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Abstract

This thesis studies the material properties of laminated veneer lumber (LVL). LVL is a timber product
made of thin veneers of wood, glued together to form a laminate. The work has been carried out with
the aim of providing a better understanding of LVL when designing large structures, in particular the
thesis is related to the large scale application of wind turbine towers.

The project consists of two major parts, initially a study of the possibility to use laminate theory
for evaluation of LVL stiffness parameters. From this study it was found that the laminate theory used,
in combination with the accessible material parameters provide an unfit description of the material.
Consequently the second part of the project investigates the material behaviour using a more advanced
three dimensional model, taking the effect of variability in veneer properties and the influence of knots,
modeled as stiffness free voids, into account. The study reveal that increasing the number of veneers,
increases the effect from the variability of veneers and reduces the influence of knots.

Conclusions from the model suggests there are both beneficial and unfavourable effects when designing
thick LVL structures. In order to account for these effects which currently is not practice, a more elaborate
three dimensional model need to be studied, analyzing the material further.
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1 Introduction

A Swedish engineering company Modvion is developing large scale structures made from laminated wood,
specifically Laminated Veneer Lumber (LVL). These applications require the material to be used close to
its structural limit, which compels proper understanding of the material properties. The current potential
sources of these properties are either data from smaller prefabricated products or from tests performed
on the components. The prefabricated products differ from the components used in Modvion’s structures
and thus can not fully capture the properties of the wind turbine tower. Furthermore, testing of the full
scale components brings high cost in terms of both time and resources.

A material model capable of predicting the strength and stiffness of LVL in these large scale appli-
cations is thus desired to be able to capture the structural behaviour and make testing more efficient.
The particular structure developed by Modvion relating to this project is the design of 150 m high wind
turbine towers. A conceptual image of a tower and the assembly can be seen in Figure 1.1.

Figure 1.1: Assembly of turbine towers [1].

The towers are assembled from modules, made of eight to ten LVL sheets, each sheet is 27 mm thick
and consists of nine cross-bonded softwood veneers. Three to eight modules are assembled to form a
tubular section and the sections are stacked to form the tower. Pictures of various modules and sections
used by Modvion can be seen in Figure 1.2.
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a Example module. b Modules used for prototype tower.

c Assembled sections of the prototype tower.

Figure 1.2: Modules and sections used by Modvion [1].

The modules are produced by lamination of the LVL sheets, which are curved to the shape of the sections.
The essential steps of the module production are shown in Figure 1.3.

Veneer Sheet Module

Lamination Curving and Lamination

Figure 1.3: Production of modules with example layup.

Modvion advocates several benefits to this way of building wind turbine towers; the modules are
light, small in size and assembled to cylinders on site, meaning that transportation can be simplified and
made more efficient compared to conventional steel towers [1], which are transported as larger cylindrical
parts to the building site. Furthermore, the production of timber requires significantly less energy and
emissions in relation to steel [2]. The combined effect of improved transportation, beneficial production
and the use of timber, which is a less energy demanding, renewable material, results in a more sustainable
product.
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1.1 Project aim

In order to improve the structural performance of the wind turbine tower, accurate methods to determine
the strength is desired. This work investigates the possibility of using laminate theory to predict the
material behaviour. In addition, the effect of knots and variability of stiffness in individual veneers is
studied for very thick LVL.

1.2 Method

From the material data of tested standardized LVL products, laminate theory is used to evaluate the
stiffness properties of a single veneer. Veneer properties from standardized products as well as raw
material data are used to evaluate the properties of laminates with an arbitrary layup and thickness.

A 3D finite element (FE) model is developed where defects and variability of stiffness of veneers are
included. Through Monte Carlo simulation, i.e. simulating many models containing different statistically
determined deviations in the material, the effect of size for thick LVL cross sections is investigated. The
Monte Carlo simulations are performed and compared for four different laminates of varying size, each
with a unidirectional tensile load.

