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A parameterized three-dimensional finite element model of a slab track for simulation
of dynamic vehicle–track interaction
NIKLAS SVED
Department of Mechanics and Maritime Sciences
Chalmers University of Technology

Abstract

To meet the increased demands of freight and people transport by trains, the Swedish
Transport Administration is evaluating the possibility of constructing new railways
based on slab track design. In this work, models of a slab track have been developed
in two and three spatial dimensions. The models were created by writing scripts
in the programming language Python and by generating models in the commercial
software ABAQUS. The models were subsequently used in dynamic vehicle–track in-
teraction simulations in the in-house software DIFF. The two-dimensional slab track
model consists of Rayleigh–Timoshenko beam elements, while the three-dimensional
slab track model combines Rayleigh–Timoshenko beams and solid elements. All
track parameters, geometries, materials and the foundation stiffness distribution
are modifiable such that parametric studies can be conducted.

Track models developed within the current project have been validated against an
existing two-dimensional track model, in terms of receptance, track stiffness at the
rail level and wheel–rail contact force. These numerical results give an indication if
the assumptions for the existing two-dimensional model are valid, they also offer an
opportunity to fine-tune said existing two-dimensional model according to a more
detailed three-dimensional model in future work. The results in the current work
indicate that the three-dimensional model is slightly stiffer. However, by tuning the
design parameters, a similar track stiffness at the rail level can be achieved.

Keywords: Vehicle–track interaction; Slab track; Ballastless track; Modeling; ABAQUS
scripting.
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En parameteriserad tredimensionell finita element modell av ett fixerat tågspår för
simulering av dynamisk fordon–spårinteraktion
NIKLAS SVED
Institutionen för mekanik och maritima vetenskaper
Chalmers tekniska högskola

Sammanfattning

För att möta den ökade efterfrågan av spårburen gods- och persontrafik utreder
Trafikverket förutsättningarna för nya stambanor byggda med fixerat (ballastfritt)
spår. I detta arbete har modeller av ett fixerat spår i två och tre rumsdimensioner
tagits fram med hjälp av finita elementmetoden. Modellerna skapades genom att
skriva kod i programmeringsspråket Python, samt genom att generera modeller i
den kommersiella mjukvaran ABAQUS. Modellerna användes sedan i simuleringar
av dynamisk tåg–spårinteraktion i det interna programmet DIFF. Den tvådimen-
sionella spårmodellen består av Rayleigh–Timoshenko balkelement, medan den tred-
imensionella spårmodellen består av Rayleigh–Timoshenko balkelement samt solida
element. Alla spårparametrar, geometri, material samt fördelning av markstyvhet
är modifierbara så att parameterstudier kan genomföras.

Båda spårmodellerna utvecklade i detta projekt har validerats mot en existerande
modell med hänsyn till receptans, spårstyvhet på rälnivån samt hjul–räl kontakt-
krafter. Dessa numeriska resultat ger en indikation huruvida antagelserna för den
existerande tvådimensionella modellen är godtagbara, de ger även en möjlighet att
finjustera den befintliga tvådimensionella modellen mot en mer detaljerad tredi-
mensinell modell i vidare arbete. Resultaten i detta projekt indikerar att den tredi-
mensionella modellen är något styvare. Genom att justera designparametrarna kan
en liknande styvhet på rälnivån uppnås.

Nyckelord: Fordon–spårinteraktion; Fixerat spår; Modellering; Ballastfritt spår;
ABAQUS skriptning.
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Nomenclature

Complex quantities are indicated with underbars and local spatial coordinates are
marked with overbars. Dots over variables indicate time derivative and superscripts
t and v denote track and vehicle respectively. Superscript T denotes the transpose
of a matrix or vector.

Abbreviations
API Application programming interface
DOF Degree of freedom
E–B Euler-Bernoulli
FE Finite element
FEM Finite element method
FPL Frost protection layer
HBL Hydraulically bound layer
MPC Multi-Point Constraint
R–T Rayleigh-Timoshenko
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EI Bending stiffness [Nm2]
G Shear modulus
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γ Shearing angle [-]
Ht(ω) Receptance
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m
N

]
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I Area moment of inertia [m4]
KKK Global stiffness matrix
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m

]
, [N], [Nm]

k′ Timoshenko shear coefficient [-]
kf Foundation stiffness
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]
kH Hertzian contact stiffness
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N
m

]
kp Rail pad stiffness
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N
m

]
lb Rail seat distance [m]
lj Length of a beam element [m]
ls Length of the solid part of the 3D slab track model [m]
lt Track length [m]
M Bending moment [Nm]
MMM Mass matrix [kg], [kgm2]
N Wheel–rail normal contact force [N]
ν Poisson’s ratio [-]
ωn Angular eigenfrequency number n

[
1
s

]
P Nodal force [N]
ψ Bending angle [-]
PPP Modal matrix [−],

[
1
m

]
pf Force on elastic foundation

[
N
m

]
py Continuous transverse force

[
N
m

]
QQQt(t) Modal load vector [N]
qqqt(t) Modal displacement vector [m]
R Radius [m]
ρ Density
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]
ρρρ(n) Eigenvector
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1
m

]
S Shear force [N]
σ Normal stress

[
N
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]
u Displacement [m]
v Vehicle speed

[
m
s

]
w Transverse deflection [m]
x̄, ȳ, z̄ Local spatial variables [m]
xxxirr Irregularity vector [m]
F t

r(ω) Reaction force at the rail [m]
F t

s(ω) Reaction force at the slab [m]
xt

r(ω) Displacement at the rail [m]
xt

s(ω) Displacement at the slab [m]
x, y, z Global spatial variables [m]
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1
Introduction

In this chapter, the background and motivation will be discussed. Answers to the
questions why this work is of importance and how it was carried out are presented.

1.1 Background

Already today, the main railway lines in Sweden are heavily utilized [1]. The Swedish
Transport Administration (Trafikverket) has a long-term goal to reduce the fossil
fuel reliance within the transport sector, which is expected to be fulfilled partly by
an additional increase in transportation by train. With this in mind, new railway
lines accommodating high-speed trains connecting the three largest cities in Sweden
are planned. This would increase the total capacity of the Swedish railways, both
for passenger and freight transportation. Also, because of the decreased travelling
time and increased punctuality, trains would become a more attractive way of trans-
portation compared to more fossil fuel dependent alternatives like cars and airplanes.

The track design to be used in a possible future construction of high-speed railway
lines in Sweden is currently under investigation. The establishment of a scientific
foundation is essential to achieve an optimal design of these railways. High-speed
train travel puts heavy demands on the design of both vehicle and track due to
their dynamic interaction. Vibrations and large magnitude dynamic forces induced
by the wheel–rail contact propagate both upwards, affecting the passenger comfort,
and downwards, affecting the track components and the soil underneath the tracks
[2]. To mitigate the associated damage in the form of e.g. wear, fatigue and settle-
ments, unconventional track designs are being considered. One alternative is to use
so called slab track design, where slabs of prefabricated or cast-on-site concrete is
used to support the rails instead of the conventional method of sleepers resting on
ballast.

1



1. Introduction

Slab track design has been successfully implemented on several high-speed railway
lines located around the world. Advantages with this design are higher lateral track
stiffness and no ballast degradation leading to a more stable track geometry with
reduced need for track corrective maintenance [3]. Disadvantages are that the ini-
tial construction cost is vastly higher due to an increased need of soil improvement
and the lack of contractors experienced with the method. Also, rail readjustment is
difficult.

In the PhD project CHARMEC TS19 at the department of Mechanics and Maritime
Sciences at Chalmers University of Technology in Gothenburg Sweden, the aim is
to define design criteria for slab track structures. This is mainly done by studying
the vertical dynamic interaction between high-speed vehicles and slab tracks. To
this end, a finite element (FE) model representing a slab track design is developed,
whose properties are used to calculate transfer functions such as accelerance and
recceptance, but also dynamic responses, e.g. wheel–rail contact forces, panel bend-
ing moment and load distribution on the foundation. Previously in TS19, two types
of two-dimensional FE models representing different types of slab track designs have
been investigated. In order to perform the dynamic simulations for more realistic
conditions, a three-dimensional (3D) model of a slab track structure is developed in
the current work.

1.2 Aim

To develop a parameterized 3D model of a slab track structure including rails, rail
pads and concrete panels on an elastic foundation using the commercial FE software
ABAQUS and Python scripting. Moreover, an interface between ABAQUS and an
existing in-house software for simulation of dynamic vehicle–track interaction is to
be established.

1.3 Limitations

The software used are limited to Matlab and ABAQUS, scripting is done in Python.
Parameter values (material, geometry etc) are taken from CHARMEC TS19. The
numerical results will only be compared to previous simulations in CHARMEC
TS19. The numerical results of concern are rail receptance, static track stiffness at
the rail level and dynamic wheel–rail contact forces.

