
DF

Semi-automatic Annotation
for 3D Object Detection using
Bayesian Smoothing

Master’s thesis in Computer Science – Algorithms, Languages and Logic &
Systems, Control and Mechatronics

JOHAN HYREFELDT & BJÖRN VIBERG

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

Master’s thesis 2019

Semi-automatic Annotation for
3D Object Detection using Bayesian Smoothing

Johan Hyrefeldt & Björn Viberg

DF

Department of Electrical Engineering
Division of Signal Processing and Biomedical Engineering

Chalmers University of Technology
Gothenburg, Sweden 2019

Semi-automatic Annotation for 3D Object Detection using Bayesian Smoothing

JOHAN HYREFELDT BJÖRN VIBERG

© JOHAN HYREFELDT, BJÖRN VIBERG, 2019.

Supervisors:
Lennart Svensson, Department of Electrical Engineering
Daniel Langkilde, Annotell
Examiner:
Lennart Svensson, Department of Electrical Engineering

Master’s Thesis 2019
Department of Electrical Engineering
Division of Signal Processing and Biomedical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Gothenburg, Sweden 2019

iv

Semi-automatic Annotation for 3D Object Detection using Bayesian Smoothing
JOHAN HYREFELDT
BJÖRN VIBERG
Department of Electrical Engineering
Chalmers University of Technology

Abstract

In the field of autonomous driving, it is important to localize surrounding objects
such as cars, pedestrians and cyclists using sensor data, such as camera or LiDAR
data. To this end, one common technique is to use neural networks to perform
object detection, where the purpose is to classify all objects and produce bounding
boxes around them. To train neural networks for object detection, large datasets
annotated with bounding boxes are needed. The extensive amount of annotations
needed in these datasets normally involve many hours of manual labor, making them
very expensive.

In this thesis, a method to increase the level of automation in the annotation pro-
cess for 3D bounding boxes is presented. The method uses an iterated posterior
linearization smoother – a smoothing algorithm based on Bayesian inference – to
estimate a trajectory for a particular object sequence. The trajectory can then be
used to propose bounding boxes at intermediate time instances. In this project we
focus on trajectory estimation for moving cars.

The method was tested using four motion models that describe the kinematics of
the cars in different ways: constant velocity, constant acceleration, coordinated turn
and the bicycle model. Results for these models were compared and the non-linear
models – coordinated turn and the bicycle model – outperform the simpler linear
models – constant velocity and constant acceleration. Furthermore, coordinated
turn yields slightly better results than the bicycle model, in the sense that it allows
for a higher level of automation while at the same time being simpler in its design.

Keywords: Semi-automatic annotation, Trajectory estimation, Bayesian inference,
Smoothing, IPLS, Square-root smoothing

v

Acknowledgements

Firstly, we would like to express our gratitude examiner and supervisor Prof. Lennart
Svensson, from the department of Electrical Engineering, for his support, great in-
terest and many ideas that helped us a lot in this thesis project. We would also
like to thank our company supervisor Daniel Langkilde, co-founder and CPO at
Annotell, for his commitment and weekly meetings that gave us useful insights. We
would also like to thank Dr. Ángel García-Fernández for his guidance in square-root
implementations of smoothing algorithms. Finally, we want to say that we have had
a great time with the people at Annotell and we have really appreciated their good
company.

Johan Hyrefeldt & Björn Viberg, Gothenburg, June 2019

vii

Contents

List of Figures xi

List of Tables xv

1 Introduction 1
1.1 Quality and Human Intervention . 1
1.2 Annotation of Sequences . 2
1.3 Aim . 2
1.4 Dataset . 3
1.5 Problem Formulation . 3
1.6 Related Work and Contributions . 4
1.7 Limitations . 5

2 Theory 7
2.1 Probabilistic State Space Models . 7
2.2 Posterior Approximation . 8
2.3 Fixed-Interval Smoothing . 9

2.3.1 Filtering . 9
2.3.2 Kalman Filtering . 9
2.3.3 Rauch-Tung-Striebel Smoothing 11

2.4 Iterated Posterior Linearization Smoother 12
2.4.1 Statistical Linear Regression 12
2.4.2 Iterative Improvement of Enabling Approximations 13
2.4.3 Initialization . 14

2.5 Square-root Implementations . 15
2.5.1 QR-decomposition . 16
2.5.2 Square-root Prediction . 16
2.5.3 Square-root Update . 18
2.5.4 Square-root Smoothing . 19
2.5.5 Square-root SLR . 20

2.6 Motion Models . 21
2.6.1 Discretization of Motion Models 24
2.6.2 Measurement Noise . 26

3 Methods 31
3.1 Smoothing Implementations . 31

ix

Contents

3.1.1 Termination . 32
3.1.2 Shift of Observed Angles . 33

3.2 Motion Model Evaluation . 33
3.2.1 Fast Sampling . 34
3.2.2 Metrics for Evaluation . 34
3.2.3 Selected Sequences from Nuscenes 35

3.3 Annotation Strategies . 35
3.3.1 Static Annotation Strategy . 36
3.3.2 Adaptive Annotation Strategy 38
3.3.3 Design of Experiments . 38

4 Results 41
4.1 Static Annotation Strategy . 41

4.1.1 Non-stationary Measurement Noise 41
4.1.2 Stationary Measurement Noise 43

4.2 Adaptive Annotation Strategy . 46

5 Discussion 51
5.1 Motion Models . 52
5.2 Failing Sequences . 54

5.2.1 Insensible Trajectory Estimations 54
5.2.2 Motion Model Linearization Failures 54

5.3 Measurement Noise Models . 57
5.3.1 Implications of an Overconfident Measurement Model 57
5.3.2 Distance Dependent Measurement Accuracy 58

5.4 Annotation Strategies . 59
5.4.1 Combining Static and Adaptive Annotation 59
5.4.2 Change from Relative to Inertial Reference Frame 60

6 Conclusion 61
6.1 The Best Performing Motion Model 61
6.2 The Achieved Level of Automation 61
6.3 Future Work . 62

6.3.1 Better Approximations of Process Noise 62
6.3.2 Modeling of Measurement Noise 62
6.3.3 Object Detection and Tracking 63
6.3.4 Optimal Choice of Next Time Step to Annotate 63

Bibliography 65

A Appendix 1 I
A.1 Adaptive Annotation Implementation Details I

x

List of Figures

1.1 The trajectory estimation problem can be represented graphically as
a state space model. The hidden states, xk, are the states that are
subject to estimation and the observed states, yk, are the states which
in this thesis will be the human annotations. The observed vectors
will also be referred to as measurements. 4

2.1 The state evolution can be modeled as a state space model. The blue
nodes, xi represent the cuboid at different time instances and the
orange nodes represent the measurements of the state. The horizontal
arrows represent the motion model and the vertical arrows represent
the measurement model. 8

2.2 After the initialization has been run there exist artificial measure-
ments, here denoted ỹk, that will allow the first solution of the it-
erated posterior linearization smoother (IPLS) iteration to be closer
to the optimum compared to if the IPLS only had had the original
measurements available to make the estimation. 15

2.3 The figure describes geometrical interpretation of the notation used
in the bicycle model (2.65). 23

2.4 The difficulty of making annotations increase with the distance to the
object. For the case in Figure 2.4b very little information is provided
to the annotator to create the annotation since the car covers few
pixels and only have one LiDAR1 point. 28

2.5 These three functions were used to map the distance between the sen-
sor and object to the corresponding measurement noise parameters.
Note that the different functions do not share their maximum y-value. 29

3.1 This histogram shows the distribution of how many annotations the
422 chosen sequences contain. The chosen sequences are of the object
type vehicle.car and at least one annotation in every sequence has the
attribute vehicle.moving. 36

3.2 Examples of the static annotation strategy in two annotation se-
quences. The purple boxes are the selected boxes that are members
of Ys. In the left sequence step size 4 was used and in the right step
size 6 was used. 37

1light detection and ranging

xi

List of Figures

3.3 Examples of the adaptive annotation strategy in one annotation se-
quence from scene-0031. The purple boxes are the selected anno-
tations from the dataset that are observed by the smoother when
making trajectory estimates. The other boxes are the annotations
from the dataset used to decide when no more boxes is needed for the
smoother to estimate a good trajectory. Note that the purple annota-
tions that are added to the observed annotations are not equidistant,
suggesting that some annotations hold more information than others. 39

4.1 Results from the static annotation strategy when using non-stationary
measurement noise. The sequences that have been used to compute
these results are the ones that have successfully estimated trajectories. 42

4.2 Results from the static annotation strategy when using non-stationary
measurement noise. The sequences that have been used to compute
these results are the turning sequences that have successfully esti-
mated trajectories. 43

4.3 Results from the static annotation strategy when using non-stationary
measurement noise. The sequences that have been used to compute
these results are the straight sequences that have successfully esti-
mated trajectories. 43

4.4 Results from the static annotation strategy when using stationary
measurement noise. The sequences that have been used to compute
these results are the ones that have successfully estimated trajectories. 44

4.5 Results from the static annotation strategy when using stationary
measurement noise. The sequences that have been used to compute
these results are the turning sequences that have successfully esti-
mated trajectories. 45

4.6 Results from the static annotation strategy when using stationary
measurement noise. The sequences that have been used to compute
these results are the straight sequences that have successfully esti-
mated trajectories. 45

4.7 A measure of the level of automation is how many annotations the
human has to provide in order to achieve a minimum intersection over
union (IoU)-value. The figure present how many annotations that
were required for the different motion models in different scenarios
measured by the percentage of used annotations. 47

4.8 In this figure the percentage of human annotations used to achieve
a minimum IoU above a threshold specified by the x-value in the
graphs. In the top figure all sequences have been consolidated and in
the bottom two figures the sequences have been split between turning
and straight sequences. Coordinated turn (CT) requires the least
number of human annotations to achieve a minimum IoU above the
different thresholds. 48

xii

List of Figures

4.9 “Min IoU reached” is the number of sequences that reached the spec-
ified minimum IoU level in the adaptive annotation algorithm. “Min
IoU not reached” is the number of sequences for which a trajectory
was estimated but never reached the minimum IoU level. 49

5.1 Two car sequences that showcase the noise in the process of creating
annotations. To the left: A car standing still for most time instances,
but starts to move in the end of the sequence. To the right: A
moving sequence with annotations that slightly deviate from a smooth
trajectory. 51

5.2 This figure aims to visualize that the non-linear motion models yields
estimated trajectories that are more likely to happen in city traffic.
The estimates for the linear models show behaviours where the head-
ing and yaw of the car match in such a way that would require cars
to slide. This does not happen in the dataset but our current metrics
can not penalize that the estimated trajectories suggest this. 53

5.3 The trajectory estimations for this sequence using step size 6, 8 and
10 were classified as failed (results for step size 6 are omitted here).
The used prediction frequency is 10 Hz but the estimated trajectory
(yellow boxes) is plotted at 5 Hz. The step sizes 2 and 4 generate
more sensible results. Note that the fourth annotation contains a lot
of information but is never observed. 55

5.4 For this sequence a linearization failure occurred for static annotation,
step size 2 while using bicycle model (BM) as motion model. In the
beginning of the sequence the car has stopped but the annotations
are noisy for those time instances. Relying too much on those boxes
would imply sideways movement of the car. 56

5.5 This figure shows estimated trajectories (yellow boxes) drawn on top
of the Nuscenes annotation sequence shown in Figure 5.1. The purple
boxes are the observed annotations and the difference between the
estimations is the model used for Rk. These estimation are the result
of the static annotation strategy with step size 6. 58

6.1 The figure shows the state space model that could be used to include
object detections in the state estimates. The blue nodes (xi) are the
hidden states (pose of cuboid) and the orange nodes are observation
of the states, yi being human annotations and zi output from object
detections. 63

xiii

List of Figures

xiv

List of Tables

3.1 The number (column two) of annotations used as input to the smoother
for the static annotation strategy, and proportion of total annotations
as a percentage (column three) that this represents. 37

4.1 The numbers of sequences that were evaluated in the static annotation
strategy when using non-stationary measurement noise are specified
as “Number of sequences used”. “Number of sequences not used” is
the number of sequences for which the smoother failed. 42

4.2 The number of sequences that were evaluated in the static annotation
strategy when using stationary measurement noise are specified as
“Number of sequences used”. “Number of sequences not used” is the
number of sequences for which the smoother failed. 44

6.1 The incidence of human intervention for the CT model using non-
stationary measurement noise. These values correspond to the plotted
line for CT in Figure 4.7a. 62

xv

List of Tables

Abbreviations and Acronyms

AHS average heading similarity

BM bicycle model

CA constant acceleration

CT coordinated turn

CV constant velocity

IoU intersection over union

IPLS iterated posterior linearization smoother

KF Kalman filter

KLD Kullback-Leibler divergence

LiDAR light detection and ranging

MAP maximum a posteriori

MSE mean square error

pdf probability density function

RADAR radio detection and ranging

RMSE root-mean-square error

RTS Rauch-Tung-Striebel smoother

SLR statistical linear regression

SSM state space model

xvi

1
Introduction

The emerging field of self-driving vehicles has the potential to create a safer environ-
ment for everyone on and near the road network. For a car to drive autonomously it
needs to be able to localize and classify surrounding objects using sensor data, such
as camera images or point clouds from a LiDAR. This problem is known as object
detection, where the goal is to produce labeled bounding boxes around the objects
and it can be done both in 2D and 3D. The most common technique to perform ob-
ject detection is to train neural networks for this task which requires large datasets
with annotated bounding boxes.

The annotated datasets are normally created by humans using a software tool de-
signed for the annotation task. Because of the huge number of annotations needed
to train the neural networks, a lot of manual labor is needed. A completely manual
annotation process can incur a high cost which makes it necessary to find methods
that reduce the need for human labor or alternatively, support the human annotator
to work efficiently.

This thesis has been conducted in cooperation with Annotell, which is a company
that aim to build an annotation software that allows for a consistent and efficient
annotation process. Those features are enabled by different components such as an
intelligently designed graphical user interface and an increased level of automation
in the annotation process. This project is intended to address the latter component
– the level of automation – which is best explained by the amount of annotation
work that the software can take over from the human annotator that operates the
software. This thesis specifically focuses on raising the level of automation when
annotating 3D boxes around moving cars.

1.1 Quality and Human Intervention

It is clearly desirable to create an annotation software tool that reduces the need for
human labor as much as possible since human working hours are expensive compared
to that of computers. Ideally the software would perform all the annotation work
without the need for human labor. But if that were the case the annotation software
would already perform the task that we are trying to teach neural networks to solve.

1

1. Introduction

Therefore humans are indispensable in the task of generate ground truth annotations
and the best we can hope for is to find ways to support human annotators that allows
them to work more efficiently.

When a human makes an annotation we call that a human intervention. The as-
sumption is that a human intervention results in an annotation of high quality that
is good enough to be considered as ground truth. The annotations that the soft-
ware creates automatically without human intervention will most likely have a lower
quality due to the lack of human supervision. The ratio between human intervention
and automatically created annotations will have an impact on the overall quality of
the annotated dataset.

1.2 Annotation of Sequences

As mentioned above this thesis concerns annotation of training data for 3D object
detection. Such training data usually consists of sequences of images, collected by a
camera, and point clouds, collected by a LiDAR or RADAR1. Since nearby cars and
pedestrians will be captured in multiple consecutive time instances, the task at hand
is to annotate sequences of these objects. If a human annotator provides annotations
at some time instances, then a reasonable hypothesis is that those annotations could
be used to estimate the other annotations in the sequence.

