

Smart Grid Adaption of
Church Heat
Master’s thesis in Department of Computer Science and Engineering

Jesper Karlberg
Theodor Åstrand

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY AND UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2017

Master’s thesis 2017

Smart Grid Adaption of Church Heat

Jesper Karlberg
Theodor Åstrand

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Gothenburg, Sweden 2017

Smart Grid Adaption of Church Heat
Jesper Karlberg
Theodor Åstrand

© Jesper Karlberg, 2017.
© Theodor Åstrand, 2017.

Industry supervisor: Marcus Larsson, i3tex AB
Supervisor: Birgit Grohe, Department of Computer Science and Engineering
Supervisor: Stefan Lemurell, Department of Mathematical Sciences
Examiner: Peter Damaschke, Department of Computer Science and Engineering

Master’s Thesis 2017
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: The church of Segerstad, Karlstad, Sweden.

Typeset in LATEX
Gothenburg, Sweden 2017

iv

Smart Grid Adaption of Church Heat
Jesper Karlberg
Theodor Åstrand
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
The Internet is growing in a rapid pace and, as a natural result of this development,
more aspects of daily life have relocated to the Internet. The Internet of Things,
IoT, is a way of connecting devices over the Internet, enabling them to collect and
distribute data. Smart grids are one of the primary applications of IoT and, in
the past few years, comprehensive research has been conducted on smart grid heat
management systems. This thesis proposes a smart grid heat management system
based on a model for the temperature change and a graph model, together with a
shortest path algorithm in order to achieve financial savings. The proposed model
for temperature and the graph model make use of energy prices and weather fore-
casts, provided by Nord Pool and SMHI, respectively.

The system is evaluated and analyzed in terms of financial savings in relation to the
intermittent heating method used today, as well as in terms of performance, as it
will be deployed on a microprocessor. The performance is evaluated by comparing
memory usage and execution time by using A* search and Dijkstra’s algorithm. The
findings of the thesis suggests that it is possible to create a smart grid heat manage-
ment system and achieve a decrease in energy costs, in relation to the intermittent
heating method, of approximately 2.5%.

Keywords: Smart grid, Smart heating system, Shortest path algorithm, A* search
algorithm, Dijkstra’s algorithm, Internet of Things

v

Acknowledgements
We would like to thank Marcus Larsson, our supervisor at i3tex AB for his assis-
tance throughout the entire project.

In addition, we would like to thank Fredrik Hallberg and Andrejs Bondarevs at i3tex
AB for providing us with essential system components as well as insight into the
already existing system.

Furthermore, we want to convey our thanks to our supervisors at Chalmers Univer-
sity of Technology, Birgit Grohe and Stefan Lemurell for their guidance and feedback
throughout the project.

Finally, we would like to direct a thanks to our examiner Peter Damaschke for his
thorough feedback throughout the entire project.

Jesper Karlberg and Theodor Åstrand, Gothenburg, 2017

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Problem description . 1

1.1.1 System architecture . 2
1.2 Related work . 3
1.3 Scope . 4
1.4 Thesis outline . 5

2 Background 7
2.1 Graph definitions . 7
2.2 Shortest path algorithms . 7

2.2.1 Dijkstra’s algorithm . 8
2.2.2 A* search algorithm . 10

2.3 Transferred quantity of heat . 11
2.3.1 Interpolation and extrapolation 11

2.4 Energy market . 12
2.5 Environment . 14

3 Models 17
3.1 Temperature model . 17
3.2 Graph model . 18

4 Implementation 23
4.1 Gathering third party data . 23

4.1.1 SMHI Open Data API . 23
4.1.2 Nord Pool . 24

4.2 Calibration of temperature data . 24
4.2.1 Interpolation . 24
4.2.2 Extrapolation . 26

4.3 Graph . 27
4.4 Finding the shortest path with A* search 28

4.4.1 Heuristic function . 29
4.5 Scheduler . 30

ix

Contents

5 Results 33
5.1 Financial savings . 33

5.1.1 Maintaining a fixed temperature with a lower boundary of 14
°C . 34

5.1.2 Maintaining a fixed temperature with a lower boundary of
14.5 °C . 36

5.1.3 Maintaining a fixed temperature with various graph resolutions 38
5.1.4 Heating to a fixed temperature 40

5.2 Performance . 42
5.2.1 Building a graph with various resolutions 42
5.2.2 Dijkstra’s Algorithm compared to A* search 42

6 Discussion 45
6.1 Financial savings . 45

6.1.1 Maintaining a fixed temperature 46
6.1.2 Heating to a fixed temperature 46

6.2 Performance . 47
6.3 Accuracy of SMHI weather forecasts 48
6.4 Future work . 48

6.4.1 Power resolution . 48
6.4.2 A path could not be found with A* search 49

6.5 Credibility of result . 49

7 Conclusion 51

Bibliography 53

A Appendix 1 I

x

List of Figures

1.1 System architecture. 3

2.1 Example of a connected and directed graph. 9
2.2 Graph 2.1 with substituted weights according to Equation 2.1. 11
2.3 A map showing the flow of energy across energy zones. Source: [6] . . 12
2.4 A map showing the areas and the energy price in EUR/MWh for each

area. Source: [6] . 13
2.5 Histogram showing the difference in temperature between SMHI tem-

peratures and temperatures measured at the office of i3tex AB. . . . 15

3.1 A graph that demonstrates the relationship of vertices and edges in
the context of the system. 19

3.2 A graph that demonstrates the relationship of vertices and edges in
the context of the system when the graph resolution has been set to
30 minutes. 19

3.3 A realistic graph that demonstrates the relationship of vertices and
edges in the context of the system. 21

5.1 Comparison of heating strategies, maintaining a temperature of 15 °C
with a lower boundary of 14 °C and a graph resolution of 60 minutes. 34

5.2 Showing when the heating is on or off using the intermittent heating
method, maintaining a temperature of 15 °C, with a lower boundary
of 14 °C. 35

5.3 Showing when the heating is on or off using the A* heating method,
maintaining a temperature of 15 °C, with a lower boundary of 14 °C
and a graph resolution of 60 minutes. 35

5.4 Comparison of heating strategies, maintaining a temperature of 15 °C
with a lower boundary of 14.5 °C and a graph resolution of 60 minutes. 36

5.5 Showing when the heating is on or off using the intermittent heating
method, maintaining a temperature of 15 °C, with a lower boundary
of 14.5 °C. 37

5.6 Showing when the heating is on or off using the A* heating method,
maintaining a temperature of 15 °C, with a lower boundary of 14.5
°C and a graph resolution of 60 minutes. 37

5.7 Comparison of heating with the A* heating method using a graph
resolution of 30 minutes versus a graph resolution of 60 minutes. . . . 39

xi

List of Figures

5.8 Comparison of heating with the A* heating method using a graph
resolution of 20 minutes versus a graph resolution of 30 minutes. . . . 39

5.9 Comparison of heating strategies, when increasing the temperature
from 15 °C to 20 °C, with a graph resolution of 60 minutes. 40

5.10 Showing when the heating is on or off using the intermittent heating
method, increasing the temperature from 15 °C to 20 °C. 41

5.11 Showing when the heating is on or off using the A* heating method,
increasing the temperature from 15 °C to 20 °C and a graph resolution
of 60 minutes. 41

xii

List of Tables

2.1 Initializing the D array for all vertices. 8
2.2 The D array after vertex s is settled. 9
2.3 The D array after vertices s and a are settled. 9
2.4 The D array after vertices s, a, b and t are settled. 9
2.5 A heuristic look-up table with optimal values. 10

4.1 Measured temperature change values, showing how the temperature
increases, Temp. change up, and decreases, Temp. change down, in
relation to the difference in temperature inside and outside the church. 25

4.2 Interpolated and measured temperature change values, showing how
the temperature increases, Temp. change up, and decreases, Temp.
change down, in relation to the difference in temperature in side and
outside the church. 25

4.3 Measured temperature change values, showing how the temperature
increases, Temp. change up, and decreases, Temp. change down, in
relation to the difference in temperature inside and outside the church. 26

4.4 Extrapolated and measured temperature change values, showing how
the temperature increases, Temp. change up, and decreases, Temp.
change down, in relation to the difference in temperature inside and
outside the church. 27

5.1 Temperature data, showing how the temperature increases, Temp.
change up, and decreases, Temp. change down, in relation to the
difference in temperature inside and outside the church, gathered from
Tunabergs kyrka. 33

5.2 The performance of building a graph using various resolutions. 42
5.3 The performance of finding the shortest path on a graph using Dijk-

stra’s algorithm and A* search. 43

6.1 Factors of the depth of a graph as the graph resolution increases. . . 47
6.2 The factor of edges created due to various power resolutions. 49

A.1 A sample of temperatures collected from the SMHI Open Data API
and temperatures measured at the office of i3tex AB as well as the
difference between them. III

xiii

1
Introduction

Smart Grid Adaption of Church Heat is a master’s thesis performed at Chalmers
University of Technology in collaboration with i3tex AB. The purpose of the thesis
is to answer the following question: is it feasible to create an algorithm based on a
smart grid adaption of church heat that, in terms of financial savings, outperforms
the intermittent heating method used today?

1.1 Problem description

The Internet is growing in a rapid pace and, as a natural result of this development,
more aspects of daily life have been relocated to the Internet. The Internet of Things,
IoT, is a way of connecting devices over the Internet, enabling them to collect and
distribute data. IoT has a vast number of possible applications, for instance in the
healthcare domain, smart environment, transportation and logistics domain [1].

Smart grid is one of the primary applications of IoT and, in recent years, extensive
research on this topic has been published [2]–[4]. Smart grids are used to distribute
energy in order to take advantage of excess energy, since areas produce and consume
different amounts of energy at various times [2]. One of the more interesting aspects
of smart grids is dynamic pricing, the prices of energy commonly vary during the
day, and during a cold day or in the afternoon the energy price is at its peak [5].
The intention of this project is to seize the opportunity when the energy price is at
its lowest, in order to create a system that has dynamic energy prices in mind.

As of today, churches commonly use intermittent heating - which means that a
church is heated for a short period of time in association to events, otherwise the
church is either unheated or kept at a low temperature. The churches may contain
antique items, such as paintings and sculptures, which are easily harmed by a high
level of humidity in the air. A condition that can create high level of humidity and
condensation is when the temperature in the church is too low. A simple solution
to this problem is to always have the heat on, but this is not sustainable since it
is associated with high energy costs. As a result, there is a demand for a system
which regulates the temperature as follows: if a church is not in use, the temperature

1

1. Introduction

should be low, but not low enough to damage the interior of the church. Given a
date on which the church is to be used, the church should be heated to a given
temperature with energy prices in mind.

