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Tracking stationary and moving extended objects in dense urban scenarios
An application of the PMBM filter with stochastic optimization to Radar data
GORKA ITURBE OTEGUI
Department of Electrical Engineering
Chalmers University of Technology

Abstract

The problem of tracking dense urban environments to provide safety on the roads
has always been of interest in the field of Autonomous Driving vehicles. Advances
in the radar sensor technology have helped to tackle this problem, contributing to
the Autonomous Driving systems with more robust and efficient solutions. Com-
bining radar developments and mathematical theories like Finite Set Statistics and
probability theory, this thesis employs and analyzes the performance of the Pois-
son Multi-Bernoulli Mixture filter with stochastic optimization when it is applied
to Radar data. The results show that it is a robust approach that solves both
real and simulated tracking problems in dense scenarios, and it is a suitable and
compact method that tracks multiple kinds of objects found in urban scenarios.

Keywords: Autonomous Driving, dense urban scenario tracking, Poisson Multi-
Bernoulli Mixture Filter, Multiple Hypotheses Tracking, Finite Set Statistics, Ran-
dom Finite Set theory, Stochastic Optimization

v





Acknowledgement

I would like to thank first to my supervisor Karl Granström for his theoretical
support, through both papers and meetings, and his guidance in the thesis under-
standing. I am also thankful for the help obtained from Johan Degerman, without
whom I would not have advanced and learnt fundamental procedures employed
in the actual vehicle Radar industry. I also want to thank Thomas Pernstal and
SafeRadar Research Sweden AB for letting me use real data and their knowledge
related to the Radar and Lidar sensors.

As for my relatives, I am glad and proud of being part of my family, whose help
and support during my master allowed me to both pursue personal goals and grow
in every possible way. Last, but not least, I would like to thank to all my friends in
Göteborg, Bilbao and Stockholm for being supportive when it was more needed.

Gorka Iturbe Otegui, Gothenburg, August 2018

vii



"Concern for man and his fate must always form the chief interest of all technical
endeavors. Never forget this in the midst of your diagrams and equations." - Albert
Einstein

viii



Contents

1 Introduction 3

2 Purpose, Objectives, Contributions and Ethics 5
2.1 Multitarget Tracking Problem . . . . . . . . . . . . . . . . . . . . . 5
2.2 Multitarget Filters Survey . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 The Purpose of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Purpose: Tracking MTT problems by means of the Poisson
Multi-Bernoulli Mixture Filter . . . . . . . . . . . . . . . . . 8

2.3.2 Objectives and Contributions . . . . . . . . . . . . . . . . . 9
2.4 Ethics: Trespassing Privacy - Awareness . . . . . . . . . . . . . . . 9

3 Theory 11
3.1 The Bayesian Approach for Single Target Tracking . . . . . . . . . 12
3.2 Random Finite Sets: General Point Processes and Poisson Point

Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.1 The Event Space . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Multitarget Measurements . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.1 Object Classification in Terms of FoV . . . . . . . . . . . . . 18
3.3.2 Multi-sensory Vehicles . . . . . . . . . . . . . . . . . . . . . 19
3.3.3 Measurement Likelihood . . . . . . . . . . . . . . . . . . . . 19

3.4 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.1 Objects Classification in Terms of their Nature . . . . . . . . 21
3.4.2 Kinematics or Motion Models . . . . . . . . . . . . . . . . . 21
3.4.3 Extent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.4 Space State Representation . . . . . . . . . . . . . . . . . . 23
3.4.5 The Single Extended Object Model: The Gamma Gaussian

Inverse Wishart (GGIW) . . . . . . . . . . . . . . . . . . . . 23
3.5 Multitarget Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5.1 The Detected Multitarget Density . . . . . . . . . . . . . . . 27
3.5.2 Global Hypotheses Tracking: The Mixture . . . . . . . . . . 27

ix



Contents

3.5.3 The Poisson Multi-Bernoulli Mixture Density . . . . . . . . 28
3.6 Data Association with Stochastic Optimization . . . . . . . . . . . 29

4 Methodology 33
4.1 Programming Language . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Metrology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Gaussian Wasserstein Distance . . . . . . . . . . . . . . . . 36
4.2.2 General Optimal Subpattern Assignment (GOSPA) . . . . . 38

4.3 Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4.1 Prior Sequence Knowledge . . . . . . . . . . . . . . . . . . . 41
4.4.2 DA initialization . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Results 45
5.1 Simulated Environments . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.1 Single Extended Target Model - GGIW . . . . . . . . . . . . 46
5.1.2 Multiple targets scenario . . . . . . . . . . . . . . . . . . . . 48

5.2 Real Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2.1 1st Approach: Certainty in the Position of the Birth . . . . . 52
5.2.2 2nd Approach: Uncertainty in the Location of the Birth . . . 53
5.2.3 Lower the Initial Extensions Values . . . . . . . . . . . . . . 54
5.2.4 3rd Approach: X1, XStat

2 and XNStat
2 Extensions and Cer-

tainty in the Location of the Birth . . . . . . . . . . . . . . 55
5.2.5 4th Approach: X1, XStat

2 and XNStat
2 Extensions and Uncer-

tainty in Birth . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.6 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Discussion 59

7 Conclusion 63

Bibliography i

A Pseudo-code/Flow-chart iii

B Complementary figures for evaluation vii
B.1 Simulated Environments . . . . . . . . . . . . . . . . . . . . . . . . vii

B.1.1 Single Extended Target - GWD . . . . . . . . . . . . . . . . vii
B.1.2 Single Extended Target - Measurements distribution . . . . ix

x



Contents

C Parameters values xi
C.1 Simulated Environments . . . . . . . . . . . . . . . . . . . . . . . . xi

C.1.1 Single Extended Target . . . . . . . . . . . . . . . . . . . . . xi
C.1.2 Multiple targets scenario . . . . . . . . . . . . . . . . . . . . xii

C.2 Real scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
C.2.1 Multiple targets scenario . . . . . . . . . . . . . . . . . . . . xiii

xi



Contents

xii



List of Figures

5.1.1 A snippet of the GGIW performance. . . . . . . . . . . . . . . . . . 46
5.1.2 GGIW-GWD evaluation environment. . . . . . . . . . . . . . . . . 47
5.1.3 Multiple targets estimates. . . . . . . . . . . . . . . . . . . . . . . . 49
5.1.4 GOSPA values and most likely global hypothesis weights. . . . . . . 50
5.2.1 A snippet of the real situation. . . . . . . . . . . . . . . . . . . . . . 51
5.2.2 1st approach with real measurements. . . . . . . . . . . . . . . . . . 52
5.2.3 2nd approach with real measurements. . . . . . . . . . . . . . . . . . 53
5.2.4 Same X1 extensions for the 4 objects with the birth initial values of

Appendix C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.5X2 extensions with the birth initial values of Appendix C. . . . . . 55
5.2.6X1 and X2 extensions for the objects with uncertainty in the birth

initial values of Appendix C. . . . . . . . . . . . . . . . . . . . . . . 56

A.0.1Flow-chart. Snippet 1 . . . . . . . . . . . . . . . . . . . . . . . . . iv
A.0.2Flow-chart. Snippet 2 . . . . . . . . . . . . . . . . . . . . . . . . . v
A.0.3Flow-chart. Snippet 3 . . . . . . . . . . . . . . . . . . . . . . . . . vi

B.1.1Gaussian Wasserstein Distance for q = 0.01. . . . . . . . . . . . . . vii
B.1.2Gaussian Wasserstein Distance for q = 0.1. . . . . . . . . . . . . . . viii
B.1.3Measurements distribution. . . . . . . . . . . . . . . . . . . . . . . . ix

1



List of Figures

2



Chapter 1

Introduction

The Autonomous Driving (AD) industry is being continuously improved by rapid
developments and evolution in sensing and signal processing technologies. The
history of the AD brings the reader back to the 80s when first rehearsals on self-
driving vehicles, conducted by the NavLab, succeeded [19]. Not only the AD busi-
ness itself contributed to the growth of this industry, but also related fields such
as Defence and Military, with Radar and GPS applications, developed some of the
necessary tools that enabled the development of the vehicle industry. Furthermore,
in partnership with industry, academia has always provided both conceptual and
theoretical support when it comes to find smart solutions to AD problems. One
example is the self-driving bus that, under the Project S3 - Shared Shuttle Service,
run at Chalmers University of Technology in May 2018; a multi-disciplinary re-
searching project which pursued the development of both business and technology
of the ADAS, Advanced Driver-Assistance Systems [18].

AD relies on the idea of adopting the behaviour of the driver, that is, replicating
the human conduct on the road, to reduce the risk behind the existing interaction
between human and vehicle as much as possible. Examples of this are new designs
and implementations that equipped the AD vehicles with some of the tasks that
drivers are facing each day in dense traffic situations, like line parking or cruise
control.

Although the state of the technology can not always provide a means to execute
advanced algorithms and ideas, the available sensor technology has let the ADAS
industry grow and take fundamental steps towards safer autonomous vehicle driv-
ing, in part by tracking of the surroundings.
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1. Introduction

A technology that contributed to the growth of this AD business and holds
also a particular importance in the scope of this project is the well-known radar
sensor. It detects the range, velocity and heading information of an object through
radio waves, making it possible to locate the object within a certain Field of View
(FoV). It is worth noting that air surveillance, based strongly on the Radar sensor,
contributed to the development of a crucial aspect studied in this thesis: the
Multitarget Tracking (MTT) algorithm.

In addition, the resolution of the mentioned radar plays a decisive role in the
development of the ADAS, where high resolution sensors allow the system to un-
derstand or perceive the nearby surroundings better. However, due to the high
resolution radar, the Data Association (DA) analysis of all possible combinations
of the available measurements with any of the multiple sources1 within the FoV
will be needed to be performed. Moreover, the assumption of small objects is no
longer valid, since each of the detected objects might occupy several sensor cells.
Therefore, the tracking requires a more exhaustive analysis based on extent or
target shape tracking, rather than point based objects tracking [4].

This well-known difficulty behind the commented computational effort of the as-
sociations can be found in many extended target tracking publications [4][6][12][16],
where methods such as Clustering and Assignment (C&A) are presented as solu-
tions to the problem. However, these are not considered in this project [7], since
they tend to fail when it comes to handle the detection of spatially closed objects
[6]:

Therefore, new approaches based on solid mathematical grounds are to be derived
to enable an efficient and robust multitarget filtering analysis.

1Also known as targets.
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Chapter 2

Purpose, Objectives, Contributions
and Ethics

Having introduced the multiple extended target tracking problem in which the
thesis is centred around, in this forthcoming chapter, a deeper description of the
MTT problem is first introduced and a short literature review about possible solu-
tions is presented1, followed by the aim of the thesis and motivating the selection
with the objectives and contributions. The chapter ends with the ethics behind
the project.

2.1 Multitarget Tracking Problem

The FoV around an AD vehicle needs to be characterized, tracking the different
objects within. For instance, one could picture oneself as the ego-vehicle where the
PMBM filter is mounted on, and look at the surroundings throughout some time
interval. If the reader then checks and writes down the type of objects and the
location in where they were seen, the analysis would end then in a list of multiple
objects that crossed the view2. Moreover, the reader should take a further step,
and notice how the brain classified the surroundings3 which is the analogous to
the main idea employed4 in this project. The mentioned list of objects will be the
output of this project filter, which could be used to take decisions like turn, stop
or any other driving decision, as it is done by the driver.

1Note that due to the constant growth of the AD industry, many solutions are already out in
the market; and since the coverage of all available solutions, also denoted as filters or trackers,
is not feasible, the general filter families are given.

2Reader’s FoV.
3With the help of the eyes, the radar in the ego-vehicle case.
4With a slightly different step called prediction.
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2. Purpose, Objectives, Contributions and Ethics

Note in the commented example how the scan volume consisted of more than
a single extended object, which demanded to our brain a thorough analysis on
estimating what each thing within the FoV was. This same complexity, that the
reader’s brain processed, needs to be solved as efficient as possible and in the same
manner as in the reader’s brain; also known as MTT problem.

2.2 Multitarget Filters Survey

The previous dense FoV cluttered with different types of objects, such as stationary
and non-stationary ones, should be estimated to ensure the safe operations of
autonomous vehicles. Methods based on classical Bayesian inference (association
and estimation) have given solutions to the tracking problem, which have also the
adhered difficulty of processing in a tractable and efficient manner the DA [16] [4]
[6].

Possible solutions to the MTT problem can be obtained analyzing different ap-
proaches described in the literature of the MTT filters, which [12] divides into
three main groups explained in this next section. Note here that this tracking
approach is based in a particular term called global hypothesis, which it refers to
the derived probability that one possible combination of the available data takes,
at same time step and after DA analysis.