1.3 Aim

The overarching aim of this thesis is to allow for a more sparse human annotation,
which would lead to faster annotation of large training datasets for 3D object de-
tection. To achieve that goal we have implemented an algorithm that can estimate
object trajectories by combining information from (i) a sparse set of annotated 3D
bounding boxes, and (ii) kinematic models of object motion. Limitations will be
discussed in detail in Section 1.7, but one important limitation is that we will only
estimate the trajectories of moving cars.

The specific research questions that this project will try to answer are the following:

• Which motion model yields the most accurate trajectory estimations for cars?

• How does the level of human intervention affect the quality of the automatically
generated annotations?

1radio detection and ranging

2

1. Introduction

1.4 Dataset

In order to evaluate the performance of the algorithm, an annotated dataset is
needed. We have chosen the Nuscenes dataset [1] that features 1000 scenes of ap-
proximately 20 s each and a full sensor suite that captures 360° of the surrounding
for all modalities. The scenes have been recorded in Boston and Singapore. In to-
tal, there are almost 1.5 million camera images and 400 000 LiDAR sweeps available
with 1.1 million 3D bounding boxes annotated at a frequency of 2 Hz.

Since this project does not involve training of neural networks we have chosen to use
the Nuscenes teaser dataset, which contains 100 scenes. This is sufficiently large to
be used for evaluation. The sensor setup is:

• one spinning LiDAR sensor – capture frequency 20 Hz

• five RADAR sensors – capture frequency 13 Hz

• six cameras – capture frequency 12 Hz

• inertial measurement unit (IMU)

• global positioning system (GPS)

1.5 Problem Formulation

The way the challenge of increasing the level of automation has been addressed
in this thesis is to solve a trajectory estimation problem which “interpolates” the
human annotations with suggested annotations. The trajectory estimation problem
has been solved by employing a Bayesian fixed-interval smoother approach. By
using a smoothing technique, the estimated annotations could be based on past,
present, and future human annotations, thus using the information from all human
annotations to make each annotation. The outcome is that the human does not
have to provide all annotations which thereby increases the level of automation. In
addition to this, different motion models will be compared based on their ability to
estimate trajectories accurately.

The idea behind smoothing is to combine information about each state in an optimal
way. In essence there are three different sources of information available to make
each estimate: (i) knowledge about the state in adjacent points, (ii) knowledge about
how the state tends to evolve over time (i.e. motion models, see Section 2.1), and
(iii) a measurement of the current state. Chapter 2 describes how these sources of
information can be fused optimally under some assumptions.

The smoothing problem is normally modeled by a state space model (SSM) and the
graphical representation of an SSM is illustrated in Figure 1.1 where the subscripts
denote different time instances. The blue nodes represent the state vectors xk and

3

1. Introduction

the yellow nodes hold the observation vectors yk, where the latter one always has
the configuration

yk =
[
xk yk zk ϕk wk lk hk

]⊤
. (1.1)

These values constitute a bounding box: the center 3D coordinates, xk, yk, zk, the
yaw angle, ϕk, and the width, length and height of the box, wk, lk, hk. The state
vector xk will also contain the elements in Equation (1.1) along with some more
variables depending on the choice of motion model.

x0 x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

Figure 1.1: The trajectory estimation problem can be represented graphically as a state
space model. The hidden states, xk, are the states that are subject to estimation and the
observed states, yk, are the states which in this thesis will be the human annotations. The
observed vectors will also be referred to as measurements.

The SSM in Figure 1.1 has 5 time instances (the initial state x0 is not counted
here). For an SSM with T time instances the smoothing problem is formulated by
the maximization

x̂k = argmax
xk

p(xk|y1, . . . , yT) ∀k = 0, . . . , T. (1.2)

The sequence x̂0:T = (x̂0, . . . , x̂T) is the estimated trajectory and there are several
different smoothing algorithms available that solve this maximization. The algo-
rithm used in this thesis is described in Chapter 2.

To simulate the change of human intervention, different numbers of measurements
were removed from the dense measurement sequence represented in Figure 1.1. To
evaluate the performance of the estimates, they were simply compared to the re-
moved annotations using different metrics.

1.6 Related Work and Contributions

Attempts to build a semi-automatic annotation system have been made before. In
the making of the Berkeley Deep Drive dataset, Yu et al. [2] created a labelling
system with the ability to support annotation of bounding boxes, semantic and
instance segmentation. They used a Fast-RCNN model to generate object detections
as a means to suggest bounding box annotations to the annotators. This results in
a more efficient annotation process which reduces the total cost.

This thesis is concerned with the annotations of 3D objects and the main contribu-
tions of the thesis are:

4

1. Introduction

• The motion model coordinated turn is established to be the model that best
describes the motion of cars in city traffic.

• A smoothing algorithm that reduces the need for human annotations without
introducing large errors to the estimated annotations.

• A square-root version of statistical linear regression has been derived allowing
for more numerically stable statistical predictors, filters, and smoothers.

1.7 Limitations

For this project we have chosen to use the dataset Nuscenes which is a publicly
available autonomous driving dataset [1]. The annotations in Nuscenes occur at a
frequency of 2 Hz. Since we will consider these annotations as ground truth in this
study, we cannot evaluate the error for the estimated trajectories at a frequency
higher than 2 Hz. Additionally, we limit the quality of the ground truth to the
quality provided by Scale – the annotating partner to Nuscenes.

The annotations in Nuscenes [1] have identities such that annotations for the same
object can be distinguished between for different annotated time instances. This
project will be limited to the case when such IDs for the annotations exist. For
Annotell this means that the human annotators must provide these IDs.

Kinematic motion models usually describe the movement of vehicles in real world
3D coordinates. This requires access to 3D coordinates for the surrounding vehicles
and for the ego vehicle. In some cases, that is not what Annotell has access to
and thereby it is a restriction to assume that 3D coordinates for the aforementioned
objects are available. This project will be limited to the cases when 3D world
coordinates for the surrounding and ego vehicle are accessible.

Since this thesis aims to aid annotators in their annotation process we will assume
that the data is recorded beforehand and the algorithm developed in this project will
be run offline. This allows us to use future data points and remove the computational
time restriction inherent to real-time systems to make our estimations.

We will also assume that the world is flat and that objects have zero roll and pitch.
Hence the only rotation of the bounding boxes that we model is described by the
yaw angle.

5

1. Introduction

6

2
Theory

This thesis aims to estimate trajectories of cars. This can be achieved by using
Bayesian inference, the relevant details of which will be explained in this chapter.
Since this thesis only considers annotations, the data have been collected beforehand
which makes future1 information available when estimating the variables and hence
a smoothing approach that can accommodate non-linear state mappings will be the
focus of this chapter.

2.1 Probabilistic State Space Models

The modeling of state transitions is integral to solving a smoothing problem since
they model the “trends” in how states are likely to evolve over time. This information
is referred to as the prior in Bayesian inference.

This thesis will use motion models that describe how the current state is transformed
to the next state

xk+1 = fk(xk) + qk, qk ∼ N (0, Qk) (2.1)

and a measurement model that describes how the observed measurement is mapped
from the underlying state

yk = hk(xk) + rk, rk ∼ N (0, Rk) (2.2)

where k is the time index and fk(·) and hk(·) are possibly non-linear mappings. The
terms qk and rk represent statistical noise from a multivariate normal (Gaussian)
distribution N (·, ·) where the first argument is the mean vector and the second is
the covariance matrix. Both qk and rk have zero mean and their corresponding
covariance matrices are Qk and Rk.

The motion models are simplifications and can not describe the dynamics of the
physical motion perfectly. The Gaussian noise, qk, introduces an uncertainty in the
model which can be seen as accommodating the model errors of the chosen motion
model. When using this class of motion models the trajectory forms a Markov

1In this context the future is relative to the current measurement. E.g. if the smoother estimates
the state at time k = 3 information from time k = 4, 5, 6, . . . would be in the future.

7

2. Theory

x0 x1 x2 x3

y1 y2 y3y3

Figure 2.1: The state evolution can be modeled as a state space model. The blue
nodes, xi represent the cuboid at different time instances and the orange nodes represent
the measurements of the state. The horizontal arrows represent the motion model and the
vertical arrows represent the measurement model.

sequence. This means that the states xk+1:T are conditionally independent of x0:k−1
given xk [3, p.52]. In Figure 2.1 the Markov sequence has been visualized as an
SSM. The motion model (2.1) is represented by the horizontal arrows and the
measurement model (2.2) is represented by the dotted, vertical arrows.

2.2 Posterior Approximation

To make the trajectory estimations we seek to estimate the state sequence x0:T =
(x0, . . . , xT) given the measurement sequence y1:T = (y1, . . . , yT). The posterior
probability p(x0:T |y1:T) holds all information about the state sequence x0:T . By
using the Markovian property of the process, p (x0:T |y1:T) can be factorized as

p(x0:T |y1:T) ∝
T∏

k=1
[p(yk|xk)p(xk|xk−1)]p(x0) (2.3)

where p (xk|xk−1) and p (yk|xk) in the above factorization are simply (2.1) and (2.2)
re-formulated as

p(xk|xk−1) = N (xk; fk(xk−1), Qk−1) (2.4)
p(yk|xk) = N (yk; hk(xk), Rk). (2.5)

The prior distribution for x0 is p(x0) = N (x0; x̂0, P0). In general, the posterior
cannot be expressed in closed form, which is why it must be approximated. García-
Fernández et al. [4; 5] assume affine approximations of Equations (2.4) and (2.5)
given by

fk(xk) ≈ Fkxk + ak + ek, ek ∼ N (0, Λk) (2.6)
hk(xk) ≈ Hkxk + bk + gk, gk ∼ N (0, Ωk) (2.7)

where Fk is an N × N matrix and Hk is an M × N matrix provided that the
dimensions of xk and yk are N and M respectively. ak and bk are vectors of length
N and M respectively. The last terms ek and gk are Gaussian noise vectors and
their purpose is to model the non-linear behaviour of fk(·) and hk(·).

The equations (2.6) and (2.7) are enabling approximations that permit an approxi-
mation to p(x0:T |y1:T) in closed form. The parameters of these approximations are
denoted by

Θ = (F0:T −1, a0:T −1, Λ0:T −1, H1:T , b1:T , Ω1:T) (2.8)

8

2. Theory

which can be used to express the posterior approximation

p(x0:T |y1:T) ≈ qΘ(x0:T |y1:T) ∝
T∏

k=1
[qΘ(yk|xk)qΘ(xk|xk−1)]p(x0) (2.9)

where

qΘ(xk|xk−1) = N (xk; Fk−1xk−1 + ak−1, Λk−1 + Qk−1)
qΘ(yk|xk) = N (yk; Hkxk + bk, Ωk + Rk).

The approximation qΘ(x0:T |y1:T) is Gaussian and can be computed using an affine
RTS smoother [4]. More specifically, the smoother computes the first two moments,
denoted by x̂k|T and Pk|T , of the marginal pdfs

qΘ(xk|y1:T) = N (xk; x̂k|T , Pk|T) (2.10)

for k = 0, . . . , T . In this thesis x̂k|T for k = 1, . . . , T will be used to estimate the
trajectories, which constitute the maximum a posteriori (MAP) of qΘ(x1:T |y1:T).

2.3 Fixed-Interval Smoothing

In the task to annotate previously recorded data, information in all time instances
in every sequence is available beforehand. Therefore, fixed-interval smoothing will
be used. The two principal steps in an affine fixed-interval smoother are the forward
filtering and the backward smoothing. These operations will be outlined in the sub-
sections below. Previous work concerning the derivation and use of these techniques
can be found in [3; 6; 4].

2.3.1 Filtering

Filtering in a Bayesian context means that state estimations are made using only
past and current information in contrast to smoothing which also uses future infor-
mation. Even though this thesis only considers smoothing to make state estimates,
filtering is an essential building block of smoothing. According to [6, pp.132] the
filtering equations that the filtering operation solves are

p (xk|y1:k−1) =
∫

p (xk|xk−1) p (xk−1|y1:k−1) dxk−1 (2.11)

p (xk|y1:k) ∝ p (yk|xk) p (xk|y1:k−1) . (2.12)

2.3.2 Kalman Filtering

The filtering equations do not have an analytical solution for general motion, p(xk|xk−1),
and measurement models, p(yk|xk), but for the special case of affine Gaussian mod-

9

2. Theory

els, the Kalman filter (KF) provides recursion formulas that solve the filtering equa-
tions analytically. In the derivation of the KF equations below it is assumed that
p(xk|xk−1) and p(yk|xk) are Gaussian affine models.

KF is divided into two steps where the first steps predicts the probability density
function (pdf), p(xk|y1:k−1), of the state at the next time instance (t = k) given the
measurements up to the current time instance (t = k−1). This step is usually called
the prediction step (or time update step) and is equivalent to solving Equation (2.11).
The second step in KF is to correct the predicted pdf given the new information
from the measurement at current time (t = k) which gives the pdf p(xk|y1:k). This
is usually called the update step and is equivalent to solving Equation (2.12). The
following subsection will describe the formulas to perform KF.

Prediction

As mentioned, the KF is a recursive solution since the solution in each time instance
is based on the solution of the previous time instance. The filter solution of the
previous step is given by

p(xk−1|y1:k−1) = N (xk−1; x̂k−1|k−1, Pk−1|k−1). (2.13)

A new subscript notation has been introduced here: x̂k−1|k−1 and Pk−1|k−1. These are
the moments (mean vector and covariance matrix) of the distribution p(xk−1|y1:k−1) =
N (xk−1; x̂k−1|k−1, Pk−1|k−1). In general, the notation can be described as p(xn|y1:m) =
N (xn; x̂n|m, Pn|m). Given (2.13) the predicted density can be computed using the
probabilistic motion model

xk = Fk−1xk−1 + ak−1 + ek−1 + qk−1,

(
ek−1
qk−1

)
∼ N

((
0
0

)
,

(
Λk−1 0

0 Qk−1

))
.

(2.14)
The prediction is the sum of three Gaussian random variables and such a sum can
be computed as

z = B1z1 + B2z2 + B3z3 ∼ N
(
B1µ1 + B2µ2, B1Σ1B

⊤
1 + B2Σ2B

⊤
2 + B3Σ3B

⊤
3

)
(2.15)

where zi are Gaussian random variables distributed as zi ∼ N (µi, Σi) and the
variables Bi are linear mappings.

If the result in Equation (2.15) is combined with Equation (2.14) the predicted
densities are obtained as

p(xk|y1:k−1) = N (xk; Fk−1x̂k−1|k−1 +ak−1, Fk−1Pk−1|k−1F
⊤
k−1 +Qk−1 +Λk−1). (2.16)

Hence, the predicted moments are

x̂k|k−1 = Fk−1x̂k−1|k−1 + ak−1 (2.17a)
Pk|k−1 = Fk−1Pk−1|k−1F

⊤
k−1 + Qk−1 + Λk−1. (2.17b)

10

2. Theory

Update

The purpose of the update step is to include the information in the new measurement
and thereby improve the estimate given by the prediction step. The mathematical
formulation needed to perform the update is listed in (2.18). The derivation of the
update step for linear measurement models can be found in [3, pp.57]. The extension
to affine measurement models is straight forward and the result is given in [4]. The
corresponding equations are

vk = yk −Hkx̂k|k−1 − bk (2.18a)
Sk = HkPk|k−1H

⊤
k + Rk + Ωk (2.18b)

Kk = Pk|k−1H
⊤
k S−1

k (2.18c)
x̂k|k = x̂k|k−1 + Kkvk (2.18d)
Pk|k = Pk|k−1 −KkSkK⊤

k . (2.18e)

2.3.3 Rauch-Tung-Striebel Smoothing

The state estimates in smoothing are non-causal and conditioned on all available
measurements, both past, current, and future. Since more information is available
for each estimate we can expect the estimates to be improved compared to filtering
except for the last state in the sequence, where no future information exists and the
smoothing solution coincides with the filtering solution.

