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ABSTRACT

Automated industrial robots have become a common addition to production systems
which include monotonous tasks. To maximise product output and profit, it is not
uncommon for such systems to run around the clock. Therefore, a small decrease of
the energy consumption per robot cycle can make a big difference to the total energy
consumed. This project investigates the possibility of saving energy by adjusting
the rate of acceleration and speeds of the robot along a given trajectory by utilising
a model-free optimisation method. This is achieved by the use of Iterative Dynamic
Programming (IDP) and measuring energy data from simulations and has been
implemented for two cases.

The first case modifies a trajectory for an ABB industrial robot. The IDP scheme
has been implemented as an add-in for ABB RobotStudio, hence the optimisa-
tion is performed off-line via simulations. Various methods for the IDP have been
tested, including iterative learning control and Grid Constriction (GC). Also, dif-
ferent warm-up procedures to obtain the initial cost data have been included in the
tests. The obtained results were compared to a standard path in RobotStudio, and
varied from consuming 85 % less energy to consuming 20 % more energy.

Two trajectories with an improved energy consumption were tested on a real ABB
robot, the tests revealed that energy could be saved. They also validated that the
optimisation can be performed off-line using simulations.

For the second case, a model of a KUKA industrial robot has been utilised to
simulate the movement along a trajectory and measure the energy consumption.
The entire scheme, including the model provided by KUKA, has been implemented
in Matlab. Two trajectories were optimised, resulting in an energy saving of 6.9
% and 26.2l%.

Keywords: ABB RobotStudio, energy consumption, industrial robots, Iterative
Dynamic Programming, KUKA, model-free optimisation.
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1 INTRODUCTION

Advanced production systems which employ automated industrial robots generally
consume a great amount of energy. As such production systems commonly run
around the clock, a small decrease of the energy consumption per cycle can make a
big difference to the total energy consumed. When following a trajectory, industrial
robots typically accelerate as fast as possible to a desired speed and then decelerate
rapidly to a standstill when the target has been reached. This project investigates
the possibility of reducing the energy consumption by adjusting the rate of acceler-
ation and trajectory speeds. To accomplish this, model-free optimisation methods
have been employed which use a cost function obtained from simulations in two
cases, ABB RobotStudio and a mathematical model from KUKA.

1.1 Purpose

The purpose of this master’s thesis is to minimise the energy consumption an in-
dustrial robot consumes while following a fixed given path.

1.2 Objective

The objectives of this project include developing an algorithm which iteratively
minimises the consumed energy for a robot following a given fixed path. The algo-
rithm itself should employ model-free optimisation techniques. The term model-free
means that the algorithm will not have a model of the robot itself, but instead use
external models to measure the energy consumption. This approach is attractive
since modelling a 6 degree of freedom robot is a complex task.

The algorithm will be implemented for two applications, or in other words use two
external models. The first is RobotStudio, where the algorithm will be included as
an add-in coupled with Matlab functions. The second is a KUKA mathematical
model, the algorithm in this case is only developed in Matlab.

Since cycle times can be critical for production systems, it is imperative that the
new trajectory completes the path within the same amount of time. Therefore, it
is required that the new trajectory must complete the given path within 5 % of the
original target time.

Different methods to obtain the most energy efficient trajectory should be explored
and later compared. Also, if possible, tests on a real robot should be conducted to
validate the off-line optimisation.

1



2 Chapter 1 ThesisOutline

1.3 Scope

The algorithm for RobotStudio will only consider linear movements between two
targets. This is to reduce the complexity when dividing the path into segments
which will be explained further in Section 3.3.2. Also, during these movements the
robot will not carry any loads or perform any other tasks simultaneously such as
welding or painting.

1.4 Approach

An optimisation method must be employed to find the most energy efficient trajec-
tory for a given path. Dynamic Programming (DP) has been chosen as a suitable
candidate for this application. It is a powerful method which divides a problem into
stages, where a series of decisions can be made to minimise a given cost function.
In this case, the cost function describes the energy consumption for the stages, and
will have to be measured for both RobotStudio and the KUKA model. Since the
cost function is initially unknown, it is preferable to run the DP iteratively, which
is known as Iterative Dynamic Programming (IDP). A more thorough description
of DP and IDP will follow in Section 2.2 and 2.3.

There are several previous projects which have also employed dynamic programming
to solve trajectory planning optimisation problems, (Shin and McKay 1986) and
(Field and Stepanenko 1996) are two examples.

1.5 Thesis Outline

In Chapter 2, the theory for the methods incorporated into the algorithm is pre-
sented. This includes a description of the mathematical model used for trajectory
planning and the theory behind DP and IDP.

Chapter 3 presents how various aspects of the project have been implemented. The
methods describe how DP and IDP have been utilised to minimise the energy con-
sumption, and how the optimisation techniques have been incorporated into Robot-
Studio and the KUKA model. Different strategies to obtain measurement data for
the cost function are also conveyed. A section describing how a real ABB robot has
been utilised in the project has also been included in this chapter.

In Chapter 4 the results for several different cases are presented. These are later
discussed in Chapter 5. Chapter 6 concludes the work of the project. Finally,
Chapter 7 considers future work of the project.



2 THEORY

This chapter presents the theory behind the techniques utilised in the project. In
Section 2.1 the mathematical model used to plan the trajectory is presented. Section
2.2 introduces DP and finally in Section 2.3, methods to iteratively improve the
results from the DP are brought up.

2.1 Trajectory Planning

DP requires a simple model to follow a certain trajectory’s speed, the distance
covered and the time. One way of looking at the trajectory planning problem is to
consider the motion along the path as a double integrating process. In that case,
one can consider the system in discrete time with the position pk and velocity vk
as states and the acceleration as the control signal. Using hk as the sampling time,
this can be formulated as

[

pk+1

vk+1

]

=

[

1 hk

0 1

] [

pk
vk

]

+

[

h2
k/2
hk

]

uk. (2.1)

This model will ensure an equally spaced time-scale and the position will change
according to the applied acceleration, where steps are taken along the time-scale.
However, this model can be reformulated to instead taking steps in space. As a
result, the model will be controlled by the sampling time. This can be achieved by
introducing a varying sampling time hk, the time state

tk+1 = tk + hk (2.2)

and defining the distance step-size

∆k = hkvk + h2
kuk/2, (2.3)

from which uk, the acceleration, can be solved

uk =
2(∆k − hkvk)

h2
k

(2.4)

and substituted into Equation 2.1. Thus, a new state-space model can be defined as

[

tk+1

vk+1

]

=

[

1 0
0 −1

] [

tk
vk

]

+

[

hk

2∆k/hk

]

. (2.5)

3



4 Chapter 2 Theory

This model will have the time tk as its first state, the velocity vk as the second
state, the sampling time hk as the control signal and ∆k as the distance in space
between the steps. In this case steps are no longer taken along the time, instead
steps are taken in space using predefined positions. The latter model is preferred
since it is guaranteed that the destination and all steps in between will be reached
at the exact position. This is important for the robot application. Note that both
models assume constant acceleration. (Wigström et al. 2013)

2.2 Dynamic Programming

Dynamic Programming is an optimisation method that is used to solve complex
problems by repeatedly solving many subproblems. The problem may be defined by
a simple state-space model which is controlled by one or several control signals. To
solve the problem, it is generally divided into N segments with N+1 stages where
the control signal can be changed to push the state somewhere else. Figure 2.1
shows how a simple problem has been divided into three segments and four stages.
Depending on the state in each stage, actions are taken dynamically to minimise or
maximise a cost function.

The DP solves the problem by running through the segments once at a time, either
backwards from the last segment to the start, or forwards from the first segment to
the end, and for every state in each stage calculates the cost of being in that state
and proceeding to the next one. Commonly, the DP starts by calculating backwards
where a final cost has been defined by a penalty on all the states in the last stage.
The final cost typically depends on the desired goal. By calculating backwards, the
DP steers the solution to that goal.