Conventional Hypothesis-Oriented Filters

The Single-Hypothesis Correlation (SHC), Multi-hypotheses Correlation (MHC) or
Composite-Hypotheses Correlation (CHC)5 rely on the division and parallelization
of the multitarget space, known as "divide-and-conquer" strategy. This approach
allows MTT to be treated as multiple single target tracking problem. The following
important assumptions have to be made in order to proceed with this hypotheses
oriented approach[12].

1. The targets are either detected, missed or false-alarm signals and depend
strictly on some empirical threshold. For further information, please refer to
the explanations and figures in [12, p 289].

2. The targets are not extended nor unresolved.

3. At any time step, there exits a state estimate with its error estimate.

4. The motion of a target is uncorrelated to other target motion.
5Traditional methods in the multiple targets tracking problem.
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2. Purpose, Objectives, Contributions and Ethics

Special attention is required in the second assumption where it is stated that the
target must be of the form of point-target rather than of extended target. This
collides with one of the main problems of this project, the extents of the targets,
that will be addressed by approximating one of the following existing hypothesis-
based tracking families.

SHC-based filters : At time step k + 1, the set of N -hypotheses6, describing the
different unions of possible estimates of real targets and which are characterized by
3-tuples of the form of {(l1k|k, x1

k|k, P
1
k|k), ..., (l

N
k|k,x

N
k|k, P

N
k|k)})7, turns into the k + 1

time step prediction set. Right after, the association with the hypothesis with min-
imal association cost is chosen and measurement updates over these N -hypotheses
are applied based on this calculated cost. This leads a unique hypothesis with the
minimal cost to govern all the other hypotheses updates [12]. One single target
filter that can be used within SHC-based family is the Kalman Filter. The proce-
dure lays on processing multiple n-KF simultaneously, so independent hypotheses
are obtained.

This minimum association cost might not correspond to the true association. In-
stead, [12] suggests another family of filters, the MHC, which are based in selecting
multiple hypotheses8 where the correct association might be hopefully presented.
A downside is the complexity and computational cost, where each predicted hy-
pothesis gives multiple hypotheses; each one describing a particular association of
the data within the measurements set and bringing new possible scenarios into
the analysis. That is the reason why this group is said to be part of the ideal
solution, where every possible hypothesis is taken into account but impossible to
be implemented due to its exponential increase.

To achieve tractability in MHC, approximations has to be made, to reduce the
cost of the hypotheses computations. Throughout the literature different approxi-
mations are found to be the key; for instance, a threshold could be employed where
the global hypotheses weights9 are compared to the said threshold and the linked
hypotheses prune if the commented weights do not reach the threshold [12]. An-
other approach, which does not use a probability threshold, is pruning less likely
global hypotheses, until a particular number of them are obtained. That is, at

6Note here that Single Hypothesis is not directly related to the amount of targets, but to the
minimal association cost.

7Where ln,xn and Pn stand for the nth-hypothesis identity tag (an address or reference to
find any hypotheses), estimate of the state and estimate error or covariance, respectively.

8Not only the one with minimum cost.
9Normalized probabilities describing the likelihoods of possible multiple targets estimates

spaces or hypotheses.
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2. Purpose, Objectives, Contributions and Ethics

each time step a pruning is done over all possible global hypotheses leaving the
Nk most likely hypotheses. This approach allows to maintain a fixed amount of
hypotheses10, but it requires a decision step of selecting just a Nk amount of hy-
potheses. Both methods commented have been implemented and tried during the
project, but due to computational efficiency, this last approach of fixed amount of
global hypotheses was selected.

The CHC-based filter is a mixture of the previously described approaches. In
this case, measurements, part of a set and related to any of the hypotheses, are
weighed according to their degree of contribution to any of the hypotheses. These
weighed measurements are rearranged to form "composite tracks"11. The Joint
Probabilistic Data Association (JPDA) filter is a filter that belongs to the men-
tioned CHC-based filter group.

In this thesis, an MHC filter is used for MTT with extended targets.

2.3 The Purpose of the Thesis

2.3.1 Purpose: Tracking MTT problems by means of the
Poisson Multi-Bernoulli Mixture Filter

A solution to the tracking problem presented in the Introduction section can be:

From the groups of methods commented in [6] that belong to the common ap-
proaches to solve the MTT problem, [12] proposes to employ Random Finite Set
(RFS) approach. This theory that was formulated and committed only to mathe-
matical purposes providing12 "a systematic toolbox [...] that addresses many diffi-
culties - those involving ambiguous evidence, unification, and computation, espe-
cially", it is now employed to solve the MTT problem. In other words, the descrip-
tion of the dense FoV under analysis throughout a tractable and efficient filter will
be obtained by joining the RFS theory, Poisson Point and Multi-Bernoulli Pro-
cesses, with the Bayesian Inference; leading to an implementation of an efficient
approximation MHC filter.

10Computational efficient.
11The author uses tracks to refer to the commented hypotheses. In the case of this thesis,

composite hypotheses.
12 Claimed by [12].
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2. Purpose, Objectives, Contributions and Ethics

2.3.2 Objectives and Contributions

Based on previous studies, [6], [7] and [8], the joint estimation of moving and
stationary extended objects, throughout this thesis, will be aimed at:

1. The study of Bayesian Inference and Random Finite Set theory as a combined
solution to multitarget filtering.

2. The use of particular instances of RFS theory such as Poisson Point and
Multi-Bernoulli Processes to solve dense scenarios.

3. The employment of the Gamma Gaussian Inverse Wishart to describe any
single extended target estimate.

4. The application of particular stochastic optimization applied to radar mea-
surements, to reduce computational-costly DA algorithms.

and contributing with

1. The performance test of the filter under real scenario estimation.

2.4 Ethics: Trespassing Privacy - Awareness

In this section, I want to highlight the concern that technology must be always de-
voted to the development of both the human being and the society. Steps towards
advanced techniques should be taken weighing the benefits and disadvantages of
new inventions and ideas.

Trespassing Privacy and Awareness. Fundamental aspects about the field
under analysis lays on the privacy and how it is handled. The aim of this thesis
is to provide a detailed urban-landscape situation around an ego-vehicle, which
might also include the tracking of the human being.

Being conscious about the Article 12 of the Universal Declaration of Human
Rights of United Nations, that states:

No one shall be subjected to arbitrary interference with his privacy [...] Everyone
has the right to the protection of the law against such interference or attacks.

the next point is claimed:

9



2. Purpose, Objectives, Contributions and Ethics

In accordance with the Article 12 of the Human Rights cited above, the
forthcoming thesis, as well as, the project behind, is strictly based on providing an
algorithm that allows to classify and shape any kind of objects13 within a specified
area. Therefore, everything that goes beyond the use of the stated is not gathered
or seen as part of this work, for this thesis. Main aim is focused on providing a

safer environment for the human being.

13Which includes the human being, but does not treat it differently in comparison to other
objects within the FoV.
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Chapter 3

Theory

The aim of this thesis is to track the environment around a reference vehicle,
also known as ego-vehicle. These surroundings are modelled as "randomly vary-
ing numbers of randomly varying objects of various kinds"[12]. This statement
defines accurately the purpose of this work, but also arises difficulties when well-
established filtering theories and assumptions are employed, such as single target
Bayesian filtering.

Since the sources, from which the estimations are made, might be of various
kinds and numbers, the complexity will be also increased in terms of data handling
and association, making some estimation methods not suitable under some specific
given circumstances. In this project, the high resolution radar makes the point-
target assumption to be not held anymore. Hence, single target filters, based in
the previous supposition, do not work any longer for the extended object tracking.

Analogous to the example given in [12, p. 16], the objects entering the FoV of a
vehicle can be assumed, in a sensible manner, to join the space randomly; like in
the well-known queuing theory. Since the location of these objects do not need to
be deterministic, the randomness in all target-positions must be introduced into
the estimation, which [12] describes as "Multidimensional Point Process". The
shape might also change in form, which in the instance of this work does not
occur, and in that case it could be in a non-deterministic way. However, it might
be worth considering in other cases such as group tracking algorithms [6].

In this thesis, we will employ a filter named Poisson Multi-Bernoulli Mixture,
PMBM. It is an adaptation of the conventional Bayesian Inference to the Finite Set
Statistics Theory, FISST, where real situations are intended to be represented as
accurate as possible. Moreover, since a sensible way to describe the limited knowl-

11



3. Theory

edge about the space around the vehicle is sought, the employment of Random
Finite Set (RFS) theory, part of FISST, becomes a natural choice [4].

The real application of the theory gets visible when one refers to its existing
implementation such as the Probability Hypothesis Density (PHD), Cardinalized
PHD (CPHD) or the one employed throughout this project. The previous first two
filters can be said to be characterized by the concept of sufficient statistics, which
enable to compress the posterior to the first couple of moments. High SNR (Signal-
to-Noise Ratio) must be assumed, which provides a way to derive the posterior
probability distributions, pdf [11]. These approaches differ from the studied one
in the facts that they firstly group-track the environment (a formation of targets
that share a common motion [4]) and they continue with individual target tracking
[12]. Also, no assumption of high SNR is made upon the PMBM filter.

Lastly and worth emphasizing1, the real applications of the mathematical foun-
dations or algorithms are done throughout the employment of models, which sim-
plify the abstraction of the mathematical approaches up to large extent. The
selection of models is the key factor then, when it comes to build solid filters that
provide trustworthy estimates that make possible future decision/control steps
safer. The construction of strong and stable filters with suitable models is a fun-
damental part in which ADAS are built on and hence studied throughout this
project.

3.1 The Bayesian Approach for Single Target Track-
ing

Intended to an audience that should have already some knowledge about object
tracking or filtering, a good introductory point for this thesis lays on the Kalman
filter (KF). It is a particular case of single-target tracking based on Bayesian
Inference, which becomes helpful for understanding the PMBM filtering procedure.

Basically, the Kalman filter predicts the k-time step sequence state from a pre-
viously estimated sequence state, comprising state estimates such as position, ve-
locity and/or any other describing parameter. Alongside with this sequence state
estimation, a corrector is presented, with the uncertainty of the calculated state es-
timate. The KF corrects this state by means of measurements, collected by either
one or more sensors. It is important to notice that every tracking problem needs

1Commented and rephrased directly from [12].
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3. Theory

an initialization state, also called prior knowledge, defining the initial conditions.
In other words, the prediction step equations, containing both the prior estimated
sequence state and its uncertainty, will be of the form of

x̂k|k−1 = Fkx̂k−1|k−1 (3.1)
Pk|k−1 = FkPk−1|k−1F

T
k +Qk; (3.2)

while the update step of the predicted sequence step will be based in

yk = zk −Hkx̂k|k−1 (3.3)
Sk = Rk +HkPk|k−1H

T
k (3.4)

Kk = Pk|k−1H
T
k S
−1
k (3.5)

x̂k|k = x̂k|k−1 +Kkyk (3.6)
Pk|k = (I−KkHk)Pk|k−1(I−KkHk)

T +KkRkK
T
k . (3.7)

(3.8)

So, the procedure by which the Kalman filter is addressed may be summarized
briefly with initialization, prediction and correction steps. These state-sequence-
estimating equations can be rewritten with general probability density functions
through Bayesian Inference, as it is shown in [12] [4] [6]. As it will be shown later,
the procedure to return to the equations will lay on employing a well-known pdf.

Before digging into the mentioned Bayesian approach, recall the theory that al-
lows to proceed with the state-sequence-estimating descriptor, the Markov Chain,
and which represents a key factor in the prediction step. In the employed first
order Markov model, the previous sequence state estimate and only this, iden-
tified as x̂k−1, is used to predict the next state estimate; discarding previous
([t] = K, ..., k − 2) time steps from the [t] = k prediction stage. In the end,
the sequence can be seen as states that are linked solely by previous time steps,
literally like in a chain.

Following the derivations shown in [12] and to reduce the length of this thesis,
the prediction and correction steps, after some manipulations, lead to the following
definitions based merely in probability distributions2; which are the generalized
cases of the previously explained KF equations. As for the prediction, one could

2Following the definitions, example distributions are also given so that the reader can under-
stand the ideas behind better.
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express it with the generalized form as

fk+1|k(x) ,
∫
fk+1|k(x|x’) · fk|k(x’|Zk) dx’ (3.9)

example
=

∫
NQk(x− Fkx’) · NPk(x’− xk|k) dx’; (3.10)

and the update step as

fk+1|k+1(x) ,
fk+1(zk+1|x) · fk+1|k(x|Zk)∫
fk+1(zk+1|y) · fk+1|k(y|Zk) dy

(3.11)

example
=

NRk+1
(zk+1 −Hk+1x) · NPk+1|k(x− xk+1|k)∫

NRk+1
(zk+1 −Hk+1y) · NPk+1|k(y− xk+1|k) dy

. (3.12)

From example equations 3.10 and 3.12, some conclusions can be drawn. Notice the
sub-indexes used for the Normal distribution notation, representing the covariances
of each of the steps at a particular time. Remember that any Gaussian pdf can be
described in terms of its mean and covariance.