1.3 Limitations

For both the laminate theory and the 3D model, the following limitations apply:

• Full interaction between laminates is assumed. Delamination and stiffness variation in the interface
between veneers is not accounted for in the models.

• The models make no distinction between lamination of veneers and the lamination of sheets. In
reality the lamination of veneers to sheets will possess different properties than the lamination of
sheets to produce modules.

• The fibers are modeled perfectly aligned with the veneer edges.
• The tower is cylindrical, using curved laminates as walls. The curvature of the LVL is not included

in this study.

The Monte Carlo simulations are performed with the additional simplifications and demarcations:

• The 3D material model is linear elastic, meaning it is unable to predict plastic redistribution of
stresses. The project focuses on the load paths due to discontinuities in the material and not
predicting the actual strength of the material.

• Only the load case with uniaxial tensile stress is modeled in the 3D FE-model. Bending, shear and
compression is not studied in this work.

• In the 3D model defects are considered as cuboid voids of equal size. In reality the knots vary in
shape and size and may provide some stiffness to the material.

• The Monte Carlo simulation is made for ten thousand runs. This work focuses on observing a trend
and ten thousand are considered sufficient for this intent.
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2 Problem description

Engineered wood products (EWP) are designed timber products where the mechanical properties of the
raw timber material is improved through various production methods [3]. LVL is an EWP made from
thin veneers of wood, glued together to form a laminate [4]. There are several benefits of gluing veneers
together compared to structural timber. Decreased variability in material properties, the shape not being
limited by the raw material and the possibility to have more than one fiber direction within the same
product are some of the benefits. The LVL sheets used by Modvion are laminated using a water and
boiling proof (WBP) phenolic adhesive and veneers made from Nordic spruce [5].

2.1 Production

Production of LVL starts from timber logs being debarked and conditioned in a condition chamber,
resulting in bark free soft logs. The logs are cut into pieces and mounted on a rotation peeler where a
peeling lathe peels the log into veneers [4]. Figure 2.1 illustrates the peeling of a log and the longitudinal-
(L), radial- (R) and transverse/tangential (T ) directions i relation to the fibers.

Figure 2.1: Sketch of veneer peeling from a log [6].

The organic nature of timber add a variability to its properties [7]. In addition, the quality of the
material is different depending on its distance from the centre of the peeling billet, where the strongest
material is located at the edge [4]. This means the stiffness and strength properties change depending
on where through the thickness, the veneer was peeled. Both these effects imply a variability of veneer
properties within the LVL product. The veneers are then glued- and hot pressed together, forming the
final LVL product. The resulting interface between each veneer consists of a material that is a mixture
between wood fibers and glue [8]. Furthermore, the bond between veneers and sheets generally possess
higher strength and stiffness than the individual veneers [9].

Due to the peeling of logs, the presence of knots will be distributed with a repeating pattern in the
veneers. As the peeling lathe cuts through a single knot multiple times, this results in strips of cut knots
in the veneers, with a distance relating to the diameter of the wood billet. Modeling of knot distribution
in the veneers is further described in Section 4.5.
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2.2 standardized products

LVL typically refer to laminated wood products with a dominating part of the veneers oriented in the
same direction. Examples of standardized LVL products are Kerto-S and Kerto-Q. Kerto-S consist only
of longitudinal veneers typically used for beams. Kerto-Q consists of additional veneers in the transversal
direction, located in the vicinity of the laminate edges and is typically used for plates [4]. This is a
distinction between other laminated wood products such as plywood, which typically uses a cross-ply
lamination, meaning that longitudinal and transversal veneers are alternated throughout the laminate.
Examples of Kerto-S and Kerto-Q products provided by LVL producer Metsä Wood are seen in Figure
2.2.

a Kerto-S, beams with only longitudinal
veneers.

b Kerto-Q, panels with longitudinal and
transversal veneers.

Figure 2.2: LVL products, Metsä Wood [10].