A general formulation of an optimisation problem that could be solved using dynamic
programming is as follows

min
u(t)

J(u(t))

s.t. ẋ = f(x(t), u(t))

x(0) = x0

x(tf ) = xf

x(t) ∈ X (t)

u(t) ∈ U(t)

(2.6)

where

J(u(t)) = P (x(tf)) +

∫ tf

0

H(x(t), u(t))dt. (2.7)
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J is the cost function to be minimised and P is a function that describes the final
cost. H can be seen as a function that describes the cost to be in a certain state
coupled with the cost to go to the next one. The set X spans the region for state
combinations, and the set U spans the region for the control signals. The final time
is tf , the desired final state is xf and the starting state is x0. (Sundstrom and
Guzzella 2009)

If an optimal state in the grid is denoted J∗

k+1(x
∗(k+1)), then the Bellman equations

state the functional equation for the dynamic program, which in this case takes the
DP one step in the backwards direction

J∗

k(x(k)) = minu(k)

[

V [x(k), u(k)] + J∗

k+1(x
∗(k + 1))

]

(2.8)

where Jk = Jtot, V = Jcost−to−go and Jk+1 = Jcost−at−target. This can be performed
from any point in the state space.

The procedure for the DP can be explained by a simple example presented in Figure
2.1. The figure depicts a problem with three segments and four stages along the
time axis, and a single state x. The objective is to solve

min (x(tf )− xf)
2 +

∑

u(t)2

s.t. x(t + 1) = x(t) + u(t)
(2.9)

Here it is assumed that the final cost P has been defined as P (x(tf )) = (x(tf )−xf )
2

and that xf = 0. So the final cost increases the further the final state is from zero.
Also assume that the control signal u(t) can move the state to any of the states in
the next segment, and that the cost to go is equal to (x(t + 1)− x(t))2.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

t

x

Figure 2.1. Dynamic programming example.

A DP running backwards in this case starts with the states at t = 2, and for every
state within the grid considers every possible u(t) and the cost of performing that
action, and the cost of being at the future state. This procedure is depicted for
states x(2) = 0 and x(2) = 1.

Lets say that the DP starts at the state x(2) = 0. Now consider every possible
control signal and see which states are reachable. In this example every state in the
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next segment, x(tf ) = 0, 1, 2, 3 can be reached with the control signals u = 0, 1, 2
and 3 respectively. Now consider the cost to go to the next state and the cost of
being in the next state. For u = 0, the cost to go is 0. The next target x(tf) = 0
has, according to the final cost, also a cost of 0. So, the total cost is J(0) = 0 for
the state x(2) = 0.

The next control signal to check for the state x(2) = 0 is u = 1. The next state
after applying this control signal is x(tf) = 1. The cost to go is now 1, and the cost
to be at the next target according to the final cost is also one. So, the total cost is
J(1) = 2. In an identical fashion, the costs J(2) = 8 and J(3) = 18 are obtained.
Now it is clear that the optimal control signal for the state x(2) = 0 is u = 0;

The calculation is repeated for the next state, x(2) = 1, where the possible control
signals u = −1, 0, 1 and 2 are possible. J(u) is built up in this manner until every
state has been evaluated. From there, the problem can be solved as an optimisation
problem.

To implement a DP, one first has to define a grid for each state and control signal
that spans all of the values to consider while running the program. In Figure 2.2,
an example where a problem with two states is shown.

0 1 2 3 4
−0.5

0
0.5

1
1.5

−0.5

0

0.5

1

1.5

2

StageState x1

S
ta

te
 x

2

Figure 2.2. The state grid of the DP, which in this example has two states,
four segments and five stages. Each stage has its own grid, which is represented
by the blue rectangles. The grid includes 25 possible combinations of the states.
Each rectangle therefore contains the region where all possible combinations of
the two states are included. The line that starts in the first stage and runs to the
last represents a possible optimal path.

It is imperative that the grid is large enough to ensure that the optimal solution lies
within the grid region. It is also important that the grid has a sufficient resolution,
otherwise minima’s can be missed and therefore never examined. However, increas-
ing the grid region while retaining the same resolution increases the number of grid
points. Too many points will have a dire effect on the computation time, which
increases exponentially with the number of points. Therefore, to obtain a satisfying
result the grid must be carefully considered. A method presented in Section 2.3
offers a solution to this problem. (Naidu 2003)
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2.3 Iterative Dynamic Programming

This section presents how the DP can be run iteratively to obtain improved results.
Two methods have been incorporated in this project, iterative learning control and
Grid Constriction (GC).

2.3.1 Iterative Learning Control

The key to successfully minimising the energy consumption for a robot trajectory,
which is described by the trajectory model 2.5, is to know how much certain robot
movements cost in energy. The energy data is obtained by running simulations from
an external model. With sufficient data, the DP can select the most energy efficient
trajectory. However, the costs are initially unknown; there is no data. Therefore,
a scheme similar to iterative learning control can be employed so that with each
iteration of the DP, data is added to the cost function which describes the energy
costs for movements along that specific trajectory. With each iteration, more is
learnt about the robot and the next DP iteration will depend then on the results
from all previous iterations. This can be seen in Equation 2.10. (Arimoto et al. 1984)

u(k + 1) = f(x(1), x(2), ..., x(k), u(1), u(2), ...u(k), J(1), J(2), ...J(k)) (2.10)

Equation 2.10 basically expresses that the next control signal is a non-linear function
of the previous states, control signal and cost function. To employ such a scheme, the
DP must be run iteratively and the results after each iteration must be incorporated
into the cost function.

2.3.2 Grid Constriction

As previously explained, the values that the states and control signal can adopt are
defined by several grids, one for every state and control signal. The resolution of the
grid depends naturally on the span of the minimum and maximum value and the
number of points there are in between. Typically, for improved results it is desired
to have a high resolution and therefore have many grid points. However, too many
grid points can have a devastating effect on the computation time of the IDP. A GC
method to reduce the grid region’s size after each iteration offers a solution to this
problem.

For IDP without GC, the grids for a state or control signal are identical in each seg-
ment. This grid configuration is recommended for at least the first few iterations of
the IDP with GC, since the optimal trajectory is unknown. However, the resolution
of the following iterations can be improved by employing a systematic GC method.
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0 1 2 3 4
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Figure 2.3. The state grids for the IDP after one iteration. The blue rectangles
represent the grids/regions for the first iteration. The red rectangles represent
the new grids for the second iteration, which are centred around the last found
state for that stage.

This method involves for each stage taking the state or control signal from the last
optimal trajectory, and creating grids with narrower regions with the optimal state
or control signal as the centre point. So each stage has different state and control
signal grids.(Luus 2000)

The grid sizes vary then for each iteration after the initial iterations without GC.
The first iteration with GC may have a start region, one that is typically smaller
than the region for the general first iterations. The grid regions are then iteratively
reduced by a reduction factor γ, where 0 < γ ≤ 1. Thereby, the resolution is
increased without increasing the number of grid points and the computation time is
left unaffected.

Figure 2.3 shows a simple case where there are two states. The large blue boxes
represent the state grids for the first iteration. Since it is the first iteration they are
identical for each segment. The blue line represents an optimal solution found from
the first iteration. The red boxes show how the grids for the second iteration may be
like, the resolution is clearly improved around the optimal state for each segment.
If for example γ = 0.98, the following iterations will decrease the size of the red
boxes by 2 % per iteration. However, the centre point of the following grids may
vary, since they depend on the last found trajectory. Also, the number of iterations
where the grid is reduced is a design parameter.

This method does introduce a few complications. It is important not to restrict the
IDP by selecting a too small starting region size or γ value. In that case, the IDP
might get stuck in a local solution and never be able to examine the region where
the global optimal trajectory exists.



3 METHOD

In this chapter, methods used to implement the algorithm are presented. The first
two sections concern the DP and IDP. The three remaining sections describe the
applications where the IDP has been incorporated and/or tested. These include
RobotStudio, an ABB robot of type IRB1600 and a KUKA model.

