
Real time gaze based
status recognition
Using Machine Learning to predict user activities and state
based on gaze data

Master’s thesis in Engineering Mathematics and Systems, Control and Mechatronics

SEBASTIAN AGERHÄLL, FREDRIK JOHANSSON TORNÉUS

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

Master’s thesis 2019

Using Machine Learning to predict user activities
and state based on gaze data

Is it possible to tell the status of a user based on their gaze patterns?

SEBASTIAN AGERHÄLL, FREDRIK JOHANSSON TORNÉUS

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden 2019

Real time gaze based status recognition
Using Machine Learning to predict user activities and state based on gaze data

SEBASTIAN AGERHÄLL, FREDRIK JOHANSSON TORNÉUS

© SEBASTIAN AGERHÄLL, FREDRIK JOHANSSON TORNÉUS, 2019.

Supervisor: Petter Falkman, Department of Electrical Engineering
Examiner: Petter Falkman, Department of Electrical Engineering

Master’s Thesis 2019
Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: A user reading a text on which the user’s gaze pattern is drawn.

Typeset in LATEX
Gothenburg, Sweden 2019

iv

SEBASTIAN AGERHÄLL, FREDRIK JOHANSSON TORNÉUS
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Real time gaze based activity recognition is a way to become more aware of what
the user is doing. By using this information it is possible to create user interfaces
which can adapt for the user and therefore create a better experience. The purpose
of this study is to explore how gaze data and machine learning can be used to pre-
dict user status, i.e. activities and states, in real time. The activities chosen for
this study were reading, searching in an image and scanning and the state was high
or low cognitive load. This was achieved by collecting gaze data with a Tobii 4C
eye tracker from 21 participants while they were performing different activities with
and without an induced disturbance. The data was cleaned and used for training a
Hidden Markov Model (HMM), Long Short Term Memory recurrent neural network
(LSTM) and Convolutional LSTM Deep Neural Network (CLDNN). After training,
the models were used in a predictor prototype application which predicted user sta-
tus in real time. For activities the CLDNN performed best with f1-score of 0.62. To
smooth the predictions a majority voting scheme was applied. The CLDNN model
achieved an f1-score of 0.89 with 20 majority votes on the activity classification.
For cognitive load the LSTM model performed best, with f1-score of 0.74 without
votes and 0.91 with 20 majority votes. To conclude, it seems possible to predict user
activities and states with gaze data. The majority voting increases the prediction
performance in terms of f1-score, but since more data is required to make the final
predictions, the prediction speed will be slower.

Keywords: real time, gaze, activity recognition, eye tracking, cognitive load, LSTM,
CLDNN, HMM.

v

Acknowledgements
We would like to thank our supervisors at Tobii, Dzenan Dzemidzic and Deepak
Akkil, for supporting us by answering questions and helping us find the right people
to talk to. Our supervisors at Chalmers, Petter Falkman and Julius Pettersson, for
the interest in our work and for the discussions regarding the report. The partici-
pants in our study whom have contributed with all data used for training our models
by completing the sometimes agonizing test.

Sebastian Agerhäll and Fredrik Johansson Tornéus, Gothenburg, August 2019

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Background . 1
1.2 Previous work . 2
1.3 Objective . 3
1.4 Scope . 4
1.5 Purpose and aims . 4

2 Theory 5
2.1 Eye Movements . 5
2.2 Tracking technology . 5

2.2.1 Infrared Pupil Corneal Reflection (IR-PCR) 6
2.3 Machine Learning models . 6

2.3.1 Deep Feed Forward Neural Networks 7
2.3.1.1 Backpropagation . 8

2.3.2 Convolutional Neural Networks 8
2.3.3 Sequential data . 9
2.3.4 Recurrent Neural Networks 9
2.3.5 Long Short Term Memory . 10
2.3.6 Convolutional Long Short Term Memory Deep Neural Networks 12
2.3.7 Hidden Markov Model . 12

2.4 Evaluation of machine learning models 16

3 Methods 17
3.1 Method overview . 17
3.2 Activities and States . 18
3.3 Data collection process . 19

3.3.1 Tests . 19
3.3.1.1 Cognitive Load . 20
3.3.1.2 Reading test . 21
3.3.1.3 Scanning test . 22
3.3.1.4 Searching images test 22
3.3.1.5 Searching text test 23
3.3.1.6 Skimming test . 23

ix

Contents

3.3.1.7 Memory test . 23
3.3.2 Test group . 24
3.3.3 Second data collection . 24

3.4 Feature description . 24
3.5 Data cleaning . 26
3.6 Time frame . 27
3.7 Feature transformations . 27
3.8 Model selection . 27

3.8.1 Model architecture . 28
3.8.2 Feature selection . 28
3.8.3 Hyperparameters . 29

3.8.3.1 Bayesian Optimization 29
3.9 Training and Evaluation . 29
3.10 Predictor prototype . 30

4 Results 33
4.1 Prediction performance . 33

4.1.1 Majority votes . 35
4.2 Second data collection . 38
4.3 Choosen hyperparameters . 38
4.4 Predictor prototype . 39

5 Discussion 41
5.1 Prediction performance . 41

5.1.1 Majority voting . 42
5.1.2 Filtered data . 42

5.2 Possible improvements . 42
5.2.1 Test design . 42
5.2.2 Models . 43

5.3 Possible flaws . 44
5.4 Ethics . 44
5.5 Future work . 45

6 Conclusion 47

Bibliography 49

A Appendix 1 I
A.1 Deep learning architectures . I

x

List of Figures

2.1 A description of how the IR-PCR eye tracking works [1] 6
2.2 Illustration of a two layer DNN [2] 7
2.3 Illustration of how data flows in a Recurrent Neural Network [3]. . . . 9
2.4 An overview of the LSTM architecture. [4] 11
2.5 An ergodic HMM . 12

3.1 Line of work as a flow chart . 18
3.2 A screen shot from Tobii Pro Lab which was used for recording data . 20
3.3 One of the texts from the reading test with a trace of the users gaze [5] 21
3.4 The scanning test with a trace of the users gaze 22
3.5 The search image test with a trace of the users gaze [6] 23
3.6 Flow chart for prediction prototype 31

4.1 HMM f1-score: 0.23 LSTM f1-score: 0.41 CLDNN f1-score: 0.39
Confusion matrices without majority voting for the different model
architectures for the activity classification task. All five activities
included. 34

4.2 HMM f1-score: 0.45 LSTM f1-score: 0.59 CLDNN f1-score:
0.66 Confusion matrices without majority voting for the different
model architectures for the activity classification task. Three activities. 34

4.3 HMM f1-score: 0.31 LSTM f1-score: 0.74 CLDNN f1-score:
0.62 Confusion matrices without majority voting for the different
model architectures for the cognitive load classification task. 34

4.4 f1-score vs number of majority votes for three activities. 35
4.5 f1-score vs number of majority votes for five activities. 35
4.6 f1-score vs number of majority votes for cognitive load. 35
4.7 HMM f1-score: 0.47 LSTM f1-score: 0.65 CLDNN f1-score:

0.63 Confusion matrices with 20 majority votes for five activities
and the average f1-score over those activities. 36

4.8 HMM f1-score: 0.72 LSTM f1-score: 0.78 CLDNN f1-score:
0.89 Confusion matrices with 20 majority votes for three activities
and the average f1-score over those activities. 36

4.9 HMM f1-score: 0.41 LSTM f1-score: 0.91 CLDNN f1-score:
0.72 Confusion matrices with 20 majority votes for cognitive load
and the average f1-score over those states. 37

A.1 Illustration of the order of the network layers in the LSTM model. . . I

xi

List of Figures

A.2 Illustration of the order of the network layers in the CLDNN model. II

xii

List of Tables

4.1 Three activities mean f1-scores for 8 fold cross validation without
majority voting on unfiltered data and data filtered with a one euro
filter. 37

4.2 Cognitive load mean f1-scores for 8 fold cross validation without ma-
jority voting on unfiltered data and data filtered with one euro filter. 37

4.3 Three activities mean f1-score for 8 fold cross validation for models
trained on data from the second data collection and models trained
on data from the first data collection. 38

4.4 Cognitive load mean f1-score for predictions made on the memory
activity for models trained on the data from the first data collection
and models trained on data from the second data collection. 38

4.5 Hyperparameters used for activities classification 39
4.6 Hyperparameters used for state classification 39

xiii

List of Tables

xiv

1
Introduction

This chapter will present some background for why this project is relevant and what
is possible with the use of eye tracking. Then some previous works which has focused
on classifying eye movements with different methods. After this the objective, scope
and purpose and aims are presented.

1.1 Background

For any consumer product the user experience is an important part. When interact-
ing with a product we want the interaction to be as smooth and intuitive as possible.
Eye tracking can give more understanding about a user’s behaviour by analyzing
eye movements. This information can be used in order to adapt the user interface
to create more intuitive and natural user experiences for each specific user status.
An interface that is aware of its user could make for a better user experience. E.g.
when the user is focused on its task, do not show distracting notifications. When
the user is not focused or seem tired, suggest to take a break. To create one single
interface which suits all user statuses might not be possible to achieve.

Depending on the activity of the user the eye behaves differently. For example,
while reading a text the eye has a sweeping pattern that follows the direction of
the text [7]. This compared to when playing a first person shooter game where the
eye has concentrated fixations in the center of the screen [8] makes it possible to
distinguish between activities. The usage of eye trackers to analyze and enhance user
interaction has previously been done with expensive hardware. Now it is possible to
buy affordable eye trackers which can be found even in some consumer computers
[9]. That makes this previously niche research topic more available for the masses
and eye-tracking is gaining interest as a mainstream human-machine interaction
method [10].

1

1. Introduction

1.2 Previous work

Several methods to analyze eye movements have been proposed earlier. [11] investi-
gated eye movement analysis by designing 90 different features based on fixations,
saccades and blinks, see Section 2.1 for an explanation of the terminology. The
activities analyzed in [11] were: Copying a text, reading a printed paper, taking
hand-written notes, watching a video and browsing the web as well as a NULL
activity when doing nothing. To find the most important features for the differ-
ent activities they used minimum redundancy maximum relevance feature selection
(mRMR). The data was collected with 8 people which correspond to 8 hours of
recorded data. They trained a Support Vector Machine on the data to be able to
make predictions. They obtained an average precision of 76.1% and recall of 70.5%
over all classes and participants. 62 of the 90 features were based on saccades. [12]
found that fixation duration and saccade amplitude are strong indicators of certain
activities. They used wordbooks of eye patterns in combination with the mRMR.
The wordbooks consist of fixed length sequences of eye movements.

[13] has a similar approach with features. They define high level, medium level and
low level features. High level features work on a macro scale considering activity in
certain Areas of Interest (AOI), e.g. Time spent in an AOI or transitions between
them. Low level features consider eye movements on a micro scale, e.g. duration
of individual fixations or direction of saccades. The downside of high level features
is that it requires a priori knowledge of the AOI:s. The downside of the low level
features is that there is an overlap in eye movements including each low level fea-
ture. Analyzing individual low level features may therefore lead to overfitting issues.
Therefore [13] introduces medium level features to cope with the trade off between
high and low level features. A medium level feature could be the repeated left -
right saccades corresponding to reading a line in a western language, i.e. a certain
combination of low level features.

The authors of [13] tests their approach of medium level features with a self com-
posed data set with sample size N=24 and predefined eye activities such as Read,
Browse and Search. They evaluate three different kinds of classification models, K-
Nearest Neighbour (K-NN), Support Vector Machines (SVM) and Random Forest.
The Random forest classifier performs best in their case with an overall f1-score of
0.72. They mention several limitations of their work such as, low sample size and
restrictive composition of features, e.g. they only considered four possible directions
of the saccades.

It is also possible to use methods that do not have predefined features. [14] address
the problem of task recognition using gaze interactions as well as mouse- and key-
board interactions, using a Layered Hidden Markov Model (LHMM). The authors
used a so called Hierarchical task model to decompose each task in sub tasks or sub
states which could more easily be analyzed. Each sub task represents a state in the
LHMM. To quantify the gaze activities they counted the occurrence of the gaze in
different areas of interest. [14] also touches on the important subject of data collec-

2

1. Introduction

tion. They propose two ways of collecting data. In one case data was collected by
letting Expert Users solve a task while their eye movements were monitored. In the
other case the test subjects had predefined instructions of how to solve a task. These
approaches are used to get an as certain label as possible for the actual activity of
the user. They try their approach on three different tasks, one is about answering a
quiz and the other two are two versions of analyzing a google analytics curve. For
the quiz task the LHMM successfully predicted the user activity with 89% accuracy
and for the Google analytics it had around 50% accuracy.

