
Comparative Study of Numerical Methods for

Optimal Control of a Biomechanical System
Controlled Motion of a Human Leg during Swing Phase

International Master’s Programme Solid and Fluid Mechanics

ANDREAS DRAGANIS, CARL SANDSTRÖM
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Abstract

One type of optimal control problem for a mechanical system is the problem of steering the system
from an initial state to a target state while minimizing a chosen objective function, which measures
a certain feature of the system. A typical example of this is minimizing the energy and/or time
consumption of an industrial assembly robot as it performs a certain task.

In this contribution we investigate three methods for finding the optimal control of a biome-
chanical system relevant to human walking. The system at hand is a simplified model of a human
leg during the process of walking. The leg is modeled as a double pendulum with control moments
applied at the hip and knee joints. As the objective function pertinent to the optimization prob-
lem, a combination of two different measures of energy consumption are considered, one of which
smooth and the other non-smooth. The considered optimization parameters, which the objective
function is minimized with respect to, are the parameters involved in the discretizations of the
free variables of the optimal control problem.

Three different numerical methods are employed for the discretization and solution of the two-
point boundary value problem for the dynamic system in question; a temporal finite element based
approach, one based on Fourier series approximations of the generalized coordinates and inverse
dynamics and one based on Matlabs built-in functions for numerical solution of ordinary differential
equations: ode45. For the considered biomechanical system, several optimal control problems are
solved using the aforementioned numerical methods together with a general-purpose constrained
optimization tool (Matlabs subroutine fmincon). In this way, the temporal finite element method
and ode45, actually being initial value problem solvers, solve the two point boundary value problem
by way of a kind of “shooting method”. The results obtained using the three methods are analyzed
and subsequently compared with respect to both computational efficiency and kinematic, dynamic
and energetic characteristics of the optimal motion.

The numbers of optimization parameters deemed necessary for a sufficiently good solution of
the optimal control problem for the tolerance settings used were 18 for both the ode45 method
and the temporal finite element method and 14 for the Fourier method. Even for these settings,
the Fourier method produced better results: solutions corresponding to lower energies. The char-
acteristics of the solutions thus obtained were very similar between the methods.

Keywords: Optimal control, Trajectory planning, Biomechanics, Direct dynamics, Inverse dy-
namics.
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Chapter 1

Introduction

In this contribution, a number of approaches to finding the optimal control of a biomechanical
system with respect to some measure of energy consumption are investigated. The considered
biomechanical system is a simple model of a human leg in the process of walking, specifically:
in the swing-phase of a step. The three methods for solving the optimal control problem are a
temporal finite element based approach [7], one based on Fourier series approximations of the
generalized coordinates and inverse dynamics [13] and one based on Matlabs built-in functions
for numerical solution of ordinary differential equations (ODEs): ode45 [3]. The latter method is
included more for reference than for its theoretical interest. The discrete optimization problem
connected to each of these methods is solved using a general-purpose optimization tool (Matlabs
subroutine fmincon) [2].

The numerical solution of an optimal control problem requires some means of translating the
continuous problem into a discrete optimization problem. Previous choices of methods used in this
context for discretizing the free variables of the system include a spline-GA (genetic algorithm)
method [8] and a Fourier series based method similar to the one considered in this thesis [10],
[14], [13]. The temporal finite element method has previously been explored in an optimal control
context, for instance in [4], [5], [6], but not quite, to the authors knowledge, in the particular
manner considered in this project.

The purpose of the project is chiefly to investigate whether the temporal finite element method
and the Fourier method are suitable and efficient for solving a problem of the given type. The
temporal finite element method is interesting due to the fact that the control space and the state
space are discretized separately. This enables implementation of schemes for local mesh refinement
and facilitates effective error analysis. The Fourier method, its way of discretizing the variables
of the system however not being as intuitively attractive, holds potential in that it enables, by
inverse dynamics, an analytical solution of the equations of motion.

The considered mechanical system is shown in Figure 1.1. Lengths, masses and other properties
of the model will later be chosen so as to simulate the physical characteristics of a human leg. The
foot is modeled as a point mass attached to the end of the shank. The limb angles θ1(t) and θ2(t)
are the free variables of the system, while the torques u1(t) and u2(t) applied at the hip joint and
at the knee joint, respectively, constitute the control. Note that these torques are not externally
applied, u1 is acting between the upper body and the thigh and u2 is acting between the two limbs
of the leg. The swing phase consists of the part of the step between the instant of time when the
foot leaves the ground and the instant it reaches the ground again. The motion of the hip will be
prescribed.

H, K and A signify the hip, knee and ankle joints, respectively, while the thigh is referred to
as Body 1 and the shank as Body 2. m1, m2, mH and mA represent the masses of the respective
bodies. a1 and a2 represent the length of the limbs. r1 is the distance from the hip joint to center
of mass of the thigh and r2 is the distance from the knee joint to the center of mass of the shank.
J̄1 and J̄2 is the moment of inertia about the center of mass (hence the bar over the symbol) of
the respective limbs. t0 = 0 is the initial time of the motion and tf is the final time. L is the total
length of one step. x(t) and y(t) are the coordinates of the hip.

Boundary conditions corresponding to the swing phase of a step are imposed on the system
(see Section 2.1.3 for more details):

• Initial and terminal thigh and shank angles are fixed

• Initial angular velocities of the thigh and shank are fixed.
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Figure 1.1: Schematic sketch of the considered model of a human leg.

Some constraints required for realistic human motion are also imposed (see Section 2.1.4 for
more details):

• The knee can only be bent one way

• The angle of the shank has a lowest possible angle

• The foot must be above the ground at all times.
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Chapter 2

Mathematical model

2.1 Statement of the optimal control problem

2.1.1 General statement of an optimal control problem

Consider a mechanical system whose motion can be described by the following system of equations:

ẋ(t) = f(x(t),u(t)), t ∈ [0, T ], (2.1)

where x(t) = (x1, x2, . . . , xn) is a state vector (which can contain both position coordinates and
velocities), u(t) = (u1, u2, . . . , um) is a vector of control stimuli (forces or torques) and [0, T ] is
the time domain under consideration. It is further required that the state and control variables
satisfy the following constraints:

h(x(t),u(t)) = 0 (2.2)

g(x(t),u(t)) ≤ 0. (2.3)

The system of equations (2.1) and the constraints (2.2) – (2.3) constitute the mathematical model
of the mechanical system. Note that the equality constraints (2.2) can include boundary conditions
for the state and/or control variables.

Upon introducing the scalar objective functional

E = E[x(t),u(t)],

a function of the motion and of the control, the optimal control problem can be formulated as:
given a mechanical system described by the mathematical model (2.1), find the motion x∗(t) and
the control u∗(t) which satisfy the constraints (2.2) – (2.3) and also minimize the given objective
functional E [x(t),u(t)].

2.1.2 Equations of motion

In the present section, a mathematical model of the considered system (Figure 1.1) is derived using
Lagrangian mechanics (the overall methodology of which is described in, for instance, Goldstein
et. al. [1]). The symbolic mathematics software Mathematica has been used to perform the
analytical manipulations. “(t)” is dropped for brevity in the following.

In the Lagrangian formulation of mechanics, the Lagrangian is first constructed. In this case,
it is

L = T1 + T2 + TH + TA − (V1 + V2 + VH + VA), (2.4)

where the first four terms represent the kinetic energies and the last four terms the potential
energies of the respective bodies of the system. The generalized forces Qq are then expressed,
enabling the equations of motion to be set up as a system of equations, each one of the following
form:

d

dt

(

∂L

∂q̇

)

−
∂L

∂q
= Qq, (2.5)

where q is a generalized coordinate with corresponding generalized force Qq .
The expressions for the kinetic energy of the different bodies of the system are

T1 =
1

2
m1|v̄1|

2 +
1

2
J̄1θ̇

2
1 (2.6)
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T2 =
1

2
m2|v̄2|

2 +
1

2
J̄2θ̇

2
2 (2.7)

TH =
1

2
mH |v̄H |2 (2.8)

TA =
1

2
mA|v̄A|

2. (2.9)

The expressions for the potential energy of the different bodies of the system are

V1 = m1gr̄1x̂ (2.10)

V2 = m2gr̄2x̂ (2.11)

VH = mHgr̄H x̂ (2.12)

VA = mAgr̄Ax̂, (2.13)

where x̂ is the unit vector in the x-direction. The expressions for the position vectors of the centers
of mass of the different bodies are shown in equations (2.14) – (2.17). The first equation of these
shows how the parametrization of the hip motion is chosen.

rH =

[

x(t)
y(t)

]

=

[

V (t− t0) +B1 sin(2ω(t− t0))
h0 +B2 sin(2ω(t− t0))

]

(2.14)

r̄1 =

[

x+ sin θ1r1
y − cos θ1r1

]

(2.15)

r̄2 =

[

x+ sin θ1a1 + sin θ2r2
y − cos θ1a1 − cos θ2r2

]

(2.16)

r̄A =

[

x+ sin θ1a1 + sin θ2a2

y − cos θ1a1 − cos θ2a2

]

. (2.17)

The velocity vectors are simply the time derivatives of the position vectors: v = d
dt

r.
The generalized forces can be identified from the expression for the virtual work δW performed

under virtual displacements of all generalized coordinates. Note that the angle associated with
the torque u2 is the difference between the two limb angles, since u2 is acting between the two
limbs.

δW = u1δθ1 + u2(δθ2 − δθ1) = (u1 − u2)δθ1 + u2δθ2.

The following generalized forces are thus identified: Q1 = u1 − u2, Q2 = u2. Performing the
necessary symbolic manipulations, the resulting equations of motion are

sin(θ1 − θ2)a1(a2mA +m2r2)(θ̇2)
2 + g sin θ1(a1(m2 +mA) +m1r1)+

cos θ1(a1(m2 +mA) +m1r1)ẍ+ sin θ1(a1(m2 +mA) +m1r1)ÿ + J1θ̈1

+a1(a1(m2 +mA)θ̈1 + cos(θ1 − θ2)(a2mA +m2r2)θ̈2) − u1(t) + u2(t) = 0

(2.18)

(a2mA +m2r2)(− sin(θ1 − θ2)a1(θ̇1)
2 + cos θ2ẍ+

sin θ2(g + ÿ) + cos(θ1 − θ2)a1θ̈1) + (mAa
2
2 + J2)θ̈2 − u2(t) = 0.