Kerto-S, Kerto-Q and plywood are made of symmetric layups, meaning they are mirrored over the mid-
plane of the thickness. In general both Kerto-Q and plywood products consist of only longitudinal and
transversal veneers. The standardized products do not offer the dimensions required for the application
of wind turbine towers and therefore the modules used by Modvion do not consist of standardized sheets.
However, the demarcation to only longitudinal and transversal veneers as well as the type of timber and
adhesive used correspond to standardized Kerto-Q. Therefore the material properties of Kerto-Q will be
used as a basis when predicting the properties of the wind turbine tower.

2.3 Veneer effect

As mentioned in Section 2.1 the production of LVL will give a variability of the individual veneers
in a laminate. This will have an impact on the stress distribution in the cross section where regions
with higher stiffness will attract more load compared to regions with lower stiffness. Consequently high
stiffness veneers in proximity to low stiffness veneers can induce a stress concentration in the stiffer veneer.
Depending on the size of the cross section, i.e. the number of veneers, this can have varying impact. The
influence of the variation in veneer properties for laminates of varying thickness will be referred to as
veneer effect.

2.4 Size effect

When predicting the behaviour of timber one must consider defects embedded in the material, such defects
are weak spots that will determine its strength [11]. The impact of defects is a probabilistic phenomena
depending on the size of the timber structure, mainly occurring in the tensile zone of a loaded body
[11]. This phenomena is known as the size effect and implicates that larger volumes of timber are more
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likely to include defects than smaller volumes [12]. In design according to Eurocode 51, sufficiently small
members of structural timber and EWP, such as glued laminated timber (Glulam) and LVL may have
their characteristic strength increased due to a lower probability of defects [13].

In Modvion’s application for the wind turbine towers, the wall cylinder will be 216-270 mm thick,
which is thicker than the average structural member made of timber. For large structural members there
is no modification of the characteristic strength in Eurocode 5 [13].

2.5 Homogenization

The geometry of a knot is close to the shape of a cone [14]. In addition the fibers in timber are not
perfectly aligned, there are deviations due to timber’s organic nature. Furthermore there are local larger
angle deviations in the fibers around knots [15].

From the peeling process in the production of LVL, the cone shaped knots are cut into smaller defects
distributed over the volume of the laminate [4], meaning that the maximum thickness of a knot defect
equals the thickness of a single veneer. For a given type of veneer, the size of a defect is independent of
the thickness of the laminate. Therefore the volume of a single knot relative to the total volume of the
laminate is lower for thicker laminates and the impact of knots can vary depending on the thickness of
laminates. This will be referred to as homogenization, not to be confused with the size effect described
in Eurocode 5 [13]. It is expected that for a thick construction with a lot of veneers e.g. the wind turbine
tower built by Modvion, homogenization will have a larger impact and thus lower the influence of defects
in the material.

1European standard for design of timber structures
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3 Evaluation of stiffness properties

Due to the combined effect of timber’s organic nature and the laminate structure, complex material models
are required to describe the mechanical properties of LVL in detail. A simplified method is investigated,
utilizing laminate theory, which is a theoretical tool used to analyse the mechanical behaviour of composite
materials. Laminate theory is commonly used for fiber-reinforced polymers and has the benefit that it
constitute several simplifications to the complex three dimensional problem.

The theory assembles and evaluates the properties and mechanical response for laminates consisting
of plies (veneers in timber products) with different fiber directions. Plies are the components by which
a laminate is composed, in laminate theory a ply is considered as a plate element with a uniform fiber
direction. Composite mechanics and laminate theory are described in a similar way in a variety of
literature. Assumptions, equations and the notation used in this report can be found in both [16, 17].
A significant assumption in laminate theory is that the fibers are assumed perfectly aligned within each
ply. In addition the laminate theory used in this report assumes the bonding between plies to be ideal,
i.e. no deformations due to shear can occur between the layers. This is not common practice for all types
of laminate theory.