The idea of the thesis is to create, analyze and evaluate an algorithm that makes
use of energy prices and weather forecasts, provided by Nord Pool and the Swedish
Meteorological and Hydrological Institute, SMHI, respectively. Nord Pool is Eu-
rope’s leading power markets and is offering both day-ahead and intraday energy
prices [6]. The algorithm is analyzed in terms of its performance, both by using A*
search and Dijkstra’s algorithm, since it is important that the algorithm is not too
computationally heavy, as it will be deployed on a microprocessor. The main part
of the evaluation consists of evaluating the financial savings by using the algorithm,
in comparison to the intermittent heating method.

1.1.1 System architecture

The system to be developed is a further development of an already existing system
owned by i3tex AB [7]. The architecture of the system to be developed is depicted
in Figure 1.1. Sensors are strategically spread across a church and are organized
in a wireless mesh topology, which means that all sensors in a network collaborate
on collecting and exchanging data [8]. The wireless sensor network communicates
with a coordinator over a 2.4 GHz ZigBee protocol [9]. The coordinator collects
and forwards data measurements received from the sensors to a server over a USB
interface.

The server stores the data measurements in both an external and a local database.
In addition, the server requests weather forecasts and energy prices from SMHI and
Nord Pool respectively, which is further described in Chapter 4.1. In a web interface
an end user can view past temperature measurements, initialize values for how the
temperature changes for various differences in temperatures inside and outside the
church, but more importantly configure the lowest allowed temperature.

Based on energy prices, weather forecasts and temperature measurements, the al-
gorithm determines whether to activate the heating or not. The binary decision is
thereafter stored in the local database. The coordinator frequently reads the binary
decision from the local database and forwards it to a contactor. The contactor is
a control switch, which is used for switching an electrical power circuit, that either
closes or opens the circuit to the heating.

2

1. Introduction

Figure 1.1: System architecture.

1.2 Related work

In the past few years, comprehensive research has been conducted on smart grid
heat management systems [5], [10]–[12]. The idea of a smart grid heat management
system is therefore not unexplored, but the way that the problem is tackled differ
remarkably.

The authors of [5] present a smart Heating, Ventilation and Air-Conditioning, HVAC,
control where smart pricing and user comfort are taken into account. This is done
by using an energy cost function, specified by the energy provider, that depends
on a smart pricing tariff. In [5], there is a distinct focus on preserving a steady
temperature and the authors do not consider changing the temperature when the
facility is empty.

Another study, where a HVAC system is used, is [10], where a simulation-optimization
approach is used for the effective energy management. The authors of [10] achieve
immediate energy savings by resetting operating parameters for the air and water
sidesystems with respect to dynamic cooling loads and changing weather conditions.
In contrast to [10], this thesis aims to achieve financial savings rather than energy
efficiency. Additionally, while [10] aims to produce a result by changing parameters
of system components, this thesis aims to further develop an already existing system
which relies on external data to reach desired result.

The authors of [11] presents a HVAC model that can be applied in the scheduling
problem of a Home Energy Management System, HEMS. The HVAC model consid-
ers customer convenience and parameters that are related to indoor heat capacity,
and heat dissipation is estimated statistically from historical data. However, the
HVAC model does not operate when a home is unoccupied in order to minimize the

3

1. Introduction

overall energy cost. In contrast to [11], the system considered in this thesis includes
requirements when a facility is not in use which demands that the system operates
at all times.

In [12], a two-stage load control strategy for residential HVAC systems is presented.
The first stage consists of mappings between electricity price ranges and temperature
set points, for all hours of the day, within a predefined thermal comfort interval. The
second stage improves the financial and energy efficiency by using pre-cooling and
pre-floating procedures. In the model presented by the authors of [12], a discomfort
tolerance index paves the way for the trade-off between electricity payment and
the thermal discomfort. This index specifies the resident’s tolerance to thermal
discomfort, where a higher index allows for a higher thermal discomfort. In similarity
to [12], this thesis includes a comfort constraint when residents are present at the
facility but unlike [12], this constraint is removed when the facility is empty.

1.3 Scope

The area of smart grid heat management systems is well explored and there are a
vast number of implementations in various settings, thus a delimitation of this thesis
is motivated.

The authors of [5], [10]–[12] are using HVAC systems, in this thesis both ventilation
and air-conditioning are out of scope. Instead, the algorithm will strictly focus on
regulating the temperature in regard to dynamic pricing. In contrast to [5], the
system will not depend upon an energy cost function, instead energy prices are
gathered directly from the energy market.

The system has a specific application, namely facilities that are not used in a regular
fashion such as: churches and holiday cottages. The system can be applied to an
ordinary house, but it will be troublesome since there is a requirement to specify
when the house will be used.

The system relies on data gathered from Nord Pool [6] and SMHI [13] and is therefore
limited to the availability of such data. New data from Nord Pool is commonly
available for the next day about 11 hours in advance, resulting in resources being
available for the following 11-35 hours. Data from SMHI is usually available for
every hour the following 72 hours.

This thesis strictly focuses on an implementation of a smart grid heat management
system based on a shortest path algorithm, using A* search. Another shortest path
algorithm, Dijkstra’s algorithm, will be used in order to evaluate performance of the
system.

4

1. Introduction

1.4 Thesis outline

Chapter 2 begins with an analysis of the underlying theory needed to fully grasp
the thesis. First, a short introduction of graphs is displayed in Section 2.1, followed
by an explanation of shortest path algorithms in Section 2.2. Thereafter, how the
temperature of an object changes is described in Section 2.3 and spot prices and
smart grids are explained in Section 2.4. Chapter 2 ends with an analysis of the
potential environmental impact of the system in Section 2.5.

Chapter 3 describes how the underlying theory was used in order to create a graph
model and a temperature model used in the system.

Chapter 4 proceeds to show how the system was implemented, beginning with Sec-
tion 4.1 displaying what data, from external sources, was needed to implement the
functionality of the system. This is followed by an explanation of how temperature
data was collected and manipulated in order to predict how the temperature changes
in the facility, shown in Section 4.2. Further, Section 4.3 shows how the gathered
data was used to create a graph that includes the potential ways of reaching a target
temperature. Thereafter, Section 4.4 introduces how a shortest path algorithm was
used to find the most economically beneficial path through this graph. This chap-
ter will, in Section 4.5, end by an explanation of how the system used a so called
scheduler to keep the system alive and updated.

The thesis then proceeds to show the findings of the project, in Chapter 5. The
chapter includes potential financial savings of using the system as well as the per-
formance of the system.

The result of using the system with regards to financial savings and performance
is discussed in Section 6.1 and 6.2, respectively. Additionally, the accuracy of the
weather forecasts gathered from SMHI is discussed in Section 6.3 and a review of
potential improvements of the system is examined in Section 6.4. Furthermore, the
credibility of the result is discussed in Section 6.5.

Finally, the outcome of the project is concluded in Chapter 7.

5

1. Introduction

6

2
Background

This chapter aims to explain the underlying theory necessary for the project and
its implementation. Initially, a brief review of graph theory and two shortest path
algorithms are presented. Thereafter, the underlying theory of how an object emits
heat is explained, as well as interpolation and extrapolation which are used to gen-
erate new data points from a data set of known data points. Then, the chapter
will describe how the system is affected by electricity price changes, accuracy in
temperature measurements and what impact the system has on the environment.

2.1 Graph definitions

A graph G = (V,E) consists of a collection of vertices V , and a collection of edges
E. An edge (u, v) is a connection between two vertices u and v. A graph contains
two distinguished vertices that are called source and target. A graph can either be
directed or undirected, in a directed graph an edge (u, v) has an unique direction
from vertex u to vertex v. In an undirected graph, an edge does not have an unique
direction, thus the edge (u, v) is identical to the edge (v, u). In addition, an edge
has a weight w(u, v), specifying the cost of traversing from vertex u to vertex v.

A path < u0, ..., ui, ui+1, ..., un > consists of vertices, connected by edges (ui, ui+1)
i = 0, 1, ..., n − 1, from the source vertex s = u0 to the target vertex t = un. The
depth of a vertex is defined as the number of edges on the path, containing the least
number of edges, from the source vertex to the vertex. The source vertex is said to
have depth zero. The total weight of all edges on a path is called the weight of the
path [14].

2.2 Shortest path algorithms

Given a directed graph G = (V,E), the shortest path from one vertex to another
vertex is a path such that there is no other path in the graph that has a lower weight
between the vertices. There are numerous algorithms to find the shortest path

7

2. Background

between two vertices. In this thesis, two shortest path algorithms are highlighted:
Dijkstra’s algorithm and the A* search algorithm.

2.2.1 Dijkstra’s algorithm

Dijkstra’s algorithm can be used to find the shortest path between a source vertex
s and every other vertex in a graph [14], [15]. Dijkstra’s algorithm begins at the
source vertex and explores adjacent vertices until the shortest path to the target
vertex t is discovered. A vertex is said to be settled, when the shortest path from
the source vertex to the vertex has been discovered. The algorithm is only applicable
if all w(v, u) ≥ 0, thus no edges can have a negative weight.

The authors of [14] explains Dijkstra’s algorithm as follows:

1. The algorithm begins by initializing a tentative distance for all vertices in an
array D. For all vertices, except the source vertex, a value of ∞ is assigned.
The source vertex is assigned the value of zero.

2. Then, the algorithm proceeds by selecting the source vertex s as the current
vertex c.

3. The algorithm then considers each adjacent vertex v of the current vertex c and
computes a new tentative distance to v, in the following manner: D[c]+w(c, v).
Thereafter, the current value of D[v] and the newly computed tentative dis-
tance to vertex v is compared, and the lowest value of the two is assigned to
D[v].

4. Thereafter, the vertex u with the lowest tentative distance in the array D is
chosen as the current vertex c.

5. If the shortest path to the target vertex u has been found, the algorithm
terminates. Otherwise the algorithm proceeds at step three.

The shortest path can be found by traversing each vertex’s predecessor, if each
vertex stores its predecessor, from the target vertex to the source vertex.

An example of a graph that Dijkstra’s algorithm can be applied on is shown in
Figure 2.1. As mentioned above, the algorithm proceeds by initializing the array D,
as show in Table 2.1.

D[s] 0
D[a] ∞
D[b] ∞
D[t] ∞

Table 2.1: Initializing the D array for all vertices.

8

2. Background

Then, the source vertex s is considered settled and chosen as the current vertex c.
Thereafter, a new distance to all adjacent vertices of vertex s is calculated, as shown
in Table 2.2

D[s] 0
D[a] 1
D[b] 2
D[t] ∞

Table 2.2: The D array after vertex s is settled.

The vertex a is now considered as the current vertex c. Thus, the distance to all
adjacent vertices of vertex a is calculated, as shown in Table 2.3

D[s] 0
D[a] 1
D[b] 2
D[t] 5

Table 2.3: The D array after vertices s and a are settled.