(2.19)

θ̈1 and θ̈2 appear as linear terms in the equations. Solving for these enables the system of equations
to be rewritten in the form

θ̈1 = g1(θ1, θ2, θ̇1, θ̇2, u1, u2)

θ̈2 = g2(θ1, θ2, θ̇1, θ̇2, u1, u2).
(2.20)

Performing the substitutions θ̂1 = θ̇1, θ̂2 = θ̇2 transforms the above equations into a system of
four first order differential equations:



















θ̇1 = θ̂1
˙̂
θ1 = g1(θ1, θ2, θ̂1, θ̂2, u1, u2)

θ̇2 = θ̂2
˙̂
θ2 = g2(θ1, θ2, θ̂1, θ̂2, u1, u2).

(2.21)
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2.1.3 Boundary conditions

The boundary conditions imposed on the system, representing initial and final values for the limb
angles, mentioned in Chapter 1, are:

Table 2.1: Boundary conditions for the motion
Parameter Value at t = 0 Value at t = tf
θ1(t) θ10 θ1f

θ2(t) θ20 θ2f

θ̇1(t) θ̇10 = 0 θ̇1f , free
θ̇2(t) θ̇20 = 0 θ̇2f , free

2.1.4 Constraints

The constraints imposed on the system, mentioned in Chapter 1, are in order:

Table 2.2: Constraints on the motion
Constraint Description
θ2(t) − θ1(t) ≤ 0 The opening angle of the knee must be negative.
θ1(t) ≥ θ10 − δ The thigh is not allowed to swing too far back.
yA(t) ≥ 0 The foot must be above or at ground level at all times.

where δ is just a small number.

2.1.5 The optimal control problem

The optimal control problem is to find the control u1(t) and u2(t) satisfying the constraints and the
boundary conditions imposed on the system, such that a chosen objective function E is minimized.
The objective function E is a function of the motion and in the present case, the following is chosen:

E = λ1E1 + λ2E2, (2.22)

where E1 and E2 are different measures of energy consumption, given below, and λ1 and λ2 are
weighting parameters.

E1 =
1

L

∫ tf

0

[

| u1(t)θ̇1(t) | + | u2(t)(θ̇1(t) − θ̇2(t)) |
]

dt

E2 =

∫ tf

0

[

u2
1(t) + u2

2(t)
]

dt.

(2.23)

E1 is a non-smooth function of the motion and the control, measuring the mechanical work per
meter performed by the control torques u1(t) and u2(t) [12]. E2 is a smooth function of the
control only, measuring heat energy loss due to torque generation [8]. It would be possible to keep
it simple and just use E2 as the objective function. However, it was desired to also include the
non-smooth energy measure E1 for the sake of added generality and complexity.

, Applied Mechanics, Master’s Thesis 2009:24 5



Chapter 3

Numerical solution of the optimal

control problem

3.1 Discretization

In order to translate the continuous optimal control problem into a numerical optimization prob-
lem, the continuous functions of time representing the free variables of the corresponding mechan-
ical system must be replaced by discrete representations. The set of unknowns of the problem are
thus transformed from the values of these functions at each point in time in the considered time
interval, to a set of parameters, finite in number.

The numerical optimization problem will be solved using Matlabs general-purpose constrained
optimization tool, fmincon [2]. fmincon attempts to find the minimum of a scalar function of
several parameters subject to a set of equality and/or inequality constraints, starting from an
initial guess of the parameters. The user thus needs to supply a function that can calculate the
value of the objective function E (from the optimization parameters), one that can calculate the
values of the equality and/or inequality constraint functions (from the optimization parameters)
as well as the initial guess. The optimization method used within fmincon is either a “Trust-
Region-Reflective” method or an “Active-Set” method, based on the type of constraints used. In
the present case, where nonlinear equality and inequality constraints are present, the Active-Set
method is used. This method is a sequential quadratic programming (SQP) method, which means
solving a quadratic programming (QP) subproblem at each iteration. An updated estimate of the
Hessian is computed in each iteration using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) for-
mula. By default, the gradients of the objective function and of equality and inequality constraint
functions are computed using finite differences. There is an option, however, to supply fmincon

with expressions for these gradients and thus improve the speed of the optimization process. This
feature will be utilized for the temporal finite element method.

The following three sections describe the solution of the equations of motion for the three
respective methods. In each iteration step of the optimizer for the ode45 based method and for the
temporal finite element based method, the time history of the control is given while the limb angles
are sought (direct dynamics). In both cases, the control variables are represented by piecewise
linear functions, their node values being the optimization parameters, that is the free parameters
of the optimization problem. The discretization which is used for the control variables is based on
the evenly spaced time mesh having the nodes ti, i = 0, 1, 2, . . . ,M ; 0 = t0 < t1 < . . . < tM = tf
and is defined as:

u(t) ≈ uh(t) =

M
∑

i=0

uiYi(t) (3.1)

where ui, i = 0, 1, 2, . . . ,M are the node values of the discretization and Yi(t) are shape functions.
These are piecewise linear and satisfy the following:

Yi(t) =

{

1 t = ti
0 t = tj , j 6= i

(3.2)

An example of a function in the form of equation (3.1) is shown in Figure 3.1, together with the
shape functions that exist in the considered time domain.

6 , Applied Mechanics, Master’s Thesis 2009:24
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1

t0 = 0 t1 t2 t3 t4 t5 t6 t7 = tf

Y0(t) Y1(t) Y3(t) Y7(t)

uh(t)

Figure 3.1: An example of a function in the form of equation (3.1) and all shape functions Yi(t)
on an example mesh for which M = 7.

Note that, since two control variables are present in the system, the number of optimization
parameters in the optimization problem is 2M .

In each iteration step of the optimizer for the Fourier based method, the limb angles are given
and the control is sought (inverse dynamics). The optimization parameters in this case are either
the ones involved in the discretization of the time histories of the limb angles or a reduced set, see
Section 3.4.

3.2 The ode45 method

Matlabs ode45 [3] is a function used for solving initial value problems involving ordinary differential
equations. It integrates the system of differential equations y′ = f(y, t), given bounds for the time
domain and initial conditions for the free variables and their derivatives. ode45 is based on
an explicit Runge-Kutta(4,5) formula and automatically generates a mesh for the independent
variable t, the maximum spacing of which can be controlled. The function uses precompiled code,
which significantly increases the efficiency of its execution.

When the ode45 method is used, the function is called in each iteration of the optimizer
with information about the time histories of the control. This information is derived from the
optimization parameters, which are the node values of the piecewise linear functions used to
represent the control variables. These have the form of equation (3.1), as mentioned. The function
returns information about the time histories of the limb angles, enabling the computation of the
objective function and the constraint functions, which are needed for the optimization process.

Since only initial conditions can be imposed when solving equations using ode45 and because
both initial and terminal conditions are present in the considered problem, the latter need to be
imposed elsewhere, necessitating the introduction of these as additional equality constraints in
the constrained optimization process performed by fmincon. This means that the ode45 based
optimization routine fulfills the terminal conditions by way of a type of shooting method.

3.3 The temporal finite element method

The temporal finite element method for optimal control is based on separate discretizations of
the state space and the control space. This enables the implementation of efficient local mesh
refinement routines. Another promising feature that will be explored later is the possibility to
obtain analytical expressions for the gradients of the discretized state variables with respect to
the node values of the discretized control variables. This, in turn, enables analytical expressions
for the gradients of the objective function and the constraint functions with respect to these node
values. These expressions can be used in the optimization process, voiding the need for numerical
calculations of these gradients and greatly speeding up the process.

The problem considered here is the state problem arrived at in Section 2.1 minus the terminal
conditions for the limb angles: find θ1(t), θ2(t), θ̂1(t) and θ̂2(t) for t ∈ [0, tf ] such that:



















θ̇1 = θ̂1
˙̂
θ1 = g1(θ1, θ2, θ̂1, θ̂2, u1, u2)

θ̇2 = θ̂2
˙̂
θ2 = g2(θ1, θ2, θ̂1, θ̂2, u1, u2)

(3.3)

θi(0) = θi0

θ̇i(0) = θ̇i0
(3.4)
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for i = 1, 2. Note that it might be that only some of the boundary conditions above are imposed.
“(t)” is dropped in the equations above and in what follows.

In the present section, the finite element formulation of the given problem is derived according
to the continuous Galerkin method of order 1 (cG(1)) [7]. The cG(1) method means using con-
tinuous shape functions of degree 1 and discontinuous test functions of degree 0. We denote the
space of piecewise constant functions defined on the interval [a, b] by V([a, b]).

3.3.1 Weak formulation

Using the evenly spaced times tn, n = 0, 1, 2, . . . , N ; 0 = t0 < t1 < . . . < tN = tf , a division of the
total time domain into sub-intervals tn−1 < t < tn, n = 1, 2, . . . , N is possible. In order to derive
the variational (weak) formulation of the problem, the equations in (3.3) are first multiplied by
test functions: ψ(t), and the result is integrated over the whole temporal domain [0, tf ]. The
integrals are then rewritten as sums of integrals over the temporal sub-intervals. The resulting
problem is: find θ1(t), θ2(t), θ̂1(t) and θ̂2(t) for t ∈ [0, tf ] such that (3.4) are fulfilled and such
that:































∑N

n=1

{

∫ tn

tn−1

(θ̇1 − θ̂1)ψdt
}

= 0
∑N

n=1

{

∫ tn

tn−1

(
˙̂
θ1 − g1(θ1, θ2, θ̂1, θ̂2, u1, u2))ψdt

}

= 0
∑N

n=1

{

∫ tn

tn−1

(θ̇2 − θ̂2)ψdt
}

= 0
∑N

n=1

{

∫ tn

tn−1

(
˙̂
θ2 − g2(θ1, θ2, θ̂1, θ̂2, u1, u2))ψdt

}

= 0

∀ψ(t) ∈ V([t0, tf ]). The arbitrariness of the test functions means that the above problem is
equivalent to the following final weak formulation, which requires the terms in the sums above to
be zero individually: find θ1(t), θ2(t), θ̂1(t) and θ̂2(t) for t ∈ [0, tf ] such that (3.4) are fulfilled
and such that:



























∫ tn

tn−1

(θ̇1 − θ̂1)ψdt = 0
∫ tn

tn−1

(
˙̂
θ1 − g1(θ1, θ2, θ̂1, θ̂2, u1, u2))ψdt = 0

∫ tn

tn−1

(θ̇2 − θ̂2)ψdt = 0
∫ tn

tn−1

(
˙̂
θ2 − g2(θ1, θ2, θ̂1, θ̂2, u1, u2))ψdt = 0

(3.5)

∀ψ(t) ∈ V([tn−1, tn]) and for n = 1, 2, . . . , N .