3.1 Dynamic Programming

To find an optimal trajectory for an industrial robot, a cost function is minimised
using a DP. This section describes how the DP has been realised.

Following the case presented in Section 2.1, two states form the state grid where
the first state is time and the second is the TCP speed. The control signal is the
sampling time, precisely as shown in Equation 2.5. Using Equations 2.5 and a
discrete version of 2.6, a formulation of the minimisation problem can be defined as
shown in Equation 3.1.

min
u(t)

P (g(tf)) + Jtot(hk)

s.t.

[

tk+1

vk+1

]

=

[

1 0
0 −1

] [

tk
vk

]

+

[

hk

2∆k/hk

]

g(0) =

[

t0
v0

]

g(tf) =

[

tf
vf

]

x(k) ∈ X (k)

h(k) ∈ H(k)

(3.1)

The DP is implemented as a function in Matlab. By doing so, important inputs
to the function can be changed for each iteration. The cost function is one of those
inputs that must be updated. The cost function and how it is created is discussed
further in Section 3.1.1.

The DP function is designed to receive data for a predefined path that has already
been divided into segments. The function returns a solution as an array containing
the optimal state and control values to be applied and eventually simulated. The
DP works in this fashion for both the RobotStudio and KUKA applications.

9
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3.1.1 Cost Function

The cost function P (g(tf)) + Jtot(hk) can be divided into three parts:

• P (g(tf))

• Jcost−at−target

• Jcost−to−go

P (g(tf)) is the final cost which is used to initiate the DP by setting the cost on the
final state. The final cost is formulated as

P (g(tf)) = α(t− tf )
2 + β(v − vf )

2 (3.2)

where α and β are the tunable penalties on the deviation of the desired final time
and velocity.

Jcost−at−target is the cost to be in a certain state. It depends on both the final cost
P (g(tf)) and Jcost−to−go, and is built up as the DP goes backwards through the
segments.

Finally, Jcost−to−go is the cost to go from one state to another. In this case, it con-
sists of energy data, and stores for each segment the amount of energy consumed by
accelerating with a constant acceleration from a certain start speed to an end speed.
This cost can only be obtained by doing simulations to obtain energy data. These
simulations hereinafter are referred to as the warm-up simulations. Since it is im-
possible to have data for every possible situation, this data is used to obtain surface
functions or surface fits for every segment. This is achieved by linear interpolation
and curvefitting functions generated by Matlab’s function cftool. Naturally, this
step must be completed before running the DP. Figures 3.5 and 3.10 show examples
of curve fits from energy data for RobotStudio and KUKA respectively. The energy
data and curve fitting process will be described in more detail for RobotStudio and
KUKA in the following sections 3.3.2 and 3.5.

The decision taken in the DP is then based on:

Jtot = Jcost−at−target + Jcost−to−go. (3.3)

so that the chosen path has the lowest combined cost.

3.2 Iterative Dynamic Programming

IDP techniques have been employed to improve the results of the algorithm. This
section presents how IDP has been incorporated into the applications.
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This is achieved by showing the work flow of the algorithm.

1. Run warm-up simulations and measure the energy consumption. Save data.

2. Iterate.

(a) Create/update cost function, i.e. with energy data, create a new surface
fit for each segment as described in Section 3.1.1.

(b) Run the DP to obtain an optimal trajectory.

(c) Simulate the optimal trajectory and measure the energy consumption.

(d) Add energy consumption to data from which the cost function is created.

One can see that every time a new solution is obtained from the DP, the energy
data for that trajectory is added to the cost function. Hence the cost-function is
improved at the region of the solution for each iteration. This was described as
iterative learning control in section 2.3. GC can also be implemented, however this
is accomplished internally in step 2(b) in the DP function.

3.3 RobotStudio

This section starts by offering a brief introduction to RobotStudio. A description of
how RobotStudio has been incorporated into the project then follows, including the
different phases of the add-in and some limitations. Finally, the trajectories used to
test the algorithm are presented.

3.3.1 Introduction to RobotStudio

RobotStudio is ABB’s simulation and off-line programming software for industrial
robots.1 It enables users to define production sequences/tasks and then accurately
simulate them. The simulations are realistic since RobotStudio is built on the ABB
VirtualController, a copy of the real software that runs the robots. The simulation
is controlled by RAPID code, the same programming language used to control the
industrial robots.

Before running a simulation, a procedure must first be defined. A simple procedure
may involve a path which the robot is to follow. The path itself is determined by
instructions to move the robot to specific targets, which are in turn specified by a
position, orientation and a robot configuration.

The simplest path requires naturally two targets and one move instruction. A move
instruction has several instruction arguments, but for this application it is sufficient

1http://new.abb.com/products/robotics/robotstudio
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to specify the motion type, speed and zone. In a procedure, a move instruction
simply states: move to this target with this speed, motion type and come within
at least this specific zone around the target before continuing to the next move
instruction.

There also exists an instruction to limit the acceleration and/or deceleration. This
instruction is simply included after a specific move instruction, and the accelera-
tion/deceleration limit is included as an input. However, there is no support in
RobotStudio to implement a constant acceleration/deceleration. This can only be
achieved by having the correct input to the instruction.

Hereinafter, a standard path in RobotStudio is defined as a path with two targets
and one move instruction with no acceleration limitations.

Users can define paths either directly in RAPID code, or create one in the virtual
workspace. In the virtual workspace the user creates a station, in which a specific
robot and the surrounding objects and work items may be included. This way it is
easier for the user to understand what the robot is actually doing, since the whole
process is visualised.

RAPID code can either be written manually, imported from an external source
or automatically generated by RobotStudio. RobotStudio automatically generates
code when the user synchronises a station or path from the virtual workspace to
the VirtualController. Once the RAPID code has been written or automatically
generated and the simulation parameters have been defined, RobotStudio is ready
to start running simulations. During a simulation it is possible to sample data from
the robot and export it to a text file, or view it in the signal analyser in RobotStudio.

RobotStudio can also be used for on-line controllers, if the controller is connected
to the computer via an Ethernet cable. In that case, it is possible to synchronise
a path or station to the real controller. RAPID code can also be written directly
to the controller. Similarly, during an actual run, data can be sampled and either
presented in the on-line signal analyser or exported to a text file.

RobotStudio also offers users the tools to develop an add-in which can access data
and functions within RobotStudio. To aid the implementation of such an add-in,
ABB provides reference a source2 which includes the classes, properties and methods
of RobotStudio. The add-in is implemented in C#.

3.3.2 The Add-in

The IDP requires cost data and a base from which to iteratively run and simulate
solutions. An add-in for RobotStudio has been developed for this purpose. The add-
in’s tasks include to prepare the path for the IDP, run the warm-up simulations,
sample and process the measured data and call the IDP. To accomplish these tasks,

2http://developercenter.robotstudio.com/DevCenter.aspx?DevCenter=RobotStudio
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the add-in is divided into three stages: a preparation stage, a warm-up stage and
an IDP stage.

Preparation stage

Initially the add-in prepares a given path, typically a simple path defined by two
targets, by dividing it into segments to, or close to, a specified length. This is
achieved by simply iteratively checking the current length between two targets and
adding a target in between if the specified length has not been reached. For the path
to remain smooth and to ensure that the robot moves identically to the original path,
it is imperative that the added target is located and oriented at the exact half-way
point between the original targets. The targets are then the stages which split the
path into segments, the speed in between is controlled by move instructions and the
acceleration/deceleration limitations in the RAPID program.