Now, if the prediction step is unfold, two basic ideas related to the prior NPk
and the transition NQk distributions can be seen. The NPk pdf is directly pointing
to the prior knowledge of the system at some specific time, with the particularity
of holding a Pk uncertainty within. The NQk one, in eq. 3.10, is linked to the
transition function or explained process model, Fk in the example, which is char-
acterized with a particular uncertainty known as process noise Qk. Thus, from the
prior knowledge, xk|k, the prediction function, fk+1|k, is obtained and it represents
new possible sequence states and the uncertainties with a pdf.

The correction step, which is normalized in the shown case and gives the exact
correction expression fk+1|k+1, can be understood as the corrector of the calcu-
lated prediction. The information derived from the prediction step is saved in the
fk+1|k(x|Zk) and scaled to the the factor fk+1(zk+1|x). This simple idea will adapt
the prediction information with the obtained measurements from the sensors; giv-
ing as a result a more reliable and narrowed outcome.

As it has been shown, the KF equations and the commented distributions de-
scribe the same underlying idea, this is, an iterative estimating/filtering proce-
dure. The well-known distribution commented before that translates the general-
ized Bayesian Filtering into the KF equations is the linear Gaussian distribution,
shown in eq.3.10 and eq.3.12.

14
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Now, recall that the KF is only valid under some specific conditions3 and unfor-
tunately non-linearities and sudden changes in the real world are not considered
in the the model. Consequently, the KF gets discarded for only supporting single
non-extended targets and not representing the final aim of this thesis, a multitar-
get tracking system. This problem can be handled by employing multi-variable
analysis based on Bayesian Inference, but it often requires time-consuming math-
ematical procedures. Several tools that are accessible from the signals processing
theory can alleviate this long procedures4 such as the moment generating function
or probability-generating functional.

3.2 Random Finite Sets: General Point Processes
and Poisson Point Process

The RFS theory is the foundation on which the PMBM filter is based and that
contains the following two characteristics: the event space and intensity [17]5.
This chapter is focused on explaining briefly the general point process and the
particular Poisson Point Process (PPP) within the RFS theory. Note that some
knowledge about random variables, processes and topology is required for the
following section.

3.2.1 The Event Space

Assume a class of random sets of which realizations are in the state space S.
Assume also that S∞ is the hyperspace of all finite sets of S that includes the empty
space within, S∞ ∪ ∅. The sets that inherit the nature of the finite hyperspace,
Ψ ∈ S∞, will be then known as a Random Finite Set (RFS)6. For example, if the
process inside the RFS is independent and identically distributed with the Poisson
distribution, then it is identified as the well-known PPP.

Assume now that the S state space is the Euclidean space Rd, d ≥ 1. This derives
from the fact that the AD problem is suitably parameterized by the Euclidean
space, since the surroundings of any vehicle can be expressed in terms of Euclidean

3Linear transition models, for instance.
4Multi-variable derivatives and integrals which transform single variable analysis into multiple

variable analysis.
5Further information about these Random Processes, Point Processes and Topology theories

can be found throughout the literature, for example, in [12], [13] and [10].
6Also denoted as random set.
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Canonical Coordinates7. If at a given k-time step the process contains a limited
number of points, n ∈ N, and states yi ∈ Rd | i ∈ [1, n], then the random set Ψ
can be parameterized as

Ψk = {yk1 , ...,ykn}. (3.13)

Note that the general process above describes a set, thus no ordering or listing is
applied into the elements. For notational coherence with the employed reference,
the state space will be denoted as X and the measurement space as Z. Hence,
within the scanned FoV, Rd, there exists always a random set describing a group
of targets or objects and another random set describing a group of measurements
as

∃ΨTargets ∈ X∞ and (3.14)
∃ΨMeasurements ∈ Z∞. (3.15)

Instantiations of these random sets will give the k-time step

Ψk
X∞ = X and (3.16)

Ψk
Z∞ = Z (3.17)

Hereafter, the k could be dropped from the set notation if not required, due to
notational simplicity and brevity.

3.2.2 Intensity

As it can be found in the studied literature, the PPP is parameterized by a function
called intensity, henceforth denoted by D. It describes the level of concentration of
the process point under analysis in any subset of S∞. Following [6], the intensity
with two parameters: the rate λ > 0, sampled from a Poisson distributed random
set, and the spatial state, modelled by sampling a space distribution f , for instance,
a Gaussian Normal distribution. As a result, the intensity takes the expression of

D = λ · f. (3.18)

7The necessary orthonormal base upon which any object can be built and represented alge-
braically within a space.
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Worth noticing is that the integral of the intensity upon any subset of the finite
hyperspace set S∞ will point to the expected number of members of the subset
[6].

3.3 Multitarget Measurements

Revisiting the KF due to the simplicity and familiarity that offers when it comes to
the analysis of the single target filter problem, the measurement likelihood function
for a single target can be described. As it was also done previously, the underlying
Bayesian Inference will be the procedure on which the forthcoming technique is
built.

The Bayesian Inference for single target filtering can be employed to obtain the
measurement likelihood if the equation under analysis is of linear/non-linear and
additive nature. Then, the likelihood can be written as

fk+1(z|x) = NRk+1
(z− ηk+1(x)) (3.19)

ηk+1(x) : The nonlinear/linear measurement model of the KF. (3.20)

Several mathematical manipulations and deductions have been assumed above,
which can be found in [12].

Now, given the single target likelihood function and the random finite set theory,
the concept of measurement set likelihood can be introduced. As shown before,
the most convenient notation, to most of the AD problems and for both target
states and measurements, is given by a set nomenclature; representing a dynamic
and disarranged group of targets inside the FoV state space,

X = {x1, ...,xn, ...,xN} where n ∈ {1, ..., N = |X |} = I and (3.21)
Z = {z1, ...,xm, ..., zM} where m ∈ {1, ...,M = |Z|} = M. (3.22)

A more thorough look at the set describing the measurements of the FoV will
show that the set is of multiple kinds; where both measurements from actual
objects, false alarms and clutter are found within the set Z.

In what it follows, the union of different measurement sources is presented.
Within the set, different situations can be studied such as no target is presented,
a target is presented or an expected target within the field is missed. Note that
these previous conditions are disjointly unified in the Z measurement set since
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they are independent from each other and also that sudden events can end in
empty outputs or measurements, for instance, an interruption in the sensors data
collection process at some k-time step. Hence, let the disjoint measurements set
or union of different collected measurements be written as

Zk = Υ(Xk) ] Ck = Υ(x1
k) ∪ ... ∪Υ(xnk) ] Ck, this is, (3.23)

Measurement set = Collected measurements set ] Clutter set. (3.24)

3.3.1 Object Classification in Terms of FoV

Occluded objects: In the case of undetected objects, the reader might naturally
assume that the scene is an "empty" space just composed by clutter measure-
ments. This assumption is not valid for this project, motivated by the necessity
of describing the FoV as faithfully as possible. For example, picture that the AD
vehicle is on the road and at some instant some close trees or vehicles shadow
people or cars that are also within the field. In the case of such event, it would be
useful to represent in the filter the objects that may exit, but were not detection.
To do this, the PPP is useful.

As common as the previous non detected targets FoV are the detected targets
environments. These objects can be classified in different ways, but if [4] is fol-
lowed, a differentiation in the nature of the targets can be found: new targets
entering into the FoV and targets that were previously and still continue to be in
the scan area.

A new target might become visible to the sensor field at some random point of
the tracking sequence. This event triggers the sensor and introduces measurements
together with clutter. However, the one target/object scenario is not a common
situation, due to the fact that most urban landscapes gather several targets within
a specific area or volume.

Multiple targets are presented: If a target was already within the FoV,
which most certainly will happen for a certain amount of time steps during the
driving time, the filter will locate the presence and shape it accordingly. The
estimates should get more stable and precise with time where no sudden changes
happen. Similar to single target filters, the PMBM filter will allow to individually
but group wise8 analyze the targets or tracks inside the scanning area or volume.

8It might seem a paradox to be possible to analyze individually but in a collective way, but
the reader should notice that the PMBM filter gives an overall outcome with specific details of
each of the targets within the FoV, in other words, a fully described multitarget scenario.
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Missed detection: Assume that the presence of an object is still within the
scanning area in the next time step under analysis. Now, picture a sudden external
factor affecting the performance of any of the sensors mounted on the AD vehicle.
The existence of a target is known, but the tracking might have been affected
partly or fully by the loss of the associated measurement(s). This event is not
unusual, since randomness can be found in the components of the ADAS. The
filter is provided with a method to deal with this kind of situations; a procedure
that corrects the prediction without any associated measurement(s).

3.3.2 Multi-sensory Vehicles

The case of multisensor space can be also investigated, but since the sensor are
assumed to be uncorrelated in their measurements, the disjoint sets are equally
represented within an only k-time step Z measurements set that contains all mea-
surements from all possible sensors. That is,

Z = {
1

Z ]
s

Z ]
S

Z} where s ∈ S (The S group or set of sensors).

3.3.3 Measurement Likelihood

Recalling that the measurements inside the Z set are independent from each other,
the next likelihoods describing clutter or targets clustered scenarios are introduced.
Important probabilities to take into account when these likelihoods are calculated
are the survival and detection probabilities, since they play fundamental roles in
the presence and lifespan of any object within the FoV.

Imagine that a prediction is to be made about an object inside the FoV. It is
highly likely that an object might end up outside from the scanning space of the
sensors at some point of the tracking sequence. This probability of remaining in-
side or outside is captured by pS, the probability of survival. Now, depict another
scenario where the occurrences are always given inside the FoV, but that might
be undetected due to external factors. For example, imagine the case that at the
correction stage an object (previously tracked) is not detected. The probability as-
signed to this event is the probability of detection pD, which is applied accordingly
to all the objects within the FoV.

Recall what it is stated in [12] and [6] about independent and identical distri-
butions. They are mathematically defined by

f(X ) , n! · p(n) · f(x1) · ... · f(xn). (3.25)

19



3. Theory

Now, to the most of the purpose of shaping the undetected targets in a sensible
manner and in this particular project, the def. 3.25, by means of Poisson distribu-
tion, p(n), with rate λ, derives into the following density, after some manipulations
and reductions,

f(X ) = e−λ · λn · f(x1) · ... · f(xn) (3.26)

= e−λ
∏
x∈X

λf(x). (3.27)

Employing the definition above, def. 3.25, with the particularity of Poisson dis-
tributed elements, eq. 3.26, the undetected targets get represented in a compact
way.

As for the detection, the clutter (state independent) and the corresponding whole
Z set likelihood (state dependent) are modelled [6] as

κ(z) = λc(z) =
λ

A
and (3.28)

`Z(x) = pD(x)e−γ(x)
∏
z∈Z

γ(x)φ(z|x), respectively; (3.29)

and where each product of the set likelihood that points to each measurement
likelihood is proportional to the previously explained intensity concept described
as

Dz = γ(x)φ(z|x).

Note that A represents the specific volume the FoV is occupying and the pair
γ and φ represent Poisson rate and spatial distributions at any time step, respec-
tively. If a specific spatial distribution is introduced, such as the Normal distribu-
tion, then the spatial distribution of one measurement at k-time step is

φ(zk|xk) = N (zk;Hkξk, Xk) = NXk(zk −Hkξk(xk)); (3.30)

where H and ξ are the linearized measurement model and the state representation
vector, respectively.

3.4 Modelling

The modelling of the environment around an AD vehicle is of high relevance, since
it will improve the way the filter employs the available information. A good model
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can be difficult to achieve if the transition or movement of the object is intricate;
but if obtained, it will help to provide a solid estimate. As it is cited in [12], any
algorithm supports all the necessary theoretical base to build a filter, but it can
be tedious as a result of difficult and long mathematical derivations. Moreover,
the motivation of using models is not only committed to the previous reason, but
also to the better description of any physical phenomenon.

Different models are to be introduced into the filter, with particularities in their
choices. As it has been explained, the pure mathematical approach will be reduced
to a more compact and meaningful expression and a complete single target model
is going to be defined.

3.4.1 Objects Classification in Terms of their Nature

In order to introduce a suitable model into the PMBM filter, an examination on
the nature of the components forming the FoV should be done. As it is already
said, a model will provide a physical description of the object of interest, hence
the importance of it. In this project, the objects are either stationary such as
vegetation/static landmarks or non-stationary such as moving vehicles, people or
any kind of object in motion.