3.3.2 Finite element formulation

In order to derive the finite element formulation of the problem, the following finite element
discretizations are introduced:

θ1(t) ≈ θ1h(t) =

N
∑

i=0

θ1,iXi(t) (3.6)

θ2(t) ≈ θ2h(t) =

N
∑

i=0

θ2,iXi(t) (3.7)

θ̂1(t) ≈ θ̂1h(t) =

N
∑

i=0

θ̂1,iXi(t) (3.8)

θ̂2(t) ≈ θ̂2h(t) =

N
∑

i=0

θ̂2,iXi(t), (3.9)

where θ1,i, θ2,i, θ̂1,i and θ̂2,i, i = 0, 1, 2, . . . , N are the node values of the respective discretizations
and Xi(t) are the shape functions. These are piecewise linear, connected to the same time mesh
used for the division of the integration domain and satisfy the following.

Xi(t) =

{

1 t = ti
0 t = tj , j 6= i

(3.10)

Furthermore, the following type of function is chosen for the test functions:

ψi(t) =

{

1 ti−1 < t ≤ ti
0 elsewhere.

(3.11)
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Figure 3.2 shows examples of the shape functions Xi(t) and the test functions ψi(t):

PSfrag replacements

1

1

t0

t0

t1

t1

t2

t2

t3

t3

t4

t4

t5

t5

X0(t) X3(t)

ψ3(t) ψ5(t)

Figure 3.2: Some examples of the shape functions Xi(t) and the test functions ψi(t) in an example
mesh for which N = 5.

Introducing the following set of vectors, containing the node values of the approximations
defined above: θn = (θ1,n, θ2,n, θ̂1,n, θ̂2,n), n = 1, 2, . . . , N and introducing the mentioned choices
for the approximations and the test functions into equation (3.5) results in the following problem:
Find θn, n = 1, 2, . . . , N such that:



























∫ tn

tn−1

(θ̇1h − θ̂1h)ψndt = 0
∫ tn

tn−1

(
˙̂
θ1h − g1(θ1h, θ2h, θ̂1h, θ̂2h, u1, u2))ψndt = 0

∫ tn

tn−1

(θ̇2h − θ̂2h)ψndt = 0
∫ tn

tn−1

(
˙̂
θ2h − g2(θ1h, θ2h, θ̂1h, θ̂2h, u1, u2))ψndt = 0

(3.12)

θih(0) = θi0

θ̇ih(0) = θ̇i0
(3.13)

for i = 1, 2 and n = 1, 2, . . . , N .
Using the definitions (3.6) – (3.9) and the fact that it is only the shape functions Xn−1(t)

and Xn(t) that do not vanish on the interval [tn−1, tn], we can reformulate the above as: Find
θn, n = 1, 2, . . . , N such that (3.13) are fulfilled and such that:































∫ tn

tn−1

[(

θ1,n−1Ẋn−1 + θ1,nẊn

)

−
(

θ̂1,n−1Xn−1 + θ̂1,nXn

)]

ψndt = 0
∫ tn

tn−1

[(

θ̂1,n−1Ẋn−1 + θ̂1,nẊn

)

− g1(θ1h, θ2h, θ̂1h, θ̂2h, u1, u2)
]

ψndt = 0
∫ tn

tn−1

[(

θ2,n−1Ẋn−1 + θ2,nẊn

)

−
(

θ̂2,n−1Xn−1 + θ̂2,nXn

)]

ψndt = 0
∫ tn

tn−1

[(

θ̂2,n−1Ẋn−1 + θ̂2,nẊn

)

− g2(θ1h, θ2h, θ̂1h, θ̂2h, u1, u2)
]

ψndt = 0

(3.14)

n = 1, 2, . . . , N .
These equations enable a sequential solution procedure for finding the node values θn: in

the equation system corresponding to n = 1, the node values θ1 are solved for using the initial
conditions θ0. Those values are then used in the equation system corresponding to n = 2 to find
θ2 and so on.

A set of residual functions are now defined:

Rn(θn) =

















∫ tn

tn−1

[(

θ1,n−1Ẋn−1 + θ1,nẊn

)

−
(

θ̂1,n−1Xn−1 + θ̂1,nXn

)]

ψndt
∫ tn

tn−1

[(

θ̂1,n−1Ẋn−1 + θ̂1,nẊn

)

− g1(θ1,n, θ2,n, θ̂1,n, θ̂2,n)
]

ψndt
∫ tn

tn−1

[(

θ2,n−1Ẋn−1 + θ2,nẊn

)

−
(

θ̂2,n−1Xn−1 + θ̂2,nXn

)]

ψndt
∫ tn

tn−1

[(

θ̂2,n−1Ẋn−1 + θ̂2,nẊn

)

− g2(θ1,n, θ2,n, θ̂1,n, θ̂2,n)
]

ψndt

















(3.15)
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n = 1, 2, . . . , N . It was here emphasized, in recognition of the fact that the above equations will
be solved with only θn as unknowns, that the functions g1 and g2 depend on these node values,
which they do via the respective approximations.

The discretized problem can then be written as: Find θn, n = 1, 2, . . . , N such that (3.4) are
fulfilled and such that:

Rn(θn) = 0, n = 1, 2, . . . , N. (3.16)

As mentioned above, the above set of equations, together with the initial conditions in (3.4) –
which provide θ0 – enable a sequential procedure for successively solving for θ1,θ2, . . . ,θN . Note
that the terminal conditions are not used in this procedure. They are instead used as constraints
in the optimization process, just as for the ode45 method (Section 3.2). This means that the
optimization routine based on the temporal finite element method also employs a type of shooting
method to satisfy the terminal conditions.

3.3.3 Solving the equations in a given time increment

The Newton method is suitable for solving the equations (3.16) in each time interval. The Newton
iteration scheme for time step n is the following:

Rn(θ(k)
n ) + DRn(θ(k)

n )[∆θ] = 0,

θ(k+1)
n = θ(k)

n + ∆θ,
(3.17)

where DRn(θ(k)
n )[∆θ] is the directional derivative of Rn at θ

(k)
n in the direction of the increment

∆θ = [∆θ1 ∆θ2 ∆θ̂1 ∆θ̂2]. The definition is: DRn(θ(k)
n )[∆θ] = d

dε

[

Rn(θ(k)
n + ε∆θ)

]

ε=0
, which

in our case becomes (dropping the superscript “(k)” for brevity):

DRn(θn)[∆θ] =









































d
dε

∫ tn

tn−1

[(

θ1,n−1Ẋn−1 + (θ1,n + ε∆θ1)Ẋn

)

−
(

θ̂1,n−1Xn−1 + (θ̂1,n + ε∆θ̂1)Xn

)]

ψndt

d
dε

∫ tn

tn−1

[(

θ̂1,n−1Ẋn−1 + (θ̂1,n + ε∆θ̂1)Ẋn

)

−

g1(θ1h(θ1,n + ε∆θ1), θ2h(θ2,n + ε∆θ2), θ̂1h(θ̂1,n + ε∆θ̂1), θ̂2h(θ̂2,n + ε∆θ̂2), u1, u2)
]

ψndt

d
dε

∫ tn

tn−1

[(

θ2,n−1Ẋn−1 + (θ2,n + ε∆θ2)Ẋn

)

−
(

θ̂2,n−1Xn−1 + (θ̂2,n + ε∆θ̂2)Xn

)]

ψndt

d
dε

∫ tn

tn−1

[(

θ̂2,n−1Ẋn−1 + (θ̂2,n + ε∆θ̂2)Ẋn

)

−

g2(θ1h(θ1,n + ε∆θ1), θ2h(θ2,n + ε∆θ2), θ̂1h(θ̂1,n + ε∆θ̂1), θ̂2h(θ̂2,n + ε∆θ̂2), u1, u2)
]

ψndt









































ε=0

=

=

















∫ tn

tn−1

[

Ẋn∆θ1 −Xn∆θ̂1

]

ψndt
∫ tn

tn−1

[

Ẋn∆θ̂1 − (g1
′

θ1
Xn∆θ1 + g1

′

θ2
Xn∆θ2 + g1

′

θ̂1

Xn∆θ̂1 + g1
′

θ̂2

Xn∆θ̂2)
]

ψndt
∫ tn

tn−1

[

Ẋn∆θ2 −Xn∆θ̂2

]

ψndt
∫ tn

tn−1

[

Ẋn∆θ̂2 − (g2
′

θ1
Xn∆θ1 + g2

′

θ2
Xn∆θ2 + g2

′

θ̂1

Xn∆θ̂1 + g2
′

θ̂2

Xn∆θ̂2)
]

ψndt

















=

= Jn(θ(k)
n )∆θ (3.18)

where

Jn =

∫ tn

tn−1











Ẋn 0 −Xn 0

−g1
′

θ1
Xn −g1

′

θ2
Xn (Ẋn − g1

′

θ̂1

Xn) −g1
′

θ̂2

Xn

0 Ẋn 0 −Xn

−g2
′

θ1
Xn −g2

′

θ2
Xn −g2

′

θ̂1

Xn (Ẋn − g2
′

θ̂2

Xn)











ψndt (3.19)
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3.3.4 The gradient of the objective function E

The value of the gradient of the objective function with respect to the controls at a specific point
can be calculated and returned to fmincon after the evaluation of E. Relying in this way on
algebraic expressions rather than numerical calculations (as mentioned, fmincon by default uses
finite differences to calculate the gradient) to evaluate the gradient is likely to greatly increase the
speed of the optimization process and is, as mentioned, one of the most interesting features of the
temporal finite element method.

