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Master’s Thesis in the Master’s programme of Structural Engineering and Building 

Performance Technology 

ANDERS MÅRTENSSON 

MARTIN NILSSON 

Department of Civil and Environmental Engineering 

Division of Structural Engineering 

 

Chalmers University of Technology 

 

ABSTRACT 

Modern footbridges are designed slender and with longer spans as a result of technical 

innovation and more accurate analysis. Due to the low mass of these structures a 

problem has been discovered regarding uncomfortable vibrations caused by 

pedestrians. Eurocode does not cover this subject thoroughly and a lot of factors are 

left to the designer to make reasonable estimates. Following the closure of the London 

Millennium Bridge and the Solférino footbridge in Paris due to uncomfortable 

swaying further research on the area of human vibrations have been made. This has 

resulted in a number of proposed standards and guidelines for the design of 

footbridges.  

The Master’s thesis was performed at Reinertsen Sverige AB in Göteborg and aimed 

to increase the knowledge of how to design footbridges regarding dynamic loads 

induced by pedestrians. Furthermore the thesis aimed to summarize and explain the 

current proposed standards and guidelines of how human induced vibrations in 

pedestrian bridges can be modeled in the design phase. 

The analyzed standards propose to model pedestrian induced forces as concentrated or 

uniformly distributed harmonic loads. Some standards also suggest to model 

pedestrian loads as Fourier sums. Graphical evaluation and comparison of the 

acceleration response obtained with the load models in the standards were done valid 

for all simply supported footbridges in one span. The proposed load models were 

systematically compared and evaluated with recommended design situations given in 

Eurocode and ISO 10137. 

It was concluded that single pedestrians and groups can be modeled according to ISO 

10137. Pedestrian streams relevant for modeling large amounts of pedestrians can be 

modeled with uniformly distributed load according to other standards. The guidelines 

and load models in ISO 10137 are not sufficient for this task. Furthermore Eurocode 

and ISO 10137 needs to be complemented with more specific guidelines to provide a 

sufficient support during design. 

 

Key words: pedestrian bridge, footbridge, pedestrian induced vibrations, Eurocode, 

ISO 10137, Sétra, SYNPEX, HIVOSS, JRC, dynamic analysis 
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Dynamisk analys av lastmodeller för fotgängare på gångbroar 

En granskning av nuvarande lastmodeller och riktlinjer 

Examensarbete inom mastersprogrammet Structural Engineering and Building 

Technology 

ANDERS MÅRTENSSON 

MARTIN NILSSON 

Institutionen för bygg- och miljöteknik 

Avdelningen för konstruktionsteknik 

 

Chalmers tekniska högskola 

 

SAMMANFATTNING 

Tack vare teknisk innovation och möjlighet till mer noggrann strukturell analys byggs 

idag gångbroar slankare och med längre spann än tidigare. Den låga massan hos dessa 

konstruktioner har gett upphov till ett nytt problem med obekväma vibrationer 

skapade av fotgängare. Utförliga riktlinjer som beaktar sådana laster finns inte i 

Eurocode och många faktorer lämnas därför till ingenjören för att göra rimliga 

uppskattningar. Millennium-bron i London och Solférino-bron i Paris är två gångbroar 

som fick stängas strax efter öppning på grund av obekväma vibrationer. Detta har gett 

upphov till forskning inom området och ett antal standarder och riktlinjer för 

dynamisk dimensionering av gångbroar. 

Examensarbetet har utförts på Reinertsen Sverige AB i Göteborg med målet att öka 

förståelsen och kunskapen om hur gångbroar ska dimensioneras för dynamiska laster 

på grund av fotgängare. Vidare så syftade examensarbetet till att sammanfatta och 

förklara dem nuvarande standarderna och riktlinjerna för hur gånglaster kan 

modelleras vid dimensionering.  

De analyserade standarderna föreslår att gånglaster modelleras som punktlaster eller 

jämnt utbredda laster. Vissa standarder förslår också att modellera gånglaster med 

Fouriersummor. De erhållna accelerationerna enligt olika standarder har utvärderats 

grafiskt gällande för alla fritt upplagda gångbroar i ett spann. De föreslagna 

lastmodellerna har jämförts med varandra och utvärderats enligt rekommenderade 

situationer för dimensionering givna i Eurocode och ISO 10137. 

Examensarbetet visade att individuella fotgängare och grupper kan modelleras enligt 

ISO 10137. Flöden av fotgängare, relevant för att modellera belastning av stora antal 

fotgängare, kan beskrivas med hjälp av utbredd last som angivits i andra standarder. 

Riktlinjerna och lastmodellen definierade i ISO 10137 är inte tillräckliga för att 

modellera detta. Eurocode och ISO 10137 behöver kompletteras med utförligare 

riktlinjer för att kunna utgöra ett tillräckligt stöd vid dimensionering av gångbroar. 

 

Nyckelord: gångbroar, gång- och cykelbroar, gånglaster, Eurocode, ISO 10137, 

Sétra, SYNPEX, HIVOSS, JRC, dynamisk analys 
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1 Introduction 

This chapter will present background, aim, method, limitations and general layout.  

1.1 Background 

Modern footbridges have dynamic properties that differ from older more conventional 

pedestrian bridges. They are built slender and longer as a result of technical 

innovation and more accurate structural analysis. As a consequence a new problem 

has been discovered concerning uncomfortable vibrations caused by pedestrian 

loading.  

Two modern bridges that have experienced problems with vibrations because of 

pedestrian loading are the London Millennium Bridge and the Solferino footbridge in 

Paris. The two bridges were closed soon after opening due to lateral swaying 

experienced as uncomfortable by the pedestrians (Sétra, 2006).  

In the design of footbridges human induced loads are significant. The dynamic effect 

of the pedestrian load can cause uncomfortable and excessive vibrations due to its low 

frequency. Low frequency loads are likely to give rise to resonance in slender and 

flexible footbridges with low natural frequencies in the same range as the load.      

Pedestrian loads are difficult to model due to its characteristics as weight of the 

pedestrian, walking speed and synchronization amongst pedestrians. Dynamic 

analysis is not extensively covered in Eurocode which refers to ISO 10137 for further 

guidance. ISO 10137 includes guidelines for dynamic analysis of footbridges but does 

not cover the subject thoroughly. The standard leaves a lot of factors for the designer 

to make reasonable estimates. 

Following the closure of the London Millennium Bridge and Solferino footbridge 

research on the area of human induced vibrations have increased resulting in a number 

of proposed standards and guidelines for the design of footbridges. The proposed 

standards and guidelines could complement Eurocode and provide support during a 

dynamic analysis. 

1.2 Aim 

The overall aim of the Master Thesis was to increase the knowledge of how to design 

footbridges regarding dynamic loads induced by pedestrians. 

This thesis aimed to summarize and explain the current proposed standards and 

guidelines of how human induced vibrations in pedestrian bridges can be modeled in 

the design phase. 

The thesis aimed to find a numerical method to be able to compare and evaluate the 

proposed load models. The evaluation aimed to result in recommendations on how to 

complement Eurocode and ISO 10137 with accurate methods and load models for a 

dynamic analysis. 

1.3 Method 

A literature study was made of available standards, guidelines and research material 

of how to model pedestrian induced forces and their dynamic actions. A finite element 

analysis (FE-analysis) of the dynamic response in a simply supported structure with 

one span was made. The analysis studied how mass and stiffness are related to the 
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acceleration response in a simply supported structure by changing properties during a 

large number of analyses. 

Results from the FE analysis and the increased knowledge about load models from the 

literature study made it possible to evaluate and compare the considered load models.  

The graphical evaluations were made using normalized curves based on the 

relationship found between bridge characteristics and the acceleration response. 

The proposed load models were systematically compared with recommended design 

situations in ISO 10137. The evaluation resulted in recommendations of how 

Eurocode and ISO 10137 can be complemented in order to perform an accurate 

analysis.  

The commercial software ADINA (ADINA R & D, 2012) was used for Finite 

Element (FE) analysis where the results were processed in Excel. The commercial 

software Matlab was used for simple numerical calculations. 

1.4 Limitations 

The analyses in the thesis were limited to the study of simply supported structures in 

one span using two dimensional (2D) analysis. 

A literature study was made where the load models considered to be the most 

applicable and relevant were chosen. The load models used in analysis are recognized 

by institutions in the field of structural engineering. 

The considered structural materials when comparing load models and damping ratios 

were limited to reinforced concrete, steel and timber. 

Vertical and lateral modes of vibrations were treated independently. Torsional and 

mixed modes were not regarded.  

1.5 General layout 

Chapter 2 presents basic facts about vibrations in pedestrian bridges and human 

induced load with the purpose to introduce the reader to the subject. The chapter 

includes pedestrian forces, how pedestrian can interact and a presentation of two 

existing bridges that have experienced uncomfortable vibrations due to pedestrians. 

Chapter 3 explains basic theory of structural dynamics and aims to provide a support 

for the reader during the analysis in chapter 5. Chapter 3 includes derivations of the 

response in simple dynamic systems, dynamic phenomena occurring in structural 

systems and other relevant aspects. 

The literature study of current standards and guidelines regarding dynamic design of 

pedestrian bridges is presented in chapter 4. The chapter aims to increase the 

knowledge of how to model pedestrian loads and present applicable methods useful in 

the design phase.   

In chapter 5 an extensive analysis of dynamic behavior in a simply supported beam is 

presented. The chapter includes used methods and results of how the dynamic 

response can be normalized. 

Based on the results in chapter 5 the load models can be normalized into 

normalization curves. In chapter 6 all relevant load loads are normalized and 

graphically presented.  
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Chapter 7 aimed to evaluate and compare the proposed load models to the load 

models presented in ISO 10137. The evaluation was done systematically and 

discussed for the normalized curves and according to design situations recommended 

by Eurocode and ISO 10137. 

The general discussion about how to design pedestrian bridges, proposed standards 

and the extent of Eurocode and ISO 10137 are presented in chapter 8. The purpose 

was to present thoughts and opinions for the final conclusions made in chapter 9. 

Chapter 9 includes the final conclusions about Eurocode, ISO 10137 and how to 

design pedestrian bridges induced by pedestrian loads. The purpose was to summarize 

and present the most relevant results and conclusions in the thesis. Furthermore the 

chapter includes suggestions for further studies. 
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2 Pedestrian forces and human interaction 

In this section theory about pedestrian induced forces and its effects on pedestrian 

bridges will be presented in order to familiarize the reader with the subject. Basic 

facts about human interaction and synchronization will also be presented as well as 

two examples of footbridges which have had problems with large human induced 

vibrations  

2.1 Pedestrian induced forces 

When a pedestrian crosses a bridge a dynamic force is produced which has 

components in three different directions: vertical, lateral, and longitudinal. Some 

forms of deliberate loading such as jumping or body swaying can produce forces with 

different characteristics (S.Živanovic, 2005).  

Dynamic forces are described as a function of time and space, periodically repeated 

with regular time intervals. Dynamic actions are the displacements, velocities, 

accelerations and energy produced by the vibration source. These actions can often 

not be predicted in a deterministic way which is why it can be suitable to consider 

them to be random (ISO, 2008). 

The force produced in vertical direction by pedestrians is the one studied the most. 

The vertical component has the highest magnitude of the three components and has 

therefore been regarded as the most important (S.Živanovic, 2005). In recent years 

more detailed studies have been made showing that the lateral force induced by 

pedestrians also can cause problems regarding the serviceability of footbridges (Pat 

Dallard, 2001).  

2.1.1 Vertical 

Vertical ground reaction forces due to walking and running for one foot are presented 

in Figure 2.1. The first maximum represents the heel hitting the ground and the 

second maximum the front of the foot pushing of from the ground (Research Fund for 

Coal and Steel, 2006). The reaction force for running looks different from the walking 

force because it is a discontinuing contact with the ground (Sétra, 2006). 
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Figure 2.1  Human induced vertical ground forces over time for different types of 

activity (Sétra, 2006) 

The actual force for two steps is shown in Figure 2.2. Note that for walking the next 

step begins before the first has ended which is illustrated with the dotted and dashed 

lines in the figure. 

 

 

Figure 2.2 Periodic walking in vertical direction (S.Živanovic, 2005) 

The walking force is a determined by the weight of the pedestrian, its step-length and 

the walking frequency. The load period for the vertical component is between two 

consecutive steps. Normal frequency ranges for walking and running have been 

established through measurements and are shown in Table 2.1.  
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Table 2.1  Frequency ranges for walking and running (Sétra, 2006) 

Designation Specific features Frequency range (Hz) 

Walking Continuous contact with 

the ground  

1.6 to 2.4 

Running Discontinuous contact 2 to 3.5 

2.1.2 Lateral 

The lateral load is created by the pedestrians swaying from side to side giving that the 

lateral force component is significantly lower than the vertical. The lateral force 

component is smaller for running than for walking. 

The lateral component differs from the vertical where the lateral load period is 

between two following left or right footsteps. This means that the load period is twice 

as large as for vertical direction and therefore the lateral load frequency is half of the 

vertical load frequency (Sétra, 2006) illustrated in Figure 2.3. 

According to research done on the London Millennium Bridge which experienced 

problems with lateral movements the typical frequency of purposeful walking seems 

to be around 2 Hz. In large groups this rate decreases to 1.4 Hz or lower, resulting in a 

frequency of the vertical force in the range of 1.2-2.2 Hz. Since the frequency for the 

lateral loads are half of the vertical it is in the range of 0.6 – 1.1 Hz (Pat Dallard, 

2001). 

 

 

Figure 2.3  Lateral and vertical ground reaction force for three consecutive steps 

(Research Fund for Coal and Steel, 2006). 
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2.2 Crowds and interaction 

Synchronization occurs between pedestrians in both vertical and lateral direction 

meaning that pedestrians coordinate their movements with other pedestrians. 

Pedestrians are more sensitive against vibrations in lateral direction than vertical. In 

vertical direction pedestrians can compensate with their knees and their balance is 

better than in lateral direction. The London Millennium Footbridge and Solferino 

Footbridge in Paris have shown that synchronization in lateral direction can be a 

problem. 

The occurrence of large human induced vibrations in lateral direction is the cause of 

synchronization within the crowd. For pedestrians it is more comfortable to walk 

synchronized with the bridges swaying. This instinct to synchronize walking with the 

bridges movement results in that the pedestrian forces are applied at the resonance 

frequency of the bridge which increases the movements of the bridge. This 

phenomenon is called “lock-in” and means that as the amplitude of the bridges motion 

increases the lateral force added from the pedestrians’ increase. Respectively the 

degree of synchronization between pedestrians increases with increasing lateral 

movements (Pat Dallard, 2001). A requirement for lock-in to develop is that the 

bridge must have lateral natural frequencies that coincide with the frequencies of 

lateral movements of pedestrians. 

2.3 Perception of vibrations 

The human perception of vibrations on footbridges is highly subjective and depends 

on several factors such as personal sensitivity, surroundings of the bridge, bridge type 

and design, direction of movements, height above ground, exposure time, number of 

people walking on the bridge and the expectations on the bridge (Christoph 

Heinemeyer, 2009).  

For example vibrations in a more slender  lightweight bridge is experienced as less 

disturbing by pedestrian than if a bridge who appears to be more massive 

demonstrates the same movements. In the same way vibrations in a bridge that is high 

above the ground can be experienced as more disturbing (Christoph Heinemeyer, 

2009). 

Because the perception of vibrations is subjective, comfort limits are stated as ranges 

to avoid. The limits are often defined as accelerations but can be translated into limits 

for displacements and speed. 

2.4 Footbridges with dynamic problems induced by 

pedestrians 

In this section the London Millennium Bridge and the Solférino footbridge in Paris 

that have shown large vibrations due to human induced loads are presented. Research 

has been done based on measurements performed on these two bridges after closing 

due to large and uncomfortable vibrations. 

2.4.1 Solférino footbridge 

The Solférino footbridge in Paris is a 106 meters long steel arch bridge with timber 

deck, spanning over river Seine. The arch is formed from two arches linked by cross-

pieces supporting a lower deck (Sétra, 2006). There are two pedestrian walkways as 

shown in Figure 2.4, one upper and one lower. 
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Figure 2.4  Solférino footbridge in Paris (Ursula Baus, 2008).  

On the inauguration day in 1999 the bridge had to be closed because of excessive 

lateral vibrations (Blekherman, 2007). The French road authority, Sétra, published 

guidelines for dynamic analysis of footbridges partially based on investigations made 

on the Solferino footbridge. Controlled pedestrian crowd tests where made that 

indicated the lock-in phenomena (Ingolfsón, 2011).  

2.4.2 London Millennium Footbridge 

The London Millennium Footbridge is situated in London and spans across the river 

Thames between St. Paul’s Cathedral and the Tate Gallery. The bridge spans over 332 

m divided into a north span of 80 m, a central span of 144 m and a southern span of 

108 m. It is a shallow suspension bridge, as can be seen in Figure 2.5, where the 

cables are situated low and sometimes beneath the bridge deck to free the view for the 

pedestrians. The cable profile sags 2.3 meters in the middle-span which is 

approximately six times lower than for a more conventional suspension bridge The 

deck structure is 4 meters wide and is made up of 16 meters long aluminum box 

sections (P. Dallard, 2001). 

 

 Figure 2.5 The London Millennium footbridge. (P. Dallard, 2001) 

During the opening day in June 2000 around 80 000 to 100 000 people crossed the 

bridge. A maximum amount of people at the same time was estimated to 2000 

resulting in an approximate density of 1.3 to 1.5 pedestrian per square meter (P. 

Dallard, 2001). Unexpected large lateral vibrations occurred mainly in the south span 

of the bridge and the bridge had to be closed to fully investigate the cause.  

The frequencies of the movements were around 0.8 Hz which respectively is the first 

lateral mode of the south span. In the central span movements took place at barely 0.5 

Hz and 1.0 Hz, respectively the first and second lateral mode. At the north side 
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movements occurred at a frequency around 1.0 Hz, the first lateral mode of the north 

span (P. Dallard, 2001). 

The vibrations increased as large numbers of pedestrians where walking at the 

affected span and died down if the number of people reduced or if they stopped 

walking. Accelerations were so high that people stopped walking and held onto the 

railings for support. Based on visual estimations the maximum lateral acceleration on 

the south and north span was between 1.96 m/s
2
 and 2.45 m/s

2
 (P. Dallard, 2001).  

The lateral force created by the pedestrians’ synchronization was found to be the 

cause of the lateral movements. A loading which at that time were not considered in 

detail in international bridge codes (Pat Dallard, 2001). 

The lateral excitations that occurred at the Millennium Bridge are not exclusively 

dependent on the technical innovation and structural form of the bridge. This kind of 

behavior could occur for any footbridge with a natural lateral frequency below 1.3 Hz, 

loaded with a large enough number of pedestrian (Pat Dallard, 2001). 
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3 Basic dynamics 

In this chapter some basic concepts in structural dynamics will be explained which are 

important for the understanding of and the execution of this Master’s thesis 

Conclusions and discussions made in the end of the thesis can still be understood 

without reading this chapter. For the reader not familiar with the subject of dynamics 

it is recommended in order to understand the analysis performed in the thesis.  

Subjects that will be treated are: 

- Free vibrations of an undamped and viscously damped single degree of 

freedom system(SDOF-system) and analytical solution for a SDOF-system 

- Multiple degree of freedom systems(MDOF-systems) and how to solve them  

- The resonance phenomenon  

- How to calculate natural frequencies and modes 

- Fourier series 

- Dirac delta function 

- Monte Carlo simulations 

- Euler-Bernoulli beams and how natural frequencies can be calculated 

analytically  

3.1 SDOF system 

A system consisting of one single degree of freedom (SDOF) -system is a good way 

to explain dynamic actions and highly relevant because more complex systems can be 

transformed into simpler independent SDOF systems. 

A SDOF-system can be described with only one parameter for which the system is 

fully determined. The system must have an elastic component which can store and 

release energy and mass which can store and release kinetic energy.  

In Figure 3.1 an example of a SDOF-system can be seen in the form of a spring-mass-

system with a viscous damper, a mass-spring-dashpot model:  

 

Figure 3.1  Mass-spring-dashpot model 

The mass   is a point mass that can only move along the horizontal axis. The 

displacement on the x-axis from the position where the spring is underformed is 

described with  . The mass is connected to the fixed connection with a linear spring 

with the stiffness  . An external force      is acting on the mass and energy is 

dissipated from the vibrations of the mass through a damping mechanism with the 

viscous damping coefficient  .  

𝑢 

𝑚 

 
𝑐 

 

𝑘 

 

𝑝 𝑡  
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For the derivation of the equation of motion for the SDOF-system Newton’s second 

law is required:  

∑         
(3-1) 

Where   is the mass and   is the acceleration of the mass in horizontal direction.  

Assuming that the mass is displaced   to the right of the undeformed position of the 

spring by a force     : the spring force and the damping mechanism will act, as 

shown in the free-body diagram in Figure 3.2, at the left of the mass working against 

the displacement. 

 

Figure 3.2  Free-body diagram showing forces acting on mass m 

Taking this into account Equation (3-1) can be expressed like: 

              (3-2) 

The acceleration is defined as positive in x-direction and is determined by the second 

derivative of the displacement meaning that    ̈   . Respectively velocity is given 

by the first derivative of the displacement  ̇   . 

The forces    and     can be expressed as: 

       

     ̇  

Equation (3-2) can be expressed as: 

      ̇         ̈ (3-3) 

This gives the equation of motion for our damped SDOF-model. 

  ̈    ̇          (3-4) 

Equation (3-4) is the fundamental equation in structural dynamics and solving of this 

equation can be done analytically and numerically. 

3.1.1 Free vibration of SDOF-system 

The equation of motion for a linear SDOF-system is a second-order ordinary 

differential equation. In mathematical terms the general solution for this kind of 

equation consists of a particular solution       linked to the forced motion and a 

complementary solution       related to the natural motion of the system. Together 

these two parts form the total response of the system: 

𝑓𝑠 

 
𝑓𝑑 

 

𝑚 

 

𝑝 𝑡  

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:108 
13 

                 (3-5) 

Specifying initial displacement and initial velocity  

         and   (3-6) 

 ̇       (3-7) 

It is convenient to rewrite the equation of motion as stated earlier in Equation (3-4) 

dividing by the mass    and rewriting to the form: 

 ̈       ̇    
     

 
    

 
 

(3-8) 

Where    is the undamped natural frequency defined as: 

   √
 

 
 

(3-9) 

Giving 

   
  

 

 
 

(3-10) 

The factor   is a quantity without dimension called the viscous damping factor 

defined from the critical damping factor    : 

        (3-11) 

          √   (3-12) 

Considering only free vibration equation (3-8) becomes: 

 ̈       ̇    
     (3-13) 

For solving this equation a form of the solution is assumed: 

      ̅  ̅  (3-14) 

Equation (3-14) substituted into equation (3-13) gives: 

         ̅    
   ̅  ̅    (3-15) 

For Equation (3-15) to be valid for all times the expression within the parenthesis 

must be set to: 

 ̅       ̅    
    (3-16) 

Which is called the characteristic equation. 
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3.1.2 Free vibration of undamped SDOF-system 

Equation of motion for an undamped system is written as 

 ̈    
     (3-17) 

With the corresponding characteristic equation: 

 ̅    
    (3-18) 

With roots: 

 ̅          where   √   (3-19) 

By substituting these roots into Equation (3-14) the general solution is achieved as 

    ̅ 
       ̅ 

      (3-20) 

Introducing Euler’s equation  

                 (3-21) 

We get Equation ((3-20) in terms of trigonometric functions 

                    (3-22) 

   and    are constants to be determined from initial conditions. Equations (3-6) and 

(3-22) give 

           
 ̇            

(3-23) 

Giving 

               
  

  
       

(3-24) 

Which expresses the free vibration response of an undamped SDOF-system. Equation 

(3-22) is the more general solution which can be used to determine the solution when  

      .  

Consider a system that is displaced from its equilibrium position by      and is then 

released meaning that        . This gives the equation for the position of the 

system like: 

              (3-25) 

This system has a motion like a simple harmonic motion with the amplitude    and a 

natural frequency as: 

   
  

  
            (3-26) 
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And natural period of: 

   
 

  
 

  

  
        

(3-27) 

The displacement can be described with Equation (3-24) or by the expression 

                

          
 

  
  

(3-28) 

 

Where the amplitude   and phase angle are 

  √  
  (

  

  
)
 

 

(3-29) 

     
     

  
 

(3-30) 

 

3.1.3 Free vibration of viscously damped SDOF-system 

Once a system without damping is set in motion it will continue indefinitely but in 

reality all systems have some kind of damping that will dissipate the energy. 

As shown before in Equation (3-13) the expression for motion for free vibration of a 

system with viscous damping is 

 ̈       ̇    
     (3-31) 

Supposing a solution  

      ̅  ̅  (3-32) 

The characteristic equation is given by 

 ̅       ̅    
    (3-33) 

Where the roots of the equation is  

  ̅

 ̅ 
}           √     

(3-34) 

The damping factor   distinguishes between three different cases of damping, 

underdamped       , critically damped      and overdamped    . The three 

cases are illustrated in Figure 3.3  Displacement decrement over time for three 

cases of damping. It is only the underdamped case that exhibits oscillating movement 

with decaying amplitude and this is the most important case for structural dynamics 

and this thesis.  
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Figure 3.3  Displacement decrement over time for three cases of damping. 

3.1.3.1 Underdamped case 

For the underdamped case Equation (3-34) can be written as 

  ̅

 ̅ 
}            

(3-35) 

   is the damped circular natural frequency in (rad/s)  

     √     (3-36) 

With the corresponding damped period    

   
  

  
        

(3-37) 

With help of Euler’s formula the general solution can be written as  

                             (3-38) 

The initial conditions in Equation (3-23) gives    and    resulting in 

           (          
        

  
      ) 

(3-39) 

This equation can also be written as 

                         (3-40) 

In addition to this it can be shown with the rotating vector technique that the 

amplitude and phase can be written in the form 
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  √  
  (

        

  
)
 

 

(3-41) 

And 

     
        

    
 

(3-42) 

Regardless to the level of damping the response can be written as 

     
  

  
             

(3-43) 

Where the difference in damping is expressed in the rate which the motion dies out, 

meaning the term       . This is illustrated in Figure 3.4 for different levels of 

damping. 

 

 

Figure 3.4  Rate of motion for different levels of damping. 

3.1.3.2 Critically damped case (   ) 

With the damping     the characteristic equation Equation (3-16) has one solution  

 ̅      (3-44) 

The response becomes 

              
     (3-45) 

With the initial conditions taken into account the non-oscillatory response of a 

critically damped system according to Equation (3-32) becomes 
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     (3-46) 

3.1.3.3 Overdamped case     

This case of damping results in two negative real roots.  

     √      (3-47) 

Which gives that the response of the system can be written as  

                                (3-48) 

   and    depend on initial conditions which gives Equation (3-49) for the response. 

                     
        

  
         

(3-49) 

3.1.4 Analytical solution of SDOF 

How to solve a SDOF-system analytically differs if the system is damped or not. For 

more complex systems an analytical solution is often not possible. For a system with a 

sinusoidal load it is possible to achieve an analytical solution which will be explained 

in this section. 

3.1.4.1 Undamped SDOF system 

An undamped SDOF-system as shown in Figure 3.5 subjected to a sinusoidal load can 

be expressed with the equation of motion in Equation (3-50). 

 

Figure 3.5  Undamped SDOF-system 

  ̈                (3-50) 

As stated before the solution can be divided into a particular and complementary 

solution: 

                 (3-51) 

To calculate the natural motion    when there is no loading Equation (3-50) can be 

rewritten as:  

 ̈    
     (3-52) 

𝑢 

𝑚 

 

𝑘 

 

𝑝 𝑡  
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With the corresponding characteristic equation: 

 ̅    
    (3-53) 

The roots of this characteristic equation are: 

 ̅                   √   (3-54) 

When these roots are substituted into the Equation (3-14) the general solution is 

obtained as: 

    ̅ 
       ̅ 

      (3-55) 

Introducing Euler’s equation: 

                 

Gives that Equation (3-51) can be written in terms of trigonometric functions: 

                             (3-56) 

Were    and    are real constants to be determined from initial conditions. In this 

case: 

            

And 

 ̇             

Giving an expression for free vibration response of an undamped system: 

              
  

  
       

(3-57) 

Equation (3-52) is the more general equation which will be used to explain the 

response when the system is subjected to loading      as well. 

Equation (3-50) only has even-order derivatives on the left side which means that the 

forced motion will have the response:   

                (3-58) 

Where U is the amplitude of the forced motion. The amplitude of the response of the 

forced motion can be determined by substituting Equation (3-58) into Equation 

((3-50) giving: 

  
  

     
 

(3-59) 

Assuming that         gives the static displacement, which is the displacement 

of the mass if the load would be applied statically:  
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(3-60) 

This gives that Equation (3-59) can be written 

 

  
 

 

    
     

(3-61) 

Where   is the frequency ratio between the forcing frequency and the undamped 

natural frequency    

  
 

  
 

(3-62) 

The frequency response function      gives the magnitude and sign of the forced 

motion response as a function of  : 

     
 

  
 

(3-63) 

Equation (3-58) combined with equation (3-59) gives the steady-state or the forced 

motion response 

   
  

    
               

(3-64) 

This gives that equation (3-56) combined with (3-61) becomes the total response from 

the sinusoidal load: 

     
  

    
                        

(3-65) 

3.1.4.2 Damped SDOF system 

The approach for solving a damped SDOF-system is the same as for an undamped 

system where the response is divided into natural    and forced motion    . 

For a mass-spring-dashpot model as shown in Figure 3.1 the equation of motion is: 

  ̈    ̇             (3-66) 

Because of the damping the steady-state, or forced motion, will not be in phase. The 

excitation will be given by: 

                 (3-67) 

  is the steady-state amplitude and   is the phase angle of the steady-state-response, 

or in other words due to the forced motion 

To determine the amplitude and the phase angle rotating vectors are used. For 

Equation (3-66) the following are stated: 
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 ̇                 (3-68) 

 ̈                 (3-69) 

Equations (3-67), (3-68) and (3-69) are substituted into Equation (3-66) giving: 

                                         

 
         

(3-70) 

This quation can be described with a force vector polygon since each term in Equation 

(3-70) represents an action on the mass in consideration. This gives: 

                    
  (3-71) 

Where: 

     
  

     
 

(3-72) 

These equations can therefore be expressed as: 

      
    

 

 
 

                
 
  

 

(3-73) 

 

With: 

        
   

    
 

(3-74) 

The total response is given by                  and with Equations (3-67), 

(3-73), (3-74) and                                for free vibration of 

viscously damped SDOF system 

It can be written as: 

     
  

                
 
 

           

 
                           

(3-75) 

3.2 MDOF system 

In a structural system with more than one degree of freedom the SDOF model is not 

enough to describe its response. For a complex system with multiple degree of 

freedom (MDOF) a larger system is required. The MDOF-system is based on the 

SDOF-system but allows multiple degrees of freedom and is written in matrix form.  



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:108 
22 

In Figure 3.6 an example of a multiple degree of freedom system is shown for three 

masses connected by springs and dampers. The system has three degrees of freedom 

as the masses are allowed to move in horizontal direction. Mass number two is 

subjected to external force      acting in horisontal direction. 

 

Figure 3.6  An example of MDOF system with three degrees of freedom in 

horizontal direction. 

The equation of motion for a MDOF system is derived by Newton’s second law by 

dividing the system into free-body diagrams for each degree of freedom. 

 

Figure 3.7 Free-body diagram of a MDOF system with three masses 

For each free-body diagram the total force    is written in equilibrium to the acting 

forces in equation (3-76) to (3-78). 

 
 

∑      ̈            
(3-76) 

 
 

∑      ̈                 
(3-77) 

 
 

∑      ̈      
(3-78) 

The forces    are related to the displacement    with linear springs and dampers as 

Equation (3-128) to (3-131). 

            (3-79) 

             (3-80) 

       ̇   ̇   (3-81) 

             (3-82) 
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Insert the derived forces from Equation (3-79) to (3-82) into the force equilibriums in 

Equation (3-76) to (3-78) and rearrange. 

   ̈                ̇   ̇              

⇒    ̈     ̇     ̇                   (3-83) 

 

   ̈                             

⇒    ̈     ̇     ̇                           (3-84) 

 

   ̈              

⇒    ̈              (3-85) 

Collect the force equilibriums and insert into the equation of motion in matrix form. 

The equation of motion on matrix form includes rectangular mass matrix  , damping 

matrix   and stiffness matrix  . The matrices are all multiplied by the physical 

displacement vector   and equal to the load vector    

  ̈    ̇       (3-86) 

[
    
    
    

] [
 ̈ 

 ̈ 

 ̈ 

]   [
      

      
   

] [
 ̇ 

 ̇ 

 ̇ 

]   

 

 [

         
           

      

] [

  

  

  

]  [
 

    
 

] 

(3-87) 

The mass matrix is a diagonal matrix with the masses inserted in numerical order. The 

stiffness matrix is not a diagonal matrix as the forces in the springs are dependent on 

more than one degree of freedom. A system with a stiffness matrix that is not diagonal 

is said to be a system with stiffness coupling. With coupling in the system it is more 

difficult to solve but it can be solved with mode superposition explained in section 

3.2.1. The damping matrix is similar to the stiffness matrix and is in the most of the 

cases also coupled. 

3.2.1 Mode superposition 

Mode superposition is a method to transform a MDOF-system with coupled equations 

into uncoupled equations. The coupled equation system will generate   equations and 

  unknows which is a difficult to solve. By uncoupling the system with mode 

superposition the equations will be uncoupled and independent from each other. The 

uncoupled equations are independent of each other and can be solved with SDOF-

solutions explained in section 3.1.4. 
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The equation of motion with coupled equations and non-diagonal matrices for a 

MDOF-system. 

  ̈    ̇          (3-88) 

To be able to uncouple the equation system the natural frequencies and natural modes 

has to be known for all  . These are explained in section 3.4 Natural frequencies and 

natural modes and satisfies Equation (3-89). 

     
         (3-89) 

Where 

         

By normalizing the mode vectors it is possible to calculate the modal mass and modal 

stiffness matrices for each   by Equation (3-90) and (3-91). 

     
    

  (3-90) 

     
    

    
    (3-91) 

The mode vectors for each   can be collected into a modal matrix   with the mode 

vectors as columns in the modal matrix. 

            (3-92) 

The modal matrix makes it possible to determine the modal mass and stiffness 

matrices for the whole system as diagonal matrices using Equation (3-93) and (3-94). 

       (3-93) 

       (3-94) 

The transformation from coupled to uncoupled matrices with diagonal mass and 

stiffness matrices changes the equation system. Due to the change in system the 

displacement vectors has to be transformed by Equation (3-95). In mode superposition 

the coordinate system is expressed in      called principle coordinates or modal 

coordinates. 

           ∑       

 

   

 

(3-95) 

The equation of motion with modal coordinates and uncoupled equations is written in 

Equation (3-96). 

  ̈    ̇          (3-96) 

Where: 
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It should be noted that mode superposition in many cases does not generate a diagonal 

damping matrix due to the complexity of damping in a system. If a diagonal damping 

matrix is not achieved modal damping or Rayleigh damping methods can be used. 

3.2.2 Numerical integration 

In this chapter numerical integration methods of second order differential equation are 

presented. Two methods are presented were the main difference is the stability of the 

solution, they can either be conditionally or unconditionally stable. The stability 

depends on the time step chosen. If an algorithm only is stable for time step       

the algorithm is defined as conditionally stable. A time step       is too large and 

will give an unstable solution. The critical time step     depends on the eigenvalues 

of the iteration matrix. Unconditionally stable algorithms are stable for all time steps 

chosen. 

The central difference method is the most fundamental numerical solution method in 

structural dynamics and it is conditionally stable. A common used method is the 

Newmark-Beta method which is unconditionally stable and implemented in many FE-

programs including ADINA (ADINA R & D, 2012). 

3.2.3 Central difference method 

The central difference method is an approximate numerical solution that is 

conditionally stable and is based on the definition of the derivate. 

Equation of motion with initial boundary conditions. 

  ̈    ̇          (3-97) 

        (3-98) 

 ̇       (3-99) 

In the derivation of central difference method the displacement in time is defined as 

equation (3-100. 

         (3-100) 

The definition of velocity is the derivate of displacement with backward and forward 

values, equation (3-101. 

 ̇  
         

  
 

(3-101) 

From first order derivative in Equation (3-101) the second order derivative of 

displacement is derived as Equation (3-102). 
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 ̈  
             

  
 

(3-102) 

The derived equations for acceleration and velocity are inserted into Equation (3-97) 

and give the discrete governing equation. 

(
 

  
  

 

  
 )      (  

 

  
 )     

 

 (
 

  
  

 

  
 )         

(3-103) 

Equation (3-103) contains the displacement for all three time steps,     ,    and 

    . By calculating      in Equation (3-104) only      remains unknown and can 

be solved by equation (3-105. 

            
  

 
 ̈  

(3-104) 

     (   (  
 

  
 )    (

 

  
  

 

  
 )     )   

 

 (
 

  
  

 

  
 )

  

  

(3-105) 

3.2.4 Newmark integration 

Newmark integration, also known as Newton-  integration, is unconditionally stable 

and does not require any knowledge of the response frequencies in the system. The 

method is an implicit method using both the present time step,   , and next time step, 

    . Tough it requires that the equation of motion fulfills equation (3-106. 

  ̈      ̇                  (3-106) 

Initial conditions are the same as for central differential method and given in equation 

(3-107) and (3-108).  

        (3-107) 

 ̇       (3-108) 

The integration method is a generalized method of Taylor series expansion based on 

the equation (3-109) and (3-110).  

 ̇     ̇          ̈    ̈      (3-109) 

         ̇           ̈     ̈    
  

 
  

(3-110) 
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To fulfil the criteria of being unconditionally stable Newmark originally proposed 

values for   and   in Equation (3-111) and (3-112). This is called the constant 

acceleration scheme and in Figure 3.8 the principle of acceleration variation is shown.  

  
 

 
 

(3-111) 

  
 

 
 

(3-112) 

 

Figure 3.8  The principle of acceleration variation in Newmark's constant 

acceleration scheme 

From initial conditions the initial acceleration is given by Equation (3-113) and initial 

displacement by Equation (3-114). 