The Rauch-Tung-Striebel smoother (RTS) shares the same fundamental ideas as the
KF but operates backwards in time to recursively update the filtering solution with
future information at each time step. The equation solved by RTS is

p(xk|y1:T) = p(xk|y1:k)
∫ p(xk+1|xk)p(xk+1|y1:T)

p(xk+1|y1:k)
dxk+1 (2.19)

as specified in [3, pp.135]. Apart from the smoothing solution from the previous
step, p(xk+1|y1:T), there are no new densities present in this equation. The parts
are: filtering solution, p(xk|y1:k), motion model, p(xk+1|xk), and predicted density,
p(xk+1|y1:k). The smoothing equation only consolidates these into one single esti-
mate. Assuming that prediction and filtering solutions exist, the equations

Gk = Pk|kF ⊤
k P −1

k+1|k

x̂k|T = x̂k|k + Gk[x̂k+1|T − x̂k+1|k]
Pk|T = Pk|k + Gk[Pk+1|T − Pk+1|T]G⊤

k

(2.20)

provide the mathematical formulation to carry out RTS smoothing [3, pp.136], where
x̂k|T and Pk|T are the moments of the distribution p(xk|y1:T) = N (xk; x̂k|T , Pk|T).
Importantly, they should not be confused with the moments x̂n|m and Pn|m which
were defined in Section 2.3.2. Since the solutions obtained are Gaussian, the solution
obtained from smoothing is the MAP estimate of the state.

11

2. Theory

2.4 Iterated Posterior Linearization Smoother

As mentioned in Section 2.3, the RTS smoothing described above is derived for affine
models. When dealing with non-affine models an approximation is needed to enable
the use of previous results. There are many ways to make these approximations,
such as the Gauss-Hermite Kalman, Unscented Kalman, and Extended Kalman
filters [3]. Since the algorithm in this thesis has access to past, present, and future
information it makes sense to utilize all information possible to find the optimal
enabling approximations Θ. The IPLS method, which utilizes all such information,
was selected for use in this thesis. This method performs an iterative statistical
linear regression (SLR) using the first two moments from the smoothing solution,
x̂k|T and Pk|T , that were obtained in the previous step.

The idea of iteratively re-linearzing the measurement and motion models based on
the best available approximation of the posterior density was introduced by García-
Fernández et al. for the filtering problem in [5] and then extended to smoothing in
[4].

2.4.1 Statistical Linear Regression

The SLR algorithm is a method to approximate a general function f(·) such that

f(x) ≈ F +x + a+. (2.21)

The F + and a+ that constitute the optimal affine approximation of f(·) in the sense
of minimizing its mean square error (MSE) with respect to a distribution p(x) are(

F +, a+
)

= argmin
(F,a)

E
p(x)

[
(f(x)− Fx− a)⊤ (f(x)− Fx− a)

]
(2.22)

Λ+ = E
p(x)

[(
f(x)− F +x− a+

) (
f(x)− F +x− a+

)⊤
]

(2.23)

where Λ+ is the corresponding MSE matrix [7]. In the enabling approximations (2.6)
and (2.7) the first two terms are the affine approximation parameterized according to
Equation (2.22). The third term is Gaussian noise with zero mean and its covariance
matrix being the MSE matrix according to Equation (2.23).

Note that the expectation is taken with respect to the pdf, p(x). This means that
motion models can be linearized based on the smoothing solution (if available) which
is the most accurate estimation of the first two moments of the state distribution
at each time instance. During the iterations of the IPLS the smoothing solution is
updated which allows for a more accurate linearization of f(·), which in turn makes
the resultant smoothing solution more accurate with each iteration.

12

2. Theory

Given a function f(·) and a pdf p(x) with first and second moments x̂ and P the
SLR of f(·) w.r.t. p(x) is given by [7]

F + = Ψ⊤P −1 (2.24a)
a+ = ẑ− F +x̂ (2.24b)
Λ+ = Φ− F +P (F +)⊤ (2.24c)

where

ẑ =
∫

f(x)p(x)dx (2.25a)

Ψ =
∫

(x− x̂)(f(x)− ẑ)⊤p(x)dx (2.25b)

Φ =
∫

(f(x)− ẑ)(f(x)− ẑ)⊤p(x)dx. (2.25c)

However, the moments in Equations (2.25) are, in general, not possible to compute
in closed form. Instead, we can use sigma point methods [3] to approximate these
integrals as

ẑ ≈
m∑

j=1
ωjZj (2.26a)

Ψ ≈
m∑

j=1
ωj (Xj − x̂) (Zj − ẑ)⊤ (2.26b)

Φ ≈
m∑

j=1
ωj (Zj − ẑ) (Zj − ẑ)⊤ (2.26c)

where Xj is the sigma point, ωj the corresponding weight, and Zj = f(Xj). Given
these approximations, F +, a+, and Λ+ can be computed using Equations (2.24).

2.4.2 Iterative Improvement of Enabling Approximations

As described in Section 2.2, the strategy is to approximate the posterior p(x0:T |y1:T) ≈
qΘ(x0:T |y1:T) using the enabling approximations Θ (see Equation (2.8). Ideally we
would like to find the Θ that minimizes the Kullback-Leibler divergence (KLD)

D(p(x0:T |y1:T)||qΘ(x0:T |y1:T)) (2.27)

where D(·||·) is the KLD [8] which is defined as

D(p(x)||q(x)) =
∫

x
p(x) log p(x)

q(x)
dx. (2.28)

The IPLS iteratively improves the enabling approximations. In iteration i the ap-
proximation is given by

Θi = (F i
0:T −1, ai

0:T −1, Λi
0:T −1, H i

1:T , bi
1:T , Ωi

1:T) (2.29)

13

2. Theory

and the aim is to obtain Θi+1. García-Fernández et al. describe in [4] that this can
be done by performing SLR of the nonlinear functions with respect to the latest
posterior approximation p(x0:T |y1:T) ≈ qΘi(x0:T |y1:T). The steps of the IPLS are
summarized in Algorithm 1.

Algorithm 1 Forward-backward IPLS
Data: Prior mean:u1

0 = x0, prior covariance:W 1
0 = P0, motion model: fk(·), Qk,

measurement model:hk(·), Rk, measurement sequence: y
Result: Posterior moments: sJ

k , W J
k for k = {0, . . . , T}

/* Below p, u, s are the predicted, updated, and smoothing solutions
respectively and P, U, S are their corresponding covariance
matrices. The subscript refers to which time the estimate refers
to. If there is no subscript it refers to the set containing the
variable at all time instances. */

/* Initialization: Compute s1
k, S1

k for k ∈ {0, . . . , T} by a sigmapoint
smoother. */

/* obtain smoothing solution from affine RTS */
(s1, S1) = RTS (u1, U1,p1,P 1,F 1,a1,Λ1)
for i=1 to J-1 do

for k = 0 to T do
(F i+1

k ,ai+1
k ,Λi+1

k) = SLR (fk(·),si
k,Si

k)
(H i+1

k ,bi+1
k ,Ωi+1

k) = SLR (hk(·),si
k,Si

k)
end
for k = 1 to T do

(pi+1
k+1,P i+1

k+1) = prediction (F i+1
k ,ai+1

k ,Λi+1
k , ui

k,Qk)
if meas exists at time k+1 then

(ui+1
k+1,U i+1

k+1) = update (pi+1
k+1,P i+1

k+1, H i+1
k , bi+1

k , Ωi+1
k , Rk+1, yk+1)

else pass prediction as posterior
(ui+1

k+1,U i+1
k+1) = (pi+1

k+1,P i+1
k+1)

end
end
(si+1, Si+1) = RTS (ui+1, U i+1,pi+1,P i+1,F i+1,ai+1,Λi+1,H i+1,bi+1,Ωi+1)

end

2.4.3 Initialization

To initialize the IPLS, a normal RTS smoother using the constant velocity (CV)
motion model was run to make state estimations for each time instance. The idea
is to make an initial trajectory that is closer to the optimal trajectory for the non-
linear motion model. If the initial trajectory is close enough to the solution this
should guarantee convergence [4] to optimum and reduce the number of iterations
needed.

The estimates from the CV solution can be mapped into the measurement space
using the the measurement equation to form artificial measurement sequences. One

14

2. Theory

advantage with this approach is that the artificial measurement sequence is dense2

which allows for every prediction step to be updated with a measurement, see Figure
2.2.

x0 x1 x2 x3 x4 x5

y1 y5

(a) The original measurement sequence is
possibly sparse and does not have

measurment for each time instance.

x0 x1 x2 x3 x4 x5

ỹ1 ỹ2 ỹ3 ỹ4 ỹ5ỹ5

(b) After initialization has been run the
measurement sequence is dense.

Figure 2.2: After the initialization has been run there exist artificial measurements,
here denoted ỹk, that will allow the first solution of the IPLS iteration to be closer to the
optimum compared to if the IPLS only had had the original measurements available to
make the estimation.

The mapping from state space to measurement space is done using

ỹk = Hx̂CV
k|T (2.30)

and
R̃k = HP CV

k|T H⊤ (2.31)

where x̂CV
k|T and P CV

k|T are the resulting moments from the initialization.

2.5 Square-root Implementations

Implementations of smoothing algorithms may suffer from numerical instability.
This is caused by rounding errors which in turn may cause the covariance ma-
trices involved in the computations to be negative definite. Covariance matrices are
by definition semi-positive definite, a property which is guaranteed by square-root
implementations of smoothing algorithms [6; 9].

Square-root forms of filtering and smoothing algorithms propagate the square-root,
P 1/2, which is a matrix such that P = P 1/2P ⊤/2 where P is the original covariance
matrix and P ⊤/2 = (P 1/2)⊤. The non-square-root implementations propagate the

2I.e. measurement exists for all time instances.

15

2. Theory

full matrix P which is numerically less stable than propagating P 1/2. One numerical
advantage with square-root forms is that the covariance matrices are guaranteed to
be positive definite [9]. Another advantage is that the precision is increased since the
condition number of P 1/2 is proportional to the square-root of the condition number
of P . For this reason, the precision of the covariance is doubled [9]. The pseudo code
that describes the implementation is analogous to the normal IPLS case but with
the difference that the square root matrices described in this section are propagated
through the prediction, update, and smoothing steps. The results presented in this
section are inspired by Rutten [9] and the squre-root variant of the SLR algorithm
is a contribution by this thesis.

2.5.1 QR-decomposition

Square-root implementations rely on the QR-decomposition of an m× n matrix B

B = QR (2.32)

where Q is a orthogonal matrix (with the property Q⊤Q = I) and R is an upper-
triangular matrix. Although the name of the decomposition method stems from
the notation of these matrices they should not be confused with the process and
measurement noise covariance matrices Qk and Rk. Therefore we will change to the
notation

Θ = Q (2.33)

Rℓ = R⊤ (2.34)

A = B⊤ = RℓΘ⊤ ⇐⇒ AΘ = Rℓ (2.35)

where Rℓ is lower-triangular. The central idea in a square-root implementation is
to form the matrix A in a smart way that makes it possible to extract a solution
from Rℓ. The following sections will describe how this can be done to implement a
square-root version of the IPLS.

2.5.2 Square-root Prediction

The prediction step in the affine RTS smoother is described by the equations in
(2.17). The square-root version of the prediction step will be to form the instru-
mental matrix Ap as

Ap =

Q
1/2
k Λ1/2

k FkP
1/2
k|k

0 0 P
1/2
k|k

 (2.36)

which yields

ApA⊤
p =

[
FkPk|kF ⊤

k + Qk + Λk FkPk|k
Pk|kF ⊤

k Pk|k

]
=
[

Pk+1|k FkPk|k
Pk|kF ⊤

k Pk|k

]
(2.37)

16

2. Theory

where the top left block can be identified as the original prediction equation (2.17).
The QR-decomposition of A⊤

p will result in matrices Θp and Rℓp such that

A⊤
p = ΘpR⊤

ℓp. (2.38)

Multiplying Ap with A⊤
p will then lead to

ApA⊤
p = RℓpΘ⊤

p ΘpR⊤
ℓp = RℓpR⊤

ℓp (2.39)

where the matrix Rℓp is composed of the block matrices Xp, Yp, and Zp as

Rℓp =
[
Xp 0 0
Yp Zp 0

]
. (2.40)

Multiplying Rℓp with its transpose yields

RℓpR⊤
ℓp =

[
XpX⊤

p XpY ⊤
p

YpX⊤
p YpY ⊤

p + ZpZ⊤
p

]
. (2.41)

By (2.39) we have

[
Pk+1|k FkPk|k
Pk|kF ⊤

k Pk|k

]
=
[
XpX⊤

p XpY ⊤
p

YpX⊤
p YpY ⊤

p + ZpZ⊤
p

]
(2.42)

and from this equation we can identify Xp = P
1/2
k+1|k. Already at this stage it is

possible to identify the smoothing gain as

YpX−1
p = YpX⊤

p (X⊤
p)−1X−1

p = YpX⊤
p (XpX⊤

p)−1 = Pk|kF ⊤
k P −1

k+1|k = Gk (2.43)

which will be required later on. Equating the lower right-hand block matrices gives

ZpZ⊤
p = Pk|k − YpY ⊤

p

= Pk|k − YpX⊤
p (XpX⊤

p)−1XpY ⊤
p

= Pk|k − Pk|kF ⊤
k P −1

k+1|kFkPk|k

= Pk|k −GkPk+1|kG⊤
k

(2.44)

and we can identify Zp = (Pk|k − GkPk+1|kG⊤
k)1/2 which is also needed in the

square-root smoothing step. To include the time instance k in the notation for
this matrix, Zp,k will be used to denote the matrix with the property Zp,kZ⊤

p,k =
Pk|k − GkPk+1|kG⊤

k . To summarize, the important steps in the square-root predic-
tion are:

17

2. Theory

Algorithm 2 Square root prediction
Data: x̂k|k, P

1/2
k|k, Fk, ak, Q

1/2
k and Λ1/2

k

Result: x̂k+1|k, P
1/2
k+1|k, Gk and Zp,k

– Form the matrix Ap as in Equation (2.36).
– Perform QR-decomposition on the matrix AT

p to obtain Rℓp.
– From Rℓp as described in Equation (2.40) identify the matrices

– Xp = P
1/2
k+1|k

– YpX−1
p = Gk

– Zp,k = (Pk|k −GkPk+1|kGT
k)1/2 /* This is not needed in the

prediction but will be used in the smoothing step */
– Compute x̂k+1|k = Fkx̂k|k + ak.

2.5.3 Square-root Update

The update step is described by the equations in (2.18). To implement a square-root
update step an instrumental matrix Au can be formed as

Au =

R
1/2
k Ω1/2

k HkP
1/2
k|k−1

0 0 P
1/2
k|k−1

 . (2.45)

Multiplication with its transpose gives the matrix equation

AuA⊤
u =

[
HkPk|k−1H

⊤
k + Rk + Ωk HkPk|k−1

Pk|k−1H
⊤
k Pk|k−1

]
=
[

Sk HkPk|k−1
Pk|k−1H

⊤
k Pk|k−1

]
(2.46)

where the top left block can be identified as Equation (2.18b) for the system un-
certainty. Analogously to the prediction step the QR-decomposition A⊤

u = ΘuR⊤
ℓu is

made to get a lower-triangular matrix

Rℓu =
[
Xu 0 0
Yu Zu 0

]
. (2.47)

The equality AuA⊤
u = RℓuR⊤

ℓu can be explicitly expressed as[
Sk HkPk|k−1

Pk|k−1H
⊤
k Pk|k−1

]
=
[
XuX⊤

u XuY ⊤
u

YuX⊤
u YuY ⊤

u + ZuZ⊤
u

]
(2.48)

where Kalman gain, Kk, can be computed from Xu and Yu by

YuX−1
u = YuX⊤

u (X⊤
u)−1X−1

u = YuX⊤
u (XuX⊤

u)−1 = Pk|k−1H
⊤
k S−1

k = Kk. (2.49)

Equating the lower right-hand block matrices gives

ZuZ⊤
u = Pk|k−1 − YuY ⊤

u

= Pk|k−1 − YuX⊤
u (XuX⊤

u)−1XuY ⊤
u

= Pk|k−1 − Pk|k−1H
⊤
k S−1

k HkPk|k−1

= Pk|k−1 −KkSkK⊤
k

(2.50)

18

2. Theory

and Zu can therefore be identified as the square-root of the updated covariance Pk|k.
The square-root form of the update step can now be concluded.