[15] uses an improved version of the ordinary Recurrent Neural Network (RNN)
called Long Short Term Memory (LSTM) to predict if a user needs navigation help
or not in a Virtual Reality (VR) setting. In this case the user’s task is to find a fruit
by navigating through a maze. The aim was to provide navigation help only when
the user was uncertain of which way to go. By letting 22 users perform the task of
finding fruits while indicating with a button when they were unsure of where to go,
training data was collected. Using this data they trained an LSTM and managed
to get above 99% accuracy of deciding whether a user needed navigation aid or not.
This method works without predefined features.

The RNN approach has further been investigated by [16], where they aim at clas-
sifying if a person is confused or not. Their models are trained on data from a
ValueChart user study. ValueChart is an interactive visualization tool for decision
tasks. The ValueChart is designed for usability, but with complicated decision tasks
confusion might still arise. They compared an LSTM and a Gated Recurrent Unit
(GRU), which are extensions to an ordinary RNN, with a Random Forest classifier.
The RNN:s were trained on the raw data and the random forest used high level
manually crafted features. The LSTM performed the best of the RNN:s with an
sensitivity of 0.74 and a specificity of 0.71, which can be compared with the random
forest which got an sensitivity of 0.57 and a specificity of 0.91, i.e the LSTM gives
fewer false negatives while the RNN gives fewer false positives.

Except for in the case of VR navigation, the previous work has focused on offline
classification. In offline classification there is time for extensive preprocessing of
the data and the models prediction speed does not have to be taken into account.
To be able to make real time adaptive software the predictions have to be made
online, which limits the possibilities of preprocessing and puts high demands on
the prediction speed of the models. For the real time user interface adaptation the
prediction performance should correspond to an f1-score above 0.9 according to the
user experience team at Tobii. This work will focus on finding models that can
handle the speed accuracy trade-off well.

1.3 Objective

The objective of this thesis is to first define different user activities and states and
then create an application that learns to recognize them in real time.

3

1. Introduction

1.4 Scope

There is an enormous amount of activities and states that could be interesting
to track. To make this study feasible it will be limited to only focus on the five
activities: reading, scanning, searching text, searching images and skimming as well
as one internal state, cognitive load, see definition of each activity and state in
Section 3.2. The activities and states were chosen to fit interesting use cases at
Tobii. Factors that were considered was how valuable for the Tobii tracking of the
activity was and how difficult it would be to collect good data related to the activity.

Previous research have considered both using predefined higher level features as
well as raw gaze data to predict on. When dealing with real time applications it is
beneficial to make predictions on the raw data stream to reduce the time required for
preprocessing the data. In particular neural networks are good at learning features
from the data [16], which may lead to more optimal features than what could be
manually thought of. For these reasons this study will focus on predicting on the
raw gaze data as well as some low level features that are fast to compute, see Section
3.4.

The aim is to find models that can recognize activities based only on eye movement
data. No information about the context on the screen, i.e. if the user is looking at
an area with text, will be available to the models.

To achieve high quality data, the data collection for each participant needs to be
done thoroughly and hence it will also be time consuming. Due to time being a
limiting factor in this project, the number of test participants will be limited to 21
people.

1.5 Purpose and aims

Our ambition with this study is to make a contribution to the field of human-machine
interaction by creating a system that, in real time, can decide user status based on
gaze data.

4

2
Theory

The initial part of this section will describe basic eye physiology and eye tracking
terminology. The second part will explain the theory behind the machine learning
models that were used.

2.1 Eye Movements

To be able to create eye tracking technology one must understand how the eye
works. To be able to perceive objects the eye has to be fixed on the object for a
brief moment in order to allow the brain to register it, typically fixations of 200ms
to 600ms is required. The area with sharp vision, called the fovea, is rather small,
roughly the size of a thumbnail on arm’s length distance. Outside of the fovea the
vision accuracy decreases rapidly. This means that the eye has to scan objects by
rapid eye movements in order to get an accurate image of the entire object. These
quick eye movements are referred to as saccades [10].

Another kind of eye movements is when the eyes follows a moving target. This
movement is referred to as a pursuit movement. The small size of the fovea and
the requirement of scanning is what makes eye tracking possible. The so called gaze
vectors, i.e. a vector directed from the eyes to the point where the gaze is focused,
can be estimated from the line of sight of the viewer [10].

2.2 Tracking technology

There are several techniques for tracking eye movements where the foremost are
video based solutions, IR light reflection solutions and electrooculography (EOG)[10].
In this work we will use trackers which implements the IR method.

5

2. Theory

Figure 2.1: A description of how the IR-PCR eye tracking works [1]

2.2.1 Infrared Pupil Corneal Reflection (IR-PCR)

IR-PCR creates a reference point in the eye by sending on- and off axis IR light
rays towards the pupil. A camera then captures the reflections of these light rays
in the eyes. The on axis light rays gives a bright image of the pupil enabling easier
recognition of the pupil. The off axis light ray will provide a dark image of the
pupil. The light rays will be reflected on the cornea and on the pupil. The corneal
reflection is more stable to eye and head movements than the pupillary reflections
and can therefore be used as a reference point to maintain accuracy even when the
eyes move. Since IR light is invisible to the eye, the light rays will not disturb the
eye of the subject. The gaze vectors are then estimated by the relative motion of
the center of the moving pupil and the corneal reflection [10].

The perk of IR-PCR is that it can give high accuracy estimates of the gaze vectors.
Video based solutions are usually easier to implement and give good view of the eye
movements on a macro scale. Gaze estimation requires high accuracy which IR-PCR
can provide. EOG can also provide high accuracy but requires electrodes attached
to the test subject and is thus more suitable for lab research than for commercial
products [10].

2.3 Machine Learning models

This section will describe the mathematics behind the chosen model architectures
and motivations to why they are useful.

6

2. Theory

2.3.1 Deep Feed Forward Neural Networks

Deep feed forward Neural Networks, or simply Deep Neural Networks (DNN) are
methods for approximating a true model f ∗, relating some features to some output
[17]. The true model f ∗ is unknown and practically unreachable, but with enough
data that accurately describes reality a DNN can be trained to find a good approxi-
mation of f ∗. The DNN can be represented by the function f which is a multivariate
function accepting an input vector x with p dimensions. p is the number of features,
or predictors, in the data. The term deep refers to that the network has several
layers. In every layer a set of operations is performed on the input data. The layers
between the input layer and the output layer is called hidden layers. Each hidden
layer consists of several nodes and these nodes decides how the information can flow
through the neural network. For each node in each hidden layer the input from the
previous layer is multiplied by some weights, then bias is added and finally every-
thing is ”activated” by an activation function to give a single value to the node [18].
An activation function is typically a function that somehow squashes the input to
a value between 0 and 1. This value determines how much each node is activated
and based on how much each node is activated predictions can be made. Figure 2.2
shows the basic architecture for a DNN with two hidden layers. The fact that every
input is connected to every node is referred to as the network being fully connected.
The activation function is necessary to introduce non-linearities into the network
which also enables the network to learn non-linear relationships [19]. Equation (2.1)
shows f for a two layer network.

Figure 2.2: Illustration of a two layer DNN [2]

f = σ(B(σ(Ax + b)) + c), (2.1)

where σ is some activation function, A and B are weight matrices and b and c are

7

2. Theory

bias constants. The aim of DNN:s is to find a function f in some family of functions
F that satisfies

f = min
g∈F
||f ∗ − g||+ λφ(g). (2.2)

The first term in equation (2.2) is an error term that constrains f to be close to f ∗
and the second term is a regularization term. λ is the regularization parameter and
φ is the regularization function, eg. the L2-norm of the weights. The goal of the
regularization is to keep the model complexity as low as possible. An overly complex
model tend to overfit and can be unnecessary heavy [20]. In practice, with a data
set S = {xi, yi}ni=1 of size n with observations and corresponding labels, equation
(2.2) becomes

f = min
g∈F
L(g;S) = min

g∈F

1
n

n∑
i=1

l(g(xi), yi)) + λφ(g), (2.3)

where l is some kind of distance function measuring the distance between the true
labels yi and the predicted labels g(xi). The first term in equation (2.3) is called
the empirical risk [21] .

Solving the optimization problem of (2.3) can be done by adapting layer weights
with an algorithm called backpropagation [22].

2.3.1.1 Backpropagation

The idea of backpropagation is to use gradient descent to minimize L. This means
using the chain rule for partial derivatives to find the gradient of L with respect
to each weight wij in each layer, ∂L

∂wlij
, where l represents the layer and i, j is the

indices of the weight matrices, meaning the connection from input node i to hidden
node j[18]. For a full derivation of ∂L

∂wlij
see [18]. When the gradient is computed

the current weights are updated by taking a step in the negative gradient direction,
hence gradient descent. The learning rate ε decides the step size and thus the new
weights Wnew are calculated by updating the current weights Wcurrent.

Wnew = Wcurrent − ε
∂L
∂wlij

(2.4)

2.3.2 Convolutional Neural Networks

For high dimensional inputs such as images and speech sequences, the ordinary fully
connected DNNs become very heavy since they need huge weight matrices. However
if each data point has spatial context, i.e. neighbouring pixels are correlated, a more

8

2. Theory

Figure 2.3: Illustration of how data flows in a Recurrent Neural Network [3].

efficient method can be used namely the Convolutional Neural Networks (CNN) [23].
CNNs are still feed forward networks but the difference from the ordinary DNNs is
that the weights are convoluted with the input, hence the name. The weights in
CNNs are usually referred to as filters. The filters are usually quite small compared
to the input and to be able to account for all input the filters are scanned over the
input to cover everything. This brings many advantages over DNNs such as weight
sharing and local connectivity [24]. Weight sharing means that the weights are
shared between the nodes, i.e. each input node does not have a unique connection
to each hidden node which means that the number of connections is much less than
in a DNN. This results in fewer weights to learn and thus CNNs scale better to large
inputs than DNNs. Local connectivity means that only a small (local) fraction of
the input is convoluted with the filter to create an activation in the hidden node.
because of the above mentioned scanning the entire input is still covered, but the
filters can be kept small which also decreases the number of trainable weights and
thus also improves the scaling properties.

2.3.3 Sequential data

Sequential data or time series data is data which evolves over time. Finding patterns
in time series data includes analyzing the instantaneous features as well as the
changes of those features over time, i.e. the temporal dependence. Regular feed
forward networks are good at connecting the instantaneous features to a pattern
but they are unable to account for the temporal behavior of the data, which in
many cases are an important driver of the true pattern [25].

2.3.4 Recurrent Neural Networks

Recurrent Neural Networks (RNN) is a technique that has the ability to account
for the temporal, or sequential, behavior in the data and has proven useful when
analyzing time series data [26]. The general idea of RNN is that each hidden state

9

2. Theory

is fed with both new external input as well as the output from the previous hidden
state recursively, hence the name. By feeding in the output from the previous state
the network can ”remember” past events and thus it can account for temporal or
sequential behavior in the data. Figure 2.3 shows the general idea of the architecture
of an RNN. Mathematically this can be described as

ht = Φ(Wxxt +Whht−1),

yt = ψ(Wyht),

where ht is the hidden state at time t, Φ and ψ are activation functions, yt is the
output at time t and Wx, Wh, Wy are weight matrices.

RNNs are trained, i.e. the weight matrices are updated, by an algorithm called Back
Propagation Through Time (BPTT)[27], which is an adjustment of the ordinary
back propagation algorithm used in feed forward networks. BPTT enables efficient
training of RNN:s, however when training RNN:s the gradient tend to either blow up
or completely vanish [28]. Exploding gradients lead to very unstable weight matrices
while vanishing gradients prevents learning anything new. This makes it hard for
RNN:s to account for very long sequences. In 1997 Hochreiter and Schidhuber [28]
suggested a new kind of architecture for solving this issue, namely the Long Short
Term Memory (LSTM) model.