The segment length can have a significant effect on the results from the IDP. Shorter
segments are preferred, since this increases the resolution of the IDP and yields a
better result. But shorter segments can be troublesome to implement in Robot-
Studio, since there is a higher risk that the robot will fail to accelerate from the
start-speed to the desired end-speed within the segment distance. If this occurs, the
cost function might become corrupt and/or inconsistent. In that case the IDP will
not fully function. Also, if the IDP does find a solution, it is unlikely the simulation
will be successful since the robot will struggle to complete the acceleration demands
within the segments. Shorter segments will furthermore increase the computation
time of the IDP. Longer segments on the other hand are easier for RobotStudio to
handle, but not suitable for the IDP since the resolution decreases and the path
characteristics can change too much in one segment.

Tests revealed that an appropriate segment length lies in the regions of 0.1 m. This
gave a sufficient resolution and the simulations were reasonably reliable.

To record the necessary data from the simulations, the add-in must additionally set-
up data sinks which sample the speed, energy and next target data. The sinks are
activated to record as the simulation commences, and export the data to a text file
for each of the data signals. The preparation stage is complete when the modified
path has been synchronised to the virtual controller, and the simulation parameters
have been set.

Warm-up stage

The warm-up stage consists of performing simulations to generate data for the cost
function Jcost−to−go. To achieve this, several warm-up paths are simulated where the
target speeds follow a certain predefined pattern.

The patterns are designed to obtain as much information as possible, from as few



14 Chapter 3 Method

simulations as possible. Several different methods were tested, including a zig-zag
pattern, a triangular pattern and a pattern in which a constant speed is chosen.
In addition to these, a method that employs a minimisation problem to generate
random paths that fulfil certain constraints linked to the given path was also incor-
porated.

The zig-zag pattern is presented in Figures 3.1 and 3.2. It is divided into different
speed step sizes, 400, 200 and 100 mm/s. A pattern with constant speeds is also
incorporated into the warm-up after the zig-zag pattern. From Figure 3.2, one can
see that it is a thorough method to obtain energy data for different speeds since
many speed changes are tested. Also, the number of iterations required for the
warm-up depends only on the number of speed jumps to be investigated, not the
number of segments. The number of iterations required for the presented example
is 63.

There are however a number of drawbacks to this approach. Firstly, the robot could
have difficulties following the zig-zag pattern, especially for the higher speeds and
with constant acceleration enforced. The consequence of this was inconsistent cost
data which resulted in poor results. Additionally, because of these restrictions, the
maximum jumps are limited to a modest 400 mm/s. It is not unusual for the robot
to accelerate from 0 to 900 mm/s, so this is a major restriction which again hindered
the IDP. For these reasons, this approach was abandoned.
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Figure 3.1. The zig-zag pattern broken down into parts. Upper left: Zig-zag
with speed changes of 400 mm/s. Upper right: Speed changes of 200 mm/s.
Lower left: Speed changes of 100 mm/s. Lower right: Constant speed. There are
11 targets in the path, so a there is a total of 10 segments in this case. A red path
is added to show how one specific path is completed with the zig-zag warm-up.

One of the methods employed instead of the zig-zag approach, was to generate trian-



3.3 RobotStudio 15

0 2 4 6 8 10
0

500

1000

1500

Target index in path

T
ar

ge
t s

pe
ed

 [m
m

/s
]

Figure 3.2. The complete zig-zag pattern. The same three red paths from Figure
3.1 are also included.

gular shaped paths with a varying velocity peak at each target. Figure 3.3 presents
the two parts of the warm-up. Similarly to the zig-zag pattern, the triangular pat-
tern also incorporated a constant speed pattern in the warm-up. This warm-up is
thorough and investigates relevant paths, since it is expected that the optimal path
will have either a triangular/dome shape, or follow a constant speed. Also, there
are rarely any failures in RobotStudio where the robot cannot follow a path. As the
consequence, a good cost function is produced from running this warm-up.

One drawback with the triangular warm-up approach is that the number of warm-
up iterations now depends on the number of segments. The example presented in
Figure 3.3 has the same number of segments as the zig-zag example in Figure 3.2,
but requires 75 warm-up iterations instead of 63. A path with 11 segments requires
83 iterations. But, on the other hand, a path with 8 segments will only require 59
iterations.
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Figure 3.3. Triangular warm-up paths. Upper: Triangular warm-up paths with
varying peak speeds at each target. Lower: A constant speed pattern.

The third warm-up employs AMPL with aMatlab interface, and generates random
paths by solving the following minimisation problem,

min uTQu

s.t.

[

tk+1

vk+1

]

=

[

1 0
0 −1

] [

tk
vk

]

+

[

hk

2∆k/hk

]

∀k ∈ [0, ..., N − 2]

uk =
2(∆k − hkvk)

h2
k

v0 = vN = t0 = 0

tN = tf

where

Q = diag(r0, ..., rN−2), rk ∈ U(a, b).

Here the weights a and b have been chosen to be 3 and 200 respectively, so that rk is
a random number between 3 and 200. This has proven to yield a good distribution
of the random paths. This method has, for this reason, been entitled as the random
path generator.

An advantage with this method is that the time required to complete the path
can be specified. Therefore, all of the warm-up paths will be relevant to the IDP
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Figure 3.4. The random warm-up. 59 paths which are randomly generated to
complete a given path according to several constraints. In this case the path is
defined by 9 targets and has been divided into eight segments.

problem. Also, the number of iterations is completely independent from the number
of segments and can be chosen freely. Figure 3.4 presents an example with 59
iterations, for a path with 8 segments. One disadvantage for this warm-up is that
a new warm-up must be performed each time the target time changes, since the
generated paths depend on the target time. The triangular warm-up on the other
hand is more versatile and the same warm-up for a path can be used for most target
times.

Once the warm-ups have been completed, the energy cost function is produced as
a surface by interpolating the warm-up data. An example of a surface is shown in
Figure 3.5. The cost is divided into the segments according to the targets, and has
for each start- and end-speed in that segment a cost in energy. The two warm-up
methods are compared later in the results section.

IDP stage

The IDP can finally start after the cost function has been created. The stage follows
the steps presented in Section 3.2. The IDP returns an array of target speeds.
These are tested by inserting them into the move instructions and then running a
simulation. The speed and energy data from each simulation are also stored in the
cost function for future iterations, thus implementing the iterative learning technique
discussed in Section 2.3. Two versions of the IDPs were implemented, one with GC
and the other without. The two methods will be compared in the results.
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Figure 3.5. The interpolated surface for a segment of a path. The points
represent the warm-up data points.

The GC has been included with a few simple modifications. To ensure that the IDP
with GC does not centre around a non-optimal trajectory, a number of iterations are
initially run without any GC. Thereafter, the GC for a number of iterations until
the grid span becomes small enough. When this grid span is reached, the grid does
not constrict any more but remains at the span defined by the final constriction.

3.3.3 RobotStudio Limitations

Some limitations of RobotStudio were encountered during the project; they include
the energy measurements and the acceleration/deceleration limiter.

The energy measurements can vary heavily. Differences of 20 % have been found
for two different simulations of the exact same trajectory. This naturally can have
a negative effect on the cost data, since the measured energy might be much larger
than what it could be for another simulation. This can of course be solved by
running the same trajectory several times to obtain an average energy consumption.
But this action would make the execution time of the algorithm several times longer.

RobotStudio as standard accelerates as quickly as possible to the desired speed.
As previously mentioned, the IDP assumes constant acceleration, so this must
be duplicated in RobotStudio to obtain accurate results. The employed accelera-
tion/deceleration limiter is an instruction called PathAccLim. Constant acceleration
can only be achieved by setting the correct parameters to the instruction. However,
this has proved to be somewhat unreliable. The constant acceleration can easily be
calculated by following the formula
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Figure 3.6. An example of a PathAccLim failure. The red circles represent the
desired target speeds, and the blue line shows the performed trajectory. Clearly,
the target speeds have not been reached due to too heavy acceleration limitations
and the simulation can be concluded as a failure.

acc =
v22 − v21

2d
, (3.4)

where v2 and v1 represent the end- and start-speed respectively, and d is the dis-
tance in between. However, inserting the answer from this formula directly into the
instruction often results in a failure to follow the specified trajectory. Figure 3.6
shows an example of this. Instead, the formulas

acc =
(1.1v2)

2 − (0.9v1)
2

2d
(3.5)

dec =
(0.9v2)

2 − (1.1v1)
2

2d
(3.6)

are used. As a result, RobotStudio rarely fails to complete a trajectory, but constant
acceleration/deceleration is rarely achieved as desired.