The election of these previous classes are not a requirement imposed by the
PMBM filter, but these two commented kinds of objects represent in close form
and sensible manner the surroundings of an ADAS. The way to classify the objects
transitions will be obtained throughout assumptions upon a single and particular
model, but other approaches such as the Interactive of Multiple Model (IMM)
method are available in the literature and they might perform better than the
studied one9.

3.4.2 Kinematics or Motion Models

Assume that the commented moving and stationary objects are based on Constant
Velocity (CV) model. It is clear that this assumption will arise problems when
some motions10 inside the FoV are required to be characterized. For instance,
imagine the next urban landmark: several vehicles are on the road and within
the FoV. At some time during the AD tracking, one/few of these objects might
suddenly change its/their route/s with a particular turning. Although this can
not be represented by the CV model since it lays on the assumption of straight

9IMM does work with more than a single model.
10Turnings, for example.
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and constant velocity movement, the CV motion model will be, for considerable
number of scenarios in this thesis, a suitable approach to describe objects within
the FoV.

From a moving object, which is modelled by the CV model and after some
assumptions, one can derive the motion model for the stationary object. Now,
picture the following scenario: an AD vehicle is surrounded by vegetation, road
rails, or a line of parked vehicles. It can be seen with some broad view that
the CV motion itself implies the null movement of an object in its nature, this
is, v = 0 ∈ V = {0,v1, ...,vK}. This can be acquired by a "zero"-CV model
supposition, which all objects inside the FoV share. If the velocity in the space
state estimate converges to zero, v→ 0, then one can assume that the object under
analysis is standing still. This approximation converges further when several time
step are run over the same objects with no sudden changes.

3.4.3 Extent

The point based tracking exploits the relation of one-point-one-target, nut it be-
comes unsuitable in the sensors near field. Each object in an urban scenario can
certainly cause more than a single point and in that case it is described by a
cloud/collection of measurements. This idea of giving shape to what it is inside
the FoV is known as extent, aimed at describing the shape and size of any target.
Since one of the main aspect of any tracking filter is to provide to the decision
step with all the necessary information about the features of the objects, it is a
property that has to be calculated.

In the literature, [4] or [6] for instance, different approaches to solve these ex-
tensions are given. This project could be upgraded by implementing additional
methods apart from the one selected, the Inverse Wishart Random Matrix [3]
[9], taking, for example, rectangular shapes instead of elliptical ones11. However,
the approach of elliptical shapes allows the employment of Gaussian distributions,
hence reducing the computational cost just to the calculation of the mean and
covariance parameters of a Gaussian distribution.

Algebraically, the Random Matrix can be understood as a symmetric and posi-
tive definite matrix of dimensions d× d that describes an elliptical shape, this is,
Xk ∈ Sd++; where d takes the dimensions of R2 or R3.

11Which describe much sensibly the vehicles shapes.
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3.4.4 Space State Representation

Up until now, several aspects about the project have been introduced and ex-
plained: the classification of the FoV is now known to be partially described by
the PPP; each object within this space is also known to be part of either a station-
ary or non-stationary class; the transition model is set to the common CV model
and the likelihoods of the measurements set12 have been examined. Therefore,
the space state that belongs to any of the possible objects at any time step can
be now written down within the commented Euclidean space using the Cartesian
Coordinate system and the specific parameters of the PPP, rate and extension.

Setting the Euclidean space to d = 2 → S2
++, the state representation derives

then into

ξk =

{γk: representing the Poisson Point Process
xk :representing the state estimate
Xk :representing the extension

}
, (3.31)

where

xk =


xk
yk
vxk
vyk

 . (3.32)

Note that eq. 3.31 is formed by three different properties of any of the objects
within the FoV, where the introduction of the extension into the state representa-
tion describes a non classical filtering procedure. This leads to the solution of one
of the project aims: the objects shapes.

3.4.5 The Single Extended Object Model: The Gamma Gaus-
sian Inverse Wishart (GGIW)

Following the suggestion of [4] and [6], a specific model to solve the problem of
a single extended object using the ξ object space state representation and mea-
surements space information is employed. This model, which will be introduced
to the general filter scheme (section 3.5), is the Gamma Gaussian Inverse Wishart
(GGIW).

12Both clutter and target generated measurements.
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Representing faithfully the reality around the vehicle together with computa-
tional efficient algorithms is of high importance and thus the conjugate prior is
employed. Selecting the initial prior as a conjugate prior allows to describe any
k-time step prediction and update steps with few same parameters. Furthermore,
the usage of a PMBM conjugate prior based on RFS theory will also enable to de-
scribe separately undetected targets from detected ones [4][6] and parameterized
the density model of interest.

Therefore, the parameters13 that form the model are

ζk|k = ζ = {αk|k, βk|k,mk|k, Pk|k, vk|k, Vk|k}, if k|k
ζk+1|k = ζ+ = {αk+1|k, βk+1|k,mk+1|k, Pk+1|k, vk+1|k, Vk+1|k}, if k + 1|k

where

α and β : Parameters of the Gamma distribution → G
m and P : Parameters of the Gaussian Normal distribution → G
v and V : Parameters of the Inverse Wishart → IW .

Each of the parameters commented above needs to be classified mathematically,
found in [6] and [4], which they are defined as

ζ+ =



G = ∇ξ g(ξ)|ξ=m

M(m)(CV) = 1d×d

α+ = α
η

β+ = β
η

m+ = g(m)

P+ = GPGT +Q

v+ = 2d+ 2 + e
−Ts
τ (v − 2d− 2)

V+ = e
−Ts
τ M(m)VM(m)T

and ζ =



α = α+ + |Z|
β = β+ + 1

m = m+ +Kε

P = P+ −KHP+

v = v+ + |Z|
V = V+ +N + Z

(3.33)
13In case more information is needed about the distributions of these parameters, direct to

Mathematical Handbooks - Probability density functions - Conjugate Priors, Inverse Wishart,
Gamma functions and Gamma distributions.
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The complementary equations to the set of eq.3.33 are

g(x) =


xk+1 = xk + vxkTs
yk+1 = yk + vykTs
vxk+1 = vxk
vyk+1 = vyk

; G =

[
1d×d Ts ∗ 1d×d
0d×d 1d×d

]
; H =

[
1d×d 0d×d

]
(3.34){

z̄ = 1
|Z|
∑

zi∈Zk zi

Z =
∑

zi∈Z(zi − z̄)(zi − z̄)T

{
X̂ = V+

v+−2d−2

N = X̂
1
2S

1
2 εεTS−

T
2 X̂

T
2

(3.35)
ε = z̄−Hm+

S = HP+H
T + X̂

|Z|

K = P+HT

S
.

(3.36)

and a single target likelihood of

` = (π|Z||Z|)−
d
2
|V+|

v+−d−1

2 Γd(
v−d−1

2
)|X̂| 12 Γ(α)(β+)α+

|V | v−d−1
2 Γd(

v+−d−1
2

)|S| 12 Γ(α+)(β)α
. (3.37)

Equations above represent the GGIW in its whole for the Random Matrix ap-
proach, this is, for objects shapes approximated by ellipses. The fundamental
parameters, shown in the set of equations 3.33, describe all the variables to de-
scribe any object inside the FoV.

Although all the equations presented are of relevance to the good performance
of the PMBM filter, special emphasis on the likelihood (`), eq. 3.37, is here
highlighted due to the importance it holds in the stochastic optimization applied
to the Radar data.

3.5 Multitarget Analysis

The multitarget tracking scenario is a dense environment where entering/leav-
ing/occluded objects or targets can be found. This FoV can be described with an
union of these different types of objects14 [12] as

Xk+1|k = Γ(Xk) ∪B(Xk) ∪Bs (3.38)
Prediction set = Persisting set ∪ Spawned set ∪ Spontaneous set. (3.39)

14One could use a similar approach used when the measurements set was introduced to under-
stand this following section.
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Eq. 3.38 describes the different sets of objects that at some k-time step might have
existed inside the AD surroundings. Any previously detected target might persist,
spawn new set of births or disappear from the scanning area/volume in the next
time step. Therefore, among all possible examples that fit in this union, eq. 3.38,
the general case containing both target deaths and births has been chosen to be
the one representing more faithfully all the objects nature within the FoV under
analysis.

The filter that spans this multitarget problem follows similarly the procedure
found in single target filters: initialization, prediction, correction and state esti-
mation. The proof of this approach, given in [12],[4],[16] and papers such as [6],[5],
are left as theoretical reference because they form the academical background and
support of this thesis but do not include further information to the understanding
of this work. The commented procedure steps can be described as it follows:

• Initialization: The little knowledge about the surroundings of the AD vehi-
cle points toward the use of a process already studied before: the Poisson
Process, with high spatial state uncertainty or variance of targets in the
FoV. Everything is uncertain to some level, which suits faithfully the reality
around the ADAS.

• Prediction: Having in mind the set integral calculation and evaluation tech-
nique15, the prediction step can be resolved as follows

fk+1|k(X|Z(k)) =

∫
fk+1|k(X|X ′) · fk|k(X ′|Z(k)) δX ′. (3.40)

• Correction: Similar to the single target corrector, the Bayesian approach for
the multitarget filter becomes

fk+1|k+1(X|Z(k+1)) =
fk+1(Zk+1|X ) · fk+1|k(X|Z(k))

fk+1(Zk+1|Z(k))
where (3.41)

fk+1(Zk+1|Z(k)) =

∫
fk+1(Zk+1|X ) · fk+1|k(X|Z(k)) δX . (3.42)

15Refer to math handbooks or [12] for multiple objects mathematical analysis.

26



3. Theory

• State estimation: As [12] explains clearly, the multiple target state estima-
tors like Maximum a Posteriori (MAP) and Expected A Posteriori (EAP)
become inappropriate. Additionally, it revisits the Marginal Multitarget
(MaM) and Joint Multitarget (JoM) estimators and resolves the calculation
cost throughout the Gaussian Mixture approximation.

3.5.1 The Detected Multitarget Density
The Bernoulli Process is a RFS process that describes any finite, independent

and identically distributed random set Bernoulli distributed, ΨB
k [6]. Note that the

nature of the process points to a single element set with probability of existence
r and space state distribution f ; being the GGIW the single extended target f
spatial distribution with probability of existence r ∈ [0, 1]. Then, the probability
distribution of any element that is part of this set will be described by

f(X ) =


1− r, X = ∅
rf(x), X = {x} → |X | = 1

0, |X | ≥ 2.

(3.43)

Moreover, extending the idea that targets are assumed to be independent and
Bernoulli distributed, one can directly describe16 the FoV as a Multi-Bernoulli
environment with the following random set and probability density function

X =
⊎
i∈I

X i and (3.44)

(3.45)

f(X ) =


∑
]i∈IX i

∏
i∈I

f i(X i), |X | ≤ |I|

0, otherwise

(3.46)

3.5.2 Global Hypotheses Tracking: The Mixture

One of the main characteristic of the Poisson Multi-Bernoulli Mixture filter is that
it is based on hypotheses tracking, this is, each of the Multi-Bernoulli might turn
into new Multi-Bernoulli distributed spaces each k-time step. This exponential
increase is due to combinatorial possibilities, also known as data associations.

16Note that the multitarget distribution is based on the existence of the object, thus the object
must have been detected in order to apply eq. 3.46.
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Different hypotheses must be examined and input to the forthcoming time steps
to conclude in the most likely scenarios17 which is done by weighing each track
using its corresponding likelihood18.

The likelihood ratios assigned to each of the tracks do not represent still a global
hypotheses, but, they can be obtained by normalizing all the tracks likelihoods at
a certain k-time step. Once this mixture, normalization step, is done, one could
select the most probable global hypotheses and the corresponding track. This
scalar describing the mixture is called weight, W , and is indexed by j ∈ J | j =
[1, |J|]; leading to the Wj for each track global likelihood19.

3.5.3 The Poisson Multi-Bernoulli Mixture Density

Up until now, the two main RFS processes behind the PMBM filter have been
studied: the Poisson Point and the Multi-Bernoulli Mixture processes of which
expressions are found in previous sections.

Now, the last step to take towards the Poisson Multi-Bernoulli Mixture filter is
the union of these two kinds of RFS, describing all possible objects inside the FoV.
This is done by applying again independence between undetected and detected
objects as

V = X d
⊎

X u, (3.47)

and this derives into the final density of

f(V) =
∑

X d
⊎

X u

fu(X u)
∑
j∈J

Wjf j(X d) where (3.48)

PPP process is fu(X u) = e−〈D
u;1〉

∏
x∈X u

Du(x) and (3.49)

MBM process is f j(X d) =
∑

]i∈IjX i=X d

∏
i∈Ij

f j,i(X i). (3.50)

Employing everything studied until now and remembering the fact that the sin-
gle target model density is parameterized by the conjugate prior of the GGIW ,

17It is highly important to keep more than the most likely scenario or MB.
18The procedure involves taking the product of the analyzed `GGIW likelihood of each target.
19Please note once again that the nature of MHC tracker requires holding more than one MB.