3.1 Laminate orientation

In order to describe the layup of veneers in a laminate, this report will use a notation based on the
Cartesian coordinate system, where the coordinates are defined using the fiber direction of the majority
of the veneers as the global x-direction. The y-axis is the in-plane direction perpendicular to the x-axis
and the z-axis is the out-of-plane direction. The notation assumes equally thick plies and same ply
properties throughout the laminate. Figure 3.1 show an example cross section of a five veneer laminate
and the coordinate axis.

Figure 3.1: Sketch of a five veneer laminate with global coordinate system.

In the chosen laminate notation the layup above is described with the following expression

Layup = [0/90/0̄]s (3.1)

the inherent numbers are the fiber direction in degrees from the global x-axis for each individual veneer.
Since the layup is symmetric, only the veneers up to the symmetry line is written, where the subscript
s indicates symmetry of the entire laminate. In cases of symmetry with odd number of veneers the
symmetry line splits the center veneer, such veneers are denoted with a bar as seen in Eq. (3.1).
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3.2 Laminate theory

Laminate theory originate from the generalized Hooke’s law for a linear elastic material. By utilizing the
symmetry of the Cauchy stress- and strain tensors σ and ε (minor symmetry of the fourth-order Hooke
elasticity tensor C), the constitutive relation can be written in contracted matrix or Voigt format as

σ1
σ2
σ3
σ23
σ13
σ12

 =


C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66




ε1
ε2
ε3
γ23
γ13
γ12

 (3.2)

where the indices 1, 2 and 3 correspond to x, y and z components of the stress and strain. Eq. (3.2) is
written in the condensed format as

σ = C ε (3.3)

where C is the matrix representation of the fourth-order Hooke tensor C. Restricting to the small strain
setting (Cauchy stress) entails that the Hooke tensor acquire major symmetry, further reducing the tensor
to 21 individual components. In addition laminate theory consider laminates as a specially orthotropic
material, meaning that they fulfill symmetry conditions in the xy- and xz-plane. Major symmetry of
the Hooke tensor along with the properties of a specially orthotropic material, reduces the constitutive
matrix to

C =


C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

 (3.4)

Evaluation of laminates are in general based on the assumption that the axial out-of-plane component,
σ3, is set to 0, due to their planar dimensions (small height relative to the depth and length). This means
that a laminate can be fully described by six individual components; C11, C12, C22, C44, C55 and C66.
Each component can be expressed in their fibre- or sub-scale components as

C11 =
EL

1− νLT νTL
, C12 =

νTLEL
1− νLT νTL

, C22 =
ET

1− νLT νTL
(3.5)

C44 = GRT , C55 = GLR, C66 = GLT (3.6)

where the indices L, R and T represent the longitudinal-, radial- and transverse/tangential directions in
relation to the wood fibers, corresponding to Figure 2.1. νij and νji are the major and minor Poisson’s
ratios, where it is noted from the symmetry of C that

νijEj = νjiEi (3.7)

The constitutive matrix is commonly split into two separate parts by defining the in-plane stiffness as

Ĉ =

C11 C12 0
C21 C22 0
0 0 C66

 =


EL

1− νLT νTL
νTLEL

1− νLT νTL
0

νTLEL
1− νLT νTL

ET
1− νLT νTL

0

0 0 GLT

 (3.8)
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and the corresponding out-of-plane stiffness as

C̃ =

[
C44 0
0 C55

]
=

[
GRT 0

0 GLR

]
(3.9)

where Ĉ and C̃ represent the local stiffness matrices for each ply.
The in-plane mechanical properties for the laminate are described using the assembled stiffnesses A,

B and D known as the extensional, coupling and bending matrices. The matrices are evaluated using
the assembly procedure as

A =

N∑
k=1

Ĉk(hk − hk−1), B =

N∑
k=1

Ĉk(h2k − h2k−1), D =

N∑
k=1

Ĉk(h3k − h3k−1) (3.10)

where N are the number of plies, hk and hk−1 are the z-coordinates of the interface for each ply and
Ĉk denotes the rotated in-plane stiffness matrix for ply k. The local stiffness matrices are rotated using
transformation matrices T 1 and T 2 as