The update step above is derived for affine measurement models but as mentioned
in Section 2.4 this thesis is only concerned with linear measurement models. To
obtain the update step for linear models one can just simply set b and Ω to 0 where
they occur in the equations.

Algorithm 3 Square root update
Data: x̂k|k−1, yk, P

1/2
k|k−1, Hk, bk, R

1/2
k and Ω1/2

k .
Result: x̂k|k, P

1/2
k|k

– Form the matrix Au as in Equation (2.45).
– Perform the QR-decomposition AT

u = ΘuRT
ℓu to obtain Rℓu.

– From Rℓu as described in Equation (2.47) identify the matrices
– YuX−1

u = Kk

– Zu = P
1/2
k|k

– Compute x̂k|k = x̂k|k−1 + Kk(yk −Hkx̂k|k−1 + bk)

2.5.4 Square-root Smoothing

The smoothing step is described by the equations in (2.20). To implement a square-
root version of this step is now relatively easy since the square-root prediction pro-
vides some of the information that is needed (i.e. Zp,k and Gk). The instrumental
matrix is now formed as

As =
[
Zp,k GkP

1/2
k+1|T

]
. (2.51)

Multiplication with its transpose gives the matrix equation

AsA
⊤
s = Zp,kZ⊤

p,k + GkPk+1|T G⊤
k . (2.52)

Substituting Zp,kZ⊤
p,k gives

AsA
⊤
s = Pk|k −GkPk+1|kG⊤

k + GkPk+1|T G⊤
k

= Pk|k −Gk(GkPk+1|T − Pk+1|k)G⊤
k

(2.53)

which is exactly the smoothed covariance Pk|T . The QR-decomposition A⊤
s = ΘsR

⊤
ℓs

results in a matrix
Rℓs =

[
Xs 0

]
. (2.54)

From the fact that AsA
⊤
s = RℓsR

⊤
ℓs it holds that XsX

⊤
s = Pk|k − Gk(GkPk+1|T −

Pk+1|k)G⊤
k which makes it easy to identify Xs = P

1/2
k|T . The smoothing step can now

be summarized.

19

2. Theory

Algorithm 4 Square root smoothing
Data: x̂k+1|T , x̂k|k, x̂k+1|k, P

1/2
k+1|T , Zp,k and Gk.

Result: x̂k|T and P
1/2
k|T

– Form the matrix As as in Equation (2.51).
– Perform the QR-decomposition AT

s = ΘsR
T
ℓs to obtain the lower-triangular

matrix Rℓs.
– From Rℓs as described in Equation (2.54) identify the matrix Xs = P

1/2
k|T .

– Compute x̂k|T = x̂k|k + Gk(x̂k+1|T − x̂k+1|k).

2.5.5 Square-root SLR

The IPLS iteratively performs SLR to linearize the non-linear motion and measure-
ment models. The non-linear behavior in these functions is modeled as Gaussian
noise with zero mean and covariance matrices Λk and Ωk for the motion and mea-
surement models respectively. It would be desireable to compute the square-root of
these covariance matrices since the square-root forms of the prediction and update
steps require Λ1/2

k and Ω1/2
k as input. Based on the SLR equations presented by [4]

it is possible to create a square-root SLR method, which is one of the contributions
of this thesis.

The SLR method makes use of sigma points Xi with weights ωi (see Section 2.4.1)
to linearize a given function f(·). The transformed sigma points can be computed
by passing the original sigma points through the function f(·) as

Zi = f(Xi). (2.55)

The instrumental matrix Aslr will now be formed by stacking the sigma points as

Aslr =
[√

ω1(X1 − x̂) . . .
√

ωm(Xm − x̂)√
ω1(Z1 − ẑ) . . .

√
ωm(Zm − ẑ)

]
(2.56)

where each individual sigma point Xi and Zi are column vectors. The vector x̂ is
the mean of the distribution over x and ẑ is given by Equation (2.25a). Multiplying
Aslr with its transpose will then lead to

AslrA
⊤
slr =

[
P Ψ

Ψ⊤ Φ

]
. (2.57)

The QR-decomposition A⊤
slr = ΘslrR

⊤
ℓslr yields a lower-triangular matrix

Rℓslr =
[
Xslr 0
Yslr Zslr

]
(2.58)

that satisfies AslrA
⊤
slr = RℓslrR

⊤
ℓslr and this equality can be explicitly written as[

P Ψ
Ψ⊤ Φ

]
=
[
XslrX

⊤
slr XslrY

⊤
slr

YslrX
⊤
slr YslrY

⊤
slr + ZslrZ

⊤
slr

]
. (2.59)

20

2. Theory

The constituents of the linearization are the matrix F +, the bias vector a+, and the
covariance matrix Λ+. F + can be computed by

YslrX
−1
slr = YslrX

⊤
slr(X⊤

slr)−1X−1
slr = YslrX

⊤
slr(XslrX

⊤
slr)−1 = Ψ⊤P −1 = F + (2.60)

where the last equality can be found in Equation (2.24a). It is now possible to
identify Zslr as the square-root of Λ+, which is denoted as (Λ+)1/2. Their relation is
given by

ZslrZ
⊤
slr = Φ− YslrY

⊤
slr

= Φ− YslrX
⊤
slr(XslrX

⊤
slr)−1XslrY

⊤
slr

= Φ−Ψ⊤P −1Ψ
= Φ− F +P (F +)⊤

= Λ+

(2.61)

where the last equality also can be found in Equation (2.24c).

Algorithm 5 Square-root algorithm of statistical linear regression.
Data: Function f(·) and the first two moments x̂ and P of a pdf p(·).
Result: SLR parameters F +, a+ and (Λ+)1/2.
Compute X1, . . . ,Xm and corresponding ω1, . . . , ωm using x̂ and P
forall Xi do
Zi = f(Xi); /* Map sigma points through the non-affine function */

end
– Compute ẑ = ∑m

i=1 ωiZi.
– Form the matrix Aslr according to Equation (2.56).
– Perform the QR-decomposition A⊤

slr = ΘslrR
⊤
ℓslr to obtain Rℓslr.

– From Rℓslr as described in Equation (2.58) compute
– F + = YslrX

−1
slr

– a+ = ẑ− F +x̂
– (Λ+)1/2 = Zslr.

2.6 Motion Models

To be able to leverage on information about the state vector at other time instances
it is needed to model how states are likely to evolve in time. In the scope of Bayesian
inference this is done using motion models. This section outlines the motion models
that were studied in this thesis.

The motion models that have been compared are

• Constant velocity (CV)

• Constant acceleration (CA)

21

2. Theory

• Coordinated turn (CT)

• Bicycle model (BM).

The motion models CV and CA are two common motion models [10; 11], which are
linear and thereby relatively easy to implement in a smoothing algorithm. One issue
with these models is that they do not model the yaw angle of the car, which is needed
to estimate the vehicle’s bounding box. To be able to use CV and CA in this thesis
we propose a modification to the CV and CA models by augmenting their respective
state vector with the yaw angle and model the change in yaw as a random walk.
Henceforth, when referring to CV and CA we refer to these augmented versions.
The state-space models of these modified CV and CA models are given by

CV : ẋ(t) = F̃x(t) + Γq̃(t) =
[
03×3 I3×3 03×1
04×3 04×3 04×1

] p(t)
v(t)
ϕ(t)

+
[
03×4
I4×4

]
q̃(t) (2.62)

and

CA : ẋ(t) = F̃x(t) + Γq̃(t) =
[
06×3 I6×6 06×1
04×3 04×6 04×1

]
p(t)
v(t)
a(t)
ϕ(t)

+
[
06×4
I4×4

]
q̃(t) (2.63)

where p =
[
x y z

]⊤
and a = v̇ = p̈. The noise vectors q̃ are assumed to be

uncorrelated Gaussians with zero mean.

The CT model is sometimes referred to as constant turn rate and describes motion
where the acceleration vector is perpendicular to the velocity vector. As indicated
by the alternative name constant turn rate the angular velocity is constant ω̇ = 0.
The continuous state dynamics equations can be found in [11] and they are

ẋ(t)
ẏ(t)
v̇(t)
ϕ̇(t)
ω̇(t)

 =

v(t) cos ϕ(t)
v(t) sin ϕ(t)

0
ω(t)

0

+ Γq̃(t) (2.64)

where Γ = I since we have chosen to apply noise in all dimensions. The process
noise is distributed as, q̃(t) ∼ N (0, Q̃), with a diagonal covariance matrix Q̃.

The bicycle model is inspired by the kinematics of a bicycle and therefore has a
steering angle δf in the state vector [12; 13; 14]. Figure 2.3 illustrates the parameters

22

2. Theory

ϕ
β

v

δf

G

lf

lr

y x

Figure 2.3: The figure describes geometrical interpretation of the notation used in the
bicycle model (2.65).

involved and the continuous state transition equations for this motion model are
ẋ(t)
ẏ(t)
v̇(t)
ϕ̇(t)
δ̇f (t)

 =

v(t) cos(ϕ(t) + β(δf))
v(t) sin(ϕ(t) + β(δf))

0
v(t)
lr

sin(β(δf (t)))
0

+ Γq̃(t) (2.65a)

β(δf (t)) = arctan
(

tan(δf (t)) lr
lf + lr

)
(2.65b)

where ẋ and ẏ are time derivatives of the position, v̇ is the time derivative of speed
and ϕ̇ is the time derivative of yaw. β(δf) is a constraint that connect the steering
angle δf to the yaw of the car. The distances from the origin of the velocity vector
to the front and rear wheel centers are denoted by lf and lr respectively. As for
CT, we have chosen to apply noise in all dimensions which leads to Γ = I and it is
assumed that q̃(t) ∼ N (0, Q̃), with a diagonal covariance matrix Q̃.

For an estimated annotation to be complete, the size of the bounding box should
be included. By simply augmenting the different motion models’ state vectors and
transition matrices with the bounding box dimensions a complete estimate of the
annotation is obtained at each time instance. Under the assumption that the di-
mensions of the car does not change in time the motion model is given by

xmm

w
l
h

k+1

=

fmm(xmm)

w
l
h

k

+

q
0
0
0

k

. (2.66)

The subscript mm refers to the chosen motion model (CV, CA, CT, or BM) and w,
l, and h is the width, length, and height of the bounding box.

23

2. Theory

2.6.1 Discretization of Motion Models

The time continuous motion model,

ẋ(t) = f̃(x(t)) + q̃(t), (2.67)

needs to be discretized since our smoothing technique requires time discrete motion
models. The discretized motion models is given on the form

xk+1 = f(xk) + qk (2.68)

and these two terms need to be identified. The first term, f(xk), represents the dis-
cretization of the expected value and the second term, qk, represents the linearization
of the covariance. If the motion model is linear this can be done analytically, but for
the non-linear motion models approximations are needed in order to obtain discrete
counter parts.

Linear Models

In continuous time, linear models are stated as

ẋ(t) = F̃x(t) + q̃(t), q̃(t) ∼ N (0, Q̃) (2.69)

and the time discrete counter part is given as

xk+1 = Fxk + qk, qk ∼ N (0, Qk) (2.70)

where k is the discrete time index. To obtain the discrete motion model the dif-
ferential equation in Equation (2.69) can be solved using an integrating factor and
integrate from t to t + ∆t where ∆t is the time step between the resulting discrete
states. The discrete step is given by

x(t + ∆t) = exp(F̃∆t)x(t) +
∫ t+∆t

t
exp(F̃ (t + ∆t− τ))q̃(τ)dτ. (2.71)

The discrete transition matrix Fk and discrete noise vector qk can be identified as

Fk = exp(F̃∆t) (2.72)

and
qk =

∫ t+∆t

t
exp(F̃ (t + ∆t− τ))q̃(τ)dτ. (2.73)

This results in qk ∼ N (0, Qk) where the covariance matrix Qk can be computed as

Qk = Cov(qk) =
∫ ∆t

0
exp(F̃ τ)Q̃ exp

(
F̃ ⊤τ

)
dτ. (2.74)

For details on the derivation see [6, Ch.12, pp.315].

24

2. Theory

Using the formula provided by Equation (2.74) for CA, the discretized process noise
covariance matrix is given by

QCA
k−1 =

Q̃a

∆t5
k−1

20 Q̃a
∆t4

k−1
8 Q̃a

∆t3
k−1
6 0

Q̃a
∆t4

k−1
8 Q̃a

∆t3
k−1
3 Q̃a

∆t2
k−1
2

...
Q̃a

∆t3
k−1
6 Q̃a

∆t2
k−1
2 Q̃a∆tk−1 0

0 · · · 0 Q̃ϕ,s∆tk−1

 (2.75)

where Q̃a is the continuous process noise for the acceleration states with only di-
agonal elements and Q̃ϕ,s is the diagonal matrix with the continuous process noise
parameters for the angle and size variables. Under the assumption that the car’s di-
mensions does not change in time, the noise parameters corresponding to size should
be zero. For CV the discretized process noise covariance matrix is

QCV
k−1 =

Q̃v
∆t3

k−1
3 Q̃v

∆t2
k−1
2 0

Q̃v

2
k−1

2 Q̃vk−1 0
0 0 Q̃ϕ,sk−1

 (2.76)

where Q̃v is the continuous process noise for the velocity states with only diagonal
elements.

Non-linear Models

For the non-linear motion models considered in this thesis, the time continuous
differential equations can not be solved analytically and the approximate solution
is obtained by employing the modified Euler method. The modified Euler method
approximates the derivative ẋ as

ẋ(τ) ≈ f̃(x(t)) + q̃(τ), ∀τ ∈ [t, t + ∆t]. (2.77)

To discretize this relationship, the expression is integrated over the discretization
interval [t, t + ∆t] which yields

x(t + ∆t) ≈ x(t) +
∫ t+∆t

t
f̃(x(t))dτ︸ ︷︷ ︸

=∆tf̃(x(t))

+
∫ t+∆t

t
q̃(τ)dτ. (2.78)

From the above equation the time discrete state mapping can be identified as

f(x) = x + f̃(x(t))∆t (2.79)

and the discrete noise vector is the remaining term

q =
∫ t+∆t

t
q̃(τ)dτ. (2.80)

25

2. Theory

The continious noise q̃ is assumed to be white noise with zero mean which results
in that the discrete covariance Qk is

Qk = Cov(q) = Q̃∆t. (2.81)

Deatails of the dervation can be found in [6, Ch. 12, pp. 316]. Using Equation
(2.81) the discretized process noise covariance matrices are simply

QCT
k−1 = ∆tk−1Q̃

CT (2.82)

and
QBM

k−1 = ∆tk−1Q̃
BM (2.83)

for CT and BM respectively.

Increasing Accuracy in Simulation

To solve the differential equations posed by the motion models, in equations (2.62),
(2.63), (2.64), and (2.65), the modified Euler method was used. This approximation
introduces integration errors since it assumes that the derivative is constant over
the discretization interval ∆t. To mitigate this issue the fast sampling method
was used [6, pp. 315]. The idea is quite straight forward and the method is just
to divide each discretization interval into sub-intervals and thereby taking shorter
discretization steps. By taking shorter steps the derivative is held constant over
shorter time steps which reduces the integration error.

