
Time Series Forecasting With
Neural Networks
Minimizing Food Waste By Forecasting Demand in Retail Sales

Master’s thesis in Complex Adaptive Systems

ARIANIT ZEQIRI,
MORAD MAHMOUDYAN

DEPARTMENT OF PHYSICS
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2021
www.chalmers.se

Master’s thesis 2021

Time Series Forecasting Using Neural Networks

Minimizing Food Waste By Forecasting Demand in Retail Sales

ARIANIT ZEQIRI
MORAD MAHMOUDYAN

Department of Physics
Chalmers University of Technology

Gothenburg, Sweden 2021

Time Series Forecasting Using Neural Networks
Minimizing Food Waste By Forecasting Demand in Retail Sales
ARIANIT ZEQIRI
MORAD MAHMOUDYAN

© ARIANIT ZEQIRI & MORAD MAHMOUDYAN, 2021.

Supervisors: Anton Graf, Sina Torabi
Examiner: Mats Granath, Department of Physics

Master’s Thesis 2021
Department of Physics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Grocery bags containing di�erent food articles.

Typeset in LATEX
Printed by Chalmers Reproservice
Gothenburg, Sweden 2021

iv

Time Series Forecasting Using Neural Networks
Minimmizing Food Waste by Forecasting Demand in Retail Sales
ARIANIT ZEQIRI
MORAD MAHMOUDYAN
Department of Physics
Chalmers University of Technology

Abstract
A third of the food produced for human consumption is wasted annually, amounting
to 1.3 billion tons of food waste per year [10]. Minimizing these enormous quantities
of waste would not only be beneficial for the planet but also help feed an ever
increasing human population. One way of minimizing this waste is by helping retail
sellers better plan their logistical operations by accurately predicting the demand
of goods using forecasting models. The procedure in time series forecasting has
traditionally been to use statistical models such as autoregressive integrated moving
average (ARIMA) and exponential smoothing methods. These methods have been
shown to be limited in their predictive capabilities as the sizes of data sets and the
number of variables increases. In the last decade new machine learning algorithms
have been used extensively in various fields and has opened up the door for utilization
of models based on neural networks in time series forecasting. A subset of these
new machine learning algorithms, such as transformer based models and recurrent
neural networks, have been proven to be especially suitable for temporal data. In
this thesis we investigate two models, Temporal Fusion Transformers (TFTs) and
Deep Temporal Convolutional Networks (DeepTCNs), showcasing their abilities to
generate accurate forecasts of retail sales on a real-world data set. We demonstrate,
using several metrics, their ability to outperform baseline models.

Keywords: forecasting, machine learning, neural networks, food waste, retail sales,
dilated convolution, temporal fusion transformer, temporal convolutional network

v

Contents

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Aim . 2
1.2 Delimitation . 2
1.3 Thesis layout . 3

2 Theory 5
2.1 Traditional time series forecasting . 5

2.1.1 Multivaraite time series forecasting 7
2.2 Neural Networks . 7

2.2.1 Dilated convolution . 9
2.2.2 Recurrent Neural Networks 10
2.2.3 Long Short-Term Memory Networks(LSTMs) 12
2.2.4 Sequence to sequence models 13
2.2.5 Self-attention . 13
2.2.6 Transformers . 14

2.3 Quantile Loss . 15
2.4 Metrics . 16

3 Methods 19
3.1 The Data set . 19

3.1.1 Data Splitting . 23
3.2 Deep temporal convolutional network (DeepTCN) 24
3.3 Temporal fusion transformer (TFT) 26

3.3.1 Gated Residual Network (GRN) 26
3.3.2 Variable Selection Network . 27
3.3.3 Static covariate enconders . 28
3.3.4 Sequence to sequence module 28
3.3.5 Temporal Fusion Decoder . 29
3.3.6 Modifications . 29

4 Results 31

5 Discussion 37

vii

Contents

5.1 Challenges . 37
5.2 Future Work . 38
5.3 Conclusion . 40

Bibliography 44

viii

List of Figures

2.1 A graph over a perceptron model. The left most layer represents the
inputs to the model. Each input has a weighted connection to the
neuron and the these connections are then summed by the neuron.
The summed neuron value is then fed to an activation function g. . . 8

2.2 Stacked dilated Convolutional layers for an input sequence of 16 and
a kernel size of 2. At each layer the dilation is increased with a power
of 2. 10

2.3 To the left: a simple recurrent neural network consisting of one input
neuron, one hidden neuron and one output neuron. To the right:
the same RNN unrolled in time. The unrolling does not a�ect the
weights, they remain the same for each time step. 11

2.4 High-level architecture of a transformer. The left part of the figure
depicts the decoder structure consisting of multi-head attention and
a feed forward network. To the right part we have the decoder struc-
ture which has one more, masked, attention layer than the encoder.
Output probabilities are produced by applying a softmax activation
function on the output of the decoder. 15

3.1 Frequency distribution of the percentage of date range covered by all
articles in our data set. 20

3.2 A heatmap of the density of points where each point represents one
article. The x value denotes the article’s date range and the y value
denotes the number of days that article has been sold. There is a
large concentration of articles around the origin. 21

3.3 Heatmap of the results produced by repeatedly applying the filter
date range function for various date ranges and date fractions. A
possible region of interest is also displayed in the heat map. The
color bar denotes the fraction of articles remaining after applying the
filter function. 22

3.4 A box and whisker plot over daily sales for the entire data set grouped
by day of week. 23

3.5 Each of the eight graphs represent the distribution of the number of
articles sold every day for a specific store. 23

3.6 A Diagram of a residual block with two dilated convolutions. d and
k refer to dilation rate and kernel size respectively 25

ix

List of Figures

3.7 A Diagram over the complete DeepTCN architecture, with multiple
stacked residual blocks and a decoder module. Furthermore a VSN
module has been added at the onset. 26

3.8 Architecture of a VSN model. 28
3.9 High-level architecture of TFT. S denotes static input, {‰i}t

i=t≠k
de-

notes historical temporal data and {‰i}t+·

i=t+1 denotes future temporal
data. Skip connections are indicated by dashed lines. Context vectors
produced by the static covariate encoder are fed to various modules,
including VSNs, Encoders and GRNs. 30

4.1 The training and validation loss for both DeepTCN models 33
4.2 Loss curves for four di�erent TFT networks with h = 8, h = 16,

h = 32 and h = 64. Red lines indicate training loss and black lines
depict validation loss. 33

4.3 Forecasts made using the SES baseline model 34
4.4 Time series forecasting done by TFT with h = 32 on six random

articles from two stores, store 173 and store 3998. See figure 4.5 for
a detailed description of the layout. 34

4.5 Forecasting done by DeepTCN with k=2 for a some random samples
in the test data. The transparent red area defines the models quantile
forecasts - the upper boundary is the 90th quantile while the lower
boundary is 10th quantile. The grey line represents the historical
data that the model has access too. The data points marked by black
dots are the actual predictions. 35

x

List of Tables

4.1 The following table shows the performance of the models on four cho-
sen metrics (Normalized Quantile Loss, MAE, MSLE and MAAPE).
The performance of the models where measured on the test data.
All models presented in this table used the data splitting method
described in algorithm 1 in section 3.1.1. 32

xi

List of Tables

xii

1
Introduction

A third of the food produced for human consumption is wasted annually, amounting
to 1.3 billion tons of food waste per year[10]. All resources that go into producing
these huge amounts of food are in the end wasted and, furthermore, the greenhouse
gas emissions that are generated at the agricultural, processing and transportation
stages are unnecessary and can potentially be avoided [10]. Food wastage occurs
throughout the life cycle of food systems, from production to consumption, but
the amount wasted at each stage di�ers depending on the economic status of the
nation in question [10]. A significant part of the wastage occurs for example at the
consumption stage in the industrialized world while the same e�ect is not seen in low-
income nations [10][15]. With an ever increasing population food production must
clearly increase to meet the future demand of an increasing and a�uent population.
Decreasing food waste is therefore a step in the right direction for improving global
food security as well as mitigating the e�ects of climate change. Decreasing the food
loss at the consumption stage can be achieved by implementing forecasting models
that can forecast the demand for individual food articles and help retail business
owners better plan the logistics of their operations.

Besides the environmental benefits there are economical benefits of generating accu-
rate forecasts of retail demand. Accurate forecasts lead to decreased uncertainty for
retailers since they can replenish articles at a timely manner which in turn increases
sales by means of product availability. Improving the supply chain and inventory
management has therefore economical benefits apart from the environmental bene-
fits.

Time series forecasting is the task of predicting future values of a variable by means of
analyzing a range of features that may influence the variable of interest. Examples
of features that may a�ect the future values are historical patterns, future time
dependent factors, business decisions and external factors. The ability to make
accurate forecasts is essential in various businesses and can be used to optimize
business processes as well as enable data driven decision making. Predicting future
demand of items in retail [9], future load on power grids [25] and the general use of
forecasting in economic models [5] are a couple of real-world applications where the
problem of time series forecasting is important.

Statistical methods such as moving average, exponential smoothing [11] and au-
toregressive integrated moving average (ARIMA) [33] have traditionally been used

1

1. Introduction

extensively in time series forecasting but as the number of variables and the sizes of
data sets have increased the manual tuning of parameters associated with statistical
methods has become unfeasible. New deep learning algorithms in areas such as im-
age detection [28], bioinformatics [7], automatic speech recognition [14] and natural
language processing [12] have proven to be able to model complex systems in real
life by automating the tuning of parameters in complex functions and, in the end,
generating black-box models that in all instances outperform classical interpretable
models. The rise of these new algorithms the last decade has brought about new
opportunities for creating neural network based forecasting models for big data sets.

Several neural network based forecasting models have been proposed for time series
forecasting. Most of these models are designed to act on univariate data such as
the autoregressive recurrent forecaster (DeepAR) model[29] or the Multi-Horizon
Quantile Recurrent Forecaster[36] model that was tested on univariate sales data
from Amazon. Multivariate models have not been explored as much but there are
some examples of them such as the Temporal Fusion Transformer model (TFT)[23], a
particularly complex architecture with multiple modules designed to act on certain
types of data. A more popular approach for creating multivariate models is to
use various Temporal Convolutional Network (TCN) architectures. DeepTCN[6],
SeriesNet[27] and M-TCN[35] are a few TCN based models that have been proposed
for time series forecasting.