Lastly, vertex b is considered settled and chosen as the current vertex c. A new
distance to the target vertex can now be calculated, as can be seen in Table 2.4.

D[s] 0
D[a] 1
D[b] 2
D[t] 4

Table 2.4: The D array after vertices s, a, b and t are settled.

Finally all vertices are settled, and the resulting shortest path is < s, b, t > with a
weight of four on the path. Note that the vertices were expanded in the following
order < s, a, b, t >, which will be used to compare Dijkstra’s algorithm and A*
search in Section 2.2.2.

Figure 2.1: Example of a connected and directed graph.

9

2. Background

2.2.2 A* search algorithm

One of the most commonly used heuristic search algorithms is the A* search algo-
rithm [16] and much like Dijkstra’s algorithm, the A* search algorithm can be used
to find the shortest path between two vertices.

In contrast to Dijkstra’s algorithm, A* search uses a heuristic function, h(v), in
order to consider the vertex that is most likely to be a part of the shortest path
[14]. A heuristic function estimates the weight of the shortest path between vertex
v and the target vertex t. The heuristic function is unique for each problem, and a
requirement is that the heuristic function is admissible in order to guarantee that
A* search finds the shortest path. An admissible heuristic function is a non-negative
underestimate of the cost to reach the target vertex.

The A* search algorithm and Dijkstra’s algorithm are similar, in fact, according
to the authors of [14], the A* search algorithm is equivalent to running Dijkstra’s
algorithm with the edge weights substituted according to Equation 2.1.

w′(u, v)← w(u, v)− h(u) + h(v) (2.1)

In Equation 2.1: w′(u, v) represents the new cost of the edge after applying the
heuristic function. Therefore, Dijkstra’s algorithm can be seen as a special case of
the A* search algorithm with the result of the heuristic function being zero.

The example provided in Section 2.2.1 can now be revisited in order to compare
Dijkstra’s algorithm and A* search. As mentioned above, A* search relies on a
heuristic function in order to expand vertices in a more efficient manner. For sim-
plicity, a heuristic look-up table with optimal values, with regards to Figure 2.1, is
assumed, as shown in Table 2.5. The weights in Figure 2.1, can now be substituted
according to Equation 2.1 using the heuristic look-up table in Table 2.5 into a new
graph, depicted in Figure 2.2. By applying Dijkstra’s algorithm on Figure 2.2 the
resulting path is < s, b, t > with a weight on the path of four and the vertices were
expanded in the following order < s, b, t >. Thus, the shortest path was found with
A* search even though less vertices were expanded with A* search compared to
Dijkstra’s algorithm.

h(s) 4
h(a) 4
h(b) 2
h(t) 0

Table 2.5: A heuristic look-up table with optimal values.

10

2. Background

Figure 2.2: Graph 2.1 with substituted weights according to Equation 2.1.

2.3 Transferred quantity of heat

How an object emits heat can be determined by examining attributes of the object
such as: area and heat transfer coefficient. In addition, the emitted heat also depends
on external influences such as: the temperature difference between the object and
its surroundings, as well as the time lapse of the process according to [17], as shown
in Equation 2.2.

∆Q = α · A · (T − TM) ·∆t (2.2)

In Equation 2.2: ∆Q is the transferred quantity of heat from the object, α is the
heat transfer coefficient that specifies the ability of a medium to transfer heat from
the object, A is the contact surface of the object, T is the temperature of the object,
TM is the temperature of the medium and ∆t is the time interval.

Since α and A are constant for a specific object, the transferred quantity of heat will
change linearly in correlation to the difference in temperature between the object
and its surroundings per ∆t. As a result, less quantity of heat will emit from the
object and less energy will be required to increase the temperature of the object at
a lower temperature difference.

2.3.1 Interpolation and extrapolation

When a data set contains insufficient data, interpolation can be used to estimate the
missing values between already known values. If such values are linear in relation
to each other, linear interpolation can be used, as shown in Equation 2.3.

yi = yb · (xi − xa)− ya · (xi − xb)
xb − xa

(2.3)

Values can be estimated using this equation if xa < xi < xb and ya and yb are values
corresponding to xa and xb respectively and xi is the value for which yi should be

11

2. Background

calculated. If the values of xa, xb, ya and yb are known, interpolation can be used
to calculate an estimation of yi corresponding to a chosen value for xi.

In contrast to interpolation, extrapolation is used to estimate values outside the
already known interval. Values can be estimated for yi using Equation 2.3 in the
same manner as interpolation if xi < xa < xb or xa < xb < xi

2.4 Energy market

Energy distribution has of recent years made it possible to trade energy with sur-
rounding countries. Smart grids takes advantage of these opportunities to create
distributed power grids where residual energy is transferred and used where addi-
tional energy is needed [18]. This has allowed for international power markets, such
as Nord Pool, to form. Figure 2.3 shows how energy is bought and sold across energy
zones and country borders.

Figure 2.3: A map showing the flow of energy across energy zones. Source: [6]

Spot prices in the energy market are prices of energy for a specific energy zone [19],
shown in Figure 2.4. A country can be divided into several energy zones and the
energy price for each zone differ depending on supply and demand. Furthermore, the
energy prices within a zone differ throughout the day due to the same reason, which
results in lower prices of energy when the relation between production of energy and
consumption of energy is beneficial. This makes it more profitable to use energy

12

2. Background

during certain times of day compared to others.

The price of electricity is, as mentioned above, determined by the relation between
supply and demand [6]. As a result, the price of electricity will be high when
the electricity consumption is high as well as when the supply of electricity is low.
According to [20], the price of electricity commonly differ 100% over an hour. An
example provided by [20] shows an 606% price increase from 141 Nkr/MWh to 993
Nkr/MWh between 7 a.m. and 8 a.m..

Figure 2.4: A map showing the areas and the energy price in EUR/MWh for
each area. Source: [6]

13

2. Background

2.5 Environment

The system will be developed with focus on financial savings, rather than energy
efficiency. As a result, the system will potentially use more energy than the in-
termittent heating method currently in use. An argument can be made that the
system, therefore, will contribute to an increased negative environmental impact
[21]. However, the amount of energy used does not independently determine the en-
vironmental impact, instead it depends upon several factors, for instance the origin
of the energy.

In a society where an increased portion of the electricity used comes from renewable
sources, the energy supply will be less trivial to manage, since energy from such
sources can only be generated when conditions are sufficient. For instance, a solar
power plant can not generate electricity during the night and it generates substan-
tially less electricity when the sun is blocked by clouds. As a result, the price of
electricity increase or decrease when the conditions to accommodate the renewable
energy plants are beneficial or non-beneficial, respectively. The authors of [22] show
that the price of energy decreased by 0.1% when the power generated from wind
increased by 1% in MWh per day. In general, energy is difficult to preserve and
is instead produced to satisfy the current energy consumption. However, energy
from renewable sources such as wind, solar and wave are in general not produced
by demand, instead it is produced when the respective energy source is available.
Therefore, it is important to use renewable energy when the supply is high. When
renewable energy makes up a comprehensive part of the total electricity produced,
it will be difficult to produce energy in correlation to the demand, which will lead
to more excess electricity [23]. In fact, negative electricity prices appeared on the
European Energy Exchange in October 2008, because a lot of residual energy was
generated from wind power [24]. Since the developed system will use electricity
when the energy price is at its lowest, which is also when the most excess energy
is available, a more substantial part of the energy used will come from renewable
energy sources which will result in a less negative impact on the environment [25].

The temperature at a specific location is influenced by local conditions such as: soil
surface, if the location is in a slope and on surrounding objects such as: building,
trees and mountains [26]. It is therefore inaccurate to assume that weather forecasts
from a meteorological institute are accurate, even for the current time, since the
location where the temperature was measured and the location of a church can be
significantly different. Figure 2.5 shows how the temperature measured outside the
Gothenburg office of i3tex AB differed in comparison to the temperature collected
from the closest weather station. As displayed, the main part of the sampled data
is located between 0 °C and -2 °C, indicating that the temperatures collected from
the weather station are slightly higher. This supports the claims made by [26] that
local conditions influences the actual temperature at a location. The data used in
Figure 2.5 can be found in Appendix A.

14

2. Background

Figure 2.5: Histogram showing the difference in temperature between SMHI
temperatures and temperatures measured at the office of i3tex AB.

15

2. Background

16

3
Models

This chapter begins with an explanation of how the transferred quantity of heat,
mentioned in Section 2.3, is used to create a model for how the temperature changes
in a church over time. Thereafter, an explanation of how a graph model was built
using the temperature model in combination with energy prices is presented.

3.1 Temperature model

According to [5], the transferred quantity of heat from an object is linear to the dif-
ference in temperature between the object and its surroundings, at least for shorter
periods of time. As shown in Section 2.3, it is therefore relevant to know how the
temperature in a church changes in relation to the temperature inside and outside
the church. How the temperature changes for such temperature differences can then
be used when creating vertices in a graph in accordance to Equation 3.1.

Tv = Tu + ∆T (3.1)

In Equation 3.1: Tv is the temperature of vertex v, Tu is the temperature of vertex
u, a predecessor of vertex v, and ∆T is the temperature change for the difference in
temperature inside and outside the church for the concerned time.

The temperature inside a church will change depending on the size of the church
and the church’s capacity to preserve heat. It is therefore not possible to create an
accurate model for all churches without first introducing building-specific parame-
ters. Since no such parameters are known, changes in temperature inside a church
will be measured continuously while the system is running. When a number of val-
ues have been measured, interpolation and extrapolation, described in Section 2.3.1,
are used to obtain a higher frequency and a broader interval of values for how the
temperature changes in correlation to differences in temperature inside and outside
the church.

As previously stated, the change in temperature is dependent on the temperature

17

3. Models

difference inside and outside the church. Consequently, to estimate the temperature
of the next vertex, in addition to the temperature in the current vertex, the outside
temperature is needed. This temperature is gathered from SMHI’s Open Data API.
As mentioned in Section 2.5, the temperature surrounding the church is dependent
on local conditions and may not be the same as those collected at a meteorological
institute. These collected values will therefore be adjusted according to previous
errors. The correction is based on the mean error, which is an average of the
difference in temperature between the values measured at the church and those
collected from the meteorological institute.

3.2 Graph model

A highly simplified example of a graph is demonstrated in Figure 3.1, where each
vertex represents a specific temperature in some point of time. The edge Eu,v from
vertex u to vertex v represents the price of increasing or decreasing the temperature
from vertex u to vertex v. As can be seen in Figure 3.1, the time interval between
each vertex is equal and will depend on the update frequency of the energy prices.
Consequently, the system would either have the heating on or off for one full hour,
potentially resulting in vast temperature changes over said time. To avoid such
temperature changes and to allow for a higher number of possible solutions to reach
the targeted temperature, the time between vertices can be set to a shorter time
interval, in the future referred to as graph resolution. The resolution can be set
to any number of minutes, less than 60 and which divides 60. The reason why the
resolution must divide 60 evenly is to ensure that every edge contains only one energy
price. Such a resolution allows the graph to decrease the time between vertices to,
for instance, 30 minutes, as shown in Figure 3.2.