A complete different aspect is to select the most likely one from the actual group of MBs and
work with it temporary, just under the current or analyzing k-time step.
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3. Theory

the PMBM density presented previously, eq. 3.48, gets fully described at both
correction and prediction stages and at a certain k-time step by

Du; {Wj, {(rj,i, f j,i)}i∈Ij}j∈J. (3.51)

The algorithm or pseudo-code to process these filter parameters, eq. 3.51, can
be found in [6]. In what it follows, the stochastic optimization (SO) applied to
Radar data is introduced, which is fundamental when it comes to associate the
acquired data with a source within the FoV.

3.6 Data Association with Stochastic Optimization

The unknown origin of the measurements leads to different possible DA between
any source or target and the measurement(s). All these measurements are grouped
in the previously mentioned Z set, without any tag or label describing the location
of the targets. Notice that each target can be the source for different measurements,
whereas one particular measurement can not come from different sources.

A term called Cell, C, is introduced, since it will be central aspect of the DA.
Recall from previous sections that there are two different sets of indexes, I and
M. The filter correction/update step that is committed to reduce the uncertainty
derived from the prediction is fed with these associations between possible targets
and measurement(s). They group cells and contain explicitly and implicitly target
indexes from the target-index set, i ∈ I, and measurement(s) index from the
m ∈M index set, respectively.

For instance, if the sets are composed by I = {i1, i2} and M = {m1,m2,m3,m4},
possible cells can be described as:

C1 = {i1,m1,m2}
C2 = {i2}
C3 = {m3,m4}

These three cells, (Cc | c = 1, ..., |A| = 3), describe one possibility of combining the
existing data, where C1 associates i1 and measurements ZC1 = {zm1 , zm2} together;
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3. Theory

C2 does not hold any measurement, ZC2 = {∅}, and C3 does not associate any of
the existing targets to the group of ZC3 = {zm3 , zm4}, meaning that there is a new
object, i3, within the FoV.

The previous A stands for the association space that is formed with a possible
combination that has been observed, for example, A = {C1, C2, C3}. Any A asso-
ciation space is a subset of the entire jth global hypothesis association hyperspace,
A ⊂ Aj 20. These combinations can be obtained after running any DA algorithm,
for instance, the a stochastic optimized algorithm.

The associations can have different lengths, what it might be of disadvantage
if computationally efficient codes are needed. One approach to solve the burden
imposed by the different cell sizes is using the Assignment Vector, ϕ or AV. It is of
fixed length, |Z| = |M| = M , and it represents a descriptive array where the asso-
ciation between any target and measurement(s) is described by a ϕm parameter.
In conclusion, the AV is a compact way to associate targets and measurements of
A ⊂ Aj, through a fixed |Z|-length array.

Revisiting the previous cells example, the representation of the Assignment Vec-
tor (AV) can be expressed then as ϕ = [ϕ1, ϕ2, ϕ3, ϕ4] = [1, 1, 3, 3], each ϕm being
an association between a specific measurement and an exact target.

The approach used for DA, found in [7] and claimed to outperform C&Amethods
and Monte-Carlo Markov Chain (MCMC) sampling methods21, is basically based
on taking random steps following the actions, called α-actions,

• Do Nothing : The initial Assignment Vector that is to be processed is not
changed, this is, the target indexes assigned to each of the assignment vector
elements remain similar to the previous time step:

ϕα1
SO = ϕInitial

• Gibbs sampling : Provided that a random integer, r1 ∈ {1, ..., |AV|} that can
point to any ϕm=r1 , the target index inside ϕr1 is extracted firstly and the
zm=r1 measurement is then assigned to other existing target indexes. The

20One possible combination, A, of all possible spaces of jth global hypothesis, Aj .
21C&A are two steps method that perform firstly clustering and assignment then.
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action ends with all possible allocations of the measurement into other cells
than CϕInitial

m=r1
:

ϕα2
SO : ϕ← ∀ϕInitial

m | ϕm ∈ I− {ϕr1}

• New Cell : The previous actions are derived by moving a particular mea-
surement from its initial target index, ϕr1 , to any other existing indexes in
i ∈ I | i 6= ir1 . Now, there is always the chance that a new target has entered
the FoV and this target must be tagged or labelled with a new target index,
such as iNew | Ik+1 = Ik ∪ iNew. Hence, the action to take is to move the
commented measurement that is saved in zr1 to a new cell:

ϕα3
SO : ϕ← ϕInitial

m | ϕm=r1 6∈ Ik

• Split : For previous actions, only one random index was sampled from a
set of length |ϕInitial|. For the following splitting action another random
index is introduced, r2, which will enable to group the initial assignment
into two new assignments. The procedure two group is suggested to be
the k means++ algorithm [7]; refer also to [8], [7], [6] and [1] for information
about the commented theory. However, in the simulation step of this project,
a bottleneck was found in the split with the K-means++ approach; thus a
similar procedure was implemented with same results.

The related pseudo code is

vidx = [p1, ..., pj, ..., p|f|] | pj ∈ {1, 2} and f = find(AVInitial(r1) == AVInitial(r2)).

Note here that the split is conditioned on both pi and f, being f a vector
with assignment indexes containing the same target indexes. In addition,
the cell under analysis can be assigned to either an existing one or to a new
one, denoted as α41 or α42 . The obtained AV after SO:

ϕ
α41
SO = (pj == 1) ∗ [ϕInitial

f(vidx==1) ← ∀i ∈ Ik − {ir1}] +

(pj == 2) ∗ [ϕInitial
f(vidx==2) ← ∀i ∈ Ik − {ir1}]

ϕ
α42
SO = (pj == 1) ∗ [ϕInitial

f(vidx==1) ← i 6∈ Ik] +

(pj == 2) ∗ [ϕInitial
f(vidx==2) ← i 6∈ Ik]
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• Merge: Instead, if ϕr1 6= ϕr2 , then the cells are candidates to merge. In this
case, there is only one way of assignment:

ϕα5
SO = ∀ϕInitial

(ϕInitial
m ==i1) ← ϕInitial

r2

It is commented in the same paper, which it is also applied to the scope of this
project, that the method does not hold Markov Chain properties (due to the non
possibility to return back to the previous step), making it inappropriate to sample
from. However, the aim is to associate the measurements with the targets and not
to sample from a distribution. The implementation aspects can be found in the
paper [8].

DA decision-making step: In each iteration t, one assignment ϕ(t) is obtained.
Notice that the five α-actions must be iterated several times, t ∈ T = {1, ..., |Aj|}
(as it can be seen in [6] and [8]), to ensure all the assignment indexes from AV are
crossed enough times.

After some manipulations and deductions, the decision-making factor, associ-
ated to each of the iterated α-action, results in the following probability22:

P{ϕ(t+1) = ϕ(t)
α |ϕ(t)} =

L(t)
α∑

α′ L
(t)
α′

(3.52)

This eq.3.52 or likelihood ratio will enable to select the A ⊂ Aj or most likely AV
spaces, contributing to the proper correction or update of the prediction step.

22The L likelihoods are resolved by taking the product of each of the `GGIW of each target or
object within the FoV.
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Chapter 4

Methodology

The validation of the previously commented theory should be carried out through-
out specific evaluation methods that allow to express the results feasibly. Fur-
thermore, the simulated results will be valid only if there exists a ground truth
scenario which can be compared to. One should recall that the ground truth is
a term which contains the necessary and trustworthy information by which new
algorithms can be tested and validated.

Therefore, the following sections are devoted to introduce both the employed
coding language and the metrics introduced.

4.1 Programming Language

This project has been implemented in MATLAB, which comes convenient when
mathematical environments are to be tested. Moreover, in order to represent the
tracking scenario as realistically as possible, oo-programming (object oriented pro-
gramming) has been employed. The reason behind the use of the oo-programming
lays on the fact that these objects, dynamical in their properties during process
time, reproduce closely the real situations. Moreover, the application of this kind
of coding is thought to result in such superior performance, in case some assump-
tions about the objects such as the handle class are taken.

An oo-program exploits the idea of classes that are meaningful in this particular
project, the description of targets with objects1. It also comes handy when the
representation of the attributes or properties, held within each target, are to be

1Since the nomenclature might come confusing when objects from oo-programming and the
objects from the FoV are to differ, the use of target nomenclature or name instead of objects has
been thought to be applied in this section.
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parameterized. The reader should now recall the section Modelling, in which
the GGIW single extended target modelling was introduced. Notice that the
mentioned model is built upon a set of 6 parameters, ζ, that are the only and
necessary descriptors to represent the density function of conjugate prior nature.
Note also that since the Multi-Bernoulli process is used, the targets are assumed
to be independent and identically distributed over the FoV.

In what follows, brief explanations about the steps taken and the reasoning
behind are outlined. It is thought that further explanations about the chosen steps
would not make any point, since the main aim at which this thesis is targeted is
the transmission of the idea of PMBM filter performance, with valid/trustworthy
results and not how it is coded or written down.

Firstly, the previously commented two kinds of objects are introduced, which are
important when it comes to describe any of the needed parameters. Then, different
levels inside these commented classes are presented, as well as, the meaning of them
in the PMBM algorithm.

So, let’s first explain an important condition that changes the nature of a class
and by derivation the nature of each of the targets. This particularity is the her-
itage obtained by the commented super-class handle. Assume two kind of classes:
value class and handle class2. If the class is inheriting the super-class handle,
then the objects represented by this class will not store previous information; thus
containing just at-the-moment properties values. The use of only certain data
(discarding previously obtained one) enhances the performance of the code and
describes the targets dynamical natures. Therefore, it is of such sensible approach
to use the handle super-class as a way to describe every target within the FoV. The
following scheme was coded to be the appropriate representation of the analyzed
targets.

2Please note that the employed language is MATLAB, and thus the way the class is known
might change from language to language.
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FoVk [project]
Prediction/Correction Target Object Space [funcs]

Su(Nu): Undetected Targets Disjoint Union [struct.class <
value]

ggiw: ζu [class < handle]
alpha [scalar]: αu
beta [scalar]: βu
m [vector]: mu

P [matrix]: Pu
v [scalar]: vu
V [matrix]: Vu

w: weight [scalar]
Sb(Nb): Birth Targets Disjoint Union [struct.class < value]

ggiw: ζb [class < handle]
alpha [scalar]: αb
beta [scalar]: βb
m [vector]: mb

P [matrix]: Pb
v [scalar]: vb
V [matrix]: Vb

w: weight [scalar]
Sf(Nf): Detected Targets Disjoint Union [struct.class < value]

ggiw: ζd [class < handle]
alpha [scalar]: αd
beta [scalar]: βd
m [vector]: md

P [matrix]: Pd
v [scalar]: vd
V [matrix]: Vd

w: weight [scalar]
W(j): Global Hypotheses Weights [vector]
A(j): jth Assignment Vectors [vector/matrix]

This shown "super"-object space is one of the possibilities that the abstract
representation of all variables and parameters within the FoV might take. Note
that this is all the necessary information required to depict all possible targets
that appear within the sensors view area. Recalling the argument explained about
synthesis, the pseudo-code or flow-chart employed in the code can be found in the
Appendix A: Pseudo-code/Flow-chart.
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4.2 Metrology

Cited directly from [12], this discipline refers to "[...] the process of determining
the degree of similarity or dissimilarity of entities of interest. It is central to
information fusion, whether we are to compare competing algorithms with each
other or, within an algorithm, to determine the influence of internal parameters
on the algorithm’s performance.". In other words, it is a fundamental field when
it comes to provide solid results and trustworthy comparisons between available
algorithms.

As it is also explained in [12], the same procedure applied to the single target
metrology can be applied to the multitarget metrology, which it is based on metrics
or distance functions. A reliable distance function must satisfy several conditions
called distance axioms, explained in [2], and it is usually described by either the
difference between two points in a fixed set [10] [12], such as Euclidean distance,
or distances between two probability distributions [12], such as Kullback-Leibler
distance.

The reader should have noticed and recalled that the targets are not anymore
represented by points, but by cloud-points; hence, the commented two distances
turn into distributions. The resulting metrics are: Wasserstein Distance WD and
General Optimal Subpattern Assignment GOSPA.

4.2.1 Gaussian Wasserstein Distance

It becomes natural to this mathematical subject that when a topology of a set
is presented, a way to measure distances3 between the elements inside the set
is included. The use of different extents, but the Random Matrix one, makes
the derivation of this metric sometimes impossible to express in closed-form [20].
However, due to the Random Matrix formulation applied throughout the project,
precisely to the description of the extent, enabled a closed-form expression, known
as the Gaussian Wasserstein Distance [20] [12] [2].