 ̈                    (3-113) 

           
  

 
 ̈  

(3-114) 

Insert the two equations above into equation of motion, (3-106). 

  ̈       ̇          ̈    ̈        

 

  (    ̇           ̈     ̈    
  

 
 )          

(3-115) 

The acceleration,     , from equation (3-115 can be solved as      and    are 

known.  

3.2.4.1 Accuracy of Newmark integration 

The Newmark integration is unconditionally stable and independent on the time step 

length to obtain a stable solution. The time step length will on the other hand affect 

the computational power needed and the accuracy of the results. In (Bathe, 1996) a 

study of the accuracy for three integration methods are compared with the exact 

solution. The results from the study are shown in Figure 3.9 for amplitude decay and 

period elongation. 
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Figure 3.9  Percentage period elongation and amplitude decay for Newmark, 

Wilson and Houbolt integration methods (Bathe, 1996).  

The plot to the left of period elongation and time step length shows that for Newmark 

integration the deviation is linear proportional to the time step length. A longer time 

step will give a less accurate solution. The three methods compared gives quite 

similar results for small time steps but Newmark is the most accurate for larger time 

steps. The right hand side plot in Figure 3.9 shows the deviation in amplitude and time 

step length. The time step length in Newmark integration does not affect the resulting 

amplitude. From this study it can be seen that Newmark integration is the most 

accurate method regarding the chosen time step length. 

3.3 Resonance 

One of the most important phenomenon in dynamic is resonance. A system that is in 

resonance with an exciting force will generate the highest response possible to 

achieve. Resonance occurs when the exciting forces is harmonic and has the same 

loading frequency as one of the structures natural frequency. In this chapter two types 

of resonance phenomena are explained, perfect and beating resonance. 

3.3.1 Perfect resonance 

Perfect resonance occurs when the exciting force has exactly the same loading 

frequency,   , as one of the structure´s natural frequency,   . During perfect 

resonance the displacement and acceleration in the structure will increase linearly 

over time as shown in Figure 3.10. Resonance is crucial as it will generate the highest 

response and it can cause discomfort or even failure of a structure. 
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Figure 3.10  Linear increase of the acceleration of a structure in perfect resonance. 

The particular solution in Equation (3-116) of an undamped SDOF-system does not 

allow resonance, as the denominator will be zero equation. 

   
  

    
       

(3-116) 

For an excitation force equal to Equation (3-117) the particular solution for undamped 

SDOF-system is given in Equation (3-118) and has to be used when      . 

              (3-117) 

      
  

 
          

3-118 

3.3.2 Beating resonance 

The beat phenomenon occurs when a system has closely spaced natural frequencies or 

when a system is excited with a frequency very close to the systems natural 

frequency. This results in that the amplitudes of the oscillations are not constant over 

time but varies (Gaffney, 2002) seen in Figure 3.11. 
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Figure 3.11  Acceleration response in a structure that is excited by an external 

harmonic force with a frequency close to the natural frequency of the 

structure. 

The beat phenomenon can be explained by free vibration of a spring mass system with 

two masses shown in Figure 3.12.  

 

Figure 3.12  Spring mass system 

The system has closely spaced natural frequencies if the springs have closely spaced 

stiffness according to the conditions in Equation ((3-119).  

          (3-119) 

Where: 

  is close to zero 

 

Free vibration response for a system with two masses can be written as: 

      
  

 
                

(3-120) 

      
  

 
                

(3-121) 
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The beat frequency    and the average frequency       can be defined by the 

equations: 

           (3-122) 

     
     

 
 

(3-123) 

Resulting in Equations ((3-120) and ((3-121) can be written as: 

            
   

 
          

(3-124) 

            
   

 
          

(3-125) 

The displacements       and       can therefore be considered as rapid harmonic 

movements at frequency       with amplitudes that are varying slowly with 

   (
   

 
)and     

   

 
  which means that when the amplitude of one of the masses 

builds up the other one dies down and vice versa (Roy R. Craig, 2006). This gives rise 

to the beat phenomenon previously shown in Figure 3.11. 

3.3.3 Steady-state 

A system excited by a harmonic force will over time settle into equilibrium, a steady 

state condition. The characteristic of steady state condition is that it will have the 

same response over time. The response can be either constant or a repeated pattern. 

By knowing that the system response will not change over time the response of a 

transient problem can be determined independent of time a variable (Bathe, 1996) 

3.3.4 Steady-state magnification factor 

At resonance the amplitude is limited only by the damping force. The amplitude for at 

resonance can be described by the steady-state magnification factor,      . In 

Equation (3-126) the factor is given for at resonance for    . 

        
 

  
 

(3-126) 

Where: 

    is the nondimensionalized forcing frequency,        

    structural damping ratio 

The magnification factor resonance is plotted in Figure 3.13 for different structural 

damping ratios. In the figure it can be seen that higher level of damping will generate 

a lower response amplitude and undamped system will get an infinitely high response 

at resonance. 
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Figure 3.13 Plot of steady state magnification factor and damping ratio 

3.3.5 Steady state vs maximum values 

The response in a structure varies depending on the frequency of the load if it close to 

resonance or not explained in section 3.3.1. For a structured being excited by a force it 

will take some time before steady state is reached. During the analysis it has been 

discovered that the response in a structure will build up to reach steady state as in 

FIG! this occurs when the structure and load is in resonance or close to resonance. 

The steady state response will be the maximum response during its loading time. 

 

Figure 3.14 Response in a structure in resonance where steady state condition 

builds up 

A different behavior is discovered for structures that are excited by a force which is 

not in resonance. The response for such a structure is shown in FIG where steady state 
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conditions are reached at 5 seconds. The main differences between the two cases are 

the initial responses where for the second case the maximum response is reached in 

the beginning of the loading time. The steady state response is lower than the initial 

and the response decreases into steady state condition.  

 

Figure 3.15  Response in a structure not in resonance where the response decreases 

into steady state conditions 

The explanation to this difference in response is resonance. As the second system is 

not in resonance with the load, the response to the load will counter each other before 

they tune in to each other’s motions. This can generate large responses in the 

beginning of loading. In the first case resonance occurs from the start and the structure 

and load will act together without disagreement.  

3.4 Natural frequencies and natural modes 

The natural frequencies and natural modes are dynamic properties of an element or 

system. An element that is excited by an external load at the same frequency as its 

natural frequency will undergo resonance as explained in section 3.3. 

The natural modes of a system describe how the system will respond when it vibrates 

at the natural frequencies. In this chapter the principle of how to obtain the natural 

frequencies and natural modes for a 2-DOF system are explained. The method is 

shown in matrix form of a two degree of freedom system and is directly applicable for 

a MDOF-system.  

3.4.1 Natural frequency of a 2-DOF system 

The natural frequencies of a 2-DOF for free vibration is an eigenvalue problem and 

can be solved from the equation of motion. In Equation (3-127) the equation of 

motion for an undamped 2-DOF system is stated. 

[
      

      
] {

 ̈ 

 ̈ 
}  [
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}   

(3-127) 

Assuming that the system will undergo harmonic motion the two solutions to the 

system is given as: 
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                  (3-128) 

                  (3-129) 

Insert the two solutions from Equation (3-128) and (3-129) into the equation of 

motion gives the algebraic eigenvalue problem in equation (3-130). 

[[
      

      
]    [

      

      
]] {

  

  
}  {

 
 
}  

(3-130) 

In Equation (3-130) the solution is given for those values of   that will satisfy the 

characteristic equation given in Equation (3-131). This is an eigenvalue problem 

where   
  is the eigenvalue. For a 2-DOF system the solution is given by two 

eigenvalues    and    where      .  

|[
      

      
]    

 [
      

      
]|    

(3-131) 

The eigenvalues in equation (3-131 are solved by calculating the determinant of the 

matrix  .  

   [
                  

                  

]         
(3-132) 

The determinant of   gives a second order equation equal to zero with the 

eigenvalues   
  and   

  as the solutions. The solution is given as a ratio between 

stiffness   and mass  . 

The natural frequencies are calculated as. 

   
  

  
      (3-133) 

   
  

  
      (3-134) 

3.4.2 Natural modes of a 2-DOF system 

The natural modes for a system can be calculated when the natural frequencies are 

known. 

Substitute one of the known eigenvalues from the natural frequencies in Equation 

(3-133) and (3-134) into equation (3-131) will give the equation system below.  

[[
      

      
]    

 [
      

      
]] [

  

  
]  [

 
 
]  

(3-135) 

The vector containing    and    is unknown and can be expressed as a ratio   with 

the two amplitudes. 

   
  

  
 

(3-136) 
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The mode shape for mode   is then given in Equation (3-137) where       for a 2-

DOF system. The constant    is a normalization factor. 

   {
  

  
}
 

   {
 
  

} 
(3-137) 

The most efficient way to find the eigenmodes is to set    in equation (3-135) equal 

to one. This holds for all values of   except if     . The equation system in (3-138) 

can then be solved for    and the eigenvector or mode shape    is determined. 

[
      

          
    

      
          

    

] [
 
  

]  [
 
 
] 

(3-138) 

   [
 
  

] 
(3-139) 

The eigenvectors for a 2-DOF system is written as Equation (3-140) and (3-141) 

below.  

   [
 
  

] 
(3-140) 

   [
 
  

] 
(3-141) 

The mode shapes can be presented graphically as in Figure 3.16.

 

Figure 3.16 Schematic presentation of the mode shapes in a 2-DOF system. 

3.5 Fourier series 

Forces acting on a structure can in many cases be periodic or can be approximated to 

be periodic. Tough they are not always continuous or described by different functions 

in different time intervals. A non-continuous harmonic force can be divided into its 

harmonic components and described by a Fourier series as a continuous function.  

In this chapter the approach and components needed in a Fourier expansion are 

presented for real Fourier series of a harmonic force. Complex Fourier series are not 

presented but can be useful in other occasions. 

In Figure 3.17 an example of a periodic function over time period   is shown. 

  𝑈    

𝑈  
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Figure 3.17 Plot of a harmonic force p(t) over time t with period T 

A Fourier series expansion of a real periodic function is defined in equation (3-142), 

where    is the fundamental frequency. 

        ∑          

 

   

 ∑          

 

   

 
(3-142) 

 

   
  

  
          

(3-143) 

 

The coefficients   ,    and    are given as in Equation (3-144) to (3-146) 

   
 

  
∫       

    

 

 
(3-144) 
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(3-145) 

 

   ∫              
    

 

 
(3-146) 

 

Where: 

         

It shall be noted that the  -terms are used for even functions and will be equal to zero 

for all odd functions and vice versa for  -terms which is used for odd functions. 

The number of terms,  , used in Fourier expansion affects the accuracy of the 

expansions ability to describe the original periodic function. The considered number 

of terms is chosen for individual functions as the terms   and   will decrease for each 

new   and thereby decrease its affection on the Fourier expansion. 
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3.6 Dirac delta function 

Mathematically speaking the delta function is not a function but a distribution because 

it is too singular. It can be regarded as an operator that extracts the value of a function 

at zero  

The Dirac delta function      is a function that is zero everywhere except zero 

defined by: 

     {
       
       

 

With 

∫         

  

  

 

(3-147) 

If           it has an infinitely high peak at the origin,    , and the function can 

be seen as a Gaussian limit: 

        
   

 

√   
        

   
(3-148) 

Or Lorentzian 

        
   

 

 

 

     
    

(3-149) 

The relation 

∫                
(3-150) 

Is an important property of the Dirac delta function showing that all      vanishes 

everywhere except at    . Meaning that is does not matter what values the function 

     has, except at    . From this it can be said that: 

                  (3-151) 

     does not depend on   and can be extracted outside of the integral giving 

Equation (3-150) as: 

∫                    
(3-152) 

3.7 Response spectra 

A response spectrum is a plot of maximum responses for an SDOF-system to given 

input versus a system parameter. The response of the system can be for example 

maximum displacement, acceleration and stress and the system parameter is often the 

undamped natural frequency. 
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The purpose of a response spectrum is to provide information to be able to choose one 

or more system parameters to limit the response of the system when the input is given. 

Response Spectra is often used in preliminary design of buildings to secure against 

earthquake excitation (Roy R. Craig, 2006). It has also been suggested as a way of 

dealing with pedestrian induced vibrations (Stana Zivanovic, 2010). 

In 2013 a research group at the University of Alexandria investigated the response on 

footbridges of a pedestrian load using Response Spectra Method. The study resulted 

in a typical Response Spectra plot, Figure 3.18, over the response in   for a range of 

natural frequencies with varying damping coefficient (El-Sayed Mashaly, Tarek M. 

Ebrahim, Hamdy Abou-Elfath, Omar A. Ebrahim, 2013). 

 

Figure 3.18 Plotted results of a Response Spectra study of pedestrian loading on 

footbridges 

3.8 Monte Carlo simulations 

Monte Carlo simulations are based on a method where many analyses with random 

input variables generates a large amount of random results. The method is applied on 

mathematical models simulating real systems that are too complicated to solve 

analytically. 

The output data is analyzed using statistical methods to determine the performance of 

the system (Thomopoulos, 2013).  

3.9 Euler-Bernoulli beams 

In dynamics and mechanics the Euler-Bernoulli beam theory is widely used for 

describing the behavior of a beam element. A beam element undergoing transverse 

vibration the Euler-Bernoulli beam equation is written as Equation (3-153). 
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(3-153) 

       

3.9.1 Analytical solution of natural frequencies 

The natural frequencies of a beam element for transverse vibrations can be calculated 

analytically with Euler-Bernoulli beam equation.  

The natural frequencies are calculated when the element is not subjected to an 

external load which reduces equation (3-153) into equation (3-154). 
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 (  

   

   
)    

   

   
   

(3-154) 

Assume harmonic motion with solution according to equation (3-155. 

                     (3-155) 

Obtain the eigenvalue equation by inserting equation (3-155) into beam equation 

(3-154). 

  

   
 (  

      

   
)             

(3-156) 

For a uniform beam the eigenvalue Equation (3-156) can be reduced to a more close 

form by introducing the eigenvalue  . 

      

   
          

(3-157) 

Where: 

     
  

  
 

(3-158) 

Equation (3-157) is only dependent of   and since the beam equation is of fourth 

order the general solution to the differential equation is written as. 

                                       (3-159) 

Equation (3-159) includes five constants    to    and the eigenvalue   which can be 

decided by boundary conditions. In this case a simply supported beam is studied with 

boundary conditions as below. 

        

      

   
   

 

        

      

   
   

 

Evaluating the boundary conditions at    . 

        (3-160) 

             (3-161) 

To fulfil the conditions in equation (3-160) and (3-161),    has to be equal to    and 

equal to zero. 
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        (3-162) 

The remaining constants are evaluated for boundary conditions at     and give.  

                   (3-163) 

                        (3-164) 

By calculating the determinant of the equation system without the constants the non-

trivial solutions can be obtained. 

|
           

                 
|    

(3-165) 

The determinant gives the final equation (3-166. 

              (3-166) 

To fulfil the conditions in equation (3-166),    has to be equal to zero since        

can only be zero for that specific value. Or       has to be zero which is satisfied for  

         

Where:  

          

The eigenvalues for a beam element are given from equation (3-167). 

   
  

 
 

(3-167) 

Where: 

         

The natural frequencies can be obtained by inserting the derived eigenvalues from 

equation (3-167) in equation (3-158). Finally the eigenfrequency for mode   is 

calculated as in equation (3-169). 

  
    

  

  
 

(3-168) 

   (
  

 
)
 

√
  

  
 

(3-169) 

The eigenfunctions or mode shapes are given by substituting the eigenvalues into 

equation (3-163) which results in: 
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And therefore 

           (3-170) 

The mode shapes are the remaining of equation (3-159 as stated in Equation (3-171). 

               (3-171) 

The constant    is arbitrary but with normalization it is chosen to be equal to one. 

Inserting the eigenvalue from equation (3-169 into the mode shape the final equation 

becomes. 

         
   

 
 

(3-172) 

In Table 3.1 the first four eigenfrequencies and mode shapes are listed and illustrated. 
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Table 3.1  The first four eigenfrequencies and mode shapes of a simply supported 

beam 

Mode 

number,   

Eigen frequency for 

mode           
Mode shape for mode,   
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√
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4 Standards, regulations and guidelines 

In this chapter available standards and guidelines are presented and explained. The 

considered standards and guidelines are all regarded as applicable and important in 

the the design of pedestrian bridges due to human induced vibrations.  

The presented standards and guidline are: 

- Eurocode 

- ISO 10137:2008 

- UK National Annex to Eurocode 

- Sétra - Assessment of vibrational behavior of footbridges under pedestrian 

loading 

- HIVOSS –  Human induced vibrations of steel structures 

- SYNPEX - Advanced load models for synchronous pedestrian excitation and 

optimized design guideline for steel footbridges 

- JRC - Design of Lightweight Footbridges for Human Induced Vibrations 

Finally the Response Spectra method will be presented which is a numerical method 

recommended in HIVOSS, SYNPEX and JRC. 

4.1 Eurocode 

Eurocode does not include an exclusive and complete section considering the design 

of pedestrian bridges due to human induced forces. In this section extracts from 

several relevant sections in Eurocode are presented. 

In Eurocode 1991-2: section 5.7 regarding pedestrian loads on bridges it is stated that 

depending on the dynamic characteristics of the bridge, the natural frequencies of the 

structure should be calculated to determine if resonance phenomenon can occur. 

Eurocode states that resonance can occur for walking, running, jumping and dancing 

pedestrians. The natural frequencies should be calculated for vertical, lateral and 

longitudinal directions using an appropriate model of the structure (CEN, 2010).  

In Eurocode 1990/A1:2005: section A2.4.3 regarding verifications of comfort in 

pedestrian bridges it is stated that bridges with a natural frequency lower than 5 Hz in 

vertical direction or 2.5 Hz for lateral and torsional should be verified against the 

comfort criteria given in Section 4.1.1. Eurocode enlightens four important load cases 

to be considered in design given below. 

- One person traversing the structure while another one stands in mid-span, 

acting as the receiver 

- Presence of a group with 8 to 15 pedestrians 

- Presence of pedestrians streams significantly more than 15 pedestrians 

- Festive and choreographic events 

(CEN, 2006).   

If the natural frequencies of the structure coincide with the interval presented in 

equation (4-1) the dynamic force from pedestrians should be taken into account in 

limit state verifications. The standard states that an appropriate load model of 

pedestrian loads should depend on number of pedestrian and external circumstances to 

fulfil comfort criteria (CEN, 2010).  

Suggested interval for walking frequency: 
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1 ≤ fp ≤ 3 Hz (4-1) 

Suggested frequency for jogging: 

fp.jogg = 3 Hz (4-2) 

(CEN, 2010). 

The paragraph refers to National Annex for possible pedestrian load models and 

comfort criteria. The UK National Annex EN 1991-2 (2003) is an annex presenting 

load models and guidance about pedestrians loading on bridge structures. 

Eurocode EN 1990 Annex 1 recommends methods and rules for actions on buildings 

including a section concerning vibrations in buildings. It states that for buildings with 

a natural frequency lower than an appropriate value a more refined analysis of the 

dynamic response should be performed. In this section of Eurocode it refers to the 

standard ISO 10137 for further guidance (CEN, 2010).  

Eurocode 1993-2:2006 concerning steel structures informs that footbridges and cycle-

bridges with high vibrations could cause discomfort.  The standard recommends to 

design the bridge with an appropriate natural frequency or with dampers to avoid 

unpleasant vibrations  (CEN, 2009).  

4.1.1 Comfort criteria 

Eurocode SS-EN 1990/A1:2005 states that comfort criteria should be defined as 

maximum acceptable accelerations on any part of the bridge. Eurocode provides 

acceleration limits for vertical and lateral vibrations including limits during 

exceptional crowded conditions given in Table 4.1. Additional criteria can be given in 

national annexes. (CEN, 2006) 

Table 4.1  Maximum acceptable accelerations recommended by Eurocode 

Load case Acceleration limit [m/s
2
] 

Vertical vibration 0.7 

Lateral vibration 0.2 

Exceptional crowd conditions 0.4 

4.1.2 Damping 

Structural damping ratios to be used for bridges are recommended in Eurocode 1991-

2 and given in Table 4.2. The ratios are functions of bridge length with higher 

damping ratios for shorter bridges (CEN, 2010). 
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Table 4.2  Structural damping ratio for bridges recommended by Eurocode. 

Bridge Type   Lower limit of percentage of critical damping     

Span L < 20 m Span L ≥ 20 m 

Steel and Composite                     

Prestressed concrete                    

Filler beam and reinforced 

concrete 
                       

Table 4.2 is complemented by damping ratios for timber bridges by Eurocode 1995-

2:2004. The recommended values are given in Table 4.3 (CEN, 2004).  

Table 4.3  Damping ratios for timber bridges according to Eurocode 

Type of timber structure Damping ratio, [%] 

Structures without Mechanical Joints 1.0 

Structures with Mechanical Joints 1.5 

4.1.3 Load model for timber bridges 

Eurocode 1995-2:2004, standard for timber structures, presents rules to be applied on 

timber bridges excited by pedestrian forces. The rules are applicable on bridges 

designed as simply supported beams or truss systems (CEN, 2004). 

4.1.3.1 Vibrations caused by a single pedestrian 

The vertical and horizontal vibrations caused by a single pedestrian crossing the 

bridge is gives by Equation (4-3) and (4-4) for vertical and Equation (4-5). 

        
   

  
 

for fver ≤ 2.5 Hz (4-3) 

        
   

  
 

for 2.5 < fver  ≤ 5.0 Hz (4-4) 

       
  

  
 

for 0.5 ≤ flat  ≤ 2.5 Hz  (4-5) 

Where: 

  total mass of the bridge, [kg] 

   damping ratio according to Table 4.3 

     fundamental natural frequency of the bridge in vertical direction 

     fundamental natural frequency of the bridge in lateral direction 
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4.1.3.2 Vibrations caused by several pedestrian  

The vertical and lateral vibrations for several pedestrian crossing the bridge is given 

by Equation (4-6) and (4-7).  

                           (4-6) 

                         (4-7) 

Where: 

    number of pedestrians according to Table 4.4 

       coefficient according to Figure 4.1 

      coefficient according to Figure 4.2 

         vertical acceleration caused by a single pedestrian given by 

Equation (4-3) or (4-4) 

        lateral acceleration caused by a single pedestrian given by 

Equation (4-5) 

The number of pedestrians are given in Table 4.4. 

Table 4.4  Number of pedestrians loading the bridge deck 

Group of pedestrians      

Continuous stream of pedestrians         

Where: 

   Total bridge deck area, [m
2
] 

The vertical coefficient kver and lateral coefficient klat are given in Figure 4.1and 

Figure 4.2 below. 
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Figure 4.1  Vertical coefficient      for vertical acceleration calculation caused by 

several pedestrians 

 

Figure 4.2  Lateral coefficient      for lateral acceleration calculation caused by 

several pedestrians 

4.2 SS-ISO 10137:2008 

ISO 10137 is an international standard presenting bases for design of structures 

regarding serviceability of buildings and walkways for vibration. Eurocode refers to 

the standard for further guidance about pedestrian induced vibrations. 

ISO 10137 provides basic rules for the design of pedestrian bridges and buildings with 

regard to vibrations in serviceability limit state. It is an international standard which 

applies in Sweden. It provides limits for displacements, velocity or acceleration for 

serviceability limit state. These limits are usually combined with ranges for 

frequencies and other parameters.  
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Aspects that are regarded in the standard to provide sufficient design and evaluation 

criteria: 

- Difference in tolerance against vibrations amongst human occupants because 

of  cultural, regional or economic factors 

- Building contents sensibility to vibrations and changes in use and occupancy 

- Dynamic loadings that are not explicitly regarded in this standard 

- Use of materials whose dynamic characteristics change over time 

- Limitations of analysis because of the complexity of the structure or the 

loading 

- Consequences of unsatisfactory performance for social or economic factors 

(ISO, 2008) 

4.2.1 Design guidelines for walkways 

The design situations that are to be regarded according to ISO 10137 depend on the 

pedestrian traffic that will affect the walkway during its life time. The following 

situations are recommended to consider: 

- One person traversing the structure while another one stands in mid-span, 

acting as the receiver 

- A flow of pedestrians, for example in a group of 8 to 15 people, that depends 

on the length and the width of the walkway 

- The possibility of streams of pedestrians significantly larger than 15 people 

- Festive or choreographic events that are relevant  

4.2.2 Comfort criteria 

The comfort criteria are based on acceleration limits given in the standard. For 

walkways over roads and waterways the level of vibrations should not exceed the 

proposed acceleration limits. The limits are calculated by multiplying the base curve 

in Figure 4.3 with 60 for vertical vibrations. Lateral acceleration limits are given by 

multiplying the curve in Figure 4.4 with the factor 30.  
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Figure 4.3  Base curve for acceleration limits in vertical direction 

 

Figure 4.4  Base curve for acceleration limits in lateral direction. 

4.2.3 Dynamic load model for single pedestrians 

Persons traversing structures can be described as an action that varies with time and 

position as the person walks over the structure. 
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The vertical and lateral action from one pedestrian can be described as Fourier series. 

The vertical load model is given in Equation (4-8) and the lateral load model in 

Equation (4-9) (ISO, 2008). 

           (  ∑       

 

   

   (           ))    
(4-8) 

           (  ∑       

 

   

   (           )) 

(4-9) 

Where: 

         Fourier coefficient corresponding to the n:th harmonic in 

vertical direction according to Table 4.5, [-] 

        Fourier coefficient corresponding to the n:th harmonic in 

horizontal direction according to Table 4.5, [-] 

   static load of the participating person, [N]  

    step frequency. Note that for lateral vibrations,   is one half of 

the rate of walking or running, [Hz]   

        phase angle of the n:th harmonic in vertical direction according 

to section 4.2.3.1, [deg] 

         phase angle of the n:th harmonic in lateral direction according 

to section 4.2.3.1, [deg] 

    number of considered harmonics, [-]  

   number of harmonics that characterize the forcing function in 

the frequency range of interest. The number of harmonics   

that is needed for an accurate model depends on the complexity 

of the load and its time history, [-]. 

4.2.3.1 Fourier coefficient and phase angles 

The dynamic forces for running and walking are described with Fourier series as in 

equation (4-8) and (4-9). Fourier coefficient,  , is given in  

Table 4.5 for continuous series of steps with different walking frequencies (ISO, 

2008). 
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Table 4.5  Numerical coefficient for pedestrian load models 

Activity Harmonic 

number 

Common range of 

forcing frequency, 

   [Hz] 

Numerical 

coefficient for 

vertical direction, 

     [-] 

Numerical 

coefficient for 

lateral direction, 

     [-] 

Walking 1 

2 

3 

4* 

5* 

1.2 to 2.4 

2.4 to 4.8 

3.6 to 7.2 

4.8 to 9.6 

6.0 to 12.0 

0.37(f - 1.0) 

0.1 

0.06 

0.06 

0.06 

0.1 

Running 1 

2 

3 

2 to 4 

4 to 8 

6 to 12 

1.4 

0.4 

0.1 

0.2 

*These harmonics are not relevant for human perception of vibration and can be 

neglected. 

The phase angle   can be chosen to 
 

 
 for a conservative approach.  

4.2.4 Dynamic actions due to groups of participants 

The dynamic response of a group of people will primarily depend on three aspects: 

- Weight of participants 

- Density of people per unit floor area 

- Degree of coordination 

The dynamic response will be reduced due to not perfect coordination of the people in 

a group. The reduced response for uncoordinated movements can approximately be 

calculated by multiplying the load from a single pedestrian with the coordination 

factor      in Equation (4-11) (ISO, 2008). 

For uncoordinated movement of a group of people the coordination factor is given in 

Equation (4-10). 

                (4-10) 

Where: 

     
√ 

 
 

(4-11) 

    number of participants in a group.  



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:108 
52 

4.2.5 Structural damping 

ISO 10137 recommends structural damping ratios suitable for pedestrian bridges. The 

ratios are given for steel, concrete and bridges with both steel and concrete in Table 

4.6. 

Table 4.6 Structural damping ratios recommended by ISO 10137 

Type of structure Damping ratio   

  of critical 

Steel with asphalt or expoxy surfacing 0.5 

Composite steel/concrete 0.6 

Prestressed and reinforced concrete 0.8 

4.3 UK National Annex 

Eurocode refers to national annexes for further guidance regarding design of 

footbridges for pedestrian loads. The UK National Annex (UK-NA) is an annex to EN 

1991-2 (2003) including further guidelines and load models for pedestrian induced 

forces.  

In UK-NA the pedestrian induced forces in vertical and lateral directions are treated. 

It gives recommendations of categorizing brigdes into bridge classes based on their 

location. The bridge classes correspond to the expected pedestrian loading. Two 

different load models are proposed to be used in design regarding vertical vibrations.  

The first load model simulates a single pedestrian or a group of pedestrian moving 

across the bridge span as a concentrated force. The second load model simulates 

crowds of pedestrians as a uniformly distributed load applied over the entire bridge 

deck, adapted to the considered mode shape ( British Standards Institute, 2008).  

Recommendations about the design limits to fulfil SLS criteria are based on 

maximum vertical acceleration. The maximum vertical acceleration is calculated with 

the proposed load models and has to be lower than the design acceleration limit for 

both analyzed models. The design limit is a combined value of factors concerning the 

users’ expectations about bridge vibration.  

The lateral stability is assessed with a method using a ratio between mass and 

damping that indicates if lateral response can be expected. 

The annex does not consider exceptional loads as deliberate pedestrian 

synchronization, vandal loading and mass gathering i.e. marathons and 

demonstrations. 

4.3.1 Bridge classes and expected pedestrian traffic 

Bridge classes are defined in UK-NA from class A to D according to Table 4.7. The 

bridges are categorized in bridge classes by their location and expected usage. All 

bridges should be categorized into a bridge class which gives recommended group 

sizes and crowd densities for pedestrians and joggers. The recommended values in 

Table 4.7 for each bridge class should cover the intended usage of the bridge. 
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Table 4.7  Bridge classes with corresponding group sizes and crowd densities 

Bridge Class Bridge usage Group 

size 
(walking) 

Group 

size 
(jogging) 

Crowd 

density, ρ 
(persons/m

2
) 

(walking) 

A Rural locations seldom 

used and in sparsely 

populated areas.  

N = 2 N = 0 0 

B Suburban locations 

likely to experience 

slight variations in 

pedestrian loading 

intensity on an 

occasional basis.  

N = 4 N = 1 0.4 

C Urban routes subject to 

significant variation in 

daily usage (e.g. 

structures serving access 

to offices and schools). 

N = 8 N = 2 0.8 

D Primary access to major 

public assembly 

facilities such as sports 

stadia or major public 

transportation facilities. 

N = 16 N = 4 1.5 

4.3.2 Vertical response calculations 

The maximum vertical acceleration should be determined by applying the load models 

at the most unfavorable location. The vertical response should include effects from 

other modes than the fundamental, including torsional if required, to obtain the 

maximum response. If the modes are not well separated a more complex analysis with 

combined modes should be applied. The maximum acceleration response calculated 

for both models has to be lower than the defined limits to fulfill comfort criteria ( 

British Standards Institute, 2008).  

4.3.3 Load model for single pedestrians and groups 

The maximum vertical acceleration should be obtained by calculating the response 

from a vertical pulsating force moving along the span. The force applied is a 

concentrated force simulating a single pedestrian or a group of pedestrians moving at 

constant speed. 

The force      is time and location dependent 

              √                   (4-12) 

Where: 
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    number of pedestrians according Table 4.7, [-] 

    reference amplitude according to Table 4.8, [N]  

    natural frequency of the considered vertical mode, [Hz] 

       combined factor given in Figure 4.6 considering realistic 

pedestrian population, harmonic response and weighting of 

pedestrian sensitivity to vibration, [-] 

     elapsed time, [s] 

   reduction factor to allow unsynchronization of pedestrian given 

in Figure 4.7,  [-]  

                                    

4.3.3.1 Effective span length 

Effective span length is related to the mode shape of the considered mode and is 

calculated by using the geometry of the mode shape according to Figure 4.5. It is 

always conservative to use the entire span length instead of the effective.  

     
           

           
 

(4-13) 

       
    

 
 

(4-14) 

Where: 

      effective span length given in Equation (4-13), [m] 

    span length, [m] 

( British Standards Institute, 2008) 

 

 

 

Figure 4.5  Illustration of effective span length. 1 indicates area B and 2 indicates 

area A 
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4.3.3.2 Static reference load and pedestrian crossing speed 

Recommended values according to UK-NA for reference load and pedestrian crossing 

speed are given in Table 4.8. 

Table 4.8  Reference load and crossing speed for walking and running  

Load parameters Walking Jogging 

Reference load,   [N] 280 910 

Pedestrian crossing speed,    

[m/s] 

1.7 3 

4.3.3.3 Design factor k(fv) for structural frequencies 

The factor       is described by the two curves in Figure 4.6 representing walking 

and jogging actions. The factor is a combined factor taken into account three effects. 

- A more realistic pedestrian population 

- Harmonic response 

- Relative weighting of pedestrian sensitivity to response 

The factor k(fv) is a function of the considered mode frequency of the structure on the 

x-axis, peaking around 2 Hz taking into account the fact that most people walk with a 

frequency around 2 Hz. The second peak of the function around 3.6 Hz takes the 

second harmonic into account. 

( British Standards Institute, 2008) 

 

Figure 4.6  Relationship between       and mode frequencies   . Curve A 

represents walking pedestrian and curve B for jogging pedestrians. 

𝑓𝑣   𝐻𝑧  

𝑘 𝑓𝑣  
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4.3.3.4 Reduction factor γ 

The reduction factor   for unsynchronized combination of pedestrian actions is a 

function between structural damping, Equation (4-15) and effective span length given 

in Figure 4.7. The figure can be used for the concentrated and the uniformly 

distributed load models. The reduction factor γ for concentrated load models is 

dependent of the span length with individual curves ( British Standards Institute, 

2008).  

       (4-15) 

Where: 

    structural damping ratio, [Hz] 

 

Figure 4.7  Reduction factor  , to allow for unsynchronized combination of 

pedestrian actions within groups and crowds. The factor is a function 

of  structural damping δ. Curve 1 is used for pedestrian groups and 

curve 2 for crowd loading.  

Note: All curves represent the variation of the reduction factor with structural 

damping for the value of effective span, Seff, given. 

4.3.4 Steady-state modelling of pedestrian crowds 

In crowded situations the maximum vertical acceleration can be determined by a 

pulsating distributed load applied over the span according to Equation (4-16) defined 

in UK-NA. The direction of the loading is adapted to the considered mode shape in 

𝛿 

𝛾 
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the most unfavorable way. The load is applied for sufficient time until steady state 

conditions are achieved. 

           (
  

 
)      √ 

 

 
                      

(4-16) 

Where: 

   number of pedestrians, equation (4-17) 

    reference amplitude given in  Table 4.8, [N] 

   bridge deck area, [m
2
] 

       combined factor given in Figure 4.6 taking into account 

realistic pedestrian population, harmonic response and 

weighting of pedestrian sensitivity to vibrations, [-] 

   reduction factor to allow for unsynchronization of pedestrians 

given in Figure 4.7, [-] 

   reduction factor for effective number of pedestrians given in 

section 4.3.3.1, [-] 

    natural frequency of the considered vertical mode, [Hz] 

4.3.4.1 Number of pedestrians 

The number of pedestrians of a crowded bridge is based on the bridge class and bridge 

deck area as seen in equation (4-17). 

         (4-17) 

Where: 

    crowd density according to bridge class,        

    span length,   

    width of the bridge deck exposed to pedestrian loading 

    Reduction factor for the effective number of pedestrians when 

loading from only part of the span contributes to the considered 

mode, Equation (4-18). 

Reduction factor λ is given in Equation (4-18) as a function of span length. 

        (
    

 
) 

(4-18) 

4.3.5 Damping 

The UK National Annex refers to Eurocode 1991-2 table 6.6 for appropriate damping 

values. 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:108 
58 

Table 4.9 Damping ratios recommended by the UK National Annex 

Bridge Type   Lower limit of percentage of critical damping     

Span       Span       

Steel and Composite 0.5 + 0.125 (20 - L) 0.5 

Pre-stressed concrete 1.0 + 0.07 (20 - L) 1.0 

Filler beam and reinforced 

concrete 

1.5 + 0.07 (20 - L) 1.5 

Timber structures without 

Mechanical Joints 

1.0 

Timber structures with 

Mechanical Joints 

1.5 

4.3.6 Recommended acceleration limits in SLS 

The service limit state recommendations are based on the maximum vertical 

acceleration solved from the appropriate load case applied in the most unfavorable 

way. To fulfill the requirements in SLS the maximum vertical acceleration should be 

less than the design acceleration limits. The design limits is a maximum acceleration 

limit taking four factors into account based on location, pedestrian perception and 

bridge height. Exceptions from the recommended values are allowed for some type of 

bridges in remote locations if a suitable risk assessment is done for the individual 

project. 

Maximum acceleration limit:  

                          (4-19) 

Where: 

                       (4-20) 

    site usage factor given in Table 4.10 

    route redundancy factor given in Table 4.11 

    height of the structure given in Table 4.12 

    exposure factor given in equation (4-21 and (4-22 

The site usage factor depends on the bridge location which corresponds to certain 

demands and expectations in comfort ( British Standards Institute, 2008). 
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Table 4.10 Recommended values for site usage factor,    

Bridge function    

Primary route for hospitals or other high sensitivity 

routes 

0.6 

Primary route for school 0.8 

Primary routes for sport stadia or other high usage 

routes 

0.8 

Major urban centers 1.0 

Suburban crossings 1.3 

Rural environments 1.6 

The recommended route redundancy factor is based on how important the bridge is, if 

there are other alternative bridges or routes as an option for the user. 

Table 4.11 Recommended values for route redundancy factor,    

Route redundancy    

Sole means of access 0.7 

Primary route 1.0 

Alternative routes readily available 1.3 

The structure height factor depends on the bridge height meaning the height between 

the ground surface and the bridge deck.  

Table 4.12  Recommended values for structure height factor,    

Bridge height [m]    

Greater than 8 m 0.7 

4 m to 8 m 1.0 

Less than 4 m 1.1 

The recommended value of exposure factor   , defined by equations (4-21 and (4-22, 

is primarily suggested to be equal to 1. For individual projects the value can be 

adjusted to consider other aspect that can affect the users’ perception of vibrations. 

