, and how motion control has
been achieved in previous works covered, attention is now turned to traction control
strategies.

3.2 Force Allocation
Traditional traction controllers utilize different techniques for improving the driving
forces generated between wheel and road surface. Such control strategies include
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individual wheel braking of driven wheels when excessive slip is detected, see e.g.
[10], or as in modern ABS systems, rapidly applying and releasing the brakes to
ensure that wheel locking does not occur and the steering ability of the vehicle is
maintained. Common for all traction control strategies is that all wheels should
operate at their respective maxima on the wheel slip curve, and not be allowed to
enter the sliding region beyond the peak slip ratio.

In terms of control allocation, a simple strategy for achieving traction control of
the driven wheels is to allocate individual driving forces for the driven wheels. The
following sections will further elaborate on two of such strategies.

3.2.1 Allocating forces with open differential

The vehicle considered in this thesis is fitted with three differentials; one inter-axle
differential and two inter-wheel differentials. From the previous sections the torque
split will thus be:

Te,i = Te

4 , i ∈ [3, 6] (3.20)

It is also known that the maximum amount of torque transferred to a driving torque,
T̄d, for each wheel is limited by the wheel exhibiting the smallest peak tire force,
such that:

T̄d,i = min(µiFz,iRe), i ∈ [3, 6] (3.21)

where µj is the friction coefficient, Fz,j is the normal load and Re is the effective
radius of the wheel. As a result, if a larger torque is applied, the low friction wheel
will start slipping. To be able to produce a higher driving torque for the wheels
with higher capabilities for traction, a braking torque Tb needs to be applied to the
slipping wheel. The magnitude of the braking force needs to cover the difference in
desired driving torques between the wheels, as presented in the scenarios depicted
in Figure 3.2.

0 0, 25 0, 5 0, 75 1

Fx

0, 250, 50, 751

µRµL

Fmax
x Fmax

x

Fx,L Fx,R

Max.

trans. Fx

(a)
0 0, 25 0, 5 0, 75 1

Fx

0, 250, 50, 751

µRµL

Fmax
x Fmax

x

Fx,L

Fx,R

Tb,R

Re

Max.

trans. Fx

(b)

Figure 3.2: Traction control scenarios: a) No braking torques applied to low
friction side. Maximum transferable tire forces for both tires are limited by the right
wheel. b) Braking torque applied to low friction side. The maximum transferable
tire force for the high friction wheel is increased, allowing greater global longitudinal
force.
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A first force allocation formulation can be constructed under the above premises.
First, assume that the individual normal loads and friction coefficients are known
for each driven wheel, i.e. assume the maximum static friction force for each wheel
is known. Any desired driving or braking force Fx,i must thus fulfill:

− µiFz,i ≤ Fx,i ≤ µiFz,i (3.22)

The maximum constraint on the tire forces can be further limited by also considering
the friction circle and if the wheels have a side slip angle α. For such a case, the wheel
is already producing a lateral force, and since the slip angle for the driven wheels
cannot be directly controlled, the driving force is further constrained according to:

−
√

µ2
i F

2
z,i − F 2

y (αi) ≤ Fx,i ≤
√

µ2
i F

2
z,i − F 2

y (αi) (3.23)

Clearly, for Fy(α) = 0 the force constraints reduce to those described by Equation
(3.22).

The force allocation formulation can now be considered. Since the driven wheel can-
not produce any additional lateral forces, the global force Fy will be dropped from
the virtual control vector, such that v =

[
Fx Mz

]T
. For each wheel, three opti-

mization variables, F +
x,i, F −

x,i and F 0
x,i, are introduced with the following constraints:

0 ≤F +
x,i ≤ F̄x,i (3.24a)

F
¯ x,i ≤F −

x,i ≤ 0 i ∈ [3, 6] (3.24b)
F 0

x,i ≤ 0 (3.24c)

The variables F +
x,i and F −

x,i represents driving and braking forces respectively, while
F 0

x,i is an auxiliary variable, the purpose of which will be explained below. The
upper and lower limits, F̄x,i and F

¯ x,i, are given the constraints set by Equations
(3.22) and (3.23). With the optimization variables defined, the control vector u can
then be written

u =
[
F +

x,3 . . . F +
x,6 F −

x,3 . . . F −
x,6 F 0

x,3 . . . F 0
x,6

]T
(3.25)

with corresponding B-matrix:

B =
[

1 1 1 1 1 1 1 1 0 0 0 0
−w3

2
w3
2 −w4

2
w4
2 −w3

2
w3
2 −w4

2
w4
2 0 0 0 0

]
(3.26)

where wj is the track width of axle j. The available actuators for producing driving
and braking forces are the engine and individual brakes. In the force allocation
formulation the actuator constraints also need to be considered. For the driving
forces, which will be produced by an engine torque request, an upper limit thus
exists:

4 max
[
F +

x,3, F +
x,4, F +

x,5, F +
x,6

]
≤ T̄e

Re

(3.27)

39



3. Control Design

Furthermore, a given engine torque cannot be instantly obtained, but is instead
constrained by a maximum rate constraint ∆T̄e:

Te[k − 1] − ∆T̄e

Re

≤ 4 max
[
F +

x,3, F +
x,4, F +

x,5, F +
x,6

]
≤ Te[k − 1] + ∆T̄e

Re

(3.28)

where Te[k −1] is the engine torque produced in the previous sample instant. Before
considering the actuator constraints set by the brakes, the effects of the open differ-
ential will be examined. From previous sections, to achieve driving forces larger than
those set by the weakest tire, the brake needs to be applied according to how large
the difference in driving forces is. For two tires connected by a single differential,
this can be formulated as:

Tb,3 =

0 if Fx,3 ≥ Fx,4

Re(Fx,3 − Fx,4) if Fx,3 < Fx,4
(3.29a)

Tb,4 =

Re(Fx,4 − Fx,3) if Fx,4 > Fx,3

0 if Fx,3 ≤ Fx,4
(3.29b)

However, such conditions are not possible to formulate in the optimization problem,
since it is not known beforehand which of the driving forces will be the largest.
To still be able to include the braking conditions, the auxiliary variables F 0

x,i are
introduced to cover the differences in driving forces between the four wheels. It is
thus required that:

F +
x,3 − F 0

x,3 = F +
x,4 − F 0

x,4 (3.30a)
F +

x,4 − F 0
x,4 = F +

x,5 − F 0
x,5 (3.30b)

F +
x,5 − F 0

x,5 = F +
x,6 − F 0

x,6 (3.30c)

The negative signs for the auxiliary variables are introduced since F 0
x,i are defined as

negative. Hence, F 0
x,i are the braking forces required to allow different driving forces

when using open differentials. Therefore, when converting the allocated forces to
actuator signals, the total braking force for a given wheel will be given by:

Tb,i = Re(F −
x,i + F 0

x,i) (3.31)

Since the total braking force for a given wheel is subject to limitations set by the
actuator, the following constraints also need to be included:

T
¯ b,i

Re

≤ F −
x,i + F 0

x,i ≤ 0, i ∈ [3, 6] (3.32a)

Tb,i[k − 1] − ∆T̄b,i

Re

≤ F −
x,i + F 0

x,i ≤ Tb,i[k − 1] + ∆T̄b,i

Re

, i ∈ [3, 6] (3.32b)

where T
¯ b,i is most negative torque the brake is capable of producing, Tb,i[k−1] is the

brake torque produced in the previous sample instant, and ∆T̄b,i is the maximum
rate change capability.
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The open differential force allocation formulation can thus be summarized as:

arg min
u

||Wu(u − ud)||22 + γ||Wv(Bu − v)||22
subject to Ainu ≤ bin

Aequ = beq

where the constraints are given by Equations (3.24), (3.27), (3.28), (3.30), and
(3.32). The result of the optimization problem is a set of tire forces, which can then
be translated to actuator signals according to:

Te = 4Re max
[
F +

x,3, F +
x,4, F +

x,5, F +
x,6

]
(3.33a)

Tb,i = Re(F −
x,i + F 0

x,i), i ∈ [3, 6] (3.33b)

The force allocation formulation presented above operates under the assumption of
perfect knowledge of the road conditions and current normal loads on each tire, such
that the maximum available driving force for each wheel is known. This is clearly
not a valid assumption since both road friction coefficients and tire loads, especially
under off road conditions, are subject to rapid change as the vehicle navigates the
terrain. Such an allocation scheme would hence be reliant on a quickly converging
estimation algorithm, capable of providing accurate estimates of the quantities of
interest. Such a state observer is beyond the scope of this thesis, and the force
allocation scheme must be modified to better cope with uncertainties in the way
forces can be allocated.