In this report we will demonstrate two neural network based forecasting models that
are trained using a real-world data set consisting of retail sales data. The trained
models will be used to forecast food purchases in order to help retailers better plan
their logistic operations and in the end decrease food wastage.

1.1 Aim
The aim of this thesis is to examine various neural network models on a retail
sales data set and determine whether neural network based models are suitable
for retail sales forecasting. A second objective is to examine forecasting models
with the aim that such models should help alleviate the indirect strains put on the
environment by ine�cient management of food resources at the consumption stage,
causing unnecessary food wastage.

1.2 Delimitation
The focus of this paper is on machine learning approaches, more specifically on
multivariate models with multi-head prediction capabilities. The derived models
should be able to handle time dependent variables as well as static variables. A
fully interpretable model cannot be guaranteed and is outside the scope of this
thesis. Moreover, we will confine the project to testing already existing models on
the retail data set that has been made available to us, and we will refrain from
creating a novel model specifically for this task.

2

1. Introduction

1.3 Thesis layout
The thesis is divided into four main sections: theory, methods, results and dis-
cussion. In the theory section of this paper an overview of basic theory in time
series forecasting, statistical methods as well as neural networks is provided. In
the method section our approach and the models used are explained in detail. The
method section is followed by the presentation of our results and in the end a final
section containing discussions and conclusion is presented.

3

!"## !$%&&"' %'&$()

1. Introduction

4

2
Theory

In the following sections theory about time series forecasting is explained in detail,
starting with time series predictions using statistical models, continuing with time
series predictions using neural networks and ending with descriptions of quantile
losses and di�erent metrics.

2.1 Traditional time series forecasting
Time series forecasting entails using observations of historical values of a variable
y, made at discrete time steps, to predict the future value of said variable, ŷ. The
aim is therefore to find a function that can approximate the future value yt+1 based
on historical observations of y: ŷt+1 = f(y1, y2, y3, ..., yt). Traditionally one has used
di�erent statistical methods for deriving these approximations.

Two popular statistical linear models are the Autoregressive (AR) and the Moving
Averages (MA) models. In an autoregressive model the predictions for the variable
of interest are made using linear combinations of its past values. The forecasting
value ŷt in an autoregressive model with order p is therefore the linear combination
of the p past values plus some noise ‘t ≥ N(0, ‡2) [18][1] as well as constant value
c, as seen in equation 2.1. L is a lag operator, defined as LkXt = Xt≠k, which acts
on elements of a time series by shifting them k time steps backwards.

ŷt+1 = c +
pÿ

i=0
„iyt≠i + ‘t = c +

pÿ

i=0
„iL

iyt + ‘t. (2.1)

In contrast to the AR model whose predictions are based on past values the Moving
Average model generates predictions based on past forecasting errors. A MA model
with an order of q is therefore defined as the linear combination of the past q
forecasting errors

ŷt+1 = µ +
qÿ

j=0
◊t‘t≠j + ‘t = µ + (1 +

ÿ

i=0
◊iL

i)‘t (2.2)

where ◊t œ R are model parameters, ‘t ≥ N(0, ‡2) are forecasting errors modeled as

5
*

+(! %, %& %'%&%-&". /

'"". - 0($"1-,& &(

2"& 3 &+" 3 "$$($ 4

2. Theory

white noise and µ is the average value of the time series.

For many statistical time series forecasting models such as AR the concept of sta-
tionarity is an important precondition. This implies that the statistical mean µ and
variance ‡2 of a time series should be independent of time. In many cases this pre-
condition cannot be satisfied, in which case di�erencing, the processes of removing
temporal dependencies from the data set, can be applied in order to impose the
stationarity precondition.

The AR and MA models are often times combined to form more complex mod-
els such as Autoregressive Moving Average (ARMA)[18], Autoregressive Integrated
Moving Average (ARIMA)[33] and Auto Regressive Integrated Moving Average with
Exogeneous Input (ARIMAX)[37]. ARMA, which is the simplest model of the three,
is a combination of MA(q) and AR(p)

ARMA(p, q) = AR(p) + MA(q) = c + ‘t

pÿ

i=0
„iyt≠i +

qÿ

j=1
◊t‘t≠j. (2.3)

An alternative approach to AR and MA is to utilize an Exponential Smoothing (ES)
mechanism where the weights are not weighted equally as in the case of the AR
and MA models. The weights in an ES model are instead decreased exponentially
over time. One of the simplest ES models that exists is the Simple Exponential
Smoothing (SES) model [21][18] which is utilized when a time series has no observed
trend. When a time series exhibits a trend then other models are more appropriate
such as a Double Exponential Smoothing (DES) model. In SES the prediction ŷ for
y at time t + 1 with a smoothing parameter – œ [0, 1] is defined as:

ŷt+1 = –yt + (1 ≠ –)yt≠1 + (1 ≠ –)2yt≠2 (2.4)

From a statistical point of view a forecasting task can be regarded as the modeling of
the conditional distribution P (yt+1|y1, y2, ..., yt). However, on many occasions there
is a need of being able to forecast multiple time steps into the future. A distinction
must therefore be made between the two tasks. In multi-horizon forecasting multiple
predictions are made at · future time steps, (yt+1, yt+2, . . . , yt+·). For all models
presented so far multi-horizon forecasting can be achieved by means of recursion.
This implies that at each time step the forecasted value is taken to be the ground
truth. This generative approach approximates the future values by factorizing the
joint probability of future values, given past values, as the product of conditional
probabilities[6]

P (yt+1, yt+2, ..., yt+· |y1, y2, ..., yt) =
·Ÿ

fi=1
p(yt+fi|y1, y2, ..., yt+fi≠1). (2.5)

6

!+5 -#&"$'-&%6"
7 5(8

+-6"'9& ,-%. +(!

: 7 3 %, ."0%'".
7

1(8#.; <= /

2. Theory

2.1.1 Multivaraite time series forecasting
So far we have only considered univariate time series where forecasting is done by
only taking into consideration the values of the variable of interest. In real life ap-
plications a multivariate setting is more suitable, with the expectation that models
that utilize multiple variables when generating forecasts will be more precise. The
multivariate setting requires models that are more complicated than the simple uni-
variate models we have so far presented. While univariate time series forecasting
may be viable in a theoretical framework they do not perform as well as multivari-
ate models since univariate models do not take into consideration the relationship
between multiple interconnected and interdependent features [19].

In a multivariate setting the data is divided into multiple categories with the primary
divisions being: yt, the variable that is to be forecasted, and time dependent input
variables ‰t. The time series can also have accompanying static covariates variables
s which are variables that do not change over time. The time dependent variables
can be further subdivided into observed inputs zt, that cannot be determined prior
to their observation and known inputs xt that can be predetermined. In the above
notation the index t represents the time at which an observation of the variable was
made.

So far we have only considered single entity time series but in many cases one has
multiple time series that are related to one another such as the power load for
di�erent stations or the number of items sold of a specific article at di�erent stores.
Assume that we have I entities, where each entity i represents a time series with an
associated static covariate s(i) œ Rms , scalar target y(i)

t œ R and input ‰(i)
t œ Rmx .

Under these assumptions the task becomes finding a model that approximates the
conditional distribution:

P (y(j)
t+1:t+· |y(j)

0:t , ‰(j)
0:t) =

·Ÿ

fi=1
p

1
y(j)

t+fi|y(j)
0:t , ‰(i)

0:t, i = 1, ..., I
2
. (2.6)

The inclusion of multivariate data and multiple related time series is too complex
for traditional statistical methods to generate reliable forecasts and one needs to
instead use machine learning approaches due to their ability to generalize for any
type of data.

2.2 Neural Networks
Machine learning algorithms are in essence applied statistics with emphasis on func-
tion approximation using powerful computers. Neural networks are machine learning
models that define a mapping y = f(x; ◊) [13] that approximates the parameter val-
ues ◊ through a processes of iterative parameter improvement by minimizing an
error function involving the model predictions ŷ and the targets y. The underlying
building block in a neural network model is the perceptron which is essentially a
binary linear classifier, see figure 2.1 and equation 2.7.

7

.%00"$"'& ' > >
?" > @@A /

BB

> ; 5" %'."C (0
!$%&" (> & !+-& &+%, D"-',

5
9, 9 0($

= %
9 /

2. Theory

Activation
function

q
w2x2

......

wnxn

w1x1

w01

inputs weights

Figure 2.1: A graph over a perceptron model. The left most layer represents the
inputs to the model. Each input has a weighted connection to the neuron and the
these connections are then summed by the neuron. The summed neuron value is
then fed to an activation function g.

f(x; w) = g(w0 +
nÿ

j=1
xjwj) = g(xT w) (2.7)

Equation 2.7 shows the mathematical operations performed by a perceptron, where
w œ Rn+1 is the weight vector, x œ Rn+1 is the input vector and g(·) is the activation
function whose primary function is to introduce non-linearities to the model but also
bound the output. Multiple perceptrons can be stacked on top of each other forming
a layer with multiple outputs. These layers can then be connected to each other
horizontally such that the output from each layer acts as the input to the next layer
of the network. For a multi-perceptron neural network with multiple layers and n
inputs, the value of ith neuron in layer k is defined as:

zk,i = w(k)
0,i +

nÿ

j=0
g(zk≠1,j)w(k)

j,i . (2.8)

Here g(zk≠1,j) is the output from the jth neuron in the previous layer. The inputs
always flow in one direction, there are no connections between inputs within a layer
nor are there any backward connections. This ensures convergence of the algorithm
during training. The network is trained iteratively where at each iteration a batch
of data is fed to the network and the weights and thresholds of the network are
updated such that the output error is minimized [24]. The output error is measured
by comparing the output with the targets using a loss function:

J(W) = 1
n

nÿ

i

L(f(x(i); W), y(i)). (2.9)

The network learns by updating the weights and thresholds using a gradient descent
algorithm which is an iterative optimization algorithm, that ensures convergence:

8

<
%, %& 3 " 3 -

,8".
/

1(8#.
."C"'.