We introduce discretizations of the control variables of the form shown in equation (3.1):

u1(t) ≈ u1h(t) =

M
∑

i=0

u1,iYi(t)

u2(t) ≈ u2h(t) =

M
∑

i=0

u2,iYi(t)

(3.20)

Using these discretizations of the control variables as well as equations (3.8) and (3.9) (but with
θ̂ replaced by θ̇) in equation (2.23) gives the following discretization of the two components of the
objective function (for brevity, “(t)” is dropped in the following equations):

E1 ≈ E1h =
1

L

∫ tf

0

[

| u1hθ̇1h | + | u2h(θ̇1h − θ̇2h) |
]

dt

E2 ≈ E2h =

∫ tf

0

[

u2
1h + u2

2h

]

dt

(3.21)

The gradient of the discretized objective function Eh = λ1E1h + λ2E2h with respect to the node
values of the approximations of the control variables: {u1,j , u2,j}, j = 1, 2, . . . ,M , is then:

∇Eh =

(

dEh

du1,1
,

dEh

du1,2
, . . . ,

dEh

du1,M

)

=

(

λ1
dE1h

du1,1
+ λ2

dE2h

du1,1
, λ1

dE1h

du1,2
+ λ2

dE2h

du1,2
, . . . , λ1

dE1h

du1,M

+ λ2
dE2h

du1,M

) (3.22)

The derivative of E1h with respect to the node values u1,i and u2,i are:

dE1h

du1,i

=
1

L

∫ tf

0

[

sgn
(

u1hθ̇1h

)

(

Yiθ̇1h + u1h

dθ̇1h

du1,i

)

+ sgn
(

u2h

(

θ̇1h − θ̇2h

))

u2h

(

dθ̇1h

du1,i

−
dθ̇2h

du1,i

)]

dt

dE1h

du2,i

=
1

L

∫ tf

0

[

sgn
(

u1hθ̇1h

)

u1h

dθ̇1h

du2,i

+ sgn
(

u2h

(

θ̇1h − θ̇2h

))

(

Yi

(

θ̇1h − θ̇2h

)

+ u2h

(

dθ̇1h

du2,i

−
dθ̇2h

du2,i

))]

dt.

(3.23)

Note that the generalized coordinates θ1(t) and θ2(t) are functions of the control variables u1(t)
and u2(t) and thus, in the discretized problem, θ1h(t) and θ2h(t) are functions of the node values
of the approximations of the control variables: {u1,j , u2,j}, j = 1, 2, . . . ,M . The calculation of

the derivatives dθ̇jh

duk,i
is described below. The derivatives of E2h with respect to the node values

are:
dE2h

du1,i

=

∫ tf

0

2u1hYidt

dE2h

du2,i

=

∫ tf

0

2u2hYidt.

(3.24)

3.3.5 Gradients of inequality constraints

The inequality constraints, given in Table 2.2, are collected in a vector as follows:

cineq =





c1
c2
c3



 =





θ2 − θ1
−θ1 − 10◦

−yhip(tf ) + a1 cos θ1 + a2 cos θ2



 ≤ 0 (3.25)
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Introducing the discretized inequality constraint vector, cineq,h = (c1h, c2h, c3h), defined as the
one resulting from replacing θ1(t) and θ2(t) in cineq by their respective discretizations, we can
calculate the gradient with respect to the node values of the discretized control moments:

∇cineq,h =







dc1h

du1,1

dc1h

du1,2
. . . dc1h

du1,M

dc1h

du2,1
. . . dc1h

du2,M

dc2h

du1,1

dc2h

du1,2
. . . dc2h

du1,M

dc2h

du2,1
. . . dc2h

du2,M

dc3h

du1,1

dc3h

du1,2
. . . dc3h

du1,M

dc3h

du2,1
. . . dc3h

du2,M






(3.26)

The derivative dcih

duk,j
is investigated:

dcih
duk,j

=
∂cih
∂uk,j

+
∂cih
∂θ1h

dθ1h

duk,j

+
∂cih
∂θ2h

dθ2h

duk,j

+
∂cih

∂θ̂1h

dθ̂1h

duk,j

+
∂cih

∂θ̂2h

dθ̂2h

duk,j

(3.27)

The derivatives ∂cih

∂uk,j
, ∂cih

∂θ̂1h

and ∂cih

∂θ̂2h

are all zero and the derivatives ∂ci

∂θ1h
and ∂ci

∂θ2h
are given in

equations (3.28) thru (3.33).
∂c1h

∂θ1h

= −1 (3.28)

∂c1h

∂θ2h

= 1 (3.29)

∂c2h

∂θ1h

= −1 (3.30)

∂c2h

∂θ2h

= 0 (3.31)

∂c3h

∂θ1h

= −a1 sin θ1h (3.32)

∂c3h

∂θ2h

= −a2 sin θ2h (3.33)

In order to produce the derivatives dθ1h

duk,j
and dθ2h

duk,j
, the directional derivative D • (uk(t)) [δu(t)] of

both sides in each of the equations in (2.21) is first taken. The idea is that the sought derivatives
will appear when the increment function δu(t) is chosen as the basis function Yj(t), since the effect
of increasing the node value uk,j for the discretized control variable ukh by some value a is exactly
that achieved by adding the function aYj(t).

The derivation for the derivatives dθ1h

du1,j
and dθ2h

du1,j
are chosen for the following demonstration

(“(t)” is dropped in the following). We first introduce the definitions:



























































θ1,u1
≡ Dθ1(u1) [δu] ≡

d

dε

∣

∣

∣

∣

ε=0

θ1 (u1 + εδu, u2) =
∂θ1
∂u1

δu

θ̂1,u1
≡ Dθ̂1(u1) [δu] ≡

d

dε

∣

∣

∣

∣

ε=0

θ̂1 (u1 + εδu, u2) =
∂θ̂1
∂u1

δu

θ2,u1
≡ Dθ2(u1) [δu] ≡

d

dε

∣

∣

∣

∣

ε=0

θ2 (u1 + εδu, u2) =
∂θ2
∂u1

δu

θ̂2,u1
≡ Dθ̂2(u1) [δu] ≡

d

dε

∣

∣

∣

∣

ε=0

θ̂2 (u1 + εδu, u2) =
∂θ̂2
∂u1

δu

(3.34)

Furthermore, we see that:

Dg1(u1) [δu] =
d

dε

∣

∣

∣

∣

ε=0

[

g1

(

θ1(u1 + εδu, u2), θ2(u1 + εδu, u2), θ̂1(u1 + εδu, u2),

θ̂2(u1 + εδu, u2), u1 + εδu, u2

)]

=
∂g1
∂θ1

∂θ1
∂u1

δu+
∂g1
∂θ2

∂θ2
∂u1

δu+
∂g1

∂θ̂1

∂θ̂1
∂u1

δu+
∂g1

∂θ̂2

∂θ̂2
∂u1

δu+
∂g1
∂u1

δu

=
∂g1
∂θ1

θ1,u1
+
∂g1
∂θ2

θ2,u1
+
∂g1

∂θ̂1
θ̂1,u1

+
∂g1

∂θ̂2
θ̂2,u1

+
∂g1
∂u1

δu

(3.35)
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and, similarly:

Dg2(u1) [δu] =
∂g2
∂θ1

θ1,u1
+
∂g2
∂θ2

θ2,u1
+
∂g2

∂θ̂1
θ̂1,u1

+
∂g2

∂θ̂2
θ̂2,u1

+
∂g2
∂u1

δu. (3.36)

Recognizing that the directional derivative and the time derivative are interchangeable, it is seen
that taking the directional derivative of both sides in each of the four equations in (2.21) yields
the linear equation























θ̇1,u1
= θ̂1,u1

˙̂
θ1,u1

= g1
′

θ1
θ1,u1

+ g1
′

θ2
θ2,u1

+ g1
′

θ̂1

θ̂1,u1
+ g1

′

θ̂2

θ̂2,u1
+ g1

′

u1
δu

θ̇2,u1
= θ̂2,u1

˙̂
θ2,u1

= g2
′

θ1
θ1,u1

+ g2
′

θ2
θ2,u1

+ g2
′

θ̂1

θ̂1,u1
+ g2

′

θ̂2

θ̂2,u1
+ g2

′

u1
δu

(3.37)

The cG(1) temporal finite element formulation of the given problem is now derived in the same
manner as above: multiplying the equations by test functions, integrating over the whole temporal
interval, splitting the integrals into sums of integrals over subintervals, introducing discretizations
analogous to the ones in equations (3.6) – (3.9):

θ1,u1
(t) ≈ θ1,u1,h(t) =

N
∑

i=0

θ1,u1,iXi(t) (3.38)

θ2,u1
(t) ≈ θ2,u1,h(t) =

N
∑

i=0

θ2,u1,iXi(t) (3.39)

θ̂1,u1
(t) ≈ θ̂1,u1,h(t) =

N
∑

i=0

θ̂1,u1,iXi(t) (3.40)

θ̂2,u1
(t) ≈ θ̂2,u1,h(t) =

N
∑

i=0

θ̂2,u1,iXi(t) (3.41)

and removing vanishing terms in the sums. The result is the following problem (cf. equation
(3.14)): Find the node values θ1,u1,n, θ2,u1,n, θ̂1,u1,n, θ̂1,u1,n such that the initial conditions de-
scribed below are fulfilled and such that:



































































































∫ tn

tn−1

[

(θ1,u1,n−1Ẋn−1 + θ1,u1,nẊn) − (θ̂1,u1,n−1Xn−1 + θ̂1,u1,nXn)
]

ψndt = 0

∫ tn

tn−1

[

−(θ̂1,u1,n−1Ẋn−1 + θ̂1,u1,nẊn) + g1
′

θ1
(θ1,u1,n−1Xn−1 + θ1,u1,nXn)

+g1
′

θ2
(θ2,u1,n−1Xn−1 + θ2,u1,nXn) + g1

′

θ̂1

(θ̂1,u1,n−1Xn−1 + θ̂1,u1,nXn)

+g1
′

θ̂2

(θ̂2,u1,n−1Xn−1 + θ̂2,u1,nXn) + g′1,u1
δuh

]

ψndt = 0

∫ tn

tn−1

[

(θ2,u1,n−1Ẋn−1 + θ2,u1,nẊn) − (θ̂2,u1,n−1Xn−1 + θ̂2,u1,nXn)
]

ψndt = 0

∫ tn

tn−1

[

−(θ̂2,u1,n−1Ẋn−1 + θ̂2,u1,nẊn) + g2
′

θ1
(θ1,u1,n−1Xn−1 + θ1,u1,nXn)

+g2
′

θ2
(θ2,u1,n−1Xn−1 + θ2,u1,nXn) + g2

′

θ̂1

(θ̂1,u1,n−1Xn−1 + θ̂1,u1,nXn)

+g2
′

θ̂2

(θ̂2,u1,n−1Xn−1 + θ̂2,u1,nXn) + g′2,u1
δuh

]

ψndt = 0,

(3.42)

n = 1, 2, . . . , N . As was the case for the equations (3.14), these equations enable a sequential
solution procedure in which the unknowns in each time interval [tn−1, tn] are θ1,u1,n, θ2,u1,n,
θ̂1,u1,n and θ̂2,u1,n. The initial conditions used for this purpose are: θ1,u1,0 = 0, θ2,u1,0 = 0,
θ̂1,u1,0 = 0 and θ̂2,u1,0 = 0, since we need to have θ1,u1