2.3.5 Long Short Term Memory

The first version of the LSTM network was introduced by Hochreiter and Schidhuber
[28] in 1997 and since then several updates and improvements have been done, e.g.
adding of the forget gate [29]. The model architecture is comprised of one or several
cells where each cell contains different gates with different purposes for processing
the data, see Figure 2.4. The idea is to use the gates to modify the so called cell
state. The gates control what information in the cell state that should be kept,
what information that should be forgotten and what new information to pick up
[29]. The ability to learn what to forget and what to keep is what enables the LSTM
architecture to handle long sequences better than the classical RNN architecture.

The small rectangles in the LSTM cell in Figure 2.4 represents neural network layers
with an activation function. σ means that a sigmoid activation function is used and
tanh means that the hyperbolic tangent function is used. The sigmoid functions
returns values between 0 and 1 and determine to which degree information should
flow through the gate. 0 means that the gate is completely closed and 1 means that
it is completely open. The first gate in the LSTM cell is the forget gate which accepts
the previous hidden state ht, i.e. output from previous cell, and the current input xt
as inputs, multiplies them with some weights Wf , adds some bias bf , activates via
sigmoid function and outputs a tensor with values between 0 and 1. Each value in

10

2. Theory

Figure 2.4: An overview of the LSTM architecture. [4]

ft corresponds to how much of each value in the previous cell state Ct−1 that should
be kept. Mathematically this corresponds to elementwise multiplication of ft and
Ct−1 [4].

The second gate in the LSTM cell is the input gate. The same procedure applies here,
xt and ht−1 are multiplied with weights, bias is added and then sigmoid activated.
This time the output it represents which elements of the cell state that should
be updated. Before this is applied to the cell state the tanh gate takes xt and
ht performs the usual operations and outputs candidate updates C̃t, with values
between -1 and 1, to the cell state. it and C̃t are multiplied elementwise and added
to the ”forget adjusted” previous cell state to form the current cell state Ct, i.e.
Ct = ft · Ct−1 + it · C̃t [4].

The last gate is the output gate which determines what this cell will output. A
sigmoid layer similar to before is applied to xt and ht and produces a tensor ot
which decides which parts of the cell state to output. The cell state is sqaushed
by a tanh function and then multiplied elementwise with ot to produce the current
output ht [4].

In conclusion we can write the equations for this procedure in the following way:

ft = σ(Wf · [ht, xt] + bf)
it = σ(Wi · [ht, xt] + bi)
C̃t = tanh(WC · [ht, xt] + bC)
Ct = Ct−1 · ft + it · C̃t
ot = σ(Wo · [ht, xt] + bo)
ht = ot · tanh(Ct)

(2.5)

11

2. Theory

2.3.6 Convolutional Long Short Term Memory Deep Neural
Networks

All of the above described neural network types have different advantages and dis-
advantages. DNN:s are good at transforming features to spaces where the features
are easily separated, CNN:s are good at handling spatial information and LSTM:s
are good at handling temporal or sequential information. A combination of those
network structures could potentially utilize the advantages of each structure and
form an even higher performing network, as proposed by [30]. The authors of [30]
proposes a network architecture called Convolutional LSTM DNN (CLDNN) that
combines these three network architectures. This architecture starts with some
convolutional layers with the aim of extracting features which should make the se-
quential modelling of the subsequent LSTM layers easier. After the LSTM layers
there are some fully connected ordinary feed forward networks which has the aim of
increasing feature separation to make the classification easier.

2.3.7 Hidden Markov Model

A Hidden Markov Model (HMM) [31], [32] is specified with hidden states, Z, a
transition probability matrix, A and an initial state probability distribution, π.

z1 z2 z3

y1 y2 y3 y4

Figure 2.5: An ergodic HMM

There are different types of HMMs, one where all hidden states are reachable from
all hidden states in a finite amount of steps is called ergodic. Another type is

12

2. Theory

called the left to right model, also known as Bakis model. A left to right model is
characterized by a state index that either stays the same or increases at every time
step, which means that the states advance from left to right [33]. This gives the
ability to model signals which change over time, such as speech or eye movements.
The ’Hidden’ in an HMM refers to the states, which means that it is not known
which state that is currently visited. In an HMM the set of all hidden states is
called Z = {z1, z2, ..., zK}. In each time step t the HMM will be in one hidden state.
The sequence of visited hidden states is called X = (x1, x2, ..., xT).

The transition probability matrix, A is of size K ∗K and contains the probabilities
of transitions between all hidden states. The general form is A = {aij}

where
aij = P (xt+1 = zj|xt = zi) (2.6)

i.e. the probability of going to hidden state zj when in hidden state zi [34]. Note
that ∑

j aij = 1. If the model is of type left to right it means that aij = 0, j < i.

The initial hidden state distribution is π = {πi}Ki=1 where

πi = P (x1 = zi), 1 ≤ i ≤ K (2.7)

i.e. the probability that the initial hidden state x1 is hidden state zi [34]. Note that∑K
i=1 πi = 1 [35].

Each hidden state zj has an emission probability distribution, bj, for the observations
generated by the hidden state. An observation sequence is O = (o1, o2, ..., oT). The
set of emission probability distributions is called B = {bj(ot)} [36]. In the case with
one multivariate Gaussian for each state we have

bj(ot) = N (ot|µj,Σj) (2.8)

where ot is an observation at time t, µj is the mean vector, and Σj is the covariance
matrix at hidden state zj [37].

HMMs has three basic problems [37] [38]:

1. Given the observation sequence O and a model λ = (A,B, π), find P (O|λ).

2. Given the observation sequence O and a model λ = (A,B, π), find the hidden
state sequence X which best explains the observation sequence O.

3. Find λ∗ = arg maxλ P (O|λ), i.e. find the best parameters for the given obser-
vation sequence O.

The goal of training the HMM is to solve problem 3, i.e. find the Maximum-
Likelihood Estimate (MLE) of the parameters based on a sequence of observed
data, O.

13

2. Theory

The parameters are the initial state probabilities π, the state transition probabilities
A, and the parameters related to the emission distribution, B. In the case of a
multivariate Gaussian distribution the parameters of the emission distribution are
a mean vector, µ, and covariance matrix, Σ. The set of these parameters for a
model can be written as λ = (π,A, µ,Σ) [37]. In order to find the MLE of λ, the
Baum-Welch algorithm is most commonly used [39]. The Baum-Welch algorithm
is basically the Expectation Maximization algorithm (EM-algorithm) applied to an
HMM. The EM-algorithm is used to find the MLE when some of the data is missing.
In the case of an HMM we have observations, O, but are missing data about which
hidden state, z, that is currently visited.

The EM-algorithm is divided into two steps. The first step is the E-step which
gives an expectation function of the log-likelihood by using the forward-backward
algorithm for each one of the current λ parameters [40]:

Q(λ, λt) =
T∑
i=1

log(P (O, xi|λ)P (O, xi|λt)) (2.9)

where λt are the initial parameter estimates, Q is the space of all hidden state
sequences of length T , O = (o1, o2, ..., oT) is an observation sequence and x ∈ X
where X = (x1, x2, ..., xT) is a hidden state sequence [41]. The second step is the
the M-step which gives the parameters λt+1 used for maximizing the function found
in the E-step[42].

λt+1 = arg max
λ

Q(λ, λt) (2.10)

The EM-algorithm begins by randomizing the parameters of λ. These parameters
are used in the E-step to create an expectation function, Q, for those parameters. Q
is then used in the M-step which creates a new set of λ parameters used to maximize
the expectation function. The new set of λ parameters are fed into the E-step, and
this loop continues until convergence.

After training, the model parameters λ are set. With the parameters λ and obser-
vation sequence O, the Viterbi Algorithm (VA) [43] is used to find the Viterbi path
probability, i.e. the probability that the best hidden state sequence X, will match
O, as well as the Viterbi path for this X, i.e. which states that are in the sequence
X. To find the best X, we want to compute this:

δt(i) = max
x1,x2,...,xt−1

P (x1, x2, ..., xt−1, o1, o2, ..., ot, xt = zi|λ) (2.11)

i.e. the hidden state sequence, X = (x1, x2, ..., xt), ending in hidden state zi with
the highest probability of matching an observable sequence, O = (o1, o2, ..., ot), with
the model λ. The algorithm can be divided into a few different steps.

Initialization at time step 1:

δ1(i) = πibi(o1), 1 ≤ i ≤ N (2.12)

14

2. Theory

ψ1(j) = 0 (2.13)

where δ1 is the Viterbi path probability until time step 1, and ψ is the back pointer
which is later used to find the actual path [44].

Recursion:
For each time step t = 2, 3, ..., T Calculate the Viterbi path probability δ:

δt(j) = max
1≤i≤N

(δt−1(i)aij)bj(ot) (2.14)

where N is the number of hidden states z. δt−1(i) is the Viterbi path probability
from the previous step. aij is the transition probability from previous hidden state
zi to current hidden state zj. bj(ot) is the probability of observing ot at hidden state
zj. Then calculate the backpointer:

ψt(j) = arg max
1≤i≤N

(δt−1(i)aij), (2.15)

which finds the hidden state index for the state zi which has the highest probability
of transition to state zj at time t [45].

Termination:
When the recursion is done, calculate the best Viterbi path probability to time step
T , called P ∗, and the start of the back trace, q∗T [44]:

P ∗ = max
1≤i≤N

(δT (i)) (2.16)

q∗T = arg max
1≤i≤N

(δT (i)) (2.17)

Back tracing:
The sequence of hidden states with the highest probability of matching the obser-
vation sequence is calculated by [46]:

q∗t = ψt+1(q∗t+1), t = T − 1, T − 2, ..., 1 (2.18)

By looking at P ∗ acquired from 2.16 we get a measurement of how well the model
can match the specified observation sequence. By training one model for each class
we can compare which model matches the observation sequence the best and from
that tell which class that has been most likely observed.

15

2. Theory

2.4 Evaluation of machine learning models

The primary measurement of prediction performance in this project is the F1- score.
The F1-score is the harmonic mean of the recall and the precision. The recall is the
fraction of the actual instances of a class that is correctly predicted as that class.
Precision is the fraction of all predictions of a certain class that actually belong to
this class . Mathematically the F1-score is calculated as

F1 = 2 · precision · recall
precision+ recall

. (2.19)

Since the F1 score considers both the recall and the precision it gives a good general
estimate of the prediction performance in one single metric [47].

16

3
Methods

In this chapter a description of the data collection process will be provided, including
choice of activities, the design of the tests used for data collection and the actual
execution of the data collection. Two data collections were made, so in the first
part of the data collection section the first data collection will be described. Then
the purpose and execution of the second data collection will be described. After
that an overview of the data used will be given as well as a description how the
data was cleaned and how the features were transformed before they were fed to
the model.After this the model training and model evaluation procedures will be
presented. Finally the function of the prediction prototype will be described.

3.1 Method overview

In this section the general work plan will be described. The line of work is visualized
in Figure 3.1.

The project was initialized with a literature review to collect more knowledge about
relevant machine learning models for time series modelling as well as to find out
more about what had been done previously within gaze based activity recognition.
When this was done the user statuses that should be considered should be decided.
With the user statuses determined the design of the data collection environment
could begin. This means figuring out ways to collect data for each specific status.
When this environment was in place the data collection could begin. In parallel with
the data collection the data preprocessing tools and the software for model training
were developed. When the data collection was done and the software tools to process
data and train the models were done the model training could begin. Then the
models were evaluated and modified iteratively to achieve as good prediction score
as possible. Finally the prediction prototype software was developed. Each step will
be described in more detail below.

17

3. Methods

Figure 3.1: Line of work as a flow chart

Litterature
review

Define status

Design envi-
ronment for

data collection

Perform data
collection

Implement
preprocessing

Implement
models

Train models

Evaluate
models

Create app
for real time
prediction

3.2 Activities and States

Along with representatives from Tobii some use cases of status recognition were
defined. User status here refers to either a user state, i.e. cognitively loaded, or an
activity, e.g. reading. These use cases were then ranked according to how valuable
to Tobii they would be. Activities and states required for each use case was derived.
This resulted in a large number of statuses. Considering the time scope of this
project the number of statuses had to be limited. With respect to if the status
was linked to top ranked use cases as well as how easily it could be measured, five
activities and one state was selected.

The activities chosen are

18

3. Methods

• Reading – Ordinary reading.