('
?8& 3 1

- ,3 %E -
7

F " - > ('3 G>2
$ 3 -&"

"&1 H

2. Theory

W Ω W ≠ ÷
ˆJ(W)

ˆW . (2.10)

2.2.1 Dilated convolution
Convolutional networks are a type of neural network architecture that has revolu-
tionized image classification and is particularly useful when the input is spatial and
there is an order between the various nodes in the input layer. It is also a more
e�cient architecture compared to fully connected layers on account of the former
having substantially fewer trainable parameters [2]. In a fully connected network the
outputs from the previous layer are connected to each node in the subsequent layer
resulting in a large amount of trainable parameters: a 32 ◊ 32 ◊ 3 image connected
to a fully connected layer with 1024 neurons has 3 145 728 trainable parameters
while a convolutional layer with similar number of neurons has only 75 trainable
parameters[2].

The parameter reduction in a convolutional layer is achieved by replacing a fully
connected network with local connections only, where a kernel, also called filter, is
applied to the input data by means of a convolutional operation. For a univariate
time series y œ RT with T entries and a filter f œ RK with size K the convolutional
operation is defined as

(y ú f)[t] =
K≠1ÿ

·=0
y[t ≠ ·]f [·]. (2.11)

By associating the weights with the kernel a reduction in the number of parameters
is achieved. A convolutional layer with 5 ◊ 5 ◊ 5 filters has only 125 trainable
parameters regardless of the shape of the input data. One of the main selling points
of CNN is that di�erent filters learn to recognize di�erent features present in the
input: a certain filter can learn to recognize a nose while another one can learn to
recognize something much simpler such as a line[2].

A modified version of a convolutional model is the dilated causal convolution model
which has shown great promise in data with long-range temporal dependencies such
as retail forecasting [6], generating raw audio [26], weather prediction [38] as well
as action segmentation and detection [22]. The model is said to be causal if the
prediction p(yt+1|y1, y2, ...yt) generated at time t only depends on data points prior
to time t, which ensures that the temporal order of the data is not violated. Causality
is obtained by asymmetrically padding the beginning of the input vector. Dilation
is an e�cient way of increasing the receptive field of the model, allowing it to learn
about correlations between data points that are far away. Intuitively the dilation
operation can be thought of as augmenting the kernel with zeros; when the kernel
is convoluted over the input vector it equates to periodically skipping input values
with a certain step size, also called dilation rate, d. For a kernel f with size K and
input vector y the result of a dilated convolution[39][26] is defined as

9

2. Theory

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16inputs

d=1, k=2

d=2, k=2

d=4, k=2

d=8, k=2

Figure 2.2: Stacked dilated Convolutional layers for an input sequence of 16 and
a kernel size of 2. At each layer the dilation is increased with a power of 2.

(y úd f)[t] =
K≠1ÿ

·=0
y[t ≠ d · ·]f [·]. (2.12)

The úd operator is referred to as the d-dilated convolution. Dilated convolutions
can be stacked with an exponentially growing dilation value, increasing the dilation
factor d results in a increased receptive field r = K2L≠1, here L is number of stacked
layers, for figure 2.2 the receptive field is therefore 16.

2.2.2 Recurrent Neural Networks
Recurrent neural networks are a type of network that include feedback connections[24].
The aim with these types of networks is to be able to handle inputs of varying sizes
and capture dependencies within an input sequence [31]. The manner in which this
is done is via a hidden state neuron that keeps track of what has happened in the
past and the network can for each output node include this hidden state vector.
This means that the same input can produce di�erent outputs if previous inputs in
the sequence are di�erent. For example if the current input is “eat” then the output
can be “mice” or “fish” depending on if the previous sequence of inputs was “A lot
of cats” or if the sequence was “A lot of sharks”.

The general architecture of an RNN is similar to the multi-layer perceptron intro-
duced in section 2.2 with the addition of a feedback connection in the form of a
hidden node. This indicates that data can be fed laterally to the network as well
as forwardly, unlike a perceptron where data is only fed forwardly. These lateral
connections allow the network to maintain a memory state, enabling it to remember
the past. Figure 2.3 shows the general structure of an RNN consisting of one input
neuron, one hidden neuron and one output neuron. This recurrent network has been

10

2. Theory

unfolded in time on the right side of figure 2.3, which increases the number of input
and output neurons from 1 to T and the number of hidden neurons from 1 to T + 1.

x(t)

h(t)

y(t)

W (hx)

W (yh)

W (hh) h(0) h(1) h(2) . . . h(T)

y(1) y(2) . . . y(T)

x(1) x(2) . . . x(T)

W (hh) W (hh) W (hh)

Figure 2.3: To the left: a simple recurrent neural network consisting of one input
neuron, one hidden neuron and one output neuron. To the right: the same RNN
unrolled in time. The unrolling does not a�ect the weights, they remain the same
for each time step.

The output yt is derived using equation 2.13

ht = g
1
W hxxt + W hhht≠1

2

yt = W yhht

(2.13)

where ht œ R is the value of the hidden neuron, xt is the value of the input neuron
and g(·) is the activation function.

The unrolling in time of a recurrent network, as seen in figure 2.3, is what enables one
to train an RNN by slightly modifying the backpropagation algorithm [24]. This
allows one to transform the cyclic graphs associated with RNNs to acyclic ones,
allowing one to train the network in a similar fashion as to the training procedure
described in section 2.2. The drawback of unrolling a network is that each time step
has a neuron that is associated with it which can result in very big networks [24].

One of the main problems with RNNs is the vanishing gradient problem. This is the
problem of having an ever decreasing gradient as it is updated for each hidden node
by means of backpropagation. This causes the network to forget what it has learned
about early inputs. One way of alleviating this is through truncated backpropa-
gation through time. This process involves having a cut-o� so that the network
only backpropagates for a set time t ≠ T instead of having a full backpropagation.
The downside with this approach is that long-term correlations are more di�cult or
downright impossible to learn [24].

11

2. Theory

2.2.3 Long Short-Term Memory Networks(LSTMs)
Long Short-Term Memory was created as another solution to the vanishing gradi-
ent problem present in RNN models [16]. LSTMs are able to reduce the vanishing
gradient problem without a�ecting the possibility to learn long-term correlations,
unlike truncated backpropagation through time which does a�ect this. This is ac-
complished through the introduction of memory modules which are modified per-
ceptrons with the added complexity of multiple gating mechanisms and a cell state
ct. Similarly to an RNN a hidden state ht is included as well. The main di�erence
between the hidden state ht and cell state ct is that the hidden state is designed
to act on short term dependencies while the cell state is used to catch long term
dependencies.

The first gating mechanism in the memory module is in the form of a forget gate
which is designed to determine how much of the previous cell state ct≠1 should be
discarded. The output from the forget gate is a vector of values between 0 and 1
which are multiplied by the value of the cell state. A value of 0 discards everything
from the cell state while a value of 1 keeps it completely intact. The forget gate is
defined as ft(xt, ht≠1) = ‡(Wfxt + Ufht≠1 + bf) where xt œ Rd is the input to the
module at time step t and ht≠1 œ Rh denotes the previous hidden state. Wf œ Rh◊d

and Uf œ Rh◊h are the weights associated with the forget gate, superscript h is the
number of LSTM units and superscript d denotes the number of features in the input
data. The sigmoid activation function ensures that the forget gate is constrained to
the interval [0, 1].

The second gating mechanism, the input gate, has the same structure as the forget
gate. It acts on the input data at time step t in addition to the previous hidden
state ht≠1 and is defined as it(xt, ht≠1) = ‡(Wixt + Uiht≠1 + bi). The role of the
input gate is to decide what new information is going be added to the cell state.
This is done by combining the input gate with a hyperbolic tangent function that
outputs a list of candidate values: c̃ = tanh(Wcxt + Ucht≠1 + bc).

The result from the two previous gates allows us to now update the cell state ct =
ft ¶ ct≠1 + it ¶ c̃t.

The final gating mechanism, the output gate ot œ Rh, is defined similarly to the
previous two gates with the exception that a hyperbolic tangent function is used
as an activation function instead of a sigmoid function ot(xt, ht≠1) = tanh(Woxt +
Uoht≠1 + bo). This allows us to finally decide what the output from the memory
module should be by multiplying the output from the output gate with the updated
cell state, ht = ot ¶ tanh(ct).

In summary, the outputs ct and ht œ Rh from the LSTM module are defined as:

ct = ft ¶ ct≠1 + it ¶ c̃t (2.14)
ht = ot ¶ tanh(ct). (2.15)

12

I(82+

!+"$" (%,
H H

2. Theory

2.2.4 Sequence to sequence models
There are various types of sequence modeling problems in neural networks, the
di�erence being in the dimensions of the inputs given to the model and outputs
generated by the model. The simplest example is having a one dimensional input
and output such as image classification. Another, more complex, example is having
an input sequence that produces a single output such as models that summarize
movie reviews and produce a score for the movie in question. A final, and most
important example in relation to this thesis, is having an input and an output both
consisting of sequences. This last type of problem is handled by sequence to sequence
models.

Sequence to sequence models are neural network based architectures that consist of
an encoder that converts a given input sequence to a vector and a decoder that takes
the output from the encoder and converts it into another sequence[31] that corre-
sponds to the desired output. By splitting up the processing of an input sequence
into two parts, an encoder and a decoder, one is given the possibility to utilize
separate networks for the encoding and decoding. Because of the sequential nature
of both the inputs and outputs the network architecture of both the encoder and
decoder are usually of a recurrent type: one can use RNNs, LSTMs, gated recurrent
units (GRUs) or a combination of these.

The primary purpose of the encoder is to take a sequence of inputs and create a
context vector consisting of information about the hidden states of the network.
This context vector is supplied by the last hidden state of the encoder which is then
used as an input to the decoder. The hidden states in the decoder are initialized
with the help of the context vector supplied by the encoder. The decoder can then
predict what the next output should be in the output sequence.