2



1. Introduction

1.4 Report Layout

The report is divided into six chapters. Chapter 2 presents the theoretical founda-
tion for the dynamic simulations and the finite element modeling. In Chapter 3,
the simulation methodology is explained together with the modelling assumptions.
Chapter 4 presents the numerical results including a validation of the proposed
method. In Chapter 5, the work is summarized and conclusions are drawn. Finally,
future work is suggested in Chapter 6.
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2
Theory

The following chapter covers the theory that forms a basis for the designed FE
model and the conducted dynamic simulations. Also, the design of slab tracks, their
geographical spread, and a brief literature review on the chronological evolution of
models for the dynamic simulation of vehicle–track interaction are presented.

2.1 Slab Tracks — Design and Historical Review

Traditionally, railway tracks have been composed of rails fastened on wooden or
concrete railway ties (sleepers), resting on a bed of ballast. During the 20th cen-
tury, alternative designs were developed to better suit the specific needs for certain
applications.

Such a design is the slab track, which was first introduced in tunnels and on bridges
several decades ago. In a slab track design, no ballast is used, allowing the track
structure to be easily integrated in a tunnel or a bridge structure. The introduction
of high-speed railway lines and the accompanied demands on the tracks provided an
incentive to implement slab tracks on embankments and longer distances.

The era of high-speed railways started in Japan in 1964 with the Shinkansen rail-
way, connecting Tokyo and Osaka, a distance of about 500 km [3]. The first lines
were built using ties and ballast, but in 1972 slab tracks were first utilized on the
Japanese high-speed railway system. The Japanese type slabs were, and still are,
discrete 5 m long slabs resting on a concrete roadbed.

Since then, several European countries have introduced high-speed railways. This
includes Germany, France, Great Britain, the Netherlands, Spain and Italy. Primar-
ily in Germany and the Netherlands, slab tracks are widely used on the high-speed
lines. Recently, the construction of high-speed railway built on slab tracks has ex-
panded in Asia, in countries such as China, Taiwan and South Korea [4].
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Advantages of slab tracks frequently mentioned in literature are lower maintenance
requirements due to the absence of ballast degradation, thereby increasing track
availability and decreasing maintenance costs [3]. The improved track availability is
of great importance for the potential construction of new railway lines in Sweden,
since it increases capacity and lowers the risk of delays [5]. Also, the track structure
height is reduced, allowing tunnel cross sections to be built smaller, cutting con-
struction costs [6]. Furthermore, slab tracks offer higher lateral track stiffness which
reduces the risks for sun kinks.

The major disadvantage with slab tracks is the initial construction costs. The track
structure itself is usually more expensive, mainly due to inexperience among con-
tractors and manufacturers. However, the largest cost increase comes with the high
demands on the track foundation. Settlements on ballastless tracks, contrary to
ballasted tracks, cannot be mitigated by simply adding more ballast. Settlements
on slab track foundations can therefore be devastating. Consequently, substantial
effort must be put on ground improvement on settlement-prone soils.

2.1.1 Common Designs

In current slab track applications, two kinds of designs are dominant. The con-
tinuous rail support and the direct rail support systems [3]. The continuous rail
support originates from tram applications and provides continuous rail support by
embedding rails in an elastomeric layer [7]. Contrary to tracks with discrete support,
this implies that a moving wheel does not experience any substantial variation in
track stiffness. However, a major disadvantage is that embedded track systems re-
quire virtually settlement free soils due to the minimal possibility of rail adjustment.
Therefore, continuous rail support systems are not commonly applied for high-speed
tracks.

The design type most frequently used on high-speed railways is the direct rail sup-
port system, and features discrete connections between rails and concrete slab, either
through sleepers or integrated rail seats. The concrete structure can be continuous
cast-on-site slabs such as the German Rheda 2000 or pre-fabricated panels of finite
length. Prefabrication allows for precise construction in factories followed by fast
and controlled installation on site.

One prefabricated system is the Feste Fahrbahn Bögl (FFB) by the German con-
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struction company Max-Bögl [8]. The concrete panels are about 6 m long and
prefabricated. They are prestressed in the lateral direction and longitudinally cou-
pled on site using force transmitting joints. The support consists typically of a thin
layer of grout followed by a hydraulically bound layer (HBL). Depending on the cli-
mate zone, the HBL is frequently complemented with a frost protection layer (FPL)
and some subgrade foundation underneath.

2.1.2 Typical Components

Typically, a slab-track structure is divided into a super-structure and a sub-structure,
see Figure 2.1. This division is important with regard to models of dynamic vehicle–
track interaction, as these usually only include the components of the superstructure
whereas the substructure is represented by an elastic foundation. In a ballasted
track, the sub-structure is usually defined as everything below the sleepers, i.e. the
ballast and any subgrade soil underneath it. The rails, rail fasteners, rail pads and
railway ties (sleepers or slab tracks) form the super-structure for both ballasted and
ballastless tracks to include in e.g a finite element (FE) model of the track structure.

Sleepers/ panels

Ballast/ HBL

Rail
Pads

Rails
Superstructure

Substructure

Figure 2.1: Sketch of a track profile divided into a superstructure including rails,
rail pads and railway ties and a substructure including the subgrade foundation.

2.2 Historical Modeling of Track Systems

Already in the 19th century, there was an understanding that a fundamental knowl-
edge of railway mechanics is vital to reduce and avoid damages induced to tracks
and vehicles. Initially, the main focus was on the train vehicle itself, while the track
structure was just considered as a rigid base.

In 1882, Schwedler [9] introduced a model of a ballasted track with the purpose to
compute stresses and to identify possible damage mechanisms acting on the differ-
ent track components including the rails. The model comprised of one rail modeled
as an Euler–Bernoulli (E–B) beam laid on sleepers represented by a uniform elas-
tic Winkler-type foundation. It was first around 1930 that the current practice of
modeling the rail laid on transverse sleepers represented by a beam on a Winkler
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foundation was widely applied [10].

Around the 1960’s, researchers tended to shift towards using Rayleigh–Timoshenko
(R–T) beams instead of E–B beams in their models. E–B beams perform adequately
up to about 500 Hz. At higher frequencies, shear deformations casued by vertical
dynamic excitation becomes increasingly important, making the R–T beam, which
does take these deformations into account, a better choice.

The application of mathematical modeling to analyze the dynamic vehicle–track
interaction became more common in the 1970’s. This was partly sparked by the
uprise of high-speed railways and the increased magnitude dynamic loads (and as-
sociated induced damage) related to an increased vehicle speed. In addition to
mechanical damage in the form of e.g. wear, rolling contact fatigue and plastic
deformations, the generation of noise and ground-borne vibration represent other
issues. The prediction of these phenomena is crucial in order to improve track and
vehicle design and to estimate maintenance needs for both tracks and vehicles.

To enable a thorough analysis of the dynamic behavior and the deterioration of
tracks and vehicles, a detailed mathematical representation of the vehicle–track sys-
tem is required. This can be achieved by using the finite element method (FEM). In
1990, Lin and Trethewey [11] incorporated a FE model of elastic beams subjected to
a mass–spring–damper system moving at time-dependent speed. They ensued that
the interaction problem may be solved by using a numerical time-stepping routine.

In 1995, Nielsen and Igeland [12] solved the dynamic vehicle–track interaction prob-
lem numerically using a complex-valued modal superposition of the track. In their
work, the track and vehicle were discretized and coupled in large numerical sys-
tems of equations. In order to solve the moving load problem for vertical dynamic
vehicle–track interaction, an initial value problem was established. The idea of cou-
pling vehicle and track dynamics was adopted by several researchers in the 1990’s
[2].

2.2.1 Rayleigh–Timoshenko Beam Theory

Beams are the most important structural elements when modeling the static and
dynamic behavior of slender structures [13]. Scholl [14] made a comparison using
dispersion relations between rail profiles modeled with only beam elements, plate
and beam elements, or only plates. This was done in order to establish in which fre-
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quency range the respective models accurately represent the rail’s dynamic behavior.
It was determined that if only vertical vibration is of interest, Rayleigh–Timoshenko
(R–T) beams provide adequate results up to about 2.5 kHz. The Euler–Bernoulli
(E–B) theory is the most applied approximation beam theory and is valid for slender
structures being exerted to vibrations with long wavelengths. However, when the
intent is to model thicker, shorter beams, or beams vibrating with a frequency over
500 Hz [10], R–T beam approximation theory is more accurate.

The R–T beam theory differs from the E–B beam theory in two important aspects;
it takes shear deformation and rotary inertia into account. This makes the theory
more suitable for simulation of the dynamic response at high frequencies, where
shearing has a larger influence on the behavior of the structure. In the following
paragraphs, a brief walk-through of the basic kinematic differences for R–T beam
theory compared to E–B beam theory is presented.