The Wasserstein Distance can be expressed as

3Distance could be also thought as similarities in their nature, and how different they are
from each other. For instance, the distance between two distributions is carried but comparing
how similar these distributions are.
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d(X , X̂ ) = min
π

√√√√1

n

n∑
i=1

‖xi − x̂πi‖2, (4.1)

where π and x̂ represent permutation and estimate of the state at i permutation,
respectively. Assuming an ellipse extent such as the Random Matrix, it derives
into

dG(Nx,Nx̂)2 = ‖mx −mx̂‖2 + Tr
(

Σx + Σx̂ − 2

√√
ΣxΣx̂

√
Σx

)
.

(4.2)

Where Σ stands for the covariance of any Gaussian distribution. Notice how the
extension gets parameterized by the the mean and covariance values as: N (m, sΣ)
where s behaves as a scaling factor. From eq.4.2 and [20], one could say that this
particular metric is sensitive to the distance between two centers or mean values,
mx and mx̂; being the mean a substantial factor of this metric.

Therefore, if the target with its position and extension is similar to its estimate,
the Gaussian Wasserstein distance will tend to zero. Intuitively, this reflects that
the estimate, x̂, will be close to the real target state if and only if the Gaussian
Wasserstein Distance tends to a stable value. Therefore, it is obvious that this
stable value is the limit for the assessment of real single target and estimate states.

Both [15] and [12] compare different target scenarios and different metrics or
distances such as Hausdorff Distance, Wasserstein Distance or OSPA; concluding
differently when it comes to choose among these metrics. For instance, it comments
that Hausdorff is not appropriate to the problem of multitarget tracking metrics
since it is not sensitive to the differentiation of the cardinality of a finite set, which
should be core to this project. As for the downsides of Wasserstein Distance,
some are: the metric is inconsistent in the sense of balancing the locations of
the estimates around the real state, see given example and figure [15, p. 3]; the
metric and its theoretical base are not trivial to follow; it can be not adequate for
the multitarget filtering due to the loss of the distance axioms4; etc. In case the
reader needed complementary information to this thesis, she/he could refer to the
commented [15] or [12].

4After the transformations suffered in case of multitarget scenarios; going from single to
multiple targets metric.
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Previously commented, a solution to the aforementioned situation is the em-
ployment of the GOSPA, based on OSPA, and standing for (General) Optimal
Subpattern Assignment. It addresses some of the problems that the OSPA metric
has when Point Process Theory is used and it can be found in the literature in
different papers and books; which in the case of this thesis is [14].

4.2.2 General Optimal Subpattern Assignment (GOSPA)

The convenience that OSPA offers when it comes to compare mathematically a
finite set is not applied to the assessment of a multitarget scenario. Precisely, in
the OSPA metric, the importance of the error in the position of any particular
target existing in the FoV is not of relevance, this is, the type of the object is not
taken into account to calculate the error/distance.

However, GOSPA is the transformation derived from OSPA that enriches the
already commented algorithm penalizing the location errors of different types of
targets within the FoV as

dc,αp (X ,Y) ,

 min
π∈
∏

|Y|

|X |∑
i=1

d(c)(xi,yπ(i))
p +

cp

α
(|Y| − |X |)

 1
p

. (4.3)

where π, c, α and p stand for permutation, maximum allowable localization er-
ror, normalization factor and number of penalized outliers, respectively [14] [15].

Several properties can be derived from [14] such as how to tune the α parameter
and how costly, in terms of cp

α
, it will be if the real and estimate states are far

apart. One deduction from the cited paper that one should extract is the tuning
as α = 2; meaning that the cost of being missed target or false target will be
the same, independent from how it is assigned throughout the permutations. It is
stated that selecting α = 1, the distance results in an "unnormalized" OSPA that
is not proved to be a metric.

It becomes a logical choice to opt for the tuned (α = 2) GOSPA; in order to
represent the surroundings of an ego-vehicle, since the FoV might be clustered by
different kind of targets that are not only the detected ones.
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4.3 Approximations

It is of high importance and for the sake of efficiency to approximate the PMBM
algorithm up to some extent. Note that if proper selections of the approximations
are applied over the parameters that constitute the filter, it might result in having
a better performance under permissible trade-off:s.

The approximations applied in this particular thesis can be split in three groups:
the ones taken by the author [6]; the ones related to the project and the ones that
are derived from the coding process of the PMBM filter. Since the ones taken
by the author already represent the same filter composition, it was thought that
they are only worth commenting; leaving the reader with [6], [7] and the remaining
literature for further explanations. Thus, the approximation can be listed as:

• Part of the filter : As it was explained, the filter is applied upon a dense
scenario which is composed by different kinds and number of targets. More-
over, the procedure of analyzing "every target5 with every measurement" is
of high-computational cost; leading to inefficiency.

This association increase can be mitigated by two different approximations,
also presented in [7], which are: likelihood based weights and relative fre-
quency based weights approximations. They are based on calculating likeli-
hoods ratio and sampling from a stable distribution6, respectively. The one
selected for the aim of this project is the likelihood based weights approxi-
mation, assigning the weights linked to a random subset associations space
by the use the commented likelihoods ratio. Please refer to the cited paper
for further information about the approximation methods.

• Assumptions taken that are not imposed by the user : These assumptions can
be found, for instance, in [6]. Among these approximations one can find the
treatment and values assigned to the pD, pS and pDeath for each of the tar-
gets. The project has been designed to have the next probabilities assigned
similarly for every target as pS ≈ 0.98 and pD ≈ 0.98 values; motivated
by the idea that everything within the FoV should be likely to survive and
detect when it comes to the evaluation of the PMBM filter. Due to these
high probabilities, the probability of death or pruning of the targets of the
FoV, dependent on the probability of existence, was thought to be set high
enough, pDeath ≈ [0.6, 0.8].

5Here every not only gathers the number of objects, but also the type of them.
6Therefore, a period for stabilization of the distribution is needed, which is obtained by

running more samples.
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Parameters such as scanning volume A, α and β were thought to be scaled
approximately to the extension of the ego-vehicle, this is, to the assumption
that the vehicle would have l

w
≈ 2 size- or shape-relation.

• Approximations employed on MATLAB : They were taken due to the ne-
cessity of coherence and efficiency of all the objects found throughout the
scripts7. For example, important assumptions were made in the way unde-
tected targets are treated. If one refers to the prediction intensity of unde-
tected targets, as well as, PPP update missed detection, one would obtain8:

Du
+(x) =

Nb∑
n=1

wb,nGGIW(x; ζb,n)

+
Nu∑
n=1

wu,npS(x̂u,n)GGIW(x; ζu,n+ )

Du(x) =
Nu∑
n=1

(wu,n1 GGIW(x; ζu,n1 ) + wu,n2 GGIW(x; ζu,n2 ))

Owing to the necessity of saving both birth and undetected parameters into
a single undetected variable, as well as, both w1 and w2 weigths in the up-
date/correction step, the following decisions were applied:

Thresholdt = 0.4 (4.4)
Suk−1(nu).w < Thresholdt → prune(Suk−1(nuw<t)) (4.5)

Su+
k = [(Suprunedk−1 )+, Sb] (4.6)

w1 > w2 → select (w1; ζ1) otherwise select(w2; ζ2) (4.7)

The expressions for both (w1; ζ1) and (w2; ζ2) can be found in [6]. The mo-
tivation to select the values the way presented is based on thresholding and
comparison. The basic idea of the previous approach is focused on the im-
portance of the weights in the D intensity; where the smart use of them
provides a more efficient computation.

4.4 Initialization

This following section is intended to explain the initialization stage and the values
that might be introduced to each of the filter procedures. Two kinds of initializa-
tion have been classified: the ones belonging to prior knowledge needed in every

7Note once again that object, in this particular bullet point, refers to the way oo-programming
is thought to be understood and do not directly refer to the targets of the FoV.

8Recall that the use of conjugate prior enables the parameter-characterization of the filter.
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Markov chain initial state to combat sensitiveness and the specific initial informa-
tion required in the SO algorithm to increase efficiency.

The filter has to be initialized so that it can start working with some parameters
even if they are uncertain. This initialization is part of the birth settings and
depending on the conditions of the environments and the vehicle setup, different
starting conditions can be implemented. The tuning will be shown in the Results
section and it will be possible to see how changing it slightly affects considerably
the tracking of the vehicles.

4.4.1 Prior Sequence Knowledge

There must be always knowledge of some kind even if it is uncertain and does not
represent truly the surroundings of the AD vehicle. In other words, the necessity
of an uncertain prior state representing initial [t0] = 0 time step is imperative,
since the forthcoming state is always based in the previous one.

In what it follows, the how-to-set some of the filter prior parameters such as
GGIW are shown.

• V (FoV volume) and d dimension for Rd: Since the FoV is highly
dependant on the sensors resolution and capabilities, the volume the scanning
might take was assumed to be of the order of 200m3 = 10m × 2m × 10m.
The project was also assumed to be on XY-plane, since height was not an
interesting parameter motivated by the employment of the filer in urban
scenarios. Therefore, d→ R2 9.

• Measurement Rate: The Poisson distribution is again used to described
the amount of measurements that one might find assigned to targets. After
some rehearsals, it was concluded that the measurement rate, governed by
the Poisson rate, should be around λ = {3, 4}. This will allow to assume
targets with 0 to around 10 measurements assigned; representing the true
amount of measurements associated to each target.

• α and β parameters: From the Gamma distribution theory, the following
moments can be obtained: E[γ] = α

β
and V ar(γ) = α

β2 where γ ∈ Γ. If
the measurements are thought to be distributed as explained previously, one
could obtain then α = 4β and α = 2β2 → β = {0, 2} → α = 8; where β = 0
is not a valid option.

9Assuming no elevation.
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• q process noise: The process noise is understood and formulated as follows:

Q = GQCV ∗ q ∗ 12×2 ∗GT
QCV

where GQCV =

[
T 2
s

2
× 12x2

Ts × 12x2

]
The q is assumed to be the standard variation, thus qVar = q2

Dev. Different
values have been used, taking different meanings depending on the situation;
but the values have been assumed to span 0.001 < q ≤ 1. They were thought
to represent straight motions, rather than randomly rotating motions.

• M rotation matrix: Explained before, sometimes it is necessary to intro-
duce rotational behaviours into the motion models, and thus there is also
the need to track these rotations. This characteristic is known as rotation
matrix, MXY =

(
cos θ − sin θ
sin θ cos θ

)
, which gathers the orientation changes

through trigonometry and θ = ∆φ heading. Now, one of the approximations
or assumptions made was to deduce that all the motions can be described
with the CV model. It results that in this particular case the rotation ends
in the identity matrix of dimension d = 2, since the heading does not change
from time step to time step, φk = φk+1.

• Extent: Two parameters can be found describing the extension: the degrees
of freedom, v, and the Random Matrix V of the Inverse Wishart distribution.
If one checks the equations related to the GGIW single target procedure,
she/he will see that degrees of freedom are fundamental for the estimate
of the extension, and they have to be high enough to make possible the
characterization of it. The greater the degrees, the better would be estimate
the extension. For instance, throughout the project the initial value assigned
to the degrees of freedom is between 15 < v < 25, considering that the
highest possible amount of measurement, related to a single target, stays
around 8 to 1010.

As it has been shown before, the initial Random Matrix value was thought
to be of width 2 and length 4 in metres. This might not be representative
of all the objects and all scenarios (as it will be seen afterwards), thus it is
not the most efficient initialization. Even so, since the estimate will, at some
time step, converge with the reality, the proposed initialization was left as
standard to almost all kind of targets.

• τ and η parameters: The presented parameters can be understood as sim-
ilar to the process noise but related to the extension uncertainty. Exact
values are given in the appendix section.

10Please check the Measurement Rate point for this statement.
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4.4.2 DA initialization

The DA algorithm is in charged of obtaining associations derived from several
actions and assigning corresponding likelihood weights to each of the Assignment
Vector.

There exists the possibility to initialize it, refer to [7], in order to reduce compu-
tational time, provided that an initial Assignment Vector is given. The procedure
for this is based on likelihood calculations, as the SO, but instead of making asso-
ciations and weighting them, the measurements are run individually and weighted
accordingly as

ϕ(0)
m =

{
îm if îm ∈ I
m+ |I| otherwise

, (4.8)

îm = arg max
i∈I∪{0}

`m,Init
j,i , (4.9)

`m,Init
j,0 = λc(zm) + pD〈Du; `{zm}〉 and (4.10)

`m,Init
j,i = pDr

j,iγ(x̂j,i)φ(zm | x̂j,i). (4.11)

This simple idea will allow to reduce, as shown in Results section, the necessary
time the SO algorithm needs to process.
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Chapter 5

Results

This section gathers the assessment of the theoretical concepts described before,
from the visualization of what the theory says to the evaluation of the PMBM
filter as a method to track dense scenarios like the urban landscape. Furthermore,
since one of the final aims might be the implementation of this filter into a real
vehicle system, archicture or code profiles with the elapsed times are also given.