2.2.5 Self-attention
One major drawback with sequence to sequence models is that they rely heavily on
the context vector supplied by the encoder which is in itself limited to learning short-
term dependencies. This is remedied by the introduction of self-attention [34][4]. An
attention function can be described as the mapping of a query and key-value pairs to
outputs and performs calculations of weighted averages. The mapping is derived by
relating di�erent positions in a sequence to one another and producing a computed
representation of the sequence [34]. The attention mechanism allows a sequence to
sequence model to, for each time step, take in an input from a sequence, encode it,
and to incorporate previous inputs by computing weighted averages of them. The
decoder is then fed the encoded input and the weights from the attention mechanism,
allowing it to learn long-term correlations.

Equation 2.16 shows the general layout of the attention function where queries, keys
and values have been grouped into the matrices Q, K œ Rn◊dk and V œ Rn◊dv ,
respectively, where n is the length of the sequence. The dimensions of one query
vector and one key vector are denoted by dk while the dimension of one value vector
is denoted by dv. A(Q, K) is a normalization function and one often chooses the

13

>

J >

@K

%'

1>3 L'1

2. Theory

scaled dot-product attention defined as A(Q, K) = Softmax
1

QKT
Ô

dk

2
.

Attention (Q, K, V) = A(Q, K)V = Softmax
A

QKT

Ô
dk

B

V (2.16)

Instead of performing a single attention function A(Q, K) with queries, keys and
values of dimension d one can project these three components h times with di�erent
projections onto the dimensions dk, dk and dv, respectively. The attention functions
are subsequently computed in parallel for each of these projections, resulting in dv-
dimensional outputs. All projected versions of the output are concatenated into one
output and projected once again, as seen in equation 2.17.

MultiHead (Q, K, V) = Concat (head1, . . . , headh) WO (2.17)

where headi = Attention
1
QWQ

i , KWK

i
, VWV

i

2
and WQ

i œ Rd◊dk , WK

i
œ Rd◊dk

and WV

i
œ Rd◊dv denote the projected parameter matrices.

The benefit of multi-head attention is that it allows a model to attend to di�erent
representaion spaces at di�erent positions in the sequence, in parallel [34].

2.2.6 Transformers
Transformers were introduced as a remedy to one of the main problems with classical
sequence to sequence models and attention-based models [34]. In both types of
models one has the problem of not being able to run computational tasks in parallel
due to the use of recurrent networks to process sequences. In order to produce
a hidden vector ht one must have fed in input xt as well as the hidden vector
from previous time step ht≠1 which in turn depends on ht≠2. It is this iterative
process that prevents the models to perform computations of of a certain sequence in
parallel[34]. In transformers recurrent connections are omitted in both the encoder
and decoder, requiring them to rely solely on attention mechanisms to produce
connections between inputs and outputs [34].

Figure 2.4 shows a high-level architecture of a transformer. The transformer consists
of two modules, an encoder and a decoder, that can be stacked on top of each other
to produce transformers with varying size. Both modules consist of multi-head
attention layers and feed forward networks. Similarly to the encoder in a sequence
to sequence model the encoder in a transformer produces hidden vectors that are
used to initialize a specific part of the decoder, see the black arrows originating
from the encoder in figure 2.4. The output from the decoder is fed to a linear layer
with a softmax activation function producing a vector of probabilities. This vector
represent what the next part of the sequence is most likely to be. The removal of
recurrent networks removes the model’s ability to keep track of what the position
of an input is in the sequence. By using positional encodings for both the input to
the encoder and the decoder one can resolve the inability to keep track of positions.

14

+(! %,

; M8&&(' > N

."0%'".
('

- D-&$%O /

$(! ?5

$(> /

>

2. Theory

Input

Input embedding &
Positional encoding

Multi-head attention

Add & Norm

Feed Forward

Add & Norm

En
co

de
r

Targets

Output embedding &
Positional encoding

Masked Multi-
head attention

Add & Norm

Multi-head attention

Add & Norm

Feed Forward

Add & Norm

D
ec

od
er

Feed Forward
& Softmax

Output Probabilities

Figure 2.4: High-level architecture of a transformer. The left part of the figure
depicts the decoder structure consisting of multi-head attention and a feed forward
network. To the right part we have the decoder structure which has one more,
masked, attention layer than the encoder. Output probabilities are produced by
applying a softmax activation function on the output of the decoder.

2.3 Quantile Loss

Traditional loss functions such as Mean Squared Loss Error (MSLE) and Mean Abso-

lute Error (MAE) are suitable loss functions for point forecasting models since they
predict the conditional mean E(yt+1:t+· |y1:t). In the case of multi-quantile forecast-
ing, however, multiple values are produced that correspond to a specific quantile for
each horizon step [36]. The output therefore corresponds to the full conditional dis-
tribution P (yt+1:t+· |y1:t), resulting in traditional loss functions such as MSLE and
MAE being inadequate. This inadequacy is primarily because each output must
learn to approximate the conditional quantile P(yt+fi Æ y(q)

t+fi|y1, y2, ..., yt+fi≠1) = q,
which cannot be guaranteed when utilizing MSLE and MAE. Alternative loss func-
tions such as quantile regression loss need to therefore be used.

Quantile regression aims to penalize underpredictions, ŷ < y, and overpredictions,
ŷ > y, disproportionately depending on the quantile. For small quantiles overpre-
dictions should be penalized whilst the opposite holds true for large quantiles. For
a specific quantile q œ [0, 1] the loss is calculated as

15

>

&
%, -

(
>

$ K
5 " %

%D- P

2. Theory

QL(yt, ŷ(q)
t , q) = q · max

1
0, yt ≠ ŷ(q)

t

2
+ (1 ≠ q) · max

1
0, ŷ(q)

t ≠ yt

2
. (2.18)

The total loss is then calculated as a summation over the set of all quantiles Q and
horizons · [23][36]:

L(�, W) = 1
M

ÿ

yfiœ�

ÿ

qœQ

t+·ÿ

fi=t

QL(yfi, ŷq

fi
, q) (2.19)

Here � is the set of all training samples consisting of M samples, W is the set
of model specific trainable parameters, · is number of forecasting horizons and
yfi, ŷ(q)

fi
œ R are the ground truth and predictions respectively for quantile q at time

fi. For q = 0.5 the quantile loss is simply the mean absolute error.

2.4 Metrics
In order to judge the performance of di�erent models during training and testing
one needs to use performance metrics. Metrics are similar to loss functions with the
exception that they do not need to be di�erentiable. One of the most basic metrics
is Mean Absolute Error (MAE) which can be interpreted as the arithmetic average
of the absolute errors. MAE is a scale-dependent metric and can therefore not be
used to make comparisons between time series with di�erent units[17]. The MAE
of a prediction ŷfi and target yfi is defined as

MAE = 1
M · ·

ÿ

y,ŷœ�

t+·ÿ

fi=t

|yfi ≠ ŷfi|. (2.20)

A possible approach to making MAE scale-independent is to use a normalization
factor which is what is used when calculating a Mean Average Percentage Error
(MAPE). MAPE is a scale-independent MAE based metric for time series forecasting
but is unfortunately not suitable for the task at hand on the grounds that the metric
is undefined for zero-valued observations which are included in our data set. Mean
Squared Logarithmic Error (MSLE) [32] is an alternative metric that can handle
zero-valued targets and involves the logarithmic quotient between the target and
forecast value. For non negative data, division by zero is avoided by augmenting the
numerator as well as the denominator by one:

MSLE = 1
M · ·

ÿ

y,ŷœ�

t+·ÿ

fi=t

ln
C

yfi + 1
ŷfi + 1

D2

(2.21)

A similar metric to MSLE is Mean Average Arctangent Percentage Error (MAAPE)[20]
that was proposed to solve the problem of division by zero as well as other short-
comings of MAPE, such as the problem of very big values when the ground truth

16

2. Theory

is close to zero: MAPE ≠≠æ
yæ0

Œ. MAPE also places heavier penalties on positive
values than for negative values meaning that it is not symmetrical. Alternative vari-
ants of MAPE exist that present a solution to the asymmetrical property of MAPE
such as Symmetrical Mean Percentage Error (SMAPE), unfortunately the problem
of division by zero still persist. MAAPE on the other hand has an additional benefit
of being bounded to the range [0, fi

2], since for large values tan≠1(x) ≠≠≠æ
xæŒ

fi

2 . By
multiplying the metric with the fraction 200

fi
the bounded range can be transformed

to [0, 100].

MAPE = 100
M · ·

Mÿ

yœ�

t+·ÿ

fi=t

yfi ≠ ŷfi

ŷfi

--- (2.22)

MAAPE = 2 · 100
fi · M · ·

Mÿ

y,ŷœ�

t+·ÿ

fi=t

tan≠1
1---

yfi ≠ ŷfi

yfi

2

(2.23)

The metrics defined so far are designed with a point forecasting model in mind, thus
they only take into consideration one quantile, the 50th, and not the 10th and the
90th quantiles. Normalized quantile loss takes into consideration all quantile outputs
and can therefore be used as a performance metric that measures the performance
of all three quantiles.

q
y,ŷœ�

q
qœQ

q
t+·

fi=t
QL(yfi, ŷq

fi
, q)

q
y,ŷœ�

q
t+·

fi=t
|yfi| (2.24)

17

2. Theory

18

3
Methods

A successful time series engine depends heavily on finding an appropriate model and
fitting it to the underlying system that is driving the time series. In this chapter we
will describe the two main models used in our report as well as the two base models
that are used as reference models. We will, however, start by describing the data
set and the various filtering and transformation operations that were applied to the
data set.

3.1 The Data set
The data set consists of retail sales from multiple stores and was initially unprocessed
and incomplete in the sense of missing dates. The missing dates were a result of
either the stores being closed on that particular day or because nothing was sold.
The proposed models, which will be defined in sections 3.2 and 3.3, require that
the data set has no missing data for any dates in the time interval of interest. The
data set was therefore padded with zeros for all missing dates. A zero value in the
processed data set indicates therefore that there were no sales on that particular
date.