Ĉ = T−11 Ĉ T 2 (3.11)

with the transformation matrices defined as

T 1 =

 cos2 θ sin2 θ 2 sin θ cos θ
sin2 θ cos2 θ −2 sin θ cos θ

− sin θ cos θ sin θ cos θ cos2 θ − sin2 θ

 (3.12)

T 2 =

 cos2 θ sin2 θ sin θ cos θ
sin2 θ cos2 θ − sin θ cos θ

−2 sin θ cos θ 2 sin θ cos θ cos2 θ − sin2 θ

 (3.13)

where θ is the angle between the veneer fiber direction and the global x-axis of the entire laminate.
For out-of-plane shear the corresponding assembled stiffness is given by

Ã =

N∑
k=1

C̃k(hk − hk−1) (3.14)

with rotated out-of-plane stiffness

C̃ = T̃
−1
1 C̃ T̃ 1 (3.15)

and the associated transformation matrix

T̃ 1 =

[
cos θ − sin θ
sin θ cos θ

]
(3.16)

It is noted that for 0◦ plies the transformation matrices are equal to identity meaning that the global-
(xy) and ply (LT ) coordinate systems coincide, implying that the rotated and local stiffness matrices are
equal

Ĉ(θ = 0) = Ĉ, C̃(θ = 0) = C̃ (3.17)

The A, B, D and Ã matrices are used to express the response in terms of forces and moments as[
F
M

]
=

[
A B
B D

] [
ε0

κ

]
, R = Ã γ

3
(3.18)

where F ,M and R are the loads (per unit length) representing in-plane extensional forces and moments
and out-of-plane shear forces respectively. The in-plane deformations ε0 and κ represent mid-plane strains
and curvatures and γ

3
denote the out-of-plane shear strains. The individual components are given as
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F =

 F1

F2

F12

 , ε0 =

 ε01ε02
γ012

 (3.19)

M =

M1

M2

M12

 , κ =

 κ1κ2
κ12

 (3.20)

R =

[
R23

R13

]
, γ

3
=

[
γ23
γ13

]
(3.21)

Note that the presented laminate theory is based on the assumptions in Kirchhoff-Love plate theory,
which is applicable for thinner plates. Therefore the theory become a less accurate approximation for
thicker members (the σ3 component of the stress is no longer negligible). Only thinner laminates are
studied using laminate theory in this work. For the full scale structure of the wind turbine tower one
must make sure that the plate assumptions are applicable.

3.3 Kerto-Q analysis

Since the stiffness parameters are known only for standardized LVL-sheets and not the particular layup
used by Modvion, it is desired to predict the properties of an individual veneer. The aim is to assess
any layup from the veneer properties using laminate theory. Since Kerto-Q and Modvion’s sheets share
several properties (Section 2.2), the approach to describe the material behaviour of the LVL modules is
to evaluate the laminate stiffness parameters of a Kerto-Q sheet. The data for the evaluated Kerto-Q
product is presented in Table 3.1, where N0 and N90 are the number of 0◦ and 90◦ veneers and t is the
total thickness of the laminate.

Table 3.1: Geometrical data for Kerto-Q.

t [mm] Layup N N0 N90

27 [0/90/02/0̄]s 9 7 2

3.3.1 Laminate averaging

When designing LVL structures according to Eurocode 5 the variability of stiffness within the material
through the thickness is considered using a mean stiffness for the whole laminate [13]. The mean laminate
properties are determined from ideal tension, compression, bending and shear tests on an assembled
laminate in accordance with Eurocode 5. The tests only consider strain in the direction of the load, as a
consequence the stiffness parameters are simplified such that the coupling between strains are neglected,
resulting in an uncoupled stress-strain relation. With these simplifications the constitutive relation can
be written as 

σ1
σ2
σ23
σ13
σ12

 =


E1 0 0 0 0
0 E2 0 0 0
0 0 G23 0 0
0 0 0 G13 0
0 0 0 0 G12



ε1
ε2
γ23
γ13
γ12

 (3.22)

where the non-zero components in the constitutive matrix are mean values and the neglected coupling
terms are zero.