3.3.4 The Tested Trajectories

To test the algorithm, two different paths were tested. The paths include a horizontal
path and a diagonal path where the robot goes in a downwards direction. The time
it takes to complete the path, the target time, naturally has a great impact on the
result. Therefore, two target times were chosen for each path, one which represents
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a standard path time and another which takes longer time. Figures 3.7 and 3.8
present the horizontal and diagonal path respectively.

The horizontal path is 1.6 m long and the diagonal path is around 1 m. A standard
TCP speed in RobotStudio is 1 m/s, so a target time of 1.65 s for the horizontal
path and 1 s for the diagonal path were chosen. To test the algorithm for lower
speeds, the target time for each path was doubled.
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Figure 3.7. The horizontal path, the
upper figure shows the path before it
has been divided into segments, the
lower figure after. The path is divided
into 16 segments each with a length of
0.1 m.

Figure 3.8. The diagonal path, the
upper figure shows the path before it
has been divided into segments, it also
shows the starting position for when
the robot. The lower figure shows the
path after it has been divided into seg-
ments and the final robot position. The
path is divided into 8 segments, each
with a segment length of approximately
0.125 m.

3.4 ABB IRB1600 Robot

The opportunity arose to test some trajectories on an actual ABB robot. This
section presents how the tests were conducted.

The robot, which is located in a test lab facility at Chalmers, is an ABB robot of type
IRB1600. As explained in the introduction to RobotStudio in section 3.3, the robot
is controlled by the same RAPID code that is used for simulations. Unfortunately,
the process to start a programme or sample data is not identical to the procedure in
an off-line environment. For this reason, the add-in has not been developed further
to function with a real controller.

Instead, all the warm-up simulations and the optimisation process have been com-
pleted off-line with a model of the IRB1600 type robot. The most optimal tra-
jectories were then tested directly on the actual robot to see whether or not an
improvement of the energy consumption was made. The measurement of the energy
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and TCP speed has been carried out using the on-line signal analyser in RobotStu-
dio.

The tested paths are the same paths as presented earlier in the previous section.
However, the horizontal path has been modified to avoid collisions with surrounding
objects around the robot in the test lab. Instead, the path is in front of the robot,
and has only a length of 1 m. Only a target time of 2 s was tested for both paths.

3.5 KUKA

This section introduces the second application where the IDP has been implemented.
It is a mathematical model written in Matlab by the industrial robot manufacturer
KUKA. It simulates a KUKA KR2210 industrial robot. In this model, a path is
defined by vectors with time points and the corresponding robot joint angles. The
consumed energy for the path is measured by running the simulation, during which
the robot moves with constant acceleration. This section begins by describing the
warm-up stage, where energy data is obtained for the cost function. An explanation
of the implementation of the IDP follows and the section concludes by presenting
limitations of the KUKA model and the tested trajectories.

Warm-up stage

The cost function that is used to solve the IDP for the KUKA model has the same
format as for the RobotStudio application, where it is created as a surface with the
axes start-speed, end-speed and energy. Warm-up paths have only been generated
by the random method described in Section 3.3.2 to create the cost function. An
example of the cost function for the KUKA model is illustrated in Figure 3.10, and
the collected warm-up data used for the cost function is presented in Figure 3.9. In
this particular case the cost function is created for a path that rotates the robot
from 0° to 90° around its base with 20 segments, making each segment 4.5° long.
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Figure 3.9. The warm-up data,
which contains the start-speed, end-
speed, and energy for that motion
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Figure 3.10. The surface created from
the data points in Figure 3.9 using lin-
ear interpolation.

However, there is a complication with the KUKA model. Since it is not possible to
enter a start-speed and end-speed for a segment in the KUKA model, the time scale
for the positions has to be calculated. This can be done by defining the velocities a
path should have in each position i.e. each start and end of a segment. Having both
the position pk and the speed vk, the sampling time needed for that motion can be
calculated by solving hk from Equation 2.5 as

hk =
2pk+1 − 2pk
vk + vk+1

. (3.7)

Accumulating these sample times will form a non uniform time scale

th,k = th,k + hk (3.8)

where each time corresponds to one position of the robot. These positions can be
calculated as stated in Equation 2.5 as

pk+1 = pk + vkhk +
ukh

2
k

2
. (3.9)

For Equation 3.9, the acceleration uk is also required which can be solved from
Equation 2.1 as

u(k) = −
(vk + vk+1)(vk − vk+1)

2∆
(3.10)

However, another complication exists. The KUKA model requires equidistant time
steps in order to calculate the energy accurately. Therefore the non-uniform time
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scale has to be up-sampled into a finer time scale with equidistant time steps.

This can be achieved by first creating a new partially uniform time scale and cor-
responding positions. This new time scale is created by adding N equally distant
samples between each th thus creating the new time scale te. To get the positions
for this new partially uniform time scale, Equation 3.9 is applied again, but now
with he instead of h where

he,k = te,k+1 − te,k (3.11)

Thus, a finer grid for both the time and position values is obtained. Values for a final
equidistant time scale with the desired sampling time is calculated by interpolating
the fine grid. This new uniform time vector and its corresponding position vector
can now be simulated to get the energy.

As a final point regarding the KUKA model, it has been discovered that the accuracy
of the simulations is improved by adding samples before and after the actual motion.
Therefore, 10 extra samples have been added before and after the trajectory values
where the robot remains still.

IDP stage

Similarly to RobotStudio, the IDP can finally start after the cost function has been
created. This step utilises the same function as RobotStudio and is therefore car-
ried out in the exact same manner. However, only an IDP without GC has been
implemented for the KUKA application.

3.5.1 KUKA Limitations

The KUKA model has restricted the user to only be able to define a path by entering
the corresponding time and joint angles in an Excel-spreadsheet. From there, the
simulation is carried by running an executable file using the parameters from the
Excel-spreadsheet. This method lacks visual aids that show how the robot is moving
which makes it difficult to get an overview of the movements when several joints are
manipulated simultaneously.

3.5.2 The Tested Trajectories

For the KUKA case, a standard path is a trajectory that has been externally pro-
vided from a real robot simulated in DELMIA, a software used to simulate KUKA
robots. This ensures that the motion is realistic. Three different reference trajecto-
ries were provided from KUKA. The first trajectory rotates the robot from -180° to
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-90° around its base. The second trajectory rotates in the same way but is longer, it
rotates 360° from -180° to 180°. The third and final trajectory moves both around
its base and up at the same time, hence activating multiple joints.

For paths that activate multiple joints, as for a linear motion or the third trajectory,
it can be quite complex to calculate the multiple joint angles. For this reason, only
motions where one joint angle changes are considered. The largest joint, the one that
rotates the robot around its base, has been chosen for this purpose since the energy
consumption for this joint will be larger than the others. Hence, it will be easier to
compare the consumption for a standard path to the optimised one. Another reason
to choose the base joint is that when dividing the trajectory into segments, all of the
segments will have the same properties from an energy perspective. On the basis of
this, all data collected to create the cost for the IDP can be used to form only one
surface that will fit for all segments.



4 RESULTS

4.1 RobotStudio

This section presents the results from RobotStudio. A total of 16 tests were con-
ducted, eight for each path described in Section 3.3.4. The tests include running the
IDP with or without GC, and each of those cases is tested with either the triangular
or the random warm-up method. The triangular warm-up required 123 iterations for
the horizontal path, and 59 iterations for the diagonal path. For a fair comparison,
the same number of iterations was chosen for the random warm-up in each case.