Concerning the kinematics of a R–T beam element in bending, the following as-
sumptions are made [15]:

• All applied loads act transverse to the longitudinal axis.

• All deformations and strains are small.

• Elastic and isotropic material response according to Hooke’s law.

• Plane cross sections will remain plane but are not required to remain normal
to the longitudinal axis after deformation.

The most important difference to the E–B theory is that plane cross-sections remain
plane after deformation, but not required to be normal to the longitudinal axis of the
beam. See Figure 2.2 for an illustration of a R–T beam in bending. This implies that
shear deformations are being considered, and as a consequence to the assumption
that strains are small (tan(ψ) ≈ ψ), the fundamental equations for R–T theory are
given as [16]
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dx̄

py(x̄, t)

dx̄x̄

w

L

ȳ M + ∂M
∂x̄ dx̄

S + ∂S
∂x̄dx̄

M

S

py(x̄, t)dx̄

C γ

ψ

w

Figure 2.2: Free-body diagram of an infinitesimal part dx̄ of a Rayleigh-
Timoshenko beam in bending, where x̄ marks the longitudinal and ȳ marks the
transversal direction. The beam is loaded by a transverse force py(x̄, t) and has
arbitrary boundary conditions. w is the resulting transverse deflection, ψ the re-
sulting bending angle and γ the shear angle. The model also includes the resulting
internal shear force S and bending momentM . Inspired by figure 10.17 on page 718
of Benorya and Nagurka [16].

− ∂S

∂x̄
+ py = ρA

∂2w

∂t2
, (2.1)

∂M

∂x̄
− S = ρI

∂2ψ

∂t2
, (2.2)

where x̄ is the local longitudinal coordinate, t is time, w is the transverse deflection,
py is a distributed transverse external load, S andM are the shear force and bending
moment resulting from the shear and axial stress, respectively. A is the cross-section
area, I is the area moment of inertia, ρ is the density and ψ is the bending angle.
Considering the assumptions, the bending moment can be related to the slope of ψ
as

M = EI
∂ψ

∂x̄
, (2.3)

where EI is the bending stiffness. The constitutive relation between the shear angle
γ and the shear force is given by

S = k′GAγ, (2.4)

where k′ is a scalar that depends on the shape of the cross section [17]. In contrast to
E–B theory, the total slope depends on both the bending angle ψ and the shearing
angle γ as
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γ = ψ − ∂w

∂x̄
. (2.5)

Inserting Eqs. (2.3) to (2.5) in Eqs. (2.1) and (2.2) yield

− ∂

∂x̄
[ k′GA(ψ − ∂w

∂x̄
)] + py = ρA

∂2w

∂t2
, (2.6)

∂

∂x̄
(EI ∂ψ

∂x̄
)− k′GA(ψ − ∂w

∂x̄
) = ρI

∂2ψ

∂t2
. (2.7)

The shear force can also be expressed as

S = k′(∂w
∂x̄
− ψ)AG. (2.8)

There are several ways of deriving the weak form and the FE form that subsequently
will be used, see e.g. Haque [15]. The interpolation polynomials (corresponding to
the shape functions of the FEs) used in the current work are given by

N1j = 1
1 + βj

(
1−

3x̄2
j

l2j
+

2x̄3
j

l3j

)
+ βj

1 + βj

(
1− x̄j

lj

)
,

N2j = 1
1 + βj

(
− x̄j

lj
+

2x̄2
j

l2j
+

3x̄3
j

l3j

)
lj + βj

1 + βj

([
−xj

j
+
x2

j

l2j

]
lj
2

)
,

N3j = 1
1 + βj

(
3x̄2

j

l2j
−

2x̄3
j

l3j

)
+ βj

1 + βj

x̄j

ly
,

N4j = 1
1 + βj

(
x̄2

j

l2j
−
x̄3

j

l3j

)
lj + βj

1 + βj

([
xj

lj
−
x2

j

l2j

]
lj
2

)
,

(2.9)

where βj = 12EI/(k′GAl2j ), lj is the length of the beam element in the FE model
of the rail and x̄j ∈ [0, lj] is the local coordinate of the beam element. A derivation
of the interpolation polynomials was done by Sällström [18].

2.2.2 Winkler Foundation

The Winkler foundation is commonly applied in FE simulations to model an elastic
distributed support. According to the Winkler-model, the sub grade is idealized as
a system of mutually independent, continuously distributed, linear springs [19]. The
linear relationship between the force on the foundation pf and the deflection of the
beam w is given by

pf (x̄, t) = kwb(x̄, t)w(x̄, t), (2.10)
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where b is the width of the beam and kw is the bed modulus. Figure 2.3 illustrates
how the Winkler foundation can be incorporated in the fundamental formulation
for the R–T beam.

dx̄

x̄

py(x̄, t)
M + ∂M

∂x̄ dx̄

S + ∂S
∂x̄dx̄

M

S

pf(x̄, t)

Figure 2.3: An infinitesimal part of a R-T beam element subjected to a transverse
uniformly distributed load py, resting on an elastic foundation with an uniformly
distributed reaction load pf .

The foundation force pf can now be added to Eq. (2.6) as

− ∂

∂x̄

[
k′GA(ψ − ∂w

∂x̄
)
]

+ py − pf = ρA
∂2w

∂t2
. (2.11)

2.3 Simulation of Dynamic Vehicle–Track Inter-
action

The dominant frequency components in the vibration generated during train op-
eration vary between the different parts of the vehicle–track system. The bogie’s
primary suspension is typically designed such that the fundamental modes of vibra-
tion occur below 10 Hz [10], see Figure 2.4 for an illustration of a vehicle. This will
isolate passengers from vibration and also reduce the effective unsprung mass which
is beneficial for decreasing the dynamic loads at the wheel–rail contact interface.
With respect to running stability, steering and passenger comfort, it is sufficient to
account for frequencies up to only a few Hertz. At these low frequencies, the track
acts like a stiff spring. At frequencies over 20 Hz the track’s inertia becomes more
important and thus a threshold between vehicle stability issues and the estimation
and prediction of rail damage can be drawn at about 20 Hz.
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Wheelset

Bogie

Car body

Secondary
suspension
Primary
suspension

Figure 2.4: Sketch of a vehicle model including the car body, bogie and wheelset.
The wheelset and the bogie frame are attached to the car body via the primary and
secondary suspensions.

In order to investigate effects of imperfections as e.g. wheel flats and rail corru-
gation, it is required to account for dynamic vehicle–track interaction at higher
frequencies than 20 Hz. For example, numerous models have been proposed in lit-
erature to study wheel flats generated due to locking brakes [20]. Another issue
of concern is rolling contact fatigue (e.g. pitting, squats and shelling), which are
caused by the large number of load cycles corresponding to wheelset passages (for
rail material) or wheel revolutions (for wheel material) [21]. On all types of railways,
short wavelength (20-100mm) irregularities that develop on the rail running surface
(corrugation) is a concern [22]. The generation of corrugation is a combination of
dynamic loading and an acting damage mechanism.

In the frequency range exceeding 1500 Hz, issues concerning noise and ground vi-
brations are a concern. The analyzed frequency range may extend up to the human
limit of hearing, at about 20 kHz. However, while these factors play a major role in
acoustic railway engineering, it is in railway mechanics considered to be sufficient
to include the frequency range up to 1500 Hz.

13



2. Theory

2.3.1 Normal Wheel–Rail Contact

The contact between a rigid wheel and a rigid rail without imperfections is a line,
which indicates that the pressure on the surfaces will be infinite. In reality, a small
contact area is formed due to the elastic properties of the connected surfaces, thus
reducing the pressure exerted on them [23]. The linear-elastic contact model devel-
oped by Hertz is briefly presented in this section.

In classic Hertzian theory, contact is considered non-adhesive, i.e. no tension force is
allowed to occur within the contact area. In this theory, the following assumptions
are made in [24]:

• The contact area is elliptical.
• The strains are small and do not surpass the yield limit.
• Each body can be considered as an elastic half space, i.e., the contact areas

are considerably smaller than the relative radii of the bodies.
• The surfaces are continuous and non-conforming.
• There is no friction between surfaces.
• The surfaces are smooth, i.e surface roughness is ignored.
• Deformation is purely elastic.
• The contacting bodies’ materials are homogeneous and isotropic.
• The bodies are geometrically (consequence of the half-space assumption) and

elastically identical.
In Johnson [25], the normal contact stiffness kCH, theory for an ellipsoidal contact
between two geometries is defined as

kCH, theory = 2E∗c
F1F2

(2.12)

where F1 and F2 are correction factors that depend on the shape of the ellipse
(F1=F2=1 if the contact is a circle), while E∗ is the equivalent Young’s modulus
when combining the two materials. E∗ is defined as follows, where subscripts 1 and
2 denotes the wheel and rail, respectively, and ν the Poisson’s ratio:

1
E∗

= 1− ν2
1

E1
+ 1− ν2

2
E2

.