The temperature of the source vertex, s, will be measured from sensors that are
placed inside a church. In order to calculate the temperatures that can be reached
from vertex s, the temperature model described in Section 3.1 will be used. As can
be seen in Figure 3.1, there are multiple paths from vertex s to vertex t, an example
of such a path is thickened. When the church is not in use, the shortest path will be
recalculated within a predefined time interval to take advantage of recently updated
energy prices and weather forecasts.

18

3. Models

Figure 3.1: A graph that demonstrates the relationship of vertices and edges in
the context of the system.

Figure 3.2: A graph that demonstrates the relationship of vertices and edges in
the context of the system when the graph resolution has been set to 30 minutes.

Unlike what is shown in Figure 3.1, the temperature for longer periods of time does
not increase and decrease linearly but can instead change irregularly depending on
external influences. According to [17], the only parameter, not related to the church,
influencing the released quantity of heat is the difference in temperature between two
substances, in this case the temperature difference inside and outside the church. If

19

3. Models

the temperature outside the church were to remain constant, and the temperature
inside the church increased or decreased over time, the released quantity of heat
would increase or decrease respectively, in relation to the difference in temperature
[17]. Therefore, the assumption that the gain and decay in temperature is equivalent
for different temperatures, as can be seen in Figure 3.1, is not valid.

Accordingly, the graph to be used in the shortest path algorithm will look more
similar to the graph shown in Figure 3.3, where the change in temperature will
depend on the difference in temperature inside and outside the church. In addition,
over time some paths in the graph could potentially reach unwanted temperatures,
for example temperatures that are too low and could be harmful for the interior of
the church. In order to resolve this issue and to avoid creating such vertices, the
graph contains a lower boundary. Furthermore, the model includes a variable for
user comfort, meaning that the targeted temperature, when the facility is used, no
longer is a fixed temperature but rather a temperature range. As can be seen in
Figure 3.3, each vertex has two outgoing edges, thus the number of vertices can be
calculated as follows, where d is the depth of the graph:

|Vd| =

0, if d < 0.
2d − 1, otherwise.

(3.2)

In correlation with Equation 3.2, the number of edges can be calculated as follows:

|Ed| =

0, if d ≤ 0.
|Vd| − 1, otherwise.

(3.3)

According to Equation 3.2 and Equation 3.3 the number of vertices and edges grow
exponentially. Consider a graph, G1, with d = 36, then |Vd| = 68719476735. This is,
by all means, not sustainable on a small memory space. Instead, the temperatures
are rounded to one decimal and therefore multiple vertices with negligible differences
in temperature coincide. However, if the graph resolution is increased or if the
church’s capacity to increase the temperature is inadequate, then the number of
decimals needs to be increased in order to avoid rounding errors. Multiple examples
of coinciding vertices can be seen in Figure 3.3 and are highlighted by a dashed
circle, these vertices are merged to create a representative vertex.

If we consider another graph, G2, with d = 36, that makes use of coinciding vertices
and has a lower temperature boundary of 15 °C and an upper temperature boundary
of 25 °C, then at most 100 vertices are created at each level of depth since 25−15

0.1 =
100. Then the graph can at most consist of 3600 vertices, since 100 × 36 = 3600,
which implies that G2 is considerably more memory space efficient than G1.

20

3. Models

Figure 3.3: A realistic graph that demonstrates the relationship of vertices and
edges in the context of the system.

21

3. Models

22

4
Implementation

This chapter begins by explaining how weather forecasts and energy prices were
collected and used when implementing the models, described in Section 3.1 and
3.2. Thereafter, the chapter provides a review of how the graph and the shortest
path algorithms were implemented, followed by an explanation of how different
components of the system were used to provide a lasting system functionality.

4.1 Gathering third party data

In order for the system to function in accordance with requirements requested by
the main stakeholder, i3tex AB, data sets from several third party sources were
required. These data sets are collected by two parsers and are used in the algorithm
to decide on when to heat the church.

4.1.1 SMHI Open Data API

As mentioned in Chapter 3.2, weather forecasts, gathered from the SMHI Open Data
API, are used to collect the temperature in close proximity to a church. In particular,
the SMHI Open Data Meteorological Forecasts API is used and it contains weather
forecasts, for every whole hour, for the following three days. The weather forecasts
are generally updated six times a day and are based on a number of forecast models,
statistical adjustments and manual edits [13].

To request the SMHI Open Data Meteorological Forecasts API, the longitude and
latitude of the church are required. The weather forecasts are returned in the data
format JavaScript Object Notation, JSON, which is used to structure data [27]. The
JSON file contain several parameters, for every whole hour, such as: wind speed,
air temperature, relative humidity and thunder probability.

23

4. Implementation

4.1.2 Nord Pool

The system, more specifically the graph model, uses energy prices to make decisions
on whether to heat the church. This information has, in accordance with the request
of the main stakeholder, been gathered from Europe’s leading power market Nord
Pool. Nord Pool provides intraday and day-ahead energy prices divided over sixteen
energy zones across: Sweden, Norway, Denmark, Finland, Estonia, Latvia, Lithuania
and Great Britain as shown in Figure 2.4. The energy prices are updated every 24
hours.

To collect necessary information from Nord Pool their data API is used. Using the
API, with information such as currency, date and a number specifying the resolution
of the information set as hourly, daily, weekly, monthly or yearly, a JSON-file is
composed containing the energy prices for each energy zone.

4.2 Calibration of temperature data

Since the system is built to accommodate any church and relies on building specific
parameters such as the church’s capacity to preserve heat, an initial calibration is
performed when the system launches. The calibration is performed by first heating
the church for a specified number of hours, by default two hours, then turning the
heat off for the same amount of time. The purpose of the calibration is to populate
the database with information of how the temperature changes in relation to the
difference in temperature inside and outside the church, as shown in Table 4.1.
In addition to the calibration, the system is recalibrated during run time to take
advantage of newly measured values.

4.2.1 Interpolation

The calibration provides an initial data set of how the temperature changes in corre-
lation to specific differences in temperature inside and outside the church. However,
the data set does not contain data for all differences in temperature required to build
a graph. For the missing data, between the known values, interpolation as shown
in Section 2.3.1 is used. Using interpolation on the ”temperature changes” found
in Table 4.1, a new data set containing calibrated and estimated values is created
for every difference in temperature, from the first to the last known value, with an
interval of 0.1 °C as shown in Table 4.2.

24

4. Implementation

Temp. Difference Temp. change up Temp. change down
15 °C +0.33 °C -0.73 °C
15.3 °C +0.321 °C -0.742 °C
15.4 °C +0.319 °C -0.745 °C

Table 4.1: Measured temperature change values, showing how the temperature
increases, Temp. change up, and decreases, Temp. change down, in relation to the

difference in temperature inside and outside the church.

Temp. Difference Temp. change up Temp. change down
15 °C +0.33 °C -0.73 °C
15.1 °C +0.327 °C -0.734 °C
15.2 °C +0.324 °C -0.738 °C
15.3 °C +0.321 °C -0.742 °C
15.4 °C +0.319 °C -0.745 °C

Table 4.2: Interpolated and measured temperature change values, showing how
the temperature increases, Temp. change up, and decreases, Temp. change down,

in relation to the difference in temperature in side and outside the church.

Algorithm 1 shows how ”temperature changes” within the known interval of values
were estimated. A TemperatureChange contains ”temperature changes” for specific
differences in temperature inside and outside the church. tempC1 and tempC2 are
already known TempeartureChanges, such as those collected during calibration, for
which new values shall be estimated between. The algorithm then proceeds to use
Equation 2.3 to find new ”temperature changes” for every temperature difference
between tempC1 and tempC2 with an interval of 0.1 °C.

Algorithm 1 Interpolating values for how the temperature changes in correlation
to the difference in temperature in a known interval.

1: function interpolation(TemperatureChange tempC1, temperatureChange
tempC2)

2: polatedList← new List<TemperatureChange>
3: y1 ← tempC1.getTemperatureChange
4: y2 ← tempC2.getTemperatureChange
5: x1 ← tempC1.getTemperatureDifference
6: x2 ← tempC2.getTemperatureDifference
7: for i = x1; i <= x2; i+ = 0.1 do
8: Calculate y0 for x0 = i using Equation 2.3
9: polatedList.add(new TemperatureChange(i, y0))

10: return polatedList

25

4. Implementation

4.2.2 Extrapolation

Interpolation estimates values within a known interval, values outside this interval
can be estimated using linear extrapolation, as mentioned in section 2.3.1. Com-
monly, Equation 2.3 is used when extrapolating a data set. Since this equation
depends solely on two values for the estimation, very inaccurate data could be gen-
erated if the two values are not a good representation of the data set. Therefore, a
mean of the known ”temperature changes” is used, further shown in Algorithm 2.

Algorithm 2 Extrapolating temperature changes in correlation to the difference in
temperature outside a known interval.

1: function extrapolation(TemperatureChangeList tempCList)
2: polatedList← new List<TemperatureChange>
3: y1 ← tempCList.getF irst.getTemperatureChange
4: y2 ← tempCList.getLast.getTemperatureChange
5: x1 ← tempCList.getLast.getTemperatureDifference
6: x2 ← tempCList.getLast.getTemperatureDifference
7: tChange← 0.0
8: for i = 0; i < tempClist.size()− 1; i+ + do
9: tChange← tChange+ change per 0.1 degree between

10: tempClist.get(i) and tempClist.get(i+ 1)
11: tChange← tChange/tempCList.size()− 1
12: for i = x1 − 0.1; i >= −100; i− = 0.1 do
13: y1 ← y1 − tChange
14: polatedList.add(new TemperatureChange(i, y1))
15: for i = x2 + 0.1; i <= 100; i+ = 0.1 do
16: y2 ← y2 + tChange
17: polatedList.add(new TemperatureChange(i, y0))
18: return polatedList

A mean value for how the temperature changed per 0.1 °C was calculated based on
the values gathered in the calibration. For all differences in temperature, outside
the interval of known values, within reasonable boundaries, new values for how the
temperature changed were estimated using the mean value, as shown in Table 4.4,
using the values found in Table 4.3.

Temp. Difference Temp. change up Temp. change down
10 °C +0.43 °C -0.83 °C
10.3 °C +0.421 °C -0.842 °C
10.4 °C +0.419 °C -0.845 °C

Table 4.3: Measured temperature change values, showing how the temperature
increases, Temp. change up, and decreases, Temp. change down, in relation to the

difference in temperature inside and outside the church.