As is evident from figure 3.1 many items are sold very sparsely, the majority of them
covering less than 40% of their date range. This implies that in a given week the
majority of articles are sold for only 7 · 0.4 = 2.8 days out of the seven days in a
week. A decision was therefore made to filter out products that had too few sales
during the relevant time period, with the motivation that filtering out items that
are sparsely sold would improve the predictive capabilities of the models. If one
does not remove these sparsely sold articles then the models would most likely start
predicting zero sales too often, even for products that are sold frequently.

The filtration was accomplished by first deriving the percentage of days that have
missing data using the ratio dfraction = # of missing dates

date range . Date range denotes the
temporal span in which data has been recorded, i.e. the number of days the article
has existed in a store. Simply filtering out items by this ratio can be misleading
since a substantial amount of articles in the data set have a low date range and few
missing dates - see figure 3.2 - which will go undetected by the filter. An article that
has existed for 3 days and been sold for all these days would have a 100% date range
coverage and would therefore go undetected. Hence, prior to applying the filter, all

19

>

Q

RRRRR<RRRRSRRRRR%R
< T 3 T 3 T

T T T

3. Methods

Figure 3.1: Frequency distribution of the percentage of date range covered by all
articles in our data set.

items with a date range less than a specified threshold are removed.

The thresholds for the filtering process were decided upon by repeatedly applying
the filter described in the paragraph above for di�erent date range and date fraction
values and observing the number of articles that were filtered away. Figure 3.3
shows a heatmap of the results from this process and a region of interest has also
been added to the same plot. This region of interest shows value combinations that
would result in a reasonable amount of items being left untouched by the process.
The filtering process can be summarized as:

1. Remove all items with a date range less than drange.

2. Remove all items with a date fraction less than dfraction

3. Padd missing dates with zeros

After the filtering process the data was augmented with additional features, of which
all can be categorized as categorical or time dependent, future known, variables. An
example of one of the columns that were added is a Boolean column indicating
whether a specific day is a holiday or not.

A sliding window was subsequently applied over the data set that transformed each

20

3. Methods

Figure 3.2: A heatmap of the density of points where each point represents one
article. The x value denotes the article’s date range and the y value denotes the
number of days that article has been sold. There is a large concentration of articles
around the origin.

time series from a 2-dimensional array to a 3-dimensional tensor where each window
is a consecutive time series with a fixed size. The size was set to 97 time steps,
where the first 90 time steps corresponded to historical data and the last 7 time
steps corresponded to the forecasting horizon. In order to exemplify how a sliding
window functions lets assume that the model requires the input to be a 32◊12 array
and that the time series that we want to feed into the model is of shape 45◊12. The
first dimension represents number of time steps and the second dimension represents
number of features. Before being able to feed the time series into the model we need
to apply a sliding window so that it is transformed into a 14◊32◊12 tensor, where the
new dimension is number of windows. In essence the same data is fed to the network
multiple times albeit time shifted. A striding mechanism is also incorporated into
the sliding window, resulting in a fewer number of sliding windows.

The data set contains a great deal of variability and di�erent scales. Figure 3.4
shows the existence of some outliers in the data set, especially for the days Mon-
day, Wednesday and Sunday. The amount of outliers is substantially greater when
analyzing the daily sales data, for example 100 items of one article might be sold
every day while only 1 item a week might be sold for another obscure article. The

21

@ "U 4

V

3. Methods

Figure 3.3: Heatmap of the results produced by repeatedly applying the filter
date range function for various date ranges and date fractions. A possible region
of interest is also displayed in the heat map. The color bar denotes the fraction of
articles remaining after applying the filter function.

presence of outliers will a�ect the performance of the models negatively. Often times
outliers are simply removed but that is not possible in a time series forecasting task
that requires that all time steps are present. The alternative is to replace them with
a more adequate value by means of applying filters such as a hampel filter. We
decided, however, to not apply any filters with the with the justification that the
outliers are not the result of errors in the data gathering process but rather a side
e�ect of the various scales that exist in the data set, as seen in figure 3.5. The figure
shows the number of articles sold per day for each store and implies that the data
set is far from balanced.

The final preprocessing step entailed standardizing the data by either using z-score
normalization or robust scaling. Z-score normalization is sensitive to the presence
of outliers in the data set since they a�ect the calculation of the empirical mean x̄
and standard deviation ‡. These derived values would undoubtedly skew the stan-
dardization process negatively. Robust scalers, on the other hand, are not a�ected
by outliers to the same degree as z-score normalization.

Robust = x ≠ median(x)
Inter quantile range , z-score = x ≠ x̄

‡
.

22

>

3. Methods

Figure 3.4: A box and whisker plot over daily sales for the entire data set grouped
by day of week.

Figure 3.5: Each of the eight graphs represent the distribution of the number of
articles sold every day for a specific store.

3.1.1 Data Splitting
The data set was split into three sets, one for training, one for validation and one for
testing. The splitting was done on an article by article basis where each article was
split in such a way that all data points except for the last 4 · (forecasting horizon)
were placed in the training set. This method maximizes the amount of data in the
training set by creating overlaps between the three sets without running into the
problem of using a label twice. The overlap is therefore only between the historic

23

3. Methods

data for each window, implying that the data that is used as ground truth in the
validation and test sets does not overlap. Algorithm 1 gives a detailed description
of how the data was split.

Algorithm 1 Splitting data
let � be the set of all articles
let F be the size of the forecasting horizon & L the size of the look back window
for ◊ in � do

The training set ◊train is all datapoints between 0 æ len(◊) ≠ 4 ú F
The validation set ◊valis defined as len(◊train) ≠ L æ len(◊train) + 2F)
The test set ◊test is all points between len(◊train) ≠ L + 2F æ len(◊train) + 2F

end for

A secondary approach that was used extensively, prior to switching to the above
data splitting method is to use hard boundaries without any overlaps. Thus, the
training set would be all data in the set [0 : len(◊) ≠ 2(L + F)], whilst the validation
set would be [len(◊) ≠ 2(L + F) : len(◊) ≠ (L + F)] and the test set would constitute
the remaining data points. This method results in fewer windows, in particular for
the validation data set which will only have one window per article. This was the
main reason for switching data splitting method, since it increased the number of
windows per article, especially for the validation set.

3.2 Deep temporal convolutional network (DeepTCN)
Deep Temporal Convolutional Network is a multi-step horizon forecasting model
which generates forecasts based on both observed historical inputs as well as known
future inputs. It consists of an encoder-decoder architecture with a dilated con-
volutional network as an encoder and two fully connected layers functioning as a
decoder. The encoder acts on historical inputs, while the decoder acts solely on the
future known data. The output from the two modules are subsequently combined
and fed to a final fully connected layer of size s = h · Q where h is the forecasting
horizon and Q is the number of quantiles. DeepTCN is a small and shallow network
with very few trainable parameters and layers, relying mainly on the vast receptive
field of dilated convolutional layers for accurate forecasts. The encoder consists of
5-7 stacked blocks, denoted as residual blocks, but more layers can be added as
long as the receptive field is smaller than the size of the temporal dimension. A
residual block consists of two dilated convolutional layers with accompanying batch
normalization layers and activation functions, see figure 3.6. There is also a residual
connection where an alternative path for the data exists such that the non-linear
processing can be skipped if needed. An Exponential Linear Unit (ELU) is utilized
as an activation function[8].

The decoder in the original DeepTCN architecture consisted of a residual block
called resnet-v followed by a feed forward layer with the purpose of mapping the
output from the resnet-v block to the desired multi-horizon output. The output from
the encoder was therefore used to initialize the decoder. The module was designed

24

3. Methods

Input

Dilated Convolution

Batch Normalization

ELU

Dilated Convolution

Batch Normalization

ELU

R
es

id
ua

lB
lo

ck
(k

,d
)

+

Output

Figure 3.6: A Diagram of a residual block with two dilated convolutions. d and k
refer to dilation rate and kernel size respectively

to act on two types of inputs: future-known variables and the historical information
that is generated by the encoder module [6]. Resnet-v consists of two feed forward
layers with an intermediary batch normalization layers as well as a Rectified Linear
Unit (ReLU) activation function. There is also a batch normalization layer after the
second feed forward layer. The above part of the model acts solely on the future
known variables which is later aggregated with the output from the encoder that is
then fed to the final output layer [6].

Our implementation di�ers substantially from the architecture presented by the
authors. The primary di�erence is the inclusion of a variable selection network
(VSN), see section 3.3.2 for a description of VSN. As a consequence, in our modified
version of DeepTCN, the historical data is first fed to the VSN prior to feeding it
to the encoder module, see figure 3.7. The expectation with this addition is that
the VSN module will weigh the various features based on their significance for the
forecasting task at hand. Other, smaller, modifications include the incorporation
of two convolutional layers with kernel size k = 1 and number of filters f = 1 and
placing the last activation before the residual connection.

Each feature in the input tensor was encoded using either Tensorflows embedding
layer in the case of categorical features or a dense layer for numerical features. The
input data was therefore transformed from a 3-dimensional tensor with dimensions
B ◊ T ◊ K to a 4-dimensional tensor B ◊ T ◊ E ◊ K, where B is the batch size.
T is number of time steps, K is number of features in the input data and E is the
embedding size. Transforming the input to a 4D tensor is necessary when using
VSN, as is explained in section 3.3.2.

25

3. Methods

Historical Inputs Future Known Inputs

Variable Selection Network

Convolutional(1,1)

ReLU

Residual Block(k, d1)

Residual Block(k, d2)

...

Residual Block(k, dn)

Convolutional(1,1)

En
co

de
r

Feed Forward

Feed Forward

Dropout

Sigmoid

Feed Forward

ReLU

D
ec

od
er

Feed Forward

+ Output

Figure 3.7: A Diagram over the complete DeepTCN architecture, with multiple
stacked residual blocks and a decoder module. Furthermore a VSN module has been
added at the onset.

3.3 Temporal fusion transformer (TFT)
Temporal fusion transformer is a complex time series forecasting model made up
of a range of di�erent neural network based modules[23]. It is capable of handling
di�erent types of data such as static data, time dependent future known data and
time dependent future unknown data. TFT is able to produce multi-horizon quantile
forecasts on top of point-forecasts and also has the ability to capture both short-
distance temporal correlations as well as long-distance temporal correlations by using
sequence to sequence modules and transformer based attention modules. Gating
mechanisms are used to control what type of information is important in di�erent
modules and whether to apply non-linear processing.