3.2.2 Allocating forces with open differential using slip feed-
back

If instead the individual wheel slips are considered, i.e. quantities that can be found
with relative ease by use of sensor data, the force allocation algorithm for the driven
wheels can be slightly modified by instead considering the full tire slip curves instead
of just the peak values. Each tire will have an associated slip curve, which for a
given slip value κ∗ can be linearized by use of the Taylor expansion:

Fx(κ) ≈ Fx(κ∗) + ∂Fx(κ∗)
∂κ

∆κ + O(∆κ2) (3.34)

where ∆κ = κ − κ∗. Figure 3.3 shows an example of a slip curve, with a given
linearization point and corresponding gradient.
Since the slip curve expresses a relationship between slip and tire forces, a modified
force allocation formulation can instead use wheel slip as the input vector. For the
driven wheels, consider a control vector u consisting of individual tire forces:

u =
[
Fx,3 Fx,4 Fx,5 Fx,6

]T
(3.35)

The corresponding control effectiveness matrix can then be written:

B =
[

1 1 1 1
w3
2 −w3

2
w4
2 −w4

2

]
(3.36)
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κ

Fx(κ)

F̄x

κ∗

Fx(κ∗)

Figure 3.3: Tire slip curve, where the maximum traction force has been marked
by F̄x. The linearized curve around κ∗ is indicated by the red curve with gradient
∂Fx/∂κ.

From Equation (3.34), u can be expanded as:

u =
[
Fx,3(κ∗

3) . . . Fx,6(κ∗
6)
]T

+ diag
([

∂Fx,3(κ∗
3)

∂κ3
. . .

∂Fx,6(κ∗
6)

∂κ6

])
∆κ (3.37)

where
∆κ =

[
∆κ3 . . . ∆κ6

]T
(3.38)

Taking the product of the expanded control vector u and B yields:

Bu =
[ ∑6

i=3 Fx,i(κ∗
i )∑6

i=3(−1)i−1 w(i)
2 Fx,i(κ∗

i )

]
︸ ︷︷ ︸

vcurrent

+
 ∂Fx,3(κ∗

3)
∂κ3

. . .
∂Fx,6(κ∗

6)
∂κ6

w3
2

∂Fx,3(κ∗
3)

∂κ3
. . . −w4

2
∂Fx,6(κ∗

6)
∂κ6


︸ ︷︷ ︸

Bκ

∆κ (3.39)

The first term of this expression can be seen as the current longitudinal force and
yawing torque generated by the current slip values, while the second term corre-
sponds to a modified efficiency matrix multiplied by the new control vector contain-
ing changes in wheel slip. Hence, the cost function J of the modified force allocation
formulation can be expressed as:

J = ||Wu(∆κ − ∆κd)||22 + γ||Wv(Bκ∆κ − v + vcurrent)||22 (3.40)

For this application, the desired values for the optimization variables, ∆κd, can be
set to zero since it is preferable that the current slip be changed as little as possible.

The output of this optimization formulation would be a set of desired slip values κd

of the tires, given by:
κd = κ∗ + ∆κ (3.41)

These slip ratios would need to be realized by use of available actuators. One such
approach would be to first convert the desired slip ratios to a set of desired tire
forces by use of the slip-force functions,

Fd =
[
Fx,3(κ3,d) . . . Fx,6(κ6,d)

]T
(3.42)
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and use a second control allocation to map these forces to actuator signals. From
the simple tire force model given by Equation (2.10), one has:

Fx,i = Ti

Re

(3.43)

Above, Ti is the total torque applied to the wheel, given by

Ti = Tb,i + Te

4 (3.44)

when using open differentials. The desired tire forces Fd can thus be expressed as

Fd =


1

Re
0 0 0 1

4
1

Re

0 1
Re

0 0 1
4

1
Re

0 0 1
Re

0 1
4

1
Re

0 0 0 1
Re

1
4

1
Re


︸ ︷︷ ︸

BF

uF (3.45)

with uF = [Tb,3 Tb,4 Tb,5 Tb,6 Te]T . Equation (3.45) can be seen to resemble the
equation v = Bu used in the control allocation. The cost function of the second
control allocation problem, mapping desired forces to actuator signals is then given
by

J = ||Wu(uF − uF,d)||22 + γ||Wv(BF uF − Fd)||22 (3.46)
The two step control allocation method described above is fairly straightforward,
but requires constantly updated estimates of the parameters of the tire slip curves
as the vehicle traverses the road. Again, such filter implementations are not within
the scope of this thesis. Furthermore, there are other problems with this approach
that need to be addressed.

Consider the case where the current slip κ∗ value has surpassed the optimal slip
point κo. The gradient of the slip curve at this point becomes negative when lin-
earization is carried out. For the case when the desired global longitudinal force
is positive and very large this does not pose a problem, since the allocation of slip
values would let the change in slip be negative, thus producing a higher tire force.
However, if the driver requests a large negative force, the slip allocation will not
generate a large negative change in slip, but rather follow the gradient in the pos-
itive direction, which from the local behavior generates a smaller tire force. This
is clearly an issue, since for this situation the tire will never be able to cross over
to the negative slip side. Two of these problematic situations can arise. Figure 3.4
shows a summary of all slip cases and highlights the problematic situations.

Additionally, the slip allocation method depends heavily on the estimator of the
tire model parameter being accurate, otherwise the method might become unsta-
ble. To illustrate how this might occur, consider the case when the approximated
tire parameters underestimates the actual tire curve for one wheel while all other
curves are accurate. In this situation the second allocation, where desired forces
are mapped to actuator signals, will produce braking torques higher than actually

43



3. Control Design

needed to cover the differences between the tires. This in turn will lead to negative
slip values in the next time step, since the tire is excessively braked. In this time
step, the allocation will try to correct for this negative slip and release the brakes.
This behavior continues until the estimated tire curve parameters have been cor-
rected, effectively introducing oscillations in the control signals.

The problems described above make force allocation thought slip feedback and tire
curve linearization a poor candidate for traction control. Therefore, this approach
will not be pursued further within this thesis.
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Figure 3.4: Different slip cases that may arise during the force allocation. Indicated
are current slip and force levels given by κ∗ and F ∗ respectively, and desired tire
force levels Fd. The optimal slip values are given by κo. Problematic cases are
indicated in red. 45
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3.3 Predictive Slip Control
One advantage of using an optimization based control algorithm is the ability of pre-
dicting the dynamical behavior of a system over a time horizon under the influence
of a control signal modeled as an optimization variable. Two predictive slip control
methods are described and discussed below.

3.3.1 Control allocation with slip prediction
As described in the above sections, the force allocation schemes are not suitable for
traction control. The focus is instead turned to controlling the wheel slip of the
driven wheels. It is in certain situations, such as driving through very soft soil,
not necessary or even desired to let the wheels operate at the peak of the friction
curve. In these situations it is instead preferable to let the tires spin up slightly to
let the vehicle dig its way forward. Therefore, a maximum allowed slip depth will
be specified, to which the tire can be allowed to spin up before intervening action is
taken. This slip regulation can be achieved in several different ways, such as apply-
ing brakes or lowering the engine torque. The following sections will present a slip
regulation scheme within the control allocation formulation.