(0) = 0, θ2,u1
(0) = 0, θ̂1,u1

(0) = 0 and
θ̂2,u1

(0) = 0. The reason is that applied forces directly affect only the accelerations in a system,
and thus can not change the state of the system instantaneously, so positions and velocities at
t = 0 can not be affected for any change in the time history of the control.
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Rearranging the equations so that all known quantities are on the right hand side yields right
and left hand sides as shown in equations (3.43) and (3.44), respectively:

RHS =



































































































∫ tn

tn−1

[

−θ1,u1,n−1Ẋn−1 + θ̂1,u1,n−1Xn−1

]

ψndt

∫ tn

tn−1

[

−θ̂1,u1,n−1Ẋn−1 + g1
′

θ1
θ1,u1,n−1Xn−1

+g1
′

θ2
θ2,u1,n−1Xn−1 + g1

′

θ̂1

θ̂1,u1,n−1Xn−1

+g1
′

θ̂2

θ̂2,u1,n−1Xn−1 + g′1,u1
δuh

]

ψndt

∫ tn

tn−1

[

−θ2,u1,n−1Ẋn−1 + θ̂2,u1,n−1Xn−1

]

ψndt

∫ tn

tn−1

[

−θ̂2,u1,n−1Ẋn−1 + g2
′

θ1
θ1,u1,n−1Xn−1

+g2
′

θ2
θ2,u1,n−1Xn−1 + g2

′

θ̂1

θ̂1,u1,n−1Xn−1

+g2
′

θ̂2

θ̂2,u1,n−1Xn−1 + g′2,u1
δuh

]

ψndt

(3.43)

LHS =



































































































∫ tn

tn−1

[

(θ1,u1,nẊn − θ̂1,u1,nXn

]

ψndt

∫ tn

tn−1

[

θ̂1,u1,nẊn − g1
′

θ1
θ1,u1,nXn

−g1
′

θ2
θ2,u1,nXn − g1

′

θ̂1

θ̂1,u1,nXn

−g1
′

θ̂2

θ̂2,u1,nXn

]

ψndt

∫ tn

tn−1

[

(θ2,u1,nẊn − θ̂2,u1,nXn

]

ψndt

∫ tn

tn−1

[

θ̂1,u1,nẊn − g2
′

θ1
θ1,u1,nXn

−g2
′

θ2
θ2,u1,nXn − g2

′

θ̂1

θ̂1,u1,nXn

−g2
′

θ̂2

θ̂2,u1,nXn

]

ψndt

(3.44)

Since θ1,u1,n, θ2,u1,n, θ̂1,u1,n and θ̂2,u1,n are just node values and thus independent of time, the left
hand side can be written as follows:

∫ tn

tn−1











Ẋn 0 −Xn 0

−g1
′

θ1
Xn −g1

′

θ2
Xn (Ẋn − g1

′

θ̂1

Xn) −g1
′

θ̂2

Xn

0 Ẋn 0 −Xn

−g2
′

θ1
Xn −g2

′

θ2
Xn −g2

′

θ̂1

Xn (Ẋn − g2
′

θ̂2

Xn)











ψndt









θ1,u1,n

θ2,u1,n

θ̂1,u1,n

θ̂2,u1,n









(3.45)

where it is noted that the first matrix is the same as the Jacobian found above: equation (3.19).
This is another convenient feature of the temporal finite element method.

As mentioned above, choosing δu(t) = Yj(t) will make the sought derivatives dθ1h

du1,j
and dθ2h

du1,j

appear. In fact, if δu(t) = Yj(t), then θ1,u1,h(t) ≈ θ1,u1
(t) = d

dε

∣

∣

ε=0
θ1(t) (u1(t) + εYj(t), u2(t)) =

dθ1h

du1,j
(t) and θ2,u1,h(t) = d

dε

∣

∣

ε=0
θ2(t) (u1(t) + εYj(t), u2(t)) = dθ2h

du1,j
(t). The last equalities are un-

derstood by remembering the above discussion about the meaning of incrementing the control
variables by a constant times one of the shape functions. Solving the system of equations incre-
mentally for all time intervals then gives the node values required to evaluate the sought functions
using equations (3.38) and (3.39).

3.3.6 Gradients of equality constraints

The four initial conditions (see Table 2.1) are used in the equation system corresponding to the
first time interval in (3.16). The two remaining terminal conditions also need to be imposed and
this is done in the form of equality constraints in the optimization problem:

ceq =

[

c4
c5

]

=

[

θ1(tf ) − θ1f

θ2(tf ) − θ2f

]

= 0 (3.46)

Like for the inequality constraint vector, we define the discretized equality constraint vector ceq,h =
(c4h, c5h) as the vector resulting from replacing θ1(t) and θ2(t) by θ1h(t) and θ2h(t), respectively.
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The gradient of the discretized equality constraint vector with respect to the node values of the
discretized control moments is then:

∇ceq,h =

[

dc4h

du1,1

dc4h

du1,2
. . . dc4h

du1,M

dc4h

du2,1
. . . dc4h

du2,M

dc5h

du1,1

dc5h

du1,2
. . . dc5h

du1,M

dc5h

du2,1
. . . dc5h

du2,M

]

(3.47)

The derivatives of c4h and c5h with respect to the node values are:

dc4h

du1,j

=
dθ1h

du1,j

∣

∣

∣

∣

t=tf

dc4h

du2,j

=
dθ1h

du2,j

∣

∣

∣

∣

t=tf

dc5h

du1,j

=
dθ2h

du1,j

∣

∣

∣

∣

t=tf

dc5h

du2,j

=
dθ2h

du2,j

∣

∣

∣

∣

t=tf

(3.48)

where the derivatives are computed as described above.

3.4 The Fourier method

The Fourier method for optimal control is based on inverse dynamics, meaning that in each
iteration of the optimizer, the equations of motion are solved for the control given expressions
for the state variables. For a system of the given type, which has the control variables appearing
as linear terms in the equations of motion, the control is explicitly expressible in terms of the
state variables, which means that it can be evaluated exactly and without need for numerical
solution methods. Another interesting feature, which will be shown below, of the Fourier method
for optimal control is the possibility to incorporate the boundary conditions into the solver so that
they are satisfied automatically and accurately.

The idea central to the Fourier series method is the discretization of the considered system of
equations by approximation of the time histories of the state variables by the sum of a polynomial
and a truncated Fourier series expression. The unknowns of the optimization problem are then
the coefficients of this approximation. The optimization process will involve solving the equations
of motion for the control, which is what characterizes an inverse dynamics approach. The contents
of this section will be largely based on [13].

Just as with the temporal finite element-approach, the Fourier series method will be applied
to the first order version of the equations of motion: equation (2.21). The possible boundary
conditions for coordinate i are (from equation (3.4)):

θi(0) = θi0, θi(tf ) = θif

θ̇i(0) = θ̇i0, θ̇i(tf ) = θ̇if .
(3.49)

In recognition of the inverse dynamics-nature of the Fourier series method, the equations of motion
(2.21) are rewritten as follows:



















θ̇1 = θ̂1
θ̇2 = θ̂2

u1 = h1(θ1, θ2, θ̂1, θ̂2,
˙̂
θ1,

˙̂
θ2)

u2 = h2(θ1, θ2, θ̂1, θ̂2,
˙̂
θ1,

˙̂
θ2)

(3.50)

Since the considered system has fewer control variables (two) than state variables (four), it is
sufficient to replace only two of the state variables with approximations and calculate the others
from the equations of motion [13]. Since simple differentiation of the variables θi yields the
variables θ̂i, the most suitable choice in the present case is to choose θ1 and θ2 to replace by
approximations. θ̂1, θ̂2, u1 and u2 are then calculated using the equations of motion (3.50).

For a first order system, the following type of approximation of the chosen state variables is
suitable [13]:

θi(t) = Pi(t) + βi(t) (3.51)
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Pi(t) =

3
∑

j=0

pijt
j (3.52)

βi(t) =

K
∑

m=1

aim cos
2mπt

tf
+

K
∑

m=1

bim sin
2mπt

tf
(3.53)

(where pi0 is actually the constant term of the truncated Fourier series). We have here and will
in the following assume that t0 = 0.

3.4.1 Optimization

The natural choice for the set of unknowns pertaining to the optimization problem is the co-
efficients of the approximation: {p10, p11, p12, p13, a11, a12, . . . , a1K , b11, b12, . . . , b1K , p20, . . .}.
The optimization process may then proceed as defined by the following description of the process
of one iteration:

• Obtain the time histories of the variables chosen for approximation (in the present case: θ1

and θ2) from the coefficient vector that was the result of the last iteration

• Calculate the time histories of the rest of the state variables and of the control moments
using the equations of motion

• Calculate the value of the objective function and the values of the constraint functions

• Generate the next update of the coefficient vector.

There is a possibility, however, to incorporate the boundary values of the problem in such a way
that the number of unknowns in the optimization problem are reduced. Inserting the boundary
values (3.49) into the expression for the approximation; equation (3.51), gives:

θi(0) = Pi(0) + βi(0) = θi0

θi(tf ) = Pi(tf ) + βi(tf ) = θif

θ̇i(0) = Ṗi(0) + β̇i(0) = θ̇i0

θ̇i(tf ) = Ṗi(tf ) + β̇i(tf ) = θ̇if

(3.54)

Solving for the four coefficients of the polynomial, we obtain:

pi0 = −
K
∑

m=1

aim + θi0

pi1 = −
2π

tf

K
∑

m=1

mbim + θ̇i0

pi2 =
6π

t2f

K
∑

m=1

mbim +
3(θif − θi0)

t2f
−

2θ̇i0 + θ̇if

tf

pi3 = −
4π

t3f

K
∑

m=1

mbim +
2(θi0 − θif )

t3f
+
θ̇i0 + θ̇if

t2f

(3.55)

The set of unknowns pertaining to the optimization problem can therefore be chosen to be those of
the free initial and terminal values as well as the Fourier coefficients. For instance, for a problem
containing only one state variable, whose initial and terminal positions are known but whose
initial and terminal velocities are unknown, the vector of unknowns is: {θ̇0, θ̇f , a1, a2, . . . , aK ,
b1, b2, . . . , bK}. For this case, in each iteration of the optimization problem, the four coefficients
of the polynomial P (t) are calculated using θ̇0 and θ̇f from the last update of the vector of
optimization parameters as well as the two known boundary conditions. For the considered system,
having two generalized coordinates, a procedure like the one described above is performed for
each coordinate except that, for each one, only the end velocity is free (see Table 2.1). The
considered system thus has two free boundary conditions and six fixed. The number of optimization
parameters in the optimization problem is therefore 4K + 2.
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3.5 Discretization errors

The discretization errors introduced for each of the three methods can be split into three subcat-
egories:

1. Errors due to the discretization of the control, or, in the inverse dynamics case (the Fourier
method), the limb angles. Defining parameter:

• ode45: M (number of discretization points for each control variable).