Each test runs the warm-up procedure and then runs 50 iterations of IDP. After
each test, the most promising trajectory is chosen and compared against a standard
path in RobotStudio. Since the energy consumption varies, data for each trajectory
and standard path is obtained 10 times to get an average. The results from these
tests are presented in Table 4.1.

For the GC case, 10 IDP iterations are initially run without GC, then 25 iterations
where the grid contracts. The remaining 15 iterations are run with the grid size
obtained from the final constriction. The grids for the first 10 iterations naturally
span every possible state and control value, exactly as the IDP without GC does.
At the eleventh iteration the grid span is halved. For the next 25 iterations the grid
spans are constricted by 2 % (γ = 0.98). All of the grids have 81 points. For the
IDP without GC, a grid size of 161 points is used.

Table 4.1. Results from the IDP for RobotStudio. Presents the percentage
of energy saved compared to a standard path with the same target time. A
negative percentage means that the IDP trajectory consumes on average more
energy compared to the standard trajectory, and vice versa.

Trajectory Time [s] R [%] Tri [%] GC, R [%] GC, Tri [%]

Diagonal Path 2 75.36 84.9 57.8 80.3
Diagonal Path 1 -0.8 -17.4 -8.0 -21.5
Horizontal Path 3.3 -1.00 -1.4 0.2* -1.2
Horizontal Path 1.65 -1.2 -1.3 -0.7 -5.6
R - Random warm-up
Tri - Triangular warm-up
GC - IDP with grid constriction
Bold - Best result for that path
* - Not within 5 % of the target time

Figures 4.1 and 4.2 present an example of how the IDP with or without GC converge
to a certain trajectory. The example is taken from the horizontal path with a target
time of 1.65 s and a random warm-up.

The computation time has also been measured for the IDP with or without GC. For
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the IDP without GC and 16 segments, one iteration took approximately 1 minute to
complete; the IDP with GC only took around 12 s. The comparison was performed
on a PC laptop with a 2.27GHz i5 processor and 3 GB of RAM.

The following two subsections display the trajectories and details of the best result
for each path. These trajectories are marked with a bold font in Table 4.1.
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Figure 4.1. The targets speeds, en-
ergy consumption and path time for all
iterations of the IDP without GC for
the horizontal path. The actual target
speed values are not important, note in-
stead that after 20 iterations the IDP
has converged to a trajectory that min-
imises the total cost J. Note also that
the DP finds another trajectory that
actually consumes less energy, but does
not fulfil the target time, which is rep-
resented by the red line, as accurately
as the final trajectory.
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Figure 4.2. The targets speeds, en-
ergy consumption and path time for all
iterations of the IDP with GC for the
horizontal path. In this case the IDP
does not converge to a certain trajec-
tory, but a region around the optimal
trajectory. Note that the target speeds
and path time never stabilise.

4.1.1 Diagonal Path

The best trajectory for the diagonal path with a target time of 2 and 1 s are presented
in Figure 4.3 and 4.5 respectively, where they are compared to a standard path with
the same target time. The details of the trajectories can be found in Table 4.2 and
4.3.
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Table 4.2. Detailed results for the diagonal path with a target time of 2 s. The
average is obtained from running the trajectory and the reference path 10 times
in RobotStudio.

Average standard time 2.03 [s]
Average IDP time 1.96 [s]
Average time difference 0.07 [s]
Average standard energy consumption 5.0 [J]
Average IDP energy consumption 0.7 [J]
Average saved/lost percentage of energy consumption 84.9 [%]
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Figure 4.3. TCP speed of the diag-
onal IDP trajectory compared to the
standard movement of 500 mm/s.
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Figure 4.4. Energy consumption of the
diagonal IDP trajectory compared to
the standard movement of 500 mm/s.
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Table 4.3. Detailed results for the diagonal path with a target time of 1 s.

Average standard time 1.08 [s]
Average IDP time 1.05 [s]
Average time difference 0.03 [s]
Average standard energy consumption 26.8 [J]
Average IDP energy consumption 27.0 [J]
Average saved/lost percentage of energy consumption -0.8 [%]
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Figure 4.5. TCP speed of the diag-
onal IDP trajectory compared to the
standard movement of 1000 mm/s.
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Figure 4.6. Energy consumption of the
diagonal IDP trajectory compared to
the standard movement of 1000 mm/s
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4.1.2 Horizontal Path

Similarly to the diagonal path, the best trajectory for the horizontal path with a
target time of 3.3 and 1.65 s are presented in Figure 4.7 and 4.9 respectively. They
are also compared to a standard RobotStudio path with the same target time. The
details of the trajectories can be found in Table 4.4 and 4.5.

Table 4.4. Detailed results for the horizontal path with a target time of 3.3 s.

Average standard time 3.23 [s]
Average IDP time 3.20 [s]
Average time difference 0.02 [s]
Average standard energy consumption 204.9 [J]
Average IDP energy consumption 206.9 [J]
Average saved/lost percentage of energy consumption -1.0 [%]
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Figure 4.7. TCP speed of the hori-
zontal IDP trajectory compared to the
standard movement of 500 mm/s.
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Figure 4.8. Energy consumption of the
horizontal IDP trajectory compared to
the standard movement of 500 mm/s
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Table 4.5. Detailed results for the horizontal path with a target time of 1.65 s.

Average standard time 1.66 [s]
Average IDP time 1.61 [s]
Average time difference 0.05 [s]
Average standard energy consumption 223.6 [J]
Average IDP energy consumption 225.2 [J]
Average saved/lost percentage of energy consumption -0.7 [%]
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Figure 4.9. TCP speed of the hori-
zontal IDP trajectory compared to the
standard movement of 1000 mm/s.
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Figure 4.10. Energy consumption
of the horizontal IDP trajectory com-
pared to the standard movement of
1000 mm/s
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4.2 ABB IRB1600 Robot

This section presents the results from the test lab, where an ABB IRB1600 indus-
trial robot has been used to validate some results from RobotStudio. As described
in Section 3.4, two paths have been tested. Similarly to the off-line tests with Robot-
Studio, deviations exist in the energy measurements. To counter this, the standard
and IDP trajectory were run 10 times to obtain an average.

4.2.1 Diagonal Path

The IDP produced a trajectory that saved on average 85 % of the consumed energy
when run off-line. The IDP used a triangular warm-up, and was without GC. GC
and the random warm-up were not incorporated, since at the time of the testing
they had not yet been developed.

When run on the real robot, an average saving of 89.9 % was made. The energy
consumption for all 10 runs are included in Table 4.11. The trajectory itself is
presented in Figure 4.12, along with the energy consumption in Figure 4.13.
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Figure 4.11. Energy measurements for the real robot, diagonal path

Test Standard trajectory IDP trajectory Savings [%]

1 14.9 0.7 95.3
2 17.5 2.0 88.5
3 17.9 1.8 89.9
4 18.2 2.6 85.7
5 17.0 2.2 87.3
6 15.9 2.0 87.4
7 16.6 1.5 90.9
8 18.2 1.1 93.8
9 20.0 1.7 91.7
10 15.4 1.8 88.4

Average 17.2 1.7 89.9
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Figure 4.12. TCP speed, for the real
robot, of the diagonal IDP trajectory
compared to the standard movement of
500 mm/s.
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Figure 4.13. Energy consumption,
for the real robot, of the diagonal IDP
trajectory compared to the standard
movement of 500 mm/s.