If the standard control allocation formulation is considered, in this case only for
the driven wheels, the slip dynamics can be considered when choosing the optimal
actuator signals. Consider the slip definition during acceleration, given by Equation
(2.6a). Taking the derivative with respect to time gives:

κ̇i = − 1
Reωi

v̇x + vx

Reω2
i

ω̇i (3.47)

From the dynamics of the truck and the individual wheels one has:

v̇x = vyωz + 1
m

(∑
i

Fx,i

)
(3.48a)

ω̇i = 1
Iw,i

(Te,i + Tb,i − ReFx,i) , Tb,i ≤ 0 (3.48b)

For simplicity, the assumption that the dynamics of the truck are slow in comparison
to that of the tires can be made, such that v̇x ≈ 0. The slip dynamics are then given
by:

κ̇i = vx

Reω2
i

1
Iw,i

(Te,i + Tb,i − ReFx,i) (3.49)

However, in this model of the slip dynamics, when vx = 0 the slip dynamics will
not be affected by the applied torques. Furthermore, the system becomes undefined
for ωi = 0. Since the traction control scheme should work even during take-off,
i.e. when both velocity and angular rate are close to zero, this model of the slip
dynamics is not suitable. Instead, the modified slip dynamics given by [4] will be
used:

κ̇i + Reωi

σx

κi = Reωi − vx,i

σx

(3.50)
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where σx is called the relaxation length, and can be calculated by use of tire pa-
rameters. For the purposes of slip regulation, the relaxation length can be used as
a tuning parameter. This definition of the transient behavior has the advantage of
being defined for all values of vx,i and ωi, as well as reducing to the regular slip
definition

κ = Reωi − vx,i

Reωi

(3.51)

as κ̇i tends to zero. Now, Equations (3.50) and (3.48b) can be combined to form a
nonlinear state space model:[

κ̇i

ω̇i

]
=
[

−Reωi

σx
κi + Reωi−vx,i

σx1
Iw,i

(Te,i + Tb,i − ReFx,i(κi))

]
(3.52)

Again linearizing around the current state, given by κ∗
i , ω∗

i and current torque levels
T ∗

b,i and T ∗
e,i, gives:[

∆κ̇i

∆ω̇i

]
=
 −Reω∗

i

σx

Re

σx
(1 − κ∗

i )
− Re

Iw,i

∂Fx,i(κ∗
i )

∂κi
0

 [∆κi

∆ωi

]
+
[

0 0
1

Iw,i

1
Iw,i

] [
Tb,i

Te,i

]
+
[

0
− Re

Iw,i
Fx,i(κ∗

i )

]

, Ai

[
∆κi

∆ωi

]
+ Bi

[
Tb,i

Te,i

]
+ ki(κ∗

i ) (3.53)

To predict the behavior of this linear system over a given time horizon Ts, the
analytical state solution can be used, which for a given linear state space model
ẋ = Ax + Bu with constant input u is given by:

x(t) = eA(t−t0)x(t0) +
t∫

t0

eA(t−τ)B dτ u (3.54)

Since the system described by Equation (3.53) uses deviation variables, the initial
state is always zero, and the state equation solution reduces to[

∆κi(T )
∆ωi(T )

]
=

Ts∫
0

eAi(T −τ)Bi dτ

[
Tb,i

Te,i

]
+

Ts∫
0

eAi(Ts−τ) dτ

[
0

− Re

Iw,i
Fx,i(κ∗

i )

]
, (3.55)

which for ∆κi(Ts) becomes a matrix multiplication of the form:

∆κi(Ts) = Mi(Ts)ui + Ni(Ts)k(κ∗
i ) (3.56)

where ui = [Tb,i Te,i]T . Equation (3.56) gives a solution for the change in slip
produced after a time interval Ts, when applying the input torques found in ui. The
total slip ratio can then be found by

κi(Ts) = κ∗
i + ∆κi(Ts) (3.57a)

=⇒ κi(Ts) = κ∗
i + Mi(Ts)ui + Ni(Ts)k(κ∗

i ) (3.57b)

By defining upper and lower slip limits, κ̄i and κ
¯i respectively, it is required that:

κi(Ts) ≤ κ̄i =⇒ Mi(Ts)ui ≤ κ̄i − κ∗
i − Ni(Ts)k(κ∗

i ) (3.58a)
κi(Ts) ≥ κ

¯i =⇒ Mi(Ts)ui ≥ κ
¯i − κ∗

i − Ni(Ts)k(κ∗
i ) (3.58b)
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The expressions found in Equation (3.58) limit the amount of torque that can be
applied to a given wheel before the longitudinal slip ratio violates the upper or lower
limits. Since the expressions are functions of the control signals contained in ui, the
inequalities can be appended as linear constraints to the control allocation problem
described in Section 3.1.3.

3.3.2 Model predictive control using open differential dy-
namics

Model predictive control (MPC) is similar to control allocation in the sense that an
optimization based algorithm is used to find the optimal control signals at a given
time instant. In contrast to CA, where an external controller generates virtual con-
trol signals which are then realized using available actuators, MPC is a complete
controller structure and takes into account all states of the system in addition to
the actuator signals.

In MPC, at any given time instant an optimization problem is solved, generat-
ing a sequence of predicted system states and a set of corresponding optimal control
moves, of which only the first control action is applied to the system. The current
state of the system, based on sensor measurements, is used as a starting point for the
predicted dynamics, and the optimization problem is solved again at each sampling
instant. Although initially designed for process control in petrochemical plants in
the 1970’s [7], where the dynamics and sampling times are typically slow, MPC has
since become a viable control method even for systems exhibiting quick dynamics.

The optimization problem used in MPC is usually of the form:

arg min
u0:P

P∑
k=0

[
(xk+1 − xd

k+1)T Q(xk+1 − xd
k+1) + (uk − ud

k)T R(uk − ud
k)
]

subject to xk+1 = Axk + Buk

u
¯

≤ uk ≤ ū, k = 0, . . . , P

∆u
¯

≤ uk − uk−1 ≤ ∆ū

where Q and R are positive semi-definite weighting matrices, xd
k and ud

k are state
and control references, and P is the prediction horizon.

The starting point of MPC is a model of the system dynamics in linear state space
form. For the objective of slip control, the modified slip definition given by Equa-
tion (3.50) will be used in combination with the dynamics of the open differentials
derived in Section 2.3.1. To do so, the model of a single differential is expanded to
include the three-differential system equipped on the 8x4 truck. By coupling the
dynamics of the differential system to that of the slip dynamics of the driven wheels,
a nonlinear system is obtained. The details of the derivation of the full state space
model can be found in Appendix A.2. By linearization around the current state, a
linear state space model can be generated and discretized to produce the system:

∆xk+1 = A∆xk + B∆uk (3.59)
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where ∆x = x − x∗ and ∆u = u − u∗. Since the state and control vectors are
described in deviation variables, the constraints of the optimization problem need
to be slightly rewritten. For the max/min constraints, it is thus required that

u
¯

≤ u∗ +
j∑

i=0
∆ui ≤ ū, j = 0, . . . , P (3.60)

while the rate constraints reduce to

∆u
¯

≤ ∆ui ≤ ∆ū, i = 0, . . . , P. (3.61)

3.3.3 Encountered problems
It was discovered during testing of the predictive control methods that the linearized
slip model is not suited for slip control. To illustrate why, the linearized continuous
time state space models for the slip and tire dynamics can be simulated for a short
time interval when applying a constant positive input torque. Figure 3.5 shows
the system behavior of the slip state during 0.5 seconds. As shown, the slip state
exhibits oscillatory behavior, and takes both positive and negative values throughout
the considered time frame. In terms of controller design this poses an issue.
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Figure 3.5: Simulated slip dynamics based on the linearized slip model.

For the slip prediction method a time horizon for evaluating the slip state needs to
be considered. From Figure 3.5 it is known that the final slip value will depend on
the chosen time horizon. Based on how the horizon is chosen, the end results could
be either positive or negative. Furthermore, the final slip value will also change
based on the current linearization point and tire parameters. Clearly, this compli-
cates the control design.

Consider the case when the slip does exceed the specified upper limit. Intuitively,
since the allocator must respect the constraints set by Equations (3.58), the total
torque applied to the slipping wheel must be significantly reduced. However, if the
time horizon has been chosen such that the final value is negative, the allocator will
increase the supplied torque, effectively leading to an even higher slip ratio. As the
slip deviates further from the upper limit, the optimization problem might also grow
infeasible as enough torque might not be available to respect the slip constraints.
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Similar issues are present for the MPC formulation. For this controller a sampling
time must be chosen when discretizing the linearized state space model. Based on
the choice of sampling time, and prediction horizon P , the controller then solves the
optimization problem. Just like for the slip prediction controller, the MPC might
end up producing counter-intuitive control signals. Consider the case when the pre-
diction horizon has been chosen such that the final value of the slip is negative if
the input torque has been kept positive. If the vehicle starts from standstill and the
reference signal for the slip is chosen as the optimal positive point on the slip curve,
the best control move is thus to apply a negative torque. In the physical system
such a control signal will only lead to a negative slip level, for which the vehicle
might start reversing. Clearly, this is an unwanted controller behavior.

The issues discussed above leads to the conclusion that the described predictive
control methods are not suitable for traction control. These methods will not be
pursued further within this work.

3.4 Feedforward Torque and Slip Control using
Control Allocation

All approaches to traction control described above have to some extent utilized tire
curves and assumed that the parameters involved in defining the slip-force functions
are well-known. In a physical system it is often hard to estimate these parameters
and any slip controller that depends on these quantities being accurate might suffer
in terms of stability and robustness. The following section will describe an alterna-
tive approach to traction control, again by use of control allocation, that does not
involve usage of a tire curve.