2.6.2 Measurement Noise

When performing the update step, information from the prediction is fused with
information from the measurement. This can be thought of as a weighted average
between the predicted state and the measured state where the weights are defined
by the covariances. Hence, the choice of measurement noise is important and defines
how much the filter should rely on the measured values. This thesis has two different
methods of assigning measurement noise which will be presented below.

Stationary Noise

The purpose of annotations is that they should provide the ground truth from which
supervised machine learning algorithms can learn. Given the assumption that an-
notations are ground truth data it follows that the measurement noise should be
very small and stationary. This means small values in the matrix Rk that do not
between different time instances k.

26

2. Theory

Distance Dependent Noise

The assumption that all annotations are created under equal conditions can be ques-
tioned since there are a lot of factors that affect how well annotations can be made,
e.g. distance to object, degree of occlusion, weather, and lighting conditions. Figure
2.4 shows an example of how the difficulty to make a precise annotation increases
with the distance to the object. This suggests that an annotation of a far away
object will have a higher uncertainty in the variables that constitutes the annota-
tion. In a Bayesian setting, this means that an annotation at a distance should
have larger elements in the measurement covariance matrix Rk than an annotation
at close distance.

In this thesis an ad hoc solution to incorporate a distance dependent measurement
noise was adopted. To make the noise depend on distance, a mapping like the one
in Figure 2.5 was used. Since different states represent different physical quantities,
the numerical breakpoints can be set differently for different states.

27

2. Theory

(a) An overview of the annotated scene. The vehicle in Figure 2.4b is the middle box of
the three orange boxes in the distance and the vehicle in Figure 2.4c is the truck to the
right in this figure. Note that at the time of annotation, the annotator have access to

adjacent cameras where the front of the truck is visible.

(b) A point cloud of a vehicle at a
relatively large distance to the

LiDAR sensor. Note that only one
point is provided by the point cloud

to infer the vehicle’s size,
orientation, and poistion.

(c) A point cloud of a vehicle at a short distance to
the LiDAR sensor. When more measurements

(white points) of the same vehicle exists it is easier
to make a precise annotation.

Figure 2.4: The difficulty of making annotations increase with the distance to the
object. For the case in Figure 2.4b very little information is provided to the annotator to
create the annotation since the car covers few pixels and only have one LiDAR point.

28

2. Theory

0 20 40 60
0

5 · 10−2
0.1

0.15
0.2

Distance [m]

σ
2

[m
2]

Position

0 20 40 60
0

0.2
0.4

Distance [m]

σ
2

[ra
d2]

Yaw

0 20 40 60

0.5
1

1.5
2 ·10−2

Distance [m]

σ
2

[m
2]

Size

Figure 2.5: These three functions were used to map the distance between the sensor
and object to the corresponding measurement noise parameters. Note that the different
functions do not share their maximum y-value.

29

2. Theory

30

3
Methods

As mentioned, this thesis aims to find a good motion model that allows for the
highest level of automation. Since a strong temporal correlation exists between
adjacent time instances the problem is to consolidate information about the hidden
state xk using both past, present, and future information. This thesis focuses on
the available tools in Bayesian inference and methods used in this thesis will be
described in this chapter.

3.1 Smoothing Implementations

This thesis solves the trajectoiry estimation as a smoothing problem and the smoother
that we have choosen for this thesis is the IPLS. In the IPLS described in Section
2.4 both the motion model and the measurement models are linearized using SLR.
However, in this thesis the measured states are part of the state vectors for all motion
models. This means that the mapping between state and measurement is always lin-
ear. When using SLR to find an affine approximation (hk(x) ≈ Hkx +bk +gk, gk ∼
N (0, Ωk)) of the linear hk(·), the resulting bk and Ωk will be zero since a linear func-
tion is also affine and hence the approximation is exact. In the presentation of the
IPLS below the measurement model hk(·) has been replaced with H that represents
the linear mapping between state and measurement, yk = Hxk.

García-Fernández et al. states in [4] that initialization of the first posterior solution
can be made using a sigma point smoother. As mentioned, no linearization of the
measurement model is needed and therefore the initialization can be computed using
SLR with the only difference that during initialization only the posterior from the
filter solution is available in contrast to after initialization where the linearization
can be obtained based on the smoothing solution. The pseudocode of the IPLS
algorithm used in this thesis can be seen in Algorithm 6.

31

3. Methods

Algorithm 6 The IPLS used in this thesis.
Data: Prior mean:u1

0 = x0, prior covariance:W 1
0 = P0, motion model: fk(·), Qk,

measurement model:H, Rk, measurement sequence: y
Result: Posterior moments: sJ

k , W J
k for k = {0, . . . , T}

/* Below p , u , s are the predicted, updated, and smoothing
solutions respectively and P, U, S are their corresponding
covariance matrices. The subscript refers to which time the
estimate refers to. If there is no subscript it refers to the
set containing the variable at all time instances. */

/* Initialize s1
k, S1

k for k = {1, . . . , T} */
for k = 0 to T-1 do

(F 1
k ,a1

k,Λ1
k) = SLR (fk(·),u1

k,U1
k)

(p1
k+1,P 1

k+1) = prediction (F 1
k ,a1

k,Λ1
k, u1

k,U1
k ,Qk)

if meas exists at time k+1 then
(u1

k+1,U1
k+1) = update (p1

k+1,P 1
k+1, H, Rk,yk+1)

else pass prediction as posterior
(u1

k+1,U1
k+1) = (p1

k+1,P 1
k+1)

end
end
/* obtain smoothing solution from affine RTS */
(s1, S1) = RTS (u1, U1,pl,P l,F 1,a1,Λ1)
for i=1 to J-1 do

for k = 0 to T do
(F i+1

k ,ai+1
k ,Λi+1

k) = SLR (fk(·),si
k,Si

k)
end
for k = 1 to T do

(pi+1
k+1,P i+1

k+1) = prediction (F i+1
k ,ai+1

k ,Λi+1
k , ui

k,ui
k,Qk)

if meas exists at time k+1 then
(ui+1

k+1,U i+1
k+1) = update (pi+1

k+1,P i+1
k+1, H, Rk+1, yk+1)

else pass prediction as posterior
(ui+1

k+1,U i+1
k+1) = (pi+1

k+1,P i+1
k+1)

end
end
(si+1, Si+1) = RTS (ui+1, U i+1,pi+1,P i+1,F i+1,ai+1,Λi+1)
if KLD (si+1, Si+1,si, Si) < threshold) then If two following solutions are close
the iteration should terminate

break
end

end

3.1.1 Termination

As mentioned in Section 2.2, we would like to compute the joint posterior density
p(x0:T |y1:T) to estimate the trajectories. In this thesis the approximation, qΘi , to

32

3. Methods

the joint posterior is iteratively obtained using IPLS as p(x0:T |y1:T) ≈ qΘi(x0:T |y1:T)
where

Θi = (F i
0:T −1, ai

0:T −1, Λi
0:T −1) (3.1)

is the set of enabling approximations acquired from SLR at iteration i.

Ideally, the selected Θi would make qΘi(x0:T |y1:T) match the first two moments of
p(x0:T |y1:T). To measure how well these moments match, the KLD can be used [8].
García-Fernández et al. states in [4] that IPLS recursion iteratively improves the
set of enabling approximations Θi. We have therefore chosen to check if

D(qΘi(x0:T |y1:T)||qΘi+1(x0:T |y1:T)) (3.2)

is below a chosen threshold value as a termination condition of the iterations in the
IPLS.

3.1.2 Shift of Observed Angles

When performing the update step an assumption of continuous state spaces is made.
Since the angle state is modulo 2π, different numerical values have the same physical
meaning. This leads to issues when performing the update step since values that
represent close angles could have numerical values that are very different.

For example, assume that the observed angles are given on the interval [−π, π) and
the predicted angle is 2π. If an observation of 0 is obtained, the predicted angle
should not be updated since 2π and 0 represent the same angle. Since 0 is lower
than 2π the updated value will be something between 0 and 2π which is undesired.

To solve this issue the observed value can be shifted to an interval centered in the
predicted value. Then both the angle representations will be in the same interval
and all angles will be represented by the same numerical value.

3.2 Motion Model Evaluation

The purpose of the motion models is to drive the state variables forward in time (see
Figure 2.1). To evaluate which model that performs best, state estimations were
made for at least all annotated time instances (but possibly more often, see Section
3.2.1). The annotations at time instances that were not used for estimation were
utilized for evaluation of the motion model. To determine how well different motion
models can predict the state trajectory, the distance between human annotations
provided to the algorithm was varied using two different heuristics described in
Section 3.3. To quantitatively measure how well specific motion models perform,
the metrics described in Section 3.2.2 was used.

33

3. Methods

3.2.1 Fast Sampling

As discussed in Section 2.6.1 the integration error increases with the time step taken
but it is not the only error that grows with larger step sizes. When making the affine
approximation using SLR, the second moment of the pdf will grow with a larger time
step since the process noise grows with larger time steps. This will effectively force
the SLR to adapt the approximation to a larger interval in the state space of xk

since the integrations in Equations (2.25) are weighted with the pdf of xk.

To reduce both the integration error and the “linearization” error, the method of
fast sampling was implemented. This was done by increasing the frequency at which
the prediction steps were made. This has the effect that the time steps ∆tk used in
prediction get smaller. For CV and CA a prediction frequency of 4.0 Hz was used
and for CT and BM 10.0 Hz was used.

3.2.2 Metrics for Evaluation

In order to yield quantitative results on agreement between boxes from Nuscenes
and estimated boxes, well defined metrics are needed. A commonly used metric to
quantify similarity of two bounding boxes is IoU which measures overlap between
two enclosed spaces. Since we assume the world to be flat and the box height to be
constant, the IoU can be evaluated in the xy-plane. The definition follows as

IoU(Âbox, Abox) = |Âbox ∩ Abox|
|Âbox ∪ Abox|

(3.3)

where Âbox represents the space enclosed by the estimated bounding box and Abox
represents the space enclosed by the ground truth box. This metric is used by [15]
to determine how well the proposed bounding boxes agrees with the ground truth.
To measure an average IoU agreement the following metric can be used

IoU = 1
m

∑
k

IoU(Âboxk
, Aboxk

) (3.4)

where the summation includes all estimated bounding boxes used for evaluation and
the total number of those boxes is m. This gives a value ranging between 0 and 1
where it is desirable to achieve a result as close to 1 as possible.

IoU is invariant to a 180° flip in yaw angle another metric is needed to measure this
deviation. One metric that can measure how well the yaw angle aligns with the
ground truth yaw is the average heading similarity (AHS) given by

AHS = 1
m

∑
k

1 + cos θk

2
(3.5)

where θk = ϕ̂k − ϕk, which is the difference between the estimated yaw and the yaw
of the ground truth box. The summation 1

m

∑
k is the same as in (3.4) and a value

close to 1 is desired.

34

3. Methods

Another metric that could be used is a root-mean-square error (RMSE) on the
distance between the center points of the estimated bounding boxes and the ground
truth boxes. If d is the Euclidean distance between the centers, then the RMSE can
be defined as

dRMSE =
√√√√ 1

m

∑
k

d2
k. (3.6)

In this project the world is assumed to be flat and therefore d2
k = (x̂k−xk)2+(ŷk−yk)2

which is the center deviation in the xy-plane.

3.2.3 Selected Sequences from Nuscenes

To evaluate the motion models, ground truth data is needed and for this reason we
need to select some suitable annotation sequences from the Nuscenes dataset. Since
we have chosen estimate car trajectories only, sequences of the category ‘vehicle.car’
has been used for estimation. Furthermore, there are attributes associated with each
annotation and for vehicles the attributes are:

• vehicle.moving

• vehicle.stopped

• vehicle.parked

We have chosen to filter out the vehicle.car sequences that have at least one anno-
tation with the attribute vehicle.moving. There are 422 vehicle.car sequences that
satisfy this condition and the distribution of the number of annotations in those
sequences is presented in Figure 3.1. This histogram shows that there is a con-
centration towards sequences with fewer annotation compared to those with many.
We have chosen to only consider moving cars because the annotations of stationary
vehicles could just be held at a constant pose in time. This is of little interest for
trajectory estimation.

3.3 Annotation Strategies

One of the research questions is how the level of human intervention affects the
quality of the automatically generated annotations. To answer that question we
have chosen two annotation strategies that simulate how a human annotator inter-
acts with the smoother and thereby add a sparse set of annotation in two different
ways. We have chosen to call these strategies the static annotation strategy and the
adaptive annotation strategy.

35

3. Methods

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

Number of annotations in a sequence

N
um

be
r

of
se

qu
en

ce
s

Distribution of number of annotations – Moving cars

Figure 3.1: This histogram shows the distribution of how many annotations the 422
chosen sequences contain. The chosen sequences are of the object type vehicle.car and at
least one annotation in every sequence has the attribute vehicle.moving.

3.3.1 Static Annotation Strategy

The static annotation strategy is a rather simple way of adding annotations as input
to the smoother. The strategy is:

1. Select a step size ℓ.

2. Add the first annotation in the sequence.

3. From the first annotation and onwards, add every ℓ-th annotation.

4. Add the last annotation if it was not already added in the previous step.

A detailed description is provided in Algorithm 7.

Algorithm 7 Static annotation strategy
Data: Sequence of annotations y1:T = (y1, . . . , yT) and step size ℓ.
Result: Subset annotation sequence Ys ⊆ y1:T .
Initialize Ys = ∅.
Add the first, y1, and the last, yT , to Ys.
forall i ∈ {2, . . . , T − 1} do

if i− 1 is a multiple of ℓ then
Add yi to Ys

else
Continue

end
end

36

3. Methods

Table 3.1: The number (column two) of annotations used as input to the smoother
for the static annotation strategy, and proportion of total annotations as a percentage
(column three) that this represents.

Total number of annotations: 6687
Step size, ℓ Number of used annotations Percentage
2 3679 55 %
4 2165 32 %
6 1669 25 %
8 1386 21 %
10 1239 19 %

365 370 375 380
x position [m]

1120

1125

1130

y
po

sit
io
n
[m

]

Step size 4

1020 1040 1060
x position [m]

570

580

590

600

610

y
po

sit
io
n
[m

]
Step size 6

Figure 3.2: Examples of the static annotation strategy in two annotation sequences.
The purple boxes are the selected boxes that are members of Ys. In the left sequence step
size 4 was used and in the right step size 6 was used.

According to this strategy the number of annotations used as input to the smoother
for a particular sequence will be |Ys|. In the 422 car sequences in Nuscenes that we
have selected for analysis there are 6687 annotated boxes. If the static annotation
strategy is followed for step sizes ℓ = 2, 4, 6, 8 and 10 the number of used annotations
will be as presented in Table 3.1. As the step sizes increase the difference in the
percentage of used annotations gets smaller. This can be explained by the fact that
many sequences have fewer than 20 annotations as Figure 3.1 shows. An example
of the results of this strategy is illustrated in Figure 3.2 for step sizes 4 and 6.

There are twenty sequences that have only two annotations as shown by the leftmost
bar in Figure 3.1. Since the static annotation strategy will add all annotations in
these sequences there will not be any annotations left for evaluation. Therefore, the
results for the static annotation strategy involves 402 sequences instead of 422.

37

3. Methods

3.3.2 Adaptive Annotation Strategy

The other annotation strategy is the adaptive annotation strategy that simulates a
different workflow for the human annotator. The idea is that once the smoothing
algorithm has generated box proposals, then the human annotator can correct the
worst box proposal. The corrected box is then added to the set of boxes observed
by the smoother and then smoother is run another time to generate a new trajec-
tory. This new trajectory will most likely result in better box proposals than in the
previous run. The annotator will therefore adapt the insertion of boxes to where the
estimated trajectory deviates the most from the actual trajectory of the car, hence
the name adaptive annotation strategy.