A symmetric layup, equally thick veneers and the 0◦/90◦ veneer directions of the standardized layups
enable simplifications to the expressions given in Section 3.2. Symmetry of the laminate entails that all
components of the coupling matrix B are equal to zero (Eqs. (3.10) and (3.18)). This means there is
no relation between in-plane extensional deformations and bending. Furthermore all standardized LVL
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products as well as the sheets used by Modvion consist of veneers of equal thickness. Equally thick
veneers combined with fiber directions of only 0◦ and 90◦ entails that the individual stiffness components
of the assembled laminate can be expressed as

C∗11 =
N0 C11 +N90 C22

N
, C∗12 = C12, C∗22 =

N90 C11 +N0 C22

N
(3.23)

C∗44 =
N0 C44 +N90 C55

N
, C∗55 =

N90 C44 +N0 C55

N
, C∗66 = C66 (3.24)

where stiffness components denoted with ∗ represent the weighted stiffnesses of the entire laminate, based
on the relation between the number of 0◦ veneers and the number of 90◦ veneers. The average laminate
stress can therefore be expressed in terms of a weighted laminate stiffness matrix and the average laminate
strain 

σ1
σ2
σ23
σ13
σ12

 =


C∗11 C∗12 0 0 0
C∗12 C∗22 0 0 0
0 0 C∗44 0 0
0 0 0 C∗55 0
0 0 0 0 C∗66



ε1
ε2
γ23
γ13
γ12

 (3.25)

Using the relation in Eq. (3.7) it is possible to establish an additional equality between the longitudinal
and transversal weighted stiffnesses C∗11 and C∗22 and the coupling term C∗12 as

C∗12 = ν12 C
∗
22 = ν21 C

∗
11 (3.26)

3.3.2 Back calculation

The stiffness of individual veneers can be calculated from properties of an assembled laminate. This
calculation procedure is referred to as back calculation of the veneer stiffness properties, since equations
are commonly used to determine laminate properties from veneers rather than veneer properties from
a laminate. When evaluating the stiffness for individual veneers from an assembled laminate, the effect
of adhesion between veneers is included. Consequently the back calculated stiffnesses are regarded as
equivalent properties of the particular veneer and adhesive used in the studied layup. This is considered a
benefit since the effect of lamination is difficult to model and incorporate on values for the raw material.
The back calculation is performed on laminates from two different data sources and are presented in
Table 3.2.

Table 3.2: Tested stiffness parameters for Kerto-Q.

Data source E1 [MPa] E2 [MPa] G12 [MPa] G13 [MPa] G23 [MPa] ν21 [-]

Metsä Wood [18] 10500 2400 600 120 22 -
Tlustochowicz [19] 10590 2967 500 147.5 48.9 0.02

The tabulated stiffnesses are mean values taken from the LVL producer Metsä Wood and the PhD thesis
of Tlustochowicz. Note that Poisson’s ratio is not available from the Metsä Wood data source and that
the stiffnesses are the averaged values for the entire laminate for both sources.

The back calculating of veneer properties is based on the assumption that the mean stress for the
uncoupled relation and the average laminate stress are equal. Using this assumption it is possible to
directly solve for the individual shear stiffnesses C44, C55 and C66. Since the in-plane shear is uncoupled
from the other stresses and strains, it is noted that the method will result in equal values for the local
stiffness C66 and the tested mean value G12. The analytical relation used to solve for C44 and C55 is
defined as

11




C44 =

NG23 −N90 C55

N0

C55 =
N(N0G13 −N90G23)

N2
0 −N2

90

(3.27)

The resulting shear stiffnesses from the back calculation are presented in Table 3.3.

Table 3.3: Resulting shear stiffnesses from the back calculation.