The idea of the controller will be to limit how much torque can be supplied to
any given wheel, based on current data such as angular velocities of the tires, driver
requests, and current longitudinal tire forces. To achieve this objective, the virtual
control vector v is modified to not only include global forces but also individual
desired tire forces:

v =
[
Fx Fy Mz F des

x,1 F des
x,2 . . . F des

x,6 F des
x,t

]T
(3.62)

where F des
x,t is the single tire force specified for the tag axle. The choice of only

including one force is due to the fact that only one brake actuator exists for the
tag axle. To complete the CA formulation, the B matrix needs additional rows. In
previous sections on tire modeling it has been assumed that

Fx,i = Ti

Re

, i ∈ [1, 8] (3.63)

where

Ti =

Tb,i for non-driven wheels
Tb,i + Te

4 for driven wheels
(3.64)
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The modified control efficiency matrix then becomes:

B =



1
Re

1
Re

1
Re

1
Re

1
Re

1
Re

2
Re

1
Re

0 0
0 0 0 0 0 0 0 0 2Cα 2Cα

− t1
2Re

t1
2Re

− t2
2Re

t2
2Re

− t3
2Re

t3
2Re

0 0 2lfCα −2lrCα
1

Re
0 0 0 0 0 0 0 0 0

0 1
Re

0 0 0 0 0 0 0 0
0 0 1

Re
0 0 0 0 1

4Re
0 0

0 0 0 1
Re

0 0 0 1
4Re

0 0
0 0 0 0 1

Re
0 0 1

4Re
0 0

0 0 0 0 0 1
Re

0 1
4Re

0 0
0 0 0 0 0 0 1

Re
0 0 0



(3.65)

The desired forces will be chosen from one of two candidate forces, each of which
are calculated from different input data. The two candidate forces are:

• F req
x,i , obtained from current global force request Fx.

• F lim
x,i , calculated from slip conditions and current tire information such as an-

gular velocity and friction forces.

3.4.1 Calculating requested forces
The requested tire forces described by F req

x,i correspond to standard driving situa-
tions, i.e. the case when traction control is not the priority. Under these circum-
stances the global force Fx can be distributed across all tires for two separate cases;
acceleration (Fx ≥ 0) and braking (Fx < 0). During acceleration the requested
forces are produced solely at the driven wheels, such that:

F req
x,i =

0 for non-driven wheels
1
4Fx for driven wheels

(3.66)

During braking the global longitudinal force can be distributed in several different
ways. A simple method is to request forces proportionally to current normal loads.
Since normal loads are not available at each tire, but instead for each axle, the
requested braking forces are calculated as:

F req
x,i = 1

2
Fz(i)∑

Fz

Fx (3.67)

where Fz(i) denotes the normal load at the axle where tire i is found.

3.4.2 Calculating limiting forces
The forces F lim

x,i can be seen as the limits to how much force each tire can produce
before excessive wheel slip occurs. The derivation of these forces starts by reading the
current acceleration request areq

x supplied by the driver, to obtain the instantaneous
velocity request for each tire:

vreq
x,i =

(
v∗

x + (−1)i w(i)
2 ω∗

z

)
+ Ts · ax,req (3.68)
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where v∗
x and ω∗

z are the current longitudinal and angular velocities of the vehicle
respectively, w(i) is the track width of the axle where tire i is placed, and Ts is the
controller sampling time. By defining slip ratio limits κ̄ and κ

¯
, the slip definitions

given by Equation (2.6) can be combined with the instantaneous velocity requests
to find upper and lower limits for the angular velocities of the tire. For the two
separate slip cases, i.e. acceleration and braking, one obtains:

κ̄ =
Reω̄i − vreq

x,i

Reω̄i

=⇒ ω̄i =
vreq

x,i

Re(1 − κ̄) (3.69a)

κ
¯

=
Reω̄i − vreq

x,i

vreq
x,i

=⇒ ω
¯ i =

vreq
x,i (1 + κ

¯
)

Re

(3.69b)

Starting from the dynamics of the tires, given by the expression

Iw,iω̇i = Ti − ReFx,i, i ∈ [1, 8] (3.70)

it is possible find the final value of ωi after a time interval Tf = NTs, N ∈ Z+,
under the assumption that Fx,i, the current friction force, and Ti are known and
remain constant during Tf , by use of Equation (3.54). The final value of ωi becomes

ωi(Tf ) = ω∗
i + NTs

Iw,i

(Ti − ReFx,i). (3.71)

Inserting the results of Equation (3.69) as final angular velocities yields the limit as
to how much torque can be applied to the tire before reaching the angular velocity
limit:

T lim
i = Iw,i(ωlim

i − ω∗
i )

NTs

+ ReFx,i (3.72)

where ωlim
i is either ω̄i or ω

¯ i, depending on the driver request. The limiting torque
is then rewritten to a limiting force

F lim
x,i = T lim

i

Re

. (3.73)

3.4.3 Choosing desired tire forces
With the two candidate forces calculated, the desired tire forces can be calculated
as the most restrictive of the two candidates:

F des
x,i =

min
(
F req

x,i , F lim
x,i

)
during acceleration

max
(
F req

x,i , F lim
x,i

)
during braking

i ∈ [1, 6] (3.74)

For the tag axle, for which only one desired tire force can be specified, the most
restrictive case becomes:

F des
x,t =

min
(
F req

x,7 , F req
x,8 , F lim

x,7 , F lim
x,8

)
during acceleration

max
(
F req

x,7 , F req
x,8 , F lim

x,7 , F lim
x,8

)
during braking

(3.75)
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3.4.4 Estimator design
The described traction control method assumes that the current longitudinal friction
forces Fx,i are known. A tire force observer must therefore be included. Numerous
estimator approaches of different complexity exist, see e.g. [1], but for the purposes
of this thesis a simple Kalman filter utilizing the tire dynamics will be used. For a
given tire the continuous time state vector

x(t) =
[

ωi(t)
Fx,i(t)

]
(3.76)

is defined. By assuming the dynamics of Fx,i as a random walk model, the continuous
time state space model can by use of Equation (3.70) be written:

ẋ(t) =
[
0 −Re

Iw,i

0 0

]
x(t) +

[ 1
Iw,i

0

]
u(t) +

[
0
1

]
q̃(t) (3.77)

where q̃(t) is the process noise of Fx,i(t), and u(t) = Ti(t). By utilizing standard
discretization techniques a discrete state space model can be obtained:

xk =
[
1 −ReTs

Iw,i

0 1

]
︸ ︷︷ ︸

Ad

xk−1 +
[

Ts

Iw,i

0

]
︸ ︷︷ ︸

Bd

uk−1 + qk−1 (3.78a)

qk−1 ∼ N {0, Qk−1} , Qk−1 =
 T 3

s R2
eσ2

i

3Iw,i
−T 2

s Reσ2
i

2Iw,i

−T 2
s Reσ2

i

2Iw,i
Tsσ

2
i

 (3.78b)

where σ2
i is the covariance of the tire force process noise, and uk−1 = Ti[k − 1] is the

total applied torque at sampling instant k − 1.

Since only the angular velocities of the tires are measureable, the measurement
model of the estimator is defined as:

yk =
[
1 0

]
︸ ︷︷ ︸

H

xk + rk, rk ∼ N
{
0, σ2

ω,i

}
(3.79)

The standard Kalman filter equations are then applied at each sampling instant:
Prediction step:

x̂k|k−1 = Adx̂k−1|k−1 + Bduk−1 (3.80a)
Pk|k−1 = AdPk−1|k−1A

T
d + Qk−1 (3.80b)

Update step:

x̂k|k = x̂k−1|k−1 + Kk(yk − Hx̂k−1|k−1) (3.80c)
Pk|k = Pk|k−1 − KkSkKT

k (3.80d)

where

Sk = HPk|k−1H
T + σ2

ω,i (3.80e)
Kk = Pk|k−1H

T S−1
k (3.80f)
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3.4.5 Weight selection
Since additional entries to the virtual control vector have been included, the weight-
ing matrix Wv must be expanded. A natural question is how the desired tire forces
should be weighted against the global forces. For the case when traction control is
not the priority, i.e. when no wheel is close to the slip limits, it is favorable to keep
high priority on the global forces. Clearly, by setting zero weight on the desired
tire forces the CA formulation reduces to the original controller described in Section
3.1.3. Conversely, if one or more tires approach their respective slip limits, more
emphasis should be put into allocating the desired tire forces. Furthermore, the
weights for Fy and Mz should be greatly reduced when traction control is needed.
To illustrate this, consider the case when one driven wheel slips during acceleration.
In this situation, the traction controller will intervene by allocating less torque to
the slipping wheel, effectively applying brake torques. When brakes are applied,
the algorithm also creates a virtual global yawing moment, which the algorithm
compensates for by use of steering angle actuators. However, in the real system no
additional yawing moment is created by applying brakes to a slipping wheel, and
the compensation by steering angles will only lead to the vehicle deviating from its
original trajectory. Hence, the weights for global lateral forces and yawing moments
should be reduced as traction control becomes activated to prevent unwanted steer-
ing compensation.