4.2.2 Horizontal Path

For the horizontal path, the IDP off-line actually achieved a 2.11 % improvement.
Again, this was obtained with a triangular warm-up and no GC. The results from the
ten measurements are presented in Table 4.14. The IDP and standard trajectories,
and their energy consumption are presented in Figure 4.15 and 4.16 respectively.
On average, 1.2 % of the consumed energy was saved.
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Figure 4.14. Energy measurements for the real robot, horizontal path

Test Standard trajectory IDP trajectory Savings [%]

1 128.6 122.0 5.1
2 124.2 124.4 -0.1
3 129.5 120.7 6.8
4 128.0 125.0 2.4
5 121.0 122.9 -1.6
6 124.0 127.2 -2.6
7 123.4 121.6 1.4
8 127.1 123.7 2.7
9 121.5 125.1 -3
10 125.3 123.9 1.1

Average 125.3 123.6 1.2
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Figure 4.15. TCP speed, for the real
robot, of the horizontal IDP trajectory
compared to the standard movement of
500 mm/s.
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Figure 4.16. Energy consumption, for
the real robot, of the horizontal IDP
trajectory compared to the standard
movement of 500 mm/s.

4.3 KUKA Model

The results of the KUKA implementation are presented in this section, where the
two different paths described in Section 3.5.2 have been investigated. Similarly
to the RobotStudio case, the IDP trajectories are compared to a standard one by
running several simulations. But, in this case an average value is not needed, since
the energy measurements have no variation. An investigation of how the results are
affected by the number of warm-up paths and IDP-iterations is also carried out.
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4.3.1 Path 1

Path 1 rotates the robot around its base from -180° to -90°, over 1.17 s. The standard
trajectory consumes 5683.3 J. For the same path, the IDP has been tested also by
varying the number of warm-up and IDP iterations. The results are gathered in
Table A.1 in Appendix A.

Out of all of the cases included in Table A.1, the most frugal trajectory that con-
sumes the least amount of energy is marked with bold font. It uses 25 warm-up
iterations, and is found at IDP iteration 5 of 10. This solution consumes 4196.4 J,
which corresponds to a saving of 26.2 %. The trajectory is depicted in Figure 4.17
and its corresponding energy consumption in Figure 4.18.
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Figure 4.17. TCP speed of the most
frugal trajectory compared to the stan-
dard movement, for Path 1.
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Figure 4.18. Energy consumption
of the IDP trajectory compared to the
standard movement, for Path 1.

Figure 4.19 and 4.20 shows the energy consumption for each IDP iteration for two
different cases. Figure 4.19 presents a case where only a few initial warm-up itera-
tions (poor initial data) are used, and the IDP converges to a solution rather fast.
This solution however, is rather poor. Figure 4.20 shows a case where more warm-up
data exists, and demonstrates how the IDP slowly converges to the optimum.
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Figure 4.19. The energy consump-
tion for 100 IDP iterations using only
5 warm-up paths. Note that the IDP
converges quickly, but to a poor solu-
tion.
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Figure 4.20. The energy consumption
for 100 IDP iterations using 10 warm-
up paths. Note that the IDP slowly
converges to an optimum.
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4.3.2 Path 2

Path 2 moves from -180° to 180°, over 3.47 s. The standard trajectory consumed
15024.8 J. Applying IDP in the same fashion as for Path 1 yields the results presented
in Table A.2 in Appendix A. It was found that 100 warm-up paths and 58 IDP
iterations were required. This trajectory consumed 13990.8 J, corresponding to an
improvement of 6.9 %. The IDP trajectory and energy consumption is compared to
the standard movement in Figure 4.21 and 4.22.
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Figure 4.21. TCP speed of the IDP
trajectory compared to the standard
movement, for Path 2.
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Figure 4.22. Energy consumption
of the IDP trajectory compared to the
standard movement, for Path 2.

As for Path 1, the energy consumption for each iteration of two different IDP cases
are compared. Figure 4.23 presents a case with only three warm-up iterations.
However, for this case the IDP managed to find a good trajectory. Figure 4.24
shows a case where 100 warm-up iterations were performed. This case converges
slowly, but eventually finds a better trajectory than the previous case.
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Figure 4.23. The energy consump-
tion for 100 IDP iterations using only
3 warm-up paths. Note that the IDP
converges quickly, and actually finds a
good solution.
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Figure 4.24. The energy consumption
for 100 IDP iterations using 100 warm-
up paths. Note that the IDP slowly,
and eventually finds the best trajectory
for Path 2.



5 DISCUSSION

5.1 RobotStudio

The results from RobotStudio are mixed. Only two cases where any improvement
on the energy consumption was made. The first was for the diagonal path with a
target time of 2 s, and that was an 85 % improvement. In this case, the IDP found
a trajectory where the robot could accelerate slowly and utilise gravity to minimise
the energy consumption. With the same path, but for a target of 1 s, the robot had
to accelerate more rapidly which meant that gravity could not be used to the same
extent. The most promising trajectory from 10 runs on average consumed 0.77 %
more energy than the standard path.

The second case with a small improvement was 2 % for the shorter horizontal path.
The best trajectories for the longer horizontal path consumed on average 0.72 %
and 1 % more energy.

Generally, the random warm-up paths produced the most promising results. This is
most likely due to the warm-up paths being more relevant. In other words, they had
the all the same target time and the trajectories were similar to the IDP solution.
Whereas only a few of the warm-up trajectories had the same target time for the
triangular warm-up paths. However, a triangular warm-up produced the best IDP
trajectory for the diagonal path with a 2 s target time. Again, this is most likely
due to the IDP trajectory having a more triangular shape, instead of the parabolic
shapes for the other cases.

A comparison between the IDP with or without GC can also be carried out. Overall,
the IDP without GC obtained the best trajectories and in some cases, the diagonal
path with a target time of 1 s for example, the IDP with GC performed much worse.
One major difference between the two methods was that the IDP with GC was more
likely to either under- or overshoot the target time. To solve this, the penalty α had
to be heavily increased. Despite this though, the IDP with GC was unable to find
a trajectory for the horizontal path that came within 5 % of the target time 3.3 s,
and would complete the path much sooner instead. Another significant difference
is the computation time of the two methods, which was considerably reduced with
GC employed.

Figure 4.1 shows an example where the IDP without GC converges to a specific
trajectory. Figure 4.2 shows that the IDP with GC also converges, but instead to
a region around the optimal trajectory. This can be explained by considering the
grids. For the IDP without GC, the grids are constant and therefore the possible
trajectories are limited. It is also easier for the IDP to find the optimal solution,
since the cost function is updated by iteratively adding data at the same points
which always exist in the grid. With GC, the grids are constantly changing which
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allows the IDP to explore new trajectories, but the target speeds and the energy
consumption never stabilise. This also increases the possibility of the IDP with
GC to lock itself to a certain region, since new speeds can always be tested in that
region. It is possible that more IDP iterations would eventually yield better results
for the IDP with GC. A cost function with more points and a larger region might
also improve the results for both IDP cases.

The energy consumption for most cases was not decreased, there are a number of
reasons that could explain why this is so.

By studying the trajectories in Figure 4.3, 4.5, 4.7 and 4.9, one can observe that
they all have a shape one might expect for an optimal trajectory. However, constant
acceleration is rarely achieved. Some of the speed changes are performed with little
or no limitation on the acceleration/deceleration, the trajectories instead have a
staircase form. This leads back to the difficulties with the instruction PathAccLim.
It is unknown if constant acceleration would actually improve the results since this
has never been achieved. However, since constant acceleration is assumed in the
trajectory planning model, one might expect this to be the case.

While running the tests, it became evident that the variations of the energy mea-
surements had a significant effect on the quality of the cost function and therefore
the results. Running the same warm-up procedure twice would yield different cost
functions and therefore the results would vary. This must also be the case then when
a trajectory from the IDP is tested after each iteration. There is a chance that the
energy measurement for a tested trajectory might be higher than another trajectory
that in fact consumes more energy. If this occurs the optimal solution might never
be found.

The method employed to divide the path into segments can also be considered as a
limitation. As described in Section 3.3.2 under the preparation section, the path is
divided by inserting targets in between two other targets until the desired segment
length of 0.1 m is reached. However, by using this method, the number of segments
can only be 2n. For example, for the diagonal path with a length of 1 m, the segment
length of 0.125 m is achieved with 8 segments. But if there were instead 10 segments,
the exact desired segment length would be achieved.