Data source C44 [MPa] C55 [MPa] C66 [MPa]

Metsä Wood -17 159 600
Tlustochowicz 9 187 500

To solve for the in-plane stiffnesses C11, C12 and C22, a numerical solver is used due to the complexity
of the equations. For the data from Tlustochowicz, Eq. (3.26) was utilized to establish a uniquely
determined set of equations, where the resulting minimization routine is given as

min
C11, C22

(
N0 C11 +N90 C22

N
−
Nν221

(
N0 C11 +N90 C22

N

)2
N90 C11 +N0 C22

− E1

)2

+

(
−
Nν221

(
N0 C11 +N90 C22

N

)2
N0 C11 +N90 C22

+
N90 C11 +N0 C22

N
− E2

)2

(3.28)

For the data from Metsä Wood the absence of major Poisson’s ratio entail an undetermined system of
equations. The following routine was used to solve the modified minimization

min
C11, C12, C22

(
N0 C11 +N90 C22

N
− NC2

12

N90 C11 +N0 C22
− E1

)2

+

(
− NC2

12

N0 C11 +N90 C22
+
N90 C11 +N0 C22

N
− E2

)2
(3.29)

Two sets of optimization routines are performed to approximately solve for the in-plane stiffnesses.
The first case allows any value for the optimized variables and the second include the constraint that all
variables should be greater than or equal to zero. Table 3.4 and 3.5 show the resulting axial stiffnesses
C11 and C22 for the constrained and unconstrained optimization.

Table 3.4: Resulting optimized values for C11 [MPa].

Minimization condition constrained unconstrained

Metsä Wood 15349 17562
Tlustochowicz 13615 13695

Table 3.5: Resulting optimized values for C22 [MPa].

Minimization condition constrained unconstrained

Metsä Wood 0 -1074
Tlustochowicz 0 -82

The residual of the optimization is used to quantify the condition of the minimized values. It is calculated
as the value of the expressions in Eqs. (3.28) and (3.29) for the minimized parameters. The resulting
residuals are presented in Table 3.6.
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Table 3.6: Residual from optimization [MPa2].

Minimization condition constrained unconstrained

Metsä Wood 3.3 · 105 1.7 · 10−11

Tlustochowicz 3.2 · 103 9.5 · 10−10

From the resulting stiffness parameters it is apparent that using the approach of back calculating the
equivalent veneer properties is not an appropriate method, for the studied data sets. Both the analytically
solved shear stiffnesses and the optimized in-plane stiffnesses result in non-physical, negative values. The
constrained optimization result in stiffnesses equaling zero as well as a significantly larger residual than
for the unconstrained solution, indicating the minimum property of the unconstrained solution. It can
thus be assumed that the method of back calculating the equivalent veneer properties is an unfit approach
with the set of equations and material parameters used.

3.4 Assembling from raw material

Instead of determining the veneer properties from back calculating a standardized product, data for the
raw material can be used to describe the veneers. The drawback of this method is the loss of the effect
from lamination, included in the equivalent values achieved from the back calculation. Raw material
properties from ultrasonic testing of three specimens of European softwood spruce [20] is presented in
Table 3.7. Both data for the sub-scale parameters as well as the associated components of the Hooke
tensor is included. The data was evaluated for cubical test specimens with an edge length of 20 mm, cut
from the tree such that the influence of the growth rings curvature is negligible. Therefore it is assumed
to represent clearwood or material completely free of defects.

Table 3.7: Data from ultrasonic testing of softwood spruce [20].

Components in Hooke tensor [MPa]

C11 C12 C13 C22 C23 C33 C44 C55 C66

17420 1720 1555 2390 1180 1940 74 910 940
Sub-scale parameters [MPa]

EL ET νLT νTL

15810 1640 0.466 0.048

To be able to compare with the back calculated values, the same layup (presented in Table 3.1) was
used for the assembly. The analysis is performed with and without the assumption that σ3 equals zero, i.e.
with the full 6× 6 C-matrix and with C13, C23 and C33 components being neglected. In the constitutive
relation (Eq. (3.4)) the values for the shear components C44, C55 and C66 are uncoupled, meaning they
are independent of the σ3 assumption. As mentioned in Section 3.3.2 the in-plane shear stiffness is equal
on the veneer and laminate scale, since the laminate consist of only 0◦ and 90◦ veneers. The result from
the assembly using the raw material data is presented in Table 3.8.
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Table 3.8: Assembled stiffnesses from ultrasonic data.