The annotator will keep adding annotations until the annotator thinks that the
estimated trajectory represents ground truth. When evaluating the adaptive anno-
tation strategy we have access to the annotations from the dataset that are not used
for estimation (boxes marked in a combination of black, red, and blue in Figure
3.3). As a proxy for the human decision to stop adding boxes we have chosen to
use a threshold on the minimum IoU value. When all boxes’ IoU values are above
the chosen threshold the algorithm terminates. The pseudocode for this strategy is
outlined in Appendix A.1.

3.3.3 Design of Experiments

To be able to draw conclusions on which motion model performs best and what the
implications of the different annotation strategies are, the experiments were divided
into two parts, one for each annotation strategy.

Static Annotation Strategy

For each motion model the algorithm was run for step sizes 2, 4, 6, 8 and 10 between
the annotated time instances. Larger step sizes than 10 was not included since we
deemed that it did not provide more insight to answer our research questions. The
results for different step sizes were evaluated using the metrics described in Section
3.2.2.

Adaptive Annotation Strategy

For each motion model the algorithm was run for minimum IoU values of 0.6, 0.7,
0.8 and 0.9. The results for different minimum IoU values were then evaluated by
computing the fraction between the number of added human annotations and the
total number of annotations.

38

3. Methods

860 870 880 890 900 910 920
x position [m]

1340

1360

1380

1400

1420

1440

y
po

sit
io

n
[m

]

Car sequence from scene-0031, Min IoU = 0.7

(a) The full sequence.

864 866 868 870 872 874
x position [m]

1420

1425

1430

1435
y
po

sit
io
n
[m

]

Zoomed image of the first 9 annotations

(b) The first 9 annotations from the
sequence to the left.

Figure 3.3: Examples of the adaptive annotation strategy in one annotation sequence
from scene-0031. The purple boxes are the selected annotations from the dataset that
are observed by the smoother when making trajectory estimates. The other boxes are
the annotations from the dataset used to decide when no more boxes is needed for the
smoother to estimate a good trajectory. Note that the purple annotations that are added
to the observed annotations are not equidistant, suggesting that some annotations hold
more information than others.

39

3. Methods

Assigning Parameter Values

We also have to assign values to the motion model parameters. For example, BM
has parameters lf and lr which represent the distance from the center of mass to the
front and rear axles respectively [14]. However, we assume that no slip occurs at the
wheels and the only point of interest is the geometrical center (rather the the mass
center). Hence, the BM parameters should be lf = lr = L/2 where L is the total
length of the vehicle. The x and y position of the annotations is the geometrical
center and this choice aligns the x and y position of the motion model with the x
and y position of the corresponding annotation.

In an effort to tune the process noise covariance parameters, a coordinate search to
find parameters that maximizes the prediction likelihood was used, as suggested by
Abbeel et al. in [16].

40

4
Results

This chapter will present the results from the experiments that show how our differ-
ent metrics depend on the sparsity of the available annotations. We have chosen not
to present results of the metric AHS because this metric was found to provide little
information on the quality of the estimated trajectory. The reason why it held little
information was that it was always close to its maximum value for all trajectories
where estimation was possible, independent of the annotation sparsity.

4.1 Static Annotation Strategy

The static annotation strategy as described in Section 3.3.1 adds every ℓ-th anno-
tation to the observed annotations. That fixed number ℓ is called the step size and
has been assigned the values 2, 4, 6, 8 and 10. For each of these five assignments
simulations have been run and the quality of the estimated trajectories are evaluated
below.

4.1.1 Non-stationary Measurement Noise

When using non-stationary measurement noise the measurement uncertainty in-
creases if the boxes are further away from the ego-vehicle. The results for this noise
model is shown in Figure 4.1 that includes RMSE for the center point deviation and
the average IoU for the sequences where the smoother successfully produced trajec-
tory estimations. The numbers of successful sequences for each step size and motion
model are specified in Table 4.1. The sequences for which the smoother failed are
not used to compute the metrics and are therefore counted as “Number sequences
not used” in the table.

Since there is a difference between the motion models in terms of how they model
the kinematics of the cars, it is interesting to filter out the sequences that turn more
than others. To separate the turning sequences from straight sequences we have
chosen to classify a sequence as turning if the largest difference between the yaw
angles of two ground truth boxes is larger than 0.5 radians (≈ 29°). Sequences that

41

4. Results

Non-stationary Measurement Noise

2 4 6 8 10
0

0.5

1

1.5

2

Step size

d
R

M
S

E
[m

]
CV
CA
CT
BM

(a) dRMSE in the xy-plane.

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Step size
Av

er
ag

e
Io

U

CV
CA
CT
BM

(b) Average IoU in the xy-plane.

Figure 4.1: Results from the static annotation strategy when using non-stationary
measurement noise. The sequences that have been used to compute these results are the
ones that have successfully estimated trajectories.

Table 4.1: The numbers of sequences that were evaluated in the static annotation strat-
egy when using non-stationary measurement noise are specified as “Number of sequences
used”. “Number of sequences not used” is the number of sequences for which the smoother
failed.

Number of sequences not used / Number of sequences used
Step size 2 4 6 8 10
CV 0 / 402 0 / 402 0 / 402 0 / 402 0 / 402
CA 0 / 402 0 / 402 0 / 402 0 / 402 0 / 402
CT 1 / 401 1 / 401 2 / 400 2 / 400 2 / 400
BM 1 / 401 1 / 401 1 / 401 1 / 401 2 / 400

do not satisfy this condition are considered as straight. Out of the 4221 moving
car sequences there are 116 turning sequences and 306 straight sequences. The
results for the turning and the straight sequences are presented in Figure 4.2 and
4.3 respectively.

1Of these 422 sequences, keep in mind that 20 of them have only 2 annotations and therefore
have no annotations left for evaluation. This makes the number of annotations used for evaluation
equal to 402 for the static annotation strategy.

42

4. Results

Non-stationary Measurement Noise – Turning Car Sequences

2 4 6 8 10
0

0.5

1

1.5

2

Step size

d
R

M
S

E
[m

]
CV
CA
CT
BM

(a) dRMSE in the xy-plane.

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Step size
Av

er
ag

e
Io

U

CV
CA
CT
BM

(b) Average IoU in the xy-plane.

Figure 4.2: Results from the static annotation strategy when using non-stationary
measurement noise. The sequences that have been used to compute these results are the
turning sequences that have successfully estimated trajectories.

Non-stationary Measurement Noise – Straight Car Sequences

2 4 6 8 10
0

0.5

1

1.5

2

Step size

d
R

M
S

E
[m

]

CV
CA
CT
BM

(a) dRMSE in the xy-plane.

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Step size

Av
er

ag
e

Io
U

CV
CA
CT
BM

(b) Average IoU in the xy-plane.

Figure 4.3: Results from the static annotation strategy when using non-stationary
measurement noise. The sequences that have been used to compute these results are the
straight sequences that have successfully estimated trajectories.

4.1.2 Stationary Measurement Noise

The stationary measurement noise used in this section is a model that puts a lot
of trust in the annotations used to estimate the trajectory. Additionally, the model

43

4. Results

assumes the same measurement accuracy for annotations close to the ego-vehicle as
for annotations far away. The results when using this measurement noise model is
shown in Figure 4.4. As previously explained, only sequences where the smoother
successfully generated trajectories are used to compute these results. The numbers
of sequences used are specified in Table 4.2.

Stationary Measurement Noise

2 4 6 8 10
0

0.5

1

1.5

2

Step size

d
R

M
S

E
[m

]

CV
CA
CT
BM

(a) dRMSE in the xy-plane.

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Step size

Av
er

ag
e

Io
U

CV
CA
CT
BM

(b) Average IoU in the xy-plane.

Figure 4.4: Results from the static annotation strategy when using stationary measure-
ment noise. The sequences that have been used to compute these results are the ones that
have successfully estimated trajectories.

Table 4.2: The number of sequences that were evaluated in the static annotation strategy
when using stationary measurement noise are specified as “Number of sequences used”.
“Number of sequences not used” is the number of sequences for which the smoother failed.

Number of sequences not used / Number of sequences used
Step size 2 4 6 8 10
CV 0 / 402 0 / 402 0 / 402 0 / 402 0 / 402
CA 0 / 402 0 / 402 0 / 402 0 / 402 0 / 402
CT 1 / 401 1 / 401 2 / 400 3 / 399 3 / 399
BM 2 / 400 1 / 401 1 / 401 3 / 399 3 / 399

As for the non-stationary measurement noise model, a separation of the turning and
the straight sequences has been made. Figure 4.5 shows the results for the turning
sequences and Figure 4.6 shows the results for the straight sequences.

44

4. Results

Stationary measurement noise – Turning car sequences

2 4 6 8 10
0

0.5

1

1.5

2

Step size

d
R

M
S

E
[m

]
CV
CA
CT
BM

(a) dRMSE in the xy-plane.

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Step size
Av

er
ag

e
Io

U

CV
CA
CT
BM

(b) Average IoU in the xy-plane.

Figure 4.5: Results from the static annotation strategy when using stationary measure-
ment noise. The sequences that have been used to compute these results are the turning
sequences that have successfully estimated trajectories.

Stationary measurement noise – Straight car sequences

2 4 6 8 10
0

0.5

1

1.5

2

Step size

d
R

M
S

E
[m

]

CV
CA
CT
BM

(a) dRMSE in the xy-plane.

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Step size

Av
er

ag
e

Io
U

CV
CA
CT
BM

(b) Average IoU in the xy-plane.

Figure 4.6: Results from the static annotation strategy when using stationary measure-
ment noise. The sequences that have been used to compute these results are the straight
sequences that have successfully estimated trajectories.

45

4. Results

4.2 Adaptive Annotation Strategy

The level of automation that our smoothing algorithm can achieve is best evalu-
ated by how much human intervention that is needed in the annotation process. In
Section 3.3.2 we described adaptive annotation, which is an algorithm that simu-
lates the workflow of a human annotator when using the smoother as an aid in the
annotation process. A sensible assessment of the level of automation is the follow-
ing: Count the number of annotations that the annotator must add to enable the
smoother to generate a trajectory from which all box proposals satisfy the chosen
quality metric. The chosen metric is IoU as described in Section 3.3.2.

When using the non-stationary measurement noise, Figure 4.7a shows the number of
annotations that must be added in order to reach a given minimum IoU limit. The
vertical axis represents the number of used annotations as a percentage of the total
number of annotations. This percentage is the measure of human intervention for
the adaptive annotation strategy. As for the static annotation strategy, a separation
of the turning and the straight sequences has been made in Figures 4.7b and 4.7c
respectively.

As for the static annotation strategy, the difference in human intervention for each
motion models gets smaller when the stationary measurement noise is used. This
can be observed in Figure 4.8a that shows the human intervention for each motion
model when the stationary noise model is used. The separation of turning and
straight sequences is presented in Figures 4.8b and 4.8c. For both noise models, it
appears that the CT motion model requires the least number of boxes in order to
reach the specified minimum IoU level.

In the adaptive annotation strategy it might be the case that some sequences never
reach a particular minimum IoU level. The choice of IoU level has an impact on how
many sequences that reach it; A higher IoU level makes it more difficult to reach
that level, which is shown in Figure 4.9. But more importantly, the different motion
models also affect the number of sequences that reach the minimum IoU levels. CT
is the motion model that enable the most sequences to reach the different IoU levels.

46

4. Results

Human Intervention – Non-stationary Measurement Noise

0.6 0.7 0.8 0.9
0

20

40

60

80

100

Min IoU limit

Pe
rc

en
ta

ge
of

us
ed

an
no

ta
tio

ns
[%

] All Car Sequences

CV
CA
CT
BM

(a) Human intervention for all car sequences measured by the percentage
of used annotations. The total number of annotations available is 6713

which corresponds to 100 %.

0.6 0.7 0.8 0.9
0

20

40

60

80

100

Min IoU limit

Pe
rc

en
ta

ge
of

us
ed

an
no

ta
tio

ns
[%

] Turning car sequences

CV
CA
CT
BM

(b) Human intervention for turning car
sequences measured by the percentage of
used annotations. The total number of

annotations available in the turning
sequences is 2627 which corresponds to

100 %.

0.6 0.7 0.8 0.9
0

20

40

60

80

100

Min IoU limit

Pe
rc

en
ta

ge
of

us
ed

an
no

ta
tio

ns
[%

] Straight car sequences

CV
CA
CT
BM

(c) Human intervention for straight car
sequences. The total number of

annotations available in the straight
sequences is 4086 which corresponds to

100 %.

Figure 4.7: A measure of the level of automation is how many annotations the hu-
man has to provide in order to achieve a minimum IoU-value. The figure present how
many annotations that were required for the different motion models in different scenarios
measured by the percentage of used annotations.

47

4. Results

Human Intervention – Stationary Measurement Noise

0.6 0.7 0.8 0.9
0

20

40

60

80

100

Min IoU limit

Pe
rc

en
ta

ge
of

us
ed

an
no

ta
tio

ns
[%

] All car sequences

CV
CA
CT
BM

(a) Human intervention for all car sequences. The total number of
annotations available is 6713 which corresponds to 100 %.

0.6 0.7 0.8 0.9
0

20

40

60

80

100

Min IoU limit

Pe
rc

en
ta

ge
of

us
ed

an
no

ta
tio

ns
[%

] Turning car sequences

CV
CA
CT
BM

(b) Human intervention for turning car
sequences. The total number of annotations
available in the turning sequences is 2627

which corresponds to 100 %.

0.6 0.7 0.8 0.9
0

20

40

60

80

100

Min IoU limit

Pe
rc

en
ta

ge
of

us
ed

an
no

ta
tio

ns
[%

] Straight car sequences

CV
CA
CT
BM

(c) Human intervention for straight car
sequences. The total number of annotations
available in the straight sequences is 4086

which corresponds to 100 %.

Figure 4.8: In this figure the percentage of human annotations used to achieve a min-
imum IoU above a threshold specified by the x-value in the graphs. In the top figure all
sequences have been consolidated and in the bottom two figures the sequences have been
split between turning and straight sequences. CT requires the least number of human
annotations to achieve a minimum IoU above the different thresholds.

48

4. Results

0.6
CV

0.6
CA

0.6
CT

0.6
BM

0.7
CV

0.7
CA

0.7
CT

0.7
BM

0.8
CV

0.8
CA

0.8
CT

0.8
BM

0.9
CV

0.9
CA

0.9
CT

0.9
BM

0

100

200

300

400

Min IoU limit, Motion model

N
um

be
r

of
ca

r
se

qu
en

ce
s

Adaptive annotation – Non-stationary measurement noise

Min IoU reached
Min IoU not reached

(a)

0.6
CV

0.6
CA

0.6
CT

0.6
BM

0.7
CV

0.7
CA

0.7
CT

0.7
BM

0.8
CV

0.8
CA

0.8
CT

0.8
BM

0.9
CV

0.9
CA

0.9
CT

0.9
BM

0

100

200

300

400

Min IoU limit, Motion model

N
um

be
r

of
ca

r
se

qu
en

ce
s

Adaptive annotation – Stationary measurement noise

Min IoU reached
Min IoU not reached

(b)

Figure 4.9: “Min IoU reached” is the number of sequences that reached the specified
minimum IoU level in the adaptive annotation algorithm. “Min IoU not reached” is the
number of sequences for which a trajectory was estimated but never reached the minimum
IoU level.