5.2 ABB IRB1600

The tests from the real robots yielded positive results, but more tests are required
to determine the full potential of the algorithm. They also verified the accuracy of
RobotStudio and that the optimisation can be performed off-line.
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5.3 KUKA

It can clearly be seen from the results that there exists a great opportunity of
saving energy by altering the way a motion is carried out. This is first seen for
Path 1 where a trajectory was found which saved as much as 26.2 %. For Path
2, the energy consumption is also decreased, but only by 6.9 %. This difference in
percentage between the two trajectories probably originates from the fact that most
of the energy is saved in the beginning and the end of a trajectory. Naturally for a
longer path these regions where energy can be saved will constitute a smaller part
of the trajectory.

The question of how much initial data and how many IDP-iterations that is required
in order to obtain a satisfying result can be answered by reading the tables in
Appendix A. The results foreclose that if less than three warm-up trajectories are
used, then there is a high risk of not finding an IDP solution. It can also be seen from
Path 1 and 2 that more IDP-iterations does not always guarantee that a better result
will arise. This probably originates from the warm-up and that random weights are
used when creating the warm-up paths for the KUKA-model. The random nature
of the warm-up means that the quality of the cost function can vary, despite the
number of iterations. This can be shown by considering what happened for Path
2, where a good solution was found using only 3 warm-up paths for initiating the
cost function. Compare this to Path 1, where a case was presented with 5 warm-up
iterations which produced poor results.

When few iterations are used there is a high probability for the IDP to converge to a
value quickly as in Figure 4.19 and 4.23. As seen in Figure 4.19, an early convergence
might stabilise around a trajectory that consumes more energy than the best solution
found in another IDP run with more warm-up iterations. Therefore, to avoid this
more warm-up iterations should be executed. However just adding many simulations
will not always yield a good surface.

Observe in Figure 3.9 the energy costs, it can be seen that most of the data points
are located in one region. Since the cost function already contains a lot of points,
just adding more in the same regions will most likely not noticeably improve the
cost function. By adding more points at other regions, the cost function may be
extended to contain cheaper possibilities, from which better solutions may arise.
One way of expanding the region would be to combine the triangular warm-up with
paths from the random path generator.



6 CONCLUSION

The algorithm in several different versions have been successfully implemented with
varying results, and the objectives defined in the introduction of this project have
been accomplished.

For RobotStudio, only a few trajectories were found where the energy consumption
was improved. The results varied from a 20 % increase and a 85l% decrease of
the consumed energy. The GC method also yielded mixed results, but overall the
IDP without GC which converged to a single trajectory yielded the best results.
However, more IDP iterations may improve the GC method. One advantage of the
IDP with GC was that the computation time is significantly lower than without GC.
For this reason, it is easy to justify more iterations.

The tests on the robot in the test lab revealed positive results. In both cases
an improvement on the energy consumption was made. The tests also validated
RobotStudio’s accuracy, and proved that the optimisation process may be performed
off-line. However, further testing is required to fully appreciate the potential of the
algorithm.

The implementation for the KUKA case was successful. Only two simple paths were
tested, both gave positive results where the IDP trajectories saved 6.9 % and 26.2
% of the energy compared to a standard path. Again, further testing is required.
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7 FUTURE WORK

7.1 RobotStudio

If the project were to continue, efforts to improve the cost function would be the
first priority. This might include running more warm-up iterations and testing other
warm-up methods to build up a cost surface with a larger region and more points. To
reduce the variance of the energy measurements, every warm-up and IDP trajectory
could be tested multiple times to obtain an average which would be incorporated
into the cost function.

The second priority is to improve the method to calculate the parameters for PathAc-
cLim to achieve constant acceleration. Or try other methods to reduce the rate of
acceleration.

The method employed to divide the path can also be developed further, so that the
segment length can come closer to the desired length. Also, techniques to iteratively
adjust the segment lengths could be investigated. For example, a segment could be
split up into smaller parts where large speed differences occur. Other segments
where the speed is constant could be made longer or merged together.

The results of the IDP with GC could also be improved by a simple change. At
the moment the IDP with GC is run initially for a few iterations without GC. It
then continues with GC, using for the first iteration the final trajectory from these
initial iterations to define the centre of the grids. However, it is not certain that
the final trajectory is suitable for this task. Instead, the IDP should consider all
previous iterations, and define the centre of the grids for the iteration with the best
trajectory found so far. Thus increasing the possibility of centring itself around the
most energy efficient trajectory.
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7.2 KUKA

It would be interesting to test more trajectories, and not only ones where the robots
rotates around its base. An investigation of this kind would lead to a better under-
standing of how energy could be saved and what motions that could gain the most
from these optimisation methods. Further investigations would have been carried
out if it was not for the limited time-frame of the project.

It may be possible to improve the results, as mentioned in the discussion, by expand-
ing the cost function. This would be achieved by running more various warm-up
paths, including perhaps a combination of the random and triangular paths.

Finally, tests on a real robot would be interesting to validate the accuracy of the
KUKA model and the results found so far.
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A KUKA

A.1 Path 1

Table A.1. Simulation results from IDP Path 1

Warm-Up Iterations DP-Iteration Lowest Energy Iteration Lowest Energy Consumed Savings [%]

2 1 1 4697.3 17.3
2 10 5 4563.0 19.7
2 20 13 4482.5 21.1
2 50 error @ 25 - -
2 100 - - -
3 1 1 4779.2 15.9
3 10 8 4467.2 21.4
3 20 19 4272.2 24.8
3 50 48 4226.2 25.6
3 100 48 4226.2 25.6
5 1 1 4740.3 16.6
5 10 5 4396.4 22.6
5 20 5 4396.4 22.6
5 50 5 4396.4 22.6
5 100 5 4396.4 22.6
10 1 1 4314.8 24.1
10 10 6 4268.1 24.9
10 20 20 4248.9 25.2
10 50 20 4248.9 25.2
10 100 20 4248.9 25.2
25 1 1 4616.5 18.8
25 10 5 4196.4 26.2

25 20 5 4196.4 26.2
25 50 5 4196.4 26.2
25 100 5 4196.4 26.2
50 1 1 4276.4 24.8
50 10 7 4235.5 25.5
50 20 11 4234.8 25.5
50 50 32 4204.3 26.0
50 100 32 4204.3 26.0
100 1 1 4286.9 24.6
100 10 6 4237.5 25.5
100 20 6 4237.5 25.5
100 50 42 4223.5 25.7
100 100 42 4223.5 25.7

47



48 Chapter A KUKA

A.2 Path 2

Table A.2. Simulation results from IDP path 2

Warm-Up Iterations DP-Iteration Best Energy Iteration Energy Consumed Savings [%]

2 1 1 14453.1 3.8
2 10 error @ 9 - -
2 20 - - -
2 50 - - -
2 100 - - -
3 1 1 14930.0 0.6
3 10 3 14110.0 6.1
3 20 15 14043.0 6.5
3 50 21 14022.0 6.7
3 100 71 14021.0 6.7
5 1 1 14316.0 4.7
5 10 2 14187.0 5.6
5 20 2 14187.0 5.6
5 50 2 14187.0 5.6
5 100 2 14187.0 5.6
10 1 1 14342.1 4.5
10 10 10 14233.1 5.2
10 20 19 14158.9 5.8
10 50 24 14118.3 6.0
10 100 24 14118.3 6.0
25 1 1 14258.6 5.1
25 10 8 14124.4 6.0
25 20 14 14050.8 6.5
25 50 25 14032.3 6.6
25 100 25 14032.3 6.6
50 1 1 14748.0 1.8
50 10 9 14104.5 6.1
50 20 14 14058.4 6.4
50 50 46 14018.2 6.7
50 100 46 14018.2 6.7
100 1 1 14621.4 2.7
100 10 5 14081.7 6.3
100 20 20 14056.8 6.4
100 50 29 14029.5 6.6
100 100 58 13990.8 6.9