• Temporal FEM: M (number of discretization points for each control variable).

• Fourier method: K (number of Fourier coefficients in the discretization of each limb
angle).

2. Errors from the numerical solution of the equations of motion. Defining parameter:

• ode45: RelTol, AbsTol and MaxStep.

• Temporal FEM: N (number of points (minus one) used for the discretization of the
time domain), tolerance used for the Newton method based solver of the equations of
motion.

• Fourier method: No error, explicit evaluation of the control is possible.

3. Errors from the numerical minimization process. Defining parameters: TolCon and TolFun.

For our studies of convergence of the objective function with increasing fineness of the discretiza-
tions of the free variables (see Sections 4.3 and 5.2), it is preferable that the error corresponding
to the discretization fineness (type 1 above) is the predominant one. This is necessary for the
values of the objective function for varying finenesses to be justly comparable. An error analysis
investigating the effect of the different types of errors mentioned above on certain features of the
solution is presented in Section 5.4.1.
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Chapter 4

Method

4.1 Implementation

To solve the numerical optimization problems connected to the three respective methods con-
sidered, Matlab is used. Mathematica was used for all algebraic manipulations involved in the
derivation of the equations of motion. The results were then exported for use in Matlab.

4.1.1 Optimization

For finding the minimum of the objective function, Matlabs function fmincon is used. fmincon

calls the objective function with the optimization parameters as input, which returns the value
of the function. fmincon finds the gradient of the objective function either by numerical means
or by evaluating an analytic expression if one such is supplied by the user. To check if the cur-
rent optimization parameters yield a feasible solution, functions returning the values of nonlinear
equality and/or inequality constraint functions are also called. In the same manner as for the
objective function, the gradients of the nonlinear constraint functions are either calculated or sup-
plied by the user. fmincon has a feature that enables checking the supplied gradients against ones
calculated by numerical differentiation to ascertain the validity of the former.

If the gradient of the objective function is sufficiently small and the solution is feasible, a
minimum is considered as having been found. fmincon has associated with it the parameters
TolFun and TolCon, which specify the tolerance of the termination conditions connected to the
objective function and the nonlinear constraint functions, respectively.

4.1.2 ode45 method

Matlabs function ode45 is used as one of the methods for solving the differential equations. This
solver uses a callback function [3] which returns the value of the function and its derivative. The
error tolerance can be set by using the two parameters RelTol and AbsTol. The solution at point
i is sufficiently accurate if equation (4.1) is fulfilled.

e(i) ≤ max(RelTol× y(i), AbsTol(i)) (4.1)

e(i) is the estimated error and y(i) is the value of the function at point i. Furthermore, the
maximum step size can be set using the MaxStep parameter. Suitable values for RelTol, AbsTol
and MaxStep are found from the convergence study described in Section 4.3.1. When using the
ode45 method, the gradient of the objective function is found by numerical differentiation. Since
the ode45 method uses direct dynamics, the unknowns in the optimal control problem are the
control moments. Thus, the optimization variables are the node values of the discretized moments.

4.1.3 Temporal finite element method

Analytical expressions for the gradients of the objective function and the nonlinear constraint
functions are available when using the temporal finite element method (see Section 3.3). The
accuracy in the solution of the equations of motion depends on the number of nodes in the time
mesh used: N . As the ode45 method, the temporal finite element method is a direct dynamics
approach, so the optimization variables are the node values of the discretized moments.

18 , Applied Mechanics, Master’s Thesis 2009:24



4.1.4 Fourier method

The gradients of the objective function and the nonlinear constraint functions are not supplied as
analytical expressions for the Fourier method and are thus calculated using numerical differentia-
tion. The Fourier method uses inverse dynamics, which means that the unknowns of the numerical
optimization problem are the coefficients of the parametrization of the limb angles (or a reduced
set, see Section 3.4).

4.2 Initial guesses

For the optimization routine to successfully find the minimum of the objective function, a suffi-
ciently good initial guess has to be made. If the initial guess is too far off, the optimization routine
might diverge or a local (not being the global) minimum might be found. One possible way of
avoiding these erroneous local minima is to apply some additional constraints (constraint number
two in Table 2.2, although physically valid, was added for this purpose), but that usually means a
higher computational cost in each iteration, so it is preferable to improve the initial guess instead.
This is a process involving ad hoc measures and much trial and error.

4.2.1 Temporal finite element method

To create an initial guess for use with the temporal finite element method, the steps below were
found to be suitable. The number of nodes in the discretizations of the applied moments was set
to 4.

1. With no movement of the hip, find the moments that moves the foot from the initial angles
to the final angles.

2. With the result from the previous step as an initial guess, increase the velocity by a small
amount (≈10%).

3. Repeat step 2 with the previous result as an initial guess until the final velocity is reached.

As the number of nodes in the discretizations of the applied moments are then increased, a new
guess is generated by interpolating over the previous guess.

4.2.2 ode45 method

The initial guess generated for the temporal finite element method can be used with the ode45

based solver or a guess can be generated following a similar scheme.

4.2.3 Fourier method

The initial guess for the optimization coefficients for the Fourier method is generated using the limb
angles from a previous solution found using the temporal finite element method. The coefficients
in the expressions for the limb angles used in the Fourier method are found by fitting the respective
expressions to the available temporal finite element solutions using a least squares based procedure.
The final velocities, also included in the reduced version of the optimization parameter vector for
the Fourier method (see Section 3.4), are simply taken from the temporal FEM solution.

4.3 Convergence study

The parameters controlling the fineness of the discretizations of the free variables are M for the
ode45 method and the finite element method and K for the Fourier method, as mentioned in
Section 3.5. It is of interest to find values of these parameters with respect to which the value
of the objective function has converged, that is, parameter values corresponding to values of the
objective function that change little with additional increases in the parameters. To this end, the
first step is to tune the tolerances associated with fmincon and, for the associated method, ode45,
so that the solution is stable enough with respect to the value of the objective function. For the
temporal finite element method and the Fourier method, this is achieved by simply lowering the
tolerances (TolFun and TolCon) in fmincon to a sufficiently low level such that the solution is
independent with respect to additional lowering of the tolerances. ode45 produces quite unstable
results with its default options. Therefore, both the tolerances in fmincon and the tolerance and
maximum step size for ode45 have to be lowered to generate a stable solution.
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4.3.1 ode45 method

The parameters that are varied during the convergence study of ode45 are AbsTol, RelTol,
MaxStep and fmincon’s TolFun. To reduce the number of parameters, AbsTol and RelTol are set
equal at all times.

1. Let TolFun decrease in steps of a factor 10 while all other parameters are fixed at their
default values. When the changes in the solution are small, a starting point is found.

2. To test MaxStep, let MaxStep vary such that the minimum number of time intervals in the
solution varies from 10 to 100. Ie, MaxStep = {∆t/10 ∆t/20 ∆t/30 ... ∆t/100} where
∆t = tf − t0. The value for MaxStep giving a stable/smooth enough E-curve is chosen as
the preferred one.

3. Repeat point number 2 when decreasing TolFun by a factor 10. When the change in the
solution is less than 0.1%, that value of TolFun is chosen as the preferred one.

4. Repeat point number 3 when decreasing AbsTol by a factor 10. When the change in the
solution is less than 0.1%, that value of AbsTol is chosen as the preferred one.

5. The preferred number of node points in the discretizations of the moments, M ∗, is chosen as
the one for which its double value means a difference in the value of the objective function
of at most 0.5%.

4.3.2 Temporal finite element method

Since both the number of nodes in the discretization of the limb angles, N , and the number of
nodes in the discretization of the applied moments, M , affect the error, sufficiently large values
for these parameters must be found. First, a sufficiently large value for N is found by solving for
increasing N (N = 25, 50, 75, 100, 150) and for each N solve for increasing numbers of node points
in the discretization of the applied moments (M = 4, 5, 6...). When the value of E changes with
a maximum of 0.1% when N is doubled, that value of N is denoted N ∗. M∗ is found when the
doubled number of node points yields an E-value within an 0.5% range.

4.3.3 Fourier method

The Fourier method uses the trapezoidal rule to calculate the integral in the objective function E.
The suitable number of node points for this procedure is chosen as the one for which an increase
by a factor of 2 keeps the value of E within 0.1%.
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Chapter 5

Results and discussion

5.1 Problem specification

In the present section, the parameter values used in all of the simulations, unless otherwise indi-
cated, are presented. The parameters are taken from [9] unless otherwise indicated.

Table 5.1: Notation and parameter values.
Symbol Value Description
m1 6.86 kg mass of thigh
m2 3.28 kg mass of shank
mH - mass of hip platform (doesn’t enter in equations of motion)
mA 0 kg mass of ankle/foot
a1 0.460 m length of thigh
a2 0.430 m length of shank
r1 0.180 m distance from hip joint to center of mass of thigh
r2 0.181 m distance from knee joint to center of mass of shank
J̄1 0.1188 kgm2 moment of inertia about center of mass of thigh
J̄2 0.0504 kgm2 moment of inertia about center of mass of shank
t0 0 s initial time of motion
tf 0.42 s, see below final time of motion
L 1.42 m, see below total length of one step
λ1 1 objective function weighting factor
λ2 0.4 objective function weighting factor

The values of λ1 and λ2 were decided upon independently of external references. A comparison
when λ2 is varied is later made (Section 5.3.4). The motion of the hip platform is parameterized
as shown in equation (2.14). The following values of the parameters are chosen:

Table 5.2: Notation and parameter values pertaining to the prescribed hip motion.
Symbol Value
V 1.70 m/s, see below
h0 0.64 m, see below
B1 0.021 m [10]
B2 0.016 m [10]
ω 6.28 s−1, see below

The final time tf of the motion was chosen towards the high end of the swing phase times found
in the available references: [8], [9]. h0 is chosen so that the foot is at ground level at the start
of the swing phase, Section 5.1.1 contains more details. ω is defined as the angular frequency
corresponding to the time of one whole period of the walking process, that is, the time of two
steps. We denote this time by T , so that ω = 2π/T . By symmetry, the time of one step is exactly
half of that and the corresponding angular frequency thus exactly the double; 2ω. By [11], one
swing phase lasts 42% of one period, so ω = 2π/(tf/0.42) ≈ 6.28 s−1.
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5.1.1 Boundary conditions

The initial conditions shown in Table 5.3 below are taken from [8]. The terminal conditions are
calculated as described below.