Such aspects can be the parapets design, quality of the walking surface or other 

aspects. The value must be within the interval defined by equation (4-22. 

Recommended value for exposure factor   : 
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       (4-21) 

Recommended limits for exposure factor   : 

             (4-22) 

4.3.7 Lateral vibrations 

The UK Annex defines a frequency limit, equation (4-23) for which lateral vibration 

could occur and which therefore should be avoided. If the structure has a lateral 

frequency below the suggested limit a method is established to demonstrate that no 

unstable lateral vibrations will occur during crowd loading. The method is based on a 

relationship between mass of the bridge, mass of the pedestrians and structural 

damping. The relationship between the parameters is called pedestrian mass damping 

parameter,  , defined in equation (4-24). The parameter is to be compared with a 

given curve, Figure 4.8 indicating if unstable response is to be expected. 

Lateral frequency limit: 

              (4-23) 

If at least one of the natural lateral frequencies is below the limit the pedestrian mass 

damping parameter has to be calculated as: 

   
         

           
 

(4-24) 

Where: 

         mass of the bridge, [kg/m] 

            mass of the pedestrians, [kg/m] 

    structural damping ratio, [Hz] 

The pedestrian mass given by the bridge class and corresponding crowd density 

assuming one person weight is equal to70 kg. 

The structural damping ratio is given by recommendations explained in section 4.3.5. 

The lateral stability of the structure is assessed by inserting the pedestrian mass 

damping parameter and the considered lateral frequency of the structure into Figure 

4.8. The structure is considered stable if the inserted value falls above the given curve, 

otherwise unstable conditions are expected. 

The curve in Figure 4.8 is based on measured data between 0.5 and 1.1 Hz. The 

extension of the curve is based on a theoretical model and should be used with 

caution. 
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Figure 4.8 Curve for assessing lateral stability as a function of lateral natural 

frequency flat and pedestrian mass parameter D. Zone C indicates 

unstable and zone D indicates stable conditions.  

4.4 Sétra – Assessment of vibrational behavior of 

footbridges under pedestrian loading 

The report is conducted and published by Sétra (Service d’études techniques des 

routes et autoroutes), the Technical Department for Transport, Roads and Bridges 

Engineering and Road Safety in France. The report will be refered to as Sétra in the 

master thesis report. The purpose of Sétra is to summarize the current knowledge 

about dynamical behavior of footbridges due to pedestrian loading. The report 

provides guidelines for design of footbridges regarding dynamical effects with 

recommendations and a proposed design methodology. The methodology is based on 

tests and measurements performed on the Solferino footbridge in Paris and 

experimental tests on platforms in laboratory (Sétra, 2006). 

4.4.1 Step frequencies 

Sétra suggest estimated step frequencies for walking and jogging to be regarded in the 

design. The frequencies are defined in ranges and given in Table 4.13 below. 

𝑓𝑙𝑎𝑡 

𝐷 
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Table 4.13 Step frequency ranges for walking and jogging 

Activity Step frequency range, [Hz] 

Walking 1.6 ≤ fs ≤ 2.4 

Jogging 2.0 ≤ fs ≤ 3.5 

4.4.2 Load model for a single pedestrian 

Pedestrian induced loading can be modeled as a dynamic concentrated force that is a 

function of time and position of the pedestrian. The load of a human walking or 

running over a structure can therefore be described with the product of a time,     , 

and space component,        . The space component is described by a Dirac 

operator where   is the pedestrian’s relation to the centerline of the walkway and   is 

the speed of the pedestrian traversing the structure according to Equation (4-25) 

(Sétra, 2006). 

                    (4-25) 

The guideline proposes a periodic function,     , as a Fourier series.  

                     ∑                 

 

   

 
(4-26) 

Where: 

     Static force from the weight of the pedestrian, 700 N 

     First harmonic amplitude, Table 4.14 

      -th harmonic amplitude, Table 4.14 

     Walking frequency, [Hz] 

     Phase angle of the  -th harmonic, Table 4.14 

    Number of harmonics used in the calculation 

The weight of one person is a mean value of 700 N adopted as   . The Fourier 

coefficients are calculated from a mean frequency of 2 Hz and implemented to the 

harmonic amplitudes in Table 4.14. Coefficients for   greater than 3 are not 

considered because they are smaller than 0.1 and gives no significant contribution. 
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Table 4.14 Harmonic amplitude and phase angle 

Number of harmonic,   Harmonic amplitude [-] Phase angle [deg] 

1          - 

2                 

3                

In practice Sétra recommends to limit the Fourier sum to the first harmonic. The load 

model in Equation (4-26) can be adapted to consider vertical action, Equation (4-27), 

lateral action in Equation (4-28) and longitudinal action in Equation (4-29). 

Vertical 

                            (4-27) 

Lateral 

                  (  (
  
 

)  ) 
(4-28) 

Longitudinal 

                           (4-29) 

4.4.3 Analysis methodology 

Sétra proposes a methodology for how to design a footbridge regarding dynamic 

analysis. Judging the expected amount of traffic a footbridge class and a desired level 

of comfort is defined.  The calculated natural frequency of the bridge together with 

the footbridge class results in a dynamic load case that is defined to represent  

different  effects of pedestrian traffic.  
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Figure 4.9 Methodology chart 

4.4.4 Required dynamic calculations in design for pedestrian 

loading 

The required calculations for design of footbridges with regard to pedestrians streams 

are depending on bridge classes and natural frequency ranges illustrated in Table 4.15. 

The bridge classes are explained in section 4.4.5. The frequency ranges need are 

presented and explained in section 4.4.7. From the table below it is possible to see 

what type of load that is required in the design. The load cases are explained 

thoroughly in section 4.4.8. 

Table 4.15  Load cases to select based on bridge class and frequency range  

Traffic Class Natural frequency range 

1 2 3 

Sparse III  Nil Nil 

Case 1 

Dense II Case 1 Case 3 

 

Very dense I Case 2 Case 2 Case 3 

Load cases I to III in Table 4.15 are defined as: 

Case 1  Sparse and dense crowd 

Case 2  Very dense crowd 
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Case 3  Crowd complement 

4.4.5 Footbridge class 

Sétra defines four footbridge classes based on location and usage according to Table 

4.16. 

Table 4.16 Footbridge classes 

Footbridge class Description 

Class IV Seldom used footbridge, built to link sparsely populated 

areas or to ensure continuity of the pedestrian footpath 

in motorway or express lane areas. 

Class III Footbridge for standard use that may occasionally be 

crossed by large groups of people but that will never be 

loaded throughout its bearing area 

Class II Urban footbridge linking populated areas subjected to 

heavy traffic and that may occasionally be loaded 

throughout its bearing area 

Class I Urban footbridge linking up high pedestrian density 

areas subjected to very heavy traffic (for instance, 

nearby presence of a rail or underground station) or that 

is frequently used by dense crowds 

Footbridges in Class IV may not necessarily require a check of the dynamic response 

but for lightweight and slender footbridges it is advised to choose at least Class III to 

be conservative.  Sétra informs further that a light footbridge can present high 

accelerations without resonance. 

4.4.6 Comfort levels 

Three comfort levels are defined in the Sétra guidelines according to Table 4.17. The 

comfort levels are related to the desired level of vibration judged to be acceptable and 

defines the allowed acceleration ranges. 

Table 4.17 Comfort levels 

Comfort level Description 

Maximum comfort Accelerations undergone by the structure are practically 

imperceptible to the users 

Average comfort Accelerations undergone by the structure are merely 

perceptible to the users   

Minimum comfort Under loading configurations that seldom occur, 

accelerations undergone by the structure are perceived 

by the users, but do not become intolerable. 
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If the risk of resonance is deemed negligible after calculating the bridge’s natural 

frequency the comfort level is automatically met. 

4.4.6.1 Acceleration ranges associated with comfort levels 

Acceleration limits are stated in ranges due to the uncertainty and subjectivity of the 

comfort concept. In Table 4.18 and Table 4.19 ranges for accelerations in vertical, 

longitudinal and lateral direction are stated. Range 1, 2 and 3 correspond to the 

maximum, average and minimum comfort levels stated in section 4.4.6. Range 4 

corresponds to uncomfortable non-acceptable levels of acceleration. The acceleration 

in lateral direction is in any case limited to 0.10 m/s
2
 to avoid lock-in effect. 

Table 4.18  Acceleration ranges for vertical vibrations         

Acceleration ranges 0 0.5 1 2.5  

Range 1 Max    

Range 2  Mean   

Range 3   Min  

Range 4     

 

Table 4.19  Acceleration ranges for horizontal vibrations        

Acceleration ranges 0 0.1 0.15 0.3 0.8  

Range 1 Max     

Range 2   Mean   

Range 3    Min  

Range 4      

4.4.7 Frequency range classification 

The natural frequencies of bridges are divided into frequency ranges where the ranges 

correspond to the risk of resonance due to pedestrian induced forces. The ranges are 

illustrated in Table 4.20 for vertical and longitudinal frequencies and in Table 4.21 for 

lateral frequencies. 

Range 1: maximum risk of resonance 

Range 2: medium risk of resonance 

Range 3: low risk of resonance 

Range 4:  negligible risk of resonance 
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Table 4.20 Frequency ranges of vertical and longitudinal vibrations 

Frequency      0 1 1.7 2.1 2.6 5  

Range 1       

Range 2       

Range 3       

Range 4       

 

Table 4.21  Frequency range of lateral vibrations 

Frequency      0 0.3 0.5 1.1 1.3 2.5  

Range 1       

Range 2       

Range 3       

Range 4       

The required calculations depending on bridge classes and natural frequency ranges of 

the bridge are explained in section 4.4.4.  

4.4.8 Load cases 

The load cases are to be applied for each relevant vertical, longitudinal and transversal 

mode at risk. Adjusting the frequency of the load to the natural frequency concerned 

and applied until steady-state conditions are reached.  

The load does not include the static load of the pedestrians which has to be added to 

the total mass of the footbridge. 

4.4.8.1 Load case 1 - sparse and dense crowd 

Load case I applies for structures with frequency range 1 and bridge class II and III as 

well as structures with frequency range 2 and bridge class II.  

Table 4.22  Density of pedestrian crowd according to bridge class II and III for 

load case 1 

Class Density of crowd 

III 0,5 pedestrians/m
2
 

II 0,8 pedestrians/m
2
 

Number of pedestrians on the bridge deck area based on uniformly distribution. 
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      (4-30) 

Where: 

   Number of pedestrians, [-] 

    Total area of the bridge deck, [m
2
] 

   pedestrian density of the crowd according to Table 4.22, 

[ped/m
2
] 

The equivalent number of pedestrians represents a group of people with random 

walking frequencies with an equivalent number of pedestrians at same frequency and 

in phase: 

         √    (4-31) 

Where: 

   Critical damping ratio, [%] 

The applied load is modified with the modification factor   to take into account the 

probability of resonance. The factor is equal to one if the natural frequency of the 

bridge is close to normal walking frequencies and zero for unlikely walking 

frequencies. 

 

 

 

Figure 4.10  Modification factor   in the case of walking for vertical and 

longitudinal vibrations. 
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Figure 4.11  Modification factor   in the case of walking for lateral vibrations. 

The load models for load case 1 are given as: 

Vertical direction 

                           √               (4-32) 

Longitudinal direction 

                            √               (4-33) 

Lateral direction 

                          √               (4-34) 

4.4.8.2 Load case 2 - very dense crowd 

Load case 2 is to be applied for class I footbridges giving pedestrian density equal to 1 

pedestrian/m
2
. 

The equivalent number of pedestrians is calculated as:  

        √        (4-35) 

The load models for load case 2 are given as: 

Vertical direction  

                                √  ⁄            (4-36) 

Longitudinal direction 

                                 √  ⁄            (4-37) 

Lateral direction 
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                               √  ⁄             (4-38) 

The value for the modification factor   is given in Figure 4.10 and Figure 4.11. 

4.4.8.3 Load case 3 - effect of the second harmonic of the crowd  

Load case 3 is applied on footbridges of class I and II considering second harmonics. 

The density and equivalent number of pedestrians are taken according to Table 4.23 

Table 4.23  Density and equivalent number of pedestrians for load case 3. 

Class  Equivalent number of 

pedestrians,     [-] 

Density,           

I     √  1.0 

II      √    0.8 

The load models for load case 3 are given as: 

Vertical direction  

                                      (4-39) 

Longitudinal direction 

                                      (4-40) 

Lateral direction 

                                      (4-41) 

The modification factor   is given by Figure 4.12 and Figure 4.13 depending on the 

natural frequency of the considered mode: 

 

Figure 4.12  Modification factor   for vertical vibrations for load case 3. 
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Figure 4.13  Modification factor   for lateral vibrations for load case 3. 

4.4.9 Structural damping  

Following values for structural damping in Table 4.24 are considered during 

calculations (Sétra, 2006). 

Table 4.24  Damping ratios for different materials. 

Type Critical damping ratio 

Reinforced concrete 1.3% 

Pre-stressed concrete 1% 

Mixed 0.6% 

Steel 0.4% 

Timber 1% 

If the construction combines different materials the damping ratio can be taken as an 

average of the ratios of the different materials combined, weighted by their 

contribution to the overall rigidity 

        
∑                 

∑               
 

(4-42) 

      is the contribution of material   to the overall rigidity in mode    

The determination of       is difficult to determine, so for traditional footbridges with 

a section that doesn’t vary that much the following formula can be used: 

        
∑                

∑              
 

(4-43) 
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Where    is the contribution of the material   to the overall rigidity. 

4.5 HIVOSS – Human induced vibrations of steel 

structures 

HIVOSS is short for Human induced vibrations of steel structures, it is based on the 

results from SYNPEX. The report provides guidelines for design of footbridges 

regarding dynamical effects with recommendations and a proposed design 

methodology. The guideline presents uniformly distributed load model for simulating 

pedestrian streams and alternative methods to regard pedestrian induced vibrations in 

footbridges (Research Fund for Coal and Steel, 2007). The alternative methods are 

Response Spectra and a numerical SDOF-solution. 

4.5.1 Critical frequency ranges 

The natural frequencies of the structure can be determined in many ways. HIVOSS 

recommends considering the pedestrian mass when determining the natural 

frequencies but only if the pedestrian mass is larger than 5 % of the structural modal 

mass. 

The guideline suggests critical ranges of natural frequencies for vertical, longitudinal 

and lateral directions. If the natural frequency of the structure falls in the critical 

interval a dynamic analysis should be done. For vertical and longitudinal vibrations 

one interval is defined for the first harmonic, equation (4-44), and one for the second 

harmonic, equation (4-45). Lateral vibrations are not affected by the second harmonic 

and only one interval is defined in equation (4-46). 

Critical interval for vertical and longitudinal vibrations 

                     (4-44) 

                        (4-45) 

Critical interval for lateral vibrations 

                    (4-46) 

4.5.2 Structural damping 

The standard recommends minimum and average damping values to be used in 

serviceability limit state, Table 4.25.  
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Table 4.25  Minimum and average damping values for serviceability limit state 

Construction type Minimum       Average       

Reinforced concrete 0.8 1.3 

Prestressed concrete 0.50 1.0 

Composite steel-concrete 0.30 0.60 

Steel, welded joints 0.20 0.40 

Steel, bolted joints 1.0 1.5 

Reinforced elastomers 0.70 1.0 

Light footbridges excited by intentional loading can undergo large vibrations and 

leads to higher damping ratios. Damping ratios for large vibrations are given in Table 

4.26. 

Table 4.26  Damping ratios for structures with large vibrations 

Construction type Damping ratio       

Reinforced concrete 5.0 

Prestressed concrete 2.0 

Steel, welded joints 2.0 

Steel, bolted joints 4.0 

Reinforced elastomers 7.0 

4.5.3 Traffic classes 

HIVOSS defines five traffic classes in Table 4.27 with corresponding pedestrian 

densities. Exceptional loading during formations, processions or matching soldiers are 

not treated in the standard but need additional consideration. 
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Table 4.27  Traffic classes with corresponding pedestrian densities. 

Traffic class Density, d 

[ped/m
2
] 

Description Characteristics 

TC 1 Group of 15 

pedestrians 

            

Very weak traffic   – width of bridge deck 

  – length of bridge deck 

TC 2 0.2 Weak traffic Comfortable and free walk 

Overtaking is possible 

Single pedestrians can freely 

choose pace 

TC 3 0.5 Dense traffic Still unrestricted walking 

Overtaking can intermittently 

be inhibited 

TC 4 1.0 Very dense traffic Freedom of movement is 

restricted 

Obstructed walking 

Overtaking is no longer 

possible 

TC 5 1.5 Exceptionally 

dense traffic 

Unpleasant walking 

Crowding begins 

One can no longer freely 

choose pace 

4.5.4 Comfort classes and lock-in 

The degree of comfort is represented by acceleration limits in vertical and lateral 

direction. Four comfort classes are defined in the standard and presented in Table 

4.28. The highest demands are set to comfort class 1 with lowest allowed acceleration. 
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Table 4.28  Comfort classes with acceleration limits 

Comfort class Degree of comfort Vertical 

               

Lateral 

               

CL 1 Maximum < 0.50  < 0.10 

CL 2 Medium 0.50 – 1.00 0.10 – 0.30 

CL 3  Minimum 1.00 – 2.50  0.30 – 0.80 

CL 4 Unacceptable 

discomfort 

> 2.50 > 0.80 

4.5.4.1 Lock-in 

Check of lateral lock-in can be performed with two different approaches. The first 

determines a trigger number of pedestrians and in the second a trigger lateral 

acceleration is defined (Research Fund for Coal and Steel, 2007).  

The triggering number of pedestrians for lateral lock-in can is calculated by equation 

(4-47).  

   
        

 
       

(4-47) 

Where: 

    trigger number of pedestrian for lock-in phenomena,     

   structural damping ratio according to Table 4.25 and Table 

4.26, [-] 

    modal mass for the considered mode, [kg] 

    natural frequency for the considered mode, [Hz] 

    constant given in Equation (4-48) 

The constant   is derived from experiments on the Millenium Bridge valid in the span 

0.50 - 1.0 Hz. 

               (4-48) 

Instead of describing when lock-in will occur as a trigger value of the number of 

pedestrian on the bridge has been shown in test that lock-in can be related to lateral 

acceleration. Lock in can ocurr for the trigger amplitude interval given in equation 

(4-49). 

         =  0.1 to 0.15 m/s
2
 (4-49) 

4.5.5 Load model for pedestrian streams 

The harmonic load model defined in HIVOSS is a uniformly distributed load over the 

bridge deck. The load model should be applied according to the mode shapes in the 

most unfavorable way to obtain maximum acceleration. In order to reach maximum 
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acceleration the walking frequency should be set equal to one of the natural 

frequencies of the structure in the critical ranges defined. The load model varies in 

amplitude depending on loading direction and traffic class. In equation (4-50 the basic 

appearance on the harmonic load model is given. 

                  
          (4-50) 

Where: 

   force component of one single pedestrian with walking 

frequency   ,     

    walking frequency,      

 ′  equivalent number of pedestrians on the bridge deck  ,     

    bridge deck area,      

   modification factor given in section 4.5.5.2 

4.5.5.1 Static load amplitude   

The load amplitude,  , depends on the considered direction of loading and given in 

Table 4.29. 

Table 4.29 Static load P for varying loading directions 

Loading direction Vertical Longitudinal Lateral 

Static force,   [N] 280 140 35 

4.5.5.2 Modification factor ψ 

Modification factor   for vertical and longitudinal direction is given in Figure 4.14 

and for lateral direction given in Figure 4.15. The factor taking into account the 

probability that the walking frequency and natural frequency of the structure will fall 

in the critical range. 

 

Figure 4.14  Modification factor   for vertical and longitudinal loading direction 
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Figure 4.15  Modification factor   for lateral loading direction 

4.5.5.3 Equivalent number of pedestrians 

The equivalent number of pedestrians is defined in HIVOSS depending on traffic 

class and calculated according to Equation (4-51) and (4-52). The number is a 

function of pedestrian density, structural damping and bridge deck area. 

   
    √  

 
 

For d < 1.0 ped/m
2
 (4-51) 

   
    √ 

 
 

For d ≥ 1.0 ped/m
2
 (4-52) 

Where: 

    structural damping ratio, [-] 

   total number of pedestrian on the bridge deck area according to 

Equation (4-53) 

    bridge deck area, [m
2
] 

Total number of pedestrians on the bridge deck. 

     (4-53) 

Where: 

    total bridge deck area, [m
2
] 

    pedestrian density according to Table 4.27, [ped/m
2
] 

4.5.6 SDOF-solution 

HIVOSS proposes an alternative and numerical method of assessing the vibrations in 

a footbridge due to pedestrian loading. The method is based on derivation from a 

single degree of freedom system, SDOF-system.  
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A structure can be transformed into several different spring mass oscillators, where 

each spring mass represents a natural frequency of the structure. A combination of 

these can describe arbitrary oscillations of the structure.  

For each natural frequency of the bridge an equivalent SDOF-system is used to 

calculate the maximum acceleration due to dynamic loading. 

 Maximum acceleration is calculated by: 

     
  

  

 

 
 

  

  

 

   
  

(4-54) 

Where 

    generalized load 

    generalized modal mass 

    structural damping ratio 

    logarithmic decrement of damping 

The generalized load and mass are given in equation the generalized load is based on 

the applied load            . 

   ∫  (    )
 
   

  

 

(4-55) 

            ∫            

  

          

(4-56) 

In Table 4.30 the generalized load and mass are given of a simply supported beam for 

the first three mode shapes. 

Table 4.30 Generalized load and mass with tuning time 

Mode 

number, n 

Generalized 

mass,    

Generalized 

distributed load, 

   

Generalized 

moving load, 

   

Tuning time, 

     

1  

 
   

 

 
      

 

 
     

 

 
 

2  

 
   

 

 
      

 

 
     

 

  
 

3  

 
   

 

  
      

 

 
     

 

  
 

Where: 

      distributed load,         

      moving load,      
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    length of the beam,     

    number of mode,     

    mass distribution per length,        

    velocity of moving load,       

4.5.7 Response Spectra method 

HIVOSS propose the Response Spectra method to calculate the maximum 

acceleration in a bridge structure. The method is a numerical method explained in 

section 4.8. 

4.6 SYNPEX - Advanced load models for synchronous 

pedestrian excitation and optimized design guideline 

for steel footbridges 

The report Advanced load models for synchronous pedestrian excitation and 

optimized design guideline for steel footbridges (SYNPEX) is published by the 

Research Fund of Coal and Steel in 2008. The purpose of the report was to develop 

advanced load models for synchronous pedestrian excitation with an optimized design 

guideline for steel footbridges. The report includes thorough information about 

current knowledge of pedestrian induced vibrations with several mathematical models 

for simulating the load. Also existing footbridges have been studied where vibrations 

has been measured. The report proposes different ways of calculating the vibrations in 

the guideline with suitable traffic classes and comfort criteria (Research Fund for Coal 

and Steel, 2006).  

4.6.1 Critical step frequencies 

SYNPEX suggests critical step frequency intervals to be considered in dynamic 

design. The frequency ranges corresponds to normal step frequencies by pedestrians 

which can cause excessive vibrations in footbridges. The critical step frequencies 

defines critical natural frequencies for footbridges for vertical and lateral natural 

frequencies.  

Critical natural frequencies in vertical direction: 

1.3 ≤ fi ≤  2.3 Hz (4-57) 

Critical natural frequencies in lateral direction: 

0.50 ≤ fi ≤  1.2 Hz (4-58) 

The interval recommended for the concentrated load model is given in (4-59) for 

vertical and in (4-60) for lateral loading directions. 

Critical step frequencies in vertical direction applied for concentrated load model. 

1.25 ≤ fi  ≤ 2.3 Hz (4-59) 

0.625 ≤ fi ≤  1.15 Hz (4-60) 
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4.6.2 Traffic classes 

SYNPEX suggests five traffic classes predicting the pedestrian densities. For an 

individual project the class should be chosen with regard to the bridges location. In 

Table 4.31 the traffic classes are presented with respective pedestrian density. 

Table 4.31 Table of traffic classes with pedestrian densities according to SYNPEX 

Traffic class Density,        
    

Description 

TC 1 Group of 15 

pedestrians 

Very weak traffic 

TC 2 0.2 Weak traffic 

TC 3 0.5  Dense traffic 

TC 4 1.0  Very dense traffic 

TC 5 1.5  Exceptional dense traffic 

The characteristics for each traffic class is defined below. 

TC 1 Pedestrian density is given by dividing 15 pedestrians by the bridge 

deck area 

TC 2  Comfortable and free walking 

  Overtaking is possible 

  Single pedestrian can freely choose pace 

TC 3  Significantly dense traffic 

  Unrestricted walking 

  Overtaking can intermittently inhibited 

TC 4  Freedom of movement is restricted 

  Uncomfortable situation, obstructed walking 

  Overtaking is no longer possible 

TC 5  Very dense traffic and unpleasant walking 

Crowding begins 

One can no longer freely choose pace 

4.6.3 Comfort classes 

SYNPEX recommends four comfort classes defined by acceleration limits. The limits 

are given for vertical and lateral acceleration with reference to the Sétra standard. In 

Table 4.32 the comfort classes with limits and accelerations are given. 
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Table 4.32  Comfort classes with acceleration limits in vertical and lateral 

directions 

Comfort class Degree of comfort Vertical 

acceleration limit, 

              

Lateral 

acceleration limit, 

              

CL 1 Maximum < 0.50 < 0.10 

CL 2 Medium 0.50 – 1.00 0.10 – 0.30 

CL 3 Minimum 1.00 – 2.50 0.30 – 0.80 

CL 4 Unacceptable 

discomfort 

> 2.50 > 0.80 

Lateral vibrations are affected by the lock-in phenomena which according to the 

report can occur if both the step frequency and lateral acceleration fulfill the criteria in 

Equation (4-61) and (4-62). 

Step frequency 

    
    
 

      
(4-61) 

Lateral acceleration 

                        (4-62) 

4.6.4 Damping 

SYNPEX includes structural damping ratios with reference to Setrá and Eurocode. 

The report enlightens that the value of damping is of great importance in predicting 

the amplitude of acceleration though it is difficult to decide the proper damping ratio 

in the design phase. In Table 4.33 the damping ratios from Setrá guideline are 

presented as minimum and average damping ratios. Eurocode suggest damping ratios 

related to the span length which are given in Table 4.34. 
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Table 4.33 Structural damping ratios for different construction material proposed 

by SYNPEX with reference to Setrá. 

Construction type Minimum       Average       

Reinforced concrete 0.80 1.3 

Pre-stressed concrete 0.5 1.0 

Composite steel-concrete 0.30 0.60 

Steel 0.20 0.40 

Timber 1.50 3.0 

 

Table 4.34 Structural damping ratios for different construction material proposed 

by SYNPEX with reference to Eurocode. 

Construction Type Average       

            

Steel and Composite                         

Prestressed concrete                        

Filler beam and reinforced 

concrete 
                       

Timber Without mechanical joints 1.0  

With mechanical joints 1.5  

4.6.5 Load model for a single pedestrian 

SYNPEX proposes two load models for simulating a single pedestrian walking over 

the bridge. The models are based on Fourier series and given for vertical and lateral 

vibrations. The loads should be applied as concentrated loads moving over the bridge 

span with a constant velocity, vs. 

The load model for vertical vibration is given in Equation (4-63) and for lateral in 

Equation (4-64). 

           [  ∑                     

 

   

] 
(4-63) 

           ∑                   

 

   

 
(4-64) 
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Where: 

   Static weight of one person, [N] 

   number of harmonic, [-] 

    Fourier coefficient of the considered loading direction and 

number of harmonic given in Table 4.35, [-] 

    step frequency, [Hz] 

   time, [s] 

    phase shift of the harmonic given in Table 4.36, [deg] 

The Fourier coefficients α are given in Table 4.35. The coefficients are constant for 

the first three harmonics in lateral direction. In vertical direction are the coefficients 

functions of the step frequency for the first three harmonics.   

Table 4.35 Fourier coefficients α for the vertical and lateral load model. 

Harmonic 

number,   [-] 
Fourier coefficient vertical model,        [-] Fourier coefficient 

lateral model,        [-] 

1                
                  0.1 

2                
                  0.1 

3                
                  0.1 

The phase angles for the first three harmonics are given in Table 4.36. The angels are 

constant in lateral direction and functions of the step frequency in vertical direction.  

Table 4.36 Phase shifts   for vertical and lateral load model. 

Harmonic 

number,   [-] 
Phase shift vertical model,        [°] Phase shift lateral 

model,        [°] 

1          0 

2                
                  

 
     

3 If    < 2.0 Hz 

                
          

 

                  

If    ≥ 2.0 Hz 

               
          

         
        

 

 
     

The pedestrian crossing velocity is given by Equation (4-65) as a function of the step 

frequency. The function is empirically determined from measurements with step 

frequencies between 1.3 and 1.8 Hz. 
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              (4-65) 

4.6.6 Load model for pedestrian streams 

SYNPEX defines a uniformly distributed load model to simulate pedestrian streams. 

The model is applicable in vertical, lateral and longitudinal direction on loading. The 

governing equation is given in Equation (4-66). The load model should be applied in 

resonance for one of the structures natural frequencies until steady state conditions are 

achieved.  

                    (4-66) 

Where: 

   static load due to a single pedestrian 

    considered natural frequency 

    time, [s] 

    equivalent number of pedestrians for synchronization 

  reduction coefficient considering the probability of the walking 

frequency to approach the bridge´s natural frequency 

The static load of one pedestrian,  , varies for different loading directions given in 

Table 4.37. 

Table 4.37 Static load G for different loading directions. 

Loading direction Vertical Lateral Longitudinal 

Static load, G [N] 280 35 140 

The reduction factor,  , is related to the considered natural frequency of the structure 

according to Figure 4.16 for vertical and for lateral vibrations.  
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Figure 4.16 Reduction factor   as a function of structural frequency for vertical 

and longitudinal vibrations 

The reduction factor ψ for lateral loading is given as a function of the lateral natural 

frequencies in Figure 4.17. 

 

Figure 4.17 Reduction factor   as a function of structural frequency for lateral 

vibrations. 

4.6.6.1 Equivalent number of pedestrians 

The equivalent number of pedestrians n’ included in the load model is given by the 

equations below. Two equations are given depending on the pedestrian density 

considered. Equation (4-67) applies for low densities and Equation (4-68) for higher 

densities as given below. 
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    √  

 
 

For d < 1.0 ped/m
2
 (4-67) 

        √  For d ≥  1.0 ped/m
2
 (4-68) 

Where 

    structural damping ratio, [%] 

   total number of pedestrian on the bridge deck area according to 

equation (4-69), [-] 

    bridge deck area, [m
2
] 

Total number of pedestrians on the bridge deck. 

           (4-69) 

Where: 

   total bridge deck area, [m
2
] 

   pedestrian density according to Table 4.31, [ped/m
2
] 

4.6.7 The Response Spectra method 

SYNPEX suggest the Response Spectra method as a suitable way of determine the 

vibrations. The method is described in section 4.8. 

4.7 JRC - Design of Lightweight Footbridges for Human 

Induced Vibrations 

This report is based on the European research projects SYNPEX (Advanced Load 

Models for Synchronous Pedestrian Excitation and Optimized Design Guidelines for 

Steel footbridges) and HIVOSS (Human induced vibrations of steel structures). 

4.7.1 Critical ranges of natural frequencies 

Critical ranges for natural frequencies susceptible of excitation from pedestrian forces 

are stated in Table 4.38 (Christoph Heinemeyer, 2009).  

Table 4.38  Critical ranges for natural frequencies in different directions. 

Direction Frequency range 

Vertical 1.25 ≤  fi  ≤  2.3 Hz 

Longitudinal 1.25 ≤  fi  ≤  2.3 Hz 

Lateral 0.5 ≤  fi  ≤  1.2 Hz 

Footbridges with a natural frequency in vertical or longitudinal direction within the 

interval given in Equation (4-70) could also be excited by second harmonics of the 

pedestrian load.  

2.5  ≤  fi  ≤  4.6 Hz (4-70) 
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Though this is very unlikely the critical range for vertical and longitudinal vibrations 

in this case is expanded to the interval in Equation (4-71). 

1.25  ≤  fi  ≤  4.6 Hz (4-71) 

4.7.2 Traffic classes 

Five traffic classes estimate the density of pedestrians which is governing in the 

design (Christoph Heinemeyer, 2009). 

Table 4.39  Recommended traffic classes to estimate the pedestrian density on the 

bridge 

Traffic Class Density, d [ped/m
2
]  Description 

TC 1 Group of 15 ped Very weak traffic 

TC 2 0.2 Weak traffic 

TC 3 0.5 Dense traffic 

TC 4 1.0 Very dense traffic 

TC 5 1.5 Exceptional dense 

traffic 

Characteristics of traffic classes: 

TC 1 Density is calculated by dividing the number of pedestrian by the bridge 

deck area. 

TC 2 Comfortable and free walking, overtaking is possible, single pedestrians 

can freely choose pace 

TC 3 Unrestricted walking, overtaking can intermittently be inhibited 

TC 4 Freedom of movement is restricted, uncomfortable walking, obstructed 

walking, overtaking is not possible. 

TC 5 Unpleasant walking, crowding begins, one cannot freely choose pace. 

4.7.3 Comfort classes and lateral lock-in 

The pedestrian comfort criteria are categorized according to JRC into four comfort 

classes with different demands on the experienced degree of comfort. The degree of 

comfort is determined by acceleration limitations in vertical and horizontal direction. 

Maximum comfort is reached in CL 1 with low acceptance of acceleration.  

The comfort classes do not consider lock-in for horizontal vibrations. 
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Table 4.40  Definition of comfort classes with corresponding acceleration limits 

Comfort 

level 

Degree of comfort Acceleration level 

vertical           
    

Acceleration level 

horizontal           
    

CL 1 Maximum < 0.50 < 0.10 

CL 2 Medium 0.50 - 1.00 0.10 - 0.30 

CL 3 Minimum 1.00 - 2.50 0.30 - 0.80 

CL 4 Unacceptable 

discomfort 

> 2.50 > 0.80 

4.7.3.1 Lateral lock-in 

The risk of lateral lock-in on the bridge can be assessed by calculating a trigger 

number of pedestrians. By calculateing the trigger number in Equation (4-72) it is 

possible to estimate the number of pedestrians on the bridge it requires for lock-in to 

occur.  

   
        

 
       

(4-72) 

Where: 

    structural damping ratio, [%] 

    modal mass for the considered mode, [kg] 

    natural frequency for the considered mode, [Hz] 

    constant given by Equation (4-73), [Ns/m] 

The constant   is derived from experiments on the London Millenium Bridge valid in 

the interval  0.5  -  1.0 Hz. 

             (4-73) 

Alternatively of calculating a trigger number of pedestrians the lock-in phenomena is 

related to the lateral acceleration. If the lateral acceleration is in the range in Equation 

(4-74) there will be a risk of lock-in to occur.  

         =  0.1  to  0.15  m/s
2
 (4-74) 

4.7.4 Damping 

Average damping ratios presented in Table 4.41 are recommended for design in 

service limits state (Christoph Heinemeyer, 2009). 
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Table 4.41 Damping ratios to be used in SLS-design 

Construction type Minimum       Average       

Reinforced concrete 0.8 1.3 

Prestressed concrete 0.5 1.0 

Composite steel-concrete 0.3 0.6 

Steel 0.2 0.4 

Timber 1.0 1.5 

Stress-ribbon 0.7 1.0 

4.7.5 Load model for pedestrian streams 

JRC recommends using a uniformly distributed harmonic load adapted to the 

considered mode shape. The applied load should have the same frequency as the 

natural frequency of the considered footbridge 

Uniformly distributed harmonic load model: 

                  
           (4-75) 

Where: 

   static load from a single pedestrian, [N] 

    step frequency, [Hz] 

 ′  equivalent number of pedestrian, [-] 

    bridge deck area, [m
2
] 

   reduction factor considering the probability that the step 

frequency and the natural frequency will coincide, [-] 

4.7.5.1 Static load amplitude of a single pedestrian 

The force amplitude depends on considered direction of analysis according to Table 

4.42 

Table 4.42 Force amplitude depending on considered direction of analysis. 

Traffic class P [N] 

Vertical Longitudinal Lateral 

TC 1 – TC 5 280 140 35 

4.7.5.2 Equivalent number of pedestrians 

Equivalent number of pedestrian,  ′, depends on traffic class due to different degree 

of synchronization among pedestrians as seen in Table 4.43. 
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Table 4.43 Equivalent number of pedestrians due to traffic class. 

Traffic class Euqivalent number of pedestrians,  ′ 

TC 1 – TC 3 
   

     √   

 
 

TC 4- TC 5 
   

    √ 

 
 

Where: 

    structural damping, [%] 

    bridge deck area, [m
2
] 

    number of pedestrians, [-] 

Number of pedestrians on the bridge deck is calculated according to traffic class with:  

      (4-76) 

Where: 

    pedestrian density, [ped/m
2
] 

4.7.5.3 Modification factor ψ 

The applied load is modified with the reduction factor   to take into account the 

probability of resonance.  

Reduction factor,  , considers the probability that the step frequency and the natural 

frequency of the bridge will coincide. The factor is equal to one if the natural 

frequency of the bridge is close to normal walking frequencies and zero for unlikely 

walking frequencies. As shown in Figure 4.18, for vertical and longitudinal direction, 

and Figure 4.19 for lateral direction. When second harmonic is considered the dotted 

line should be used 

 

Figure 4.18  Reduction factor,  , in vertical and longitudinal direction. 
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Figure 4.19  Reduction factor, ψ, in lateral direction. 

4.7.6 Load model for jogging 

As an appendix to the guideline there is a proposed load model for jogging where the 

velocity of the jogging person affects the dynamic force. The load should be applied 

with the same frequency as the natural frequency of the considered bridge. 

The load should be applied as a point load moving along the span at a specified 

velocity. 

                    
   (4-77) 

Where: 

   static load from a single jogger 

   force amplitude from a single jogger with step frequency    

    step frequency 

 ′  equivalent number of joggers 

    bridge deck area 

   reduction factor considering the probability that the step 

frequency and the natural frequency will coincide 

    running velocity 

The static load of a single jogger is defined for vertical direction as. 

          

The equivalent number of joggers is equal to the total number of joggers on the 

bridge. 