49

4. Results

50

5
Discussion

When we evaluate our results we assume that the Nuscenes dataset provide the true
value for the annotations and we measure how well our estimates agree with these
annotations. On the other hand, when making the estimates we model the annota-
tions in the dataset as outcomes from a probability distribution which makes them
noisy, as the annotations in Figure 5.1 illustrate. The right sequence has annota-
tions that deviate sideways from an otherwise smooth trajectory. The sequence to
the left represent a car standing still for most of the time but the annotations seem
to have a variance in yaw and position. The inconsistency of both considering the
annotations as pure ground truth and as outcomes of a random process makes it
hard to truly evaluate how well our algorithm performs. However, this issue should
average out with a large number of annotated sequences and should not affect the
relative ordering of the different motion models’ performance.

1004 1006 1008 1010
x position [m]

622
623
624
625
626
627
628
629

y
po

sit
io
n
[m

]

Car sequence from scene-0054

1270 1280 1290 1300
x position [m]

1030

1040

1050

1060

y
po

sit
io
n
[m

]

Car sequence from scene-0096

Figure 5.1: Two car sequences that showcase the noise in the process of creating anno-
tations. To the left: A car standing still for most time instances, but starts to move in
the end of the sequence. To the right: A moving sequence with annotations that slightly
deviate from a smooth trajectory.

Given that annotations are subject to uncertainty it could be that in some cases that
the algorithm’s estimate is better than the annotation but the evaluated score could

51

5. Discussion

be low since we compare to this potentially poor annotation. One such scenario
could be a case where the car is heavily occluded and the state variables of the
annotation is hard to infer from what is visible to the annotator. The algorithm can
make use of both future and past positions, velocities, and yaw angles to make a
good estimate even though the information from the current state is poor.

5.1 Motion Models

The results for the static annotation strategy show that there is a significant dif-
ference between the different motion models’ ability to generate accurate trajectory
estimations, in particular with the non-stationary measurement noise model. The
non-linear motion models CT and BM yield trajectory estimations with lower dRMSE

and higher average IoU than the linear models CV and CA. They also enable a lower
human intervention as demonstrated by the adaptive annotation results.

There is a clear difference in the results for CV and CA where CA performs better
both in terms of dRMSE, average IoU and human intervention. We believe that this
is explained by the inability of CV to capture the accelerations of the cars in the
dataset. This raises the question whether the performance of CT and BM could be
improved since they currently assume a constant xy-velocity (v̇ = 0 as shown by
Equation (2.64) and (2.65)). Therefore, a hypothesis for future studies is to model
the xy-acceleration as constant for CT and BM, i.e. v̇ = a and ȧ = 0.

The difference between the performance of the linear and the non-linear motion
models can be explained by the fact that CT and BM model the kinematics of
a car in a more realistic way compared to CV and CA. CT models the change
in the heading direction by assuming that the the turn rate is constant (i.e. the
angular velocity of the yaw angle is constant) and couples the yaw angle to the x-
and y-velocity by projecting speed, v, onto the x, and y axis (see Equation (2.64)).
BM couples the turn rate to the xy-velocity and to a front steering angle, δf (see
Equation (2.65)). These assumptions are reasonable descriptions of how cars turn
compared to CV and CA that do not couple the turn rate to the heading of the car
(see Equations (2.62) and (2.63)).

A weakness of our evaluation of results is that the motion models can make estimates
that are physically unlikely in normal city traffic without having a big impact on
the evaluated metric scores. In Figure 5.2 the estimates for one of the more difficult
sequences is made using different motion models. All estimates are made using the
adaptive annotation strategy. Note that CV and CA make estimates that would
require that the car slides slightly sideways, a motion that is not present in the true
trajectory.

The sequence in Figure 5.2 is particularly difficult for the motion models involved in
this thesis. Due the the sharp turn in the beginning it is only CT that has enabled
the adaptive annotation process to estimate a trajectory with a minimum IoU larger

52

5. Discussion

Adaptive annotation results for a sequence in scene-0045
using non-stationary measurement noise.

160 180 200 220 240 260
x position [m]

910

920

y
po

sit
io
n
[m

] Nuscenes annotations

140 160 180 200 220 240 260
x position [m]

910

920

y
po

sit
io
n
[m

] CV, Min IoU < 0.6

160 180 200 220 240 260
x position [m]

910

920

y
po

sit
io
n
[m

] CA, Min IoU < 0.6

160 180 200 220 240 260
x position [m]

910

920

y
po

sit
io
n
[m

] CT, Min IoU ≥ 0.6

160 180 200 220 240 260
x position [m]

910

920

y
po

sit
io
n
[m

] BM, Min IoU < 0.6

Figure 5.2: This figure aims to visualize that the non-linear motion models yields
estimated trajectories that are more likely to happen in city traffic. The estimates for the
linear models show behaviours where the heading and yaw of the car match in such a way
that would require cars to slide. This does not happen in the dataset but our current
metrics can not penalize that the estimated trajectories suggest this.

53

5. Discussion

than 0.6 using the non-stationary measurement noise. BM is almost there but has an
IoU lower than 0.6 for one of the boxes in the beginning of the sequence. However,
it is clear that both CT and BM generate more realistic trajectories than CV and
CA.

5.2 Failing Sequences

The smoother fails to produce trajectory estimations for a few sequences and the
number of failed sequences ranges from three to six according to the Tables 4.1 and
4.2. In this section the different causes for these failures are discussed and analyzed.

5.2.1 Insensible Trajectory Estimations

In the case of static annotation and large step sizes there is a higher risk for bad
trajectory estimations. This is easily explained by the fact very few annotations
are observed by the smoother. For step size 8 and 10 only 21 % and 19 % of the
total number of annotations are observed respectively (see Table 3.1). For CT it
leads to the trajectories shown in Figure 5.3a that obviously are false. However, it
is possible to see the characteristics of the CT model in these results: a constant
turn rate. Additionally, the kinematics for this motion model does not require the
velocity vector to point in the same direction as the front of the car. With this in
mind, it is not strange that these trajectories have been created since the algorithm
uses the first two boxes in to guess a prior velocity vector and orientation. This is
clearly demonstrated by the result for step size 8 in Figure 5.3a.

The fact that CT does not couple the direction of the box to the direction of the
velocity vector can be thought of as one of its disadvantages. On the other hand, this
is a rare case and once a couple of more annotations are added a sensible trajectory
is estimated as shown in Figure 5.3b. This is a better result but a bit too far from
the optimal solution. It is clear that the static annotation strategy suffers from
that it does not add the box that contains most information about the trajectory.
However, it is safe to consider this as a special case since the sequence difficult to
process and has caused the algorithm to fail several times.

5.2.2 Motion Model Linearization Failures

Another reason for failure is when the SLR performs a bad linearization of the
motion model fk(xk). This may happen if there is an attempt to linearize fk in a
region where it is highly non-linear. This causes numerical problems and leads to
the matrix Fk being ill-conditioned. In these situations, the elements of Fk explode
and become very large which in turn leads to very large numbers in the estimated

54

5. Discussion

Static annotation results for CT for a sequence in scene-0045

150 175 200 225 250
x position [m]

900

920

940

960

y
po

sit
io
n
[m

]

Step size 8

150 200 250
x position [m]

880

900

920

940
y
po

sit
io
n
[m

]

Step size 10

(a) Trajectory estimations using large step sizes.

150 175 200 225 250
x position [m]

900

925

y
po

sit
io
n
[m

] Step size 2

150 175 200 225 250
x position [m]

900

925

y
po

sit
io
n
[m

] Step size 4

(b) Trajectory estimations using step size 2 and 4.

Figure 5.3: The trajectory estimations for this sequence using step size 6, 8 and 10 were
classified as failed (results for step size 6 are omitted here). The used prediction frequency
is 10 Hz but the estimated trajectory (yellow boxes) is plotted at 5 Hz. The step sizes 2
and 4 generate more sensible results. Note that the fourth annotation contains a lot of
information but is never observed.

55

5. Discussion

770 772 774 776 778 780 782
x position [m]

1445.0

1447.5

1450.0

1452.5

1455.0

1457.5

1460.0

1462.5

y
po

sit
io
n
[m

]

Car sequence from scene-0049

Figure 5.4: For this sequence a linearization failure occurred for static annotation, step
size 2 while using BM as motion model. In the beginning of the sequence the car has
stopped but the annotations are noisy for those time instances. Relying too much on
those boxes would imply sideways movement of the car.

state vectors xk. These solutions have been marked as failed since the box center
coordinates exceed reasonable levels.

The IPLS may also raise errors in these situations and it is the matrix inversion op-
eration X−1

slr in Algorithm 5 that fails and causes the IPLS to exit without returning
any trajectory.

In the results for static annotation this failure only happens for BM and not for the
other motion models. What makes BM different from the other motion models is
that it involves the unbounded function tan(δf) which approaches ±∞ as the front
steering angle, δf , approaches ±π/2 radians. Even though a front wheel steering
angle close to 90◦ does not make sense for a real car it might be the case that δf

ends up close to 90◦ if subsequent observed annotations move sideways.

A situation where a linearization error has happened is for static annotation of
the sequence in Figure 5.4 using step size 2. In the beginning of the sequence
the annotations are concentrated around a stopped car but they are noisy and
deviate both in the heading direction and sideways. It is plausible that the smoother
estimates δf to be almost 90◦ if the relative displacement of two subsequent observed
boxes is completely sideways.

Possible solutions to this problem is to model the measurement noise in a different
way. An increased measurement uncertainty would cause the model to rely more on

56

5. Discussion

the motion model. Another solution could be to start providing observed annota-
tions to the smoother at the time when the car starts to move. There is no point in
providing many annotations in a time interval where the car does not move.

Even though the square-root implementation of the IPLS is a remedy to the problem
of negative definite covariance matrices, it is still sensitive to linearization of highly
non-linear motion models. However, the BM has succeeded to produce accurate
trajectory estimations for the majority of the sequences and performs reasonably
well.

5.3 Measurement Noise Models

As seen in Chapter 4 the results depend on the choice of measurement model and
this section will discuss the advantages and drawbacks of the different choices.

5.3.1 Implications of an Overconfident Measurement Model

The difference between the motion models in terms of dRMSE, average IoU and
percentage of used annotations gets smaller when changing the measurement noise
from the stationary to the non-stationary model. The reason is that the diagonal
values in the covariance matrix Rk are small in the stationary model and thereby it
assumes that the annotations are close to the actual ground truth. This forces the
estimated boxes to end up closer to the observed annotations which is demonstrated
in Figure 5.5. The right plot represents the stationary measurement model that
forces the estimate of the last box closer to the annotation compared to the non-
stationary measurement model in the left plot.

In Figure 5.5 static annotation with step size 6 has been used. If the step size is
smaller then the estimated trajectory will be even closer to the annotations in the
dataset. This means that the model relies more on the observed annotations and less
on the motion model predictions. At the same time the annotations are considered
to be outcomes of a noisy measurement process which puts a lower bound on the
dRMSE and an upper bound on the average IoU.

This is the reason why the values of dRMSE and the average IoU converge to the
same value for smaller step sizes in the Figures 4.4, 4.5, and 4.6. Also, the difference
between the motion models in terms of human intervention is smaller with stationary
measurement noise as Figure 4.8c shows. The case where the errors are the smallest
and there is almost no difference between the motion models is in Figure 4.6, that
corresponds to straight car sequences turning less than 0.5 radians.

With the stationary measurement noise it is easy for the IPLS to generate a tra-
jectory that fits tight to the annotations. In static annotation, it appears that the
difference in error between the motion models is almost zero for all step sizes and

57

5. Discussion

Illustration of the effects of the measurement models on the estimated
trajectories

1270 1280 1290 1300
x position [m]

1030

1040

1050

1060

y
po

sit
io
n
[m

]

Non-stationary

1270 1280 1290 1300
x position [m]

1030

1040

1050

1060

y
po

sit
io
n
[m

]

Stationary

Figure 5.5: This figure shows estimated trajectories (yellow boxes) drawn on top of the
Nuscenes annotation sequence shown in Figure 5.1. The purple boxes are the observed
annotations and the difference between the estimations is the model used for Rk. These
estimation are the result of the static annotation strategy with step size 6.

therefore we cannot expect the estimated trajectories to have smaller dRMSE than
in Figure 4.6a and higher average IoU than in Figure 4.6b.

5.3.2 Distance Dependent Measurement Accuracy

The stationary measurement model assumes the same accuracy for all annotations
regardless of the distance to the ego-vehicle, whereas the non-stationary model as-
signs a larger uncertainty to annotations far away. As discussed in Section 2.6.2 this
is probably a more realistic assumption.

The way that the trajectories are evaluated is a bit contradictory to this way of
thinking of the annotations since we evaluate as if the annotations are always true.
Under the assumption that annotations are outcomes from a probability distribution
it would make more sense to use a statistical evaluation method.

One possible way to evaluate could be to examine a Gaussian pdf centered at the
estimated annotation, Hx̂k, and with the covariance matrix, Rk, of the annotation,
yk. Given this distribution N (Hx̂k, Rk) how likely it is that annotation is an out-
come of this distribution? Hence the new metric would yield a probability value for
all estimates with a corresponding annotation. Using this new metric the heuris-
tic of the adaptive annotation strategy could be modified accordingly and add the
annotation which has the lowest probability instead of the one with largest center
deviation.

58

5. Discussion

5.4 Annotation Strategies

The second research question presented in Section 1.3 is “How does the level of
human intervention affect the quality of the automatically generated annotations?”.
The results for the static annotation strategy provides answer to this question under
the assumption that quality means a low RMSE for center deviation and high aver-
age IoU. The adaptive annotation strategy is developed with the interpretation of
quality being “no annotation is allowed to be worse than a lower bound”. The static
annotation view on quality might be more suitable if the goal is to generate large
quantities of data but the consistency requirements are low. Adaptive annotation is
instead more focused on providing a high consistency in the annotations, potentially
at a cost of more time spent per annotation.

With this in mind, we find it likely that the adaptive annotation strategy achieves a
higher level of automation because some annotations are more informative compared
to others, a fact that the adaptive annotation strategy tries to leverage. For example,
an annotation that has the same position, yaw, and size as the estimate from the
prediction step would not change the mean of the filtering estimate after the update
step, which causes the MAP estimate to be the same as if no measurement was
present at the current time instance. This is likely the reason that the non-linear
motion models requires fewer annotations compared to the linear models since the
kinematics of the non-linear models better predict the next state.

The adaptive annotation strategy seems to be the favorable way to achieve a higher
level of automation. However, the search for where to add the next annotation
is more complex in the adaptive case compared to the static. Our algorithm can
not provide where to add the next annotation and would rely on the annotators to
identify this themselves.

The saved time from reducing the number of human annotations needed could po-
tentially be consumed by the time the annotators would spend identifying where to
add the next annotation. Another drawback is that the annotator’s choice is not
necessarily the choice that provides the most information to the algorithm. The
trade off between reducing the number of human annotations in relation to the cost
of introducing the search for the next time instance needs to be further investi-
gated to have a conclusive result on how much time can be saved using the adaptive
strategy.

5.4.1 Combining Static and Adaptive Annotation

The two strategies are not necessarily competing alternatives, one could imagine
a combination of both strategies. The static annotation strategy could provide a
starting point for the adaptive strategy. Given the sparse set of annotations from
the static strategy, an initial trajectory could be estimated which is likely to be fairly
close to the true trajectory. Then the annotator could review the initial trajectory,

59

5. Discussion

identify where the error is the largest and add an annotation there as suggested by
the adaptive annotation strategy.