The employed methods are validated upon two environments: the simulation
environment, where synthetic data is created and tested with the metrics explained
before1, and the real scenario, provided by the SafeRadar Research company. In
this last case, the ground truth is not available through any other kind of source,
such as a photographic one, but the environment where the data was acquired is
known.

Since one of the aims of the project is to test the Poisson Multi-Bernoulli Mixture
filter with different kinds of data environments, different figures were obtained and
examined. The figures are not necessary but they help to understand the project
and can be found in Appendix B: Complementary figures for evaluation.

1Each of the scenarios, this is, both single extended target and multiple extended targets.
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5.1 Simulated Environments

5.1.1 Single Extended Target Model - GGIW
Since the multiple extended targets scenarios are formed by the single extended
target, an analysis of this is introduced in this section.

Before evaluating the GGIW model, the following figure was thought to be
given, to show how the GGIW looks and what to expect from the multiple targets
filtering. Remember that the measurements likelihood are normally distributed,
with the extension being the covariance of the distribution under analysis. This can
be seen in fig. 5.1.1, where measurements points fall within/on/out the extension.
These different positions follow the σ-levels describing the different covariances of
an ellipse. In case the reader wants to see it, please go to Appendix B and check
these levels and measurements relations for one time step object.

Figure 5.1.1: A snippet of the GGIW performance.

In red, the estimated extensions are shown, while in green the real target extension
is displayed. Note that from time step to time step the measurement amount
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changes, due to dependency on Poisson distribution. It gets visible, from the
fig. 5.1.1, that the GGIW model is a method that estimates the target properly.
However, visual inspection is not a valid evaluation tool, and a more robust metric
needs to be applied, for instance, the Gaussian Wasserstein Distance.

(a) Gaussian Wasserstein Distance for q = 0.001.

(b) GGIW for q = 0.001.

Figure 5.1.2: GGIW-GWD evaluation environment.

In order to check that the single extended target is working, several iterations
have been run with the same prior knowledge, as it is done in a Monte Carlo
simulation; and the trend of the GWD metric analyzed. The setting values of
the initial knowledge can be found in Appendix C: Parameters values. From the
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fig.5.1.2a, one could assess the performance of the GGIW model. Note that there
are more plots attached to the Appendix B describing different process noise and
the corresponding GWD metric.

If the GWD iterations curves are averaged, it could be possible to note that
the metric tends to a stationary value2, below 2, with time steps. This trend is
natural of two similar probability density functions since both real and estimated
extensions and positions converge to the same values. The same solution can be
deduced from the eq. 4.2, where the equation tends to a stationary value when
the positions and the extensions of the real and estimate targets share the same
value. Therefore, the employed method for single extended target can be said to
be appropriate to describe the tracking environment.

5.1.2 Multiple targets scenario

Once the single extended target performance was analyzed and its evaluation ad-
dressed, as shown in the previous section, the multiple targets scenario was studied.
Note here that one of the main objectives of the project is to test the algorithm
on a real urban scenario, hence these first assessment steps are done on grounds of
ensuring that the PMBM filter is working properly. Here, the reader should recall
the described GOSPA metric, based on GWD and penalizations.

For the simulation environment 10 time step estimates were run and shown with
specific parameters describing the birth. The purpose of this simulation was to test
different types of targets within the FoV, this is, stationary and moving objects
within the area under analysis. In the simulated scenario, 1 non-stationary object
and 2 stationary objects were analyzed. The associated parameters values can be
found in the Appendix C. Please note that the ego-vehicle is driven through the
analyzing objects.

The multiple hypotheses oriented method carried from time step to time step
different hypotheses, different Multi-Bernoullis, and their corresponding weights.
The objects estimates shown in the following figures are only representative of the
most likely hypothesis, after being selected from a table of weights/global hypothe-
ses that were derived from the most likely previous time step global hypotheses.
In the case of these simulations, the amount of global hypotheses HN ′ was set
to N ′ = 10. Later, this approach was changed to a probability thresholding, us-
ing probability of death. Note again that even if the most likely hypothesis is

2The GWD is unit less, this is, the distance is between two probability functions, thus no
unit assigned to this comparison.
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depicted, the derivation took all the previous time step global hypotheses into
account, enclosing inside all previous global hypotheses.

Figure 5.1.3: Multiple targets estimates.

In fig. 5.1.3, the estimates of the three targets can be seen throughout the 10 time
steps. In order to make it understandable, different levels of colours have been
used, from the starting or initial estimates coloured in black, to the ending of the
estimates or tracking, coloured in violet. If one takes a close look at the extensions,
increases on the three targets extensions during the time could be seen.

The extents trends, directly dependant on the degrees of freedom and covariance
of the Inverse Wishart distributions, grow until they reach close values to the real
extensions, this is, w = 3 m, l = 3 m. The following extensions are the trends
of the shapes estimates and give the visual representation of what it has been
commented (the next examples follows the notation XObj

k ):

X1
1 =

(
1.0173 0.2920
0.2920 0.7789

)
X2

1 =

(
0.3984 0.3399
0.3399 0.9526

)
X3

1 =

(
0.6288 −0.283
−0.283 0.7443

)
X1

5 =

(
2.9526 0.8381
0.8381 3.1897

)
X2

5 =

(
2.4995 0.1439
0.1439 1.6372

)
X3

5 =

(
1.6049 0.0979
0.0979 1.9830

)
X1

10 =

(
3.51 1.3334

1.3334 3.6186

)
X2

10 =

(
2.5273 −0.320
−0.320 2.8648

)
X3

10 =

(
2.8225 1.2359
1.2359 2.4951

)
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It can be seen that the estimates of the extensions tend to the real extensions with
time-steps. As a fact, an important check point of the used theory can be seen
in the previous set of matrices where the positive semi-definite values are shown,
describing the lengths and orientations of any Gaussian shape or extension of any
target.

In order to verify what it has been shown, the next fig. 5.1.4 has been introduced.
It gathers both the GOSPA values and the weights linked to the most likely Multi-
Bernoullis. As it happens with the Gaussian Wasserstein Distance, the pattern of
this last metric tends to reduce with time steps. For instance, in this particular
simulation environment, the evaluation metric stays around the value 10, a positive
result since GOSPA is calculated taking into account the three real objects, false
and missed targets alarms. The weights tend to the value ≈ 0.15, which might have
happened due to the convergence of the SO algorithm into the same association
space.

Figure 5.1.4: GOSPA values and most likely global hypothesis weights.

As for the time step k = 5, a peak in the GOSPA value appears. When the
GOSPA algorithm was analyzed, a penalization term was introduced that offered
the possibility of analyzing and in case penalizing objects that are not under some
set conditions. It is thought that there might be two reason why the commented
peak appeared, the first and not most probable one related to the presence of a
false or missed detections (which should appear in fig. 5.1.3, but are not found)
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and the second one, which is supported by the extension X2
5 , X

3
5 , related to the

estimates, which are not close compared to the actual targets.

Therefore, taking into consideration everything analyzed before, the simulation
environment that represents a scenario with multiple targets within can be said to
be tracked properly with the Poisson Multi-Bernoulli Mixture filter.

5.2 Real Scenarios

Everything described, analyzed and evaluated up until this point supported the
efficiency of the PMBM filter and its robustness when it comes to track dense
scenarios clustered with both stationary and non-stationary objects. Both GWD
and GOSPA metrics offered the possibility to compare the ground truth with the
estimated ones, allowing us to continue with the method used in this project.

Since the final aim of technology might be the use and implement of itself in
the market, the testing associated to a real scenario or environment comes sensible
and compulsory. The same filter should work efficiently in both environments and
that is the reason why it is important to run the same implementation with some
real measurements. Moreover, this will allow also to time the filter and give some
insights about the processing time of the estimates.

For the same real measurements, several initializations were set: the ones related
to the Gauss distribution and the ones related to the Inverse-Wishart distribution.

The commented real scenario can be depicted as below:

Figure 5.2.1: A snippet of the real situation.
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5.2.1 1st Approach: Certainty in the Position of the Birth

In the following figure, the reader could see how the PMBM filter tracked the 4
objects throughout the recording time. Note once again the difference in colour,
representing black initial estimates and changing towards light violet by the end
of the tracking; the stars painted in blue represent the real measurements. Please,
find the initial birth values in the Appendix C.

Figure 5.2.2: 1st approach with real measurements.

Several things have to be pointed out and analyzed from the fig. 5.2.2. For
instance, the spurious measurements on the crossroad. For the full representation
of the reality, the spurious have been left depicted, but before running the filter
over the presented scenario some pre-filtering has been applied on the commented
measurements; filtering them out3.

The ellipses or extents around the real targets, shown in fig. 5.2.2, belong to the
group of false targets or alarms and it is thought that the presence of them might
be motivated by the tuning of the location of the real measurements and the size
of the selected extensions; being the measurements associated more to false alarms
than to the real targets. These false alarms are filtered out once their accumulated
probability of existence reach a value below the probability of death.

3This spurious filtering can be done by using signal processing combined with radar theory
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As for the real objects, the 4 main targets are visible in the figure above. These
targets, depending on their nature, stay or move throughout the time. This is the
case of the pedestrian or object found within the 3 pillars and that crosses the
crosswalk by the time the vehicle reaches the crosswalk.

Notice on the pedestrian track, the appearance of two branches around the XY -
position4: (x, y) = (−7, 94). This event could be explained by the fact that the
radar beam reflected firstly on the road and came back to the sensor. It could
be verified by the use of the measurements back-scattered intensities; where twice
reflected5 intensity being lower than the one directly measured form the pedestrian
in the LOS6. Unfortunately, there is no function in charge of the measurement
intensities, thus there is no possibility to rearrange these first estimates in a more
sensible and efficient way.

5.2.2 2nd Approach: Uncertainty in the Location of the Birth

With the birth parameters found in the Appendix C, the following estimates can
be obtained for an uncertain birth initialization:

Figure 5.2.3: 2nd approach with real measurements.

4In metres.
5First bounce on the pedestrian and second on the road.
6Line-of-Sight.
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From the previous fig. 5.2.3, several things can be understood. For this particular
scenario, the birth has been set to be the same for the four objects with a large
uncertainty. This tuning is not the best one as it can be deduced from the figure
above, since the targets do not get estimated as they should (for instance, the
pedestrian estimates). If one compared the estimates obtained here with the ones
shown in fig. 5.2.2, two important things could notice. First that the extensions
do not represented faithfully the actual objects and second that the tracking of
this moving object seems to be delayed compared to the real measurements. One
of the reasons why this could happen is the way the initial parameters were set.
Since the configuration of the scenario can change drastically tuning slightly the
commented parameters, the estimates do not reach close values. This tuning fact,
as it will be explained later, will be a sensitive factor that will require further work.

5.2.3 Lower the Initial Extensions Values

Up until now, the changes have been applied over the location and uncertainty on
it. Since the parameters cover also other two distributions, Poisson and Inverse
Wishart, the tuning of the other two distributions were thought to be run to see
different results. Note here that the Gamma function, dependant on the Poisson
rate, did not changed due to the already suitably selected parameters.

The information about the initial states is limited, but the nature of the real
targets is given by the data provider, this is, there are 4 targets in the landscape
where 3 are pillars and 1 is a pedestrian. The sizes of the initial extensions intro-
duced to the births should be sensible or follow the characteristics of the targets
under analysis. The next two analysis gather two initializations for the IW conju-
gate prior distribution: 2 different and smaller initial extensions compared to fig.
5.2.2. These differences in the initialization of the stationary7 and non-stationary
objects, are set to be8:

X1 ≈
(

0.5 0
0 0.5

)
XStat

2 ≈
(

0.25 0
0 0.25

)
XNStat

2 ≈
(

0.5 0
0 0.35

)

7Same objects, which one could deduced that they share the same extension.
8The following X2 are deduced approximately from regular pillars and average man found on

the streets.
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5.2.4 3rd Approach: X1, XStat
2 and XNStat

2 Extensions and Cer-
tainty in the Location of the Birth

The obtained estimates are shown below. The colours follow the same meaning as
the ones used in the previous analysis.

Figure 5.2.4: Same X1 extensions for the 4 objects with the birth initial values of
Appendix C.

Figure 5.2.5: X2 extensions with the birth initial values of Appendix C.
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From the set of figures above, some minor improvements compared to the 1st-
approach can be seen.