      

Where: 
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   total number of joggers 

The velocity of the running person is equal to the velocity that the concentrated force 

should be applied with when moving along the span. 

         

The reduction factor,    in Figure 4.20 considers the probability that the step 

frequency and the natural frequency of the bridge will coincide 

 

Figure 4.20.  Reduction factor,  , for jogging. 

4.7.7 SDOF solution 

HIVOSS propose an alternative and numerical method of assessing the vibrations in a 

footbridge due to pedestrian loading which is presented in JRC. The method is based 

on derivation from a single degree of freedom system, SDOF-system.  

A structure can be transformed into several different spring mass oscillators, where 

each spring mass represents a natural frequency of the structure. A combination of 

these can describe arbitrary oscillations of the structure.  

For each natural frequency of the bridge an equivalent SDOF-system is used to 

calculate the maximum acceleration due to dynamic loading. 

 Maximum acceleration is calculated by Equation (4-78). 

     
  

  

 

 
 

  

  

 

   
  

(4-78) 

Where 

    generalized load, [kN] 

    generalized modal mass, [kg] 

    structural damping ratio, [-] 

    logarithmic decrement of damping, [-] 
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The generalized mass and load are given in Equation (4-79) and (4-80). The 

generalized load is based on the applied load            . 

   ∫  (    )
 
   

  

        

(4-79) 

            ∫            

  

                 

(4-80) 

In Table 4.44 the generalized load and mass are given of a simply supported beam for 

the first three mode shapes. 

Table 4.44. Generalized load and mass with tuning time 

Mode 

number, n 

Generalized 

mass,    

Generalized 

distributed load, 

   

Generalized 

moving load, 

   

Tuning time, 

     

1  

 
   

 

 
      

 

 
     

 

 
 

2  

 
   

 

 
      

 

 
     

 

  
 

3  

 
   

 

  
      

 

 
     

 

  
 

Where 

      distributed load,         

      moving load,      

    length of the beam,     

    number of mode,     

    mass distribution per length,        

    velocity of moving load,       

4.7.8 Simplified numerical model for required modal mass 

estimations 

Alternatively a simplified approach is derived where the required modal mass for the 

structure can be calculated based on the acceleration limits, Equation (4-81). The 

calculation is done separately for vertical and lateral directions. To avoid vibration 

phenomena due to pedestrian walking the condition of modal mass and acceleration 

limit should be fulfilled.  

  
   

√      
          

   

      
 

(4-81) 
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Where: 

  
   modal mass of the considered mode, [kg] 

    total number of pedestrians, [-] 

    structural damping ratio, [%] 

   to     constants according to given in Table 4.45 and Table 4.46. 

The constants    to    are different in vertical and torsional and lateral directions 

given in Table 4.45 and Table 4.46. 

Table 4.45  Constants   to    for vertical and torsional modal mass 

                     

             

      

 

       

      
                 

                 

 

Table 4.46  Constants    to    for lateral modal mass 

                     

      

       

 

 

     

 

      

 

       
    

    

4.8 Response Spectra 

The guidelines JRC, HIVOSS and SYNPEX refer to the Response Spectra method as 

a possible method for dynamic analysis of lightweight footbridges. The method 

presented in the guidelines is the same for all three guidelines with the compiled 

information given in this chapter. 

The method is adopted from wind engineering where the engineers use it to predict 

the response of wind gusts on a swaying structures. In similar to wind gusts the 

pedestrian loading on footbridges is a stochastic type of loading. In footbridge design 

the maximum peak acceleration was chosen as the design parameter. Due to stochastic 

loading the peak acceleration is related to the standard deviation derived from Monte 

Carlo simulations. The constants given in the Response Spectra method are based on 

stochastic loading of bridges with varying length and width each loaded 5000 times 

by randomly selected pedestrian streams. The random selection of loading is 

statistically based with random selection of pedestrians’ weight, step frequency, 

lateral footfall, start position and moment of first step (Christoph Heinemeyer, 2009).  
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4.8.1 Load model for pedestrian streams according to JRC, 

HIVOSS and SYNPEX 

The response spectra method aims to in a simplified way describe the stochastic 

loading (Christoph Heinemeyer, 2009). The method covers vertical and lateral 

vibrations and is based on five assumptions: 

- The bridge structure is in resonance with the loading, i.e. the mean step 

frequency of the pedestrian stream is equal to one of the structure’s natural 

frequencies. 

- The mass is uniformly distributed over the bridge span 

- The mode shapes are sinusoidal 

- No modal coupling exists 

- Linear-elastic structural behavior 

(Research Fund for Coal and Steel, 2006) 

Maximum acceleration,       , in Equation (4-82) of the structure including 

stochastic loading. The peak factor      transforms the deviation of response to a 

maximum characteristic design value of the acceleration response. To be coherent 

with Eurocode a 95-procentile value is used in SLS design which is equal to        

tabulated in the guideline (Christoph Heinemeyer, 2009). 

              (4-82) 

Where: 

      peak factor equal to        in SLS design according to Table 

4.47 and  

Table 4.48. 

    standard deviation of acceleration response, Equation (4-83) 

The standard deviation considers the stochastic loading of pedestrians calculated in 

Equation (4-83). 

  
     

  
     

  

  
 
  

(4-83) 

Where: 

     factor including considered frequency, Equation (4-85). 

    factor including considered frequency, Equation (4-86). 

    considered frequency, [Hz] 

   structural damping ratio according to the considered guideline, 

[-] 

   constant describing maximum load in spectrum, Table 4.47 and  

Table 4.48 

  
   variance of loading according to Equation (4-84) 

    modal mass of the considered mode, [kg] 
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The variance of loading in square dependent on a constant and total number of 

pedestrians is given by Equation (4-84). 

  
      (4-84) 

Where 

    constant in Table 4.47 and Table 4.48, [kN
2
] 

    total number of pedestrians of the bridge, [-] 

The two factors    and    includes the considered frequency and tabulated constants 

that are dependent on the considered directions. Values for   and    are given in Table 

4.47 and Table 4.48 

       
          (4-85) 

       
          (4-86) 

Table 4.47  Constants for vertical accelerations 

           kF C a1 a2 a3 b1 b2 b3 ka.95

% 

≤ 0.5 1.20∙10
-2

 2.95 -0.07 0.60 0.075 0.003 -0.040 -1.000 3.92 

1.0 7.00∙10
-3

 3.70 -0.07 0.56 0.084 0.004 -0.045 -1.000 3.80 

1.5 3.34∙10
-3

 5.10 -0.08 0.50 0.085 0.005 -0.060 -1.005 3.74 
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Table 4.48:  Constants for lateral accelerations 

d [P/m
2
] kF C a1 a2 a3 b1 b2 b3 ka95% 

≤ 0.5  

2.85∙10
-4

 

6.8 -0.08 0.50 0.085 0.005 -0.06 -1.005 3.77 

1.0 7.9 -0.08 0.44       0.007 -0.071 -1.000 3.73 

1.5 12.6 -0.07 0.31       0.009 -0.094 -1.020 3.63 
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5 Analysis of acceleration response for a simply 

supported beam 

In this chapter an analysis is presented studying how mass, stiffness and dynamic 

properties of a simply supported beam affects the acceleration response during 

dynamic loading. 

Firstly an analysis of the acceleration response for a beam with varying density and 

stiffness is presented. The beam with varying properties is analyzed for concentrated 

and uniformly distributed harmonic loads.     

Furthermore the dependence of the acceleration response due to load amplitude, 

bridge length and structural damping is analyzed.  

The aim of the analysis is to provide a foundation for an evaluation and comparison of 

the studied load models.  

The results from each analysis is discussed separately in each section with a final 

discussion and summarization of the results in the end of this chapter. 

5.1 Study of acceleration response due to concentrated 

load 

The guidelines presented in chapter 4 recommend different concentrated loads to 

model pedestrian forces. In this section the acceleration response due to a stationary 

concentrated load is studied. Some guidelines propose a moving point load to simulate 

pedestrians induced forces. A simplification has been made to only study stationary 

loads in order to compare the different guidelines in a sufficient way.  

5.1.1 Method 

The concentrated force will be applied for a cross-section with varying mass and 

stiffness. The load will be applied until steady-state conditions are reached. The 

maximum acceleration at steady-state at the mid node is of interest. The beam with 

varying properties will be analyzed in the FE-software ADINA. 

5.1.2 Input data 

Applied load in the analysis and considered bridge properties are explained in this 

chapter. 

5.1.2.1 Applied load – concentrated force 

In the analysis a concentrated sinusoidal load,      in Equation (5-1) is applied in the 

middle of the span. The load will be applied in vertical direction with constant load 

amplitude equal to 700 N throughout the analysis.  

                        (5-1) 

The load frequency    will be varied in the frequency range defined in Equation (5-2). 

The load will be varied for all frequencies in the span with steps of 0.05 Hz resulting 

in 101 different walking frequencies within the interval. 

          (5-2) 
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5.1.2.2 Bridge properties 

The beam used in the analysis has been varied for five different values of stiffness and 

five different densities presented in Table 5.1.  

Table 5.1  Varying mass and stiffness used in the analysis 

Nr E-modulus, E [GPa] Density, ρ [kg/m
3
] 

1 140 4000 

2 170 5667 

3 200 7333 

4 230 9000 

5 260 10667 

The properties are combined into 25 unique beam configurations all with different 

natural frequencies. The properties are chosen so that the natural frequencies will vary 

between 1 and 4 Hz. This range of natural frequencies has been chosen so that 

resonance will occur when the beams are excited to the sinusoidal load with load 

frequencies in the interval 1 to 6 Hz. 

The different combinations of mass and stiffness are named according to the system 

EIiMj where i is the number of the E-modulus according to Table 5.1 and j 

respectively is the mass (density) according to Table 5.1. For example beam EI2M3 

has the E-modulus 170 GPa and the density 7333 kg/m
3
.  

The beam is analyzed for a 15 m long span with a box cross section. The length and 

cross-section remains constant through all analysis. The cross-sectional dimensions 

are given in Table 5.2. 

Table 5.2 Geometric constants of the cross-section 

Width, b 0.4 [m] 

Height, h 0.16 [m] 

Thickness, t 0.04 [m] 
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The beam cross-section is illustrated in Figure 5.1. 

 

Figure 5.1  Beam cross-section 

5.1.3 Results 

Results are achieved as maximum acceleration responses at steady state by analysis in 

the FE-software ADINA. The results are imported into Excel where curves are plotted 

showing the response varying over several load frequencies for different beams with 

varying stiffness and mass. 

5.1.3.1 Varying of mass over constant stiffness 

The maximum acceleration response in the mid node of the beam when the mass is 

varied over constant stiffness is shown in Figure 5.2 to Figure 5.6. The figures show 

the relation between applied load frequency and acceleration response. It can be seen 

that acceleration response is dependent on the mass of the bridge. The beam with the 

lowest mass exhibits the highest accelerations and the beam with the highest mass has 

the lowest acceleration. 

The curves are displaced on the x-axis depending on the relation between the load 

frequency and the natural frequency of the beam. The beams with the highest mass 

results in the lowest natural frequency and have its maximum in resonance for low 

frequencies. The beams with the highest responses are given for those beams with low 

mass consequenctly they will have high natural frequency and their maximum 

responses in resonance for high frequency loads.   

Note that in the plots for different stiffness the acceleration response is approximately 

the same for the different masses independent of the stiffness. Giving that the 

acceleration response is dependent on the mass of the bridge. 

h 

 

b 

 

t 
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Figure 5.2  Acceleration response for EI1 with varying mass. 

 

 

Figure 5.3  Acceleration response for EI2 with varying mass. 
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Figure 5.4  Acceleration response for EI3 with varying mass 

 

 

 

Figure 5.5  Acceleration response for EI4 with varying mass 
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Figure 5.6  Acceleration response for EI5 with varying mass 

5.1.3.2 Varying of stiffness over constant mass 

The acceleration response when the stiffness is varied over constant mass is shown in 

Figure 5.7 to Figure 5.11. Each figure is plotted for five beam configurations with 

varying stiffnesses and constant mass. These plots show, as stated about varying mass 

and constant stiffness, that the acceleration response is dependent on the mass of the 

bridge. In the plots it can be seen that the acceleration response is the same for beams 

with the same mass and that the size of the maximum acceleration changes between 

the plots for different masses. The curves are displaced on the x-axis dependent on the 

relation between load frequency and the natural frequency of the beam. The maximum 

acceleration for a beam configuration occurs when the beam and load frequency are in 

resonance. 

 

Figure 5.7  Acceleration response for M1 with varying stiffness. 
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Figure 5.8  Acceleration response for M2 with varying stiffness. 

 

 

Figure 5.9  Acceleration response for M3 with varying stiffness. 
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Figure 5.10  Acceleration response for M4 with varying stiffness. 

 

 

Figure 5.11  Acceleration response for M5 with varying stiffness. 

5.1.3.3 Conclusion 

It is clear that the size of the acceleration response depends on the mass of the beam. 

The graphs displacement along the load frequency axis depends on the frequency of 

the load in comparison with the natural frequency of the beam. This means that the 

results can be normalized by choosing appropriate factors for normalization. 

5.1.4 Normalization 

The results can be normalized into one curve making the results independent of the 

applied load frequency and the mass of the beam. In this way the responses due to 

different load models can be evaluated independently from which beam configuration 

that has been used in the analysis. 
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In Figure 5.12 a plot is shown of acceleration response for different masses with 

constant stiffness. Note that the response increases for beam sections with smaller 

mass. The beam section with the smallest mass EI5M1 exhibits the largest 

accelerations and the section with the highest mass EI5M5 has the smallest 

accelerations.  

 

Figure 5.12  Plot of acceleration response for different masses with constant 

stiffness. 

In Figure 5.13 a plot of acceleration response for different stiffnesses with constant 

mass is shown. Note that the size of the acceleration response is approximately the 

same, where the small difference depends on how well the natural frequency has 

coincided with the load frequency in the FE-analysis. It can be seen that the graphs 

are displaced on the load frequency axis. The beam with the highest stiffness, 

resulting in the highest natural frequency, is situated furthest to the right and the beam 

with the lowest stiffness is situated furthest to the left due to its low natural frequency.  

 

Figure 5.13  Plot of acceleration response for different stiffness’s with constant 

mass. 
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5.1.4.1 X-axis 

Considering the relation between acceleration response and the resonance phenomena 

the x-axis is chosen to be normalized with a factor   according to Equation (5-3). The 

factor   is the frequency ratio between load frequency,   , and natural frequency,   .  

  
  
  

          
(5-3) 

Where: 

    load frequency, [Hz] 

    natural frequency of the beam, [Hz] 

This displaces all curves so that they have their peak value at the same point along the 

x-axis as illustrated in Figure 5.14. 

 

Figure 5.14  Plot of acceleration response with normalized x-axis. 

5.1.4.2 Y-axis 

The y-axis has to be normalized regarding mass to make the axis independent of 

varying cross-section properties. The normalization factor called τ is given in 

Equation (5-4) with the unit [kg/s
2
].  

           [N/m] (5-4) 

Where: 

    acceleration response, [m/s
2
] 

    density, [kg/m
3
] 

   area of the cross-section, [m
2
] 

This displaces all curves so their peak value has the same magnitude according to 

Figure 5.15. 
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Figure 5.15  Plot of acceleration response with normalized y-axis. 

5.1.5 Normalization and design curves 

In previous sections it has been shown that the acceleration curves can be normalized 

separately for the x- and y-axis. By applying the normalizing of the curves for both 

axes design curves for acceleration response can be created. In Figure 5.16 the 

normalized curve over both axes is shown with   on the x-axis and   on the y-axis.  

Note that all graphs will peak at     where the load frequency and the natural 

frequency is equal meaning that resonance occurs. The maximum response occurs at 

the same magnitude for all beams independent of mass.  

 

Figure 5.16  Normalized response curve over x and y-axis for steady state response 

The normalized curves from the analysis are almost equal with very small deviations. 

The peak value where     differs due to the resonance response. Some beam 

configurations are more close to resonance than others and therefore the response will 

change. By a closer look it can be determined that beam configuration EI5M3 has the 
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studies as it gives the highest peak value. The variation in responses is very small and 

is explained by how close to perfect resonance the load frequency is. In the 

normalized curves it was shown that EI5M3 was the beam configuration closest to 

perfect resonance. The normalized response curve for beam configuration EI5M3 is 

shown in Figure 5.17. 

 

Figure 5.17  Plot of normalized response curve for beam configuration EI5M3 

5.2 Study of acceleration response due to distributed load 

In the guidelines presented in section 4 distributed loads to model pedestrian forces 
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5.2.2 Input data 

This section presents the applied load and beam properties. 

5.2.2.1 Applied force 

A uniformly distributed load will be analyzed according to Equation (5-5). The load 

amplitude is adapted so that the total applied load is equal as for the concentrated load 

analyzed in section 5.1. The load will be applied in resonance with the beam with    
equal to 2.30 Hz. 

0

100

200

300

400

500

600

700

800

900

1000

0 0.5 1 1.5 2 2.5 3

τ 
[N

/m
] 

β [-] 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:108 
111 

     
   

  
                      

(5-5) 

5.2.2.2 Beam cross-section 

The beam cross-section is the same as used in section 5.1 with dimensions according 

to Table 5.3 shown in Figure 5.18.  

Table 5.3 Geometric constants of the cross-section 

Width, b 0.4 m 

Height, h 0.16 m 

Thickness, t 0.04 m 

 

Figure 5.18.  Beam cross-section for distributed load 

Beam cross-section EI5M3 has the E-modulus 260 GPa and the density 7333 kg/m
3
. 

5.2.3 Results 

The maximum acceleration response for the uniformly distributed load can be seen in 

Table 5.4. In the table is a comparison also presented with the maximum response for 

the concentrated load and the uniformly load. 

Table 5.4  Results for and relation between acceleration response for point load 

and distributed load for EI5M3 in resonance. 

Level of 

damping [%] 

Max acceleration 

point load [m/s
2
] 

Max acceleration 

distributed load 

[m/s
2
] 

Relation acceleration 

[point load/distributed 

load] 

5 3.22 2.11 1.526 

5.2.4 Conclusions 

Distributed load results in a lower acceleration response which is logical due to that 

the same load, total applied N, is distributed over the entire length instead of placed in 

the middle giving the worst case scenario. 

With this relationship the normalized graphs for distributed load can be calculated for 

the corresponding level of damping from existing graphs for the response due to point 

h 

 

b 

 

t 

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:108 
112 

loads, as shown in Figure 5.19. The relationship 1.526 has been used to extract the 

plot for distributed load from the already existing point load for 5 % damping. 

 

Figure 5.19  Normalized plots for point load and distributed load for 5% damping. 

5.3 Force Amplitude study 

In this section is an analysis of the relation between load amplitude and acceleration 

response for a sinusoidal load presented. The analysis is done by numerical 

calculations of a SDOF-system excited by different load amplitudes. 

Pedestrian loads are harmonic and described in the load models presented in section 4 

by sinusoidal forces with varying force amplitudes,   . The unique factor when 

comparing different load models is often the force amplitude. By investigating how 

the force amplitude affects the response, in this case the maximum acceleration, in a 

structure it is possible to establish an efficient and accurate way of evaluating the 

models.  

5.3.1 Method  

The analysis is done analytically to solve the acceleration response of a SDOF-

system. The SDOF-system is given in Figure 5.20 which is excited by the harmonic 

load     . By exciting the system with different load amplitudes a relation between 

load amplitude and acceleration reponse can be found. The analytical solution for 

various load amplitudes calculated and plotted in Matlab. 
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Figure 5.20  Damped SDOF-system excited by the force     . 

5.3.2 Input data 

The applied dynamic load      is given in equation (5-6) with the force amplitude   . 

                (5-6) 

The input data used throughout this study is given in Table 5.5 

Table 5.5  Input data for force amplitude study 

Damping ratio,   5.0 % 

Natural frequency,    20 Hz 

Load frequency,   10 Hz 

Time interval             

Time step 0.005 s 

The force amplitudes that are varied in the analysis are presented in Table 5.6. 

𝑢 

𝑝 𝑡  
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Table 5.6  Varying force amplitudes used in the analysis 

Force amplitude,        

1 

10 

40 

80 

120 

160 

200 

5.3.3 Analytical solution of acceleration response 

The acceleration is solved analytically for the SDOF-system by the steady state 

solution of a damped system. The displacement is given by Equation (5-7) introduced 

in section 3.1.4.2. 

The analytical solution for displacement of a damped SDOF-system in steady state is 

given by Equation (5-7). 

                                          (5-7) 

Where: 

  
  

                
 
 

 
 

The acceleration given in Equation (5-8) is derived by differentiating Equation (5-7) 

twice over time,  . 

                      

 
                                             

 
                                             

(5-8) 

5.3.4 Results 

The acceleration response over time is plotted in Figure 5.21 for the varying force 

amplitudes.  
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Figure 5.21  Acceleration over time for different force amplitudes 

Larger accelerations occur in the beginning due to the initial impulse loading and are 

disregarded. The maximum accelerations in steady state,        , according to Figure 

5.21 are presented in Table 5.7. 

Table 5.7  Maximum acceleration at steady state for various force amplitudes 

Analyze number Force amplitude,        Maximum acceleration,         [m/s
2
] 

1 1 32.21 

2 10 322.1 

3 40 1288 

4 80 2577 

5 120 3865 

6 160 5153 

7 200 6442 

5.3.5 Conclusions 

The acceleration response in a damped SDOF-system for steady-state is linear 

proportional to the force amplitude as seen in Figure 5.22. The relationship makes it is 

possible to calculate the acceleration response of a sinusoidal load for any given force 

amplitude. 
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Figure 5.22  Plot of maximum acceleration in steady-state and force amplitude 

5.3.6 Normalization 

The acceleration response is linear proportional to the force amplitude which means 

that the previous design curve seen in Figure 5.17 for concentrated load can be 

normalized according to the load amplitude. 

Where the previous   is according to (5-9): 

                   (5-9 

Giving a new   according to Equation (5-13) regarding the load amplitude 

  
   

  
          

(5-10) 

Where the load amplitude,   , in this case is equal to 700 N, giving the design curve 

independent of load amplitude as presented in Figure 5.23. 
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Figure 5.23  Normalized acceleration response for concentrated load independent 

of force amplitude 

The normalized curve for uniformliy distributed load in Figure 5.19 is divided by the 

total applied load as for concentrated load. 

The new   for uniformly distributed load is given in Equation (5-12) where    is equal 

to 700 N which is the total applied load. 

  
   

  
         

   

(5-11) 

The normalized response curve for uniformly distributed load is given in Figure 5.24. 

 

Figure 5.24 Normalized acceleration response for uniformly distributed load 

independent on load amplitude. 
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The relationship stated in section 5.2 between distributed load and point load is valid 

for different load amplitudes as well. This can be derived from that the force 

amplitude study is made for an SDOF-system. For analysis of distributed load a sum 

of SDOF-systems can be used which will give the same results as for one singular. 

This gives normalized curves for 5 % damping ratio according to Figure 5.25 

 

Figure 5.25 Normalized curves regarding load amplitude for distributed load and 

point load for 5 % damping. 

It is clear though that the distributed load depends on the length of the bridge, where 

the total applied load changes with changing length. This is studied further in the next 

section. 

5.4 Acceleration response due to varying length 

In this chapter the acceleration response due to varying bridge length for a simply 

supported structure is analyzed for distributed load and point load. 

5.4.1 Method 

A static load representing one pedestrian is taken as the load amplitude,   , equal to 

700 N. For the load case with distributed load this point load is redistributed over the 

length of the bridge as presented in section 5.2. The same load is used for all bridge 

lengths according to Equation (5-12) giving the same relationship between mass and 

total load for all bridge lengths. The load amplitude is divided by the span length 

equal 15 m. 

     
   

  
                                   

(5-12) 

Where: 

           [N/m]  

The acceleration response is calculated at resonance for different lengths due to this 

load. 
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5.4.2 Input data 

The analyzed lengths are 15, 20, 30, 35 and 40 meters and are analyzed for a damping 

level of 5% with the cross-section EI5M3 which results in the largest response. The 

analysis is done in the FEM-program ADINA. 

5.4.3 Results 

The acceleration responses are presented separately for the analysis done for 

distributed and concentrated loads. 

5.4.3.1 Distributed load 

Acceleration response and input values due to varying length with distributed load are 

presented in Table 5.8.  

Table 5.8  Acceleration response due to varying length for distributed load. 

Bridge length,   

[m] 

15m 20m 30m 35m  40m  

Maximum 

acceleration in 

steady-state,      

[m/s
2
] 

2.11 2.09 2.09 2.07 2.11 

Natural frequency, 

   [Hz] 

2.35 1.32 0.59 0.43 0.33 

Load frequency,    
[Hz] 

2.35 1.32 0.59 0.43 0.33 

Density,   [kg/m
3
] 7333.33 7333.33 7333.33 7333.33 7333.33 

Area,   [m
2
] 0.0384 0.0384 0.0384 0.0384 0.0384 

Tau steady-

state,     

594 589 589 583 594 

Tau without 

amplitude,        

12.73 12.62 12.62 12.49 12.73 

Tau for steady-state is calculated according to Equation (5-13) as the maximum 

acceleration multiplied with the density and area of the cross-section. 

           (5-13) 
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    is divided with the load amplitude for distributed load from  with size 46.67 N/m 

from Equation (5-12) according to Equation (5-14). 

        
      

  
 

(5-14) 

Where    has the unit     

It should be noted that the acceleration response and        both have the same value 

for all lengths with the same applied load. This gives that the acceleration response is 

independent of the bridge length and solely dependent on the relationship between the 

total applied load and the mass of the bridge as stated in section 5.1. This gives that 

the acceleration response for distributed load per meter can be related to mass per 

meter according Equation (5-15) 

  
        

  
 

(5-15) 

5.4.3.2 Point load 

Acceleration response and analysis values due to varying length with a concentrated 

harmonic load with force amplitude,   , equal to 700 N placed in the middle of the 

span are presented in Table 5.9.  

Table 5.9  Acceleration responses due to varying length for point load 700 N. 

Bridge length,   

[m] 

15m 20m 30m 35m  40m  

Maximum 

acceleration in 

steady-state,      

[m/s
2
] 

3.22 2.42 1.60 1.39 1.21 

 

Natural frequency, 

   [Hz] 

2.35 1.32 0.59 0.43 0.33 

Load frequency,    
[Hz] 

2.35 1.32 0.59 0.43 0.33 

Density,   [kg/m
3
] 7333.33 7333.33 7333.33 7333.33 7333.33 

Area,   [m
2
] 0.0384 0.0384 0.0384 0.0384 0.0384 

Tau steady-

state,     

907 680 449 392 340 

Tau without 

amplitude,        

19.43 19.43 19.24 19.60 19.43 
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Tau for steady-state is calculated according (5-16) to as the maximum acceleration 

multiplied with the density and area of the cross-section. 

           (5-16) 

    is, as for distributed load, divided with the total applied load and multiplied with 

the length of the bridge to get the total mass of the bridge and the same unit as for 

distributed loading according to Equation (5-17). 

        
       

  
 

       

   
 

(5-17) 

Where    has the unit   

It should be noted that        in this case has approximately the same value meaning 

that the response can be normalized depending on bridge length for point load. It 

shows that the stated relationship between total applied load and total mass is valid for 

point loading when the length is varied. 

5.4.4 Conclusion 

From the acceleration response and the calculated        for distributed and 

concentrated load it can be seen that the earlier stated relationship between mass and 

load amplitude is valid. The length of the bridge does not affect the acceleration 

response in other regard than that the total mass of the bridge is changed which can be 

taking into regard by adding to the already existing normalization factor. The 

principles are shown and explained in the next section. 

5.4.5 Normalization with regard to length 

The normalization presented in section 5.1.4 should be complemented with the factor 

for varying length and force amplitude as shown in section: 5.3, Force Amplitude 

study, changing the earlier normalization graphs. This gives that   becomes: 

5.4.5.1 For point load 

  
    

  
     

(5-18) 

Where   is calculated by: 

  
   

   
        

(5-19) 

Where    has the unit N. 

Note that     is the total mass of the bridge giving that the relationship between the 

amplitude of the force     and the mass of the bridge     determines the size of the 

acceleration as presented earlier in section 5.1.4. 
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5.4.5.2 For distributed load 

  
   

  
       

(5-20) 

Where   is calculated by: 

  
   

  
          (5-21) 

Where    has the unit N/m. 

5.4.5.3 Normalized curves with regard to bridge length 

This gives new normalization curves with regard to force amplitude and bridge-length 

according to Figure 5.26. 

 

Figure 5.26  Normalized curves for acceleration response with regard to force 

amplitude and length of the bridge 

5.5 Analysis of damping dependence 

The damping ratio affects the maximum acceleration of a system and is of great 

importance when investigating load models.  In this chapter a study of the response of 

the simply supported beam for various damping ratios is presented.  

5.5.1 Method 

The study is made for a simply supported beam with fixed stiffness and material 

properties but various damping ratios. 

The beam is subjected to a sinusoidal concentrated force in the mid node and a 

distributed load. It is analyzed in ADINA for maximum acceleration at steady state. 

The damping ratio is implemented in ADINA as modal damping for all possible 

modes. All damping ratios are not analyzed for both concentrated and distributed load 

only those which are relevant to consider. 
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5.5.2 Input data 

The input data presented in this section is the geometrical properties of the beam, 

applied load and considered damping ratios 

5.5.2.1 Geometric properties 

The analyzed beam has constant stiffness and density representing the configuration 

with the highest response, EI5M3. The geometric properties are given in Table 5.10. 

Table 5.10  Geometric input data for study of damping ratio 

Length,   15 m 

Width,   0.160 m 

Height,   0.400 m 

Thickness,   0.040 m 

Density,   7333 kg/m
3 

Modulus of elasticity,   260 GPa 

Natural frequency,    2.35 Hz 

5.5.2.2 Applied load 

The beam is subjected to a concentrated load and a distributed load separately 

according to Equation (5-22) and (5-23). 

                       (5-22) 

     
  

 
                  

(5-23) 

The loads are applied close to resonance to excite the beam in maximum vibration 

with loading frequency and load amplitude given below. It has been shown in the 

studies that a load frequency close to resonance gives the highest response. In this 

analysis the load frequency 2.30 Hz has shown to give the higest response even 

though the natural frequency is 2.35 Hz. 

           

          

5.5.2.3 Damping parameters 

The damping ratios used in this study are presented in Table 5.11. The analyzed 

damping ratios in the study are chosen according to the standards for reinforced 

concrete, steel and timber bridges.  
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Table 5.11  Damping ratios used in the study according to standards for reinforced 

concrete, steel and timber bridges 

Standard Construction material Damping ratio,       

Reference beam - 5.00 

ISO 10137 Reinforced concrete 0.80 

Steel 0.50 

Timber 1.0 

UK National Annex Reinforced concrete 1.50 

Steel 0.50 

Timber 1.0 

Sétra Reinforced concrete 1.30 

Steel 0.40 

Timber 1.0 

JRC Reinforced concrete 1.30 

Steel 0.40 

Timber 1.50 

HIVOSS Reinforced concrete 1.30 

Steel 0.40 

Timber 1.50 

SYNPEX Reinforced concrete 1.30 

Steel 0.40 

Timber 3.00 

5.5.3 Results 

The results with maximum acceleration response for the considered damping ratios 

are presented in the following two sections for concentrated and uniformly distributed 

loads separately. 

5.5.3.1 Results – Concentrated load 

The maximum acceleration calculated in ADINA for the concentrated load for given 

damping ratios are presented in Table 5.12. 
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Table 5.12  Damping ratios with respective maximum acceleration for 

concentrated force 

Damping ratio,       Maximum acceleration,      [m/s
2
] 

0.40 37.9 

0.50 31.6 

0.60 26.7 

0.80 20.3 

1.00 16.4 

1.13 14.5 

1.30 12.7 

1.35 12.2 

1.50 11.0 

1.85 8.93 

5.00 3.22 

5.5.3.2 Results – distributed load 

This load is analyzed for the different levels of damping proposed in the load models 

presented in Section 4, Standards, regulations and guidelines giving values as 

presented in Table 5.13. 
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Table 5.13  Acceleration response for different levels of damping for distributed 

load. 

Damping ratio,       Maximum acceleration,      [m/s
2
] 

0.40 24.6 

0.50 20.1 

0.60 16.9 

1.00 10.3 

1.13 9.25 

1.30 8.03 

1.35 7.77 

1.50 7.00 

1.85 5.69 

3.00 3.51 

5.00 2.11 

5.5.4 Conclusions – damping dependence 

In this section conclusions from the results of damping dependence analysis are 

presented. The conclusions are divided into three parts for concentrated load, 

distributed load and a comparison between the two loading types. 

5.5.4.1 Point load 

The relationship between the structural damping ratio and acceleration response for a 

concentrated load given in Table 5.11 is plotted in Figure 5.27. The acceleration is 

exponential decreasing for higher damping ratios which is reasonable according to the 

theory presented in section 3.3.4. The acceleration response cannot easily be 

calculated for any given damping ratio. 
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Figure 5.27  Acceleration response due to different levels of structural damping for 

point load 

5.5.4.2 Distributed load 

A plot of the acceleration response for different levels of damping is shown Figure 

5.28 where it can be seen that the relationship is complex, as shown for the 

acceleration response due to concentrated loads. The acceleration response cannot 

easily be calculated for any given level of damping. The plot has the same shape as 

for the concentrated load which is reasonable. 

 

Figure 5.28  Plot of maximum acceleration for different levels of damping for 

distributed load 

5.5.4.3 Comparison concentrated and distributed loads 

The acceleration response for concentrated and distributed load for different damping 

ratios is related according to Table 5.14. In the table the acceleration response for the 

two types of loading is presented and the ratio between them for each studied 

damping ratio. The ratio is given in column four and it can be seen that is constant at 
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approximately 1.56 for all damping ratios. As the sum of the applied load is equal for 

concentrated and distributed load it is shown that a concentrated load gives about 1.56 

times higher acceleration than applying the same load as distributed. This is a 

reasonable conclusion considering that the concentrated load is applied at the worst 

position as creates a bigger impact. As the relation is constant for all damping ratios 

the results can be seen as reliable and verified. 

Table 5.14  Table of acceleration response for point load and distributed load. 

Damping ratio,   

[%] 

Max acceleration 

point load [m/s
2
] 

Max acceleration 

distributed load 

[m/s
2
] 

Relation [acc. 

concent./acc. 

dist.] 

0.40 37.87 24.63 1.538 

0.50 31.6 20.1 1.57 

0.60 26.69 16.94 1.576 

1.13 14.49 9.25 1.566 

1.30 12.66 8.03 1.577 

1.35 12.16 7.77 1.565 

1.50 11.0 7.00 1.57 

1.85 8.93 5.69 1.569 

5.00 3.22 2.11 1.526 

5.5.5 Normalization according to level of damping 

As shown in section 5.4.4 the acceleration response due to different levels of damping 

is complex and therefore not suitable for normalization. To be able to implement the 

damping ratio in the normalization curves each curve has to be derived empirically as 

τ is unique for each damping ratio. 

As known from analysis in previous chapter the normalization factor τ is calculated 

according to Equation (5-24). 

  
    

  
 

(5-24) 

The normalization factor can now be calculated for all studied damping ratios with the 

given input data in Table 5.15.  
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Table 5.15 Normalization factor τ for different damping ratios 

Damping ratio,       Normalization factor τ [-]  

Concentrated load  Distributed load 

0.40 228.5 148.6 

0.50 190.4 121.2 

0.60 161.1 102.2 

0.80 122.6 - 

1.00 98.8 62.04 

1.13 86.98 55.82 

1.30 76.41 48.44 

1.35 73.38 46.87 

1.50 66.35 42.24 

1.85 53.88 34.31 

5.00 20.01 12.73 

A normalization curve for each damping ratio is created by using the curve for 5% 

damping as a reference curve. The relation between normalization factor for the 

considered damping ratio and the reference normalization factor by Equation (5-25) 

       
  

   
 

(5-25) 

Where: 

        normalization factor ratio 

     normalization factor for the considered damping ratio    

     reference normalization factor 5% damping 

The acceleration ratio for each damping ratio is presented in tables below. Table 5.16 

contains the ratios for concentrated loads and Table 5.17 for distributed loads. 
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Table 5.16 Acceleration response and acceleration ratio for concentrated load 

according to studied damping ratios and reference damping ratio 5%  

Damping ratio,         , [??]    , [??]       , [-] 

0.4 228.5 20.01 11.4 

0.5 190.4 20.01 9.52 

0.6 161.1 20.01 8.02 

0.8 122.6 20.01 6.10 

1.13 86.98 20.01 4.35 

1.3 76.41 20.01 3.82 

1.35 73.38 20.01 3.67 

1.85 53.88 20.01 2.69 

5 20.01 20.01 1.00 

 

Table 5.17. Acceleration response and acceleration ratio for distributed load 

according to studied damping ratios and reference damping ratio 5% 

Damping ratio,         , [??]    , [??]       , [-] 

0.40 148.6 12.73 11.7 

0.60 102.2 12.73 8.03 

1.00 62.04 12.73 4.87 

1.13 55.82 12.73 4.38 

1.30 48.44 12.73 3.81 

1.35 46.87 12.73 3.68 

1.50 42.24 12.73 3.32 

1.85 34.31 12.73 2.70 

5.00 12.73 12.73 1.00 

The plots of normalization curves for different levels of damping are shown in Figure 

5.29and Figure 5.30 for point load and distributed load respectively. These plots are 

extracted from the reference curve for 5 % damping which is multiplied with the 
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relationship between the maximum acceleration for each damping and the reference 

acceleration for 5 % damping. 

 

Figure 5.29 Normalization curve with varying damping ratio for concentrated load 

 

 

Figure 5.30 Normalization curve with varying damping ratio for distributed load 

5.6 General conclusions on analysis and outcome for 

further studies 

In the first analysis of a simply supported beam with varying properties it is shown 

that the maximum acceleration response is obtained at resonance. By varying mass 

and stiffness it is shown that the acceleration response in resonance is independent on 
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stiffness and solely dependent on mass. The response in the beam can be normalized 

according to mass and natural frequency independent on beam properties. 