26

4. Implementation

Temp. Difference Temp. change up Temp. change down
...

9.9 °C +0.4325 °C -0.8265 °C
10 °C +0.43 °C -0.83 °C
10.3 °C +0.421 °C -0.842 °C
10.4 °C +0.419 °C -0.845 °C
10.5 °C +0.4165 °C -0.8485 °C

...

Table 4.4: Extrapolated and measured temperature change values, showing how
the temperature increases, Temp. change up, and decreases, Temp. change down,

in relation to the difference in temperature inside and outside the church.

4.3 Graph

The weather forecasts, energy prices and interpolated and extrapolated temperatures
are used to create a connected and directed graph using Algorithm 3. The algorithm
consists of three functions: createGraph, createV ertices and buildSubGraph.

Initially, in the createGraph function, a vertex, sourceV ertex, is created using
the temperature inside and outside the church with the current date and time. In
addition, a vertex, targetV ertex, is created with the targeted temperature, date and
time. Thereafter, if the depth of the graph is larger than one, the adjacent vertices
of the sourceV ertex is created in order to build two subgraphs in parallel.

The function createV ertices is used to create succeeding vertices given a vertex,
prevV ertex. Based on prevV ertex’s temperature, the temperature of the adjacent
vertices can be calculated using the prevV ertex’s inside and outside temperature,
in combination with the interpolated and extrapolated temperatures, as described
in Section 3.1. As described in Section 1.1, the temperature inside the church
should not be too low, therefore a new vertex is only created if the newly calculated
temperature is above a specified lower boundary. If a new vertex is created, an edge
is added from prevV ertex to the newly created vertex.

The function buildSubGraph is a recursive function that, given a prevV ertex ter-
minates when the date of the prevV ertex is equal to the targeted date of the
targetV ertex. If the termination condition is met, the temperature of the prevV ertex
is checked, if it is within the accuracy of the targetV ertex an edge from prevV ertex
to the targetV ertex is added. The accuracy of the targetV ertex means that the
temperature of the prevV ertex does not need to be exactly equal to the temper-
ature of the targetV ertex, instead it is acceptable that the temperature of the
prevV ertex is a few tens of degrees above or below the targetV ertex. Otherwise, if
the date of the prevV ertex is before the date of the targetV ertex, the succeeding
vertices of prevV ertex is created using the function createV ertices and the function
buildSubGraph is recursively called with the newly created vertices.

27

4. Implementation

Algorithm 3 Build a graph given an initial temperature inside the church and
temperatures outside the church.

1: function creategraph(insideTemp, outsideTemp, startDate, targetedDate,
resolution)

2: sourceVertex← new Vertex (insideTemp, outsideTemp, startDate)
3: targetVertex← new Vertex (targetedTemp, outsideTemp(targetedDate),
4: targetedDate)
5: depth← number of hours between sourceVertex and targetVertex× 60

resolution

6: if depth > 1 then
7: neighborVertices← createvertices(sourceV ertex, startDate
8: + resolution)
9: for all vertex ∈ neighborV ertices do

10: new Thread(buildsubgraph(vertex, startDate + resolution))
11: return sourceVertex
12:
13: function createvertices(prevVertex, date)
14: meanOutsideTemp← mean(prevVertex.outsideTemp + outsideTemp(date))
15: tempDiff← prevVertex.insideTemp - meanOutsideTemp
16: temperatureList← prevVertex.insideTemp ± temperatureChange(tempDiff)
17: neighborVertices← new List<Vertex>
18: for all temperature ∈ temperatureList do
19: if temperature is within boundaries then
20: newVertex← new Vertex(temperature, outsideTemp(date), date)
21: prevVertex.addEdge(newVertex, energyPrice(date))
22: neighborVertices.add(newVertex)
23: return neighborVertices
24:
25: function buildsubgraph(prevVertex, date)
26: if date ≤ targetVertex.targetedDate then
27: neighborVertices← createvertices(prevV ertex, date+ resolution)
28: for all vertex ∈ neighborVertices do
29: buildsubgraph(vertex, date + resolution)
30: else
31: if prevVertex is within accuracy of target then
32: prevVertex.addEdge(targetVertex, 0)

4.4 Finding the shortest path with A* search

Based on a graph that is created according to Section 4.3, an A* search algorithm
implementation, described in Algorithm 4, is used to find a path that heats the
church in the most economically beneficial way. The A* search implementation
initially queues the sourceV ertex, with a cost of zero, of the graph into a priority
queue. The algorithm proceeds until the priority queue is empty or the graph’s

28

4. Implementation

targetV ertex has been reached. In each iteration, the vertex with highest priority
is dequeued and for each of its successors a new cost of reaching that successor
is calculated. If the successor is not yet discovered, or the successor is already
discovered but the newly calculated cost is less than the already existing cost, then
the successor is added to the priority queue.

When the algorithm has terminated, and a path from the sourceV ertex to the
targetV ertex has been discovered, the path can be recovered by traversing from the
targetV ertex until the sourceV ertex.

Algorithm 4 A* algorithm.
1: function aStar(graph)
2: queue← new PriorityQueue<Vertex>(compareVertices)
3: costs← new Map<Vertex, Double>
4: paths← new Map<Vertex, Vertex>
5: queue.add(graph.sourceV ertex)
6: costs.put(graph.sourceV ertex, 0.0)
7: while queue is not empty do
8: c← queue.pop
9: if c is graph.targetVertex then break

10: for all successor ∈ c do
11: newCost← costs(c) + successor.price
12: if successor 6∈ costs or newCost < costs(successor) then
13: paths.put(successor, c)
14: costs.put(successor, newCost)
15: queue.add(successor)
16: shortestPath← new List<Vertex>
17: while c is not graph.sourceVertex do
18: add c first in shortestPath
19: c← paths(c)
20: return shortestPath
21:
22: function compareVertices(vertex1, vertex2)
23: vertex1Cost← costs(vertex1) + heuristic(vertex1)
24: vertex2Cost← costs(vertex2) + heuristic(vertex2)
25: return vertex1Cost - vertex2Cost

4.4.1 Heuristic function

A heuristic function, shown in Algorithm 5, was developed to assist the A* search.
Since a graph, built according to Section 4.3, potentially could have paths that can
not reach the targeted vertex, the heuristic function was developed to guide the A*
search away from such paths.

29

4. Implementation

As mentioned in Section 2.2.2, it is of importance that the heuristic function is
admissible in order to guarantee that A* search finds the shortest path. The heuristic
function, explained in Algorithm 5, is based on five conditional statements. The first
conditional statement considers vertices that have temperatures above the targeted
temperature and can not reach the targeted temperature in time of the targeted
date, meaning that a path does not exist from these vertices to the targeted vertex.
The second conditional statement considers vertices that are below the targeted
temperature, therefore, in order to reach the targeted temperature, the system must
heat at least once. In order for the heuristic function to be admissible, only the
cheapest energy price within the depth of these vertices and the targeted vertex can
be returned as a heuristic value. The third and the forth conditional statements
considers vertices above or below the targeted temperature at the targeted date,
thus these vertices are irrelevant.

Algorithm 5 Heuristic function.
1: function Heuristic(v)
2: if v.depth < graph.depth && v.insideTemp >
3: target.insideTemp + accuracy of target then
4: if v can not cool to target.insideTemp then
5: return ∞
6: else if v.depth < graph.depth && v.insideTemp <
7: target.insideTemp - accuracy of target then
8: return cheapest weight within v.depth to graph.depth
9: else if v.depth == graph.depth && v.insideTemp <

10: target.insideTemp - accuracy of target then
11: return ∞
12: else if v.depth == graph.depth && v.insideTemp >
13: target.insideTemp + accuracy of target then
14: return ∞
15: else
16: return 0

4.5 Scheduler

Since the system consists of many separate components that perform different tasks,
a scheduler was introduced to manage these components. The scheduler ensures
that the SMHI parser and Nord Pool parser fetch data every hour. In addition, the
scheduler ensures that the change in temperature is measured continuously.

As described in Section 1.1.1, a user can interact with a web interface, where the
user can add an event when the church is to be heated. If an event is added, the
scheduler creates a graph for the event, if energy prices and weather forecasts are
available for the date and time of the event. Thereafter, the scheduler performs

30

4. Implementation

the A* algorithm on the graph, and based on the result from the A* algorithm the
church is heated.

If there are no events created by a user, the scheduler automatically creates a graph
that maintains the temperature above the lowest allowed temperature while still in-
corporating energy prices to reach the most financially beneficial heat management.

31

4. Implementation

32

5
Results

In this chapter, results, primarily in terms of relative financial savings, between the
price of using the intermittent heating method compared to the price of using the
developed system, are presented. In addition, performance was measured, both in
terms of building a graph using various graph resolutions as well as in terms of using
A* search in comparison to using Dijkstra’s algorithm.

5.1 Financial savings

Five simulations were performed in order to evaluate the financial benefits of using
the A* heating method compared to the intermittent heating method. In the first
simulation, described in Section 5.1.1, both heating methods had the assignment to
maintain a temperature of 15 °C, with a lower boundary of 14 °C, over a fixed time
interval using a graph resolution of 60 minutes. In the second simulation, described
in Section 5.1.2, the lower boundary was, in contrast to the first simulation, set to
14.5 °C. Simulation three and four, described in Section 5.1.3, show how different
graph resolutions affect the A* heating method. In the fifth simulation, described in
Section 5.1.4, both heating methods had the task to increase the temperature from
15 °C to 20 °C over a fixed time interval.

In order to simulate a credible environment for all simulations, data of how the
temperature changes inside a church was gathered from Tunabergs kyrka. This
data, presented in Table 5.1, is used in the temperature model in order to build
a credible graph. In addition, a power consumption of 25 kW is assumed, for the
church’s heating system.

Temperature difference Temp. change up Temp. change down
10 °C +0.32 °C -0.55 °C
11 °C +0.30 °C -0.60 °C

Table 5.1: Temperature data, showing how the temperature increases, Temp.
change up, and decreases, Temp. change down, in relation to the difference in
temperature inside and outside the church, gathered from Tunabergs kyrka.

33

5. Results

5.1.1 Maintaining a fixed temperature with a lower bound-
ary of 14 °C

The result of the simulation to maintain a temperature of 15 °C over a fixed time
interval, with a lower boundary of 14 °C and a graph resolution of 60 minutes, using
the intermittent heating method and the A* heating method, is shown in Figure
5.1.

In total of the 48 hour simulation, the A* heating method heats for a total of 22
hours while the intermittent heating method heats for 24 hours. This yields a total
price of 152.81 SEK for the A* heating method and 170.87 SEK for the intermittent
heating method.