The di�erent modules used in TFT are gating mechanisms in the form of gated
linear units (GLUs) or in the form of gated residual networks (GRNs), variable
selection networks (VSNs), static covariate encoders, sequence to sequence modules
with LSTM encoders and decoders and a temporal fusion decoder. Each respective
module will be described in detail in the following sections.

3.3.1 Gated Residual Network (GRN)
A gated residual network consists of two feed forward layers and a gating mechanism
in the form of a GLU, see figure 3.3.1. A GLU is the Hadamard-product between a
sigmoid function of the input “ and the input itself, see equation 3.2 for a mathe-
matical description. W1,Ê and W1,Ê are the weights for the GLU layer that act on

26

3. Methods

the input a.

GRNÊ(a, c) = LayerNorm(a + GLUÊ(÷1)) (3.1)
GLUÊ(a) = ‡ (W1,Êa + b1,Ê) § (W2,Êa + b2,Ê) (3.2)

a c

Dense
ELU

Dense

Gate
Add & Norm

In figure 3.3.1 we observe that time dependent input a and static input c are fed
into the first feed forward layer. The output from the first layer is given as input to
the second feed forward layer after an exponential linear unit (ELU) has first been
applied. The output from this second feed forward layer is finally fed into the gating
mechanism of the GRN in the form of a GLU which decides what to output. In
essence the purpose of a GRN is to allow the network to decide whether or not to
apply non-linear processing. If the value outputted by the GLU is close to zero then
we have essentially skipped the non-linear processing of the input and it is simply
given as a normal input to the next layer.

3.3.2 Variable Selection Network

It is often unknown beforehand the relevance of the various features that are fed
to the network. In most real-world application one can expect the data to contain
insignificant variables in relation to the forecasting task. TFT employs a variable
selection network (VSN) which is applied to both static and time dependent features.
The idea is that the VSN should be able to improve the models predictive capabilities
as well as filter out noisy data. See figure 3.8 for an overview of the architecture of
a VSN. Each input variable is transformed into a (dmodel)-dimensional vector, i.e.
›(i)

t = f(x(i)
t) œ R(dmodel), where xi

t
is the ith variable at time step t, using either

entity embeddings for categorical variables or linear transformation for continuous
variables. In practical terms this amounts to transforming the input data into a
4-dimensional tensor consisting of the dimensions (Batch ◊ Time ◊ Embedding ◊
Features). For each feature we feed the 3-dimensional vector (Batch ◊ Time ◊
Embedding) into a GRN where a TimeDistributed layer is used to ensure that the
same weights are applied at each time step.

In addition to the transformed input variables ›(i)
t that are fed to one GRN per

variable we flatten them all and feed them to a separate GRN layer with an ac-
companying softmax activation function. The flattened vector is denoted as �t =Ë
›(1)

t , ›(2)
t , ›(3)

t , ..., ›(mx)
t

ÈT

in figure 3.8. These two operations result in two new ten-
sors, v‰t and ›̃(i)

t , as seen in equation 3.3.

27

2
W+, ' > & XHY /

3. Methods

GRN

›1
t

... GRN

›n

t

...
�t c

GRN
Softmax

◊

Figure 3.8: Architecture of a VSN model.

v‰t = softmax
1
GRN‰t(�, cs)

2

›̃(i)
t = GRNi

1
›(i)

t

2 (3.3)

There is also the possibility of feeding a context vector cs to the model-wise GRN
layer. The context vector cs is one of several context vectors generated by a static
covariate encoder and they are all used in various parts of TFT to better integrate
static meta data into the model. v‰t œ R(mx) is the output from the model-wise GRN
module where the last layer in GRN has a layer size equal to number of non-static
input variables. In the end the two components are multiplied together producing
the output

›̃t =
mxÿ

j=1
= v

(j)
‰t

›̃j

t . (3.4)

3.3.3 Static covariate enconders
As mentioned in the previous section TFT makes use of enconders to produce four
di�erent context vectors for static covariates that are then fed into the network at
various points. A static covariate encoder takes the output of a VSN and applies a
GRN to it. This produces the desired context vectors which are then used through-
out TFT to better incorporate static metadata into the model, see figure 3.9 for a
schematic look of where the static vectors are used.

3.3.4 Sequence to sequence module
After having decided what inputs are important by using variable selection networks
we feed the outputs ›̃t into a sequence to sequence module consisting of LSTM
encoders and decoders which process the input to find local correlations in the time
series data. ›̃t≠k:t are fed to the encoder while ›̃t+1:t+· are fed to the decoder. The
sequence to sequence module produces a set of uniform temporal outputs „(t, n) œ
{„(t, ≠k), . . . , „(t, ·)} where n is a position index. Similarly to other modules in

28

3. Methods

TFT we let static meta-data influence the output in this module by initializing the
cell state ct and the hidden state ht in the LSTM modules with two context vectors
cc and ch.

A gated skip connection is the final processing step in the sequence to sequence
module: „̃(t, n) = ›̃t + LayerNorm

1
GLU

„̃
(„(t, n))

2
. These temporal outputs are

then given as an input to the temporal fusion decoder.

3.3.5 Temporal Fusion Decoder
Temporal fusion decoder is one of the more important modules in TFT that has the
task of capturing long-term relationships within a time series sequence, see figure
3.9 for a schematic look of what is included in a temporal fusion decoder.

A static enrichment layer in the form of a GRN network is used to enhance the
temporal data „̃(t, n) outputted by the sequence to sequence module. This is done
by applying the GRN over the temporal data as well as a context vector ce generated
by the static covariate encoder: ◊(t, n) = GRN◊(„̃(t, n), ce). The static-enriched
temporal data is then combined and fed into a multi-head self-attention module to
capture long-term dependencies for each time step. The result from the multi-head
self-attention module is ”(t, n) = LayerNorm(◊(t, n) + GLU”(—(t, n))).

A second GRN is used to give the possibility of further non-linear processing of the
output from the self-attention module. A gated residual connection is also applied so
that one can skip the static enrichment layer as well as the multi-head self-attention
module if the model believes that all that non-linear processing is not needed to
model the data at hand.

Finally we output prediction intervals in terms of quantiles by applying a feed for-
ward layer to the output of the temporal fusion decoder. The size of the feed forward
layer is therefore the number of quantiles times the number of time steps to forecast.

3.3.6 Modifications
TFT was modified in various ways to suit the needs of the forecasting task at hand.
The first modification made is related to the static covariate encoders. By making
some slight modifications to the code that defines a static covariate encoder we were
able to add the flexibility of being able to train on di�erent types of data sets: those
that contain static data as well as those that do not contain it.

A second modification that we made is connected to the multi-head attention mech-
anism. Long-term correlations within a time series are captured by this attention
mechanism and is similar to the one described in section 2.2.5 with the added feature
of interpretability. In our thesis we have removed the ability to make interpretable
predictions, as mentioned in section 1.2. The rest of the multihead self-attention
mechanism is, however, used as is to better capture long-term correlations.

The third modification made is connected to Tensorflow. The source code provided

29

3. Methods

S

Variable
Selection

Static
Covariate
Encoders

‰t≠k . . . ‰t ‰t+1 . . . ‰t+·

Variable
Selection

Variable
Selection

Variable
Selection

Variable
Selection

LSTM
Encoder

LSTM
Encoder

LSTM
Decoder

LSTM
Decoder

Gate
Add & Norm

GRN

Gate
Add & Norm

GRN

Gate
Add & Norm

GRN

Gate
Add & Norm

GRNStatic En-
richment

Multi-head Attention

Gate
Add & Norm

GRN

Gate
Add & Norm

Dense

Quantile outputs

Gate
Add & Norm

GRN

Gate
Add & Norm

Dense

Quantile outputs

Temporal fusion decoder

.

Figure 3.9: High-level architecture of TFT. S denotes static input, {‰i}t

i=t≠k
de-

notes historical temporal data and {‰i}t+·

i=t+1 denotes future temporal data. Skip
connections are indicated by dashed lines. Context vectors produced by the static
covariate encoder are fed to various modules, including VSNs, Encoders and GRNs.

in the original paper was written in Tensorflow v.1 but we modified it so that
Tensorflow v.2 can be used instead. The main di�erences between the versions
are that one does not need to start sessions or handle Tensorflow graphs since they
are handled by Tensorflow itself in version 2.

The final modification that was made on TFT was to change the manner in which
it handles data during training. In the original TFT everything is stored in memory
but in order to be able to train on larger data sets we had to modify the data pipeline
so that TFT uses data generators instead.

30

4
Results

Both models were trained on a data set that contained eight stores and 835 articles
after having applied the various filtering and preprocessing operations described in
3.1. The total number of consecutive time series amounted to 1 037 320 after having
applied the sliding window function.

Several variants of our two models were examined, among them two DeepTCN
versions and four TFT versions. For the DeepTCN model the kernel size as well as
the dilation rates were modified whilst the remaining parameters were fixed. Two
kernel sizes were used, k = 2 and k = 3. For k = 2 the dilation rates were set toË
1, 2, 4, 8, 16, 20, 32

È
while for k = 3 the dilation rates were set to

Ë
1, 2, 4, 8, 16, 20, 30

È
.

The maximum dilation rate was restricted to 30 since the dilation factor times the
kernel cannot exceed the length of the input sequence. Furthermore, an embedding
size of 10 and a batch size of 64 were employed.

For the TFT model we experimented with various hidden layer size values, holding
all other hyperparameters fixed. Four di�erent hidden layer sizes were examined:
h = 8, 16, 32 and 64. A batch size of 128 and a learning rate µ = 10≠3 were used.
An early stoppage criterion was also employed that would terminate the training
process after 10 epochs if the validation loss did not improve during these 10 epochs.

As a baseline model a modified naive approach was utilized. The naive approach is
to use the last observation as a forecast for the next time step, yt+1 = yt, whilst our
approach utilizes the average value of the last three observations: yt+1 = yt+yt≠1+yt≠2

3 .
The approach is consequently used recursively to achieve a multi-horizon forecast.
An SES model with – = 0.1 was also employed as an additional baseline model.