The load amplitude is direct proportional to the acceleration response in a system. In 

the analysis regarding load amplitude it is shown that the acceleration response in a 

system excited by a sinusoidal load is linear proportional to the applied load 

amplitude. It means that the acceleration response in a system excited by a sinusoidal 

load with any given load amplitude can be calculated.  

In the analysis it is shown for varying length that the acceleration response for a 

simply supported beam is independent on span length. The acceleration response is 

solely dependent on the ratio between applied force and mass of the excited system.  

The acceleration response due to a concentrated load is dependent on the ratio 

between total applied load in N and total mass in kg independent on span length. The 

obtained acceleration response for a uniformly distributed load is shown to be the 

ratio between applied load per meter, N/m, and mass per meter, kg/m independent on 

span length.  

The acceleration response in a system is highly dependent on the structural damping 

ratio in the system. In the analysis a relationship between acceleration response and 

damping ratio can be seen but due to its complexity specific normalization factors are 

derived.  

The normalization factors τ are derived for specific damping ratios and represent the 

acceleration response in a system excited by a sinusoidal load with load amplitude 

equal to one. The normalization factor τ is dependent on the type of loading with 

different values for concentrated and uniformly distributed load. The factor is derived 

individually for all considered damping ratios. 

The final result from the analyzes is that the acceleration response at resonance, for a 

simply supported beam in one span excited by a sinusoidal load, can be calculated 

with given structural damping, load amplitude and mass of the beam. 

The acceleration response of a concentrated load model is calculated by equation 

(5-26) and by equation (5-27) for uniformly distributed load models.  

  
   

   
          

(5-26) 

  
   

  
          (5-27) 
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6 Normalization of load models 

The normalization presented in Chapter 5 can be used to evaluate the studied 

guidelines independent of force amplitude, bridge length and varying cross-section for 

a simply supported beam. The possibility to calculate the response for any simply 

supported beam for arbitrary load amplitude is used for comparison of the studied 

guidelines. 

The normalization is made by division of the load models into two parts, load 

amplitude and the normalization factor  . The acceleration response due to a 

sinusoidal load is represented by the normalization factor τ. The load amplitudes, P0 

for concentrated load and p0 for distributed load, are derived for every guideline 

dependent on the proposed load for a pedestrian and empirical factors defined in the 

corresponding guideline. This results in an evaluation of the guidelines with regard to 

their individual factors. 

Uniformly distributed load models will be analyzed independent on bridge deck area 

to be consistent when considering different standards and will have the unit N/m. This 

gives that the models are comparable for arbitrary bridge geometry and cross-

sectional properties. Point load are independent on bridge geometry and will have the 

unit N. 

The results from the normalization will be presented in plots of acceleration response 

dependent on structural frequency for each studied guideline. The results will be 

discussed to provide a basis for further discussion and conclusions. 

The normalization curves are useful to calculate the acceleration response in any type 

of bridge in one span.  By reading τP0 from the normalized acceleration response 

curve of the concentrated load model the acceleration response can be calculated by 

equation (5-26). The acceleration response for uniformly distributed load models is 

given by τp0 from the normalization curve and equation (5-27). 

6.1 ISO 10137 

The ISO 10137 standard gives recommendations for which design situations to 

consider and provides a load model describing the pedestrian vertical and lateral force 

as Fourier series according to Equation (4-8) and (4-9) in section 4.2. The load should 

be applied to achieve the worst case scenario, for example at the center of a simply 

supported span of uniform mass.  

For an accurate analysis the force should be applied moving across the structure but 

no walking speed is presented in ISO 10137. In the analysis the load will be 

simplified as a stationary load in the middle of the span to be able to normalize the 

load according to the method presented in chapter 5. 

6.1.1 Effect of phase shift and Fourier coefficients 

The load is applied as a concentrated load situated in the middle of the span with a 

loading frequency equal to the natural frequency of the structure. The load is applied 

until steady-state is achieved which is the worst case scenario.  

The vertical and lateral force for pedestrians in ISO 10137 are modelled with a 

Fourier series as described in section 4.2 meaning that the force varies due to how 

many Fourier coefficients and sums that are considered.  
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In Figure 6.1 and Figure 6.2 the sinusoidal force due to different number of Fourier 

coefficients and sums, not in phase and in phase respectively are shown. Note that he 

force is oscillating around 700 N which is the static load of one pedestrian. 

 

Figure 6.1  Force due to different amount of phase shifts not in phase. 

 

Figure 6.2  Force due to different amount of phase shifts in phase. 
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The maximum force amplitudes due to different sums and phase angles in phase and 

not in phase are shown in Figure 6.3. It can be seen that the amplitude for the sums in 

phase are slightly higher which also is illustrated in Figure 6.2 and Figure 6.1. 

 

Figure 6.3  Maximum force amplitude due to different amount of phase angles, in 

phase and not in phase. 

6.1.2 Normalized acceleration response due to concentrated load 

The fact that the force varies due to how many sums and Fourier coefficients that are 

considered mean that the acceleration response also varies. Applying Fourier sums in 

phase and not in phase gives different load history and acceleration response. A 

simplification is made to look at sums in phase without the defined phase shift in ISO 

10137. This gives that calculations can be made numerically for different amounts of 

sums. The static load does not affect the acceleration response and is neglected which 

gives Equation (6-1) from Equation (4-8) in section 4.2. 
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Introducing normalization factor   defined as the acceleration response due to a 

sinusoidal concentrated load empirically derived in chapter 5 and the load amplitude 

P0, shown in Equation (6-2): 

                ∑       

 

   

 

(6-2) 

Where: 

    ∑       

 

   

 

 

Equation (6-1) is calculated regarding different amounts of sums and presented in 

Figure 6.4 for vertical response without phase shift. The values are calculated with 

normalization factor τ corresponding to a damping ratio of 5.0 %. 

 

Figure 6.4  Vertical acceleration response due to different amounts of Fourier 

coefficients for SS-ISO 10137:2008 with 5 % damping. 

A comparison of the acceleration response due to applying the sum of forces in phase 

and not in phase can be seen in Figure 6.5. The curves plotted in Figure 6.4 are 

compared to three analyses that have been calculated in ADINA. Three beams with 

varying natural frequencies have been analyzed when applying the Fourier sum with 

phase shift resulting in maximum accelerations. The Fourier sum has been applied for 

one, two and three sums. These accelerations give     for the three Fourier sums 

which are plotted in Figure 6.5 and can be compared with the numerically derived 

curves without phase shift. 
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Figure 6.5  Response due to applying ISO 10137 Fourier-force in phase vs not in 

phase. 

It can be seen that the force due to applying the Fourier sums with phase shift are 

much lower than for applying without and have approximately the same value as the 

first Fourier sum for all three sums. Note that the calculated values from ADINA 

calculated with phase shift has a slight curve in comparison with linear curves from 

hand calculations. This curve can be explained with that the phase shift always is 

constant which makes the load hit more or less the resonance frequency of the 

regarded cross-section.  

From the results shown in Figure 6.5 it can be concluded that the ISO 10137 load can 

be simplified to regard only one Fourier sum without phase shift in the analysis, 

resulting in that the normalization is done according to Equation (6-3) 

                                 (6-3) 

Where the static load does not affect the acceleration response which gives that 

Equation (6-3) the load amplitude is identified in Equation (6-4). 

                             (6-4) 

Where 

               

Values for the normalization factor τ for concentrated load models for considered 

damping ratios are empirically derived in chapter 5 and presented in Table 6.1.  
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Table 6.1 Values for the normalization factor according to material and 

corresponding damping. 

Input  Reference  Concrete Steel Timber 

Damping ratio [%] 5.0 0.80 0.50 1.0 

τ [-] 20.01 122.6 190.4 98.8 

6.1.2.1 Normalized curves in vertical direction 

The vertical response due to varying amount of pedestrians from 1 to 15 people as 

stated in the standard can be seen in Figure 6.6 and Figure 6.10 for vertical and lateral 

response respectively for 5.0 % damping. The values are calculated for a Fourier sum 

with one Fourier coefficient. 

 

Figure 6.6  Vertical acceleration response due to varying amount of pedestrians 

for SS-ISO 10137:2008 with 5.0 % damping. 

Normalized curves for ISO 10137 in vertical direction for concrete with damping ratio 

0.8 % can be seen in Figure 6.7 
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Figure 6.7 Normalized acceleration response for concrete in vertical direction 

according to ISO 10137 with 0.80 % damping ratio. 

Normalized curves for ISO 10137 in vertical direction for steel with damping ratio 0.5 

% can be seen in Figure 6.8 

 

Figure 6.8 Vertical acceleration response for steel due to varying amount of 

pedestrians for SS-ISO 10137:2008 with 0.50 % damping ratio. 
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Figure 6.9 Normalized acceleration response for timber in vertical direction 

according to ISO 10137 with 1.0 % damping ratio.  

6.1.2.2 Normalized curves in lateral direction 

Normalized curves for ISO 10137 in lateral direction with reference damping ratio 

0.80 % can be seen in Figure 6.10. 

 

Figure 6.10 Lateral response due to varying amount of pedestrians for ISO 10137 

with 5.0 % damping 
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Normalized curves for ISO 10137 in lateral direction for concrete with damping ratio 

0.80 % can be seen in Figure 6.11 

 

Figure 6.11 Normalized acceleration response for concrete in lateral direction 

according to ISO 10137 with 0.80 % damping ratio.  

Normalized curves for ISO 10137 in lateral direction for steel with damping ratio 0.50 

% can be seen in Figure 6.12  

 

Figure 6.12 Normalized acceleration response for steel in lateral direction 

according to ISO 10137 with 0.50 % damping ratio. 

Normalized curves for ISO 10137 in lateral direction for timber with damping ratio 

1.0 % can be seen in Figure 6.13 
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Figure 6.13 Normalized acceleration response for timber in lateral direction 

according to ISO 10137 with 1.0 % damping ratio. 

6.1.3 Comments and discussion 
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6.2 UK National Annex 
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The UK National Annex proposes five traffic classes defined as pedestrian groups and 

pedestrian densities given in Table 4.7. Pedestrian groups are used for the 

concentrated load model and pedestrian densities should be applied in the uniform 

load model. The traffic classes are presented in Table 4.7. 

6.2.1.1 Structural damping ratios 

UK National Annex does not present any suitable damping ratios but damping ratios 

given in Eurocode are implemented to the annex see section 4.3.5. The damping ratios 

chosen in normalization are given in Table 6.2. 

Table 6.2 Damping ratios applicable on the load models in UK National Annex 

for the reference material and for concrete, steel and timber. 

Material Reference  Concrete Steel Timber 

Damping ratio,   [%] 5.0% 1.5% 0.50% 1.0% 

6.2.2 Point load 

The UK National annex to Eurocode proposes a concentrated load, Equation (4-12), 

moving along the span at constant speed. The method will simulate a single pedestrian 

or a group of pedestrians crossing the bridge as explained in section 4.3.3.  

6.2.2.1 Load history 

The applied concentrated load is a sinusoidal load and will act on the beam with the 

load history given in Figure 6.14. The maximum force amplitude is decided by the 

factors in the load model and will vary depending on loading direction, structural 

frequency, structural damping ratio and number on pedestrians. The load history in 

Figure 6.14 is plotted with input data presented in Table 6.3. 

  

Figure 6.14 Load history for concentrated load applied for 1, 2, 4, 8 and 16 

pedestrians. 

-1200

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

1200

0 0.5 1 1.5 2

A
p

p
li

ed
 L

o
ad

 [
N

] 

Time [s] 

1 ped.

2 ped.

4 ped.

8 ped.

16 ped.



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:108 
144 

Table 6.3 Input data used in the plot of loading history for the concentrated load 

model. 

Load model parameter Given constant value 

   280 N 

         1.0 

  5.0% 

  0.786 

   1.9 Hz 

6.2.2.2 Normalization and simplifications 

The load model is normalized according to the derived method in section: 5.6 

according to Equation (6-5). The load model is presented in equation below where the 

load amplitude P0 is identified. The normalization factor τ is empirically derived in 

chapter representing the acceleration response. 

            √                         (6-5) 

Where: 

          √                

In the standard the load is supposed to be applied as a moving load along the span 

with a given constant velocity. A simplification has been made in the normalization to 

consider the concentrated load as stationary in the middle of the beam. Meaning that 

the load acts in the worst position and is applied until steady state conditions are 

achieved.  

6.2.2.3 Input data for normalization plot  

The normalization is done for 5.0% damping ratio and according to the recommended 

damping ratios for concrete, steel and timber. The input data used in normalization for 

each damping case are given in Table 6.4. 

Table 6.4 Input given for the reference material and the construction materials 

concrete, steel and timber for the concentrated load model. 

Input  Reference  Concrete Steel Timber 

Damping ratio [%] 5.0 1.5 0.50 1.0 

F0 [N] 280 N 280 N 280 N 280 N 

γ [-] 0.786 0.736 0.700 0.721 

τ [-] 20.01 66.35 190.4 98.8 
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6.2.2.4 Normalization plots for concentrated load model  

The design curves are plotted for a single pedestrian and the defined traffic classes 

according to Table 4.7. 

The design curve for the concentrated load model is plotted in Figure 6.15 for 5.0% 

structural damping ratio and according to the defined traffic classes.  

 

Figure 6.15 Design curve for UK concentrated load with 5.0% structural damping 

ratio for single pedestrian and according to defined traffic classes. 

The design curve for the concentrated load model is plotted in Figure 6.16 for 

concrete bridges with 1.5% structural damping ratio and according to the defined 

traffic classes.  

 

Figure 6.16 Design curve for UK concentrated load for concrete bridges with 1.5% 

structural damping ratio for single pedestrian and according to 

defined traffic classes. 
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The design curve for the concentrated load model is plotted in Figure 6.17 for steel 

bridges with 0.50% structural damping ratio and according to the defined traffic 

classes.  

 

Figure 6.17 Design curve for UK concentrated load for steel bridges with 0.50% 

structural damping ratio for single pedestrian and according to 

defined traffic classes. 

The design curve for the concentrated load model is plotted in Figure 6.18 for timber 

bridges with 1.0% structural damping ratio and according to the defined traffic 

classes.  

 

Figure 6.18 Design curve for UK concentrated load for timber bridges with 1.0% 

structural damping ratio for single pedestrian and according to 

defined traffic classes. 
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In Figure 6.19 is traffic class TC 3 plotted for the reference material and the structural 

materials for a comparison of magnitude between the different damping ratios. 

 

Figure 6.19 Comparison of normalized curve for varying damping ratios plotted 

for traffic class TC 3. 

6.2.3 Uniformly distributed 

The uniformly distributed load model in the UK National Annex to Eurocode is given 

in Equation (4-16). The load simulates a pedestrian stream with the number of 

pedestrians defined as pedestrian densities,  , for respective traffic class. The load 

model is normalized according to the derived method in section 5.6. The load 

amplitude p0 is identified in Equation (6-6). 
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Where: 
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)       √               

 

6.2.3.1 Relation between load amplitude and bridge geometry 

The load model generates a load in N/m
2
, in normalization curves the load should be 

given in N/m to be consistent among the models. It is done by multiplying the load 

amplitude with the bridge width as in Equation (6-7). 
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The equation can be simplified into Equation (6-8) and a geometry factor ω can be 

extracted. 

0

20000

40000

60000

80000

100000

120000

140000

0 1 2 3 4 5 6 7 8

τ 
P

0
 [

N
]  

Structural Frequency [Hz] 

F(8) 5.0%

F(8) 1.50%

F(8) 0.50%

F(8) 1.0%



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:108 
148 

      (
  

  
)       √

     

 
            √

  

 
 
√   

  
  

           √
  

 
                

(6-8) 

Where: 
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The force amplitude    is now given in N/m and independent on the bridge deck area. 

It means that the normalization curves can be plotted for and arbitrary bridge 

geometry independent on bridge deck area. For a specific area the normalized curves 

has to be multiplied with the geometry factor ω.  

The relationship between load amplitude and geometry is shown in the figures below. 

In Figure 6.20 is the load amplitude in, N/m, from Equation (6-6) plotted against 

bridge width with constant length equal to 1 m for an arbitrary traffic class with 

arbitrary structural properties. 

 

Figure 6.20 Plot of the relation between load amplitude and width of the bridge. 
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In Figure 6.21 the load amplitude, N/m, from Equation (6-6) is plotted against varying 

bridge length with constant bridge width equal to 1 m.  

 

Figure 6.21 Plot of the relation between load amplitude and bridge length 

6.2.3.2 Input data for normalization plots 

Normalization curves are plotted in the figures below for a reference damping ratio of 

5.0% and for construction materials concrete, steel and timber. Includes the input data 

used in the normalization plots for each material. 

Table 6.5 Input data used in the normalization plots for UK NA uniformly 

distributed load model 

Input data Reference 

material 

Concrete Steel Timber 

Damping 

ratio, [%] 

5.0 1.5 0.5 1.0 

F0 [N] 280 280 280 280 

A [m
2
] 1 1 1 1 

γ [-] 0.2250 0.114 0.0429 0.07857 

λ [-] 0.634 0.634 0.634 0.634 

τ [-] 12.74 42.24 122.1 62.04 

6.2.3.3 Normalization plots for uniformly distributed load model 

The normalization curve for reference damping ratio 5.0% is plotted in Figure 6.22 

with the four defined traffic classes. 
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Figure 6.22 Normalization curve for UK NA uniformly distributed load model with 

reference damping ratio 5.0%. 

 

Figure 6.23 Normalization curve for UK NA uniformly distributed load model with 

concrete structural damping ratio 1.50% 
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Figure 6.24 Normalization curve for UK NA uniformly distributed load model with 

steel structural damping ratio 0.50% 

 

Figure 6.25 Normalization curve for UK NA uniformly distributed load model with 

timber structural damping ratio 1.0% 
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In Figure 6.26 are the normalization curves for varying damping ratios compared 

where all curves are plotted for traffic class TC 3. 

 

Figure 6.26 Comparison of normalization curves for varying damping ratios 

plotted with traffic class TC 3. 
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groups which always is relevant. People will walk in groups no matter the size of the 

bridge but for a small bridge the stream of pedestrian cannot be too high as the bridge 

area is small. 

The standard recommends four traffic classes categorised by the location of the 

bridge. The maximum pedestrian density given is 1.5 ped/m
2
 which is a very crowded 

condition. Though the standard states that densities higher than 1.0 ped/m
2
 are not 

required as the vertical action will decrease. Because a too crowded bridge will slow 

down the forward motion of the pedestrians. In this case the pedestrian density for 

traffic class TC 4 is not valid and a pedestrian density of 1.0 ped/m
2
 should be 

applied, although TC 4 is valid for pedestrian groups. 

The UK National Annex refers to Eurocode for suitable structural damping ratios. The 

damping ratios for concrete, reinforced concrete and steel are functions of the span 

length for bridges up to 20 m. Shorter bridges will have higher damping ratios and the 

minimum is applied for bridges longer than 20 m. Damping ratios for timber bridges 

are constant for all span lengths but higher for structures without mechanical joints.  

Damping ratios are hard to predict in the design stage as it is a result of the overall 

behaviour of the structure including all elements attached and material. It is always 

conservative to choose a lower damping ratio as the acceleration response will be 

higher for low damping ratios. In the load models the damping ratio is considered in 

the reduction factor γ. For concentrated loads the reduction factor is a function of the 

span length, shorter spans will generate higher reduction factor which leads to higher 

load amplitude. The uniform load model is independent on span length when choosing 

reduction factor. It is conservative to choose a high value of γ for both load models. 

The normalized curve for concentrated load model is directly applicable on any bridge 

size as the load amplitude is independent on the bridge deck area. Although the 

reduction factor is dependent on the span length, which for an accurate analysis 

should be considered, it is en empirical factor and does not follow a simple 

relationship. The uniform load model on the other hand is highly dependent on bridge 

deck area. As seen Figure 6.20 and Figure 6.21of the normalized curves the bridge 

size is related to the load amplitude by the square root of bridge width divided by its 

length. Considering a bridge with normal proportions where the length does not 

exceed its width the maximum load amplitude is given for square bridges where the 

length is equal to the width. In other words the normalized curves will always be 

reduced as it is based on one square meter.  

6.3 Sétra 

Sétra propose two different load models, one concentrated load model and one 

uniformly distributed load model. The concentrated load model simulates a single 

pedestrian crossing the bridge and the distributed load model simulates pedestrian 

streams. Both models are applicable for vertical, longitudinal and lateral directions. 

In this chapter normalized load models will be derived into normalized acceleration 

response curves for vertical and lateral directions. 

6.3.1 Normalization of concentrated load model 

Sétra propose a concentrated load moving along the span to simulate a single 

pedestrian crossing a bridge. The load is applicable in vertical, longitudinal and lateral 

directions. The load is based on Fourier series up to fourth order in vertical direction 
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and first order for lateral and longitudinal directions. The standard suggests limiting 

the series to first order in practice. 

6.3.1.1 Load history 

The load history in vertical, longitudinal and lateral loading direction are plotted in 

Figure 6.27 for the first harmonic. 

 

Figure 6.27 Load history for the concentrated load model in vertical, longitudinal 

and lateral loading directions. 

The vertical load model oscillates around 700 N which is the static load of a single 

pedestrian. The lateral and longitudinal models oscillate at 0 N as no static force is 

applied in those directions.  

6.3.1.2 Normalization and simplifications 

The vertical and lateral load models explained in section 4.4.2 are given in Equation 

(6-9) and (6-10) where the load amplitude P0 is identified. The load is simplified to be 

stationary at the middle of the span until steady state conditions are reached. The 

static load G0 in the vertical model will not contribute to any vibrations and is 

neglected. The normalization factor τ is empirically derived in chapter 5 for the 

considered damping ratios. The model gives a load in N which is independent on the 

bridge geometry. 
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6.3.1.3 Input data in normalization plots 

The normalized acceleration response is calculated for 5.0% damping ratio and 

damping ratios recommended by Sétra for concrete, steel and timber structures. The 

damping ratios with corresponding normalization factors are given in Table 6.6. 

Table 6.6 Considered damping ratios with corresponding normalization factors τ 
  for concentrated load models. 

Material Reference Concrete Steel Timber 

Damping ratio [%] 5.0  1.3 0.40 1.0 

Normalization factor τ [-] 20.01 76.41 228.5 98.80 

6.3.1.4 Normalization plots in vertical direction 

The normalized acceleration response in vertical direction of loading is calculated and 

plotted in Figure 6.28. The figure includes the curves for 5.0% damping ratio and the 

damping ratios according to concrete, steel and timber structures.  

 

Figure 6.28 Normalized acceleration response for concentrated load model in 

vertical direction calculated for the four considered damping ratios. 

6.3.1.5 Normalization plots in lateral direction 

The normalized acceleration response in lateral direction of loading is calculated and 

plotted inFigure 6.29. The figure includes the curves for 5.0% damping ratio and the 
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Figure 6.29 Normalized acceleration response for the concentrated load model in 

lateral direction plotted for four considered damping ratios. 

6.3.2 Normalization of distributed load 

The methodology presented in Sétra is based on footbridge classification as a function 

of the expected level of traffic. The load model proposed in Sétra is a distributed 

harmonic load according to equation (6-11) representing different pedestrian densities 

as presented in section: 4.4.8. The load is to be applied until steady-state conditions 

are reached with frequencies corresponding to natural frequencies of the regarded 

bridge.  

                                  (6-11) 
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The load model is normalized according to the derivations in chapter 5. The load 

model is given in Equation (6-12) where the load amplitude p0 is identified.  

                                 (6-12) 

Where: 

           

In Table 6.8 values for the normalization factor   are given for different materials. 

Table 6.8 Values for normalization factor   for distributed load for different 

materials with corresponding damping. 

Material Reference Concrete Steel Timber 

 - uniform 12.74 48.45 148.6 62.04 

Damping ratio [%] 5 1.3 0.4 1.0 

6.3.2.1 Relationship between load amplitude and bridge geometry 

The amplitude    is dependent on factors regarding equivalent number of pedestrians, 

relevant step frequencies for walking and the proposed static load for a pedestrian.  

The load amplitude p0 generates a load in N/m
2
. In normalization the load should be 

applied in N/m which is done by multiplying the load model with the bridge width 

according to Equation (6-13). 

                    (6-13) 

The equation can be simplified by inserting the equivalent number of pedestrians for 

respective traffic class in Equation (6-14) and (6-15). The factors including bridge 

geometry can be extracted to a geometry factor ω which will make the load amplitude 

independent of bridge geometry. 
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Where: 
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By introducing the geometry factor ω the normalization curves can be plotted 

independent on bridge geometry. To obtain the curves for an arbitrary geometry the 

curve has to be multiplied with the geometry factor ω.  

The relationship between load amplitude and the geometry factor can be seen in 

figures below. In Figure 6.30 is the load amplitude plotted for a bridge with varying 

bridge width and constant length equal to 1 m. 

 

Figure 6.30 Load amplitude for varying width, constant length 1 m. 
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In Figure 6.31 is the load amplitude plotted for a bridge with varying bridge length 

and constant width equal to 1 m. 

 

Figure 6.31 Load amplitude for varying length, constant width 1 m. 
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The normalized curves for the proposed pedestrian densities in Sétra with a structural 

damping of 5 % are shown in Figure 6.32 calculated for a 1 m wide bridge.  

 

Figure 6.32  Normalized curves in vertical direction for proposed pedestrian 

densities according to Sétra for 5.0 % damping, established for a 1m
2 

bridge 

The normalized curves for concrete, steel and timber are shown in Figure 6.33 to 

Figure 6.35 for the different proposed densities. The curves are calculated for a 1 m
2
 

bridge. 

 

Figure 6.33  Normalized curves according to bridge class for concrete with 1.3 % 

damping, established for a 1m
2
 bridge.
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Figure 6.34 Normalized curves according to bridge class for steel with 0.40% 

damping, established for a 1m
2
 bridge. 

 

Figure 6.35 Normalized curves according to bridge class for timber with 1.0% 

damping, established for a 1m
2
 bridge 
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In Figure 7.36 the normalized curves for a density of 0.8 ped/m
2
 are shown for 

different materials presented in Table 6.8. 

 

Figure 6.36 Normalized curves for pedestrian density 0.8 ped/m
2
 for different 

materials. 
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In Figure 6.37 the normalized curves for different proposed pedestrian densities with 

5 % structural damping in lateral direction can be seen. 

 

Figure 6.37  Normalized curves for proposed pedestrian densities in lateral 

direction with 5 % damping. 

In Figure 6.38 the normalized curves for different proposed densities for concrete can 

be seen. 

 

Figure 6.38 Normalized curves for proposed densities in lateral direction for 

concrete with 1.3 % damping.  
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In Figure 6.39 normalized curves for the different proposed densities in lateral 

direction for steel with 0.4 % damping can be seen. 

 

Figure 6.39 Normalized curves for proposed densities in lateral direction for steel 

with 0.4 % damping. 

In Figure 6.40 normalized curves for the different proposed densities in lateral 

direction for timber with 1.0 % damping cam be seen. 

 

Figure 6.40 Normalized curves for proposed densities in lateral direction for 

timber with 1.0 % damping 
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In Figure 6.41 the normalized curves for a density of                    are shown 

for different materials and corresponding damping.  

 

Figure 6.41 Normalized curves for 0.8 pedestrians/m
2
for different materials. 

6.3.3 Comments and discussion 

In this section comments are made about the acceleration response obtained with the 
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density. This can be seen by comparing Figure 6.32 and Figure 6.33 Where Class II 

gives the highest response for 5 % damping and Class I results in the highest for 1.3 

% damping for concrete. 

6.3.3.3 Max/min values 

It can be seen that the level of damping proposed for the different materials affect the 

acceleration response. For high levels of damping, as can be seen for the reference 

damping 5%, the pedestrian density 0.8 pedestrians/m
2
 results in the highest response 

because if its     number that takes into account structural damping. The difference 

between the highest response for density 1.0 for Class I and the lowest for density 0.5 

for Class III increases as the damping decreases. 

For steel the attained τp0-value is 3.85 times higher for Class I than for Class III. This 

relationship decreases to 1.3 for 5% damping. 

6.4 SYNPEX 

SYNPEX propose several methods to determine the maximum acceleration in a 

footbridge induced by pedestrians. In this chapter two types of loading are considered, 

concentrated loads and uniformly distributed. Two concentrated loads are proposed to 

model the vertical and lateral action based on Fourier series which should be applied 

as moving over the span. A uniform load model is suggested to simulate pedestrian 

streams which can be adapted to consider vertical, lateral and longitudinal loading. 

The models are complemented with acceleration limits and traffic classes for 

pedestrian streams. 

In this chapter the load models are briefly presented and normalized according to the 

methods presented in section 5.6. For a complete presentation of the models see 

section 4.6. 

The guideline suggest damping ratios for concrete, steel and timber bridges which are 

in common for concentrated and uniform load models. The chosen ratios for 

normalization are given in and thoroughly described in section 4.6.4. 

Table 6.11 Structural damping ratios for used in normalization for concrete, steel 

and timber recommended by SYNPEX. 

Material Reference Concrete Steel Timber 

Damping ratio,   [%] 5.0 1.3 0.40 3.0 

6.4.1 Concentrated load 

SYNPEX propose two concentrated loads defined by a Fourier series to simulate a 

single pedestrian walking over the bridge, Equation (4-63) and (4-64). 

6.4.1.1 Fourier coefficients, phase angels and load history 

The vertical Fourier coefficients α are calculated by the equations in Table 4.35 and 

plotted in Figure 6.42 for the suggested walking frequency interval. It can be seen in 

the plot that α2 is highest and α3 is lowest for all considered frequencies. 
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Figure 6.42 Plot of vertical Fourier coefficient, α, and walking frequency 

according to SYNPEX. 

The phase shift for vertical model is calculated by the equations in Table 4.36 as 

functions of the walking frequency. The lateral phase shifts are independent on 

walking frequency and given in Table 4.36. Note that the phase shifts are given in 

degrees angle. 

The phase angles for vertical load model are plotted in for the suggested walking 

frequencies between 1.25 and 2.30 Hz.  

 

Figure 6.43 Phase shift angels for vertical load model plotted for first, second and 

third harmonics. 
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Figure 6.44 Load history of the vertical load model for 1, 2 and 3 harmonics 

including phase shits. 

The load history shows how the load acts over time for first, second and third 

harmonic. The load oscillates at 700 N which is the static load of one pedestrian. It is 

clearly seen that when the second harmonic is considered the load amplitude increases 

well above the curve for the first harmonic.  

An example of the load history of the lateral load model is plotted by Equation (4-64) 

in Figure 6.45. The load history is plotted for walking frequency 2 Hz for one, two 

and three Fourier sums. 

 

Figure 6.45. Load history of the lateral load model for 1, 2, and 3 harmonics. 
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6.4.1.2 Damping and normalization factor τ 

The normalization is based on damping ratios that are referred in SYNPEX as average 

damping ratios. In Table 6.12 the chosen damping ratios are presented with respective 

normalization factor τ used for concentrated loads. 

Table 6.12 Damping ratios and normalization factors for the reference bridge and 

construction materials concrete, steel and timber. 

Material Reference Concrete Steel Timber 

Damping ratio,   [%] 5.0 1.3 0.40 3.0 

Norm factor,   [-] 20.01 76.41 228.5 33.32 

6.4.1.3 Normalization and simplifications 

The concentrated load models proposed by SYNPEX can be normalized based on the 

analysis done in section 5.6. Two simplifications are made, firstly only to normalize 

the load models for the first harmonic. This will lead to lower load amplitude than 

considering two harmonics which can be seen in Figure 6.44 and Figure 6.45. 

Secondly the loads should be applied as a moving load over the span with a constant 

velocity. The load models are simplified to be considered as stationary at the middle 

of the bridge. The loads will be applied until steady state conditions are reached which 

will generate larger amplitude than from a moving load. The vertical load model as 

stated in the guideline is given in Equation (6-16) for the first harmonic. 

                           (6-16) 

The vertical load can be divided into two parts, static and dynamic. The static part will 

not contribute to any vibrations in the bridge and can therefore be neglected. The load 

is divided according to Equation (6-17) where the terms multiplied with sinus are 

dynamic. 

                                           (6-17) 

As the static load will not contribute to the acceleration response it is neglected and 

the final vertical load model is given in Equation (6-18) where the load amplitude P0 

is identified. 

                           (6-18) 

Where: 
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The lateral load model does not include a static load as the vertical and will be 

normalized according to Equation (6-19) where the load amplitude P0 is identified for 

the first harmonic. 

                               (6-19) 

 Where: 

                  

6.4.1.4 Normalization plots – vertical direction 

The normalization curve for a single pedestrian is plotted for the reference damping 

ratio of 5.0% and with damping ratios defined by SYNPEX for concrete, steel and 

timber structures. The normalization factor τ is given in Table 6.12. 

The normalization curve for the concentrated load model of a single pedestrian is 

plotted in Figure 6.46 for the reference damping ratio of 5.0%. 

 

 

Figure 6.46 Normalization curve for a single pedestrian according to SYNPEX 

with structural damping ratio 5.0%  
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The normalization curve for vertical loading direction with damping ratio 1.3% 

according to concrete structures is plotted in Figure 6.47.  

 

Figure 6.47 Normalization curve for a single pedestrian according to SYNPEX for 

concrete bridges with structural damping ratio 1.3% 

The normalization curve for vertical loading direction with damping ratio 0.40% 

according to steel structures is plotted in Figure 6.48. 

 

Figure 6.48 Normalization curve for a single pedestrian according to SYNPEX for 

steel bridges with structural damping ratio 0.4% 
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The normalization curve for vertical loading direction with damping ratio 3.0% 

according to timber structures is plotted in Figure 6.49. 

 

Figure 6.49 Normalization curve for a single pedestrian according to SYNPEX for 

timber bridges with structural damping ratio 3.0%. 

In Figure 6.50 the reference bridge and the three materials are compared in the same 

plot for a single pedestrian causing vertical vibrations. 

 

Figure 6.50 Normalization curve for a single pedestrian according to SYNPEX 

with structural damping ratios for the reference bridge and concrete, 

steel and timber. 

6.4.1.5 Normalization of SYNPEX concentrated model - lateral action 

The normalization curves are plotted for a reference damping of 5.0% and for 

damping ratios representing concrete, steel and timber bridges according to SYNPEX. 

The damping ratios and normalization factor τ are given in Table 6.12. 
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Figure 6.51 Normalization curve for a single pedestrian according to SYNPEX for 

the reference bridge with structural damping ratio 5.0%. 

The normalization curve for lateral loading direction with damping ratio 1.3% 

according to concrete structures is plotted in Figure 6.52. 

 

Figure 6.52 Normalization curve for a single pedestrian according to SYNPEX for 

a concrete structure with structural damping ratio 1.3%. 
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The normalization curve for lateral loading direction with damping ratio 3.0% 

according to steel structures is plotted in Figure 6.53. 

 

Figure 6.53 Normalization curve for a single pedestrian according to SYNPEX for 

a concrete bridge with structural damping ratio 0.40%. 

The normalization curve for lateral loading direction with damping ratio 3.0% 

according to timber structures is plotted in Figure 6.54. 

 

Figure 6.54 Normalization curve for a single pedestrian according to SYNPEX for 

a timber bridge with structural damping ratio 3.0%. 
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In Figure 6.55 are the normalization curves of lateral loading for different damping 

ratios compared. 

 

Figure 6.55 Normalization curve for a single pedestrian according to SYNPEX 

with structural damping ratios for the reference bridge and concrete, 

steel and timber 

6.4.2 Uniformly distributed load 

Pedestrian streams are suggested by SYNPEX to be modeled as a uniformly 

distributed load model over the bridge deck. The load model can be normalized 

according to chapter 5 and is given Equation (6-20) where the load amplitude p0 is 

indetified. The force amplitude is dependent on loading direction, equivalent number 

of pedestrians and a design coefficient ψ which is a function of the bridge natural 

frequency. The normalization factor is dependent of the structural damping ratio. The 

normalization in Equation (6-20) applies for vertical, lateral and longitudinal loading 

directions. 

                                  (6-20) 

Where: 

      
             

The load model is defined in vertical, lateral and longitudinal direction where the load 

amplitude G and design coefficient ψ varies between the loading directions. 

The equivalent number of pedestrians n’ is calculated depending on traffic class 

according to Equation (4-67) and (4-68). Five traffic classes are defined in SYNPEX 

and given in 4.6.2 and are considered in the normalization curves. 
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6.4.2.1 Relationship between load amplitude and bridge geometry 

The force amplitude, p0, generates an applied load in N/m
2
. In normalization the load 

should be given in N/m and is therefore multiplied with the bridge width, b, according 

to Equation (6-21). 

           ′             (6-21) 

By inserting equivalent number of pedestrians gives Equation (6-22) for TC 2 - 3 and 

Equation (6-23) for TC 4 -5. 

         
√  

 
            

For TC 2 - 3 (6-22) 

         
√     

 
            

For TC 4 - 5 (6-23) 

The equations can be simplified into Equation (6-24) and (6-25) as   and   includes 

the width. 

         
√    

  
     

        √    √
 

 
          

For TC 2 - 3 (6-24) 

         
√   

  
            √    √

 

 
         

For TC 4 - 5 (6-25) 

In normalization the curve has to be independent on bridge geometry which is done 

by extracting the terms including length and width according to Equation (6-26) and 

(6-27). The extracted term is unit less and called geometry factor ω. 

          √    √
 

 
        √                

For TC 2 - 3 (6-26) 

          √    √
 

 
        √             

For TC 4 - 5 (6-27) 

Where: 

  √
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The relation between load amplitude and bridge geometry can be seen in the figures 

below. In Figure 6.56 is the amplitude plotted for various lengths with constant width 

equal to 1 m and in Figure 6.57 for various widths with constant length equal to 1 m. 

The geometry factor ω will convert the load amplitude for arbitrary bridge geometry. 

 

Figure 6.56 Relationship between load amplitude and bridge length for a constant 

width equal to 1 m. 

 

Figure 6.57 Relationship between load amplitude and bridge width for a constant 

length equal to 1 m. 
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Traffic class 1 is different from the other classes as it always considers 15 pedestrians 

independent on bridge area. The geometry factor can be derived in the same way, to 

be independent on bridge width according Equation (6-28). 

         

√  
  

   

  
            √   

 

 
                 

(6-28) 

Where: 

          √           

     
 

 
          

 

The normalization is plotted for load amplitude,   , multiplied by the normalization 

factor,  . For arbitrary bridge geometry the curve has to be multiplied by the geometry 

factor ω with the considered length and width. 