The relative financial save can thus be calculated according to Equation 5.1.

1− 152.81
170.87 = 10.57% (5.1)

Figure 5.1: Comparison of heating strategies, maintaining a temperature of 15
°C with a lower boundary of 14 °C and a graph resolution of 60 minutes.

Figures 5.2 and 5.3 show when the intermittent heating method and the A* heating
method heat in correlation to the energy price. The intermittent heating method
spends on average 0.28478 SEK/kWh while the A* heating method spends on av-
erage 0.27783 SEK/kWh, which, according to Equation 5.2, results in an average
decrease in price of 2.44% when the A* heating method is used. This is due to
that the A* heating method primarily heats when the energy price is at its lowest,

34

5. Results

while the intermittent heating method does not incorporate the price of energy. In-
stead the intermittent heating method adjust the heating solely based on the current
temperature.

1− 0.27783
0.28478 = 2.44% (5.2)

Figure 5.2: Showing when the heating is on or off using the intermittent heating
method, maintaining a temperature of 15 °C, with a lower boundary of 14 °C.

Figure 5.3: Showing when the heating is on or off using the A* heating method,
maintaining a temperature of 15 °C, with a lower boundary of 14 °C and a graph

resolution of 60 minutes.

35

5. Results

5.1.2 Maintaining a fixed temperature with a lower bound-
ary of 14.5 °C

In contrast to Figure 5.1, Figure 5.4 shows the result of a simulation to maintain a
temperature of 15 °C over a fixed time interval using a lower boundary of 14.5 °C.
As a result, the A* heating method never subsides below 14.5 °C as opposed to the
previous simulation where temperatures of 14.0 °C were allowed.

Figure 5.4: Comparison of heating strategies, maintaining a temperature of 15
°C with a lower boundary of 14.5 °C and a graph resolution of 60 minutes.

Out of the 40 hours of simulation, both the A* heating method and the intermittent
heating method heat for 27 hours. During the simulation the A* heating method
yields a total cost of 200.83 SEK compared to 206.26 for the intermittent heating
method.

The relative financial save can thus be calculated according to Equation 5.3.

1− 200.83
206.26 = 2.63% (5.3)

Figures 5.5 and 5.6 show when the intermittent heating method and the A* heating
method heat in correlation to the energy price. The intermittent heating method
spends on average 0.30557 SEK/kWh while the A* heating method spends on av-
erage 0.29753 SEK/kWh, which, according to Equation 5.4, results in an average
decrease in price of 2.63% when the A* heating method is used.

36

5. Results

1− 0.29753
0.30557 = 2.63% (5.4)

Figure 5.5: Showing when the heating is on or off using the intermittent heating
method, maintaining a temperature of 15 °C, with a lower boundary of 14.5 °C.

Figure 5.6: Showing when the heating is on or off using the A* heating method,
maintaining a temperature of 15 °C, with a lower boundary of 14.5 °C and a graph

resolution of 60 minutes.

37

5. Results

5.1.3 Maintaining a fixed temperature with various graph
resolutions

Figures 5.7 and 5.8 show a simulation with the task to maintain a temperature of 15
°C using the A* heating method, over a fixed time interval, using graph resolutions
of 60 minutes, 30 minutes and 20 minutes.

In total out of the 51 hour simulations, both when using graph resolutions of 60 and
30 minutes the A* heating method heats for 32 hours. When a graph resolution of
20 minutes is used, the A* heating method heats for 31 hours and 40 minutes. This
yields a total price of 235.00 SEK, 231.81 SEK and 230.47 SEK for using a graph
resolution of 60, 30 and 20 minutes, respectively.

The relative financial save of using the A* heating method with a graph resolution
of 30 minutes compared to using the A* heating method with a graph resolution of
60 minutes can thus be calculated according to Equation 5.5.

1− 231.81
235.00 = 1.36% (5.5)

In the same manner, the relative financial save of using the A* heating method with
a graph resolution of 20 minutes compared to using the A* heating method with a
graph resolution of 30 minutes can be calculated according to Equation 5.6.

1− 230.47
231.81 = 0.58% (5.6)

The A* heating method spends on average 0.29375 SEK/kWh, 0.28976 SEK/kWh
and 0.29112 SEK/kWh when using a graph resolution of 60, 30 and 20 minutes,
respectively. The average price of using a graph resolution of 20 minutes is larger
than using a graph resolution of 30 minutes. As mentioned above, the A* heating
method heats for a shorter period of time when using a graph resolution of 20
minutes compared to a graph resolution of 30 minutes, which results in a lower total
price.

38

5. Results

Figure 5.7: Comparison of heating with the A* heating method using a graph
resolution of 30 minutes versus a graph resolution of 60 minutes.

Figure 5.8: Comparison of heating with the A* heating method using a graph
resolution of 20 minutes versus a graph resolution of 30 minutes.

39

5. Results

5.1.4 Heating to a fixed temperature

The result of the simulation to increase the temperature from 15 °C to a set point of
20 °C using the intermittent heating method and the A* heating method is shown
in Figure 5.9.

Out of the 52 hours of simulation, both the intermittent heating method and the
A* heating method heats for a total of 26 hours. This yields a total of 178.39 SEK
for the A* heating method and 182.40 SEK for the intermittent heating method.

The relative financial saving can thus be calculated according to Equation 5.7.

1− 178.39
182.40 = 2.20% (5.7)

Figure 5.9: Comparison of heating strategies, when increasing the temperature
from 15 °C to 20 °C, with a graph resolution of 60 minutes.

Figures 5.10 and 5.11 show when the intermittent heating method and the A* heat-
ing method, respectively, heat in correlation to the price of energy. The intermittent
heating method spends an average of 0.28060 SEK/kWh while the A* heating spends
an average of 0.27440 SEK/kWh resulting in an average decrease in price of 2.20%,
when using the A* heating method, as shown in Equation 5.8. Similarly to what
is mentioned in Section 5.1.1, this is due to that the A* heating method primarily
heats when the energy price is at its lowest, while the intermittent heating method
does not incorporate the price of energy. Instead the intermittent heating method
adjusts the heating solely based on the current temperature.

40

5. Results

1− 0.27440
0.28060 = 2.20% (5.8)

Figure 5.10: Showing when the heating is on or off using the intermittent
heating method, increasing the temperature from 15 °C to 20 °C.

Figure 5.11: Showing when the heating is on or off using the A* heating method,
increasing the temperature from 15 °C to 20 °C and a graph resolution of 60

minutes.

41

5. Results

5.2 Performance

The performance of the system has been measured in terms of execution time and
memory utilization to perform a task. The most time consuming tasks to perform
on the system has been identified as:

• Building a graph

• Finding the shortest path in a graph

Therefore, performance was measured on these tasks, using various graph resolutions
and by comparing A* search and Dijkstra’s Algorithm.

5.2.1 Building a graph with various resolutions

When building a graph, performance was measured in terms of time and memory
utilization, using various graph resolutions, on a graph lasting for 52 hours. The
result of the performance test is displayed in Table 5.2. The performance test using
graph resolutions of 60, 30 and 20 minutes, was performed with one decimal place
accuracy. On a graph with a resolution of 5 minutes, the performance test was
conducted with an accuracy of two decimal places in order to avoid rounding errors.

Resolution No. Vertices No. Edges Execution time Memory usage
60 minutes 984 1786 0.8693 seconds 116 mb
30 minutes 4441 8506 2.1212 seconds 116 mb
20 minutes 6840 13334 2.5720 seconds 164 mb
10 minutes 13722 27097 22.3697 seconds 168.5 mb
5 minutes 27442 54605 237 seconds 172 mb

Table 5.2: The performance of building a graph using various resolutions.

5.2.2 Dijkstra’s Algorithm compared to A* search

In Table 5.3, the performance test on the shortest path algorithms is presented.
The test was performed by measuring the run time of Dijkstra’s algorithm and A*
search, a thousand times, on the same graph.

42

5. Results

Depth No. Vertices No. Edges Dijkstra’s algorithm A* search
41 1411 2692 0.00278 seconds 0.00284 seconds
82 5051 9916 0.00825 seconds 0.00551 seconds
123 7792 15397 0.01225 seconds 0.01061 seconds
246 15792 31414 0.01608 seconds 0.01543 seconds
492 31242 62350 0.03569 seconds 0.03047 seconds

Table 5.3: The performance of finding the shortest path on a graph using
Dijkstra’s algorithm and A* search.

43

5. Results

44

6
Discussion

In this chapter, a discussion of the result is presented. Initially the result is dis-
cussed in terms of financial savings, performance and the accuracy of SMHI weather
forecasts. Thereafter, potential improvements of the system are discussed as well as
the credibility of the result.

6.1 Financial savings

The result, presented in Section 5.1, displays the potential financial savings of using
the system, but as the energy prices and outdoor temperature alters by the hour -
so will the financial savings.

The results, presented in Section 5.1, show that the smart grid heat management
system based on A* search can result in approximately 2.5% in relative financial
savings compared to the intermittent heating method. While 2.5% might not sound
significant, over time the accumulated savings would result in a substantial econom-
ical benefit. For instance, in Section 5.1.2, the intermittent heating method costs
206.36 SEK compared to 200.83 SEK for the A* heating method over a 40 hour pe-
riod. Assuming these energy prices, over a year this results in 1130 SEK in financial
savings, according to Equation 6.1.

365 · 24
40 · 206.36 · 0.025 = 1130 SEK (6.1)

Additionally, as mentioned in Section 2.4, the price of energy sometimes increases
by several hundred percent and these spikes will be avoided using the algorithm,
which will result in a more substantial financial saving.

One interesting aspect of Figures 5.1 and 5.9 is that the A* heating method always
ends up with a lower temperature than the intermittent heating method. As men-
tioned in Section 3.2, the accuracy of the target allows the targeted temperature to
be slightly above or below the targeted temperature. The system will always try
to find the most economically beneficial path to the targeted temperature and in

45

6. Discussion

general this path will end up at the lowest possible temperature.

An interesting aspect of Figures 5.3 and 5.11 is that the A* heating method tends
to heat when the energy price is at its lowest, but not always. The reason for
this could be that the difference in temperature inside and outside the church has
increased or that it is not necessary to heat at that time in order to reach the
targeted temperature.

6.1.1 Maintaining a fixed temperature

As can be seen in Figure 5.1, the A* heating method and the intermittent heating
method have two vastly different approaches in maintaining the temperature at 15
°C. The A* heating method heats at first when the price of energy is low and then
it maintains a low temperature. When the temperature inside the church is low, it
is in general easier to increase the temperature inside the church since the difference
in temperature is lower. Therefore, it is both beneficial to have a low temperature
and heat when the energy price is low. By staying at a lower temperature, the A*
heating method only needs to heat the church for 22 hours while the intermittent
heating method needs to heat the church for 24 hours. Naturally, heating for a
shorter period of time is likely to result in lower total energy cost.