The cases described above will be handled by dynamically chosen weights. Ini-
tially, the weights for the desired tire forces will be set equal and high in comparison
to the global forces. For the desired forces a weight scaling factor ρ is then defined
as:

ρ =

1 − min
[
e−λ|κ1/κ̄|, . . . , e−λ|κ8/κ̄|

]
during acceleration

1 − min
[
e−λ|κ1/κ

¯
|, . . . , e−λ|κ8/κ

¯
|
]

during braking
(3.81)

where λ is the decay rate, which can be used as a tuning parameter. By multiplying
the initial weights for the desired tire forces it is ensured that as slip levels remain
low, more priority is given to global forces. Similarly, one can define a scaling factor
for the weights on the global lateral force and yawing moment as

η = 1 − ρ (3.82)

to ensure that the weights are reduced as traction control becomes more important.
The results of the feedforward torque and slip controller are presented in the next
chapter. The control formulation is tested for the standard CA formulation, as well
as a combination of model predictive control and control allocation, MPCA.
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3.5 Model Predictive Control Allocation
Model predictive control allocation is an extension of the CA formulation, where the
actuator dynamics are considered when allocating control signals. The method aims
to improve system response times by preemptively requesting actuator signals such
that steady state outputs are reached quicker, emulating the case when no actuator
dynamics are considered. The approach has shown promising results in comparison
to the standard CA formulation [16].

Just like for model predictive control, the starting point of the MPCA formula-
tion is a description of the actuator dynamics. Equation (3.18) can be used to
obtain a discrete state space model:

uk+1 = Auuk + Buucmd
k (3.83)

where uk and ucmd
k are respectively the actual and commanded actuator outputs.

The optimization problem to be solved can then be formulated as

arg min
ucmd

0:T

T∑
k=0

[
||Wu(uk+1 − ud)||22 + γ||Wv(Buk+1 − v)||22

]
subject to uk+1 = Auuk + Buucmd

k

u
¯

cmd ≤ ucmd
k ≤ ūcmd, k = 0, . . . , T

where u
¯

cmd and ūcmd are the upper and lower limits for the commanded actuator
outputs, corresponding to the range limits specified for the standard CA formulation.
The algorithm uses current actuator outputs as initial states to solve the optimiza-
tion problem. The first set of commanded outputs, ucmd

0 , are sent as requests to the
physical actuators.
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4
Results

The following chapter describes the test cases and evaluates the performance of the
proposed feedforward torque and slip control method described in Section 3.4. The
results were all generated using Volvo’s VTM (Virtual Truck Model) library imple-
mented in Simulink [20]. Due to the time constraints of this thesis the results were
not verified in a physical truck.

The suggested controller is initially evaluated for two versions of the allocator:
• Standard CA
• MPCA

For both allocator versions a comparison will be made with the corresponding default
allocation case, where no additional measures have been taken to achieve traction
control. These default controllers, described in Section 3.1.3, will in the results be
referred to as Traction control off.

Lastly, the proposed control method using MPCA is compared to software-in-the-
loop results of a traction control system found in production trucks for one test
case.

4.1 Test Cases
Four different scenarios are used to test the performance of the suggested controller
structure. The test cases are designed to test the performance of the controller un-
der different working conditions when longitudinal slip control is the priority. The
longitudinal dynamics of the truck will hence be studied primarily.

All test cases will be carried out with an included path follower in the primary
motion controller, which generates the front steering angle to maintain the vehicles
position on the road.

4.1.1 Split friction acceleration
The first test case consists of a vehicle starting from standstill on a flat road with dif-
ferent friction levels for the left and right sides. The friction levels are set according
to

µL = 1.0 (4.1a)
µR = 0.3 (4.1b)
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for the left and right sides respectively. From standstill a constant acceleration
request of magnitude 0.4g is demanded.

4.1.2 Split friction braking
For the braking case the vehicle is instead started from an initial velocity of 20 m/s.
The friction levels are defined similar to those in the acceleration test. From high
velocity a deceleration of magnitude −0.4g is requested, until the velocity reaches 2
m/s. At this point, the acceleration request is set to zero.

4.1.3 Split friction uphill
The first uphill test scenario is another split friction test. The vehicle will have an
initial velocity of 2 m/s and enter a gradient of 10 degrees, where the friction levels
for the left and right side have been defined as

µL = 1.0 (4.2a)
µR = 0.4. (4.2b)

The velocity will be maintained by use of a PI-regulator until t = 10 seconds, at
which point a constant acceleration request of magnitude 0.4g is sent by the driver
model.

4.1.4 Uphill steering
The second uphill test also includes a gradient of 10 degrees, and adds a left-handed
curvature to the track. The desired radius of the track is set to 25 m, corresponding
to a sharp cornering maneuver. The friction coefficients are for the first 25 meters of
the track set to 1.0 and equal for both sides of the vehicle. Thereafter, the friction
coefficient of the right side, i.e. for the wheels on the outer side of the curve, is
reduced to µR = 0.3. The vehicle is instructed to maintain a velocity of 2 m/s by
use of a PI-regulator which dictates the acceleration request throughout the driving
sequence.

4.2 Simulation Results
The results of the test cases are presented below for the two versions of the allocation
formulation.

4.2.1 Split friction acceleration
For the acceleration test scenario on flat ground, the most telling results as to
whether the traction control system has performed as expected are the slip ratios of
the driven wheels when traction control is on versus off. These results for the tires
experiencing low friction are depicted in Figure 4.1.
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Figure 4.1: Slip ratios for the low friction driven wheels during the split friction
acceleration test. Blue curves correspond to the results generated using the sug-
gested traction controller. Red curves are the results of the same test case using the
default controller, without any modifications for added traction. Left: Controller
using CA. Right: Controller using MPCA. Upper and lower slip limits are indicated
in grey, here defined as κ̄ = 0.5 and κ

¯
= −0.2.

As the figures show, both controllers intervene once the tires start to slip, but
in comparison the CA controller is significantly slower to respond and does not
manage to keep the slip level at the maximum limit, as observed for the results
of the MPCA controller. The slow behavior of the CA controller is caused by the
rate constraints included in the optimization problem. Since the CA controller
only considers the local behavior of the actuator dynamics, the control signal ends
up being slowly ramped up. In contrast, the MPCA controller considers the full
dynamics of the actuators when choosing the requested signals, leading to a quicker
response. Furthermore, the requested actuator outputs for the CA controller do not
match the actual outputs as well as for the MPCA formulation. This means that
there is a mismatch in how much total torque the optimization algorithm allocates to
a single wheel and the actual torque supplied by the actuators. This mismatch can be
illustrated by considering allocated signals to actual signals. For the CA controller,
Figure 4.2 shows the allocated and actual torques affecting tire 4, i.e. torques
generated by the brake and engine, as well as the magnitude of the total torque
mismatch. The same data for MPCA is shown in Figure 4.3, where the commanded
actuator signals have been substituted for the first set of predicted signals obtained
by the solution to the optimization problem. These predicted signals are what the
allocator expects the actuators to produce. As the results show, the total torque
offset for the CA controller is large for extended periods of time, a property not
observed for the MPCA controller, for which the mismatch, although large during
quick transients, is not significant for any considerable time intervals.
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Figure 4.2: Top and middle: Requested (blue) versus actual (red) actuator signals
for the CA controller. Bottom: Total torque mismatch for tire 4.
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Figure 4.3: Top and middle: Predicted (blue) versus actual (red) actuator signals
for the MPCA controller. Bottom: Total torque mismatch for tire 4.
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Other interesting results include the velocity profiles of the vehicle when traction
control is on/off. These results are shown in Figure 4.4. For the CA case, the velocity
is initially higher when traction control is off. This is due to the fact that the high
slip ratio during start-up causes the traction controller to reduce the torques applied
to the wheels, leading the the observed lag in velocity. As the wheels start to slip
however, the CA formulation without traction control is overtaken. For MPCA the
differences are much clearer, and the benefits of having traction control when using
open differentials become evident. The velocity after 10 seconds is nearly twice as
high with traction control on.
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Figure 4.4: Velocity of vehicle, with (blue) and without (red) traction control,
during test case 1. a) Controller using CA. b) Controller using MPCA.