Furthermore, c is the equivalent radius of contact defined as

c =
(3NR∗m

4E∗
) 1

3
F1 (2.13)
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where N is the applied normal load and R∗m is defined as the equivalent mean radius
of the curvature of the contact geometries according to

R∗m =
√
R∗xR

∗
z where (2.14)

1
R∗x

= 1
Rx1

+ 1
Rx2

and (2.15)

1
R∗z

= 1
Rz1

+ 1
Rz2

(2.16)

where Rx and Rz are the contact radii in the two contact orientations x and z of
the wheel and rail, according to Figure 2.5.

Rz2

Rx1y

z

x

| Rz1 |

Wheel body, E1

Rail body, E2

Figure 2.5: Sketch of a contact between a wheel and a rail. The wheel has radii Rx1
in the (x, y)-plane and Rz1 (sometimes negative) in the (z, y)-plane while the rail
has radii Rz2 in the (z, y)-plane and Rx2 =∞ in the (x, y)-plane. The coordinates
x, y, z are outlined. The illustration is inspired by a figure in Andersson et al. [24].

As no surface is completely smooth, the value of kCH, theory will not hold in reality.
Greenwod and Tripp [26] analyzed the contact stiffness considering a rough interface
and concluded that up to a certain load, the actual Hertzian contact stiffness is
approximately one-third of kCH, theory. However, since this approximation is load
dependant, the actual stiffness varies between the theoretical and the value given
by Greenwod and Tripp [26].

kCH, theory

3 < kCH, actual < kCH, theory. (2.17)
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2.3.2 Time-Integration of the Coupled Vehicle–Track Sys-
tem

The moving load problem of a vehicle traversing a track modeled using FEs results
in a large system of coupled differential equations. In order to solve the dynamic
vehicle–track interaction using less computational capacity, the number of degrees of
freedom (DOFs) of the track is reduced through a complex-valued modal superposi-
tion. The modal superposition must be complex-valued due to the non-proportional
distribution of damping in the FE model. Furthermore, to attain a discrete spec-
trum of eigenvalues, a finite length for the whole model must be used.

For a structural system discretized to an FE model, the governing differential equa-
tions of motion can be written as

MMMẍxx(t) +CCCẋxx(t) +KKKxxx(t) = FFF (t), (2.18)

where KKK, CCC and MMM are the global stiffness, damping and mass matrices respec-
tively, FFF (t) is the global load vector and xxx(t) is a vector containing the structural
displacement. If xxxt(x) (superscript t denotes track) is a vector containing the DOFs
and FFF t(t) contains the external loads, Eq. (2.18) for the track can be rewritten in
state-space form as

AAAtẏ̇ẏyt(t) +BBBtyyyt(t) =

FFF
t(t)
0

 , (2.19)

where

yyyt(t) =

 xxxt

ẋ̇ẋxt(t)

 ,AAAt =
CCCt MMM t

MMM t 000

 ,BBBt =
KKKt 000

000 −MMM t

 . (2.20)

Considering thatAAAt andBBBt are symmetric, the complete modal solution to Eq. (2.19)
can be written as follows (where superscript -1 denotes the matrix inverse and un-
derline indicates complex quantities):

KKKt−1
CCCt KKKt−1

MMM t

−I 000

 ρρρ(n)

iωnρρρ
(n)

 = − 1
iωn

 ρρρ(n)

iωnρρρ
(n)

 , (2.21)

where ωn are angular eigenfrequencies, ρρρ(n) are eigenvectors and I is the unit matrix.
When the eigenvalue problem in Eq. (2.21) is solved, the modal matrix PPP , can be
assembled. This matrix works as a mapping between the spatial and modal domains
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as

yyyt(t) = PPPqqqt(t), QQQt(t) = PPPT =

FFF
t(t)
0

 , (2.22)

where QQQt is the modal load vector. Due to orthogonality of the modal matrix, the
equations of motion can be written as

diag(an)q̇qqt(t) + diag(bn)qqqt(t) = QQQt(t), (2.23)

where
diag(an) = PPPTAAAtPPP , (2.24)

and
diag(bn) = PPPTBBBtPPP . (2.25)

Here, an and bn are so-called modal Foss dampings and modal Foss stiffnesses. When
QQQt(t) and qqqt(t) have been computed, they will subsequently be used to determine
physical displacements, velocities and accelerations.

The vehicle model consists of one bogie with two wheelsets as seen in Figure 2.6.
The bogie and wheelsets are considered rigid and the vehicle can be expanded to
include a full car with the car body and two bogies. However, because the secondary
suspension acts as a dynamic filter isolating the car body from the bogie in the fre-
quency range where the dynamics of the track is significant, only one bogie is used.
The DOFs of the vehicle are divided into two vectors: xxxv

a = {xa1xa2}T which contains
two massless DOFs that are interfacing with the track and xxxv

b = {xb1 xb2 xb3 xb4}T

which contains the DOFs representing the wheelsets and the bogie which will not be
in contact with the track (superscript v denotes vehicle and T denotes the matrix
transpose). The equations of motion of the vehicle can be written as

000 000
000 MMMv

bb

ẍxx
v
a(t)
ẍxxv

b(t)

+
000 000
000 CCCv

b

ẋxx
v
a(t)
ẋxxv

b(t)

+
KKKv

aa KKKv
ab

KKKv
ba KKKv

bb

xxx
v
a

xxxv
b

+

FFF a(t)
000

 =

 000
FFF ext

b

 .
(2.26)

Here, FFF a(t) are contact forces between the wheels and rail while FFF ext
b contains the

gravity loads. The Hertzian contact stiffness kHi(i = 1, 2) is embedded in KKKv and is
given by:
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kHi =

CH(xbi − xai) for xbi − xai > 0
0 else

 , (2.27)

where CH is defined according to Section 2.3.1

kH2 kH1

xb2 xb1

xb3
xb4

xa2 xa1

Bogie

Wheel 2 Wheel 1

Figure 2.6: Sketch of the vehicle model. The model consists of one bogie, and both
wheels and bogie frame are rigid bodies. xa1 and xa2 are mass-less DOFs in contact
with the rail through springs with stiffness kH1 and kH2 respectively. DOFs xb1, xb2
are the vertical displacements of wheelset 1 and 2, respectively, and DOFs xb3 and
xb4 are the vertical displacement and pitch rotation of the bogie frame, respectively.

To couple the vehicle and track models, constraints on contact velocities and ac-
celerations between vehicle and track are formulated. Due to the FE format of the
track model, the continuously moving contact forces are converted into stationary
time-dependent forces located at the two closest nodes to the actual position of the
moving force. The deflection shape between two adjacent nodes is computed by
using the interpolation polynomials introduced in Equation (2.9).

The selected constraints on the transverse velocities and accelerations at the con-
necting DOFs yield [12]

ẋxxa(t) = TTT (t)q̇qqt(t) +UUU(t)qqqt(t) + ẋxxirr, (2.28)

where
TTT (t) = NNNPPP int, (2.29)

UUU(t) =
(
dNNN
dx̄

)
vPPP int, (2.30)
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and
ẍxxa(t) = RRR(t)q̇qqt(t) +SSS(t)qqqt(t) + ẍxxirr, (2.31)

RRR(t) = 2
(
dNNN
dx̄

)
vPPP int +NNNPPP intdiag(iωn), (2.32)

SSS(t) =
(
d2NNN

dx̄2

)
v2PPP int + dNNN

dx̄xx v̇
vv(t)PPP int(t). (2.33)

In the equations above, PPP int is the partition of the modal matrix in Equation (2.22)
containing the interfacial vehicle DOFs, RRR(t) contains the Coriolis acceleration and
the vertical acceleration of the railhead and the centripetal and longitudinal accel-
eration is included in SSS(t).