Figure 5.4 shows a simulation where a lower boundary of 14.5 °C is used. In this
simulation, the A* heating method never subsides below said temperature and can
therefore not, to the same extent, take advantage of the fact that it is more beneficial
to heat when the temperature inside the church is low. In this simulation, the
lowest temperature of both heating methods are approximately the same, but the A*
heating method still achieves financial saving compared to the intermittent heating
method.

As can be seen in Figures 5.7 and 5.8, the A* heating method chooses similar paths
for graph resolutions of 60 minutes, 30 minutes and 20 minutes. When using an
increased graph resolution, the A* heating method can more proficiently stay above
the lower boundary. As a result, the A* heating method heats for a shorter period
of time, and still ends up at a temperature closer to the desired temperature, when
using a graph resolution of 20 minutes compared to using graph resolutions of 60
minutes and 30 minutes.

6.1.2 Heating to a fixed temperature

Similarly, in Figure 5.9, the A* heating method and the intermittent heating method
choose different paths. In this simulation both approaches heat for the same amount
of hours and therefore the average energy price is the deciding factor for the financial
savings. As can be seen in Figure 5.11 compared to Figure 5.10, the A* heating

46

6. Discussion

method utilizes the times when the energy price is low, in order to heat more effi-
ciently than the intermittent heating method.

6.2 Performance

The performance test presented in Section 5.2.1, shows that the execution time and
memory usage increase as the graph resolution increases. As can be seen in Table 5.2,
the execution time and memory usage is fairly similar for graph resolutions of 60, 30
and 20 minutes. Thereafter, for graph resolutions of 10 and 5 minutes the execution
time increased significantly, mainly due to that more vertices and edges needs to be
iterated as the graph resolution increases. In Table 6.1, factors between the depth
of a graph and the graph resolution are presented. As mentioned in Section 3.2,
more specificly in Equations 3.2 and 3.3, the number of edges and vertices increase
exponentially as the depth increases. As stated in the problem description, presented
in Section 1.1, the algorithm should not be too computationally heavy, therefore the
graph resolution needs to be determined based on the computational power of the
microprocessor that the algorithm is deployed on.

Graph resolution Factor of depth
60 minutes x1
30 minutes x2
20 minutes x3
10 minutes x6
5 minutes x12

Table 6.1: Factors of the depth of a graph as the graph resolution increases.

As it turns out, the choice of shortest path algorithm barely affects the execution
time of the system, as can be seen in Table 5.3. Although, there are a few inter-
esting aspects worth mentioning. A* search, more precise the heuristic function,
entails worse performance in terms of execution time on a graph with a small depth
compared to Dijkstra’s Algorithm. A reason for the loss in performance, is that the
heuristic function takes time to compute, and since the graph is small, the compu-
tational time for the heuristic function is not worth it. For a graph with a larger
depth, the A* search outperforms Dijkstra’s algorithm, solely because of the heuris-
tic function. However, as mentioned above, finding the shortest path in a graph is
fast compared to creating the graph, thus any shortest path algorithm is suitable
for this application.

47

6. Discussion

6.3 Accuracy of SMHI weather forecasts

As mentioned in section 3.1, the temperatures collected from the SMHI Open Data
API are corrected based on how they differ from the temperatures measured outside
the facility. This correction will not improve the result for all vertices in a graph but
it provides an adjustment so that a majority of them receives more accurate outside
temperatures.

Potentially, the difference between the temperature collected from the SMHI Open
Data API and the temperature measured outside the facility have a correlation to
the time of the day, day of the week and time of the year when the temperature was
measured. It would therefore, potentially, be a better solution to not just calculate
the mean temperature difference for a couple of days of known data but to rather
base it on such parameters. However, such correlations was not examined during
the project.

6.4 Future work

The system includes functionality reasonable to develop within the time constraint.
However, there are several improvements that could potentially result in a more
substantial financial saving for the customer, further described in this section.

6.4.1 Power resolution

The developed system only supports heating that is either on or off. A potential
improvement could be to allow the heating to be on with a percentage of the total
possible output. This would allow the system to create edges with, for instance, a
50% power output when needed. Such an improvement could result in more potential
ways of reaching a wanted temperature, more economical benefit and a better accu-
racy surrounding the desired temperature. To introduce such functionality would,
however, result in higher requirements on performance for both building the graph
and applying the shortest path algorithm and, as mentioned in Section 5.2, these are
the two most demanding components of the system. The reason for the additional
performance requirements is mainly due to the increased number of edges that is
added when introducing such functionality. Table 6.2 shows how many additional
edges would have been created if such functionality was implemented. Since one
of the main requests from the stakeholder was to create a lightweight system the
functionality of power resolution was not implemented.

48

6. Discussion

Allowed power output Factor of Edges
0, 100% x1
0, 50, 100% x1.5
0, 25, 50, 75, 100% x2.5
0, 10, 20, 30, ..., 100% x5.5
0, 1, 2, 3, ..., 100% x50.5

Table 6.2: The factor of edges created due to various power resolutions.

6.4.2 A path could not be found with A* search

When a path could not be found using A* search, the system will increase the
allowed fault margin for what is considered reaching the targeted temperature. For
example, if the system initially has an accuracy of 0.5 °C it would find a path if
a vertex exists within a 0.5 °C boundary from the targeted temperature on the
targeted date and time. If such a path is not found, the boundary will increase
resulting in a higher possibility of a path being found.

Using this method, the system will eventually find a path to the targeted tempera-
ture, but the boundary can at the same time increase to an unrealistic magnitude
if the targeted temperature is unreachable.

The system will, using this method, always provide a path, but perhaps it would be
of interest to in some cases for example provide the customer with an alternative to
change the targeted temperature or at least make the customer aware of the error.

6.5 Credibility of result

To avoid a result based on inaccurate values, representative values, as mentioned in
Section 5.1, were gathered from Tunabergs kyrka and used in the simulations. These
values, in accordance to Equation 2.2, change linearly depending on the difference
in temperature inside and outside the church.

To reach a more reliable result, it would be beneficial to deploy the system in one or
several churches. This would provide more realistic values of how the temperature
changes, how long it takes to heat the church and how much the outside temperature
influences the inside temperature. By doing so, values, of how the temperature
changes, gathered from the system could be used in the evaluation of financial
savings.

49

6. Discussion

50

7
Conclusion

In this thesis a smart grid heat management system based on A* search has been
developed and evaluated in terms of performance and financial savings. As stated in
Section 1, the research question of this thesis is: is it feasible to create an algorithm
based on a smart grid adaption of church heat that, in terms of financial savings,
outperforms the intermittent heating method used today?

A justified answer to the question stated above, based on the result presented in
Section 5.1, is that it is, without a doubt, feasible to create an algorithm based
on a smart grid adaption of church heat that outperforms the intermittent heating
method used today. The result concludes that, by using a smart grid heat manage-
ment system based on A* search in favor of the intermittent heating method, can
result in approximately 2.5% in relative financial savings.

51

7. Conclusion

52

Bibliography

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey”, Com-
puter Networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[2] X. Fang, S. Misra, G. Xue, and D. Yang, “Smart grid - the new and improved
power grid: A survey”, IEEE Communications Surveys & Tutorials, vol. 14,
no. 4, pp. 944–980, 2012.

[3] L. T. Berger and K. Iniewski, Smart grid: Applications, communications, and
security. Wiley, 2012.

[4] J. Ekanayake, N. Jenkins, K. Liyanage, J. Wu, and A. Yokoyama, Smart grid:
Technology and applications, 2. Aufl.;1; John Wiley & Sons, Ltd, 2012.

[5] J. Serra, D. Pubill, A. Antonopoulos, and C. Verikoukis, “Smart hvac con-
trol in iot: Energy consumption minimization with user comfort constraints”,
SCIENTIFIC WORLD JOURNAL, vol. 2014, pp. 1–11, 2014.

[6] Nord pool, http://www.nordpoolspot.com/, [Accessed: 2016-11-27].
[7] I3tex – ett ovanligt stort litet teknikkonsultföretag, http://www.i3tex.com/,

[Accessed: 2017-05-22].
[8] G. Held,Wireless mesh networks. Auerbach Publications, 2005, isbn: 9781420031263.
[9] C. Wang, T. Jiang, and Q. Zhang, ZigBee® network protocols and applications,

1st ed. CRC Press, 2014, isbn: 1439816018.
[10] K. F. Fong, V. I. Hanby, and T. T. Chow, “Hvac system optimization for

energy management by evolutionary programming”, Energy and Buildings,
vol. 38, no. 3, pp. 220–231, 2006.

[11] H.-C. Jo, S. Kim, and S.-K. Joo, “Smart heating and air conditioning schedul-
ing method incorporating customer convenience for home energy management
system”, IEEE Transactions on Consumer Electronics, vol. 59, no. 2, pp. 316–
322, 2013.

[12] M. Avci, M. Erkoc, and S. S. Asfour, “Residential hvac load control strat-
egy in real-time electricity pricing environment”, IEEE, 2012, pp. 1–6, isbn:
9781467318365.

[13] Smhi open data api docs - meteorological forecasts, http://opendata.smhi.
se/apidocs/metfcst/demo_point.html, [Accessed: 2017-01-18].

[14] H. Ortega-Arranz, D. R. Llanos, and A. Gonzalez-Escribano, The shortest-path
problem: Analysis and comparison of methods. Morgan & Claypool Publishers,
2015, vol. Lecture Number 1, isbn: 1627055401.

[15] E. Dijkstra, “A note on two problems in connexion with graphs”, Numerische
Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

53

http://www.nordpoolspot.com/
http://www.i3tex.com/
http://opendata.smhi.se/apidocs/metfcst/demo_point.html
http://opendata.smhi.se/apidocs/metfcst/demo_point.html

Bibliography

[16] K. M. Passino and P. J. Antsaklis, “A metric space approach to the specifi-
cation of the heuristic function for the a algorithm”, IEEE Transactions on
Systems, Man, and Cybernetics, vol. 24, no. 1, pp. 159–166, 1994.

[17] W. Benenson, Handbook of physics. Springer, 2002, isbn: 9780387952697.
[18] V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and

G. P. Hancke, “Smart grid technologies: Communication technologies and stan-
dards”, IEEE Transactions on Industrial Informatics, vol. 7, no. 4, pp. 529–
539, 2011.

[19] T. L. Sigrid Colnerud Granström and J. Lundgren, “Elområden i sverige
- analys av utvecklingen och konsekvenserna på marknaden”, Energimark-
nadsinspektionen EI R2012:06, 2012.