5.4.2 Change from Relative to Inertial Reference Frame

At the moment of data gathering, all sensors are mounted on the ego vehicle and
information from e.g. LiDAR and camera are captured with respect to the body
frame of the vehicle. For this reason it is likely that the annotations are made in
the coordinate system of the body frame. The algorithm in this thesis require the
annotations to be expressed in the inertial frame of reference where the ego vehicle
move. This means that the pose of the ego vehicle have to be estimated at each time
instance to enable to mapping of annotations from the body frame to the inertial
frame. As always when estimating a quantity the estimate is not guaranteed to
completely agree with the true value. This means that the uncertainties from ego
pose estimation will propagate into the annotation poses in the inertial frame. In the
left plot of Figure 5.1 a sequence of annotations can be seen where the car is labeled
as ‘stopped’ by the the annotator for almost all time instances. The jitter present
in the annotations could possibly stem from uncertainties in the yaw angle estimate
of the ego vehicle. The error propagation of ego yaw angle error scales with the
distance to the annotations which is one more argument for that the measurement
noise should increase with distance.

60

6
Conclusion

This chapter will first make a few concluding remarks and then suggest future work
that likely would improve our algorithm, thereby further raising the level of automa-
tion without increased error.

6.1 The Best Performing Motion Model

The CT motion model consistently performs quantitatively best for all combina-
tions of annotation strategy and type of measurement noise. The qualitative results
presented in Figure 5.2 also suggests that it make estimations that are physically
probable.

The next best model is the BM which follow closely after the CT and it is possible
that an even better tuning of the models could shift the relative ordering of their
performance. The CT model have the advantage of being simpler using fewer state
variables but still outperforms the more complex BM. The advantage of a lower
dimensional state vector also gives a lower computational cost when making the
estimations. The CT model never crashed as a result of linearization issues in the
SLR which the BM did for one sequence.

6.2 The Achieved Level of Automation

Level of automation is in this thesis measured by the level of human intervention
needed to achieve a certain value of a quality indicator: minimum IoU for the boxes
in a sequence. It can be concluded that CT has the best performance and requires
the least amount of human intervention as Figure 4.7 show and the intervention
values for non-stationary measurement noise are listed in Table 6.1. The CT model
also performs slightly better than BM in terms of how many sequences that reach
the minimum IoU limits and how many that do not as shown by Figure 4.9.

The Nuscenes dataset have annotations at 2 Hz which means that sets an lower
bound on how often evaluations can be made. If the aim is to annotate a dataset

61

6. Conclusion

Table 6.1: The incidence of human intervention for the CT model using non-stationary
measurement noise. These values correspond to the plotted line for CT in Figure 4.7a.

Min IoU limit 0.6 0.7 0.8 0.9
Human intervention [%] 27 36 55 80

at higher frequency the level of automation will almost certainly increase. For
example if a dataset consisting of 500 s of sampled data should be annotated at
2 Hz (1000 frames) our results suggests that 80 % or 800 of the frames would have
to be annotated to achieve a minimum IoU of 0.9. If the same 500 s should be
annotated at 36 Hz, i.e. 18000 frames, we find it very likely that the number of
human annotations does not increase since the trajectory is estimated over the same
time span. This would mean that for a dataset annotated at 36 Hz the fraction
between human annotated frames and total annotated frames is 0.044, i.e. a human
intervention of 4.4 %.

6.3 Future Work

There are still components that can be improved and we will suggest some different
areas where further work can be done.

6.3.1 Better Approximations of Process Noise

When discretizing the covariance matrix of the process noise an integral was solved
analytically for the linear models but for the non-linear models the continuous co-
variance matrices were simply multiplied with the length of the time step taken.
This approximation is not the best possible. Gustafsson suggests that the integral
which analytically discretizes the linear process noise (Equation (2.74)) by using fast
sampling (see Section 2.6.1) can be approximated by a Riemann sum to obtain a
noise more accurate noise covariance matrix [6].

6.3.2 Modeling of Measurement Noise

The annotations are results of human judgment and it can be questioned if humans
are capable of providing ground truth in the sense of absolute certainty. We believe
that the annotations are outcomes of a stochastic process where the certainty depend
on a number of circumstances. One improvement to the algorithm suggested in this
thesis is a better modeling of the measurement noise based on these circumstances
that influence the ability of the annotator to accurately create the annotations.
Currently, both the stationary and non-stationary noise models are fairly arbitrary
and not the result of a stringent optimization process. By considering distance from
the ego-car, occlusion rate, number of LiDAR-points on the object, and if the object

62

6. Conclusion

is in focus in the camera the noise modeling could be improved. When the model is
established the optimal parameters could be found using some form of optimization
method, for example EM-algorithm.

6.3.3 Object Detection and Tracking

Our hypothesis is that 3D object detections from a suitable object detection algo-
rithm, such as [15; 17; 18; 19], can improve the estimated trajectory compared to
those were only sparse annotations and motion models are used. This would imply
that the need for human annotation is reduced without losing accuracy.

The object detections, represented by a measurement vector zk, will likely be less
reliable compared to the annotations, yk, and therefore a different measurement
model is needed to account for this uncertainty:

zk = hOD
k (xk) + rOD

k . (6.1)

Here the measurement model for object detections is hOD
k (·) and the associated

measurement noise is rOD
k . Since the annotations are likely to be more accurate

than object detections it will probably not be very useful to consider the information
from object detections in the annotated time instances. In the unannotated time
instances it could be of greater utility to use that information. Figure 6.1 shows such
an SSM where, hypothetically, the information from z2 could improve the estimated
state vector x2 which will lead to an updated smoothing solution for the trajectory.

x0 x1 x2 x3 x4 x5

y1 z1 z2 y3 z3 y5 z5

Figure 6.1: The figure shows the state space model that could be used to include object
detections in the state estimates. The blue nodes (xi) are the hidden states (pose of
cuboid) and the orange nodes are observation of the states, yi being human annotations
and zi output from object detections.

6.3.4 Optimal Choice of Next Time Step to Annotate

The adaptive annotation strategy needs to identify the time instance to annotate
next. As mentioned this identification is currently expected to be done by the
annotator which adds to the average time needed to create each annotation. If this
task could be performed automatically the annotator would only have to provide the
actual annotation and not the search for where to annotate. One possible idea is to
use the state covariance matrix, Pk|T , provided by our algorithm for each estimate,

63

6. Conclusion

which could be used as an uncertainty measurement that hopefully has a positive
correlation with the estimation error. If this correlation exists the state covariance
could be used as a proxy when searching for the largest estimation error by simply
searching for the largest state covariance instead.

A second idea is to use the result from object tracking and compare the results from
object tracking to the state estimations from smoothing and add annotations where
the disagreement is largest.

64

Bibliography

[1] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan,
Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal dataset for
autonomous driving,” arXiv preprint arXiv:1903.11027, 2019.

[2] F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao, V. Madhavan, and T. Darrell,
“BDD100K: A diverse driving video database with scalable annotation tooling,”
CoRR, vol. abs/1805.04687, 2018.

[3] S. Särkkä, Bayesian Filtering and Smoothing. Cambridge University Press,
2013.

[4] A. F. García-Fernández, L. Svensson, and S. Särkkä, “Iterated posterior
linearization smoother,” IEEE Transactions on Automatic Control, vol. 62,
pp. 2056–2063, April 2017.

[5] . F. García-Fernández, L. Svensson, M. R. Morelande, and S. Särkkä, “Posterior
linearization filter: Principles and implementation using sigma points,” IEEE
Transactions on Signal Processing, vol. 63, pp. 5561–5573, Oct 2015.

[6] F. Gustafsson, Statistical sensor fusion. Studentlitteratur, 2010.

[7] I. Arasaratnam, S. Haykin, and R. J. Elliott, “Discrete-time nonlinear filtering
algorithms using gauss–hermite quadrature,” Proceedings of the IEEE, vol. 95,
no. 5, pp. 953–977, 2007.

[8] C. M. Bishop, Pattern recognition and machine learning. Information science
and statistics, New York, NY : Springer, cop. 2006., 2006.

[9] M. G. Rutten, “Square-root unscented filtering and smoothing,” in 2013 IEEE
Eighth International Conference on Intelligent Sensors, Sensor Networks and
Information Processing, pp. 294–299, IEEE, 2013.

[10] S. S. Blackman and R. Popoli, Design and analysis of modern tracking systems.
The Artech radar library, Norwood, MA : Artech House, cop. 1999., 1999.

[11] X. R. Li and V. P. Jilkov, “Survey of maneuvering target tracking. part i. dy-
namic models,” IEEE Transactions on aerospace and electronic systems, vol. 39,
no. 4, pp. 1333–1364, 2003.

[12] J. WONG, “Theory of ground vehicles,” 1978.

65

Bibliography

[13] P. Polack, F. Altché, B. d’Andréa Novel, and A. de La Fortelle, “The kine-
matic bicycle model: A consistent model for planning feasible trajectories for
autonomous vehicles?,” in Intelligent Vehicles Symposium (IV), 2017 IEEE,
pp. 812–818, IEEE, 2017.

[14] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and dynamic
vehicle models for autonomous driving control design.,” in Intelligent Vehicles
Symposium, pp. 1094–1099, 2015.

[15] W. Luo, B. Yang, and R. Urtasun, “Fast and furious: Real time end-to-end 3d
detection, tracking and motion forecasting with a single convolutional net,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 3569–3577, 2018.

[16] P. Abbeel, A. Coates, M. Montemerlo, A. Y. Ng, and S. Thrun, “Discriminative
training of kalman filters.,” in Robotics: Science and systems, vol. 2, p. 1, 2005.

[17] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. Waslander, “Joint 3d proposal
generation and object detection from view aggregation,” IROS, 2018.

[18] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud based 3d
object detection,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 4490–4499, 2018.

[19] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom, “Point-
pillars: Fast encoders for object detection from point clouds,” arXiv preprint
arXiv:1812.05784, 2018.

66

A
Appendix 1

The appendix provides implementation details regarding the adaptive annotation
strategy.

A.1 Adaptive Annotation Implementation Details

A detailed description of the adaptive annotation process is given in Algorithm 8
that starts with an annotation sequence, y1:T = (y1, . . . , yT), from Nuscenes, along
with a specified IoU limit as input. The result is a selected subset of annotations,
Ys, that when passed to the IPLS results in an estimated trajectory, x1:T stored in
latestSuccessfulTrajectory. Additionally, the output variables sequenceFailed and
IoULimitReached each contain a boolean value that tell how the adaptive annota-
tion process terminated. sequenceFailed is true if the IPLS failed in all iterations
in the while loop, otherwise it is false. IoULimitReached is true if the adaptive
annotation process reached a trajectory x1:T that has a larger minimum IoU value
equal to or larger than the IoU limit, otherwise it is false.

As previously explained, there is a risk that the IPLS fails to estimate a trajec-
tory and that is why the function IPLS outputs not only the trajectory, x1:T , but
also a boolean value stored in success that indicates if the smoothing was suc-
cessful or not along with failureReason that specifies the cause for failure. If the
smoothing was successful then the minimum IoU of the estimated trajectory is com-
puted by computeMinIoU1 and compared to the IoU limit. Instead if a failure hap-
pens, then the adaptive algorithm tries to add an annotation to Ys by the method
indexToAddHeuristic which is described in Algorithm 9.

The function distance calculates the two-dimensional Euclidean distance between
the xy-coordinates of a given annotation, yi, and the xy-coordinates of the estimated
state vector, xi, at the same time instance. This is used to find the index j of the
time instance where the xy center point deviates the most from the annotation.

1IoU is computed in the xy-plane according to Equation (3.3). Details about the implementation
of computeMinIoU are not included in this document.

I

A. Appendix 1

Algorithm 8 Adaptive annotation strategy
Data: Sequence of annotations: y1:T = (y1, . . . , yT), IoU limit: IoUlim
Result: Ys ⊆ y1:T , latestSuccessfulTrajectory, sequenceFailed and IoULim-

itReached
Initialize Ys = ∅
Initialize successList as an empty ordered list.
Add the first, y1, and the last, yT , to Ys.
continueLoop ← true, adapIter ← 0, sequenceFailed ← false
while continueLoop do

adapIter ← adapIter + 1
x1:T , success, failureReason ← IPLS(Ys)
Append success to successList
if success then

latestSuccessfulTrajectory ← x1:T
minIoU ← computeMinIoU(x1:T)
if minIoU >= IoUlim then

The minimum IoU level has been reached: DONE!
continueLoop ← false, IoULimitReached ← true

else if Ys = y1:T then
continueLoop ← false, IoULimitReached ← false

end
if continueLoop then

dmax ← 0.0
foreach i such that yi is not in Ys do

d← distance(yi, xi)
if d > dmax then

dmax ← d
j ← i

end
end
Add yj to Ys.

end
else

if Ys = y1:T then
continueLoop ← false, IoULimitReached ← false
if all elements in successList are false then

sequenceFailed ← true
end

else
j ← indexToAddHeuristic(failureReason, adapIter, successList, lat-
estSuccessfulTrajectory, y1:T , Ys)

Add yj to Ys

end
end

end

II

A. Appendix 1

The function indexToAddHeuristic described in Algorithm 9 determines which
annotation to add in case that the most recent call to IPLS failed. Depending on
the failureReason, which can be either exception or large distance, different choices
to assign the index j are made.

Algorithm 9 indexToAddHeuristic
Data: failureReason, adapIter, successList, latestSuccessfulTrajectory, y1:T , Ys

Result: Index of the annotation to add: j
if failureReason = exception then

if adapIter = 1 and first element in successList = false and |y1:T | >= 3 then
j ← roundDownToNearestInteger(T/2)

else if all elements in successList are false then
dtLimit ← 0.6 sec
j ← heuristicDt(Ys, dtLimit)
if j = null then

j ← heuristicTimeGap(Ys)
end

else
If this happens then there is a previous success available
x1:T ← latestSuccessfulTrajectory
xi are the elements of x1:T .
dmax ← 0.0
foreach i such that yi is not in Ys do

d← distance(yi, xi)
if d > dmax then

dmax ← d
j ← i

end
end

end
end
if failureReason = large distance then

j ← heuristicTimeGap(Ys)
end

III

	List of Figures
	List of Tables
	Introduction
	Quality and Human Intervention
	Annotation of Sequences
	Aim
	Dataset
	Problem Formulation
	Related Work and Contributions
	Limitations

	Theory
	Probabilistic State Space Models
	Posterior Approximation
	Fixed-Interval Smoothing
	Filtering
	Kalman Filtering
	Rauch-Tung-Striebel Smoothing

	Iterated Posterior Linearization Smoother
	Statistical Linear Regression
	Iterative Improvement of Enabling Approximations
	Initialization

	Square-root Implementations
	QR-decomposition
	Square-root Prediction
	Square-root Update
	Square-root Smoothing
	Square-root SLR

	Motion Models
	Discretization of Motion Models
	Measurement Noise

	Methods
	Smoothing Implementations
	Termination
	Shift of Observed Angles

	Motion Model Evaluation
	Fast Sampling
	Metrics for Evaluation
	Selected Sequences from Nuscenes

	Annotation Strategies
	Static Annotation Strategy
	Adaptive Annotation Strategy
	Design of Experiments

	Results
	Static Annotation Strategy
	Non-stationary Measurement Noise
	Stationary Measurement Noise

	Adaptive Annotation Strategy

	Discussion
	Motion Models
	Failing Sequences
	Insensible Trajectory Estimations
	Motion Model Linearization Failures

	Measurement Noise Models
	Implications of an Overconfident Measurement Model
	Distance Dependent Measurement Accuracy

	Annotation Strategies
	Combining Static and Adaptive Annotation
	Change from Relative to Inertial Reference Frame

	Conclusion
	The Best Performing Motion Model
	The Achieved Level of Automation
	Future Work
	Better Approximations of Process Noise
	Modeling of Measurement Noise
	Object Detection and Tracking
	Optimal Choice of Next Time Step to Annotate

	Bibliography
	Appendix 1
	Adaptive Annotation Implementation Details