In table 4.1 we have presented the results of all variants of our models. The results
from this table indicate that all variants of our two models performed better than
the baseline models according to the metrics MAE, MSLE and MAAPE. The fourth
metric, normalized quantile, cannot be calculated for the two baseline models since
they only produce point forecasts and not quantile forecasts like our neural network
based models.

The DeepTCN model with k = 2 performed slightly better than all TFT variants ex-
cept for the TFT version with h = 64 where the performance seems to be compatible
between the two models. Increasing the hidden layer size for TFT presented a slight

31

4. Results

Model Normalized Quantile MAE MSLE MAAPE
Baseline – 5.2290 0.5920 36.3208

SES (– = 0.1) – 3.9817 0.4083 33.4432
TFT (h = 8) 0.3829 3.4936 0.3461 31.0104
TFT (h = 16) 0.3761 3.4117 0.3328 30.1734
TFT (h = 32) 0.3803 3.4480 0.3322 30.3295
TFT (h = 64) 0.3761 3.4040 0.3327 30.2640
TCN (K=2) 0.3551 3.2495 0.3433 30.6572
TCN (K=3) 0.3729 3.4240 0.3762 32.0394

Table 4.1: The following table shows the performance of the models on four chosen
metrics (Normalized Quantile Loss, MAE, MSLE and MAAPE). The performance
of the models where measured on the test data. All models presented in this table
used the data splitting method described in algorithm 1 in section 3.1.1.

performance improvement while the opposite e�ect is observed when increasing the
kernel size for DeepTCN.

The di�erence in metric values for the TFT variants with h = 64, h = 32 and
h = 16 are arguably negligible since most of the di�erence is in the second or third
decimal place. The largest jump in performance occurs between h = 8 and h = 16,
where h = 16 is clearly better at making predictions than h = 8. The TFT version
with h = 64 is better at generating forecasts than all other variants according to
the metrics MAE, MAAPE and normalized quantile. The di�erence between the
second best TFT variant, h = 16, and the best one is, however, minimal.

The number of training epochs for both DeepTCN models were set to 50 but as is
evident from figure 4.1, the training process terminated earlier than that as a result
of the early stoppage criteria. The stoppage criteria is that the training process
will terminate if the validation loss does not improve in ten epochs. One can also
observe considerable variations in the validation loss for the k = 3 DeepTCN model,
the same variations are not present in the k = 2 model.

Figure 4.2 depicts loss curves for the four TFT variants examined in our thesis.
All versions terminated early, with the earliest termination occurring for the most
shallow network with h = 8 at the 14th epoch. The variant that trained the longest
time was the network with h = 32 which trained for 29 epochs. One can also observe
that the more shallow the model is the higher the initial training loss is. The deeper
the network is the lower the final loss is, except for h = 64 which has a higher final
loss than both h = 16 and h = 32. The validation loss varies a great deal more than
the training loss and the most shallow networks seem to overfit already after 8-10
epochs meanwhile the deeper models start overfitting at around 12-15 epochs.

32

>
7
&+"
,-D" -,

,-5%'2
&$-%'%'2
#(,,

1(',%,&"'
#(! " >

0($ /
.""C"$
D(."#,

4. Results

Figure 4.1: The training and validation loss for both DeepTCN models

Figure 4.2: Loss curves for four di�erent TFT networks with h = 8, h = 16, h = 32
and h = 64. Red lines indicate training loss and black lines depict validation loss.

Figure 4.3 shows forecasts made on three articles using the SES baseline model. One
can observe that the output from this models is constant for the whole forecasting
horizon. This baseline model performed somewhat well according to the results in
table 4.1.

Figures 4.4 and 4.5 depict forecasts made by the best performing DeepTCN model
with k = 2 and the best performing TFT model with h = 64. The forecasts have
been made on the same stores and articles for both models and the di�erences
between the forecasts are minimal according to these two figures. Both models seem
to be good at predicting articles that have small variations while articles with larger
variations proves to be more di�cult to forecast. The 90th and 10th quantiles seem
to capture most of the variations though. One final thing to note is that the forecast

33

4. Results

Figure 4.3: Forecasts made using the SES baseline model

intervals produced by DeepTCN seem to be narrower than the ones produced by
TFT.

Figure 4.4: Time series forecasting done by TFT with h = 32 on six random
articles from two stores, store 173 and store 3998. See figure 4.5 for a detailed
description of the layout.

34

4. Results

Figure 4.5: Forecasting done by DeepTCN with k=2 for a some random samples
in the test data. The transparent red area defines the models quantile forecasts -
the upper boundary is the 90th quantile while the lower boundary is 10th quantile.
The grey line represents the historical data that the model has access too. The data
points marked by black dots are the actual predictions.

35

4. Results

36

5
Discussion

In this chapter we will discuss various technical challenges that we faced, the results
that we obtained and how the predictive capabilities of our models can be improved
by suggesting di�erent modifications to both models. In the end a conclusion will
be provided about the results obtained as well as our expectations.

5.1 Challenges
There were numerous technical challenges that we faced and although some satis-
factory solutions were found they took up ample time that could have been spent
on more important tasks that could result in better performing models. This is in
particular more relevant in regards to TFT where an already existing repository
written in Tensorflow 1.0 was modified to suit our needs. We had to migrate the
code from Tensorflow 1.0 to Tensorflow 2 which proved to be more di�cult than
anticipated.

A second challenge was feeding the data to the models without running out of
memory. We tried various methods but decided on a generator in the end. In
Tensorflow there are two approaches to implementing a generator, one can either
subclass the Sequence class and implement the requested methods, or one can define
a generator function that yields two tensors corresponding to the input data and
the targets. The second approach entails using Tensorflows tf.data.Dataset API
for the creation of a data pipeline that takes the output from the generator and
feeds it to the model. Both approaches require that the data is loaded in chunks,
processed and transformed to a list of time series by means of a sliding window. After
all of this has been done the data is batched and fed to the network. Although
both methods were used to train networks with, a decision was made to discard
the Sequence approach, since no satisfactory thread safe implementation could be
found. An unexplained memory leak as well as a failure to properly shu�e the data
were secondary motivations for discarding the Sequence approach. The secondary
approach turned out to be more robust and allowed us to to e�ciently create a data
pipeline where we among other things could shu�e and cache the data to a file if
required.

A third challenge that we had was the size of the data set used in training our
models. The full data set consisted of 3.2GB of raw, processed, data from 242

37

5. Discussion

stores but we had to use a subset of this data set, consisting of 8 stores. These
8 stores amounted to 120MB of raw data but after windowing the data the total
memory needed for just the data amounted to 5.7GB which was the reason why
generators were needed. We tried training on the larger data set but ultimately
decided against it since training a TFT model with hidden layer size 64 for just one
epoch took almost 13 hours.

A final challenge that we had, that was more persistent in TFT than in DeepTCN,
were the long training times. Using the same virtual machine the second deepest
TFT network with a hidden layer size of 32 took around 30 minutes per epoch to
train while the largest DeepTCN network took around 10 minutes per epoch to
train. The longer training times cannot be explained by the number of trainable
parameters in the models since the di�erence is only 28% while the di�erence in
training times is up to 300%. One explanation for the long training times in TFT
is the fact that it has a sequence to sequence module to capture local temporal
correlations. This module requires the sequence to be transformed to a windowed
input. In [3] the authors have speed up TFT by a factor of three by modifying it so
that certain modules can run in parallel, in e�ect vectorizing computations in TFT.

5.2 Future Work
Although both TFT and DeepTCN performed well we are confident that the fore-
casting abilities of both models can be improved upon. Improvements can be made
by modifying the models themselves as well as the manner in which we preprocessed
data. Two obvious improvements are to extend the data set with more features and
increase the number of articles and stores present in the data set by including a
larger subset of the full data set. The second improvement would, however, most
likely require extending the depth of models to handle the extra data.

A third, possible, improvement to the manner in which we preprocessed data is
to experiment with other encoding methods. Our dataset included various cyclical
features such as “day of year” and “day of weak” that were treated as regular cate-
gorical features, and thus encoded using Tensorflow’s Embedding layer. The usage
of Embedding layers may impede the performance of the models and an alternative
encoding approach could therefore be to transform the features utilizing the sin(x)
and cos(x) functions. The usage of these functions allows the models to not only
capture the cyclical nature of the features but also transforms them to a bounded
range of [≠1, 1]. The downside with this approach is that it entails using two vectors
to represent one feature. A similar periodic function could also be utilized to encode
non-categorical features with the objective of bounding the features instead. This
process is, however, irreversible and can therefore not be used to bound the target.

A fourth improvement that can be made is the way we handled outliers in the
data set. In section 3.1 we discussed the large presence of outliers in the data set
and lack of e�cient methods for dealing with them. The presence of outliers could
in reality a�ect the performance of the models considerably, finding an adequate
solution to the problem of outliers may therefore result in substantial performance

38

(' 3 !+-& +- > . > -$" /

!+-& 3 %, - C$-1&%1-#
D"-,8$" 3 (0 &+%, /

!(8#. %& ?" 3 8,"08# 0($

V &H%(< /

5. Discussion

improvements. To that end we experimented with filtering the data by removing
outliers but decided ultimately against it. See section 3.1 for why we came to this
conclusion. We also experimented with a hampel filter which turned out to be very
time consuming and ultimately did not give any indications that it improved the
performance of the models and was therefore discarded. Further experimentation
with various filters, including the hampel filter, is required before a final decision is
made on whether to or not to completely discard them.

A fifth possible improvement is to change the normalization procedure for the data
set. For the DeepTCN model robust scalers were used to normalize the data instead
of regular z-score scalers, with the expectation that it would minimize the influence
of the outliers. These expectations were fulfilled as the performance of di�erent
DeepTCN variants were improved by using robust scalers. Di�erent variants of
TFT were trained using robust scalers but, in contrast to DeepTCN, no performance
improvements were observed and the decision was therefore made to use regular z-
score scalers when transforming the data for TFT. Here, as was the case with filters,
further experimentation is required before a definitive conclusion is agreed upon, but
it is quite perplexing that the robust scaler improves the performance of DeepTCN
whilst having minimal influence on the performance of TFT.