6.4.2.2 Structural damping ratio and normalization factor τ 

SYNPEX suggest several damping ratios for the same materials. In normalization are 

the damping ratios referred to as average ratios and given in Table 6.13 with 

corresponding normalization factor for uniformly distributed loads. 

Table 6.13 Static load, damping ratios and normalization factors for the reference 

bridge and construction materials concrete, steel and timber used in 

the normalization for the vertical load model. 

Material Reference Concrete Steel Timber 

Damping ratio,   [%] 5.0 1.3 0.40 3.0 

Norm factor,   [-] 12.73 48.44 148.6 21.21 
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6.4.2.3 Normalized acceleration response for uniform load model – vertical 

action 

The normalization curves for traffic class 1 are plotted in Figure 6.58 for the reference 

structural damping ratio of 5.0% and according to damping ratios defined for 

concrete, steel and timber bridges. 

 

Figure 6.58 Normalization curves for the vertical load model calculated for TC 1 

with structural damping ratios according to the reference beam and 

concrete, steel and timber bridges. 

Normalized curves for the defined traffic classes TC 2 to TC 5 with a structural 

damping of 5 % are plotted in Figure 6.59.  

 

Figure 6.59 Normalization curve for the vertical load model with structural 

damping ratio 5.0% according to the reference beam plotted for TC 2 

to TC5.  
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Normalized curves for the defined traffic classes TC 2 to TC 5 with a structural 

damping of 1.3% according to concrete bridges are plotted in Figure 6.60.  

 

Figure 6.60 Normalization curve for the vertical load model with structural 

damping ratio 1.3% according to concrete bridges plotted for TC 2 to 

TC5. 

Normalized curves for the defined traffic classes TC 2 to TC 5 with a structural 

damping of 0.40% according to steel bridges are plotted in Figure 6.61.  

 

Figure 6.61 Normalization curve for the vertical load model with structural 

damping ratio 0.4% according to steel bridges plotted for TC 2 to TC5. 
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Normalized curves for the defined traffic classes TC 2 to TC 5 with a structural 

damping of 3.0% according to timber bridges are plotted in Figure 6.62.  

 

Figure 6.62 Normalization curve for the vertical load model with structural 

damping ratio 3.0% according to timber bridges plotted for TC 2 to 

TC5. 

A comparison of the different damping ratios plotted in previous figures is shown in 

Figure 6.63 for traffic class TC 2 to TC 5. 

 

Figure 6.63 Comparison of the normalization curves for the vertical load model 

calculated for various damping ratios and plotted for TC 3. 
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6.4.2.4 Normalized acceleration response for uniform load model – lateral 

action 

The normalization curves for traffic class 1 are plotted in Figure 6.58 for the reference 

structural damping ratio of 5.0% and according to damping ratios defined for 

concrete, steel and timber bridges. 

 

Figure 6.64 Normalization curves for the lateral load model calculated for TC 1 

with structural damping ratios according to the reference beam and 

concrete, steel and timber bridges. 

Normalized curves for the defined traffic classes TC 2 to TC 5 with a structural 

damping of 5.0% are plotted in Figure 6.65.  

 

Figure 6.65 Normalization curve for the lateral load model with structural 

damping 5.0% according to the reference beam plotted for TC 2 to 

TC5. 
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Normalized curves for the defined traffic classes TC 2 to TC 5 with a structural 

damping of 1.3% according to concrete bridges are plotted in Figure 6.66.  

 

Figure 6.66 Normalization curve for the lateral load model with structural 

damping ratio 1.3% according to concrete bridges plotted for TC 2 to 

TC5. 

Normalized curves for the defined traffic classes TC 2 to TC 5 with a structural 

damping of 0.4% according to steel bridges are plotted in Figure 6.67.  

 

Figure 6.67 Normalization curve for the lateral load model with structural 

damping ratio 0.4% according to steel bridges plotted for TC 2 to TC5. 
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Normalized curves for the defined traffic classes TC 2 to TC 5 with a structural 

damping of 3.0% according to timber bridges are plotted in Figure 6.68.  

 

Figure 6.68 Normalization curve for the lateral load model with structural 

damping ratio 3.0% according to timber bridges plotted for TC 2 to 

TC5. 

A comparison of the different damping ratios plotted in previous figures is shown in 

Figure 6.69 for traffic class TC 2 to TC 5. 

 

Figure 6.69 Comparison of the normalization curves for the lateral load model 

calculated for various damping ratios and plotted for TC 3. 
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6.4.3 Comments and discussion 

SYNPEX recommends several methods to analyse and calculated the maximum 

response in a footbridge induced by pedestrians. The load models treated in the 

normalization are well developed and well defined leaving no gaps in the description 

of application. The concentrated loads cover both vertical and lateral direction of 

loading and should be applied as moving over the span with a given velocity. The 

velocity recommended in the guideline is a function of the step frequency which is 

reasonable according to literature. The uniformly distributed load model simulating 

pedestrian streams is applicable in vertical, lateral and longitudinal direction with 

different magnitude. 

6.4.3.1 Critical frequencies 

The step frequency interval for concentrated loads is defined to be within 1.25 and 

2.30 Hz. The second harmonic is the double step frequency between 2.50 and 4.60 

Hz. The interval is comparable with other intervals found in literature. For uniformly 

distributed loads the interval is defined to be within 1.0 and 2.6 Hz covering a longer 

span of step frequencies. 

In lateral direction of loading the frequency interval is determined to be within 0.625 

and 1.15 Hz for the concentrated load model defined as half the vertical frequency 

interval. The uniformly distributed load model is defined between 0.30 and 1.3 Hz 

which is wider than for concentrated loads. The upper limit of the interval is half of 

the vertical upper limit but the lower limit is extended to be lower than 0.50 Hz. With 

an interval covering as low as 0.30 Hz would imply a walking frequency as low as 

0.60 Hz. 

SYNPEX is not consistent about normal walking frequencies as an overall suggestion 

the vertical interval should be between 1.30 and 2.30 Hz and between 0.50 and 1.20 

Hz in lateral direction. 

6.4.3.2 Load amplitude – concentrated load model 

The concentrated load models are Fourier series with coefficients and phase angles 

well presented in the report. In vertical direction the coefficients and phase angles are 

functions of the step frequency based on measurements and methods presented in the 

report. The functions for vertical action are of third order which can make them 

complex to use but should give accurate results based on the derivations done by 

SYNPEX. Higher step frequencies will result in higher Fourier coefficient and 

therefore higher load amplitude. It should be noted when comparing the magnitude of 

the coefficients that the second harmonic always will contribute more than the first as 

the coefficient is higher for all step frequencies. Tough it is complex to make a 

general conclusion as the phase angle also affects the load amplitude and resonance.  

The effect of considered harmonics on load amplitude can be seen in the plot of load 

history. In the plot it is seen that a load model only considering the first harmonic will 

generate significantly lower load amplitude than when the harmonics are considered. 

Three harmonics will give approximately the same load amplitude as for two. Though 

the difference in load amplitude is not direct proportional to the response as the 

degree of resonance affect the response. The degree of resonance will decrease as the 

number of harmonics regarded increase due to phase shifts. I.e. a load with low 

amplitude and without phase shift can create a higher response than one with high 

amplitude and phase shifts.  
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In normalization the second harmonic is considered by only applying the second 

harmony of the load model. This generates a higher response as the second Fourier 

coefficient is higher than the first. Is should be treated with caution as the load should 

be applied with two harmonics when analysing the response in the second harmonic 

frequency interval.   

The lateral coefficients and phase angles are constant and independent on step 

frequency.  The model does not include a static load of the pedestrian which is 

reasonable as the weight of the pedestrian only acts in vertical direction. As a result 

the load amplitude is oscillating at zero Newton with the load amplitude increasing 

with the number of considered harmonics.  

The load amplitude for the concentrated load model is independent on the bridge deck 

area, the same load is applied for all geometries.  

6.4.3.3 Load amplitude – uniformly distributed load model 

The uniformly distributed load model is applicable for vertical, lateral and 

longitudinal direction by changing load amplitude and reduction coefficient. The 

reduction coefficient ψ takes the probability of resonance between the structure and 

normal step frequencies into account based on the defined frequency intervals. The 

factor has its maximum, equal to one, between 1.70 and 2.10 Hz for vertical action. In 

vertical direction it covers the most common walking frequencies and also not so 

common with reduced magnitude. The factor is zero under 1.0 and above 2.6 Hz 

which are reasonable assumptions. SYNPEX is neglecting the second harmonic for 

the vertical load model as the reduction factor is zero. In the report it is stated that no 

vertical vibration due to the second harmonic has occurred in reality and therefore it is 

not considered as a problem. 

In lateral direction the reduction factor is equal to one between 0.50 and 1.1 Hz and 

zero below 0.30 Hz and above 1.3 Hz. Normally the lateral frequency interval is half 

of the vertical interval limits. In this case the interval for lateral action is extended 

down to 0.30 Hz and covers a broader range of frequencies with less magnitude.  

The uniform load model is dependent on the bridge deck area with decreasing load 

amplitude with increasing span length. With increasing width the load only increases 

with the square root of the width considering the applied load in N/m. The fact that 

the load is decreasing per square meter for an increase in area does not make the 

model consistent. This means that a longer bridge will have lower load per square 

meter area than a shorter for the same width but still the governing input is the 

pedestrian density is defined in ped/m
2 

evenly over the bridge deck. The varying load 

amplitude is in normalization adjusted by the derived geometry factor ω. 

6.4.3.4 Traffic classes 

In SYNPEX five traffic classes for pedestrian streams are defined by characteristics of 

how the traffic is experienced. The lowest class always considers 15 pedestrians and 

the maximum is given as a pedestrian density of 1.5 ped/m
2
. The traffic classes are 

illustrated in photos in the report and according to literature the values seems 

reasonable. No recommendations regarding traffic class based on the bridge location 

is given. 

6.4.3.5 Equivalent number of pedestrians 

The guideline does not propose an equivalent number of pedestrians applicable on the 

concentrated load model and therefore the concentrated load can only be used for 
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simulating a single pedestrian. Several persons can be simulated by one load per 

pedestrian but it is inefficient and inaccurate as the degree of synchronisation cannot 

be considered. 

SYNPEX shows in the report how the expression for equivalent number of 

pedestrians is derived for pedestrian streams. A Monte Carlo simulation has been 

done to investigate how pedestrians synchronize and how it is affected by the 

structural damping. Traffic class 4 and 5 are not affected by the structural damping 

which will influence the load amplitude. By comparing the load amplitude between 

traffic classes and damping ratio it can be seen that the difference in load amplitude 

between traffic class 3 and 4 is lower for high damped structures and larger difference 

for structures with low damping.  

6.4.3.6 Damping 

SYNPEX refers to two different sources Eurocode and Sétra for suitable damping 

ratios. Eurocode has defined the ratios as functions of the span length and Sétra as 

maximum and average values. The difference in definition makes the ratios diverge 

i.e. for a footbridge with 15 m span the damping ratio for steel is defined between 

0.2% and 1.25% and timber 1.0% and 3.0%. The report does not decide which of the 

values to be correct or how they have been determined. As the damping affects both 

the load amplitude and the structural response a less correct damping ratio will have a 

large impact on the acceleration response. In the normalization average damping 

ratios are used.  

6.5 JRC and HIVOSS 

JRC and HIVOSS are presenting the same load models with the same input value and 

are considered as equal. This section is presenting the normalized acceleration 

response for both standards but refers to the section describing JRC. 

JRC proposes a load model as a distributed harmonic load adapted to the mode shape 

of the structure according to section 4.7.5. The harmonic load according to Equation 

(4-75) should have the same frequency as the natural frequency of the considered 

bridge and be distributed over the bridge deck until steady-state is reached.  

The guideline is based on classification of footbridges due to the expected traffic level 

according to 4.7. The proposed densities are according to Table 4.39 where Traffic 

class 1 differs from the others defined as 15 pedestrians distributed evenly over the 

bridge. 

6.5.1 Normalization of distributed load 

The load model can be normalized according to the derivations in chapter 5. The load 

model is given in Equation (6-29) where the load amplitude p0 is identified. 

                  
            (6-29) 

Where: 
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Input variables for different materials according to JRC and values for normalization 

factor   are presented in Table 6.14. 

Table 6.14 Input variables for different materials according to JRC. 

 Reference Concrete Steel Timber 

Damping ratio [%] 5  1.3 0.4 1.5 

 - uniform 12.74 48.45 148.6 42.24 

Po [N] 280 280 280 280 

Equivalent number of pedestrian,  ′, depends on traffic class due to different degree 

of synchronization among pedestrians as seen in Table 6.15. 

Table 6.15  Equivalent number of pedestrians due to traffic class. 

Traffic class Equivalent number of pedestrians,  ′ 

TC 1 – TC 3 
   

     √   

 
 

TC 4- TC 5 
   

    √ 

 
 

6.5.1.1 Relationship between load amplitude and bridge geometry 

The load amplitude    is dependent on factors regarding equivalent number of 

pedestrians, relevant step frequencies for walking and the proposed static load for a 

pedestrian. The load amplitude,   , generates an applied load in N/m
2
. In 

normalization the load should be given in N/m and is therefore multiplied with the 

bridge width,  , according to Equation (6-30).  

      ′             (6-30) 

By inserting equivalent number of pedestrians gives Equation (6-31) for TC 2 - 3 and 

Equation (6-32) for TC 4 -5. 

     
     √   

 
            

For TC 2 - 3 (6-31) 

     
    √ 

 
            

For TC 4 - 5 (6-32) 
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The equations can be simplified into Equation (6-33) and (6-34) as   and   includes 

the width. 

         
    √    

  
     

        √    √
 

 
          

For TC 2 - 3 (6-33) 

     
     √   

  
            √    √

 

 
         

For TC 4 - 5 (6-34) 

In normalization the curve has to be independent on bridge geometry which is done 

by extracting the terms including length and width according to Equation (6-35) and 

(6-36). The extracted term is unit less and called geometry factor ω.  

          √    √
 

 
        √                

For TC 2 - 3 (6-35) 

          √    √
 

 
        √             

For TC 4 - 5 (6-36) 

Where: 

  √
 

 
       

 

The relation between load amplitude and bridge geometry can be seen in the figures 

below. In Figure 6.70 the amplitude is plotted for various lengths with constant width 

equal to 1 m and in for various widths with constant length equal to 1 m. The 

geometry factor ω will convert the load amplitude for arbitrary bridge geometry. 
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Figure 6.70 Plot of load amplitude    [N/m] for varying width with constant length 

1 m. 

Figure 6.71 shows a plot of load amplitude for varying length with constant width of 

1m. 

 

Figure 6.71 Plot of load amplitude    [N/m] for varying length with constant width 

1 m. 

Traffic class 1 is different from the other classes as it always considers 15 pedestrians 

independent on bridge area. The geometry factor can be derived in the same way, to 

be independent on bridge width according Equation (6-37). 

         

√  
  

   

  
            √   

 

 
                 

(6-37) 
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Where: 

          √           

     
 

 
          

 

This can be seen in Figure 6.72 where the load amplitude is plotted for varying length 

with constant width of 1m. 

 

Figure 6.72 Plot of load amplitude for varying length with constant width of 1 m 

6.5.1.2 Normalized response according to JRC in vertical direction 

Input variables for different materials are shown in Table 6.16. 

Table 6.16 Input variables for different materials according to JRC. 

 Reference Concrete Steel Timber 

Damping ratio [%] 5  1.3 0.4 1.5 

 - uniform 12.74 48.45 148.6 42.24 

Po [N] 280 280 280 280 
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The normalized curves for the proposed pedestrian densities, except TC1, with a 

structural damping of 5.0 % are shown in Figure 6.73.  

 

Figure 6.73  Normalized curves for TC2-TC5 with 5 % damping, established for a 

15 m
2
 bridge. 

In Figure 6.74 the normalized curves are plotted which shows the difference between 

Traffic class 1 and the other densities. In this case 15 pedestrians are distributed over 

a very small bridge which gives rise to a big response in comparison with the other 

densities. 

 

Figure 6.74 Normalized curves for proposed pedestrian densities, 5 % damping, 

1m
2
 bridge 
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In Figure 6.75 the normalized curves for TC1 for three different lengths are plotted for 

a 1 m wide bridge. It can be seen that the accelerations due to TC1 for a small bridge 

will be big.  

  

Figure 6.75  Normalized curves for TC1 for different lengths with 1 m wide bridge, 

5 % damping. 

In Figure 6.76 normalized curves for the proposed densities except TC1 are shown for 

concrete with 1.3 % damping. Note that TC4 and TC5, with densities 1.0 and 1.5 

ped/m
2
 respectively, do not take structural damping into account in the equivalent 

number of pedestrians. This gives big difference in response compared to TC2 and 

TC3.  

 

Figure 6.76 Normalized curves in vertical direction for concrete 1.3 % damping 
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In Figure 6.77 normalized curves for the proposed densities except TC1 are shown for 

steel with 0.4 % damping. Note that the difference in response between TC2, TC3 and 

TC4, TC5 increases for the lower damping proposed for steel in comparison with the 

curve for concrete.  

 

Figure 6.77 Normalized curves in vertical direction for steel, 0.40 % damping. 

In Figure 6.78 normalized curves for the proposed densities except TC 1 are shown 

for timber with 1.5 % damping. 

 

Figure 6.78 Normalized curves in vertical direction for timber, 1.5 % damping. 
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In Figure 6.79 the normalized curves for TC1 for different materials are plotted with 

structural damping according to Table 6.16. 

 

Figure 6.79 Normalized curves for TC1 for different material and corresponding 

structural damping. 

6.5.1.3 Normalized response according to JRC in lateral direction 

The same load models as for vertical direction is used for lateral direction. The 

difference is the load amplitude    and the reduction coefficient  . In Table 6.17 

input variables for the normalization in lateral direction can be seen. 

Table 6.17 Input variables for different materials in lateral direction according to 

JRC. 

 Reference Concrete Steel Timber 

Damping ratio [%] 5  1.3 0.4 1.5 

 - uniform 12.74 48.45 148.6 42.24 
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In Figure 6.80 the normalized curves for TC2 to TC5 in lateral direction for 5 % 

damping can be seen. 

 

Figure 6.80 Normalized curves in lateral direction for TC2-TC5 for 5 % damping. 

In the normalized curves for TC1 to TC5 can be seen which shows the difference for 

TC1 in comparison with the other traffic classes for a 1 m
2 

bridge. 

 

Figure 6.81 Normalized curves in lateral direction for TC1-TC5 for 5 % damping. 
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In Figure 6.75 the normalized curves for TC1 for three different lengths are plotted for 

a 1 m wide bridge with 5 % damping. It can be seen that the accelerations due to TC1 

for a small bridge will be big.  

 

Figure 6.82 Normalized curves in lateral direction for TC1 for different lengths. 

In Figure 6.83 Normalized curves in lateral direction for TC2-TC5 for concrete with 

1.3 % damping. In Figure 6.83 the normalized curves in lateral direction for TC2 to 

TC5 for concrete can be seen. 

 

Figure 6.83 Normalized curves in lateral direction for TC2-TC5 for concrete with 

1.3 % damping. 
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In Figure 6.84 the normalized curves in lateral direction for TC2-TC5 for steel can be 

seen. 

 

Figure 6.84 Normalized curves in lateral direction for TC5-TC5 for steel with 0.4 

% damping. 

In Figure 6.85 the normalized curves for TC2 to TC5 for timber with 1.5 % damping 

can be seen. 

 

Figure 6.85 Normalized curves in lateral direction for TC2-TC5 for timber with 1.5 

% damping. 
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In Figure 6.86 normalized curves for TC1 for different materials with corresponding 

damping and reference damping can be seen. 

 

Figure 6.86 Normalized curves for TC1 for different materials with corresponding 

damping.  

6.5.2 Comments and discussion 

In this section discussions and comments regarding the normalized curves are 

presented. 
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2
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2
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synchronize differently depending on the amount of people present at the bridge. For 

the traffic classes with lower density, TC1 to TC3, the structural damping is 

considered to affect the synchronization but not for TC4 and TC5 with higher 

densities. An explanation of this can be that for larger densities walking is obstructed 

and therefore the dynamic effect of the load decreases whilst the synchronization 

between pedestrians increase, giving that the structural damping has a lower 

importance. 

0

2000

4000

6000

8000

10000

12000

14000

16000

0 0.5 1 1.5 2

τp
0
 [

N
/m

] 

Structural frequency 

F(15 ped) 0.4%

F(15 ped) 1.5%

F(15 ped) 1.3%

F(15 ped) 5%



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:108 
200 

6.5.2.3 Max/min values 

TC4 and TC5 results in bigger accelerations than TC2 and TC3 due to their higher 

pedestrian density and their defined equivalent number of pedestrians   . The 

difference in    between traffic classes gives that the difference in acceleration 

response between the traffic classes are bigger for lower values of structural damping 

which can be seen in Figure 6.76 to Figure 6.78.  

6.5.2.4 Range of frequencies 

JRC considers step frequencies between 1.25 to 2.3 Hz in vertical direction for the 

first harmonic and frequencies between 2.5 and 4.6 Hz for the second harmonic. In 

lateral direction the considered frequencies are between 0.50 and 1.2 Hz. JRC has 

based their frequency intervals on empirical investigation. Most common is to define 

the lateral frequency interval as half of the vertical interval. JRC has chosen to 

increase the lower limit for the interval to 0.50 instead of 0.60 which would be the 

case for half the frequency. The second harmonic is not considered for lateral 

vibrations. 

In vertical direction the structural frequencies that give the biggest responses are 1.7 

to 2.1 Hz. This is done through the reduction coefficient   which can be seen in the 

normalized curves where these frequencies give rise to the largest response. This is 

reasonable because these are the step frequencies mentioned in literature as relevant.  

The reduction coefficient   weighs accelerations due to the second harmony to be 

lower than for the first. This seems reasonable when other standards weigh the 

response from the second harmony lower as well. In the literature the effect of second 

harmonies are considered to be much lower than for the first which can be seen in 

most guidelines for dynamic analysis. 

In lateral direction structural frequencies between 0.7 and 1.0 Hz are weighed to 

results in the largest accelerations which can be seen for the reduction coefficient   

for lateral direction.  The second harmony is not considered relevant in lateral 

direction.  
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7 Results and comments 

In this chapter discussions on the analysis done in chapter 5 and the normalization in 

section 5.6 will be made in order to evaluate what Eurocode and ISO 10137 need to 

be complemented with to be able to make an accurate and sufficient analysis of 

expected vibrations in lightweight footbridges. The comparison is systematically done 

for each required design situations defined by ISO 10137. 

ISO 10137 suggests the following design situations according to section 4.2.1: 

- One person traversing the structure while another one stands in mid-span, 

acting as the receiver 

- A flow of pedestrians, for example in a group of 8 to 15 people, that depends 

on the length and the width of the walkway 

- The possibility of streams of pedestrians significantly larger than 15 people 

- Festive or choreographic events that are relevant 

All of these design situations are not covered in ISO 10137 and guidelines for design 

need to be found elsewhere. Furthermore the guidelines leave a lot of factors to the 

designer to make reasonable estimates, for example how big the flow of people should 

be and how it should depend on the geometry of the walkway.  

The design situations proposed in ISO 10137 will be compared with guidelines for 

similar situations as recommended in the studied guidelines. Design situations that are 

not covered in ISO 10137 will be evaluated with other studied guidelines that are 

applicable.  

ISO 10137 suggest a point load modelled as a Fourier series and an equivalent 

number of pedestrians. This can be used to cover the two first proposed design 

situations where a single pedestrian can be modelled with a Fourier sum and a group 

of people can be modelled with the help of an equivalent number of pedestrians. The 

last two design situations are not covered in ISO 10137. Pedestrian streams can be 

modelled with a uniformly distributed load for different pedestrian densities according 

to other standards as shown in chapter 4. Festive and choreographic events are not 

completely presented in any guideline and will only be discussed based on compiled 

knowledge. 

The normalized acceleration response is compared for 5.0% structural damping which 

is referred to as the reference beam or reference damping. In this way the load models 

will be compared independent on damping ratio. The standards propose different 

structural damping ratios for the same construction materials. The comparison 

includes a study of how the normalized acceleration response varies for damping 

ratios according to reinforced concrete, steel and timber bridges.  

Vertical and lateral load models are compared for all considered standards and 

guidelines when recommended. 

7.1 Comparison between concentrated loads and ISO 

10137 

In this section the first design situation will be presented simulating a single 

pedestrian crossing a bridge. It is recommended in ISO 10137 to be modeled as a 

concentrated load moving across the span. Similar load models are given in UK-NA, 

SYNPEX and Sétra which are compared with ISO 10137 in this section. All models 
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are simplified to be stationary at the middle of them bridge. The models will be 

compared and discussed regarding acceleration response, critical frequency ranges, 

and structural damping ratios. 

Considered load models in this section are: 

- ISO 10137 

- UK-NA 

- SYNPEX 

- Sétra 

7.1.1 UK National Annex in comparison to ISO 10137 

In this section the obtained response with the load model according to UK-NA will be 

compared to the obtained response with ISO 10137. This will be done for a reference 

damping ratio of 5.0 % and for the materials concrete, steel and timber with 

corresponding damping. 

7.1.1.1 Reference damping – 5.0% 

The normalized curves for UK point load and ISO 10137 for one single pedestrian are 

plotted together in Figure 7.1 for 5.0 % damping.  

 

Figure 7.1. Normalized curves for concentrated load for 1 pedestrian according to 

UK and ISO 10137 with 5 % damping.  

It can be seen that ISO 10137 results in a larger maximum value than UK-NA for the 

same level of damping but that the maximum values are obtained for different 

structural frequencies. ISO 10137 weighs walking frequencies differently than UK-

NA where the acceleration response increases from 1.20 up to 2.4 Hz whereas UK-

NA exhibits the largest accelerations as a peak value at 1.8 Hz. It can be seen that 

larger acceleration response is obtained with UK-NA in comparison with ISO 10137 

for lower frequencies below approximately 2 Hz. 

UK-NA weighs the effect due to second harmonies to be larger than ISO 10137 with a 

peak at approximately 3.7 Hz. The maximum value due to second harmonics for UK-

NA is approximately 0.25% larger than the value obtained with ISO 10137 
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7.1.1.2 Concrete 

In Figure 7.2 normalized curves for concentrated load for 1 pedestrian according to 

UK and ISO 10137 for concrete is plotted.  

 

Figure 7.2. Normalized curves for concentrated load for 1 pedestrian according to 

UK and ISO 10137 with corresponding damping for concrete. 

For concrete the proposed damping ratio differs between UK-NA and ISO 10137. 

This affects the obtained accelerations so that ISO 10137 results in larger values than 
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normalization factor   is different for the two damping ratios which is the factor 

affecting the results as the structural damping is not included in the load models. For a 
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7.1.1.3 Steel 

In Figure 7.3 normalized curves for concentrated load for 1 pedestrian according to 

UK and ISO 10137 for steel is plotted.  

 

Figure 7.3. Normalized curves for concentrated load for 1 pedestrian according to 

UK and ISO 10137 with corresponding damping for steel. 

7.1.1.4 Timber 

In Figure 7.4 normalized curves for concentrated load for 1 pedestrian according to 

UK and ISO 10137 for timber is plotted.  

 

Figure 7.4. Normalized curves for concentrated load for 1 pedestrian according to 

UK and ISO 10137 with corresponding damping for timber. 

  

0

10000

20000

30000

40000

50000

60000

70000

80000

0 1 2 3 4 5 6 7 8

τP
0
 [

N
] 

Structural Frequency [Hz] 

UK F(1) 0.50%

ISO F(1) 0.50%

0

5000

10000

15000

20000

25000

30000

35000

40000

0 1 2 3 4 5 6 7 8

τP
0
 [
N

] 

Structural Frequency [Hz] 

UK F(1) 1.0%

ISO F(1) 1.0%



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:108 
205 

For materials with the same damping as for steel and timber the relationship between 

the normalized curves for UK-NA and ISO 10137 is the same. The factors 

determining the difference are load amplitude and the weighing of frequencies as 

discussed about the normalized curves for a reference damping ratio of 5%. 

7.1.2 SYNPEX in comparison to ISO 10137 

SYNPEX and ISO 10137 presents load models for simulating a single pedestrian 

modeled as a concentrated load moving over the span. ISO 10137 recommends a load 

model that is adjustable to both vertical and lateral loading. SYNPEX recommends 

two different load models one for vertical and one for lateral loading. All models are 

defined as Fourier series and compared in the following chapters. 

SYNPEX recommends applying the concentrated load as moving over the span in the 

same way as ISO 10137. The models from both standards have been simplified as to 

stationary which makes them comparable though the real acceleration response will 

be lower. 

7.1.2.1 Reference damping – 5.0% 

The normalized acceleration response of the concentrated load model for vertical 

direction propose by SYNPEX for a single pedestrian is plotted with the 

corresponding curve from the ISO 10137 standard in Figure 7.5 with 5.0% damping 

ratio.  

 

Figure 7.5 Comparison of normalized acceleration response curves of SYNPEX 

and ISO 10137 single pedestrians with 5.0% damping ratio. 

The curves are compared for the same damping ratio which makes the response only 

dependent on Fourier coefficients and frequency intervals from the two standards. The 
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acceleration response from the second harmonic is much higher for SYNPEX than 

ISO 10137.  

The second harmony is not considered in SYNPEX based on the theory in the 

standard. ISO 10137 takes the second harmony into account with about 20% of the 

maximum value for the first harmony. In the following comparisons between ISO 

10137 and SYNPEX only the first harmony will be considered.  

The considered frequency intervals are approximately the same in the standards 

though ISO 10137 has a slightly wider range for the first harmonic. The frequency 

range for the second harmonic begins where the first ends and leaves no gap.  

The lateral load models are for damping ratio 5.0% compared with their normalized 

acceleration response curves in Figure 7.6. 

 

Figure 7.6 Comparison of normalized acceleration response curves in lateral 

direction of SYNPEX and ISO 10137 single pedestrians with damping 

ratio 5.0%. 
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applied here.  
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Figure 7.7 Comparison of normalized acceleration response curves of SYNPEX 

and ISO 10137 single pedestrians with damping ratio according to 

concrete structures. 

By applying the loads for vertical direction on a concrete structure the acceleration 

will approximately twice as high for the ISO 10137 load model than SYNPEX load 

model. The difference between the two curves is the normalization factor τ due to the 

difference in damping ratio as the load models are independent on damping ratios.  

In are the normalized acceleration response plotted for damping ratios according to 

concrete structures. 

 

Figure 7.8 Comparison of normalized acceleration response curves in lateral 

direction of SYNPEX and ISO 10137 single pedestrians with damping 

ratio according to concrete structures. 
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In lateral direction the acceleration will almost be twice as high by applying the load 

model given in ISO 10137 than the model in SYNPEX. As the curves have equal 

maximum value for the same damping ratio only the normalization factor separates 

the curves. 

In the plot of both vertical and lateral direction the damping is the separating factor. In 

SYNPEX is the damping ratio recommended to be 1.3% which corresponds to a 

normalization factor equal to 76.41. ISO 10137 recommends 0.80% damping 

corresponding to a normalization factor of 122.6.  The normalization factor is almost 

twice as high which governing factor in the divergence between the two standards. 

7.1.2.3 Steel 

In Figure 7.9 the normalized acceleration response for vertical direction is compared 

for structures with damping ratios according to steel. SYNPEX suggest the damping 

ratio to be 0.40% and ISO 10137 0.50%. 

 

Figure 7.9 Comparison of normalized acceleration response curves of SYNPEX 

and ISO 10137 single pedestrians with damping ratio according to 

steel structures. 

The curves in Figure 7.9 are on the same level for the first harmonic. The frequency 

interval for ISO 10137 has a higher upper limit which makes the maximum higher 

than for SYNPEX. In the interval where SYNPEX in defined the curves are the same. 

SYNPEX has a lower damping ratio than ISO 10137 which makes the normalization 

factor τ higher than for ISO 10137 which compensates for the difference shown in 

Figure 7.5 where the same damping is used. 
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In Figure 7.10 are the normalized acceleration response plotted for lateral loading 

with damping ratios according to steel structures. 

 

Figure 7.10 Comparison of normalized acceleration response curves in lateral 

direction of SYNPEX and ISO 10137 single pedestrians with damping 

ratio according to steel structures. 

In lateral direction SYNPEX has a higher maximum value than ISO 10137 due to the 

difference in damping ratio. 

SYNPEX recommends a slightly lower damping ratio than ISO 10137 for steel 

structures which makes the SYNPEX curve increase compared to ISO 10137 curves. 

The damping ratios are similar and low which is reasonable according to literature. As 

seen for lateral loading even small changes in damping ratio can have large impact. 

Though for vertical direction the damping ratio compensated for SYNPEX to increase 

to the same level as ISO 10137. 

7.1.2.4 Timber 

In Figure 7.11 the normalized acceleration responses are plotted for damping ratios 
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0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 0.5 1 1.5 2 2.5

τ 
P

0
 [

N
] 

Structural Frequency [Hz] 

SYNPEX (1 ped)

0.40%

ISO (1 ped) 0.50%



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:108 
210 

 

Figure 7.11 Comparison of normalized acceleration response curves in vertical 

direction of SYNPEX and ISO 10137 single pedestrians with damping 

ratio according to timber structures. 

The large difference in damping ratio highly affects the normalized acceleration 

response curves for timber. The maximum value is over three times higher for ISO 

10137 than SYNPEX. 

In Figure 7.12 the normalized acceleration response curves are plotted with damping 

ratios according to timber structures. 

 

Figure 7.12 Comparison of normalized acceleration response curves in lateral 

direction of SYNPEX and ISO 10137 single pedestrians with damping 

ratio according to timber structures. 

The normalized acceleration response curves diverge for timber structures with three 
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The damping ratios recommended by two standards diverge the most for timber 

structures. SYNPEX recommend three times higher damping ratio, 3.0% in 

comparison to ISO 10137 recommendation of 1.0% damping. The large difference in 

damping ratios affects the normalization factor τ where 3.0% damping corresponds to 

τ equal to 33.3 and 1.0% to 98.8. The damping ratio for SYNPEX can be regarded as 

too high, no other standard recommends values over 1.5%. A too high damping ratio 

means that the acceleration response will decrease, it is always conservative to assign 

a lower damping ratio. 

7.1.3 Sétra in comparison to ISO 10137 

Sétra and ISO 10137 propose moving concentrated load models to simulate a single 

pedestrian crossing the bridge. The model in Sétra is applicable in vertical, lateral and 

longitudinal direction of loading and the load model in ISO 10137 can be applied for 

vertical and lateral directions. The models are all based on Fourier series which in this 

comparison on the first Fourier sum is regarded. 

In this chapter is the normalized acceleration response from the load models proposed 

in the standards compared for vertical and lateral loading. The responses are 

compared for a reference damping of 5.0% and by the standards recommended 

damping ratios according to concrete, steel and timber bridges.   

7.1.3.1 Reference damping – 5.0% 

The models are compared for the same reference damping ratio of 5.0% firstly in 

vertical and secondly in lateral direction. The differences between the acceleration 

responses will be results of Fourier coefficients and frequency intervals. 

In Figure 7.13 is the normalized acceleration response in vertical direction plotted for 

Sétra and ISO 10137.  

 

Figure 7.13 Normalized acceleration response of a single pedestrian with vertical 

load models according to Sétra and ISO 10137 and 5.0% damping. 
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set to 2.4 Hz. ISO 10137 is defined for the second harmony but not Sétra. It is 

recommended in Sétra for practical reasons to only consider the first Fourier sum 

which means that the second harmony is neglected automatically.  

The acceleration response in Sétra is constant for the critical frequencies compared to 

ISO 10137 which is linear increasing. The response is higher for Sétra between 1.6 

and 2.1 Hz. ISO 10137 has the highest maximum response at 2.4 Hz. 

In Figure 7.14 is the normalized acceleration response in lateral direction plotted for 

Sétra and ISO 10137.  

 

Figure 7.14 Normalized acceleration response of a single pedestrian with lateral 

load models according to Sétra and ISO 10137 and 5.0% damping. 

In the comparison above of lateral acceleration response it can be seen that ISO 10137 

is defined for a wider frequency range than Sétra. The critical frequency range for 

Sétra is quite small only covering frequencies between 0.80 and 1.2 Hz. The 

acceleration response is constant for both models in their defined frequency ranges 

with approximately twice as high response with ISO 10137. 
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7.1.3.2 Concrete 

In Figure 7.15 is the normalized acceleration response in vertical direction plotted for 

Sétra and ISO 10137 with damping ratios recommended for concrete structures. 

 

Figure 7.15 Normalized acceleration response of a single pedestrian with vertical 

load models according to Sétra and ISO 10137 for concrete bridges 

The acceleration response for concrete structures is higher for ISO 10137 for all 

defined frequencies. This is explained by the differences in recommended damping 

ratios where ISO 10137 has a lower ratio which gives a higher response. 

In Figure 7.16 is the normalized acceleration response in lateral direction plotted for 

Sétra and ISO 10137 with damping ratios recommended for concrete structures. 

 

Figure 7.16 Normalized acceleration response of a single pedestrian with lateral 

load models according to Sétra and ISO 10137 for concrete bridges 
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As seen in the figure above the acceleration response is much higher for ISO 10137 

compared to Sétra. The differences in damping ratio increase the gap between the 

models. 

7.1.3.3 Steel 

In Figure 7.17 is the normalized acceleration response in vertical direction plotted for 

Sétra and ISO 10137 with damping ratios recommended for steel structures. 

 

Figure 7.17 Normalized acceleration response of a single pedestrian with vertical 

load models according to Sétra and ISO 10137 for steel bridges. 

The damping ratio for steel structures is similar with 0.50% damping for ISO 10137 

and 0.40% for Sétra. The maximum response in vertical direction is approximately the 

same and Sétra has higher response than ISO 10137 for the most common step 

frequencies just below 2.0 Hz. 

In Figure 7.18 is the normalized acceleration response in lateral direction plotted for 

Sétra and ISO 10137 with damping ratios recommended for steel structures. 
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Figure 7.18 Normalized acceleration response of a single pedestrian with lateral 

load models according to Sétra and ISO 10137 for steel bridges. 

The lateral acceleration response is still higher for ISO 10137 even though the gap has 

decreased due to the differences in damping ratio. The difference in response is still 

significant and about 50%. 