• Scanning – Casually and rapidly scanning content in a structured way.

• Searching images – Search for specific objects in images.

• Searching text – Search for a specific piece of information in a text, e.g the
answer to a question.

• Skimming – Fast and light reading with the aim of getting a quick overview
of the text.

The state chosen is cognitive load, i.e if the user only has the main task in mind or
if it has a lot of different things to think about.

3.3 Data collection process

This section will describe the different activities and states as well as how the tests
were set up in Pro Lab.

3.3.1 Tests

In order to collect data a collection environment had to be designed and imple-
mented. The software Tobii Pro Lab v. 1.114, as seen in Figure 3.2, was used for
test implementation to enable easy data collection. The eye tracker used was a 90
Hz Tobii Tech 4C tracker with a special license allowing it to feed data to Tobii
Pro Lab. Pro Lab allows you to create a slide show, here referred to as a test, with
different visual stimuli, e.g. images or text, which is shown to the user while its eye
movements are recorded. One test was created for each activity, and each test was
divided into one part without extra cognitive load, and one part with extra cognitive
load. The stimuli was partly images or texts directly related to the activity of the
test, and partly text stimuli with instructions on how the user should proceed in the
test. The aim was that the written instructions in the Pro Lab slide show should
be enough for the participants to understand the task they were asked to perform.
This was desirable to try and give all participants the same instructions. Sometimes
the written instructions were not enough and then the person supervising the test
had to provide extra explanations orally. It was considered more important that the
participants understood the tasks than that everyone got the exact same instruc-
tions. The tests were carried out in a room shred with a small team with resulted
in some noise and movement in the room which varied a bit from time to time.

The process of designing the stimuli for each test consisted of brain storming sessions
to come up with ideas of how to get accurate data for the activity. The major part of
the design phase was thus to select proper stimuli. Later during the data cleaning,
the data recorded from stimuli related to the activity was labeled as data for that

19

3. Methods

specific activity while the data recorded during instruction stimuli was discarded.
Since most activities were everyday activities which the participants had done in
some form before, expert users were not used as proposed by [14]. This meant
that it was easier to find participants, as any person could participate in our data
collection. A challenge instead became to find participants willing to spend around
45 minutes split over two sessions to complete all tests. The data gathered from
these tests make up the full data set. A more detailed description of each test can
be found below.

Figure 3.2: A screen shot from Tobii Pro Lab which was used for recording data

3.3.1.1 Cognitive Load

In order to induce cognitive load to the participant it was given a distraction. Cog-
nitive load data was collected during each test along with the activities data. During
the second half of the test the participants were subjected to a secondary distract-
ing task, in addition to the primary task e.g. read a text, in order to increase the
cognitive load. Two kinds of distractions were used to induce increased cognitive
load. The first distraction consisted of listening to a four digit number sequence
which were to be recited while performing the primary task. Sometimes the number
sequences were exchanged with a simple two number addition which the participant
should give the answer to. The participant got a new number sequence or addition
task around every four seconds.

20

3. Methods

The other distraction type was without any extra external stimulus. For this dis-
traction the participant was asked to count out loud from one and upward, or from
100, 200 or 300 and downward. This while performing the primary task. To make
this task even more demanding, special rules were introduced during some of the
instruction stimuli, e.g. ”skip every occurrence of the number 6” or ”exchange every
occurrence of 8 with the word blue”. When the distractions were introduced the
participants always did the ordinary counting first and then the test supervisor,i.e.
one of the authors of this work, assessed if the difficulty could be increased. The
Participant was supposed to be cognitively loaded but still be able to perform the
primary task. The secondary task could therefore not be too demanding. In all tests
with distractions, the first half of the test was done without distractions and the
second half of the test was done with distractions. To ensure that the distraction
pattern was not actually just a pattern of the stimuli, the stimuli order was reversed
for half of the participants. This ensured that gaze pattern recordings was done for
all stimuli both with and without distractions.

3.3.1.2 Reading test

The reading test consisted of six different texts of varying difficulty, font size and
font, see figure 3.3 for an example text. Before each text the participant were given
some brief context to the text to make it a little easier to grasp. And after each text
the participant was asked to briefly summarize the content of the text orally or in
writing. When the participant had read the text they clicked once with the mouse
to mark that they had finished reading, after this the participant summarized the
text before moving on to the next one. The test participant got to read three of the
texts without distractions and three with distractions.

Figure 3.3: One of the texts from the reading test with a trace of the users gaze
[5]

21

3. Methods

3.3.1.3 Scanning test

For this test the participant got to casually scroll through the ’Bestsellers in home’
page on Amazon [48] which are located in a structured vertical pattern, see Figure
3.4. The participants were allowed to linger at offers they considered interesting
but not to click on any of the offers. When the participant reached the end of
the page the participant were to click to get to the next page. This was done for
approximately three minutes and without any distractions.

Figure 3.4: The scanning test with a trace of the users gaze

3.3.1.4 Searching images test

In this test the participant is presented with 10 different images. Four images were
maps where the task was to find a specific location on the map. Four were so called
Finding Waldo images where the objective is to find the character Waldo in a very
detailed image with a lot of irrelevant objects. Two images depicted a grid of smaller
images where the goal was to find one of the small images matching a description of
the images content. The participants did five searching tasks with distractions and
five without distractions. Figure 3.5 shows an example searching task with a map.

22

3. Methods

Figure 3.5: The search image test with a trace of the users gaze [6]

3.3.1.5 Searching text test

The participant was shown a question which were to be answered. The next stimu-
lus was a text in which the answer could be found. The participants objective was
to find the answer in the text as quick as possible. When the answer was found the
participant clicked with the mouse in order to get to the next question. The par-
ticipants did three searching tasks with distractions and three without distractions.
This test looked similar to what is shown in figure 3.3.

3.3.1.6 Skimming test

This test was very similar to the reading test with the only difference that there were
four texts and each text had a time limit before disappearing. The participant was
asked to skim the texts rather than reading them carefully. The test was created in
order to get data for the less thorough kind of reading done when skimming. Two
texts were read without distractions and two were read with distractions. This test
looked similar to what is shown in figure 3.3.

3.3.1.7 Memory test

This test was designed only to gather data for the cognitive load state. The aim of
the cognitive load classification is to be able to tell if someone is distracted or not
regardless of activity that is performed. To make sure that the classifier does not
just learn for example cognitively loaded reading, data from an activity that the
model had not been trained on was desirable. In this test the participant was asked
to look at an image for 45 seconds and memorize it. After 45 seconds the participant

23

3. Methods

got five questions about the image to check what was remembered. The participant
got two such memory tasks without distractions and two tasks with distractions.

3.3.2 Test group

The group of participants taking the tests consisted of 21 people in total. All of the
participants worked at Tobii and thus probably had more knowledge and interest in
eye tracking than a completely random population sample. This might be a source
of bias. However none of the participants were directly involved in this project
apart from contributing with data. There was a large spread of ethnic backgrounds
in the participant group with the countries Chile, Greece, India, Iran and Sweden
represented. The participants were in an age between 25 and 45 years old. Nine of
the participants were female and twelve were male.

3.3.3 Second data collection

When the primary data collection was done and the model training had begun,
some possible improvements in the data collection process were thought of. To see
if these improvements had any effect on the data a new small scale data collection
was done. Five participants from the previous data collection got to do the updated
version. For this version the test was done in a lab environment to try to reduce
the distractions while recording the focused state. Also the scanning activity was
changed. In the case of the Amazon website there were labels and a short description
for every offer. This had the effect that participants were reading partly during the
scanning recordings and thus some data was wrongly labeled as scanning when it
actually was reading. In the new version of the test the scanning activity was to
scroll an Instagram feed. In the Instagram feed there were only pictures and no text
and therefore all reading was eliminated. The models were then trained on data
from the second collection for these five participants and compared with the models
trained on data from the first collection for the same people.

3.4 Feature description

All eye data from the participants is exported from Tobii Pro Lab. This data
contains recordings of all information screens and also invalid data which is data
from when the eye tracker did not manage to track the eyes. The data exported
from Pro Lab included many features. Some of these features are not available from
the standard Tobii tech 4C 90Hz consumer eye tracker. Because of this a special
licence was used with the eye tracker to get access to more features. Some of the
features exported from Pro Lab was not necessary in this work and were therefore
removed. After data processing the following features were left:

24

3. Methods

• Gaze Point X Left – The screen x-coordinates where the left eye is focused (in
pixels)

• Gaze Point Y Left – The screen y-coordinates where the left eye is focused (in
pixels)

• Gaze Point X Right – The screen x-coordinates where the right eye is focused
(in pixels)

• Gaze Point Y Right – The screen y-coordinates where the right eye is focused
(in pixels)

• Eye Position X Left – The left eye positional x-coordinate in relation to the
tracker (in mm). The eye position coordinates gives information about were
the users head is located in space relative to the tracker.

• Eye Position Y Left – The left eye positional y-coordinate in relation to the
tracker (in mm)

• Eye Position Z Left – The left eye positional z-coordinate in relation to the
tracker (in mm)

• Eye Position X Right – The right eye positional x-coordinate in relation to the
tracker (in mm)

• Eye Position Y Right – The right eye positional y-coordinate in relation to the
tracker (in mm)

• Eye Position Z Right – The right eye positional z-coordinate in relation to the
tracker (in mm)

• Pupil Diameter Left – Pupil Diameter of the left eye (in mm)

• Pupil Diameter Right – Pupil Diameter of the right eye (in mm)

• Validity – 1 if at least one of the eyes are found by the tracker, zero otherwise.

• Eye Movement type – 1 if the current observation belongs to a fixation, zero
for saccades or unclassifiable eye movements.

• Mean Fixation Duration – The mean fixation duration for each activity and
each participant

• Var Fixation Duration – The variance of the fixation duration for each activity
and each participant

• Sd Fixation Duration – The standard deviation of the fixation duration for
each activity and each participant

• Fixation Rate – Number of fixations per time frame.

• Mean Saccade Length – The mean saccade length for each activity and each

25

3. Methods

participant

• Var Saccade Length – The variance saccade length for each activity and each
participant

• Sd Saccade Length – The standard deviation of the saccade length for each
activity and each participant

Of these features the mean, var and sd for both fixations and saccades as well as
fixation rate were computed from other features. This results in a system delay
because of feature computations.

3.5 Data cleaning

The raw data included many data points from uninteresting stimuli, e.g. instruc-
tional texts and pause frames. For these stimuli the actual activity of the participant
is unknown and due to this, the data points related to these stimuli were removed.
When the eye tracker can not see the eyes it results in an invalid data point. Since
there could be information in the blinks of the participants, shorter periods of invalid
data was kept. To keep data when the participant blinks, invalid data points were
filled with the values of the previous data point. This has the effect that instead of
not having any data at all during a blink, the gaze is instead stationary. Invalid data
for less than 25 consecutive data points, i.e. approximately 275 ms, was included in
the data. The number 25 was found empirically by cross validation over an interval
from 1 to 50 consecutive data points of invalid data. 275 ms also coincides quite
well with the duration of blinks, which according to [49] is between 100 ms and 400
ms. The validity feature was used to mark when the gaze was stationary due to a
blink or due to simply being stationary. Zeroes in validity means invalid data, i.e.
no eyes found, due to e.g. a blink. Ones in validity means valid data, i.e. data from
at least one eye.

Some activities took longer time to record than others which resulted in some ac-
tivities having more data than others. To make sure that the models would not
get biased towards one specific activity the data set was balanced by random down
sampling of the more common activities, so that every activity had the same number
of observations. The same procedure was applied for the cognitive load classification
task so that we trained the models on data that had the same number of distracted
observations as non-distracted observations. When testing and evaluating the cog-
nitive load classifiers only data from the memory activity for the test and validation
participants was used. This to see if the cognitive load classification generalized to
unknown activities.

To match the data output from the eye tracker a one euro filter was implemented
in the data cleaning process. The one euro filter is an algorithm which uses a first
degree low-pass filter with a cutoff frequency which varies with the update rate. A
low update rate gives a low cutoff frequency to reduce jitter and a high update rate

26

3. Methods

gives a greater cutoff frequency to reduce lag [50].

3.6 Time frame

To facilitate the training of the models the data was split from one long sequence of
observations to several small sequences. Hereinafter such a small sequence will be
referred to as a sample. The length of each sample i.e. the number of observations
in the sample is called the time frame. The time frame is a hyperparameter that
was tuned individually for each model. The number of samples in our data thus
becomes the number of observations divided by the time frame.