Table 5.3: Boundary conditions for the motion
Parameter Value at t = 0 Value at t = tf
θ1(t) θ10 = −10◦ θ1f = 46.27◦

θ2(t) θ20 = −40◦ θ2f = 5.86◦

θ̇1(t) θ̇10 = 0 θ̇1f , free
θ̇2(t) θ̇20 = 0 θ̇2f , free

Both the step length L and the constant component of the velocity of the hip V are chosen based
on the end angle configuration θ1(tf ) = 40◦ and θ2(tf ) = 10◦. Figure 5.1 shows two snapshots of
the walking process, using these end angles, which are one half period (i.e. the time of one step:
T/2) apart. Note that while the backward leg in each snapshot touches the ground (by definition
of h0), because the limbs are different in length, the forward leg doesn’t.

PSfrag replacements

∆1

∆1

∆1

∆2

∆2∆2

a1

a2

Figure 5.1: The construction used to calculate L and V .

V is chosen as the velocity required to traverse the distance ∆1 +∆2 in the time of one step: T/2,
that is:

V = (∆1 + ∆2)/(T/2) = 2(a1 sin(10◦) + a2 sin(40◦) + a1 sin(40◦) + a2 sin(10◦))/T.

L is chosen as the total distance traversed by the foot in the x-direction using the configuration
described above:

L = 2(∆1 + ∆2) = 2(a1 sin(10◦) + a2 sin(40◦) + a1 sin(40◦) + a2 sin(10◦)).

The terminal limb angles for which the step length is equal to L, for which the foot is at ground
level and which satisfy the knee constraint (see below), are subsequently solved for, which is done
using fmincon. The result is shown in Table 5.3. A visualization of the boundary conditions as
well as the motion of the hip during the swing phase can be seen in Figure 5.2.
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Figure 5.2: The start and end configurations of the system and the motion of the hip node in the
swing phase of a step.

From the initial conditions, we can now also see that h0 = a1 cos θ1(0) + a2 cos θ2(0) = 0.64 m.

5.1.2 Constraints

Using the above boundary conditions and setting δ = 0.1, the constraints introduced in Section
2.1.4 become:

Table 5.4: Constraints on the motion
Constraint Description
θ2(t) − θ1(t) ≤ 0 The opening angle of the knee must be negative.
θ1(t) ≥ −10.1◦ The thigh is not allowed to swing too far back.
yA(t) ≥ 0 The foot must be above or at ground level at all times.

The value of δ was an arbitrary choice that was found to work numerically. Although the
second constraint is physically valid, it is also necessary in order to avoid solutions corresponding
to local (not being global) minima in the optimization problem which involve clockwise rotation
of the leg around the hip.

5.2 Convergence study

The behavior of the objective function corresponding to the optimal motion, E, as a function of the
number of optimization parameters in the numerical optimization problem, is investigated in this
section. The aim is to find values of the parameters controlling the fineness of the discretizations
of the free variables (M for the ode45 method and the finite element method and K for the Fourier
method) that result in converged values of the objective function (see section 4.3). These values
of the parameters are denoted M∗ and N∗, respectively, and are considered to represent a “good
enough” solution of the optimal control problem. In fact, there is more to tune than just these
parameters, namely the tolerances involved in fmincon and, for the associated method, ode45.
The details on how these were chosen are discussed in Section 4.3.

5.2.1 ode45

Figure 5.3 shows how the value of the objective function E varies with the number of node
values in the discretizations of the control moments M and with the number of optimization
parameters (2M) for some different values of MaxStep. Note that the curves for MaxStep=∆t/80
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and MaxStep=∆t/100 coincide. The lowest value of M used was 4, a minimum could not be found
for lower settings.

Although MaxStep=∆t/80 satisfies the criteria for convergence, MaxStep is chosen to be ∆t/100
to make sure the relative error shown in Figure 5.21 is strictly decreasing in the vicinity of the
values of the tolerances TolFun and TolCon that give convergence. The set of parameters that
were found to satisfy the convergence criteria mentioned in Section 4.3.1 is presented in Table 5.5.
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Figure 5.3: The value of the objective function E plotted against M and number of optimization
parameters for some different values of MaxStep.

Table 5.5: Parameter values satisfying the convergence criteria for the ode45 method.
Parameter Value
TolFun, TolCon 10−5

MaxStep ∆t
100

RelTol, AbsTol 10−6

M 9

Note that M = 9 means 2M = 18 optimization parameters.

With increasing fineness of the discretization, it is expected that the solution of the optimal
control problem will converge against a theoretical exact solution. This means that all charac-
teristics of the solution will converge towards stationary values. So should also, as discussed, the
calculated energy E of the optimal solution. In this respect, the data presented in Figure 5.3
shows satisfactory behavior.

5.2.2 Temporal finite element method

To find suitable settings for the optimization tolerances, different values were tested. Figure
5.4 shows the objective function E plotted against the number of node values in the discretiza-
tions of the control moments M and the number of optimization parameters (2M) for tolerances
TolFun=10−5, TolCon=10−5 while Figure 5.5 shows the same but with tolerances TolFun=10−6,
TolCon=10−6. Both plots include curves for a few different values of N . The lowest value of M
used was 4, a minimum could not be found for lower settings. The set of parameters for which
the the convergence criteria were deemed to be fulfilled is shown in Table 5.6.
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Figure 5.4: The value of the objective function E plotted against M and number of optimization
parameters 2M for optimization tolerances TolFun=10−5, TolCon=10−5, for some different N .
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Figure 5.5: The value of the objective function E plotted against M and number of optimization
parameters 2M for optimization tolerances TolFun=10−6, TolCon=10−6, for some different N .

Table 5.6: Parameter values satisfying the convergence criteria for the temporal finite element
method.

Parameter Value
TolFun, TolCon 10−6

N 75
M 9

Note that M = 9 means 2M = 18 optimization parameters.
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When the tolerances TolFun and TolCon had been adjusted to make the associated errors
in the objective function E decrease sufficiently, the objective function curves for the temporal
finite element method also show the expected convergent behavior discussed above. For the finer
tolerances, the curves are smooth for all values of N . Also, it is clear how the curves converge
towards a fixed position as N increases.

5.2.3 Fourier method

Figure 5.6 shows the value of the objective function E corresponding to the optimal motion as
solved using the Fourier method, plotted against the number of Fourier coefficients K as well as
the number of optimization parameters (4K + 2). The lowest value of K used was 3, a minimum
could not be found for lower settings. The set of parameters found to satisfy the criteria for
convergence is shown in Table 5.7.
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Figure 5.6: Optimized objective function value E plotted against number of Fourier coefficients K
and number of optimization parameters 4K + 2, for some different tolerances in the optimization
routine.

Table 5.7: Parameter values satisfying the convergence criteria for the Fourier method.
Parameter Value
TolFun, TolCon 10−4

K 3

Note that K = 3 means 4K + 2 = 14 optimization parameters.
The objective function curves for the Fourier method, too, show the expected convergence

behavior, although the optimization tolerances had to be properly tuned before a satisfying result
could be obtained.

5.3 Characteristics of optimal motion

In this section, the characteristics of the three solutions of the optimal control problem obtained
using the three respective methods are explored. The chosen solution in each case is the one
corresponding to that setup of the discretization and tolerance parameters of the problem (those
controlling the fineness of discretizations as well as solver and optimization tolerances) deemed to
be sufficient to generate a solution close enough to the exact one (see Tables 5.5, 5.6 and 5.7).
Note that for the optimal solution, no constraint was active, except for the fact that constraint
number 3 in Table 5.4 was active at the end points t = t0 and t = tf .

26 , Applied Mechanics, Master’s Thesis 2009:24



Figure 5.7 is a visualization of the motion of the leg according to the optimal solution obtained
from the temporal finite element method. In fact, all three methods produce very similar solutions,
as shown in Figure 5.8. Note that the curves for the ode45 method and the temporal finite element
method overlap in this figure. The solutions obtained seem to adequately resemble intuitive notions
of human motion, which is pleasing.
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Figure 5.7: Visualization of the motion of the leg during the swing phase as solved by the temporal
finite element method: trajectories of the hip and the ankle as well as snapshots of initial, final
and some intermediate positions of the leg.
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Figure 5.8: The trajectory of the ankle according to the chosen solutions for the three respective
methods.

5.3.1 Objective function values

The values of the objective function E corresponding to the chosen solutions for the three respective
methods are shown in Table 5.8.
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Table 5.8: Values of the objective function E corresponding to the chosen solutions for the three
respective methods.

Method E E1 E2

ode45 19.66 8.97 26.72
Temporal FEM 19.67 8.98 26.73
Fourier 19.59 8.97 26.57

The objective function value corresponding to the chosen solution is thus lower for the Fourier
method than for the other two methods. As seen before, the number of optimization parameters
used for the chosen Fourier method solution (14) is also lower than the number used for the other
two methods (18). Thus, it seems that the approach used in the Fourier method to approximate
the free variables by functions of the type (3.51) – (3.53) is better suited for the given type of
problem than the approach of using piecewise linear functions on an evenly spaced time mesh to
approximate the control variables. The inherent smoothness in the Fourier approximation versus
the lack of the same in a piecewise linear approximation might be the reason. It is probable,
however, that the piecewise linear approximations employed in the ode45 method and the temporal
FE method would work better for optimally chosen spacings in the meshes, perhaps giving better
results than the Fourier method for the same number of optimization parameters. This subject
has not been explored here, however.

5.3.2 Control torques

The time histories of the control torques u1(t) and u2(t) corresponding to the chosen solution are
plotted for each method in Figure 5.9.
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Figure 5.9: Time histories of the control torques u1(t) and u2(t) corresponding to the chosen
solution for each of the three methods.

While the ode45 method solution and the temporal FEM solution closely concide, the Fourier
method solution behaves differently. As seen in Table 5.8 however, the Fourier solution has slightly
greater success with respect to the value of the objective function E. The figure also indicates that,
at least for u2(t), a different spacing of the time mesh used for the control variable discretizations
for the former two methods will be more effective. It seems probable that concentrating the time
points more to the first half of the time interval in the u2(t) case would yield a better solution
and a lower value of E.