5.2.5 4th Approach: X1, XStat
2 and XNStat

2 Extensions and Un-
certainty in Birth

Figure 5.2.6: X1 and X2 extensions for the objects with uncertainty in the birth
initial values of Appendix C.

There is an improvement in the tracking of the FoV that is thought to be partially
caused by the extensions employed, even having used the same uncertainty in
both birth positions and covariances of the objects. These estimates, with high
uncertainty in the initial parameters, are thought to be the best estimate of all
the sets analyzed if one compares the used parameters and the results.

A common event happening in all approaches is the coasting9. If the target,
either false alarm or real one, does not acquire or is associated to any measurement,
the filter will react and perform the correction or update accordingly with update
without any measurement. In the case of this filter, with the function found in the
table X in [6, p. 9].

Therefore, the filter reacts better to these last initialization parameters, high-
lighting the robust performance of the filter under particular and sensible initial-

9Targets with no detections assigned.
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izations such as uncertainty in the positions but not in the extent sizes.

5.2.6 Timing

This section is committed to give the necessary timing that is required to run 60
time-step scenarios with the implemented code.

Timing 1st approach [s]
MAIN: 201,436
INITIALIZATION OBJECTS (IO): 0,004
BUILD

Sb-init: 0,003
PREDICT-UPDATE: 199,298

update-pmbm-MH: 199,096
Object Copy: 120,845
InitializeSO: 31,142
SO algorithm: 14,771

GGIW: 26,369

Timing 2nd approach [s]
MAIN: 208.71
INITIALIZATION OBJECTS (IO): 0,004
BUILD

Sb-init: 0,003
PREDICT-UPDATE: 205,779

update-pmbm-MH: 205.577
Object Copy: 123,996
InitializeSO: 27,805
SO algorithm: 13,585

GGIW: 30,881

Timing 3.1 approach [s]
MAIN: 310.052
INITIALIZATION OBJECTS (IO): 0,004
BUILD

Sb-init: 0,003
PREDICT-UPDATE: 305,435

update-pmbm-MH: 305,214
Object Copy: 214,215
InitializeSO: 46,445
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SO algorithm: 17,520
GGIW: 33,243

Timing 3.2 approach [s]
MAIN: 379,738
INITIALIZATION OBJECTS (IO): 0,004
BUILD

Sb-init: 0,003
PREDICT-UPDATE: 374,795

update-pmbm-MH: 305,214
Object Copy: 252,420
InitializeSO: 55,093
SO algorithm: 10,021

GGIW: 36,467

Timing 4th approach [s]
MAIN: 368,455
INITIALIZATION OBJECTS (IO): 0,004
BUILD

Sb-init: 0,003
PREDICT-UPDATE: 363,830

update-pmbm-MH: 363,582
Object Copy: 260,150
InitializeSO: 57,918
SO algorithm: 20,103

GGIW: 36,780

Where the most critical function takes the following times to process:

Critical timing values for Predict-Update
1st 2nd 3.1 3.2 4th

199.096 205.779 305.435 374.795 363.830

and the timing of both initialization of the SO and the SO, respectively:

Timing for the InitializeSO and SO
1st 2nd 3.1 3.2 4th

31.142 27.805 46.445 55.093 57.918
14.771 13.585 17.520 10.021 20.103
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Discussion

The results shown in the previous section, both derived from simulated scenarios
and from real scenarios, describe the way the Poisson Multi-Bernoulli filter per-
forms; highlighting the robustness of the filter when it comes to tracking multiple
and different kinds of objects, stationary and non-stationary ones.

The first results committed to the simulated scenarios validate the performance
of the filter through metrics like the GWD and GOSPA. It is shown that the
algorithm presented is an appropriate method to track dense environments.

The single extended target model was tested; running it for several iterations
and showing us that the Gaussian Wasserstein Distance tends to a low and sta-
tionary value, making us continue with the multiple target scenarios. Furthermore,
other characteristics of the single extended target are confirmed to work suitably,
such as the measurements likelihood that is dependant on the normal distribution
(please, see the Appendix B for complementary figures) or the extensions estimates
(including the proper orientations).

As for multitarget simulations, the errors obtained by the GOSPA method tell
us that the filter gets to a point where the estimates get closer to the real targets.
Note that this GOSPA metric, based in GWD, needs ground truth to be employed.
However, the real scenario evaluation lack of this ground truth. This non-existing
real ground truth can be mitigated assuming that if the implementation and eval-
uation of the simulated environments have reached the correct performance as-
sessment, then the performance assessment of real scenarios will be also achieved,
provided that no changes in the code have been made between these two environ-
ments. It is a vague assumption at first glance, but for this master thesis length
and referring to the results, one could assume and motivate it. Once again, only
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if the same procedures and codes have been used.

In this section another crucial outcome is deduced, common of all tracking filters,
this is, the importance of the tuning of the filter and which leads us to one impor-
tant aspect related to the PMBM filter: the sensitiveness of the initial parameters.
Notice that the initial values are introduced to a specific distribution, the Gaus-
sian Normal distribution, that might not be the suitable one to describe situations
where uncertainties are spread in a uniform way, for instance, initialization of the
tracking space or FoV.

In order to improve this, further steps could be taken such as implementing the
initialization with a uniform distribution. This would weigh everything within the
area of events with the same probability of occurrence. Moreover, there is always
the possibility to employ the trial-and-error concept over all parameters and, once
converged, provide these parameters values. Parameters such as the ones related to
probabilities (ps, pD and pDeath) can be also studied and tuned, but they have been
left out of this project even if they represent an important group to examine. We
could use these parameters and tailor the filter to the FoV, which might not be the
most general approach to follow but it might be adequate if some pre-processing
is run before this PMBM filter.

As for the false alarms that appear in both simulated and real scenarios, they
form a critical aspect to analyze since they can lead to an overall bad performance
of the filter, as shown in a previous approach. It is thought that if these false
alarms were studied deeper and combined or arranged together in some specific
way under some existing and proved theory, for instance combining in and pe-
nalizing (as in GOSPA) the probabilities of existence and the behaviour of the
false alarms inside FoV, the filter would improve its performance in both time and
efficiency. For example, the associations are dependant on the amount of targets
and the false alarms are part of the targets that the filter runs. Therefore, a more
sensible grouping/merging of the commented targets set would contribute to the
improvement of the filter.

A merging step appears in the stochastic optimization to the radar data, where
measurements are arranged and grouped with targets and weighted with belong-
ing likelihoods. A possible approach, as it is done with the initialization of the
DA, could be to extend this idea and run the filter firstly estimating everything
inside the FoV, up to some extent, and secondly narrowing what it is estimated
with another algorithm that clusters or merges with available information. The
necessary data such as likelihoods, weights and states is already accessible and can
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be reemployed in most of the procedures above. Although this would increase the
timing, it is thought that it will help to relieve the burden and repetitiveness that
might happen throughout the PMBM filter such as false alarms and assignment
space convergence.

Regarding the timing, further work could be addressed. If we take a look in the
timing section and the tables, we will see a procedure that needs more time than
it should take. According to some survey made in the office where the project
was set, the time needed to process the estimate of one time step data should be
around: ∆tEstimate time ≈ ∆tReal time

10
.

It is obvious from the commented section that the timing of the procedure is
not matching the previous rule of thumb. Taking a look at the values, most of
the time spent was in the function "Object Copy", an important function when it
comes to hold and analyze all the targets within the FoV. An approach to solve
the problem would be to work on this function and make it more time-efficient or
changing it with a faster method that allows to work with Matlab handle-object
class.
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Conclusion

The main idea behind the project was to solve a dense scenario, for instance, an
urban landscape in a simultaneous or real-time mode. Moreover, there was another
difficulty describing the nature of the objects within the scenario, being stationary
or non-stationary.

Among all possible filters available in the market that give a reasonable solution,
The Poisson Multi-Bernoulli Mixture has been selected, studied and employed
throughout this project; which copes with both simulated and real scenarios and
is based solidly in strong mathematical foundations. The performance is further
enhanced with the combination of suitable models that describes the objects within
the scenario or FoV. The filter overcomes the problem of the dense FoV problem
efficiently.

One of the main conclusions after having done the project is the importance
on merging strong mathematical tools such as the implementation of theories like
conjugate priors, stochastic optimization and multiple hypotheses in order to solve
problems such as dense urban scenarios. It has been demonstrated how combining
these concepts and ideas, the problem was possible to be defined and meaningful
results were obtained. Moreover, the multiple hypotheses tracking gave a new
approach to the conventional tracking method, improving the performance with
the weighing and pruning of the branches through probability.

All over this thesis, the studied algorithm has been thought to be implemented
particularly for the vehicle industry, but as the reader might already sense, the
same theory that was derived by developments in the sensors industry can now be
introduced and employed in a more global market such as in surveillance situations
for airport control, in biology for cells reproducibility control or in any random
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and clustered 3D environment for objects estimation.

Therefore, the combination of stochastic theories that enable to describe random
processes such as the ones applied in this project scenarios is thought to give
considerable and pioneer solutions to the Autonomous Driving business.
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A. Pseudo-code/Flow-chart

Appendix A

Pseudo-code/Flow-chart

Figure A.0.1: Flow-chart. Snippet 1
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A. Pseudo-code/Flow-chart

Figure A.0.2: Flow-chart. Snippet 2
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A. Pseudo-code/Flow-chart

Figure A.0.3: Flow-chart. Snippet 3
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Appendix B

Complementary figures for
evaluation

B.1 Simulated Environments

B.1.1 Single Extended Target - GWD

Figure B.1.1: Gaussian Wasserstein Distance for q = 0.01.
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B. Complementary figures for evaluation

Figure B.1.2: Gaussian Wasserstein Distance for q = 0.1.

(a) GGIW for q = 0.01. (b) GGIW for q = 0.1.

viii



B. Complementary figures for evaluation

B.1.2 Single Extended Target - Measurements distribution

Figure B.1.3: Measurements distribution.
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B. Complementary figures for evaluation
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Appendix C

Parameters values

C.1 Simulated Environments

C.1.1 Single Extended Target

GGIW birth initial parameters
Parameter Value
α 25
β 5
m

(
2 2 4 4

)
P diag[

(
1 1 0.1 0.1

)2
]

v 20

V
(

2 m4

m3
m4

m3
4

)
q

(
0.001 0.01 0.1

)
η 4
τ 5
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C. Parameters values

C.1.2 Multiple targets scenario

GGIW birth initial parameters
Parameter Value
α 25
β 5
m1

(
0 0 0 1

)T
m2

(
5 2 0 0

)T
m3

(
5 9 0 0

)T
P diag[

(
0.1 0.1 0.1 0.1

)2
]

v 20

V
(

3 0
0 3

)
q 0.001
η 4
τ 5
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C. Parameters values

C.2 Real scenarios

C.2.1 Multiple targets scenario

1st approach

GGIW birth initial parameters
Parameter Value
α 8
β 2
m1

(
−9.5 95 0 0

)T
m2

(
−6 95 0 0

)T
m3

(
−5 99 0 0

)T
m4

(
−8 95 0 −1

)T
P diag[

(
1 1 0.1 0.1

)2
]

v 20

V
(

1 0
0 1

)
q 0.1
η 4
τ 10

2nd approach

GGIW birth initial parameters
Parameter Value
α 8
β 2
m1

(
−7 97 0 0

)T
m2

(
−7 97 0 0

)T
m3

(
−7 97 0 0

)T
m4

(
−7 97 0 −1

)T
P diag[

(
2 2 0.1 0.1

)2
]

v 20

V
(

1 0
0 1

)
q 0.1
η 4
τ 10
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C. Parameters values

3.1 approach

GGIW birth initial parameters
Parameter Value
α 8
β 2
m1

(
−9.5 95 0 0

)T
m2

(
−6 95 0 0

)T
m3

(
−5 99 0 0

)T
m4

(
−8 95 0 −1

)T
P diag[

(
1 1 0.1 0.1

)2
]

v 20

V
(

0.5 0
0 0.5

)
q 0.1
η 4
τ 10

3.2 approach

GGIW birth initial parameters
Parameter Value
α 8
β 2
m1

(
−9.5 95 0 0

)T
m2

(
−6 95 0 0

)T
m3

(
−5 99 0 0

)T
m4

(
−8 95 0 −1

)T
P diag[

(
1 1 0.1 0.1

)2
]

v 20
V Shown in the main text
q 0.1
η 4
τ 10
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C. Parameters values

4th approach

GGIW birth initial parameters
Parameter Value
α 8
β 2
m1

(
−7 97 0 0

)T
m2

(
−7 97 0 0

)T
m3

(
−7 97 0 0

)T
m4

(
−7 97 0 −1

)T
P diag[

(
2 2 0.1 0.1

)2
]

v 20
V Shown in the main text
q 0.1
η 4
τ 10

xv
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