[20] H. N. E. Byström, “Extreme value theory and extremely large electricity price
changes”, International Review of Economics and Finance, vol. 14, no. 1,
pp. 41–55, 2005.

[21] A. Bejan, P. Vadász, and D. G. Kröger, Energy and the Environment. Springer
Netherlands, 1999, vol. 15, isbn: 9401059438.

[22] J. C. Ketterer, “The impact of wind power generation on the electricity price
in germany”, Energy Economics, vol. 44, pp. 270–280, 2014.

[23] H. Lund, “Excess electricity diagrams and the integration of renewable en-
ergy”, International Journal of Sustainable Energy, vol. 23, no. 4, pp. 149–
156, 2003.

[24] M. Nicolosi, “Wind power integration and power system flexibility–an em-
pirical analysis of extreme events in germany under the new negative price
regime”, Energy Policy, vol. 38, no. 11, pp. 7257–7268, 2010.

[25] K. Kaygusuz, “Renewable energy: Power for a sustainable future”, Energy
Exploration & Exploitation, vol. 19, no. 6, 2001.

[26] Hur mäts lufttemperatur? smhi, http://www.smhi.se/kunskapsbanken/
meteorologi/hur-mats-lufttemperatur-1.3839, Accessed: 2017-02-24.

[27] W. Jackson, JSON quick syntax reference. Apress, 2016, isbn: 1484218639.

54

http://www.smhi.se/kunskapsbanken/meteorologi/hur-mats-lufttemperatur-1.3839
http://www.smhi.se/kunskapsbanken/meteorologi/hur-mats-lufttemperatur-1.3839

A
Appendix 1

Table A.1 shows the difference between the temperatures measured outside the of-
fices of i3tex AB and the temperatures collected from the closest weather station.

Date and time SMHI temperature Measured temperature Difference
2017-02-09 10:08 -2.19 °C -1.00 °C 1.19 °C
2017-02-09 11:08 -1.44 °C -0.90 °C 0.54 °C
2017-02-09 12:08 -1.19 °C -1.40 °C -0.21 °C
2017-02-09 13:08 -1.19 °C -0.80 °C 0.39 °C
2017-02-09 14:08 -1.13 °C -0.70 °C 0.43 °C
2017-02-09 15:08 -1.00 °C -1.00 °C 0.00 °C
2017-02-09 16:08 -1.19 °C -0.70 °C 0.49 °C
2017-02-09 17:08 -1.25 °C -0.80 °C 0.45 °C
2017-02-09 18:08 -1.38 °C -1.00 °C 0.38 °C
2017-02-09 19:08 -1.50 °C -2.20 °C -0.70 °C
2017-02-09 20:08 -1.50 °C -2.30 °C -0.80 °C
2017-02-09 21:08 -1.50 °C -2.50 °C -1.00 °C
2017-02-09 22:08 -1.56 °C -2.60 °C -1.04 °C
2017-02-09 23:08 -1.56 °C -3.00 °C -1.44 °C
2017-02-10 00:08 -1.56 °C -2.70 °C -1.14 °C
2017-02-10 01:08 -1.69 °C -2.40 °C -0.71 °C
2017-02-10 02:08 -1.56 °C -2.20 °C -0.64 °C
2017-02-10 03:08 -1.56 °C -2.30 °C -0.74 °C
2017-02-10 04:08 -1.50 °C -2.50 °C -1.00 °C
2017-02-10 05:08 -1.44 °C -2.40 °C -0.96 °C
2017-02-10 06:08 -1.44 °C -2.40 °C -0.96 °C
2017-02-10 07:08 -1.31 °C -2.30 °C -0.99 °C
2017-02-10 08:08 -1.13 °C -2.20 °C -1.07 °C
2017-02-10 09:08 -1.00 °C -1.90 °C -0.90 °C
2017-02-10 10:08 -0.81 °C -1.50 °C -0.69 °C
2017-02-10 11:08 -0.50 °C -1.10 °C -0.60 °C
2017-02-10 12:08 -0.25 °C -0.80 °C -0.55 °C
2017-02-10 13:08 0.13 °C -0.40 °C -0.53 °C
2017-02-10 14:08 0.38 °C 0.00 °C -0.38 °C
2017-02-10 15:08 0.50 °C 0.30 °C -0.20 °C

I

A. Appendix 1

2017-02-10 16:08 0.75 °C 0.30 °C -0.45 °C
2017-02-10 17:08 0.56 °C 0.40 °C -0.16 °C
2017-02-10 18:08 0.81 °C 0.40 °C -0.41 °C
2017-02-10 19:08 1.06 °C 0.50 °C -0.56 °C
2017-02-10 20:08 1.19 °C 0.80 °C -0.39 °C
2017-02-10 21:08 1.19 °C 0.80 °C -0.39 °C
2017-02-10 22:08 1.25 °C 0.30 °C -0.95 °C
2017-02-10 23:08 1.13 °C -0.10 °C -1.23 °C
2017-02-11 00:08 1.13 °C -0.60 °C -1.73 °C
2017-02-11 01:08 0.63 °C -1.00 °C -1.63 °C
2017-02-11 02:08 0.56 °C -0.90 °C -1.46 °C
2017-02-11 03:08 0.00 °C -0.80 °C -0.80 °C
2017-02-11 04:08 -0.19 °C -0.70 °C -0.51 °C
2017-02-11 05:08 -0.63 °C -1.30 °C -0.67 °C
2017-02-11 06:08 -1.38 °C -1.90 °C -0.52 °C
2017-02-11 07:08 -1.81 °C -2.60 °C -0.79 °C
2017-02-11 08:08 -2.00 °C -3.10 °C -1.10 °C
2017-02-11 09:09 1.63 °C -3.50 °C -5.13 °C
2017-02-11 10:09 2.13 °C -3.20 °C -5.33 °C
2017-02-11 11:09 -0.13 °C -2.20 °C -2.07 °C
2017-02-11 12:09 0.25 °C -1.20 °C -1.45 °C
2017-02-11 13:09 0.06 °C -0.40 °C -0.46 °C
2017-02-11 14:08 0.50 °C 0.00 °C -0.50 °C
2017-02-11 15:09 0.50 °C 0.00 °C -0.50 °C
2017-02-11 16:09 -0.13 °C -0.60 °C -0.47 °C
2017-02-11 17:09 -0.19 °C -1.80 °C -1.61 °C
2017-02-11 18:09 -0.13 °C -2.80 °C -2.67 °C
2017-02-11 19:09 0.00 °C -3.60 °C -3.60 °C
2017-02-11 20:09 0.13 °C -4.10 °C -4.23 °C
2017-02-11 21:09 0.00 °C -4.70 °C -4.70 °C
2017-02-11 22:09 0.00 °C -5.10 °C -5.10 °C
2017-02-11 23:09 -0.13 °C -5.40 °C -5.27 °C
2017-02-12 00:09 -0.25 °C -5.60 °C -5.35 °C
2017-02-12 01:09 -0.25 °C -5.90 °C -5.65 °C
2017-02-12 02:09 -0.19 °C -5.70 °C -5.51 °C
2017-02-12 03:09 -0.13 °C -5.50 °C -5.37 °C
2017-02-12 04:09 -0.06 °C -5.60 °C -5.54 °C
2017-02-12 05:09 0.00 °C -5.70 °C -5.70 °C
2017-02-12 06:09 -0.31 °C -5.90 °C -5.59 °C
2017-02-12 07:09 -0.25 °C -6.30 °C -6.05 °C
2017-02-12 08:09 -0.25 °C -4.40 °C -4.15 °C
2017-02-12 09:09 -0.06 °C -2.90 °C -2.84 °C
2017-02-12 10:09 0.31 °C -1.60 °C -1.91 °C
2017-02-12 11:09 0.50 °C -0.80 °C -1.30 °C

II

A. Appendix 1

2017-02-12 12:09 0.56 °C -0.20 °C -0.76 °C
2017-02-12 13:09 0.75 °C 0.10 °C -0.65 °C
2017-02-12 16:09 0.31 °C -0.10 °C -0.41 °C
2017-02-12 19:09 -0.94 °C -3.40 °C -2.46 °C
2017-02-12 22:09 -2.56 °C -4.90 °C -2.34 °C
2017-02-13 01:09 -4.06 °C -4.30 °C -0.24 °C
2017-02-13 07:09 -5.31 °C -1.90 °C 3.41 °C
2017-02-13 10:09 2.25 °C -2.10 °C -4.35 °C
2017-02-13 11:09 0.50 °C -1.00 °C -1.50 °C
2017-02-13 12:09 0.63 °C -0.30 °C -0.93 °C
2017-02-13 13:09 0.50 °C 1.20 °C 0.70 °C
2017-02-13 14:09 0.50 °C 1.10 °C 0.60 °C
2017-02-13 15:09 0.31 °C 0.80 °C 0.49 °C
2017-02-13 16:09 0.13 °C 0.00 °C -0.13 °C
2017-02-13 17:09 -0.44 °C -1.70 °C -1.26 °C
2017-02-13 18:09 -0.81 °C -2.30 °C -1.49 °C
2017-02-13 19:09 -1.13 °C -2.70 °C -1.57 °C
2017-02-13 20:09 -1.56 °C -2.70 °C -1.14 °C
2017-02-13 21:09 -1.81 °C -3.10 °C -1.29 °C
2017-02-13 22:09 -2.13 °C -3.70 °C -1.57 °C
2017-02-13 23:09 -2.50 °C -3.90 °C -1.40 °C

Table A.1: A sample of temperatures collected from the SMHI Open Data API
and temperatures measured at the office of i3tex AB as well as the difference

between them.

III

	List of Figures
	List of Tables
	Introduction
	Problem description
	System architecture

	Related work
	Scope
	Thesis outline

	Background
	Graph definitions
	Shortest path algorithms
	Dijkstra's algorithm
	A* search algorithm

	Transferred quantity of heat
	Interpolation and extrapolation

	Energy market
	Environment

	Models
	Temperature model
	Graph model

	Implementation
	Gathering third party data
	SMHI Open Data API
	Nord Pool

	Calibration of temperature data
	Interpolation
	Extrapolation

	Graph
	Finding the shortest path with A* search
	Heuristic function

	Scheduler

	Results
	Financial savings
	Maintaining a fixed temperature with a lower boundary of 14 °C
	Maintaining a fixed temperature with a lower boundary of 14.5 °C
	Maintaining a fixed temperature with various graph resolutions
	Heating to a fixed temperature

	Performance
	Building a graph with various resolutions
	Dijkstra's Algorithm compared to A* search

	Discussion
	Financial savings
	Maintaining a fixed temperature
	Heating to a fixed temperature

	Performance
	Accuracy of SMHI weather forecasts
	Future work
	Power resolution
	A path could not be found with A* search

	Credibility of result

	Conclusion
	Bibliography
	Appendix 1