Prescribed contact irregularities such as wheel flats and rail corrugation may be
included in the model by using irregularity functions assembled in xxxirr. The contact
forces are distributed onto the rail nodes by using the interpolation polynomials,
and the modal load vector from Section 2.3.2 can now be obtained as:

QQQt = PPP intTNNNTFFF a(t). (2.34)

To solve the interaction problem, the equations of motion, cf. Eqs. (2.19) and (2.23)
and the algebraic constraint equations, cf. Eqs. (2.28) and (2.31) may be assembled
in matrix format using the extended state-space vector zzz:

zzz =
{
qqqtT xxxvT

a xxxvT
b ẋxxvT

a ẋxxvT
b F̂FF

T
a

}T
, (2.35)

which includes not only displacements and velocities but also impulses F̂FF a =
∫
FFF a(t)dt

of the contact forces. The total coupled and time-dependant system is now written
as:

AAA(z, t)ż +BBB(z, t)z = FFF (z, t), (2.36)

where

AAA(z, t) =
AAA11 AAA12

AAA21 AAA22

 =



diag(an) 000 000 000 000 −PPP intTNNNT

000 000 000 000 000 I
000 000 CCCv

bb 000 MMMv
bb 000

000 000 I 000 000 000
RRR 000 000 −I 000 000

NNNPPP int −I 000 000 000 000


, (2.37)
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BBB(z, t) =
BBB11 BBB12

BBB21 BBB22

 =



diag(bn) 000 000 000 000 000
000 KKKv

aa KKKv
ab 000 000 I

000 KKKv
ba KKKv

bb 000 000 000
000 000 000 000 −I 000
SSS 000 000 000 000 000

dNNN
d
v(t)PPP int 000 000 000 000 000


, (2.38)

FFF (z, t) =
 FFFT

1

FFFT
2

 =
[

000T 000T FFF extT
b 000T − ẍxxirrT − ẋxxirrT

]T
. (2.39)

The initial value problem to solve the transient vibration problem is now formulated
as:

żzz = AAA−1(FFF −BzBzBz), zzz |t=0= zzz0, (2.40)

where zzz0 is the initial state. Considering that the modal solution results in complex-
conjugate sets of modal parameters, the real and imaginary parts of Eq. (2.23) and
Eqs. (2.28) to (2.33) can be separated which makes the initial value problem in
Eq. (2.40) real-valued. Solutions are obtained using an ordinary differential equation
solver with variable step size. To save computation time, the matrix AAA is partially
inverted when Eq. (2.40) is established instead of inverting the full matrix at every
instant of time.
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3
Method

In the following chapter, the proposed numerical procedure is presented. The differ-
ent steps of the adopted methodology are summarized in the flow chart in Figure 3.1.

Problem Formulation Phase
- Track design

Implementation Phase

Simulation Phase

- Parameterization of track design

- Static and dynamic

- Operational conditions

- Model generation and visualization

track response
- Dynamic vehicle–
track interaction

Figure 3.1: Sketch of the proposed simulation procedure. First, the problem is set
by determining the track design and operational conditions. In the implementation
phase, the track model is parameterized in a Python script, and then generated in
ABAQUS. The model is subsequently exported to Matlab for dynamic and static
track simulations. Ultimately, the model can be altered based on simulation results.

The problem is formulated by determining the track design and operational condi-
tions. For determining the track design, the German-manufactured Max-Bögl Feste
Fahrbahn (FFB) slab track system briefly described in Section 2.1.1 and in refer-
ence [8] is the starting point. More on how the design is adopted is covered in the
next section where a description of the existing model developed in the CHARMEC
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project TS19 is presented.

3.1 Previously Developed DIFF model

In CHARMEC TS19, the aim is to find design criteria for future slab track designs.
The chosen method is to do so by analyzing the vertical dynamic vehicle–track
interaction. To solve the problem at hand, the track structure is numerically ap-
proximated as a finite element (FE) model. A slab track corresponding to the FFB
slab track system, with a track profile according to Fig. 3.2, is adopted by Aggestam
et al. [27].

Concrete panels

Frost protection layer

Foundation/soil

Unreinforced roadbed
Filling

Figure 3.2: Profile sketch of a slab track of German design with hydraulically
bound layer (unreinforced roadbed in this sketch). Figure from Aggestam et al.
[27].

This two-dimensional (2D) FE model, hereon referred to as the DIFF model, is
throughout the current work used for benchmarking the developed models. More-
over, the DIFF model is used for simulation of dynamic vehicle–track interaction
in the proposed numerical procedure. In this model, Rayleigh–Timoshenko beam
elements are used to represent both the rail and the concrete panels. The discrete
rail seats are modeled by parallel springs and viscous dampers. The foundation is
modeled by a Winkler foundation, with potentially variable stiffness and damping
depending on the longitudinal coordinate x. A sketch of the track model is seen in
Figure 3.3.
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Figure 3.3: Sketch of the DIFF slab track model. The model consists of two layers
of beams representing the rail (r) and the concrete panel (s). The concrete panel is
supported by a Winkler foundation, where the prescribed (possibly random) varia-
tion in stiffness is indicated by the irregular ground surface. Figure from Aggestam
et al. [27].

The parameter values of the track are selected to be as realistic as possible. How-
ever, no experimental calibration/validation has yet been performed. The parameter
values of the track are shown in Table 3.1. The full track structure consists of 120

Table 3.1: Parameter values of the slab track model developed by Aggestam et al.
[27]

Parameter Value Legend
EIs 30 MNm2 Bending stiffness, concrete slab
EIr 6.4 MNm2 Bending stiffness, rail
kGAs 2.1 GN Shear stiffness, concrete slab
kGAr 250 MN Shear stiffness, rail
kr 0.4 [-] Shear constant, rail
ms 580 kg/m Mass per meter, concrete slab
mr 60 kg/m Mass per meter, rail
bs 1.2 m Width, concrete slab
hs 0.2 m Height, concrete slab
kr/s1 40 MN/m Spring stiffness between the rail and the concrete slab
cr/s1 10 kNs/m Damping coefficient between the rail and the concrete slab
kf 100MN/m3 Spring stiffness, elastic foundation
cf 82kN/m3 Damping coefficient, elastic foundation

rail seats each spanning 0.65 m, which renders a total track length of 78 m. The
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length has been determined to be sufficiently long in order to attenuate boundary
effects (reflections) that might affect the simulation results. By modeling the track
using FEs, the quality of the calculated results will depend on the discretization
(element size). The conversion of the moving contact forces into spatially stationary
time-dependent nodal forces (mentioned in Section 2.3) implies that the true local
deflection under the contact force is somewhat underestimated [12]. To limit this
effect, a common procedure is to increase the mesh resolution. The boundaries at
both ends of the rail and the panel are fixed, i.e both translational and rotational
DOFs are constrained.

3.2 Implementation Phase

A requirement of the methodology developed in the current work has been that it
should enable to generate a parameterized three dimensional slab track model. This
is to allow for parametric studies as model properties such as geometries and ma-
terials can be easily altered. For this purpose, Python scripts are used to generate
FE models in ABAQUS.

ABAQUS is a commercial FE analysis software suite developed by Dassault Sys-
tèmes Simulia Corp [28]. It can be used to conduct linear and non-linear analysis
of models with complex geometries. What makes ABAQUS suitable for the current
project is that it has an application programming interface (API), which is an ex-
tension of the object oriented programming language Python.

The ABAQUS scripting procedure is summarized in Figure 3.4. The user can write
a Python script with commands and parameters that is interpreted in the API,
or use the ABAQUS graphical user interface (GUI) to generate the Python script
which is interpreted in the API. All the actions done by the Python interpreter is
recorded in a replay file. This offers a good way of learning the commands necessary
for scripting since all actions in the GUI are recorded as Python commands. Fur-
thermore, Python commands can be directly typed in the ABAQUS GUI, enabling
visual confirmation of the actions triggered by the command.
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GUI

Python

Python

Replay

ABAQUS kernel

ABAQUS

ABAQUS

ABAQUS

Implementation Phase in ABAQUS

ABAQUS Model

Parameterization

Model generation

script

and visualization elements

interpreter file

input file

standard

Nodes
Elements

KKK, MMM , CCC

Figure 3.4: Diagram sketch of the implementation phase in ABAQUS.

The information is then processed in the ABAQUS kernel, where the interpreted
script is used to generate the ABAQUS model out of ABAQUS elements and com-
mands. The kernel generates an ABAQUS input (.inp) file which contains all the
information about element types, node coordinates, mesh topology and material
properties of the model to be analyzed. The input file can be read in Matlab,
thereby exporting node and element information which is used to sort the mechan-
ical system matrices (KKK, MMM and CCC) in Matlab.

The input file can also be run in ABAQUS standard analysis to calculate the struc-
tural dynamic and static displacement and stress response. In this application, sys-
tem matrices are generated and exported to Matlab for use in static and dynamic
simulations.

3.2.1 Two-dimensional Slab Track Model

In order to verify the implementation in ABAQUS, the initial step of the current
project was to duplicate the 2D DIFF model in Aggestam et al. [27]. To this end,
spring–dashpot and beam elements with properties governed by user set constants
were used in ABAQUS. The beam elements are R–T beams with three DOFs per
node (see Fig. 3.5) denoted B21 in ABAQUS.
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3ȳ
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Figure 3.5: Sketch of a R–T 2D beam element with two nodes, each consisting of
two translational and one rotational DOF. x̄ and ȳ denote the local spatial coordi-
nates and lj denotes the element length.