3.7 Feature transformations

The recorded data was in raw data format, i.e. no filtering or smoothing was applied.
However to mimic the behavior of the 4C tracker in our training data we applied the
same one euro filter as the commercial trackers use. Due to confidentiality the exact
properties of the filter can not be disclosed. Moreover the features were normalized
within each sample so that the model would be invariant to the size of the stimuli,
e.g. the size of the text when reading. Since only the general gaze patterns were
interesting and not the actual location of the gaze, only relative changes within each
feature was considered. This means that for each point in time the value of each
feature was replaced by the difference between the current value and the previous
value, see equation (3.1)

X transformed
t = Xt −Xt−1, (3.1)

where X is the feature matrix for each sample. In the sample the number of rows
corresponds to the time frame and the number of columns corresponds to the number
of features. The data set was also balanced so that each activity in the data set has
an equal number of samples to avoid bias towards a certain activity.

3.8 Model selection

This section presents why the models were chosen, how the features were selected
and how the hyperparameters of the models were tuned.

27

3. Methods

3.8.1 Model architecture

The different model architectures (LSTM, CLDNN, HMM) were chosen for this
study because they have shown good performance for modelling sequential data
[51], [30], [52]. The models have quite different behaviors and different complexity,
with HMM being the least complex and CLDNN being the most complex, therefore
different results from the models was expected. More complex models are able to
learn more complex patterns but they also require more data and are more prone
to overfitting [47]. Overfitting means that the models fits very well on the training
data but that they have found a very specific pattern for the training data so the
models are not able to generalize to new data [47]. LSTM is a commonly used model
architecture for deep learning on sequential data [51], therefore it was included in
this study. The CLDNN is an interesting extension to the LSTM model granting
possible advantages from CNNs to the LSTM. Furthermore HMM was chosen since
it is the most commonly used non-deep learning model for sequential data and it
can provide more interpretable results than the deep-learning models. Even though
model parameters can be learned from data, there are still many parameters that
has to be decided manually. The complete model architecture can be found in
Section A.1. For the CLDNN model the same core architecture as presented in
[30] was used, but with hyperparameters, filter size, number of filter etc, optimized
for this task, see Section A.1. For the LSTM network a two layer model was used
as recommended by [51]. To perform classification with the HMM, one HMM was
created for each status, i.e. one for each activity as well as one for cognitive load.
These models were trained on data from its corresponding test. In the prediction
stage the classification was done by choosing the status corresponding to the HMM
with the maximum likelihood for the data.

3.8.2 Feature selection

The features available in the training data is described in Section 3.4. Out of the
available features, a subset was selected to reduce the model complexity. The subset
was selected by running cross validation where one feature were excluded at a time.
If the Cross Validation (CV) score decreased when a feature was removed the feature
was considered to contribute with valuable information. If the CV score increased or
was unchanged when the feature was excluded, the feature was considered redundant
and was removed from the analysis. With this procedure Gaze Point, Eye Position
and Validity were chosen as important features. Since the purpose of this study
was not to investigate feature importance, the feature selection was not studied too
thoroughly. The features selected in this study were only selected based on their
impact on prediction performance for the current data set. To be able to draw final
conclusions about feature importance a more thorough research should be pursued.

28

3. Methods

3.8.3 Hyperparameters

Hyperparameters are parameters that are predefined in the models. These param-
eters can not be learned but have to be set by the user in an adequate way. Hy-
perparameters can have a big impact on the prediction performance and is thus
an important factor to consider [51]. One way to find the best hyperparameters is
simply to run through all combinations of hyperparameters and keep the models
which have the best performance. This technique is called grid search[53]. The
number of combinations of hyperparameters grows quickly with the number of hy-
perparameters and thus it quickly becomes unfeasible to evaluate all combinations.
One technique for coping with this is Bayesian optimization.

3.8.3.1 Bayesian Optimization

Bayesian optimization [54] makes random selection of hyperparameters from some
prior distribution in each iteration. Based on some given loss function the prior
distribution is updated after each iteration to focus on a parameter space which
seem to minimize the loss. One can say that the algorithm uses the results from
previous evaluations to make educated guesses about the next set of hyperparameters
for evaluation. This greatly reduces the number of required evaluations compared to
grid search. The python package hyperopt [55] was used to implement the Bayesian
optimization.

3.9 Training and Evaluation

The implementation, training and evaluation of the models were all done with the
Python package Keras [56], except for the HMM model which was implemented
from the package Hmmlearn [57]. The full data set was split into one training set
and one test set. The training set consisted of 17 participants and the remaining
four participants formed the test set. 8 fold cross validation (CV) was used on the
training set to fit and evaluate the models on the data. Cross validation means that
the data set is divided into different parts, in this case 8 parts. One part is then
held out for valdidation while the models are trained on the rest of the data. The
trained models are then evaluated on the remaining part and the prediction score is
noted. Then another part is chosen as the validation part and the same procedure is
repeated until all parts have been validation data. The Cross validation score is the
the mean score from all validation parts. Since one participant might have a specific
activity pattern the risk of getting overlap between the data sets was considered
high if the data sets would have been random splits of the participants’ samples.
Because of this each fold data set were made with data from separate participants.
With 17 participants, the 8 fold CV gives that each fold consist of 2-3 participants.
Thus for each fold the models were trained on 14-15 participants and validated on
2-3 participants. After data cleaning and balancing each participant had around

29

3. Methods

three minutes of data per activity. The reason for it being three minutes is that
the scanning activity had the least amount of data which was three minutes, and
the other activities data length were cut to match this in order to get a balanced
data set. With a sampling rate of 90 observations per second this yielded around 17
thousand data points per activity and participant. All activities except scanning had
more than three minutes of data which means that only a sub sample of activity
data was used for those activities. The validation set was used to estimate the
generalization error during the training phase in order to compare models and to
tune hyperparameters. The test set remained untouched until a final model had
been chosen. The final model was then evaluated on the test set to give the final
performance of the model.

Since the activities are not mutually exclusive with cognitive load we trained and
evaluated activity classifiers and cognitive load classifiers separately, but with the
same procedure in both cases.

During the evaluation of the models it was decided that the predictions could be
smoothed over a longer period of time by an approach here called majority voting.
Majority voting means that the final prediction relied on several consecutive predic-
tions. A certain voting threshold was set, i.e the number of predictions to smooth
over. When the vote threshold was reached, the final prediction was chosen as the
most frequently occurring class among these predictions. This was done because it
was assumed that one activity usually lasts for a while. For example, if the model
predicts that a user is reading for 15 seconds, then scans for 1 second and then reads
again for 15 seconds it is probable that the user was reading the entire time.

3.10 Predictor prototype

The predictor prototype was developed in C#. It uses the Tobii Stream Engine
[58] API to read data from the Tobii Tech 4C 90 Hz eye tracker and the library
TensorflowSharp [59] to make predictions. The predictor prototype uses a model
trained in Keras and saved as a protocolbuffer file to be compatible with Tensorflow.
The Figure 3.6 shows the execution order in the prototype. First the prototype
reads the data from the tracker via the Tobii Stream Engine API 3.6. With 90Hz
in sampling rate the prototype gets one new data point approximately each 0.011s.
Each new data point is appended to a list until the list has the length equal to the
time frame for the current model, i.e. a full sample is reached. the full sample is then
normalized as described in Section 3.7. The normalized sample is then predicted
on. To perform the majority voting this prediction is appended to a voting list. If
the list has less elements than the vote threshold the previous steps are repeated
until enough predictions have been appended so that the number of votes matches
the vote threshold. When the voting list contains the same number of votes as the
specified vote threshold, the voting is performed, a final prediction is given and the
list is cleared.

30

3. Methods

Figure 3.6: Flow chart for prediction prototype

Start

Read data
from tracker

Append
observation
to sample

sample length ≥ time frame?

Wait for
more data

No

sample length = time frame?

Yes
Remove
oldest

observation

No

Normalize
sample

Yes

Predict
on sample

Add vote

number of votes = vote threshold?

Wait for
new sample

No

Majority
voting

Yes

Print result 31

3. Methods

32

4
Results

This chapter begins by presenting the f1-scores for activities and cognitive load.
Then the results with majority voting is presented along with f1-scores and a com-
parison between filtered and unfiltered data. After this the results of the second
data collection is presented. Finally some results from the predictor prototype is
presented.

4.1 Prediction performance

In this section the prediction performance of the different model architectures with
tuned parameters is described. The models were evaluated with respect to the f1-
score as well as comparison of the confusion matrices. The scores presented here
is related to the prediction performance on the previously unseen test set. The
confusion matrices with corresponding f1-scores for five activities and cognitive load
can be found in Figures 4.1 and 4.3. From the confusion matrices in Figure 4.1 it
seems like search text, reading and skimming are easily intermixed by the models.
Since the activities skimming and search text seemed to resemble reading it was
decided to disregard the skimming and search text data all together and only use
the reading data. The confusion matrices with corresponding f1-scores for only one
kind of reading can be found in Figure 4.2. The f1-scores can be compared with
always guessing reading which is the most common activity in the data set. In the
case of three activities where the prediction is always reading the overall average
f1-score would be 0.21. The case with five activities the average f1-score would be
0.07.

33

4. Results

Figure 4.1: HMM f1-score: 0.23 LSTM f1-score: 0.41 CLDNN f1-score: 0.39
Confusion matrices without majority voting for the different model architectures for
the activity classification task. All five activities included.

Figure 4.2: HMM f1-score: 0.45 LSTM f1-score: 0.59 CLDNN f1-score: 0.66
Confusion matrices without majority voting for the different model architectures for
the activity classification task. Three activities.

Figure 4.3: HMM f1-score: 0.31 LSTM f1-score: 0.74 CLDNN f1-score: 0.62
Confusion matrices without majority voting for the different model architectures for
the cognitive load classification task.

34

4. Results

4.1.1 Majority votes

Some of the activities included subpatterns from other activities, e.g. there was some
reading in the scanning activity, this resulted in some wrong predictions within ac-
tivities. In order to smooth the prediction results a majority vote over several
predictions was introduced. Figures 4.4, 4.5 and 4.6 shows the change in f1-score
depending on the number of predictions used in the majority vote for activity clas-
sification and cognitive load classification.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of votes

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

HMM

scanning
search_image
read

(a) HMM

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of votes

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

LSTM

scanning
search_image
read

(b) LSTM

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of votes

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s
co
re

CLDNN

scanning
search_image
read

(c) CLDNN

Figure 4.4: f1-score vs number of majority votes for three activities.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of votes

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s
co
re

HMM
scanning
search_image
search_text
read
skimming

(a) HMM

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of votes

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

LSTM
scanning
search_image
search_text
read
skimming

(b) LSTM

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of votes

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

CLDNN
scanning
search_image
search_text
read
skimming

(c) CLDNN

Figure 4.5: f1-score vs number of majority votes for five activities.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of votes

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

HMM
relaxed
cognitive load

(a) HMM

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of votes

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s
co
re

LSTM

relaxed
cognitive load

(b) LSTM

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of votes

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s
co
re

CLDNN
relaxed
cognitive load

(c) CLDNN

Figure 4.6: f1-score vs number of majority votes for cognitive load.

The graphs indicate that a large number of votes increases the prediction perfor-
mance. The introduction of majority voting induces increased latency in the predic-

35

4. Results

tion and thus the predictions take more time to compute. The choice of an adequate
number of votes has to consider the trade-off between prediction speed and predic-
tion performance.
The confusion matrices for predictions with 20 majority votes can be seen in Figures
4.7, 4.8 and 4.9.

Figure 4.7: HMM f1-score: 0.47 LSTM f1-score: 0.65 CLDNN f1-score: 0.63
Confusion matrices with 20 majority votes for five activities and the average f1-score
over those activities.

Figure 4.8: HMM f1-score: 0.72 LSTM f1-score: 0.78 CLDNN f1-score: 0.89
Confusion matrices with 20 majority votes for three activities and the average f1-
score over those activities.

36

4. Results

Figure 4.9: HMM f1-score: 0.41 LSTM f1-score: 0.91 CLDNN f1-score: 0.72
Confusion matrices with 20 majority votes for cognitive load and the average f1-score
over those states.