7.1.3.4 Timber 

In Figure 7.19 is the normalized acceleration response in vertical direction plotted for 

Sétra and ISO 10137 with damping ratios recommended for timber structures. 

 

Figure 7.19 Normalized acceleration response of a single pedestrian with vertical 

load models according to Sétra and ISO 10137 for timber bridges. 

The damping ratio for timber structures is recommended by both standards to 1.0%. 
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In Figure 7.20 is the normalized acceleration response in vertical direction plotted for 

Sétra and ISO 10137 with damping ratios recommended for timber structures. 

 

Figure 7.20 Normalized acceleration response of a single pedestrian with lateral 

load models according to Sétra and ISO 10137 for timber bridges. 
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7.2.1.1 Normalized curves for reference damping, steel and timber 

The normalized curves for groups of people for UK-NA point load and ISO 10137 are 

plotted together in Figure 7.21  for 5 % damping for group sizes of 8 and 15 people as 

the interval is defined in ISO 10137. 

 

Figure 7.21  Normalized curves for concentrated load for several pedestrians 

according to UK-NA and ISO 10137 with 5 % damping. 

It can be seen that ISO 10137 results in a higher maximum value than UK-NA for the 

same level of damping but that higher acceleration response is obtained with UK-NA 

for lower frequencies below approximately 1.8 Hz. ISO 10137 weighs walking 

frequencies differently than UK-NA where the acceleration response increases up to 

2.4 Hz whereas UK-NA exhibits the largest accelerations at 1.8 Hz. UK-NA weighs 

the frequencies based on which are the most occurring and therefore the most relevant 

to consider in design. ISO 10137 seems to weigh the structural frequencies from that a 

pedestrian load of 2.4 Hz would result in the highest response. It should be noted that 

ISO 10137 does not consider structural frequencies below 1.2 Hz to be in any danger 

of vibrations due to pedestrian loading. 

UK-NA weighs the second harmonics higher than ISO 10137 and results in higher 

acceleration response with a peak value at approximately 3.7 Hz. ISO 10137 has the 

same value for frequencies between 2.4 and 5 Hz which can be seen gives bigger 

accelerations response around  5 Hz in comparison with UK-NA.     

In Figure 7.22 normalized curves for groups of pedestrians for UK-NA and ISO 

10137 are plotted for steel with 0.50 % damping. 
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Figure 7.22  Normalized curves for groups of pedestrians for UK-NA and ISO 

10137 for steel with 0.5 % damping. 

Because the proposed damping ratio is the same for UK-NA and ISO 10137 the 

relationship is the same as for the normalized curve for 5 % damping. 

In Figure 7.23 normalized curves for groups of pedestrians for UK-NA and ISO 

10137 are plotted for timber 1.0 % damping ratio. 

 

Figure 7.23 Normalized curves for groups of pedestrians for UK-NA and ISO 

10137 for timber with 1.0 % damping. 

Due to that the proposed damping ratio is the same for timber for UK-NA and ISO 

10137 the relationship between the normalized acceleration responses is the same as 
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7.2.1.2 Concrete 

In Figure 7.22 normalized curves for groups of pedestrians for UK-NA and ISO 

10137 are plotted for concrete with 1.5 and 0.80 % damping ratio respectively. 

 

Figure 7.24  Normalized curves for groups of pedestrians for UK-NA and ISO 

10137 for concrete with 1.5 and 0.80 % damping. 
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means that   for ISO 10137 is 122.6 where   for UK is 66.35 corresponding to a 
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damping affects the response through the corresponding  -value.  
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lateral comparison. JRC and HIVOSS are equally defined for uniformly distributed 

load and will therefore be considered with the same curve. 

The load models are applied with pedestrian densities according to traffic classes 

based on location or expected traffic. The comparison in this section is systematically 

done for traffic classes corresponding to the traffic situation given below. The way of 

comparing the models based on traffic situation makes it possible to compare how the 

models are regarding expected traffic. 

The considered locations and corresponding expected loading are: 

- Group of 15 pedestrians 

- Suburban location 

- Urban location – normal use 

- Urban location – crowded 

- Exceptionally dense traffic 

The standards which do not include the defined load cases above will not be included 

in the specific comparison. 

7.3.1 Group of 15 pedestrians 

The lowest traffic class for pedestrian streams in some of the standards is defined as a 

pedestrian group of 15 pedestrians evenly distributed over the bridge deck. The load 

case is dependent on the bridge geometry which means that independent on bridge 

size it should fulfill the requirements of 15 pedestrians on the bridge simultaneously. 

Three standards have defined their lowest traffic class as a group of 15 pedestrians, 

SYNPEX, JRC and HIVOSS. SYNPEX is the oldest of the three where JRC and 

HIVOSS are based on the recommendations in SYNPEX. JRC and HIVOSS 

recommend the same load models, frequency interval and damping ratios and will be 

regarded as equal in the comparison. 

The normalized acceleration response curves for load models for a group of 15 

pedestrians are calculated independent on bridge geometry. The curves have to be 

multiplied with the geometry factor ωTC1 to be considered for arbitrary geometry. The 

factor is equal for the considered standards which make them comparable. 

     
 

 
       

 

The damping ratio is regarded by the normalization factor τ for different damping 

ratios. The damping ratio is also included in the load models in the derivation of 

equivalent number of pedestrians.  

         √          
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7.3.1.1 Reference damping – 5.0% 

In Figure 7.25 the normalized acceleration response curves for vertical loading are 

plotted for JRC/HIVOSS and SYNPEX with 5.0% structural damping ratio. 

 

Figure 7.25 Normalized acceleration response for the vertical load models 

recommended by SYNPEX, JRC and HIVOSS, plotted for 5.0% 

structural damping ratio. 

The normalized acceleration response curves in figure above are plotted for the same 

damping ratio which makes the differences between them to only dependent on the 

load model and definitions in the standards.  

The two load models have the same maximum in the first harmonic at the same 

frequency interval between 1.75 and 2.10 Hz. SYNPEX on the other hand considers a 

wider frequency range for the first harmonic between 1.0 and 2.6 Hz. JRC/HIVOSS 

has a defined the frequency interval between 1.25 and 1.3 Hz which generates that the 

slope of the curve is steeper from maximum to zero. The difference in frequency 

interval implies that there will be large differences in acceleration response in the 

intervals 1.0 and 1.75 Hz as well as between 2.10 and 2.60 Hz where SYNPEX covers 

a greater area in the chart. Though the differences are for the not so common step 

frequencies the acceleration response is significantly larger for SYNPEX. 

The second harmonic is not considered in SYNPEX based on the assumption that the 

phenomena never have happened in reality. JRC/HIVOSS has chosen to weigh the 

second harmonic as 25% of the first harmonic. JRC/HIVOSS is based on SYNPEX 

which is an older standard. During the development of JRC/HIVOSS they choose, 

despite the overall impression from literature, to consider the second harmonic even 

though an actual case never occurred in reality.     
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In Figure 7.26 the normalized acceleration responses in lateral direction are plotted for 

the load models presented in JRC/HIVOSS and SYNPEX for 5.0% damping.  

 

Figure 7.26 Normalized acceleration response for the lateral load models 

recommended by SYNPEX, JRC and HIVOSS, plotted for 5.0% 

structural damping ratio. 

The normalized acceleration responses from the two standards have the same 

maximum value when considering the same structural damping ratio. SYNPEX has 

defined a wider frequency range both for the maximum value and the overall 

considered frequencies. As the lateral frequencies are based on the vertical 

frequencies it is reasonable that SYNPEX has wider ranges for both vertical and 

lateral direction than JRC/HIVOSS. SYNPEX defines the worst frequencies between 

0.50 and 1.10 Hz which equally wide as the total range defined by JRC/HIVOSS. This 

means that i.e. 0.50 Hz and 1.10 Hz SYNPEX weigh the frequency at maximum and 

JRC/HIVOSS as and not considered at all. The great difference can have large impact 

on the design of footbridges as lateral vibrations around 0.50 Hz has occurred even in 

the most studied case, London Millennium Bridge. 

7.3.1.2 Concrete 

In Figure 7.27 the normalized acceleration response curve in vertical direction are 

plotted for damping ratios according to concrete structures. The same damping ratio 

1.3% is recommended in SYNPEX and JRC/HIVOSS. 
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Figure 7.27 Normalized acceleration response for the vertical load models 

recommended by SYNPEX, JRC and HIVOSS, plotted for concrete 

structural damping ratios. 

The normalized acceleration response plots have the same maximum and same 

relation as for 5.0% damping because of the fact that the standards applies the same 

damping 1.3% for concrete. When the same damping ratio is chosen the same 

normalization factor τ applies and the relation between the curves remains as for 

5.0%.   

 

Figure 7.28. Normalized acceleration response for the lateral load models 

recommended by SYNPEX, JRC and HIVOSS, plotted for concrete 

structural damping ratios. 

The relation between the lateral normalized acceleration responses for the standards is 

the same as for 5.0% damping.  
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The recommended damping ratio 1.3% for concrete seems reasonable as it is similar 

to the ratios given in literature. Eurocode suggest a higher ratio of 1.5% for reinforced 

concrete which is higher but on the other hand ISO 10137 suggest a lower ratio of 

0.80%.  

7.3.1.3 Steel 

In Figure 7.29 the normalized acceleration response curves are plotted for vertical 

load model with damping ratios according to steel structures. SYNPEX and 

JRC/HIVOSS recommends the same ratio of 0.40%. 

 

Figure 7.29 Normalized acceleration response for the vertical load models 

recommended by SYNPEX, JRC and HIVOSS, plotted for steel 

structural damping ratios. 

The same damping ratios are applied in the standards which does not affect the 

relation between the normalized curves which is same as for 5.0% damping. The load 

models have the same maximum values with the main differences in the defined 

frequency intervals.  

In Figure 7.30 are the normalized acceleration response plotted for the lateral load 

models. The same situation applied for the lateral load models as for vertical, it 

mainly the frequency interval that separates the models. 
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Figure 7.30 Normalized acceleration response for the lateral load models 

recommended by SYNPEX, JRC and HIVOSS, plotted for steel 

structural damping ratios. 

7.3.1.4 Timber 

The structural damping ratio for timber structures differs between the standards. In 

SYNPEX 3.0% is recommended and in JRC/HIVOSS 1.5% is recommended.  

In Figure 7.31 the normalized acceleration responses for vertical loading are plotted 

with damping ratios according to timber structures.  

 

Figure 7.31 Normalized acceleration response for the vertical load models 

recommended by SYNPEX, JRC and HIVOSS, plotted timber structural 

damping ratios. 
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of pedestrians where the damping ratio is included affects the difference to decrease to 

30%. The higher damping the higher number of equivalent pedestrians and higher 

normalized acceleration response. 

In Figure 7.32 are the normalized acceleration responses in lateral direction plotted for 

the standards. 

 

Figure 7.32 Normalized acceleration response for the lateral load models 

recommended by SYNPEX, JRC and HIVOSS, plotted for timber 

structural damping ratios. 

The maximum lateral response is higher for JRC/HIVOSS due to the difference in 

damping ratio. The difference is about 40% and the same explanation applies for 

lateral loading as for vertical because of the similarities in load model. 

7.3.2 Suburban location 

“Suburban location” is a traffic class considering locations with weak traffic where 

slight variation in pedestrian loading and intensity occurs. An example can be a 
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2
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2
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7.3.2.1 Reference damping – 5.0% 

In Figure 7.33 and Figure 7.34 the normalized acceleration response for the 

considered standards in vertical and lateral direction can be seen established for a 

damping ratio of 5 %. 

 

 

Figure 7.33 Normalized acceleration response in vertical direction describing 

suburban location for a reference damping ratio of 5.0 %. 

Sétra is defined with a higher pedestrian density than the other standards and results in 

the highest accelerations but for a short interval of frequencies. JRC and SYNPEX 

which are defined with the same pedestrian density results in the same maximum 

value but JRC consider a shorter range of frequencies for the first harmony of 

structural frequencies. JRC considers second harmonics as well which SYNPEX 

considers as irrelevant. UK-NA results in the lowest accelerations where the 

maximum peak is approximately half of Sétra. Though the response according to UK-

NA gives the smallest accelerations it considers the widest range of frequencies. 
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Figure 7.34 Normalized acceleration response in lateral direction describing 

suburban location for a reference damping ratio of 5.0 %. 

Sétra results in the highest accelerations also in lateral direction. JRC and SYNPEX 

results in the same maximum value but SYNPEX consider a smaller interval of 

frequencies. Sétra is the only standard that considers the second harmony of structural 

frequencies in lateral direction where SYNPEX and JRC consider them to be 

irrelevant. UK-NA does not propose any load for lateral direction and is therefore not 

considered.  

7.3.2.2 Concrete 

In Figure 7.35 and Figure 7.36 the normalized acceleration response for the 

considered standards for concrete with corresponding damping ratios in vertical and 

lateral direction can be seen. 

 

Figure 7.35 Normalized acceleration response in vertical direction describing 

suburban location for concrete with corresponding damping. 
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Sétra, JRC and SYNPEX propose the same damping ratio of 1.3 % for concrete where 

UK-NA proposes a higher value of 1.5 %. Sétra results in the highest accelerations 

and JRC and SYNPEX are defined with the same damping ratio and pedestrian 

density and results in the same maximum value. UK-NA results in the lowest where 

the maximum value obtained with UK-NA is significantly lower than the one 

obtained with Sétra. In this case the accelerations for the second harmony are bigger 

due to UK-NA than for JRC which differs from the relationship obtained for a 

damping ratio of 5 %. This is due to that the damping ratio is considered in different 

ways in JRC and UK-NA.  

 

Figure 7.36 Normalized acceleration response in lateral direction describing 

suburban location for concrete with corresponding damping. 

Sétra, JRC and SYNPEX are defined with the same damping for concrete. Sétra 

exhibits significantly larger response than JRC and SYNPEX which results in the 

same maximum value. 
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7.3.2.3 Steel 

In Figure 7.37 and Figure 7.38 the normalized acceleration response for the 

considered standards for steel with corresponding damping ratios in vertical and 

lateral direction can be seen. 

 

Figure 7.37 Normalized acceleration response in vertical describing suburban 

location for steel with corresponding damping. 

Sétra, JRC and SYNPEX propose the same damping ratio of 0.40 % for steel where 

UK-NA proposes a slightly higher value of 0.50 %. Sétra results in the highest 

accelerations and JRC and SYNPEX results in the same maximum value. UK-NA 

results in the lowest acceleration response for the first harmony but larger than JRC 

for the second harmonies of structural frequencies. 

 

Figure 7.38 Normalized acceleration response in lateral direction describing 

suburban location for steel with corresponding damping. 
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The same damping is proposed for Sétra, JRC and SYNPEX. Sétra results in much 

larger response as shown for other materials with corresponding damping.   

7.3.2.4 Timber 

In Figure 7.39 and Figure 7.40 the normalized acceleration response for the 

considered standards for timber with corresponding damping ratios in vertical and 

lateral direction can be seen. 

 

Figure 7.39 Normalized acceleration response in vertical direction describing 

suburban location for timber with corresponding damping. 

Different damping ratios for timber are proposed in the standards. Sétra results in the 
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of 1.5 % compared to the damping ratio of 3.0 % proposed for SYNPEX. UK-NA 

with a damping ratio of 1.0 % and a higher pedestrian density of 0.4 ped/m
2
 compared 

to JRC results in approximately the same maximum value as for JRC for the first 
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0

2000

4000

6000

8000

10000

12000

14000

0 2 4 6 8

τ 
p

0
 [

N
/m

] 

Structural frequency [Hz] 

Sétra F(0.5)

1.0 %

JRC F(0.2)

1.5%

UK-NA

F(0.4) 1.0%

SYNPEX

F(0.2) 3.0%



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:108 
232 

 

Figure 7.40 Normalized acceleration response in lateral direction for different 

standards describing suburban location for timber with corresponding 

damping. 

The maximum acceleration response obtained with JRC for a damping ratio of 1.5 % 

is larger than for SYNPEX with a corresponding damping ratio of 3.0 %.  Sétra results 

in the highest accelerations for all structural frequencies with a proposed damping 

ratio of 1.0 % for timber. 
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2
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2
. SYNPEX, JRC and HIVOSS have the 

same traffic classes and the situation is considered as “dense traffic” equal to 0.5 

ped/m
2
. Due to the different classes the normalized acceleration response will be 

compared for various pedestrian densities. 
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7.3.3.1 Reference damping – 5.0% 

In Figure 7.41 is the normalized acceleration response in vertical loading direction 

plotted for the reference damping 5.0%. 

 

Figure 7.41 Comparison of the normalized acceleration response in vertical 

direction for damping ratio equal to 5.0%. 

In the figure above is the acceleration response for the load models calculated with the 
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response is some higher than for SYNPEX and JRC/HIVOSS. The three standards 
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highest maximum because of a denser pedestrian density. UK-NA and Sétra has the 
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maximum. The difference is big which leads to significant variations in the design. 
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magnitude as the first. SYNPEX does not consider the second harmony and is zero for 

all frequencies greater than 2.6 Hz. JRC/HIVOSS and UK-NA has approximately the 

same maximum for the second harmony. JRC/HIVOSS weighs the second harmony 

as 25% of the first and UK-NA about a third of the first harmony. 

Overall has Sétra the highest response considering all frequencies with the highest 

maximums and widest frequency ranges. 
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In Figure 7.42 is the normalized acceleration response in lateral direction plotted for 

5.0% damping ratio. 

 

Figure 7.42 Comparison of the normalized acceleration response in lateral 

direction for damping ratio equal to 5.0% 

In lateral direction is the normalized acceleration response from Sétra, SYNPEX and 

JRC/HIVOSS compared. UK-NA has not defined a load model for lateral direction 

and is therefore not included in the plot.  

Sétra has the highest maximum for the first harmony due to a higher pedestrian 

density. SYNPEX and JRC/HIVOSS has the same maximum for the first harmony 

slightly lower than Sétra. The critical frequency interval for Sétra and SYNPEX is the 

same both for the maximum values and the total range for first harmony. 

JRC/HIVOSS does not consider frequencies lower than 0.50 Hz compared to the other 

standards minimum at 0.30 Hz.  

The second harmony is only considered by Sétra for lateral vibrations with the same 

maximum as for its first harmony. 

7.3.3.2 Concrete 

The damping ratio for concrete bridges varies among the standards. The highest 

damping ratio is given by UK-NA at 1.5% which is given for recommended ratios in 

Eurocode. Sétra, SYNPEX and JRC/HIVOSS has all the same recommended ratio 

equal to 1.3%, slightly lower than Eurocode but not decisive.  

In Figure 7.43the normalized acceleration response in vertical direction is plotted for 

damping ratios according to concrete structures. 
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Figure 7.43 Comparison of the normalized acceleration response in vertical 

direction for damping ratios according to concrete structures. 

The damping ratios for Sétra, SYNPEX and JRC/HIVOSS are all the same meaning 

that the relation between the responses has not changed for the comparison of 5.0 % 

damping ratio. This is because the models are defined in the same way. The gap 

between the maximum responses of UK-NA and Sétra has decreased compared to the 

plot with 5.0% damping. Which means that UK-NAs response for lower damping 

ratios will increase more in comparison to the other models.  

For the second harmony have JRC/HIVOSS and UK-NA same response but much 

lower than Sétra. 

In Figure 7.44 is the normalized acceleration response in lateral direction plotted for 

damping ratios according to concrete structures. 

 

Figure 7.44 Comparison of the normalized acceleration response in lateral 

direction for damping ratios according to concrete structures. 
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The compared models in figure above are all calculated for the same damping ratio 

and the relation between them is unchanged compared to the comparison for 5.0% 

damping. 

7.3.3.3 Steel 

The recommended damping ratios for steel structures are low which generates a high 

acceleration response. The same structural damping ratios is recommended in Sétra, 

SYNPEX and JRC/HIVOSS equal to 0.40%.  The UK-NA recommends the damping 

ratio to 0.50% which is lightly higher than the other standards. 

In Figure 7.45 is the normalized acceleration response in vertical direction compared 

for the considered standards with damping ratios according to steel structures.  

 

Figure 7.45 Comparison of the normalized acceleration response in vertical 

direction for damping ratios according to steel structures. 
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In Figure 7.46 is the normalized acceleration response in lateral direction compared 

for damping ratios according to steel structures. 

 

Figure 7.46 Comparison of the normalized acceleration response in lateral 

direction for damping ratios according to steel structures. 

The same damping ratio applies for the three compared standards. The relation 

between the acceleration responses is unchanged compared to the comparison with 

5.0% damping.  
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In Figure 7.47 is the normalized acceleration response in vertical direction compared 

for damping ratios according to timber structures.  

 

Figure 7.47 Comparison of the normalized acceleration response in vertical 

direction for timber bridges. 

In the comparison above Sétra has clearly the highest maximum in response for the 

first and second harmony. The response between the other standards is more equal 

where SYNPEX has the lowest response due to the high damping ratio assigned. UK-

NA and JRC/HIVOSS have similar response for both the first and second harmony. A 

higher damping ratio is applied in JRC/HIVOSS but gives still a slightly higher 

response for the first harmony though UK-NA has a higher response for the second 

harmony.   

In Figure 7.48 is the normalized acceleration response in lateral direction compared 

for damping ratios according to timber bridges. 

 

Figure 7.48 Comparison of the normalized acceleration response in lateral 

direction for timber bridges. 
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The lateral response varies among the compared standards in the figure above. 

SYNPEX has the lowest response at less than 50% of the maximum response by 

Sétra. The low response in SYNPEX is explained by the high damping ratio applied. 

Sétra which considers the highest pedestrian density has also the lowest applied 

damping ratio has the absolute highest acceleration response. JRC/HIVOSS has a 

lower damping ratio than SYNPEX which generates a higher response. 

7.3.4 Urban location – crowded 

The traffic class “Urban location – crowded” is a traffic class considering primary 

route at important facility in a city such as a metro station or close to a sports stadium.  

The condition is in SYNPEX, JRC and HIVOSS regarded as a very dense traffic 

according to traffic class 4 with 1.0 ped/m
2
. In UK-NA traffic class D applies with 1.0 

ped/m
2
 as the maximum considered density in the standard. In Sétra class I applies 

which suits well to the description and corresponds to 1.0 ped/m
2
. This means that all 

standards will be compared for the same pedestrian density. 

SYNPEX  TC4 

HIVOSS  TC4 

JRC   TC4 

UK   D (1.0 ped/m
2
) 

Setra  Class I 

7.3.4.1 Reference damping – 5.0% 

The standards are in figure above all compared with the same damping ratio and 

pedestrian density. The difference between the acceleration responses is dependent on 

the load model and critical frequency intervals defined. 

In Figure 7.49 is the normalized acceleration response in vertical direction plotted for 

5.0% structural damping ratio. 

 

Figure 7.49 Comparison of the normalized acceleration response in vertical 

direction for a reference damping ratio of 5.0  %. 
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In the lowest interval for the first harmony Sétra, SYNPEX and JRC/HIVOSS has all 

the maximum value. The models are based on each other which make them similar 

and therefore generate the same acceleration response. The differences between them 

are the frequency interval where JRC/HIVOSS has the shortest range of frequencies 

and Sétra together with SYNPEX are defined for a wider range. Though at the 

maximum response they are all defined for the same frequencies. The UK-NA 

response is significantly lower than the other standards almost half as high value. The 

load model in UK-NA is different from the others where it takes into account the 

damping ratio and equivalent number of pedestrians in a different manner. The 

frequency interval for the first harmony is approximately the same for all standards.  

For the second harmony Sétra reaches the highest response at the same level as its 

first harmony. JRC/HIVOSS and UK-NA has approximately the same response where 

they peak at the same frequency interval. SYNPEX does not consider the second 

harmony and is zero for all frequencies greater than 2.5 Hz. 

In Figure 7.50 is the normalized acceleration response in lateral direction plotted for 

5.0% damping ratio. 

 

Figure 7.50 Comparison of the normalized acceleration response in lateral 

direction for a reference damping ratio of 5 % 

The UK-NA does not recommend any load model for lateral vibrations. The response 

from the compared curves is similar as the load models are based on each other. 

SYNPEX and Sétra have the widest range of considered frequencies for the first 

harmony where only JRC/HIVOSS is zero for frequencies below 0.5 Hz. The 

maximum response for the first harmony is the same for all models but only Sétra 

considers the second harmony where it has weighted it as equal to the first.  

0

100

200

300

400

500

600

700

800

900

0 1 2 3

τ 
p

0
 [

N
/m

] 

Structural Frequency [Hz] 

Sétra F(1.0)

5.0%

SYNPEX

F(1.0) 5.0%

JRC/HIVOSS

F(1.0) 5.0%



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:108 
241 

7.3.4.2 Concrete 

In Figure 7.51 is the normalized acceleration response plotted with damping ratios 

according to concrete structures. 

 

Figure 7.51 Comparison of the normalized acceleration response in vertical 

direction for reinforced concrete with corresponding damping. 
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In Figure 7.52 is the normalized acceleration response in lateral direction plotted for 

damping ratios according to concrete structures. 

 

Figure 7.52 Comparison of the normalized acceleration response in lateral 

direction for reinforced concrete with corresponding damping. 

The damping ratio is the same for all compared standards which means that the 

relation between them will be the same for concrete structures. 

7.3.4.3 Steel 

In Figure 7.53 is the normalized acceleration response plotted with damping ratios 

according to steel structures.  

 

Figure 7.53 Comparison of the normalized acceleration response in vertical 

direction for steel with corresponding damping. 
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The damping ratios for steel structures are Sétra, SYNPEX and JRC/HIVOSS is equal 

to 0.40% and in UK-NA set to 0.50%. The damping ratios are all low and 

approximately the same which makes them reasonable. UK-NA has a slightly higher 

damping ratio than the other standards which also was the case for concrete structures. 

In the figure it can clearly be seen that UK-NA load model has a much lower 

acceleration response about 20% of the maximum from the other models. 

In Figure 7.54 is the normalized acceleration response for lateral vibrations plotted 

with damping ratios according to steel structures.  

 

Figure 7.54 Comparison of the normalized acceleration response in lateral  

direction for steel with corresponding damping. 
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In Figure 7.55 is the normalized acceleration response in vertical direction plotted for 

damping ratios according to timber. 

 

Figure 7.55 Comparison of the normalized acceleration response in vertical 

direction for timber with corresponding damping. 

Due to the varying damping ratios the models generates different response. The 

maximum response is given for the load model in Sétra which also has the lowest 
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damping ratio but ends up with the same response. The damping ratio is three times as 

high for SYNPEX in comparison to UK-NA. there is a big difference between the 

highest and lowest response as SYNPEX is about one third of the response in Sétra. 

The two models are defined in a similar way but the damping ratios affects the 

response drastically.  

 

Figure 7.56 Comparison of the normalized acceleration response in lateral 

direction for timber with corresponding damping. 
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In lateral direction of loading is the relation between the load models similar to the 

vertical loading. The highest response is given for Sétra and lowest for SYNPEX. 

JRC/HIVOSS has a recommended ratio of 1.5% in between of the others and will 

therefore have a response higher than SYNPEX and lower than Sétra. 

7.3.5 Exceptional dense traffic 

The traffic situation “Exceptional dense traffic” is a load case that very seldom will 

occur during the bridge´s life time. It could happen during a special occasion for 

example during the opening ceremony of the bridge or other special occasion in a 

nearby location to the bridge. The traffic situation corresponds to the worst traffic 

classes defined in the standards. In SYNPEX, JRC and HIVOSS it is referred to 

traffic class 5 which is described as exceptional dense traffic with a pedestrian density 

equal to 1.5 ped/m
2
. In UK-NA is the highest traffic situation regarded as bridge class 

D but with the definition given in the standard does not qualify as an exceptional 

dense traffic situation. Sétra does not either provide a suitable traffic class for 

exceptional dense traffic as the highest traffic class presented corresponds to 

pedestrian traffic at a train station.  

In this chapter will traffic class TC5 for SYNPEX, JRC and HIVOSS be compared by 

the normalized acceleration response curve. Due to the fact that JRC and HIVOSS 

recommends the same load model and damping ratio only two curves will be 

compared. 

7.3.5.1 Reference damping – 5.0% 

The normalized acceleration response is calculated for the considered standards with 

the same structural damping ratio 5.0%. 

In Figure 7.57 is the normalized acceleration response in vertical direction compared 

for 5.0% damping ratio. 

 

Figure 7.57 Comparison of the normalized acceleration response in vertical 

direction for 5.0% damping ratio. 
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JRC/HIVOSS are based on each other which makes them similar. The maximum 

response for the first interval is equal between the models but SYNPEX is defined for 

a wider frequency range. SYNPEX does not consider the second harmony and is 

equal to zero. JRC/HIVOSS weigh the second harmony as 25% of the value in the 

first harmony. 

In is the normalized acceleration response in lateral direction plotted for the 

considered standards with 5.0% damping.    

 

Figure 7.58 Comparison of the normalized acceleration response in vertical 

direction for 5.0% damping ratio. 
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7.3.5.2 Concrete 

The recommended damping ratio for concrete structures is in SYNPEX and 

JRC/HIVOSS set to 1.3%. 

In Figure 7.59 the normalized acceleration response in vertical direction is plotted for 

the considered standards with damping ratios according to concrete structures.  

 

Figure 7.59 Comparison of the normalized acceleration response in vertical 

direction for damping ratios according to concrete structures. 
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Figure 7.60 Comparison of the normalized acceleration response in lateral 

direction for damping ratios according to concrete structures. 
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7.3.5.3 Steel 

The damping ratios recommend by the considered standards for steel structures is 

1.5% for both SYNPEX and JRC/HIVOSS.  

In Figure 7.61 is the normalized acceleration response plotted for the considered 

standards with damping according to steel structures.  

 

Figure 7.61 Comparison of the normalized acceleration response in vertical 

direction for damping ratios according to steel structures. 
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Figure 7.62 Comparison of the normalized acceleration response in lateral 

direction for damping ratios according to steel structures 

0

20000

40000

60000

80000

100000

0 1 2 3 4 5 6

τ 
p

0
 [

N
/m

] 

Structural Frequency [Hz] 

SYNPEX

F(1.5) 0.40%

JRC/HIVOSS

F(1.5) 0.40%

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3

τ 
p

0
 [

N
/m

] 

Structural Frequency [Hz] 

SYNPEX

F(1.5) 0.40%

JRC/HIVOSS

F(1.5) 0.40%



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:108 
249 

7.3.5.4 Timber 

The damping ratios recommended by the standards for timber bridges vary where 

SYNPEX recommends 3.0% and JRC/HIVOSS 1.5%. 

In Figure 7.63 the normalized acceleration response in vertical direction is plotted for 

damping ratios according to timber bridges. 

 

Figure 7.63 Comparison of the normalized acceleration response in vertical 

direction for damping ratios according to timber structures. 
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In Figure 7.64 the normalized acceleration response in lateral direction is plotted with 

damping according to timber.  

 

Figure 7.64 Comparison of the normalized acceleration response in lateral 

direction for damping ratios according to timber structures. 

The response in lateral direction is twice as high for JRC/HIVOSS compared to 

SYNPEX due to different damping ratios. 
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8 Discussion  

In this chapter relevant aspects regarding load models and guidelines are presented 

and discussed. 

8.1 Frequency intervals 

Eurocode states that all bridges with at least one natural frequency below 5 Hz in 

vertical direction and 2.5 Hz in lateral and torsional directions have to be analyzed 

dynamically. The analysis should be done to determine the risk of resonance and 

excessive vibrations due to pedestrians induced forces. Eurocode recommends 

frequency ranges of normal step frequencies for which resonance can occur. The 

range is in vertical direction defined between 1.0 and 3.0 Hz. This corresponds to an 

interval between 0.50 and 1.5 Hz in lateral direction. A recommended frequency for 

jogging is set to 3.0 Hz.  

The given frequency intervals does not cover all frequencies below 5 Hz. Bridges 

with vertical natural frequency below 1.0 Hz and above 3.0 Hz are not considered. As 

well as for bridges with lateral natural frequencies below 0.50 Hz and above 2.5 Hz. 

Resonance between the applied pedestrian load and the bridge structure will only 

occur for the frequencies in the specified ranges. The frequencies outside the intervals 

will not be considered in the load models and no dynamic analysis is needed. 

Eurocode does not mention that resonance can occur for the second harmony of the 

applied load. The second harmony will double the critical frequency ranges to 

consider all frequencies below 5 Hz and up to 6 Hz. There is a risk of mistakes to be 

made by the engineer as Eurocode lacks information about the second harmony. The 

engineer could, by only the information in Eurocode, suppose that a dynamic analysis 

is not required for bridges with natural frequencies below 5 Hz and outside the critical 

ranges. Even though resonance and excessive vibrations could occur for the second 

harmony. Eurocode refers to ISO 10137 for further guidance where different critical 

frequency ranges are defined. The critical frequency ranges given in Eurocode are 

reasonable though the upper limit of 3.0 Hz can be regarded as too high.  Compared to 

research and other standards step frequencies above 2.5 Hz are rare. 

The step frequencies suggested in the standards are similar but there are differences. 

ISO 10137 suggest a vertical step frequency range between 1.2 and 2.4 Hz. The range 

is smaller than in Eurocode and should correspond better to the actual step 

frequencies. The studied standards suggest approximately the same range as in ISO 

10137 but the ranges defined as step frequencies does not always correspond to the 

critical ranges considered in design.  

Sétra suggest a step frequency between 1.6 and 2.4 to be applied for the single 

pedestrian load model and frequencies between 1.0 and 2.6 Hz are regarded for 

pedestrian streams. The same applies for the load models in SYNPEX where different 

ranges are considered depending on the type of load model. The UK-NA is 

characterized by covering all frequencies between 0 and 8 Hz in the load models. It is 

not consistent to Eurocode by defining step frequencies up to 8 Hz as bridges with 

natural frequencies above 5 Hz are not required to be analyzed. Walking frequencies 

up to 8 Hz are not realistic even when considering the second harmonic. 

The load models simulating a single pedestrian are compared with ISO 10137 in 

section 0 where the considered frequency ranges are shown graphically. The most 

critical frequencies defined by UK-NA are between 1.2 and 2.6 Hz which is 
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comparable to ISO 10137. SYNPEX has a shorter interval between 1.25 and 2.3 Hz 

still covering the most critical frequencies. Sétra on the other hand is defined between 

1.6 and 2.4 Hz. In vertical direction the interval can be accepted but it would 

correspond to a too high frequency interval in lateral direction. All concentrated load 

models except SYNPEX are defined for the second harmony where the double 

frequency applies. 

The load models simulating pedestrian streams as uniformly distributed loads 

consider a wider range of frequencies. The models are all compared in section 7.3 

where the frequency ranges are seen for the first and second harmony in vertical and 

lateral directions. SYNPEX has the widest frequency range regarded in design for the 

first vertical harmony between 1.0 and 2.6 Hz for all traffic classes. Sétra applies the 

same range but a shorter interval is considered for low density crowds only covering 

1.7 to 2.1 Hz. An explanation why a shorter range is of interest for low density 

crowds, which is unique for Sétra, is not found. The standard weighs the frequencies 

differently in the load models and is directly related to load amplitude. The maximum 

load amplitude is given between 1.7 and 2.1 Hz for all standards. The range is 

reasonable according to normal step frequencies and by the fact that the standards 

agree. The second harmony in vertical direction is considered in UK-NA, Sétra, JRC 

and HIVOSS for all traffic classes. SYNPEX does not consider the second harmony 

and Sétra applies the second harmony for higher pedestrian densities. According to 

literature a second harmony resonance phenomena has never occurred in reality but 

still some of the standards enhance its importance.  

Low frequencies are considered in the uniform load models for lateral vibrations 

where SYNPEX and Sétra are defined for a minimum frequency of 0.30 Hz. The 

minimum limit is far lower than half the considered vertical step frequency used in 

design. JRC and HIVOSS are defined to the minimum limit 0.50 Hz. This gives a 

great difference between the models as SYNPEX and Sétra weigh 0.50 Hz with 

maximum importance compared to JRC and HIVOSS which are set to zero. 

According to the knowledge gained by the London Millennium Bridge frequencies as 

low as at least 0.50 Hz should be regarded to avoid future mistakes. The second 

harmony is only considered by Sétra in lateral direction.  

The compared standards have similar or equally defined step frequencies in their load 

models for vertical and lateral action of the first harmony. The defined step 

frequencies in ISO 10137 are relevant whereas the defined upper limit in Eurocode of 

3 Hz seems too high according to literature. The frequency range defined in UK-NA 

can with reference to Eurocode be shortened to consider at maximum 5 Hz. The 

second harmony is considered in all standards except Eurocode and SYNPEX. The 

importance of excessive vibrations due to the second harmony diverges in literature. 

According to theory it seems reasonable to occur but the fact that it never happened in 

reality remains. An explanation why no known real case have occurred can be that 

other modes are excited instead. The second harmonic is theoretical and in reality 

torsional and mixed modes could be excited instead. The second harmonic response is 

interesting and can be studied further both because of its theoretical effect and if it in 

fact can or will occur in reality.  

8.2 Effect of pedestrian mass on dynamic properties  

The amount of pedestrians situated at a footbridge that is vibrating affects the 

damping and natural frequency of the structure. The pedestrians mass is added to the 

mass of the bridge and they are moving together. 
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JRC, HIVOSS and SYNPEX recommend that when calculating the natural 

frequencies of a bridge the mass of pedestrians should be taken into account. For 

pedestrian streams this is relevant when the added mass due to the pedestrians can be 

large in comparison with the weight of the bridge. The increase in mass due to 

pedestrians results in a lower natural frequency. This is important to pay attention to 

as it changes the conditions of the analysis resulting in that the risk of resonance could 

increase or decrease. A limit is defined in JRC, HIVOSS and SYNPEX that the mass 

of pedestrians should be regarded when calculating the natural frequency of the 

structure if the modal mass of the pedestrians is more than 5 % of the modal mass of 

the bridge. This limit is based on Monte Carlo simulations and should be a reasonable 

estimate.  

Sétra recommends incorporating the mass of each pedestrian within the mass of the 

footbridge when analyzing with the uniformly distributed load. This is because that 

the static load of the pedestrian has no influence on the acceleration disregarding the 

fact that added mass changes the behavior of the structure. The authors think it is 

reasonable and in line with other recommendations found in literature. 