Our models are exclusively neural network based but an alternative approach is to
incorporate classical linear models into the architecture, creating a hybrid model.
This is not a new idea and has been examined extensively resulting in various pro-
posals for di�erent hybrid architectures [30]. The motivation for a hybrid model,
consisting of an exponential smoothing module and a complex neural network mod-
ule, is that the former is a linear module capable of capturing linear features such as
seasonality, level and trend, whilst the later component is designed to capture non-
linearities. Only using non-linear models could result in a failure to capture linear
features [21]. It can therefore be interesting to examine how a hybrid model fares
on our data set. Additional approaches worth examining could be to experiment
with various other TCN based architectures such as SeriesNet[27] and M-TCN[35],
as well as experiment with various decoders, at the moment the decoder module in
DeepTCN is very simple and therefore can be improved upon. Similarly one could
experiment with various encoder-decoder architectures in the sequence to sequence
module in TFT. Instead of using the LSTM based encoders and decoders one could
experiment with GRNs or other types of recurrent networks.

Finally, the temporal fusion decoder of TFT contains a multi-head attention mod-
ule, that is able to produce interpretable outputs in the sense that one can view
what which features are important when the model is generating predictions. This
added interpretability allows one to examine what variables might be obsolete for
certain prediction tasks. Due to time constraints it was decided to not include the
interpretability of this attention module in our version of TFT. This also made the
comparisons between TFT and DeepTCN more fair since DeepTCN does not have
any interpretability incorporated in it. We think that by including intrepretability,
detecting obsolete variables and removing these one might help the training of the
network by removing features that are simply noise to the network.

39

5. Discussion

5.3 Conclusion
Table 4.1 indicates that all our models performed well by having a better perfor-
mance than both the naive baseline model as well as the SES model for all of our
chosen metrics. Based on table 4.1 the DeepTCN variant with k = 2 performed the
best by slightly outperforming the best TFT with h = 64 according to two of the
four metrics (Normalized Quantile and MAE). TFT did, however, perform better
than DeepTCN according to the other two metrics. This can be interpreted as TFT
being slightly better in making point forecasts i.e. the 50th quantile as is evident by
the performance measurement on MAAPE and MSLE, whilst DeepTCN is superior
in generating more accurate probabilistic ranges. In the end the di�erence in perfor-
mance is not that big between the two models, as can be seen in figures 4.5 and 4.4
where forecasts of di�erent stores and products have been plotted. The probabilistic
ranges seem to be somewhat similar in magnitude, with DeepTCN having slightly
narrower probabilistic ranges.

In regards to our own expectations, we expected the models to perform slightly
better than what the results have shown. We are unsure about why the models do
not approximate as well as we had anticipated. The figures 4.4, and 4.5 all have
large probability ranges, whilst we expected a smaller confidence interval. This may
constitute an unreasonable expectation though, we are after all trying to forecast
retail sales with 90% probability thus one should expect large uncertainty intervals if
one wants to forecast with this high of a probability. The large uncertainty intervals
make even more sense if one takes into consideration the presence of outliers that
was discussed in 3.1. The point forecasts on the other hand do look reasonable and
substantially better than the baseline and ES model which produces almost constant
forecasts, as seen in figure 4.3.

The results presented in section 4 indicate that neural network based models are
suitable for time series forecasting in retail sales. We strongly believe that the per-
formance of the models presented in this thesis can be improved upon by addressing
the issues outlined in sections 5.1 and 5.2.

40

Z((. [(?) \%1" $"C($&)

]$" -## %D-2", 5(8$ (!'
/

V&+"$!%," 1+"1^ 1(C5$%2+&, H

Bibliography

[1] Ratnadip Adhikari and Ramesh K Agrawal. An introductory study on time
series modeling and forecasting. arXiv preprint arXiv:1302.6613, 2013.

[2] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. Understanding of a
convolutional neural network. In 2017 International Conference on Engineering

and Technology (ICET), pages 1–6. Ieee, 2017.

[3] AmpX-AI. Tft vectorization. https://github.com/AmpX-AI/tft-speedup,
2020.

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint

arXiv:1409.0473, 2014.

[5] Carlos Capistrán, Christian Constandse, and Manuel Ramos-Francia. Multi-
horizon inflation forecasts using disaggregated data. Economic Modelling,
27(3):666–677, 2010.

[6] Yitian Chen, Yanfei Kang, Yixiong Chen, and Zizhuo Wang. Probabilistic fore-
casting with temporal convolutional neural network. Neurocomputing, 399:491–
501, 2020.

[7] Davide Chicco, Peter Sadowski, and Pierre Baldi. Deep autoencoder neural net-
works for gene ontology annotation predictions. In Proceedings of the 5th ACM

conference on bioinformatics, computational biology, and health informatics,
pages 533–540, 2014.

[8] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and ac-
curate deep network learning by exponential linear units (elus). arXiv preprint

arXiv:1511.07289, 2015.

[9] Pascal Courty and Hao Li. Timing of seasonal sales. The Journal of Business,
72(4):545–572, 1999.

[10] FAO. Global food losses and food waste – extent, causes and prevention, 2011.

[11] Everette S Gardner Jr. Exponential smoothing: The state of the art. Journal

of forecasting, 4(1):1–28, 1985.

41

Bibliography

[12] Yoav Goldberg. A primer on neural network models for natural language pro-
cessing. Journal of Artificial Intelligence Research, 57:345–420, 2016.

[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[14] Alex Graves, Navdeep Jaitly, and Abdel-rahman Mohamed. Hybrid speech
recognition with deep bidirectional lstm. In 2013 IEEE workshop on automatic

speech recognition and understanding, pages 273–278. IEEE, 2013.

[15] Jenny Gustavsson, Christel Cederberg, Ulf Sonesson, Robert Van Otterdijk,
and Alexandre Meybeck. Global food losses and food waste, 2011.

[16] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

[17] G Hyndman, R.J. & Athanasopoulos. Forecasting: principles and practice.

[18] R.J. Hyndman and G Athanasopoulos. Forecasting: principles and practice,
2021.

[19] IA Iwok and AS Okpe. A comparative study between univariate and multivari-
ate linear stationary time series models. American Journal of Mathematics and

Statistics, 6(5):203–212, 2016.

[20] Sungil Kim and Heeyoung Kim. A new metric of absolute percentage error for
intermittent demand forecasts. International Journal of Forecasting, 32(3):669–
679, 2016.

[21] Kin Keung Lai, Lean Yu, Shouyang Wang, and Wei Huang. Hybridizing expo-
nential smoothing and neural network for financial time series predication. In
International Conference on Computational Science, pages 493–500. Springer,
2006.

[22] Colin Lea, Michael D. Flynn, René Vidal, Austin Reiter, and Gregory D. Hager.
Temporal convolutional networks for action segmentation and detection. In
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1003–1012, 2017.

[23] Bryan Lim, Sercan O Arik, Nicolas Loe�, and Tomas Pfister. Temporal fu-
sion transformers for interpretable multi-horizon time series forecasting. arXiv

preprint arXiv:1912.09363, 2019.

[24] Bernhard Mehlig. Artificial neural networks. arXiv preprint arXiv:1901.05639,
2019.

[25] Mohsen Mohammadi, Faraz Talebpour, Esmaeil Safaee, Noradin Ghadimi, and
Oveis Abedinia. Small-scale building load forecast based on hybrid forecast
engine. Neural Processing Letters, 48(1):329–351, 2018.

[26] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,

42

Bibliography

Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray
Kavukcuoglu. Wavenet: A generative model for raw audio. arXiv preprint

arXiv:1609.03499, 2016.

[27] K Papadopoulos. Seriesnet: a dilated causal convolutional neural network for
forecasting. In Proceedings of the International Conference on Pattern Recog-

nition and Machine Intelligence, Union, NJ, USA, pages 1–4, 2018.

[28] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only
look once: Unified, real-time object detection. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 779–788, 2016.

[29] David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski.
Deepar: Probabilistic forecasting with autoregressive recurrent networks. In-

ternational Journal of Forecasting, 36(3):1181–1191, 2020.

[30] Slawek Smyl. A hybrid method of exponential smoothing and recurrent neu-
ral networks for time series forecasting. International Journal of Forecasting,
36(1):75–85, 2020.

[31] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning
with neural networks. arXiv preprint arXiv:1409.3215, 2014.

[32] Chris Tofallis. A better measure of relative prediction accuracy for model se-
lection and model estimation. Journal of the Operational Research Society,
66(8):1352–1362, 2015.

[33] Mohammad Valipour, Mohammad Ebrahim Banihabib, and Seyyed Mah-
mood Reza Behbahani. Parameters estimate of autoregressive moving average
and autoregressive integrated moving average models and compare their ability
for inflow forecasting. J Math Stat, 8(3):330–338, 2012.

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. arXiv preprint arXiv:1706.03762, 2017.

[35] Renzhuo Wan, Shuping Mei, Jun Wang, Min Liu, and Fan Yang. Multivariate
temporal convolutional network: A deep neural networks approach for multi-
variate time series forecasting. Electronics, 8(8):876, 2019.

[36] Ruofeng Wen, Kari Torkkola, Balakrishnan Narayanaswamy, and Dhruv
Madeka. A multi-horizon quantile recurrent forecaster. arXiv preprint

arXiv:1711.11053, 2017.

[37] Billy M Williams. Multivariate vehicular tra�c flow prediction: evaluation of
arimax modeling. Transportation Research Record, 1776(1):194–200, 2001.

[38] Jining Yan, Lin Mu, Lizhe Wang, Rajiv Ranjan, and Albert Y Zomaya. Tempo-
ral convolutional networks for the advance prediction of enso. Scientific reports,
10(1):1–15, 2020.

43

Bibliography

[39] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated
convolutions. arXiv preprint arXiv:1511.07122, 2015.

44

DEPARTMENT OF SOME SUBJECT OR TECHNOLOGY
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden
www.chalmers.se