These results are obtained when the data is filtered with a one euro filter. This filter
is automatically applied to the output of the eye tracker in the stream engine. Since
the model should match the data acquired in real time from the tracker the training
data was also filtered with an identical one euro filter as found in the stream engine.
When comparing models trained on unfiltered data the results have improved some.
A comparison of the 8 fold cross validated f1-scores for unfiltered and filtered data
without majority voting for three activities can be found in Table 4.1. The ’nan’
values for the HMM is because the model never predicted anything as scanning and
thus the precision for the scanning activity is zero and then the f1-score can not be
computed. This means that the model was completely unable to detect the scanning
activity. Table 4.2 shows the corresponding values for cognitive load.

Unfiltered Filtered
CLDNN 0.67 0.64
LSTM 0.66 0.65
HMM nan nan

Table 4.1: Three activities mean f1-scores for 8 fold cross validation without ma-
jority voting on unfiltered data and data filtered with a one euro filter.

Unfiltered Filtered
CLDNN 0.52 0.65
LSTM 0.69 0.68
HMM 0.39 0.34

Table 4.2: Cognitive load mean f1-scores for 8 fold cross validation without ma-
jority voting on unfiltered data and data filtered with one euro filter.

37

4. Results

4.2 Second data collection

Table 4.3 shows a comparison of the f1-scores for the different models trained on
data from the original data collection and the models trained on data from the
second data collection for the activity classification. The f1-scores for the second
data collection are better.

First data collection Second data collection
CLDNN 0.51 0.69
LSTM 0.50 0.64
HMM 0.36 0.40

Table 4.3: Three activities mean f1-score for 8 fold cross validation for models
trained on data from the second data collection and models trained on data from
the first data collection.

Table 4.4 shows the same comparison for the cognitive load classification. Data from
the second collection seems to outperform data from the first collection in this case
as well.

First data collection Second data collection
CLDNN 0.60 0.67
LSTM 0.51 0.66
HMM 0.09 0.57

Table 4.4: Cognitive load mean f1-score for predictions made on the memory
activity for models trained on the data from the first data collection and models
trained on data from the second data collection.

4.3 Choosen hyperparameters

The result from the bayesian optimization gave the model hyperparameters which
gave us the best results. Table 4.5 gives the Hyperparameters used for activity
classification and table 4.6 gives the hyperparameters used for cognitive load. The
reason why some of the fields are left blank is because all parameters does not apply
to all models.

38

4. Results

LSTM CLDNN HMM
Hidden units 347 195
Time frame 98 139 450
Kernel size 1 6
Kernel size 2 10
Num filters 1 105
Num filters 2 223
Components scanning 4
Components search image 9
Components search text 7
Components read 9
Components skimming 8

Table 4.5: Hyperparameters used for activities classification

LSTM CLDNN HMM
Hidden units 106 311
Time frame 212 232 450
Kernel size 1 13
Kernel size 2 13
Num filters 1 56
Num filters 2 116
Components no cognitive load 4
Components cognitive load 9

Table 4.6: Hyperparameters used for state classification

4.4 Predictor prototype

The predictor prototype is able to read the gaze data from the tracker and to perform
predictions on the data. The tracker continuously feeds the prototype software with
data and then the prototype performs data preprocessing to make the format of
the live data correspond to the training data. Since the predictions are done on
one sample with the number of observations corresponding to the time frame the
prototype saves observations until there is a complete sample. A prediction is then
made based on this sample. The fact that the predictor waits until a complete
sample has been collected before making the initial prediction induces an initial
delay proportional to the sampling frequency and time frame. Afther this a new
prediction is made every time a complete new sample is full.
On top of these predictions a majority vote over a set number of predictions is used
to smooth the prediction. This induces a lag corresponding to the number of votes
multiplied with the time each prediction takes. A system with Nvidia GeForce GTX
1050 GPU and Intel Core i7-7700HQ CPU has a mean prediction time of 26 ms over
1000 predictions. With a sample rate of 90Hz and the activity model requiring a

39

4. Results

time frame of around 139 observations and the cognitive load model requiring a
time frame of 212 observations this gives a delay of 1.54s and 2.36s, respectively.
The additional delay from the majority voting is therefore 1.52s or 2.36s times the
number of votes.

40

5
Discussion

This chapter will present a discussion about the design of the tests, how the models
can be used and the filtering of data. Further, possible flaws of the model evaluation
process and ethical aspects about this kind of technology is discussed. To finish off
there are some thoughts about what work can be done in the future.

5.1 Prediction performance

From the confusion matrices in Section 4.1 it seems that the LSTM model is the
best for cognitive load classification while the CLDNN model is the best for activity
classification, when only three activities are considered. The HMM model seems to
underperform against the deep learning models which makes sense since the HMM
model does not have the same ability to learn feature representations as the deep
learning models. The HMM model would maybe have worked better with more
manually crafted features. Without majority voting the top f1-score for activity
classification is 0.66 and for the cognitive load classification the top f1-score is 0.74.
The activity classification score can be compared with the results of [11] and [13]
who had similar activities and got an average f1-score of 0.73 and 0.72, respectively.
The performance of the activity classification models in this study is slightly worse.
However [11] and [13] did not predict in real time and therefore they could afford
more preprocessing and exploit data over a longer time period.

When it comes to the cognitive load classification it is harder to find previous results
to compare with. [16] worked on confusion classification which is somewhat related
to cognitive load. They achieved sensitivity of 0.74 and specificity of 0.71 with their
RNN approach which is in the same range as our obtained sensitivity and specificity
of 0.80 and 0.68 respectively, from LSTM confusion matrix in Figure 4.3. These
results strengthens the hypothesis that there is valuable information about a users
affective state in their eye movements.

To be able to use these models to adapt user interfaces in real time, in a consumer
product, the f1-scores should be above 0.9. Both scores are below the accepted
threshold for real time user interface adaptation. The models are however far better
than random guessing and could probably be used in settings where the accuracy

41

5. Discussion

requirements are lower than for real time interface adaptation. One possible appli-
cation could be to give information to commentators of e-sport tournaments. If the
models could give a rough estimate on whether a player is cognitively loaded or not
it could help the commentators to see if a player is in trouble or not.

5.1.1 Majority voting

When majority voting was applied a clear increase in f1-scores could be observed.
For activity classification the best score rose from 0.66 to 0.89 and for cognitive load
classification the f1-score rose from 0.74 to 0.91, when comparing 20 votes with no
votes. As mentioned in Section 4.1 there is a trade off between prediction speed
and f1-score. The majority voting scores outperform the scores that [11] and [13]
obtained, while still allowing online predictions.

The optimal balance between speed and f1-score depends on the application. In
Figures 4.4 and 4.6, the performance increase seems to saturate above 7-10 votes.
Since the prediction speed decreases linearly with increased number of voters, it is
usually a good idea to choose number of votes to be close to the inflection point,
i.e. 7-10 votes, to get the best speed-accuracy trade off. Since the optimal time
frames for the two models were 1.52s and 2.36s respectively, prediction delay with
7-10 votes should be around 10-20 seconds.

5.1.2 Filtered data

Performance has shown to increase without the one euro filter. This might be
due to loss of smaller and faster eye movements when the filter is applied. The
predictor uses Tobii Stream Engine to get gaze data from the tracker. Stream
Engine automatically applies a one euro filter on the data which is the reason why
we trained our models with filtered data as well. For this project it would have
been beneficial to have access to unfiltered gaze data from the eye tracker. To train
models and create a predictor not using filtered data is work for the future.

5.2 Possible improvements

This section presents possible improvements to be made in the design of tests and
use of models.

5.2.1 Test design

One of the greatest challenges in this project was to collect correctly labeled data
that accurately represents reality. Especially in the case of cognitive load data, it

42

5. Discussion

is hard to know if the data is correctly labeled since it is hard to know a person’s
actual level of cognitive load. In this case the labeling of cognitive load was based on
the assumption that one basic main activity requires low cognitive load, while doing
the main task as well as the secondary task requires high cognitive load. It is quite
certain that the dual task requires higher cognitive load than the corresponding
single task. Reading and counting is harder than just reading. However there might
also be a difference in the cognitive load required by the different main activities.
For example some participants were not native English speakers and reading in a
foreign language might require higher cognitive load than searching for a place on a
map. Measurements of brain activity would probably have given a more objective
and accurate measures of cognitive load and thus could have enabled more accurate
labeling. Equipment for measuring brain activity was not available in this project
but could be an interesting thing to consider for future research.

The data collection was carried out in a room where other people worked. This had
the effect that sometimes people were talking during tests and there was other dis-
tracting things happening in the same room. These surrounding distractions might
have had the effect that some recordings labeled as low cognitive load was actually
high cognitive load. The scanning activity during the data collection consisted of
a list of product pictures with a text for each product. This made people look at
the pictures, and also read the text, which probably resulted in reading patterns
labeled as scanning. The disturbance from people talking as well as the design of
the scanning activity was the main reasons why a second round of data collection
with five participants was carried out. The thought with the second round was to
get data to be able to compare with the first collection to see if the people talking
as well as mixed reading with scanning had any effect on the results. The second
data collection gave improvements in the prediction performance. Unfortunately
there was not time to do a full scale second data collection, but the improvements
with just five participants indicates that it is possible to create a data set with less
noisy labels. To think through the creation of the test more and try to maximize
the control over variables, such as the sound level in the room, would have been
beneficial in the end.

5.2.2 Models

The confusion matrices indicated that some activities had common sub patterns and
that the models seemed to learn these sub patterns rather than the main activity,
e.g. the scanning activity included some reading patterns from e.g. headlines. this
opens up for the possibility to use these models as feature extractors for higher
level activity classifiers. There could be activities that comprises of several smaller
activities, for example ”browsing” could include some reading and some searching.
The models developed in this work could work as feature extractors on the raw data
which another machine learning model could use as input to predict those higher
level activities.

43

5. Discussion

5.3 Possible flaws

Even though the models were evaluated on previously unseen test data the results
only show the prediction performance for activities in the same context as in the data
collection. In the data collection each activity was done separately for a coherent
period of time. In a real case, users might switch tasks more frequently and the users
will also perform many activities that the models do not recognize. How the models
behave in this context is still to be further investigated. The prototype software
that predicts the user activity can perform predictions with an, to Tobii, acceptable
delay, but to get a quantitative measure of the real world prediction performance is
hard since there is no well defined ground truth. One way to get this measure is to
allow users to try the prototype and manually label the activities they are currently
doing and compare it with the predicted labels. The problem with this approach
is that it is intrusive on the user’s behaviour and might therefore prevent the user
from performing the activities in a natural fashion.

5.4 Ethics

This study indicates that there is a lot of information about the user just in their
gaze patterns. The focus in this study has been on the activities scanning, searching
and reading as well as cognitive load, but it is reasonable to assume that the gaze
patterns can give information of other activities as well. Further development in
this area could enable tracking of users’ mood and emotional state as well as their
activities. This kind of tracking could be used to find out a users true thoughts and
feelings. This could help a user become more aware of itself but it could also become
a way to use this information about a user for one’s own interest. How could this
be used in a place where free speech is not allowed and this enables you to deduce
someones opinions based on the response of the eye to specific questions? It could be
used to change stimulus to be more pleasing to the user without the user knowing.
It could be used by companies to make more appealing commercials. If a banner on
a website is the cause of bad feelings it could be changed in order to please the crowd
better. When reading terms and conditions for signing an insurance or a contract
the company could chose not to sign if the user gives unwanted signals. To conclude,
this kind of tracking could be considered a violation of the user’s privacy. When this
kind of technology arrives it is important that the technology providers take their
responsibility to ensure ethical use of their product. Licenses and contracts should
be formed to protect the users privacy so that the user can enjoy the perks of aware
user interfaces without feeling under surveillance.

44

5. Discussion

5.5 Future work

There is an infinite number of different activities and user states that can occur in
front of a laptop. In this study three activities and one state have been tracked and
to some extent it seems to be possible to predict these activities and states based
on gaze patterns. A natural extension to this study would be to further explore
what other activities and states that are possible to track. As previously discussed
it could be valuable to try to define low level activities on which models similar to
the models in this study can be trained and then use these low level activities to
formulate higher level composite activities.