Lastly, the allocated control signals can be examined to check how the controllers
utilize both engine and braking torques to control the wheel slip. Figure 4.5 show
the commanded and actual engine and brake torques for the driven wheels on the
low friction side. At t ≈ 6 s excessive wheel slip develops for the CA controller, at
which point the brakes are applied and the engine torque is reduced. As the slip
ratios shrink the engine torque is again increased and the brakes let off. When the
slip levels increase again the process repeats. For the MPCA controller consistently
high slip levels are observed immediately when the acceleration request is applied.
The controller therefore significantly reduces the initially commanded engine torque
and applies brakes to the slipping tires.
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Figure 4.5: Top and middle: Commanded (blue) and actual (red) signals for the
brake actuators on the low friction side. Bottom: Corresponding signals for the
engine actuator.
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As shown by the above results, traction control relies on rapid and accurate torque
control of the tires, properties not observed when using the standard CA formulation
with actuator dynamics included. Since split friction acceleration on flat ground is
the simplest test case, the CA controller in its current form is not expected to
perform better for any other test scenario. To improve the performance of the
CA controller, the engine actuator can be substituted for an electric motor. In
terms of actuator modeling this corresponds to an actuator with significantly quicker
dynamics, i.e. a smaller time constant τ . Figure 4.6 shows the resulting slip curves
for the modified CA system. As the results show, the CA controller now manages
to maintain the slip at the maximum limits, similar to the results of the MPCA
controller shown in Figure 4.1b.
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Figure 4.6: Slip ratios for the low friction driven wheels during split friction accel-
eration test using CA and modified engine dynamics. Upper and lower slip limits
are indicated in grey.
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Figure 4.7: Top and middle: Commanded (blue) and actual (red) signals for the
brake actuators on the low friction side. Bottom: Corresponding signals for the
modified engine actuator. All results were generated using the CA controller.
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Again, the requested and actual actuator signals can be considered to evaluate
how the allocator makes use of brake and engine torques when traction control
is included, see Figure 4.7. The results again indicate similar performance to the
MPCA controller, see Figure 4.5b. Figure 4.7 also illustrates the much quicker
response and better correlation between commanded and actual signals obtained for
the modified engine model. These results highlight the possibility of using control
allocation for traction control in electric vehicles, where the engine torques can be
generated quickly and accurately. However, for the remainder of the test cases only
the original engine dynamics will be considered, for which the performance of the
CA controller is not expected to improve. Therefore, the focus will be solely on the
results of MPCA for the remainder of the trials.
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4.2.2 Braking on split friction surface
The split friction braking test case is carried out to verify whether the allocation
formulation can be used similarly to an emergency braking system such as ABS.
The ambition is that a single controller should handle several traction control situ-
ations, instead of several separate systems, as is the case for many trucks presently
in production.

The slip ratios can again be examined for the interval of interest. For this test
case all tires on the low friction side are considered. The slip ratios are found in Fig-
ure 4.8, showing that the controller is actively regulating the slip levels. For higher
velocities, when braking has just begun, the slip levels are better maintained. As
the velocity decreases in magnitude, the slip levels increase slightly until the desired
velocity is reached and slip control is deactivated. At this point the tires are only
subject to friction forces and some oscillations are introduced before the slip levels
settle at zero. The oscillations are due to the implementation of the tire model in
the simulation environment.
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Figure 4.8: Slip ratios for the low friction wheels during the split friction braking
scenario, with lower slip limit κ

¯
= −0.2. Traction control on versus off in blue and

red respectively. Slip limits are indicated in grey. All results were generated using
the MPCA controller.

To see how the allocator coordinates the use of engine and service brakes, the com-
manded and actual actuator signals can be considered. Figure 4.9 shows the re-
quested and actual control signals during braking. As the results show, the allocator
fully utilizes the engine brake during the braking scenario. Since the engine brake is
slow to apply, the service brakes are quickly applied as the deceleration is requested
by the driver. As multiple wheels start slipping both engine and service brakes are
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released slightly until slip ratios reach the acceptable levels again. The engine brake
then remains fully utilized throughout the entire braking sequence. Furthermore,
the results show that larger braking torques are used for tires towards the front of
the vehicle due to the load transfer.

The tuning of the desired actuator signals can be further elaborated on. During
braking, the use of service brakes should preferably be kept to a minimum, and the
engine brake applied as much as possible. To achieve this, the weights for the brake
actuators can be set high in comparison to the engine actuator, while all desired
actuator signals, both for brakes and engine, are set to zero. This tuning ensures
that the service brake usage is kept restrictive, while applying the engine brake as
much as possible. Additionally, the upper limit for the commanded engine torque is
lowered to zero during braking. This is done to make certain that no positive engine
torques can be commanded while a negative acceleration is requested.
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Figure 4.9: Commanded (blue) and actual (red) signals for the brake actuators on
the low friction side, in addition to the engine actuator.
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Lastly, the velocity profiles of the vehicle can be examined. Figure 4.10 shows how
quickly the vehicle manages to reach 2 m/s when traction control is on versus off.
The deceleration request is applied at t = 5 seconds. With traction control included
the vehicle reaches the target velocity at roughly 11 seconds. The corresponding time
without traction control is approximately 12 seconds, illustrating the capabilities of
the designed traction formulation.
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Figure 4.10: Velocity of vehicle during test case 2.
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4.2.3 Split friction uphill

The split friction test is again repeated, this time for an uphill scenario. The results
of the test will highlight how the priority is shifted from global to local forces once
excessive slip is present.

The vehicle enters a slope of 10 degrees and tries to maintain a velocity of 2 m/s.
At t = 10 seconds a constant acceleration request of areq

x = 0.4g is applied. Figure
4.11 shows the slip ratios of the driven wheels during the time of the acceleration
request. As seen, slip control is present when traction control is included.
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Figure 4.11: Slip ratios for the low friction wheels, with upper slip limit κ̄ = 0.5
indicated in grey. The results are generated using MPCA.

Again, the velocity profile of the vehicle can be examined to show the effect of
having traction control when using open differentials on low friction surfaces. As
Figure 4.12 shows, the vehicle is not able to maintain acceleration without the added
traction system.
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Figure 4.12: Velocity of vehicle during test case 3.

The uphill test case also illustrates how the dynamic weighting for the individual
wheel forces shifts the priority as the wheel slips increase. Figure 4.13 shows the
virtual and allocated forces for some elements of v. The control signals are based on
actual actuator outputs. Clearly, as high slip ratios are obtained at t = 10 seconds,
the allocator focuses on maintaining the local tire forces to a higher extent than the
global forces.
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Figure 4.13: Virtual (v) and allocated (Bu) forces in blue and red respectively,
during test case 3.

Figure 4.13 also explains why the weighting for the global yawing moment needs to
be very small when traction control is included in the allocation formulations. As
braking forces are applied to keep slip ratios at acceptable levels, the allocator also
creates a large virtual yawing moment. If the priority for the corresponding global
force is high the allocator will compensate by use of steering angles which in effect
might introduce undesired vehicle behavior.
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4.2.4 Uphill steering
The main purpose of the uphill steering scenario is to investigate whether the pro-
posed controller can achieve traction and still maintain maneuverability during cor-
nering. For comparison, the same scenario will be tested when the differentials are
fully locked and traction control is not included. The ability to follow the desired
curvature of the road will be used as a performance measure.

The low friction patch is encountered at roughly 17 seconds. Figures 4.14 and
4.15 show the slip ratios for the driven wheels, zoomed in around the time when
wheel slip occurs, and the velocity of the vehicle throughout the driving sequence.
The results when using MPCA with traction control show that the slip ratios are
regulated to within acceptable levels. For the case when the differentials are fully
locked the slip levels do not grow large for the low friction side due to the fact that
all axles are interlocked such that all angular velocities must be the same. The ve-
locity profiles show that the traction controller performs similarly to the fully locked
case in terms of adhering to the speed reference.
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Figure 4.14: Slip levels around the time the vehicle encounters the low friction
section of the track. Depicted: Traction control (blue), locked differentials (red).
Slip limits indicated in grey.
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Figure 4.15: Velocity of vehicle during test case 4. Depicted: MPCA with traction
control (blue), locked differentials (red).