Parameter values are taken from Table 3.1 and implemented in ABAQUS using
generalized beam sections which are assigned to the beam elements for the rail and
concrete panel, respectively. Each section has an arbitrary beam profile, which in
turn is assigned values for cross-sectional area, area of inertia and torsional rigidity.
Furthermore, the shear coefficient is accounted for by specifying the transverse shear
and setting the shear factor. In Equation (2.8), the product k′A can be manipulated
through the parameter SCF which is defined as [29]

SCF = k′GA

G
, (3.1)

and is implemented in the definition of transverse shear for beams in ABAQUS.

The second element used is the connector element CONN2D2 which connects nodes
of different parts in ABAQUS. The connector elements can be assigned different
properties to model springs and/or dampers. It is necessary to set the direction in
which the element acts. In this implementation, it is defined with respect to the
global cartesian coordinates. In the 2D model, one CONN2D2 element represents
one rail pad by connecting one rail node to a corresponding panel node at each rail
seat, see Figure 3.6.

Furthermore, the Winkler foundation is approximated as CONN2D2 elements con-
necting each panel node to the ground (mass-less nodes constrained in all DOFs) as
seen in Figure 3.7. In the current implementation, all ground connectors have the
same properties.

Consequent to the DIFF model, the current model consists of 120 rail seat distances,
spanning a total length of 78 m. Both ends of the rail and concrete panel are fixed,
which is seen Figure 3.8.
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Figure 3.6: Magnified sketch of the 2D ABAQUS slab track model covering two
rail seat distances. The upper beam layer represents the rail and the lower represents
a continuous concrete slab. The rail and the slab are connected by a spring–dashpot
pair at each rail seat while the slab and the ground are connected by a spring–
dashpot pair at each element node as a substitute for a Winkler foundation.

kw, cw

k c

Figure 3.7: Sketch of the foundation adapted in ABAQUS. The Winkler bed is
approximated as spring/dashpot pairs coupling each node of the concrete panel to
the ground represented by mass-less nodes constrained in all DOFs.

lt
x

y

Figure 3.8: Sketch of the full Abaqus 2D model. Two parts are magnified; the far
end illustrating the boundary conditions and the two middlemost rail seats showing
the rail–panel connection. lt is the full track length and the global coordinates, x
and y are outlined.

3.2.2 Three-dimensional Slab Track Model

A number of concerns were raised in the development of the three-dimensional (3D)
slab track model. To model and visualize geometrical features such as rail seats and
to analyze the requested response, for instance panel bending moment and founda-
tion reaction force in three spatial dimensions, the concrete panel is modeled using

27



3. Method

solid elements. Implementing solid elements vastly increases the number of DOFs
and thereby the computational power needed.

To construct a mesh that is adaptable, tetrahedral elements are used for the solid
part. The specific element used is C3D10 which is a ten node tetrahedral element
as illustrated in Figure 3.9. This element has four integration points, and the shape
functions are presented in Zienkiewicz and Taylor [30]. For complex geometries,
ABAQUS features an automatic mesh generator based on this kind of element.
Consequent to the 2D model described in the previous section, the rail is modeled
using R–T beam elements. However, for the 3D model each node has six DOFs and
is in ABAQUS denoted B31.

The 3D model is constructed in several modules, each constituting one rail seat

1

2
3

4

5

6
7

8
910

x̄

z̄

ȳ

z̄1

x̄1

ȳ1

Figure 3.9: Sketch of a tetrahedral element with 10 nodes with local coordinates
x̄, ȳ and z̄. Each node has three translational DOFs x̄i, ȳi and z̄i where i is the node
number

distance, as seen in Figure 3.11(a). The module is periodically duplicated and cou-
pled longitudinally to form the whole track model. The number of modules in
the track structure is user defined, but the length has to be sufficient to attenuate
boundary effects.

Each module is meshed individually, utilizing the fact that the module is sym-
metric in the longitudinal direction and thus a symmetric mesh is rendered. The
user input defines the mesh density of the rail seats by one parameter, the mesh
density of the panel body in lateral direction by one parameter, the mesh density
in longitudinal direction of the panel body by one parameter and the mesh density
in the vertical direction of the panel body by one parameter. The symmetric mesh
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generation allows each module to be coupled in a node to node fashion. Figure 3.10
shows the edges of the 3D module that govern the mesh resolution.

Figure 3.10: Sketch illustrating the edges arbitrating the mesh generation, which
are indicated by the dashed lines in red. Input parameters decide the number of
elements along each highlighted edge.

Each module is modeled with symmetry boundary conditions at the track center
line, thereby representing only half of the actual track width, see Figure 3.11(b).
At the rail seats, the DOFs of surface nodes are tied to the middle node of the rail
seat surface (indicated by the node with cross hairs in Fig. 3.11(a)). This node is
connected to one rail node at the same x- and z-coordinates. The rail pads are here
represented by CONN3D2 elements which are identical to CONN2D2 elements with
an additional option to include another translational DOF in the z-direction.

The Winkler foundation on the solid part of the concrete panel is represented by the
ABAQUS feature SPRINGS/DASHPOTS TO GROUND. Since the nodes are uni-
formly and equidistantly distributed on the bottom panel surface, constant stiffness
and damping values according to Table 3.1 can be used.
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Figure 3.11: Magnified sketch of one rail seat module of the ABAQUS 3D slab
track model, seen from the side (a) and from above (b). The rail and the slab are
connected by a spring–dashpot pair at each rail tie connecting one rail node to all the
surface nodes via the mid rail seat surface node indicated by the cross hairs on the
rail seat. The slab is connected to the ground via spring–dashpot pairs with uniform
stiffness and damping at each element node as a substitute for a Winkler foundation.
Symmetry in the z-direction is applied in the middle of the track width. lbay denotes
the rail seat span length, lrs is the length and width of the elevated portion of the
rail seat, bS is the concrete panel width, hs is the concrete panel height and hrs is
the rail seat height. The global coordinate system is illustrated in both figures.

To connect each rail part, the ABAQUS feature COUPLING is used. The two end
nodes of adjacent beam elements are merged into one node and thus share DOFs.
The solid parts are connected in a similar way using the ABAQUS feature TIE.
Rail elements of the whole track structure are modeled first in left to right order,
allowing DOF numbering for the rail to be consequently ordered.

Since each module is symmetric in the longitudinal direction, the mesh patterns of
the solid elements are identical on both sides which enables a node–node connection
on the adjacent surfaces. Both these connections have been validated by conducting
static computations on simple structures and load cases, see Figure 3.12.
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P P

P P

l l

ll

Figure 3.12: Sketch of different ABAQUS connection types that were verified by
calculating the deflection after applying the same load P on structures with the
same length l ad having the same cross-sectional properties and mesh resolution.
Upper left: beam with no connections. Upper right: beam to beam COUPLING
connection. Lower left: Solid part with no connections. Lower right: Solid to beam
MPC-beam connection.

A full track model of 120 rail seat distances with the concrete panel modeled using
solid elements is computationally heavy. However, shortening the track is not an
alternative due to the previously mentioned boundary reflections. The current work
has adopted an alternative solution in which only the center most part of the con-
crete panel is modeled with solid elements, and the rest of the structure is modeled
with beam elements (in this case B31 ABAQUS elements) in the same way as for
the 2D model.

For such a design to provide adequate results, the connection between solid and
beam elements must not render reflections that interfere with the results. Finally,
it was decided to use a Multi-Point Constraint (MPC) connection in ABAQUS de-
noted MPC-beam, which ties the DOFs of the surface nodes of the solid elements to
the DOFs of the first node of the beams representing the rest of the panel structure
according to Figure 3.13. Practically, each node of the surface modeled with solid
elements is connected through rigid beams, which enables moment to be transferred
through the connection. This connection was validated according to Figure 3.12 and
did not render any significant boundary effects in the results.
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Figure 3.13: Sketch of the MPC connection between the solid and beam element
parts of the slab. The yellow nodes represent the surface nodes on the solid element,
whose DOFs are all tied to the DOFs of the adjacent beam node (the red node with
cross hairs).

The 3D model used for the simulations in Chapter 4 has 120 rail seat distances and
a total length of 78 m. The concrete panel on a user defined number of middlemost
rail seats are solid elements and the rest of the structure is modeled analogous to
the 2D model. The ends of both rail and concrete panel are fixed. See Fig. 3.14 for
an illustration of the whole structure.

lt

y

x

z ls

Figure 3.14: Sketch of the whole 3D ABAQUS track model. Three sections of the
model are magnified. The far end, a rail seat distance modelled with solid elements
and the MPC connection between solid and beam elements. ls denotes the length
of the solid part of the track and lt is the total length of the track. The global x, y
and z coordinates are outlined.