The scope of this project was to only consider eye data, but it is fair to assume that
data from other kinds of user interactions such as mouse clicks or key presses could
give additional valuable information. Further research could try to include other
data sources in order to get more information by the user and thus enable more
accurate predictions.

45

5. Discussion

46

6
Conclusion

This study has explored how eye movement data and machine learning can be used
detect if a user is reading, searching for something or scanning page content as
well as detecting if a user is cognitively loaded or not. For this task three models
were evaluated, HMM, CLDNN and LSTM. For the activity classification task the
CLDNN model performed best with an f1-score of 0.62. The LSTM model per-
formed best with an f1-score of 0.74. when predictions were smoothed over a larger
time window the prediction performance increased up to around 0.90 f1-score for
both activities and cognitive load classification. In terms of prediction speed the
prototype performs well and is able to make predictions with a few seconds of delay,
which is acceptable for real time user interface adaptation according to Tobii. How-
ever in order for Tobii to consider this to be applicable for real time user interface
adaptation, accuracy would have to reach well above 0.9. Thus the accuracy of the
models are a little bit too low. With a larger amount of carefully annotated data
it might still be possible to increase the performance of the models and it is also
possible that inclusion of other data sources might further increase the performance

47

6. Conclusion

48

Bibliography

[1] “How eye tracking works,” https://www.tobiipro.com/learn-and-support/
learn/eye-tracking-essentials/how-do-tobii-eye-trackers-work/, accessed: 2019-
08-26.

[2] R. Bhatia, “When not to use neural networks,” https://medium.com/
datadriveninvestor/when-not-to-use-neural-networks-89fb50622429, 2018.

[3] P. Srivastava, “Essentials of deep learning : Introduction to long
short term memory,” https://www.analyticsvidhya.com/blog/2017/12/
fundamentals-of-deep-learning-introduction-to-lstm/, 2017.

[4] C. Olah, “Understanding lstm networks,” http://colah.github.io/posts/
2015-08-Understanding-LSTMs/, 2015.

[5] A. de SaintExupery, The Little Prince. Egmont Books Ltd, 1943, one of the
pages from the book.

[6] “Google maps,” https://www.google.com/maps, accessed: 2019-08-26.

[7] K. Rayner, “Eye movements in reading and information processing: 20 years
of research.” Psychological Bulletin (1998), p. 372–422, 1998.

[8] J. A. Eduardo Velloso, Amy Fleming and H. Gellersen., “Gaze-supported
gaming: Magic techniques for first person shooters. in proceedings of
the 2015 annual symposium on computer-human interaction in play (chi
play ’15).” CHI PLAY 2015, p. 343–347, 2015. [Online]. Available:
https://doi.org/10.1145/2793107.2793137

[9] Tobii, “Consumer laptops.” [Online]. Available: https://gaming.tobii.com/
products/laptops//

[10] P. Majaranta and A. Bulling, Eye Tracking and Eye-Based Human–Computer
Interaction. London: Springer London, 2014, pp. 39–65. [Online]. Available:
https://doi.org/10.1007/978-1-4471-6392-3_3

[11] A. Bulling, J. A. Ward, H. Gellersen, and G. Troster, “Eye movement anal-
ysis for activity recognition using electrooculography,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 33, no. 4, pp. 741–753, April
2011.

49

https://www.tobiipro.com/learn-and-support/learn/eye-tracking-essentials/how-do-tobii-eye-trackers-work/
https://www.tobiipro.com/learn-and-support/learn/eye-tracking-essentials/how-do-tobii-eye-trackers-work/
https://medium.com/datadriveninvestor/when-not-to-use-neural-networks-89fb50622429
https://medium.com/datadriveninvestor/when-not-to-use-neural-networks-89fb50622429
https://www.analyticsvidhya.com/blog/2017/12/fundamentals-of-deep-learning-introduction-to-lstm/
https://www.analyticsvidhya.com/blog/2017/12/fundamentals-of-deep-learning-introduction-to-lstm/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.google.com/maps
https://doi.org/10.1145/2793107.2793137
https://gaming.tobii.com/products/laptops//
https://gaming.tobii.com/products/laptops//
https://doi.org/10.1007/978-1-4471-6392-3_3

Bibliography

[12] R. L. Canosa, “Real-world vision: Selective perception and task,” ACM Trans.
Appl. Percept., vol. 6, no. 2, pp. 11:1–11:34, Mar. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1498700.1498705

[13] N. Srivastava, J. Newn, and E. Velloso, “Combining low and mid-level gaze fea-
tures for desktop activity recognition,” Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, vol. 2, pp. 1–27, 12 2018.

[14] E. Aïmeur, F. Mpondo, F. Courtemanche, A. Dufresne, and M. Najjar,
“Activity recognition using eye-gaze movements and traditional interactions,”
Interacting with Computers, vol. 23, no. 3, pp. 202–213, 03 2011. [Online].
Available: https://dx.doi.org/10.1016/j.intcom.2011.02.008

[15] R. Alghofaili, Y. Sawahata, H. Huang, H.-C. Wang, T. Shiratori, and L.-F. Yu,
“Lost in style: Gaze-driven adaptive aid for vr navigation,” in Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems, ser. CHI
’19. ACM, 2019.

[16] S. D. Sims, V. Putnam, and C. Conati, “Predicting confusion from eye-tracking
data with recurrent neural networks,” CoRR, vol. abs/1906.11211, 2019.
[Online]. Available: http://arxiv.org/abs/1906.11211

[17] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[18] D. Svozil, V. Kvasnicka, and J. Pospichal, “Introduction to multi-layer
feed-forward neural networks,” Chemometrics and Intelligent Laboratory
Systems, vol. 39, no. 1, pp. 43 – 62, 1997. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0169743997000610

[19] DeepAI, “Activation function,” https://deepai.org/
machine-learning-glossary-and-terms/activation-function.

[20] P. Bühlmann and S. van de Geer, Statistics for High-Dimensional Data, ser.
Springer Series in Statistics. Dordrecht: Springer, 2011. [Online]. Available:
https://cds.cern.ch/record/1414271

[21] V. Vapnik, “Principles of risk minimization for learning theory,” in
Proceedings of the 4th International Conference on Neural Information
Processing Systems, ser. NIPS’91. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1991, pp. 831–838. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2986916.2987018

[22] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Neurocomputing:
Foundations of research,” in Neurocomputing: Foundations of Research, J. A.
Anderson and E. Rosenfeld, Eds. Cambridge, MA, USA: MIT Press, 1988, ch.
Learning Representations by Back-propagating Errors, pp. 696–699. [Online].
Available: http://dl.acm.org/citation.cfm?id=65669.104451

[23] Y. LeCun and Y. Bengio, “Convolutional networks for images, speech, and
time-series,” in The Handbook of Brain Theory and Neural Networks, M. A.
Arbib, Ed. MIT Press, 1995.

50

http://doi.acm.org/10.1145/1498700.1498705
https://dx.doi.org/10.1016/j.intcom.2011.02.008
http://arxiv.org/abs/1906.11211
http://www.deeplearningbook.org
http://www.sciencedirect.com/science/article/pii/S0169743997000610
https://deepai.org/machine-learning-glossary-and-terms/activation-function
https://deepai.org/machine-learning-glossary-and-terms/activation-function
https://cds.cern.ch/record/1414271
http://dl.acm.org/citation.cfm?id=2986916.2987018
http://dl.acm.org/citation.cfm?id=2986916.2987018
http://dl.acm.org/citation.cfm?id=65669.104451

Bibliography

[24] N. Murray, “Convolutional networks,” 2018, presentation made at Deep Learn-
ing Indaba, South Africa, 2018.

[25] M. Bodén, “A guide to recurrent neural networks and backpropagation,” Re-
search gate, 12 2001.

[26] J. Connor, L. E. Atlas, and D. R. Martin, “Recurrent networks and narma
modeling,” in Proceedings of the 4th International Conference on Neural
Information Processing Systems, ser. NIPS’91. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1991, pp. 301–308. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2986916.2986953

[27] Pearlmutter, “Learning state space trajectories in recurrent neural networks,”
in International 1989 Joint Conference on Neural Networks, 1989, pp. 365–372
vol.2.

[28] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural compu-
tation, vol. 9, pp. 1735–80, 12 1997.

[29] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: continual
prediction with lstm,” in 1999 Ninth International Conference on Artificial
Neural Networks ICANN 99. (Conf. Publ. No. 470), vol. 2, Sep. 1999, pp. 850–
855 vol.2.

[30] T. N. Sainath, O. Vinyals, A. Senior, and H. Sak, “Convolutional, long short-
term memory, fully connected deep neural networks,” in 2015 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), April
2015, pp. 4580–4584.

[31] L. E. Baum and J. A. Eagon, “An inequality with applications to statistical
estimation for probabilistic functions of markov processes and to a model
for ecology,” Bull. Amer. Math. Soc., vol. 73, no. 3, pp. 360–363, 05 1967.
[Online]. Available: https://projecteuclid.org:443/euclid.bams/1183528841

[32] L. E. Baum and T. Petrie, “Statistical inference for probabilistic functions of
finite state markov chains,” Ann. Math. Statist., vol. 37, no. 6, pp. 1554–1563,
12 1966. [Online]. Available: https://doi.org/10.1214/aoms/1177699147

[33] L. R. Rabiner, “A tutorial on hidden markov models and selected applications
in speech recognition,” in Proc. IEEE, 1989, section IV.

[34] ——, “A tutorial on hidden markov models and selected applications in speech
recognition,” in Proc. IEEE, 1989, section II.

[35] jlimahaverford (https://stats.stackexchange.com/users/71119/jlimahaverford),
“Understanding elements that characterise hmm,” Cross Validated,
uRL:https://stats.stackexchange.com/q/175017 (version: 2015-10-01). [On-
line]. Available: https://stats.stackexchange.com/q/175017

[36] L. R. Rabiner, “A tutorial on hidden markov models and selected applications
in speech recognition,” in Proc. IEEE, 1989, section II.B.

51

http://dl.acm.org/citation.cfm?id=2986916.2986953
https://projecteuclid.org:443/euclid.bams/1183528841
https://doi.org/10.1214/aoms/1177699147
https://stats.stackexchange.com/q/175017

Bibliography

[37] J. Bilmes, “A gentle tutorial of the em algorithm and its application to param-
eter estimation for gaussian mixture and hidden markov models,” International
Computer Science Institute Berkeley CA, 94704 and Computer Science Divi-
sion Department of Electrical Engineering and Computer Science U.C. Berkeley,
Tech. Rep., 1998, section 4.

[38] L. R. Rabiner, “A tutorial on hidden markov models and selected applications
in speech recognition,” in Proc. IEEE, 1989, section II.C.

[39] Wikipedia contributors, “Baum–welch algorithm — Wikipedia, the free
encyclopedia,” 2019, [Online; accessed 29-April-2019]. [Online]. Avail-
able: https://en.wikipedia.org/w/index.php?title=Baum%E2%80%93Welch_
algorithm&oldid=892460830

[40] J. Bilmes, “A gentle tutorial of the em algorithm and its application to param-
eter estimation for gaussian mixture and hidden markov models,” International
Computer Science Institute Berkeley CA, 94704 and Computer Science Divi-
sion Department of Electrical Engineering and Computer Science U.C. Berkeley,
Tech. Rep., 1998, section 4.1.

[41] ——, “A gentle tutorial of the em algorithm and its application to parame-
ter estimation for gaussian mixture and hidden markov models,” International
Computer Science Institute Berkeley CA, 94704 and Computer Science Divi-
sion Department of Electrical Engineering and Computer Science U.C. Berkeley,
Tech. Rep., 1998, section 4.2.

[42] S. Tu, Derivation of Baum-Welch Algorithm for Hidden Markov Models, section
3.

[43] A. J. Viterbi, “Viterbi algorithm,” Scholarpedia, vol. 4, no. 1, p. 6246, 2009,
revision #91930.

[44] A. Maas, “lecture 8 hmm, viterbi,” 2017, from CS 224S / LINGUIST
285 Spoken Language Processing course. [Online]. Available: https:
//web.stanford.edu/class/cs224s/lectures/224s.17.lec3.pdf

[45] R. Levy, “lecture 8 hmm, viterbi,” p. 23, 2009, from Linguistics/CSE
256: Statistical Natural Language Processing course. [Online]. Avail-
able: http://idiom.ucsd.edu/~rlevy/teaching/winter2009/ligncse256/lectures/
lecture_8_hmm_pos_tagging.ppt

[46] T. Kanungo, “Hmm tutorial,” http://www.kanungo.com/software/hmmtut.
pdf, 1999, tapas Kanungo, "UMDHMM: Hidden Markov Model Toolkit," in
"Extended Finite State Models of Language," A. Kornai (editor), Cambridge
University Press, 1999. http://www.kanungo.com/software/software.html.