The manuvering capabilities can be examined by plotting the global position of the
truck in relation to the desired path. These results are shown in Figure 4.16. Clearly,
with open differentials and traction control included the vehicle is able to follow the
desired path, a property not present when using fully locked differentials.
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Figure 4.16: Global position of vehicle during test case 4. Depicted: Desired path
(grey), traction control (blue), locked differentials (red).
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4.2.5 Comparison to production controller
Lastly, the proposed controller will be compared to a software-in-the-loop version
of a controller found in production trucks. This controller will be referred to as the
SIL controller. The test case for which the comparison will be made is the split
friction braking scenario.

The SIL controller does not utilize the engine brake. To mimic this behavior in
the proposed allocation formulation, the maximum and minimum limits for the en-
gine torque are set to zero at the time the deceleration request is applied. This
means that as soon as the braking begins, the allocator will let the engine torque
decline to zero and only use the service brakes. The deceleration request will be
decreased to −0.6g to simulate the case of fully applied brakes. The two controllers
will be compared in terms of slip ratios, actuator utilization and velocity profiles.

Figure 4.18 shows the slip ratios across all tires during the split friction braking
scenario for both the SIL and MPCA controllers. The figure shows that both con-
trollers regulate the slip levels throughout the braking sequence. Some notable
differences are found in the slip levels for the tag axle, for which the SIL controller
struggles to maintain a low ratio. The MPCA controller also experiences some peaks
on the high friction side for the second and third axles. For the low friction side,
the MPCA controller achieves smoother control of the slip levels in comparison to
the SIL counterpart. The velocity of the vehicle during the braking test can also be
plotted. Figure 4.17 shows the results for the two controllers. Clearly, the MPCA
controller performs on par with the SIL controller.
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Figure 4.17: Velocity of vehicle during braking sequence.

Next, the utilization of the brake actuators can be considered, see Figure 4.19, where
the braking signals are based on the requested outputs. For the low friction side
both controllers use practically the same torques, with the notable difference that
the control signals are not fluctuating as much for MPCA. For the high friction side
the brake torques differ significantly. The MPCA controller utilizes the maximum
available braking torques for the first through third axles, only intervening when slip
occurs. For the tag hardly any braking torques are allocated. This behavior can be
explained by the fact that the desired forces are set according to axle loads. During
braking the load shifts towards the front, leading to larger requested brake forces
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for the tires on these axles. For the SIL controller the brake torque on the front left
wheel is much lower in comparison to the MPCA controller. The SIL controller also
seems to distribute the braking torques much more evenly across the axles.
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Figure 4.18: Slip levels during the split friction braking test. Depicted: SIL
controller (blue), MPCA controller (red), lower slip limit for MPCA (grey).
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Concluding remarks

The main objective of this thesis, to investigate control allocation as a means of
coordinating available actuators to achieve added traction in heavy trucks, has been
achieved. Several approaches to traction control have been described, some of which
proved less suitable. Furthermore, a detailed model of an open differential system
has been derived based on mechanical principles, adding to the understanding of
the dynamics of the vehicle.

The suggested feedforward controller structure has the advantage of not using a
tire model to achieve added traction. This simplifies the implementation consider-
ably, since no state observers estimating slip curve parameters need to be included.
Additionally, the controller structure is highly reusable for different vehicle config-
urations, for which only the B-matrix needs updating to suit the set of available
actuators. Most importantly, this controller structure serves not only as a traction
controller, but a complete motion controller, which smoothly transitions into regu-
lating slip limits when the current driving situation demands it.

The simulation results for the described test cases show that the proposed controller
is able to add traction capabilities such as slip control for situations with limited
friction. The ability to limit slip levels in a vehicle with open differentials is crucial in
off-road situations. For the uphill split friction case, the controller managed to keep
the vehicle accelerating, while the corresponding controller for which no traction
modifications had been made was not able to maintain vehicle speed. Secondly, the
controller proved to preserve maneuverability and traction during more challenging
cornering scenarios. Another advantage of the suggested controller formulation is
the applicability to a multitude of scenarios, covering both braking and acceleration.
The common approach to traction control strategy in trucks today is to have several
separate controllers, each designed for a specific purpose, adding both complexity
and development costs.

A comparison to a software-in-the-loop version of a currently used traction con-
trol system was made for the split friction braking scenario. The results showed
that the MPCA formulation exhibited stopping capabilities and slip control similar
to the SIL controller. In terms of control signals, the proposed controller achieved
smoother actuator signals and better reference tracking. Moreover, MPCA utilized
brakes on axles with higher loads to a greater extent.
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5. Concluding remarks

5.1 Discussion

The overview of the results summarized above highlights the capabilities of the
proposed controller structure. However, some assumptions and modeling choices
can be discussed further.

5.1.1 Tuning of controller and allocator
The proposed controller has been tuned to function well within the test scenarios
used in this thesis. The tuning is mostly general, and similar weights and parameters
have been used for all test cases, but still no conclusions can be derived whether the
controller will function as well for other driving situations. Similarly, the param-
eters used with the proposed controller might not work as well with other vehicle
configurations, and might need reworking to suit other sets of actuators. To make
the tuning completely general, the current driving situation should be evaluated
continuously, and the tuning parameters adjusted accordingly.

Furthermore, no study of the effects of different input parameters of the allocator
has been conducted. Neither has the choice of solving algorithm for the alloca-
tor in terms of real-time performance been investigated in any detail. Since only
simulation results have been produced, no conclusions can be deduced whether the
allocator can be realistically implemented in a physical system.

5.1.2 MPCA and actuator dynamics
Simple models have been used when designing the actuator behaviors. These straight-
forward models enable the use of model predictive control allocation. However, these
models might be overly simplistic, especially for the engine, which exhibits complex
dynamics. Hence, to implement MPCA in a physical vehicle, the actuator models
would need to be refined. Additionally, for the brake actuators, it is favourable to
include a more detailed model of the pneumatic brake chamber, which captures the
changes in effective time constant seen at different brake chamber pressures. These
conditions would add complexity to the optimization problem, for which additional
constraints would need to be included.

5.1.3 Torque control
The results show that the traction controller relies heavily on accurate torque control
to the wheels. In a truck equipped with a combustion engine there will always be
a lot of uncertainty as to how much torque is actually supplied by the powertrain.
Additionally, in a real system the torques generated by the brakes do not only depend
on brake pressures but also on angular velocities of the tires, friction coefficients
between brake drums and pads, and the temperature of the brake system, adding
even more uncertainty in how much torque is applied. In a simulation environment
these issues are not present, but in a real truck these problems need to be addressed.

76



5. Concluding remarks

5.1.4 Observer design
The observer used within this thesis also relies on accurate torque readings to pro-
duce good estimates for the longitudinal tire forces. Again, this complicates im-
plementation in an actual vehicle. Furthermore, the implications of having a more
accurate observer have not been investigated during simulations due to the fact that
further filter design is not within the scope of this thesis.

5.1.5 CA versus MPCA
As the results of Section 4.2.1 indicated, the CA controller was not responsive or
accurate enough to achieve satisfactory slip control, mostly due to the slow dynamics
of the engine actuator. If the engine actuator instead was modeled as an electric
motor, the CA controller produced similar results to that of the MPCA controller.
This enables the usage of CA for traction control in electric vehicles. Additionally,
as the torque produced by an electric motor is straightforward to measure precisely,
the performance of the tire force observer will likely improve, allowing for even better
slip control.

5.2 Future Work
The following remarks can be made regarding suggestions for continued work.

5.2.1 Actuator models
As mentioned above, the actuator models used within this work might be overly
simplistic. It would therefore be favorable to investigate the possibility of using more
detailed models for the engine and brakes. Additionally, the test cases show that the
brakes might be applied during extended periods of time, which risks overheating.
Further work could therefore include temperature models of the brakes, limiting the
brake capabilities based on temperature measurements.

5.2.2 Slip limits
The slip limits set during the test cases have all been static. Based on the modeling of
combined slip situation it could be favorable for some driving situations to adaptively
choose the slip levels to ensure that lateral forces are maintained. Future work could
investigate how such algorithms should be constructed.