Figure 5.10 shows u1(t) and u2(t) corresponding to the chosen solution using the ode45 method,
for different numbers of node points in the discretizations of the moments, M . The darker the
line, the higher the value of M . Figure 5.11 shows the same thing but for the temporal finite
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element method. Figure 5.12 shows the same thing but for the Fourier method. Also, K is here
the varying parameter between curves.
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Figure 5.10: Time histories of the control torques u1(t) and u2(t) corresponding to the chosen
solution using the ode45 method, for different values of M . Darker line: higher value of M .
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Figure 5.11: Time histories of the control torques u1(t) and u2(t) corresponding to the chosen
solution using the temporal FE method, for different values of M . Darker line: higher value of M .
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Figure 5.12: Time histories of the control torques u1(t) and u2(t) corresponding to the chosen
solution using the Fourier method, for different values of K. Darker line: higher value of K.

These figures show from another point of view than the plots in Section 5.2 how the solution
converges to a stationary one for increasing fineness of the discretizations.

Figure 5.13 shows u1(t) and u2(t) corresponding to the chosen solution for each of the three
methods, with the exception that large values of the discretization parameters are used: M = 22
for the ode45 method, M = 30 for the temporal FE method and K = 20. Notice how the Fourier
method curve and the temporal finite element method curve closely resemble each other.
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Figure 5.13: Time histories of the control torques u1(t) and u2(t) for all three methods using large
values of the discretization parameters: M = 22 for the ode45 method, M = 30 for the temporal
FEM and K = 20.

5.3.3 Limb angles and angle velocities

The time histories of the limb angles θ1(t) and θ2(t) corresponding to the chosen solution are
plotted for each method in Figure 5.14. The limb angle velocities θ̇1(t) and θ̇2(t) are shown in
Figure 5.15.
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Figure 5.14: Time histories of the limb angles θ1(t) and θ2(t) corresponding to the chosen solution
for each of the three methods.
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Figure 5.15: Time histories of the limb angle velocities θ̇1(t) and θ̇2(t) corresponding to the chosen
solution for each of the three methods.

It is interesting to note that the time histories of the limb angles and the limb angle velocities
clearly coincide to a much higher degree between the three methods than those of the control
torques.

5.3.4 Dependency on λ2

Figure 5.16 shows how the motion of the ankle corresponding to the chosen optimal solution
changes with λ2 for all three methods. The comparison was made in order to obtain an un-
derstanding of the impact of different choices of weighting between E1 and E2 for the objective
function E. As can be seen, no significant changes occur, despite the fact that E2 typically is close
to a factor of 3 larger than E1 (see Table 5.8).
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Figure 5.16: The motion of the ankle corresponding to the chosen optimal solution for all three
methods for different values of λ2.

5.4 Evaluation of numerical methods

5.4.1 Error estimation

This section contains plots of the errors in the values of the objective function E and its two
components E1 and E2, as a function of certain ones of the discretization and tolerance parameters
of the problem. The errors investigated are relative errors, where the quantity compared against
in each case (denoted E∗) is the one corresponding to a set of discretization and tolerance settings
deemed to be the among the best ones realistically possible.

The tolerance of the Newton solver used in each iteration of the solver for the limb angle nodes
in the temporal finite element method was not varied in the following error analysis. To justify
this, a comparison using the standard value 10−6 and the value 10−14, which is almost the machine
precision, was made, showing that the results differ by very little: in a test made with the number
of optimization parameters varying from 8 to 40, the results differed by at most .0161%. Thus, the
discretization error associated with the tolerance 10−6 is negligible. Each one of the discretization
and tolerance parameters mentioned in Section 3.5, except for the aforementioned Newton method
tolerance, are represented in the different plots below.

Figure 5.17 shows the value of the objective function E for varying numbers of optimization
parameters for the different methods. Tolerances are chosen according to the chosen solutions
presented in Tables 5.5 – 5.7. The figure shows that the objective function value corresponding
to the Fourier method is always lower than that of the other two methods for the same number
of optimization parameters, illustrating the superiority of the former compared to the others in
solving the given type of problem. A possible reason for this, as discussed in Section 5.3.1, is that
the types of functions employed as approximations in the Fourier method are better suited for
representing the type of motion inherent to the given problem. However, the figure also indicates
that the objective function value is still decreasing for the temporal FE method at the highest
numbers of optimization parameters considered. Here, the value corresponding to the Fourier
method has long since converged.

The reason that the value of the objective function was not plotted for numbers of optimization
parameters above 44 for the ode45 method was that for higher numbers, the objective function
value showed very unstable behavior.

Figure 5.18 shows the relative error (E∗ − E∗

n)/E∗ plotted against minimum number of time
steps allowed (which is equal to ∆t/MaxStep) for the ode45 method. E∗

n denotes the value of the
objective function corresponding to a certain value of the varying parameter.

32 , Applied Mechanics, Master’s Thesis 2009:24



10 15 20 25 30 35 40 45 50 55 60
19.5

19.6

19.7

19.8

19.9

20

20.1

20.2

20.3

20.4

Number of optimization parameters

E

 

 
ode45
TFEM
Fourier

Figure 5.17: Objective function value as a function of the number of optimization parameters for
the three methods.
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Figure 5.18: Relative error versus minimum number of time steps allowed (∆t/MaxStep) for the
ode45 method.

The error shows expected behavior in that it converges towards zero for increasing values of the
minimum number of time steps.

Figure 5.19 shows the relative error (E∗ − E∗

n)/E∗ plotted against the tolerances AbsTol and
RelTol (set equal) for the ode45 method.
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Figure 5.19: Relative error versus the tolerances AbsTol and RelTol (set equal) for the ode45

method.

The behavior of the relative error is not quite as expected: for decreasing tolerances, no clear
decrease in the error occurs. The reason might be that the error connected to the considered
tolerances is negligible compared to other errors for the whole interval considered in the plot.

Figure 5.20 shows the relative error (E∗ − E∗

n)/E∗ plotted against number of discretization
points (minus one), N , used for the discretization of the time domain in the temporal FEM solver.
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Figure 5.20: Relative error versus number of discretization points (minus one), N , used for the
discretization of the time domain in the temporal FEM solver.

The plot shows a clear convergence of the error towards zero for increasing N .

Figure 5.21 shows the relative error (E∗ − E∗

n)/E∗ plotted against the tolerances TolFun and
TolCon (set equal) for each of the three methods.
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Figure 5.21: Relative error versus the tolerances TolFun and TolCon (set equal) for each of the
three methods.

The error shows, for all three methods, a tendency to decrease for decreasing values of the toler-
ances, as it should.

5.4.2 CPU time

As discussed, the different methods have different computational benefits. The ode45 method
uses precompiled code, which significantly increases the efficiency of its execution. The temporal
finite element method has the possibility to supply analytical expressions for the gradients of the
objective and constraint functions to the optimizer. The Fourier method enables an exact solution
of the equations of motion and an efficient way of satisfying the boundary conditions. A plot of the
CPU time required to solve the optimization problem versus number of optimization parameters,
for each of the three methods, is shown in Figure 5.22. Except for the discretization parameters,
the settings used for this plot are the ones in Tables 5.5 – 5.7.
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Figure 5.22: CPU time required to solve the optimization problem versus number of optimization
parameters, for each of the three methods.
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It seems that none of the three methods clearly yield consistently lower computational times
than any other. It should be mentioned, however, that there is still much to do to make sure
the different methods are efficiently coded. This is especially true for the temporal finite element
method and the Fourier method. This task has not been given the highest priority during the
project so there is potentially room for improvement in this respect. Also, the quality of the initial
guess has an effect on the solution time. The guesses are in closely correspondence, however, since
they are calculated from the same original guess, as described in Section 4.2.
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Chapter 6

Conclusions

In this contribution, three methods for solving a biomechanics-related optimal control problem
were analyzed and compared: a method based on Matlabs ode45, one based on a temporal finite
element method and one based on Fourier series approximations and inverse dynamics. The
considered mechanical system was a model of a human leg during the swing phase of a step
and parameters based on data from real human gait were chosen. The numbers of optimization
parameters (numerical degrees of freedom in the optimization problem) that were deemed necessary
for a good enough solution of the optimal control problem for tolerance settings found suitable
were 18, 18 and 14 for the respective methods. The Fourier method was thus the most efficient for
solving a problem of the given type. The reason might be that the types of functions employed as
approximations in the Fourier method are better suited for representing the type of motion inherent
to the given problem. The characteristics of the chosen solutions were very similar between the
methods and plots and animations of the motion of the leg, satisfyingly enough, looked quite true
to life.

Numerical optimization is a complex problem so satisfactory solutions could sometimes be
quite evasive. A good initial guess and properly tuned tolerances were necessary to obtain good
results and the work with developing a system for assuring this took up a large portion of the time
spent on the project. When such a system is in place however, the optimization routine can be
quite powerful and able to efficiently solve even the fairly large-scale problems resulting from the
highest settings of the discretization parameters used in this project.

The project ended up having a chiefly numerical focus and the model of the leg was never ex-
tended to make it more realistic, therefore comparisons with test results were not made. However,
most of the original goals of the project were achieved. Optimal control solvers based on each
of the three methods were successfully constructed and they all gave similar results. The feature
to supply analytical expressions for the gradients of the objective function and the constraint
functions was successfully implemented in the temporal finite element based optimizer.
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6.1 Future work

A functional framework in Matlab for solving the optimal control problem using any one of the
considered methods has been established and further development of the methods used can quite
easily be incorporated in the code. For example, a system for error estimation connected to a
local mesh refinement routine could be built into the temporal finite element solver. In fact,
this is considered to be the natural next step in the development of the method and one that
holds promise in terms of increased computational effectivity of the method. The next step in
the development of the Fourier method could be to explore the possibility of supplying analytical
expressions for the gradients of the objective function and the constraint functions.

The Matlab code was written with modularity in mind and the mechanical system used in the
code is exchangeable to some degree. It could, for instance, be replaced by a more advanced model
for human gait, or even by a completely different system.

Also, much is still to be done to optimize the performance of the code, a task that has not
been given the highest priority during the work on the thesis. The comparison of the different
solution methods regarding CPU-time will not be fair until each of their implementations are as
efficiently coded as they can be. Translating the code into another programming language is also
a thinkable option to improve its performance.
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