Other regarded aspects in the literature show that the mass of the pedestrians affect 

the dynamic properties of footbridges. The risk of unstable lateral response is 

regarded with a damping mass parameter in UK-NA. A relation between the bridge 

mass in combination with structural damping and the mass of the pedestrians is 

compared with test measurements for lateral frequencies of footbridges. This indicates 

when unstable lateral responses are to be expected. This relationship seems reasonable 

as it considers the relationship between pedestrian and bridge mass which is 

strengthened by the analysis in section 5. The relationship between the load amplitude 

and the mass of the bridge is concluded to be the factor that affects the obtained 

accelerations which is comparable to the relationship proposed in UK-NA.  

ISO 10137 mentions that the presence of pedestrians may change footbridges dynamic 

properties and that “some form of reliability analysis my need to be carried out”. A 

method for performing this reliability analysis is not presented. It is also mentioned 

that people will add to the overall level of damping but that damping in general is 

complicated to calculate. The recommendation is made that data from measurements 

should be used. The effect of pedestrian mass on structural damping is an aspect that 

should be investigated further. Field measurements on existing structures could be a 

good way to gather more information about this subject. 

To conclude it can be said that pedestrian mass is mentioned in the literature as 

relevant to consider but that the connection with structural damping and natural 

frequencies is complex. Regarding structural damping there are a lot of uncertainties 

considering other factors in addition to the effect of pedestrian mass which makes this 

hard to assess. For accurate calculations of structural dynamic behavior the 

pedestrians mass should be included. The effects of pedestrian mass on the damping 

ratio and natural frequencies are not included in this master´s thesis.  

8.3 Damping 

Structural damping has a significant effect on the acceleration response of a structure 

and is therefore important to consider correctly. A problem is that the damping ratio is 

complex to calculate and involves a lot of uncertainty. It is affected by many factors 

as for example the structure of the bridge, if the experienced vibrations are large or 

small or the choice of material. Reliable values can be obtained through 
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measurements and earlier experience but this is based on that there are available 

values from earlier similar bridges. 

Choosing an appropriate damping ratio is a problem when defining FE-models in the 

purpose of an accurate analysis. As it can be seen in section 5.5 the damping ratio 

affects the obtained acceleration response significantly. If the damping ratio is not 

accurate the results from the FE-analysis will not be reliable. It can be better to choose 

a lower value of damping for design and to consider the calculated values as 

indications on the real behavior of the structure. If accelerations are calculated that are 

near the defined comfort limits it is recommended to take measures adding extra 

damping to be sure to avoid uncomfortable vibrations.  

The defined damping ratios for different materials differ between the studied 

guidelines. The damping ratio for reinforced concrete is defined as 0.80 % in ISO 

10137 and 1.5 % for UK-NA. Timber differs between a damping ratio of 3.0 % for 

SYNPEX and 1.0 % according to UK-NA and ISO 10137. This results in that the 

obtained acceleration response with different standards differs for a bridge built with 

the same material. 

Eurocode define damping ratios dependent on material and if the span length is 

shorter or longer than 20 meters. The damping ratio according to Eurocode is larger 

for a shorter span beneath 20 m and increases as the span decreases. For span lengths 

over 20 m the damping ratio is constant. The proposed values are larger than the ones 

presented in ISO 10137 where for example the damping for reinforced concrete is 

defined as 0.8 % and the value in Eurocode is defined as 1.5 % for spans larger than 

20 m.  

This result in questions regarding which damping ratio that should be used in design. 

A conservative approach is to take the lower value defined in ISO 10137 giving rise to 

a larger acceleration response. For example regarding reinforced concrete other 

standards propose a damping ratio closer to 1.5 % as for example Sétra that gives a 

value of 1.3 % and UK-NA which gives a value of 1.5 % as well. This implies that the 

damping ratios defined in ISO 10137 might be conservative.  

It should also be noted that damping ratios are dependent on the structure of the 

bridge. For example non-structural elements such as railings can add to the overall 

damping of the structure in a way that can be hard to predict. Damping ratios defined 

from the type of structure in addition to choice of material would be useful in design. 

The authors recommend a conservative approach choosing low damping ratios. ISO 

10137 is the most conservative of the studied standards and can be a good alternative. 

8.4 Load models 

Concentrated and uniformly distributed loads are discussed separately in the 

following two sections. 

8.4.1 Concentrated load models for single pedestrians and groups 

of pedestrians 

The humans induced vibrations of a single pedestrian is simulated by a concentrated 

force. The proposed models in ISO 10137, SYNPEX and Sétra are based on Fourier 

series considering up to five Fourier sums. The UK-NA proposes a model different 

from the others but similar to the uniform load proposed in the standard.  
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Common for all models is that it should be applied as a moving load over the span. 

The idea is to in an accurate way simulate a pedestrian crossing the bridge. The 

walking velocities are given both as constant values independent on step frequency 

and as functions of the frequency. ISO 10137 does not recommend a walking velocity 

as the other standards do. It is reasonable to consider the step frequency in the 

walking velocity as they are highly related. To model the load as moving increases the 

complexity of application in a FE-software or simple hand calculations. The structural 

response will be dependent on the bridge length and walking velocity as the loading 

time is related to the time it takes for the load to cross the bridge. The loading time is 

probably not sufficiently long to reach steady state. It is even questionable if steady 

state conditions can be achieved as the load does not act at the worst position during 

the entire loading time.  

A simplification has been made in this thesis to only analyze the concentrated loads as 

stationary. The loads have been applied until steady state was reached which gave 

higher acceleration responses than from a moving load. Since all concentrated load 

models should be applied as moving they are all comparable on the same basis even 

though the acceleration responses cannot be compared to reality and to the 

recommended acceleration limits.  

The difference in maximum response between a moving and a stationary load has not 

been studied in this thesis but is of high interest. Interesting aspects could be how the 

bridge length affects the response and if the load models can be simplified as 

stationary but with a modification factor. The simplest way is to apply the loads in a 

FE software as stationary and for an engineer it can be of interest to know how the 

response is related to the way of load application. 

ISO 10137 proposes a concentrated load model applicable in vertical and lateral 

direction. It includes up to the fifth harmonic in vertical direction and only the first in 

lateral direction. It is recommended in the standard to consider a maximum of three 

harmonics as the higher harmonics are not perceptible by humans. In the normalized 

acceleration response only the first Fourier sum is considered. A study has been made 

in section 6.1.1 of how the number of considered harmonics affects the response in a 

structure. It shows that the first sum gives the governing response. The additional 

sums will not increase the vibration and can be neglected. Based on the study only the 

first Fourier sum is used in normalization. Concerning the second harmony it has been 

shown that only the second Fourier sum affects the structural response. Meaning that 

the second Fourier sum can be used individually without considering the first sum 

which has been used in normalization.  

The load model for vertical loading in ISO 10137 is defined between 1.2 and 2.4 Hz 

for the first harmony and between 2.4 and 4.8 Hz for the second harmony. In lateral 

direction the frequency range is defined between 0.60 and 1.2 Hz. ISO 10137 gives 

the highest acceleration response for 2.4 Hz.  

The load model in UK-NA is defined for all frequencies from 0 to 8 Hz as seen in 

Figure 7.1 which presents the comparison between ISO 10137 and UK-NA for 5.0% 

damping. Both standards consider the first and second harmony and have a similar 

shape over the frequencies. UK-NA has higher response for frequencies below 2 Hz 

but ISO 10137 has higher response between 2.0 and 2.4 Hz and the highest maximum 

response. The curves are parallel between 1.2 Hz and up to 2.0 Hz where UK-NA has 

a higher response for all frequencies. ISO 10137 has constant response for the second 

harmony lower than UK-NA. UK-NA weighs 3.8 Hz the highest for the second 
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harmony which is reasonable according to common step frequencies. Overall the 

response is similar for the two load models even though they diverge in response at 

the most common walking frequencies just below 2 Hz. ISO 10137 weighs 2.4 Hz as 

the most important differently than UK-NA. The chosen frequency is not the most 

common step frequency but could give high dynamic effects as high frequency means 

fast walking speed close to running and generates higher load amplitude. A walking 

frequency at 2.4 Hz means fast walking which results in a high force when the foot 

hits the ground. The assumption seems reasonable for single pedestrians. UK-NA 

generates a much lower acceleration response than ISO 10137 for 2.4 Hz which can 

give great differences in design. 

SYNPEX propose a concentrated load model applicable for a single pedestrian in 

vertical and lateral directions. The load model is a Fourier series with coefficients and 

phase angles based on complex functions of the step frequency. SYNPEX does not 

consider the second harmony in their load models. In vertical direction it is defined 

from 1.25 to 2.3 Hz and in lateral direction between 0.30 and 1.3 Hz. In Figure 7.5 is 

the model compared with the load model proposed by ISO 10137 for 5.0% damping. 

The models are almost identical for the first harmony with increasing response for 

higher step frequencies. ISO 10137 generates higher response for all frequencies 

defined but the curves are close to parallel with small differences in response. The 

critical frequency range is slightly shorter for SYNPEX and it is not defined for the 

second harmony. In lateral direction compared in Figure 7.6 it can be seen that the 

two load models gives the same response. Both curves are constant and equal at the 

maximum value. Even in lateral direction SYNPEX is defined for a slightly shorter 

frequency range. 

Sétra proposes a concentrated load model based on Fourier series that is adjustable to 

consider vertical, longitudinal and lateral loading. Different from the other standards, 

Sétra recommends the engineer to only consider the first Fourier sum of practical 

reasons. The first Fourier sum of the vertical load model is compared to the vertical 

model in ISO 10137 in Figure 7.13. Because of the recommendations in Sétra the 

main difference between the responses in the two load models is due to the critical 

frequency ranges. Sétra is defined for a short interval in vertical direction between 1.6 

and 2.4 Hz. This gives big differences in response for frequencies below 1.6 Hz which 

are common step frequencies. Although Sétra gives the highest response for 

frequencies between 1.6 and 2.1 Hz which are the most common step frequencies. 

ISO 10137 reaches the highest maximum response due to weighing of high step 

frequencies where Sétra is constant in the defined range. The response in lateral 

direction diverges between the models as seen in Figure 7.14. ISO 10137 gives twice 

as high response and is defined for a significantly wider frequency range. Sétra 

considers step frequencies from 0.80 to 1.2 Hz which is short in comparison to other 

standards. It clearly does not cover all important frequencies that can cause excessive 

lateral vibrations referring to research done on the London Millennium Bridge. 

The concentrated load models are primarily used to simulate a single pedestrian but 

can also be used for group of pedestrians. For an accurate and realistic load model the 

concentrated load need to be multiplied with an equivalent number of pedestrians. 

Multiplying the load by the total number of pedestrians in a group gives too high load 

amplitude as it implies that the pedestrians all walk with perfect synchronization. The 

equivalent number of pedestrians takes the probability of synchronization among the 

pedestrians into account and should always be used. ISO 10137 and UK-NA gives 

recommendations about the equivalent number of pedestrians. In Figure 7.21 are 
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groups of 8 and 15 pedestrians compared between the models with 5.0% structural 

damping ratio.  

It was earlier shown that ISO 10137 has higher response than UK-NA for frequencies 

above 2 Hz maximum for a single pedestrian. Though it has a lower response for 

frequencies below 2 Hz and for the second harmony for the same load case. The 

relation between the responses remains constant even for groups of pedestrians shown 

in Figure 7.21. This implies that the two models have a similar expression for the 

equivalent number of pedestrians for high damping. The model in UK-NA includes 

the damping ratio in the load model which can affect the response in a more complex 

way for other damping ratios. In Figure 7.22 shows the same comparison but for a low 

damping ratio equal to 0.50%. The relation between the curves remains constant even 

for low damping. It can therefore be concluded that ISO 10137 and UK-NA are 

similar in acceleration response for single pedestrians and group of pedestrians for all 

damping ratios. Still there are differences in the acceleration response for specific 

frequencies especially at 2.4 Hz.  

The overall impression from the considered load models is that ISO 10137 shows 

acceleration response that generally is comparable and of the same magnitude as for 

SYNPEX, UK-NA, and Sétra. Though there are big differences in response for 

specific frequencies. The load application is similar among the models but ISO 10137 

is not considered as the most complete. 

SYNPEX proposes the load model which is most equal to ISO 10137. The models 

show approximately the same response in both vertical and lateral direction of loading 

though SYNPEX do not consider the second harmony.  Both models weigh high step 

frequencies of most importance. SYNPEX refers to ISO 10137 in their report but it is 

not clear if SYNPEX has chosen to follow the assumptions in ISO 10137. It is hard to 

predict what the correct answer is without measured data from field measurements. 

SYNPEX has the far most complex Fourier coefficient and phase angles. They are 

calculated by complicated functions resulting in similar coefficients given by ISO 

10137.    

The load model proposed by UK-NA is regarded as the most complete model. The 

model includes factors not regarded in the other models concerning synchronization in 

groups of pedestrians, span length, structural damping and a design factor for 

weighing the importance of the frequencies. It is at the same time the only model 

which is not based on Fourier series. Different from ISO 10137 and SYNPEX it 

weighs 1.9 Hz as the most important frequency which is reasonable for groups 

according to common step frequencies. The model is not applicable in lateral direction 

which had been desirable. 

Sétra propose a model which is simple to apply and recommends the engineer to use 

only the first Fourier sum. In vertical direction it gives accurate results compared to 

ISO 10137 and the other standards. The model generates constant response for its 

defined frequencies. In lateral direction it differs from the other standards with a 

lower response. 

The greatest difference between the load models is the acceleration response at 2.4 Hz 

where ISO 10137 gives the highest response. It can be a reasonable estimate regarding 

a single pedestrian as high step frequency gives high step forces. Though for a group 

of pedestrian the probability is low that all pedestrians are walking at the same high 

frequency generating the highest response. In UK-NA the probability of likely step 

frequencies is considered which gives the highest response just below 2 Hz. It makes 
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the model applicable for groups but could give too low response for a single 

pedestrian.  

To conclude ISO 10137 recommends a good load model for a single pedestrian that is 

applicable in vertical and lateral direction. Due to its simplicity defined as a Fourier 

sum without design factors the model is by the authors of the thesis considered to be 

too simple to model pedestrian groups. The authors think that the model 

recommended by UK-NA is the most complete and well defined for pedestrian groups 

even though lateral vibrations are not covered.   

8.4.2 Pedestrian crowds simulated as uniformly distributed loads 

During crowded conditions the pedestrian loading can be modeled as a uniformly 

distributed load applied over the entire bridge deck. It is the most convenient way of 

modeling the pedestrian induced forces caused by more than a single pedestrian. 

SYNPEX is the oldest of the considered standards that recommends this type of 

loading. Sétra, JRC and HIVOSS are all referring to SYNPEX but have made their 

own interpretation and adjustments to the model. All models can be modified to 

consider vertical, lateral and longitudinal loading directions. UK-NA proposes a 

uniform load model different from the other standards which only applies for vertical 

vibrations. ISO 10137 does no propose a uniform load model or any model to 

simulate pedestrian streams even though it recommends the designer to perform such 

an analysis. 

In section 7.3 the models are compared graphically where the relation between 

acceleration responses and the structural frequency of the bridge is shown. The 

acceleration response for the same damping ratios varies due to pedestrian density, 

critical frequency ranges, equivalent number of pedestrians and individual factors 

defined in the standards. 

In Figure 7.49 the uniform load models are compared for the same damping ratio 

5.0% and pedestrian density equal to 1.0 ped/m
2
. It can clearly be seen that SYNPEX, 

Sétra, JRC and HIVOSS has the same maximum acceleration response for the first 

harmony. The models are similar and do not deviate for the first harmony. The 

parameters affecting the acceleration response are equal.  

The maximum response by the UK-NA load model, in Figure 7.49, is about 60% of 

the others maximum response. The model is completely different but should simulate 

the same situation which is confusing. For this specific load case with 1.0 ped/m
2
, 

some main differences between the models are identified. SYNPEX, Sétra, JRC and 

HIVOSS do not consider the structural damping ratio in the applied load as they do 

for lower pedestrian densities. The standards state that the damping does not affect the 

synchronization among the pedestrians if the bridge is crowded. The load model in 

UK-NA always considers the damping ratio in the reduction factor γ. The factor is 

increasing with increased structural damping and varies between 0 and the square root 

of 0.20.  Figure 7.41 shows the acceleration response for 5.0% damping ratio and 

pedestrian density 0.8 ped/m
2
 for Sétra and UK-NA. The relation between the two 

curves remains as UK-NA has about half as high acceleration response. This means 

that UK-NA gives about half as high response independent on pedestrian density for 

high damping ratios. For low damping ratios the relation between the responses from 

Sétra and UK-NA can be seen in Figure 7.55. The response is plotted for 1.0% 

damping ratio and 1.0 ped/m
2
 where Sétra has an acceleration response three times as 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:108 
259 

high. It can be concluded that UK-NA gives a low acceleration response compared to 

the other standards with increasing difference for low damping ratios. 

The critical frequencies and the weighing of their importance are crucial factors when 

comparing the acceleration responses. In Figure 7.49 the models are compared with 

the same input data and the differences in frequency ranges can be seen. UK-NA 

covers all frequencies from 0 to 8 Hz with varying importance. SYNPEX and Sétra 

consider a wider span than JRC and HIVOSS. The models are defined for the same 

frequency interval resulting in the maximum response. The difference in critical 

frequency range gives the largest impact for the frequencies in the border line between 

the curves. I.e. at 1.25 Hz where JRC and HIVOSS are zero SYNPEX and Sétra have 

reached approximately a third of their maximum. An even greater difference is 

identified at 2.3 Hz where SYNPEX and Sétra reach over 50% of their maximum 

compared to zero for JRC and HIVOSS.  

The second harmony is considered by Sétra, JRC, HIVOSS and UK-NA but not by 

SYNPEX. Sétra has the highest acceleration response for the second harmony in all 

analyzed cases presented in section 7.3. Sétra weighs the second harmony equal to the 

first as no other standards do. JRC and HIVOSS weigh the second harmonic as 25% 

of the maximum of the first harmony. UK-NA weighs the second harmony higher 

than JRC and HIVOSS at 38% of the maximum in the first harmony. As a 

consequence the difference between JRC, HIVOSS and UK-NA is lower for the 

second harmonic compared to the first harmonic.  

In lateral direction the compared load models SYNPEX, Sétra, JRC and HIVOSS all 

have the same load amplitude for the same pedestrian density and damping ratio. The 

difference between the models is the considered frequencies. Sétra and SYNPEX are 

defined between 0.30 and 1.3 Hz for the first harmonic. The maximum response is 

given between 0.50 and 1.1 Hz. The range is wide and represents frequencies even 

lower than the normal step frequencies presented in literature. JRC and HIVOSS are 

defined between 0.50 and 1.2 Hz with maximum response between 0.70 and 1.0 Hz. 

The range is narrower than in SYNPEX and Sétra but still covers the most critical 

frequencies. As learnt by the London Millennium Bridge frequencies at 0.5 Hz can 

cause excessive vibrations and discomfort and should be treated with caution. A wide 

frequency range that covers frequencies well below 0.5 Hz can be recommended for a 

safe and reliable design. 

The overall impression regarding the most preferable load model is that none of them 

fulfill all desired requirements. The UK-NA is easy to use and complete as it covers 

all important factors affecting the vibrations induced by pedestrian streams. It weighs 

the first and second harmonics in a reasonable way but it generates lower acceleration 

response for all considered load cases and damping ratios. This leaves a lot of 

unanswered questions that cannot be evaluated without further investigations of real 

loads on existing bridges. The model covers only vertical direction of loading which 

is insufficient for a complete analysis. The other standards provide load models that 

cover all directions of loading and all important factors for simulating pedestrian 

streams. JRC and HIVOSS consider the second harmonic in a reasonable way as 25% 

of the response for the first harmonic. Though the models have too small frequency 

intervals for lateral loading as they do not cover frequencies below 0.5 Hz. SYNPEX 

and Sétra cover low lateral frequencies in a preferable way but are not to be 

recommended for vertical direction. SYNPEX is incomplete as it does not consider 

the second harmonic. Sétra on the other hand considers both the first and second 

harmonic with same magnitude which is questionable. The standard defines a shorter 
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range of frequencies dependent on traffic class in comparison to the other load 

models. This seems unreasonable as it results in that relevant frequencies are not 

regarded. 

The fact remains that Eurocode and ISO 10137 needs to be complemented to model 

pedestrian streams. For a conservative approach the authors of this thesis would 

recommend the load model presented in Sétra. The model generates the highest 

acceleration responses for the considered traffic classes in both vertical and lateral 

direction. It is the most conservative load model regarding second harmonics, possibly 

too conservative. Though it should be used with caution for low traffic classes as the 

considered frequency interval is narrower than for higher traffic classes. The authors 

recommend considering the frequency interval defined for high traffic classes even for 

low traffic classes in order to make an accurate analysis. 

An alternative solution to complement ISO 10137 with a model of pedestrian streams 

is to apply the concentrated load model given in the standard as a uniformly 

distributed load. It has not been studied in this thesis but is recommended for further 

investigations. The authors think it possible to adapt the concentrated load model to 

simulate pedestrian crowds. The load can in a FE-analysis be applied over the span 

recalculated to consider pedestrian densities and multiplied with the equivalent 

number of pedestrians recommended in the standard. The authors believe that the load 

application will simulate an evenly distributed crowd in the same way as the other 

models do. The acceleration response in comparison to other models is currently 

unknown and is of great interest to investigate in further studies if it can be a suitable 

solution with accurate results. 

8.5 Acceleration limits 

Sétra, SYNPEX, HIVOSS and JRC states acceleration limits according to a 

maximum, medium and minimum level. In vertical direction the maximum level of 

comfort is defined as smaller than 0.50 m/s
2
 and the minimum level as an interval 

from 1.0 to 2.5 m/s
2
 where accelerations above 2.5 m/s

2
 are defined as unacceptable.  

The fact that these limits are similar point to that a consensus exists and that they can 

be regarded as reasonable. 

UK-NA proposes an acceleration limit of 2.0 m/s
2
 which in comparison with Sétra, 

SYNPEX, HIVOSS and JRC corresponds to a minimum level of comfort. 

ISO 10137 defines acceleration limits calculated from a base curve for vertical and 

lateral direction. In vertical direction this results in an acceleration limit defined as 

decreasing from 0.60 m/s
2
 for 1 Hz to 0.30 m/s

2
 for a structural frequency of 5 Hz. 

Compared with the limits defined in the other regarded standards this corresponds to a 

medium and maximum level of comfort. This implies that the limits in ISO 10137 for 

vertical direction are conservatively defined. 

The research done on the London Millennium bridge and Solférino footbridge shows 

that lateral “lock-in” is a phenomenon that must be regarded during design. Sétra that 

is based on research done on the Solférino footbridge limits accelerations in lateral 

direction to 0.10 m/s
2
 in any case to avoid “lock-in”.  

UK-NA states that if there are no lateral modes below 1.5 Hz it can be assumed that 

unstable lateral response will not occur. For lateral modes below 1.5 Hz a method is 

proposed where the mass per unit length of the bridge in combination with the 

structural damping is divided with the mass of pedestrians per unit length. This 
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relationship is compared with a stability boundary established through measurements 

to estimate if unstable lateral movements will occur. A limitation with this method is 

that the stability curve only is valid for lateral frequencies from 0.5 to 1.1 Hz and 

extracted theoretically beyond these frequencies. This curve should therefore be used 

with caution outside the valid range. 

In lateral direction JRC, HIVOSS and SYNPEX defines acceleration limits as 

maximum and minimum level of comfort. Maximum level is defined as smaller than 

0.10 m/s
2
 and the minimum level as an interval from 0.30 to 0.80 m/s

2
 where 

accelerations above 0.80 m/s
2
 are defined as unacceptable.  

JRC and HIVOSS define a critical number of pedestrians and a range of frequencies 

when “lock-in” is likely to occur. The critical number is based on a relationship 

between the modal mass, natural frequency, the structural damping and a constant that 

is derived from the measurement on the London Millennium Bridge. The range for 

when “lock-in” is likely to occur is defined as 0.10 m/s
2
 to 0.15 m/s

2
 in JRC and 

HIVOSS which is close to the defined limit 0.1m/s
2
 to avoid according to Sétra. 

SYNPEX defines an acceleration limit of 0.1 m/s
2
 for which lateral “lock-in” can be 

expected if a certain relationship between the step frequencies of the pedestrians and 

the natural frequency of the bridge also is met.  

IS0 10137 defines acceleration limits in lateral direction but does not consider lateral 

“lock-in”. Based on the literature and the other considered guidelines it seems relevant 

for this to be added to the limits in ISO 10137.  

The lateral limits defined in ISO 10137 are constant from 1 to 2 Hz and increasing for 

higher frequencies. This results in a limit of 0.108 m/s
2
 for 1 Hz to 2 Hz which 

increases linearly for frequencies above 2 Hz resulting in 0.27 m/s
2
 for 5 Hz. These 

limits are similar to other standards. 

Eurocode defines maximum acceleration limits for vertical and lateral direction to 

0.70 m/s
2
 and 0.20 m/s

2
 respectively. The vertical limit is acceptable if compared with 

the given values in other standards. In lateral direction it is larger than the limit for 

lateral “lock-in”. The vertical limit is low defined concerning all type of bridges in all 

locations. It would have been preferable to define ranges of acceptable accelerations. 

Pedestrians experience vibrations differently and different demands are therefore 

relevant due to location and situations. The limit in lateral direction is reasonable but a 

lower limit of 0.10 m/s
2
 is recommended to avoid “lock-in”. 

8.6 Bridges of different material 

It is clear that the mass of a bridge in comparison with the applied load is the decisive 

factor for the acceleration response. This means that the same bridge designed with 

different materials will result in different acceleration response as different materials 

have different structural properties.  

The materials studied in this thesis are reinforced concrete, steel and timber. Steel and 

timber are strong materials in comparison to their weight and should therefore be 

more likely to exhibit large vibrations than a corresponding bridge in concrete which 

is heavier and demands a larger cross-section. This is not studied extensively in this 

thesis and is a subject for further studies. A comparison with a reference bridge 

designed with different materials for the same conditions can be made in order to 

examine this thoroughly. A case study of a bridge with a natural frequency of for 
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example 2 Hz designed with different materials could be done examining the obtained 

accelerations. 

8.7 User-friendliness 

The standards and guidelines present their recommendations with different methods 

and to different extents. This affects how easy they are to apply for an engineer during 

design. 

ISO 10137 suggest a load model to describe the pedestrian force of a single pedestrian 

or a group of pedestrians but does not give any recommendations on how the force 

should be applied. It does not give any clear recommendations on how big the groups 

should be and defines that streams of pedestrians should be analyzed but no model for 

pedestrian streams is given. When designing a footbridge for dynamic loading due to 

pedestrians there are a lot of factors and information missing in ISO 10137. 

SYNPEX gives a lot of recommendations of methods and load models but does not 

point out the most relevant or accurate. This makes it hard to use during design when 

it is not clear which load models and limits to consider as relevant. 

UK-NA is easy to follow but does not explain all empirical factors. It is unclear what 

the factors account for and this gives rise to uncertainties in the design phase.  

All standards defining a load model for a single pedestrian state that the load should 

be applied as a moving load across the bridge. A moving load is significantly more 

complex to apply in FE-software or in hand calculations than a stationary load. The 

obtained accelerations depend on bridge span and velocity as this decides the time the 

load takes to cross the structure. It is very likely that the loading time is not sufficient 

for steady-state to occur or that it is even possible. The load do not act at the most 

critical position along the span and the fact that the load moves could just as easily 

counteract the resonance phenomenon as to create it.   

An uncertainty regarding load models for single pedestrians is the number of Fourier 

coefficients and harmonies included in Fourier sums which are suggested as load 

models in ISO 10137 and SYNPEX. Regarding the Fourier coefficients defined in 

ISO 10137 the obtained accelerations seem to be dependent only on the first term in 

the sum while the others are working against each other. The Fourier coefficients 

presented in SYNPEX are very complex and takes effort to implement in design. 

Considering two or three coefficients results in larger amplitude compared to 

regarding one. It is not sure that this larger amplitude results in larger acceleration 

response. The shape of the first Fourier term gives rise to the resonance phenomenon 

whereas the load resulting from two or three terms could just as easily counteract each 

other resulting in a lower acceleration response than for one term. This can be seen in 

Figure 6.44. 

Traffic classes based on expected traffic or locations with corresponding pedestrian 

densities are considered in the guidelines. This is very helpful for a designer if the 

pedestrian loading is not well defined by the client. In addition pedestrian streams are 

modeled with a uniformly distributed load with different size corresponding to the 

density expected on the bridge. This is easy to implement during design in 

comparison to modeling pedestrian streams with single pedestrians or groups which is 

complex and time consuming. Guidelines for which steps to take during design are 

also suggested which is helpful. 
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The guidelines presented in Sétra are hard to follow and “traffic classes” and “load 

cases” are confused with each other which makes is hard to use. JRC and HIVOSS 

provide relevant information with well-defined traffic classes. 

8.8 Design situations given in Eurocode and ISO 10137 

The proposed design situations in Eurocode and ISO 10137 seem reasonable as they 

include situations likely to occur. Situations where a single pedestrian, groups of 

pedestrians and streams of pedestrians traverse a structure are recommended to 

consider.  

All of these design situations are not covered in Eurocode and ISO 10137 and 

guidelines for design need to be found elsewhere. Furthermore the guidelines leave a 

lot of factors to the designer to make reasonable estimates, for example how big the 

pedestrian streams should be and how it should depend on the geometry of the 

walkway which is not defined. Recommendations on how much pedestrian traffic that 

can be expected for certain locations are not presented as are done in other guidelines 

which could be helpful.  

The design situation considering a single pedestrian proposes that one pedestrian 

should be standing in the middle of the span while another traverses the structure. 

This might be unnecessary to model as the pedestrian standing at mid span only adds 

a static load without dynamic contribution and with no significant effect to the bridge 

structure. This design situation could take into account that the pedestrian in the 

middle would experience any vibrations more disturbing than the pedestrian 

traversing the bridge. The authors think that Eurocode  and ISO 10137 suggests to 

measure the acceleration in the middle of the span while a pedestrian is crossing the 

bridge rather than adding the static load of an extra pedestrian in the middle of the 

span. However this is not evident from the standards.   

The other standards studied in this thesis provide guidelines on how pedestrian 

streams should be modeled and what densities of pedestrians that can be expected. 

This can work as a complement to the design situations proposed in Eurocode and 

ISO 10137 where the load from pedestrian streams is not defined. The more detailed 

guidelines and additional load models in these standards together with ISO 10137 can 

be used to cover the design situations proposed in Eurocode and ISO 10137. 

JRC and HIVOSS propose only distributed load to models the pedestrians load as no 

single pedestrian load models are defined. It seems as the load from single pedestrians 

are neglected. The authors think it is relevant to define a concentrated load model for 

single pedestrians in order to model groups of pedestrians to cover the design situation 

in Eurocode and ISO 10137. This is relevant for footbridges as a group of pedestrians 

can give rise to higher acceleration than to model streams with low pedestrian 

densities. 
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9 Concluding remarks 

The conclusions from this master´s thesis and suggestion for further studies are 

presented in this chapter. 

9.1 Conclusions 

In this Master´s Thesis current standards and guidelines have been presented, 

introduced and explained concerning how to design pedestrian footbridges regarding 

human induced vibrations. Several complete and accurate load models, methods and 

recommendations were found and presented which has increased the knowledge of 

dynamic design of footbridges.  

A numerical method has been derived to be able to compare and evaluate proposed 

load models in a sufficiently accurate way valid for a simply supported structure with 

arbitrary length, width, cross-section and density. It has been shown that the 

acceleration response depends on the ratio between load amplitude and mass of the 

bridge. A normalization factor dependent on the structural damping was derived in 

order to describe the acceleration response. The normalization factor and the 

relationship between load amplitude and structural mass results in that all load models 

can be analyzed and compared solely dependent on individual properties such as 

empirical factors and defined load amplitude. 

The literature study of current standards and the derived evaluation method has been 

used to compare the proposed load models with recommendations in Eurocode, 

according to section 4.1, and ISO 10137 (ISO, 2008). It was concluded that Eurocode 

and ISO 10137 need to be complemented with more specific guidelines to provide a 

sufficient support during design. Guidelines for an accurate and sufficient dynamic 

analysis can be found in the proposed standards. 

The defined design situations in Eurocode and ISO 10137 are judged as relevant and 

appropriate for design of pedestrian bridges. However the design situations proposed 

in Eurocode and ISO 10137 are not covered by the two standards and guidance for a 

thorough design need to be found elsewhere.  

ISO 10137 suggests a concentrated load, applicable in vertical and lateral direction, 

based on a Fourier sum sufficient to cover the first two design situations 

corresponding to a single and to a group of pedestrians. Alternative concentrated load 

models can be found in SYNPEX (Research Fund for Coal and Steel, 2006), Sétra 

(Sétra, 2006) and UK-NA ( British Standards Institute, 2008) resulting in responses 

with same magnitude but different for specific structural frequencies. UK-NA 

proposes a different concentrated load model as a simple harmonic load and is 

regarded as the most complete, including additional parameters not regarded in the 

other models, though it does not cover lateral vibrations. ISO 10137 is recommended 

for single pedestrians and UK-NA for group of pedestrians. 

No instructions are given in Eurocode or ISO 10137 of how to model pedestrian 

streams. The other standards studied propose to model pedestrian streams with 

uniformly distributed load which seems accurate and applicable. Modeling a stream of 

pedestrians with concentrated loads representing single pedestrians is time 

consuming. A distributed load should be defined in both vertical and lateral direction 

taking into account second harmonies preferably with a lower acceleration response in 

comparison to the first. A distributed load could advantageously be defined according 

to traffic classes representing a location or expected loading as shown in the 
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standards. Structural frequencies most likely to be excited by pedestrian walking 

frequencies should be regarded as the most relevant. The range for lateral frequencies 

should include frequencies below 0.5 Hz to take the “lock-in” phenomenon into 

account. These aspects can be found in the studied standards but none of them fulfill 

all desired criteria. Sétra recommends the most conservative load models and can be 

used for safe side calculations though it should be used with caution regarding 

relevant structural frequencies. Class III bridges in Sétra is recommended to be 

analyzed for all frequency ranges. 

It can be concluded that the standards and design procedures are dependent on several 

factors in addition to the load models. 

The defined step frequencies likely to occur affect which structural frequencies that 

are probable to be excited to resonance. ISO 10137 weighs 2.4 Hz as the structural 

frequency resulting in the largest response which is a frequency that does not occur in 

the literature as the most likely step frequency. The weighing of frequencies according 

to ISO 10137 is not optimized for groups but is applicable for single pedestrians. A 

weighing similar to UK-NA with a peak in acceleration response for the most 

occurring step frequencies just below 2 Hz is reasonable. The approach according to 

JRC, HIVOSS, Sétra and SYNPEX is also reasonable giving the same acceleration 

response for an interval of relevant step frequencies.  

The acceleration limits defined in Eurocode and ISO 10137 for vertical direction are 

conservative whereas the lateral acceleration limits are comparable to other standards. 

Eurocode and IS0 10137 do not consider lateral “lock-in” which is a phenomenon that 

must be regarded during design. Acceleration limits could preferably be stated as 

ranges instead of an upper limit as defined in Eurocode. This seems reasonable 

because the perception of vibrations is subjective and that the accepted level of 

vibrations varies depending on the location and the structure of the bridge. An upper 

limit valid for all bridges can generate too high demands. The ranges could be defined 

from the accepted level of comfort dependent on location and the expected vibrational 

behavior. Good examples are shown in Sétra, JRC, HIVOSS and SYNPEX.  

The choice of structural damping ratio is complex and depends not only on the 

material of the bridge but alos on the structure. For an accurate analysis the pedestrian 

mass should be included in the damping properties of the structure. This is mentioned 

in the literature but without precise guidelines and is a subject for further studies. The 

defined damping ratios differ between the standards but have similar magnitude. 

Because of this the damping values in Eurocode can be taken as valid. To conclude it 

is judged better to choose a lower damping ratio for a conservative approach; ISO 

10137 recommends the most conservative damping ratios. 

9.2 Suggestions for further studies 

The load application of the concentrated load models have been simplified to be 

applied as stationary loads instead of loads moving across the span as recommended 

by the standards. In this thesis it is not analyzed how this simplification affects the 

acceleration response though it is obviously smaller for a moving load. It is clear that 

the acceleration response is dependent on loading time and position of loading. A 

suggestion for further studies is to find a relationship between the acceleration 

response due to moving and stationary loads. Such a relationship could help the 

designer to simplify the load application to a stationary load generating a comparable 

response to a moving load. 
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In the standards studied the pedestrian mass is mentioned to affect the structural 

properties of the footbridge. The subject is not extensively presented and the 

connection between structural damping and natural frequencies is complex. For 

accurate calculations the pedestrian mass should be included as it affects both the 

acceleration response and probability of resonance due to change in natural 

frequencies. A study could include when the effects of pedestrian mass should be 

considered and to what extent it affects the design. 

The recommendations concerning acceleration response due to the second harmonics 

differ between the standards. It is mentioned that vibrations in existing bridges never 

have occurred due to second harmonics of the pedestrian load. Theoretically this 

should be relevant to take into account; why it is an interesting subject for a further 

study of whether it can occur in reality. 

The analysis and the normalization curves are limited to simply supported bridges in 

one span, excited by their first mode. It is of interest to examine the possibility of 

creating similar normalization curves for bridges with several spans and different 

boundary conditions.  

A further study can also be made regarding pedestrian bridges of different materials 

and how they respond to relevant walking frequencies. A comparison of a reference 

bridge with different materials for the same conditions can be made in order to 

examine this thoroughly. Footbridges designed in different materials have different 

structural properties with corresponding natural frequencies which should affect the 

acceleration response. The normalization curves could be useful to evaluate which 

cross-sections with corresponding material that are susceptible to exhibit excessive 

vibrations. 

A study of how the concentrated load defined in ISO 10137 can be applied as a 

uniformly distributed load to simulate pedestrian streams is of great interest. The 

concentrated load model can be recalculated to represent pedestrian crowds evenly 

distributed by the factor for equivalent number of pedestrians. The acceleration 

response in comparison with other uniformly distributed load models is not studied in 

this master´s thesis. 
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