3.3 Simulation Phase

The properties of the generated track structures, in the form of node and element
topology and global system matrices KKK, MMM and CCC are exported to Matlab. In
Matlab, topology information is used to sort the system matrices for the subsequent
static and dynamic calculations. The simulation phase is summarized in Fig. 3.15.
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Simulation Phase

Elements

MatlabDIFF

Receptance

Dynamic and
static track
simulations

Track stiffness
Contact force

KKK, MMM , CCC
Nodes

Figure 3.15: In the simulation phase, the node and element information is used
to sort the global system matrices exported to Matlab and subsequently used in the
simulations. The simulation results include receptance, track stiffness at the rail
level and wheel–rail contact forces calculated in the software DIFF.

3.3.1 Non-moving Load Problem

The response of the track to a non-moving load was investigated. The track response
in the frequency domain is analyzed by calculating the receptance at different posi-
tions of the track. The receptance is given as

H(ω) = u

F
(3.2)

where u is a displacement at a given DOF in the track model and F is the force
applied at any DOF along the rail. uuu (a vector containing all DOFs) is calculated
in the frequency domain as

uuu(ω) = FFF

KKK + iωCCC − ω2MMM
(3.3)

where FFF is the load vector. To get the receptance at a single DOF (as in Equa-
tion (3.2)), the DOF of interest is extracted from uuu. The static track response is
represented by the track stiffness at the rail level and is taken as of H(ω = 0)−1 at
any longitudinal coordinate along the rail.
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3.3.2 Dynamic simulations in DIFF

DIFF is an in-house software developed by Nielsen and Igeland [12] and stands for
Dynamisk Interaktion mellan Fordon och Farbana (Dynamic Interaction between
Vehicle and Track). DIFF is implemented in Matlab and utilizes the modal super-
position technique and time integration procedure covered in Section 2.3.2. DIFF
has previously been validated by comparing simulation results to experimental data
for ballasted tracks. In the current work simulations in DIFF are performed to cal-
culate wheel–rail contact forces, which are solved from the initial value problem in
Eq. (2.40) and included in żzz.

The vehicle used for the dynamic simulations consists of one bogie with two wheelsets
as seen in Figure 2.6. The bogie is modeled by six DOFs, and contains two unsprung
masses Mb1 and Mb2 separated by the distance lb and a bogie frame with the mass
Mb3. Also, the bogie is influenced by the mass of the car body M0 and the total
axle load is 17 tonnes. The parameter values for the vehicle are taken from [31] and
displayed in Table 3.2.

Table 3.2: Parameter values for the vehicle model used in the dynamic simulations,
taken from Iwnicki [31].

Parameter Value Legend
Mb1 1.8 tonnes Mass of the first wheelset
Mb2 1.8 tonnes Mass of the second wheelset
Mb3 2.6 tonnes Mass of the bogie frame
M0 28 tonnes Mass of the car body
Jb3 1476 kgm2 Bogie frame inertia
lb 2.6 m Bogie length
k 1.2 MN/m Wheelset suspension stiffness
c 4 kNs/m Wheelset suspension damping
CH 93 GN/m3/2 Hertzian contact coefficient
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Numerical Results

In the following chapter, the numerical results are presented. In Section 4.1, the
method is validated by comparing results between the two-dimensional (2D) model
developed by Aggestam et al. [27] (DIFF model) and the developed 2D ABAQUS
model. The results from the developed 3D ABAQUS model are presented in Sec-
tion 4.2.

4.1 Verification of Modeling Procedure

To verify the procedure presented in Chapter 3, the numerical results of the 2D
model developed in ABAQUS are compared to those calculated with the DIFF
model. Throughout this chapter, the relative error is computed according to

η = | v
DIFF − vABAQUS |

vDIFF , (4.1)

where vDIFF and vABAQUS are computed values (receptance, track stiffness or wheel–
rail contact force) for the DIFF and ABAQUS models, respectively.

4.1.1 Receptance

Receptances of the proposed and existing models are compared. A vertical harmonic
load (in the frequency range 0–1500 Hz) is applied at the mid rail seat (rail seat 61
out of 121). The response, given by the deflection per unit force, can be calculated
at any DOF in the system. In Figure 4.1(a), the direct receptance (response is
calculated at the same DOF as the excitation) is presented. Also, the relative error of
the receptance calculated with both models is presented in Figure 4.1(b). Figure 4.2
presents the amplitude (a) and relative error (b) of the cross receptance calculated
at the slab for excitation at the mid rail seat, respectively. The displacement of the
slab is taken at the same longitudinal coordinate as the rail excitation.

35



4. Numerical Results

0 500 1000 1500

Frequency [Hz]

10-10

10-9

10-8

10-7

R
ec

ep
ta

nc
e 

[m
/N

]

DIFF
Abaqus 2D

(a)

0 500 1000 1500

Frequency [Hz]

10-5

10-4

10-3

10-2

10-1

100

R
el

at
iv

e 
er

ro
r 

[-
]

(b)

Figure 4.1: Magnitude (a) and relative error (b) of the direct receptance calculated
for the 2D ABAQUS model and the DIFF model. The excitation and response are
taken at the middle rail seat.
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Figure 4.2: Magnitude (a) and relative error (b) of the cross receptance calculated
for the ABAQUS 2D model and the DIFF model. The excitation and response are
taken at the longitudinal coordinate corresponding to the mid rail seat at the rail
and slab, respectively.

In Figure 4.1(a), two resonances and one anti-resonance are noted. At the first reso-
nance frequency at about 100 Hz, the slab and rail move in phase which is indicated
by that the same resonance can be seen in Figure 4.2(a). At the second resonance
frequency at about 200 Hz, the slab and rail move out of phase. The anti-resonance
at about 950 Hz represents the so-called pinned–pinned eigenmode. At this mode,
the rail vibrates with a wavelength corresponding to two rail seat distances [12]. It
is also noted that the resonance at about 850 Hz in Figure 4.2(a) can be seen as a
small peak in Figure 4.1(a). Figures 4.1 and 4.2 show that the receptance of the two
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models are in good agreement. The largest deviation is found at the pinned-pinned
mode.

4.1.2 Track Stiffness at the Rail Level

Based on the stiffness matrices of the track models, the static track stiffness at the
rail level is investigated, see Figure 4.3. The periodic pattern in Figure 4.3(a) is a
result of the discrete rail supports where each peak represents a rail support. It is
clear from Figure 4.3(b) that the results from the two models are in good agreement.
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Figure 4.3: Magnitude (a) and relative error (b) of the slab track stiffness at the
rail level calculated for the 2D ABAQUS model and the previously developed DIFF
model.
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4.1.3 Vertical Wheel–Rail Contact Force

Simulations of vertical dynamic vehicle–track interaction are performed. Figures 4.4
and 4.5 present wheel–rail contact forces calculated without or with broadband
irregularities modeled on the running surface of the rail, respectively.
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Figure 4.4: Magnitude (a) and relative error (b) of vertical wheel–rail contact force
simulated using the ABAQUS 2D model and the previously developed DIFF model.
Time step 10−5 s. Locations of rail seats and nodes of beam elements in the rail FE
model are outlined.

As seen in Figure 4.4, the contact forces show the same periodic pattern as the track
stiffness presented in Figure 4.3. This is a direct consequence of the periodic excita-
tion caused by the discrete rail seats. In addition, excitation at the element passing
frequency is observed. This is due to the discontinuity in slope of the interpolation
polynomials from R–T beam theory, which are presented in Equation (2.9). These
disturbances, which would not have been present if E–B beam theory was used, can
be filtered out using a low-pass filter.

The vertical dynamic vehicle–track interaction is further investigated by introducing
an irregularity with wavelengths in the range 2 cm–10 m and amplitudes accord-
ing to the limit in ISO3095 [32]. The irregularity is added to the vector xxxirr in
Equation (2.31). The calculated vertical wheel–rail contact force is presented in
Figure 4.5.
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Figure 4.5: Magnitude (a) and relative error (b) of vertical wheel–rail contact
force simulated using the ABAQUS 2D model and the previously developed DIFF
model. Broadband irregularities with wavelengths in the range 2 cm – 100 cm and
amplitudes taken as the limit in ISO3095 [32] is modeled on the rail. Locations of
rail seats and nodes of beam elements in the rail FE model are outlined.

In Figure 4.6, the spectrum of the vertical contact force simulated for the ABAQUS
2D model is compared with the previously developed DIFF model. The results show
good agreement. The peak in relative error at about 0.415 s seen in Figure 4.5, is
explained by a loss of wheel–rail contact.
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Figure 4.6: Spectrum of the vertical wheel–rail contact force calculated for the
ABAQUS 2D model and the DIFF model. Broadband irregularities with wave-
lengths in the range 2 cm – 100 cm and amplitudes taken as the limit in ISO3095
[32] is modeled on the rail.
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4.2 Three-dimensional Slab Track

Results simulated for the 3D ABAQUS model are presented in the following section.
Again, the DIFF model is used for comparing the numerical results. The results
give an indication if the assumptions for the 2D model are valid, it also offers an
opportunity to fine-tune the DIFF model according to a more detailed 3D model in
future work.