5.2.3 Observers
As discussed above the proposed controller structure depends on estimates of the tire
forces. The possibility of improving the observer should hence be investigated. Other
states and measurements could be included in the estimator model, for example
acceleration and orientation of the vehicle.
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A
Elucidating material

A.1 General open differential model
In the most general form, the state space model of the open differential is given by
the following expressions:

θ̈0 =
[
2r2

sIpgx(T2 + T3 + Tin) + r2
p

[
(2T3 + Tin)ILy + (2T2 + Tin)IRy

] ]
/q (A.1)

θ̈1 =
[
rsrp

(
2mpgr2

s(−T2 + T3) + (ILy − IRy)Tin −

(Icwy + 2Ipgy + 2IRy)T2 + (Icwy + 2Ipgy + 2ILy)T3
) ]

/q (A.2)

θ̈2 =
[
2mpgr2

sr2
p(T2 − T3) + 2r2

sIpgx(T2 + T3 + Tin) +

r2
p

[
(Icwy + 2Ipgy)(T2 − T3) + 2IRy(2T2 + Tin)

] ]
/q (A.3)

θ̈3 =
[
2mpgr2

sr2
p(−T2 + T3) + 2r2

sIpgx(T2 + T3 + Tin) +

r2
p

[
(Icwy + 2Ipgy)(−T2 + T3) + 2ILy(2T3 + Tin)

] ]
/q (A.4)

where

q = 2r2
sIpgx

(
Icwy + ILy + IRy + 2Ipgy

)
+

r2
p

[(
Icwy + 2Ipgy

)
ILy +

(
Icwy + 2Ipgy + 4ILy

)
IRy

]
+

2mpgr2
s

[
2r2

sIpgx + r2
p

(
ILy + IRy

)]
. (A.5)
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A. Elucidating material

A.2 State space model of the three-differential
system

The following section covers the derivation of the dynamics of the three-differential
system equipped on the considered 8x4 truck.

Based on the results obtained for the single differential, given by Equation (2.78), a
function model of the full differential system can be constructed. Figure A.1 shows
how the three differentials are connected. The figure also shows the new definitions
of physical quantities in the system.
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Figure A.1: Functional diagram of the three-differential system. Note the inclusion
of interaction forces F1 and F2 between the output shafts of the inter-axle differential
and the crown wheels of the inter-wheel differentials.

II



A. Elucidating material

Based on the results of Equation (2.78), the following dynamics can be formulated
for the lumped inertias of drive shafts and wheels of the inter-wheel differentials:

θ̈1 = (a + b)T1 + (−a + b)T2 + brcwF1 (A.6a)
θ̈2 = (−a + b)T1 + (a + b)T2 + brcwF1 (A.6b)
θ̈3 = (a + b)T3 + (−a + b)T4 + brcwF1 (A.6c)
θ̈4 = (−a + b)T3 + (a + b)T4 + brcwF2 (A.6d)

where

a =
r2

p

2(r2
sIpgx + r2

pIws)
(A.7a)

b = 1
2mpgr2

s + Icwy + 2(Ipgy + Iws)
(A.7b)

Above, the inter-wheel differentials have been assumed completely symmetrical, such
that all physical quantities are the same for the two differentals. The lumped inertias
of the left and right outputs have been denoted Iws. For the crown wheels of the
inter-wheel differentials the dynamics are thus described by:

θ̈cw,1 = b(T1 + T2 + rcwF1) (A.8a)
θ̈cw,2 = b(T3 + T4 + rcwF2) (A.8b)

For the output shafts of the inter-axle differential, similiar assumptions regarding
symmetry of the output shafts will be made. This allows for the dynamics of the
output shafts to be formulated in the following form

θ̈L,I = c1F1 + c2F2 + dTin (A.9a)
θ̈R,I = c2F1 + c1F2 + dTin (A.9b)

where the coeffcients are given by

c1 = rg

2

(
−

r2
p,I

r2
p,IIhs + r2

s,IIpgx,I

− 2
2mpgx,Ir2

s,I + Icwy ,I + 2(Ihs + Ipgy ,I)

)
(A.10a)

c2 = rg

2

(
r2

p,I

r2
p,IIhs + r2

s,IIpgx,I

− 2
2mpgx,Ir2

s,I + Icwy ,I + 2(Ihs + Ipgy ,I)

)
(A.10b)

d = 1
2mpgx,Ir2

s,I + Icwy ,I + 2(Ihs + Ipgy ,I) . (A.10c)

The subscript I is introduced to denote that a given quantity belongs to the inter-
axle differential. The inertias Ihs are the lumped inertias of the output shafts.

Additionally, two dynamical constraints exist in the three-differential system. It
is required that the output shafts of the inter-axle differential stay in constant con-
tact with the crown wheels of the inter-wheel differentials. Therefore, one must
have:

rgθ̈R,I = rcwθ̈cw,1 (A.11a)
rgθ̈L,I = rcwθ̈cw,2 (A.11b)

III



A. Elucidating material

If all input torques are assumed to be known, the expressions found in Equations
(A.6), (A.8), (A.9) and (A.11), form a system of ten equations in ten variables, given
by the set

{θ̈1, θ̈2, θ̈3, θ̈4, θ̈cw,1, θ̈cw,2, θ̈L,I , θ̈R,I , F1, F2}. (A.12)

This system can be solved to produce the system dynamics of the output shafts.
These expressions are then given by:

θ̈1 = k1T1 + k2T2 + k3(T3 + T4) + k4Tin (A.13a)
θ̈2 = k2T1 + k1T2 + k3(T3 + T4) + k4Tin (A.13b)
θ̈3 = k3(T1 + T2) + k1T3 + k2T4 + k4Tin (A.13c)
θ̈4 = k3(T1 + T2) + k2T3 + k1T4 + k4Tin (A.13d)

with

k1 = a + b + 1
2b2r2

cw

(
1

−br2
cw + (c1 − c2)rg

+ 1
−br2

cw + (c1 + c2)rg

)
(A.14a)

k2 = −a + b + 1
2b2r2

cw

(
1

−br2
cw + (c1 − c2)rg

+ 1
−br2

cw + (c1 + c2)rg

)
(A.14b)

k3 = − b2c2r
2
cwrg

b2r4
cw − 2bc1r2

cwrg + (c2
1 − c2

2)r2
g

(A.14c)

k4 = bdrcwrg

br2
cw − (c1 + c2)rg

(A.14d)

By substituting the input torques T1–T4 for the braking and friction forces at each
wheel

Ti = Tb,i − ReFx(κi) (A.15)

and coupling the modified slip dynamics

κ̇i + Reθ̇i

σx

κi = Reθ̇i − vx,i

σx

(A.16)

to the system, a non-linear state space model is obtained. The model takes input
torques in forms of braking (Tb,i) and engine (Tin) torques. By linearization around
the current angular velocities, slip levels, and actuator signals, a linear state space
model, suitable for usage in an MPC setting, can be found.

IV


	Introduction
	Background
	Purpose
	Scope
	Test Scenarios
	Disposition

	Modeling
	Vehicle Dynamics
	Tire Dynamics
	Longitudinal slip
	Lateral slip
	Force generation
	Linear models
	Magic tire formula

	Combined slip
	Friction ellipse
	Brush model


	Differentials
	Open differentials
	Locked differentials
	Defining reference frames
	Crown wheel and planetary gear
	Sun wheels and output shafts

	Physical properties
	Equations of motion
	Crown wheel
	Planetary gear
	Left output shaft
	Right output shaft
	Constraint equations



	Control Design
	Control Allocation
	Background
	Optimization
	Vehicle application
	Actuator dynamics

	Force Allocation
	Allocating forces with open differential
	Allocating forces with open differential using slip feedback

	Predictive Slip Control
	Control allocation with slip prediction
	Model predictive control using open differential dynamics
	Encountered problems

	Feedforward Torque and Slip Control using Control Allocation
	Calculating requested forces
	Calculating limiting forces
	Choosing desired tire forces
	Estimator design
	Weight selection

	Model Predictive Control Allocation

	Results
	Test Cases
	Split friction acceleration
	Split friction braking
	Split friction uphill
	Uphill steering

	Simulation Results
	Split friction acceleration
	Braking on split friction surface
	Split friction uphill
	Uphill steering
	Comparison to production controller


	Concluding remarks
	Discussion
	Tuning of controller and allocator
	MPCA and actuator dynamics
	Torque control
	Observer design
	CA versus MPCA

	Future Work
	Actuator models
	Slip limits
	Observers


	Bibliography
	Elucidating material
	General open differential model
	State space model of the three-differential system