[47] T. Hastie, R. Tibshirani, and J. Friedman, Model Assessment and Selection.
New York, NY: Springer New York, 2009, pp. 219–259. [Online]. Available:
https://doi.org/10.1007/978-0-387-84858-7_7

[48] [Online]. Available: https://www.amazon.com/b/ref=br_asw_smr?
_encoding=UTF8&node=18505454011&pf_rd_m=ATVPDKIKX0DER&pf_

52

https://en.wikipedia.org/w/index.php?title=Baum%E2%80%93Welch_algorithm&oldid=892460830
https://en.wikipedia.org/w/index.php?title=Baum%E2%80%93Welch_algorithm&oldid=892460830
https://web.stanford.edu/class/cs224s/lectures/224s.17.lec3.pdf
https://web.stanford.edu/class/cs224s/lectures/224s.17.lec3.pdf
http://idiom.ucsd.edu/~rlevy/teaching/winter2009/ligncse256/lectures/lecture_8_hmm_pos_tagging.ppt
http://idiom.ucsd.edu/~rlevy/teaching/winter2009/ligncse256/lectures/lecture_8_hmm_pos_tagging.ppt
http://www.kanungo.com/software/hmmtut.pdf
http://www.kanungo.com/software/hmmtut.pdf
https://doi.org/10.1007/978-0-387-84858-7_7
https://www.amazon.com/b/ref=br_asw_smr?_encoding=UTF8&node=18505454011&pf_rd_m=ATVPDKIKX0DER&pf_rd_s=&pf_rd_r=KRNP1BGCHCHHX8V1Q99S&pf_rd_t=36701&pf_rd_p=91247fb7-7595-414d-b9b0-f49b945644d3&pf_rd_i=desktop
https://www.amazon.com/b/ref=br_asw_smr?_encoding=UTF8&node=18505454011&pf_rd_m=ATVPDKIKX0DER&pf_rd_s=&pf_rd_r=KRNP1BGCHCHHX8V1Q99S&pf_rd_t=36701&pf_rd_p=91247fb7-7595-414d-b9b0-f49b945644d3&pf_rd_i=desktop
https://www.amazon.com/b/ref=br_asw_smr?_encoding=UTF8&node=18505454011&pf_rd_m=ATVPDKIKX0DER&pf_rd_s=&pf_rd_r=KRNP1BGCHCHHX8V1Q99S&pf_rd_t=36701&pf_rd_p=91247fb7-7595-414d-b9b0-f49b945644d3&pf_rd_i=desktop
https://www.amazon.com/b/ref=br_asw_smr?_encoding=UTF8&node=18505454011&pf_rd_m=ATVPDKIKX0DER&pf_rd_s=&pf_rd_r=KRNP1BGCHCHHX8V1Q99S&pf_rd_t=36701&pf_rd_p=91247fb7-7595-414d-b9b0-f49b945644d3&pf_rd_i=desktop

Bibliography

rd_s=&pf_rd_r=KRNP1BGCHCHHX8V1Q99S&pf_rd_t=36701&pf_rd_
p=91247fb7-7595-414d-b9b0-f49b945644d3&pf_rd_i=desktop

[49] H. R. Schiffman, Sensation and perception : an integrated approach. New York:
John Wiley and Sons Inc., 1976, no. 391.

[50] G. Casiez, N. Roussel, and D. Vogel, “1€ filter: A simple speed-based low-pass
filter for noisy input in interactive systems,” Conference on Human Factors in
Computing Systems - Proceedings, 05 2012.

[51] N. Reimers and I. Gurevych, “Optimal hyperparameters for deep lstm-networks
for sequence labeling tasks,” CoRR, vol. abs/1707.06799, 2017. [Online].
Available: http://arxiv.org/abs/1707.06799

[52] L. R. Rabiner, “A tutorial on hidden markov models and selected applications
in speech recognition,” in Proc. IEEE, 1989.

[53] W. Koehrsen, “Intro to model tuning: Grid and random search,” https://www.
kaggle.com/willkoehrsen/intro-to-model-tuning-grid-and-random-search,
2018.

[54] ——, “Automated model tuning,” https://www.kaggle.com/willkoehrsen/
automated-model-tuning, 2018.

[55] Y. D. C. D. D. Bergstra, J., “Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures,” Proc. of the
30th International Conference on Machine Learning (ICML 2013), 2013.

[56] F. Chollet et al., “Keras,” https://keras.io, 2015.

[57] S. e. a. Lebedev, “Hmmlearn,” https://hmmlearn.readthedocs.io/en/latest/,
2015.

[58] “Tobii Stream Engine stream engine overview,” https://developer.tobii.com/
consumer-eye-trackers/stream-engine/, accessed: 2019-08-25.

[59] [Online]. Available: https://github.com/migueldeicaza/TensorFlowSharp

53

https://www.amazon.com/b/ref=br_asw_smr?_encoding=UTF8&node=18505454011&pf_rd_m=ATVPDKIKX0DER&pf_rd_s=&pf_rd_r=KRNP1BGCHCHHX8V1Q99S&pf_rd_t=36701&pf_rd_p=91247fb7-7595-414d-b9b0-f49b945644d3&pf_rd_i=desktop
https://www.amazon.com/b/ref=br_asw_smr?_encoding=UTF8&node=18505454011&pf_rd_m=ATVPDKIKX0DER&pf_rd_s=&pf_rd_r=KRNP1BGCHCHHX8V1Q99S&pf_rd_t=36701&pf_rd_p=91247fb7-7595-414d-b9b0-f49b945644d3&pf_rd_i=desktop
https://www.amazon.com/b/ref=br_asw_smr?_encoding=UTF8&node=18505454011&pf_rd_m=ATVPDKIKX0DER&pf_rd_s=&pf_rd_r=KRNP1BGCHCHHX8V1Q99S&pf_rd_t=36701&pf_rd_p=91247fb7-7595-414d-b9b0-f49b945644d3&pf_rd_i=desktop
https://www.amazon.com/b/ref=br_asw_smr?_encoding=UTF8&node=18505454011&pf_rd_m=ATVPDKIKX0DER&pf_rd_s=&pf_rd_r=KRNP1BGCHCHHX8V1Q99S&pf_rd_t=36701&pf_rd_p=91247fb7-7595-414d-b9b0-f49b945644d3&pf_rd_i=desktop
http://arxiv.org/abs/1707.06799
https://www.kaggle.com/willkoehrsen/intro-to-model-tuning-grid-and-random-search
https://www.kaggle.com/willkoehrsen/intro-to-model-tuning-grid-and-random-search
https://www.kaggle.com/willkoehrsen/automated-model-tuning
https://www.kaggle.com/willkoehrsen/automated-model-tuning
https://keras.io
https://hmmlearn.readthedocs.io/en/latest/
https://developer.tobii.com/consumer-eye-trackers/stream-engine/
https://developer.tobii.com/consumer-eye-trackers/stream-engine/
https://github.com/migueldeicaza/TensorFlowSharp

Bibliography

54

A
Appendix 1

A.1 Deep learning architectures

Input

Lstm layer 1

Lstm layer 2

FC layer

Output

Figure A.1: Illustration of the order of the network layers in the LSTM model.

Listing A.1: LSTM architecture
1 # Keras d e c l a r a t i on o f the LSTM model
2 # c l a s s i f y _ a c t i v i t i e s i s True i f we want to c l a s s i f y a c t i v i t i e s
3 # and Fal se i f we want to c l a s s i f y c o gn i t i v e load
4
5 model = Sequent i a l ()
6 model . add (LSTM(un i t s = 347 i f c l a s s i f y _ a c t i v i t i e s e l s e 106 ,
7 recurrent_dropout = (0 . 25 i f c l a s s i f y _ a c t i v i t i e s e l s e 0 . 0) ,
8 input_shape=input_shape , return_sequences = True))
9 model . add (Dropout (0 . 5))
10 model . add (LSTM(un i t s = 347 i f c l a s s i f y _ a c t i v i t i e s e l s e 106 ,
11 recurrent_dropout = (0 . 25 i f c l a s s i f y _ a c t i v i t i e s e l s e 0 . 0)))
12 model . add (Dropout (0 . 5))
13 model . add (Dense (num_classes))
14 model . add (Act ivat ion (’ softmax ’))
15
16 model . compi le (l o s s=’ ca t ego r i c a l_c ro s s en t r opy ’ , opt imize r=’adam ’ ,
17 metr i c s =[’ ca t ego r i ca l_accuracy ’])

I

Input

Conv. layer 1

Conv. layer 2

Lstm layer 1

Lstm layer 2

FC layer

Output

Figure A.2: Illustration of the order of the network layers in the CLDNN model.

Listing A.2: CLDNN architecture
1
2 # Keras d e c l a r a t i on o f the LSTM model
3 # c l a s s i f y _ a c t i v i t i e s i s True i f we want to c l a s s i f y a c t i v i t i e s
4 # and Fal se i f we want to c l a s s i f y c o gn i t i v e load
5
6 model = Sequent i a l ()
7 # Cnn part
8 model . add (Conv1D(105 i f c l a s s i f y _ a c t i v i t i e s e l s e 56 ,
9 ke rne l_s i z e = 6 i f c l a s s i f y _ a c t i v i t i e s e l s e 13 ,
10 input_shape=input_shape))
11 model . add (Conv1D(223 i f c l a s s i f y _ a c t i v i t i e s e l s e 116 ,
12 ke rne l_s i z e = 10 i f c l a s s i f y _ a c t i v i t i e s e l s e 13))
13 model . add (Dropout (drop_out))
14 #LSTM part
15 model . add (LSTM(un i t s = 1 i f c l a s s i f y _ a c t i v i t i e s e l s e 106 ,
16 recurrent_dropout = (0 . 25 i f c l a s s i f y _ a c t i v i t i e s e l s e 0 . 0) ,
17 input_shape=input_shape , return_sequences = True))
18 model . add (Dropout (0 . 5))
19 model . add (LSTM(un i t s = 287 i f c l a s s i f y _ a c t i v i t i e s e l s e 106 ,
20 recurrent_dropout = (0 . 25 i f c l a s s i f y _ a c t i v i t i e s e l s e 0 . 0)))
21 model . add (Dropout (0 . 5))
22 # DNN part
23 model . add (Dense (num_classes))
24 model . add (Act ivat ion (’ softmax ’))
25
26 model . compi le (l o s s=’ ca t ego r i c a l_c ro s s en t r opy ’ , opt imize r=’adam ’ ,
27 metr i c s =[’ ca t ego r i ca l_accuracy ’])

	List of Figures
	List of Tables
	Introduction
	Background
	Previous work
	Objective
	Scope
	Purpose and aims

	Theory
	Eye Movements
	Tracking technology
	Infrared Pupil Corneal Reflection (IR-PCR)

	Machine Learning models
	Deep Feed Forward Neural Networks
	Backpropagation

	Convolutional Neural Networks
	Sequential data
	Recurrent Neural Networks
	Long Short Term Memory
	Convolutional Long Short Term Memory Deep Neural Networks
	Hidden Markov Model

	Evaluation of machine learning models

	Methods
	Method overview
	Activities and States
	Data collection process
	Tests
	Cognitive Load
	Reading test
	Scanning test
	Searching images test
	Searching text test
	Skimming test
	Memory test

	Test group
	Second data collection

	Feature description
	Data cleaning
	Time frame
	Feature transformations
	Model selection
	Model architecture
	Feature selection
	Hyperparameters
	Bayesian Optimization

	Training and Evaluation
	Predictor prototype

	Results
	Prediction performance
	Majority votes

	Second data collection
	Choosen hyperparameters
	Predictor prototype

	Discussion
	Prediction performance
	Majority voting
	Filtered data

	Possible improvements
	Test design
	Models

	Possible flaws
	Ethics
	Future work

	Conclusion
	Bibliography
	Appendix 1
	Deep learning architectures