4.2.1 Receptance

Analogous to the ABAQUS 2D model, the frequency response of the 3D model is
investigated by calculating the receptance. The load is applied on the rail at the
middle rail seat. For the direct receptance the response is calculated at the same
DOF, see Figure 4.7. Figure 4.7 shows no sign of significant boundary reflections
originating from e.g. the transition between track sections modeled with solid and
beam elements.
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Figure 4.7: Magnitude (a) and relative error (b) of the direct receptance calculated
for the 3D ABAQUS model and the DIFF model. The excitation and response are
taken at the middle rail seat.
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4. Numerical Results

4.2.2 Track Stiffness at the Rail Level

The track stiffness at the rail level of the 3D model compared to the 2D DIFF
model is presented in Figure 4.8. From Figure 4.8, it is apparent that the part of
the track modeled with solid elements has a marginally higher stiffness than the rest
of the track structure. This effect can be further investigated conducting parametric
studies by changing for example the foundation stiffness.
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Figure 4.8: Magnitude (a) and relative error (b) of the static slab track stiffness
calculated for the 3D ABAQUS model and the previously developed DIFF model.
The boundaries between sections of the concrete panel modeled with solid and beam
elements are outlined by vertical lines.

4.2.3 Vertical Wheel–Rail Contact Force

Figure 4.9 presents the vertical wheel–rail contact force calculated without rail ir-
regularities. Figure 4.9 shows the difference in stiffness between the solid and the
beam part of the track to render disturbances in the wheel–rail contact force. This
disturbance is stabilized under the course of the simulation, until the bogie reaches
the other boundary, where the disturbances are introduced again, see Figure 4.9(b).
Hence, the part of the track modeled with solid elements must be of sufficient length
to produce reliable results. A closer look at the time span between 0.5 s and 0.6 s is
presented in Figure 4.10. Figure 4.10 shows that the contact force, when stabilized,
show close agreement compared to the simulations run on the 2D DIFF model.
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Figure 4.9: Magnitude (a) and relative error (b) of vertical wheel–rail contact force
simulated using the ABAQUS 3D model and the previously developed DIFF model.
Time step 10−5 s. The boundaries between sections of the concrete panel modeled
with solid and beam elements are outlined by vertical lines.
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Figure 4.10: Magnitude (a) and relative error (b) of vertical wheel–rail contact
force simulated using the ABAQUS 3D model and the previously developed DIFF
model. Time step 10−5 s. Locations of the rail seats and element boundaries are
outlined.

Furthermore, the irregularity from ISO3095 is introduced on the rail and the results
are presented in Figure 4.11. In Figure 4.12, the spectrum of vertical wheel–rail
contact force simulated for the ABAQUS 3D model and the previously developed
DIFF model are compared.
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Figure 4.11: Magnitude (a) and relative error (b) of vertical wheel–rail contact
force simulated using the ABAQUS 3D model and the previously developed DIFF
model. Broadband irregularity with wavelengths in the range 2 cm – 100 cm and
amplitudes taken as the limit in ISO3095 [32] is modeled on the rail.
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Figure 4.12: Spectrum of the vertical wheel–rail contact force calculated for the
ABAQUS 3D model and the DIFF model. Broadband irregularities with wave-
lengths in the range 2 cm – 100 cm and amplitudes taken as the limit in ISO3095
[32] is modeled on the rail.

Finally, simulations of wheel–rail contact force with rail irregularities based on
ISO3095 comparing the mesh density of the the track section modeled with solid
elements are conducted, see Figure 4.13. Three mesh densities are compared, low
(532 nodes per rail seat distance), medium (1374 nodes per rail seat distance) and
high (2284 nodes per rail seat distance). Figure 4.13 indicates that at the rail level,
simulation results are not influenced to a large extent by the mesh resolution of the
solid elements in the concrete panel.
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Figure 4.13: Magnitude (a, c, e) and relative error (b, d, f) of vertical wheel–rail
contact force simulated using the ABAQUS 3D model and the previously developed
DIFF model. Broadband irregularity with wavelengths in the range 2 cm – 100 cm
and amplitudes taken as the limit in ISO3095 [32] is modeled on the rail. Simulations
conducted on 3D models with low mesh resolution (a–b), medium mesh resolution
(c–d) and high mesh resolution (e–f).
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5
Summary and Conclusions

A methodology to introduce finite element (FE) slab track models implemented in
the commercial software ABAQUS into an existing in-house software for simulation
of dynamic vehicle–track interaction (DIFF) has been developed. The procedure
is validated by comparison of track receptance, track stiffness at the rail level and
dynamic wheel–rail contact forces simulated for a two-dimensional (2D) slab track
model built in ABAQUS towards those obtained with an existing model.

In ABAQUS, the track models are generated by Python scripts interpreted in the ap-
plication programming interface (API). The geometry of the slab track (e.g. model
length, design of concrete panel and distance between rail seats) as well as properties
of the numerical approximation (e.g. density of FE mesh and number of eigenmodes
included in the modal reduction) are parameterized in order to allow for parametric
studies.

The 2D slab track model used for validation consists of two ABAQUS elements; B21
Rayleigh–Timoshenko (R–T) beam elements to model the rail and concrete panel,
and CONN2D2 connector elements to model rail pads and soil. The subsequently
developed 3D model includes B31 and CONN2D3 elements (the three dimensional
equivalents to the elements of the 2D model), and in addition the C10D3 solid ele-
ment. To reduce the number of DOFs, only a central portion of the concrete panel is
modeled with solid elements whereas the surrounding parts are modeled with R–T
beam elements. Boundaries between the concrete panel modeled with R–T and
C10D3 elements are connected using Multi-Point-Constraints (MPC) which intro-
duces a rigid connection between the surface nodes of the concrete panel modeled
with solid elements and the adjacent node of the part modeled with beam elements.

Simulations of vertical dynamic vehicle–track interaction are performed using the
in-house software DIFF. A high-speed vehicle consisting of one bogie is modeled.
In DIFF, the moving load problem of a railway vehicle traversing a slab track is
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5. Summary and Conclusions

solved by numerical time-integration using an extended state-space vector approach
in combination with a complex-valued modal superposition technique.

The vertical wheel–rail contact force simulated for the three-dimensional (3D) slab
track model shows disturbances originating from the entrance of the concrete panel
modeled with solid elements. This puts requirements on the minimum length of this
part of the concrete panel in order for the contact force to stabilize. The associated
excitation is likely due to the slight difference in track stiffness experienced by the
wheel as it moves from the part of the track where the slab is modeled with beam
elements to that modeled with solid elements.

The vertical direct rail receptance calculated for the 3D slab track model shows
a slight deviation in frequency for the pinned-pinned eigenmode compared to that
obtained for the 2D model. Comparison of the vertical wheel–rail contact force
simulated for the 2D and 3D slab track model shows a good agreement. For the
same length of the track model, simulations with the 3D slab track model is about
a factor 2 times more time consuming compared to the 2D slab track model. This is
due to the increased number of DOFs (also after modal reduction since eigenmodes
up to the same maximum eigenfrequency are used) of the 3D model. In the current
work eigenmodes corresponding to eigenfrequencies up to approximately 1500 Hz
are accounted for in both track models.
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6
Further Work

In the PhD project CHARMEC TS19, design criteria for future slab track struc-
tures are to be defined. In the current work, the simulation methodology including
a three-dimensional (3D) slab track model has been developed and can be used in
further work involving vehicle–track interaction. In the following paragraphs, model
refinements and proposed changes are discussed.

The geometry and properties of the concrete panel can be calibrated in order to
in a larger extent resemble a real life track design. Rail seats and rail pads can
be altered and reinforcement bars can be included in the model. To validate the
method, data measured on an experimental test rig or in the field is required. In
particular, dynamic vertical wheel–rail contact force measured with for example an
instrumented wheelset would be useful. This way, the developed model can be tuned
with respect to real life experimental data. Parametric studies to test modeling as-
sumptions such as foundation stiffness distribution, rail pad stiffness, etc. are also
suggested.

A further development of the post-processing to enable the calculation of bending
moment in the concrete panels and force distribution on the foundation is proposed.
Analyzing the moment distribution in three dimensions allows for criteria to be set
concerning concrete strength, reinforcement density, crack propagation allowance
etc. Analyzing the foundation force distribution is of great importance since setting
the requirements for the foundation relies on the allowed settlements, which has a
big influence in the amount of ground improvement needed before construction and
thus the investment cost for future railways built with slab track technology.
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