Uniaxial components [MPa]

Size of C E1 E2

5× 5 12827 4852
6× 6 13562 5518
Shear components [MPa]

G12 G13 G23

940 724 260

Due to the exclusion of the out-of-plane stiffness contribution, the assembled values for E1 and E2 are
slightly lower with the σ3 assumption. Note that the results give a higher prediction of the stiffness than
the tested values from Table 3.2.
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4 Finite element analysis

The strategy to capture the veneer effect and homogenization described in Sections 2.3 and 2.5 is to
create an FE-model. A 3D, linear elastic model is created to be able to analyse the load distribution in-
and out-of-plane around knots, which a 2D model would not be able to. To compare different sizes of
laminates the FE-model uses 0◦ and 90◦ veneers, alternated throughout the laminate, corresponding to
the same layup pattern with increasing number of veneers for all studied layups.

For evaluation of the results the maximum relative stress in the x-direction is used, which is de-
fined as the maximum longitudinal stress, σ1,max, divided by the corresponding stress for the ideal case,
σ1,max,ideal, without defects or variation in veneer stiffness. The evaluated stress is always calculated as
the mean over all Gauss points for each element. This quantity is chosen since it is comparable between
the different layup sizes and independent of the magnitude of the applied load. It is noted that the stress
for the ideal case is not equal for all models, since the number 0◦ veneers relative to the number of 90◦

veneers varies for the different layup sizes depending on the total number of veneers.
Geometrical properties for the studied layup sizes are presented in Table 4.1.

Table 4.1: Layup properties.

Size (i) Layup t(i) [m] N (i)

1 [0/9̄0]s 9 · 10−3 3
2 [(0/90)2/0̄]s 27 · 10−3 9
3 [(0/90)6/0/9̄0]s 81 · 10−3 27
4 [(0/90)20/0̄]s 243 · 10−3 81

Layup 1 represent the thickness of the sheets used in the prototype tower, seen in Figure 1.2. Layup 2
represent the thickness of a sheet and Layup 4 the thickness of a module in the 150 m tower. Layup 3 is
an intermediate step between the second and fourth.

Two different constitutive matrices, one for the 0◦ and one for the 90◦ veneers are used to describe the
3D solid. They are both the same material but their properties are different relative to the longitudinal
axis of the laminate. The two versions of the constitutive element matrices CE are given as

CE,0 =


C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

 , CE,90 =


C22 C12 C23 0 0 0
C12 C11 C13 0 0 0
C23 C13 C33 0 0 0
0 0 0 C55 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66

 (4.1)

It is noted that the assumption used in laminate theory, reducing the C matrix from a 6×6 to a 5×5
matrix is omitted in the 3D model. The stiffness values used correspond to the Hooke tensor components
from the ultrasonic testing, presented in Table 3.7. The ideal model without knot or veneer distribution is
therefore also assumed to represent a clearwood specimen consisting of defect free raw material. Modeling
of the cohesive zone in the interface between laminates is not performed since it is not in the scope of
this work.

Homogenization and veneer effect are modeled separately, both for four cases of different thickness
with the same uniformly distributed tensile load. For all cases a Monte Carlo simulation of ten thousand
runs is performed.

4.1 3D model

The FE-analysis is based on a cuboid laminate subjected to tension in the longitudinal direction, simulat-
ing a uniaxial tension test. This model is chosen since the size effect is a phenomena for materials loaded
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in tension, as mentioned in Section 2.4. The modelling is performed in MATLAB2 using the FE-toolbox
CALFEM. Eight-node, cuboid, iso-parametric elements of equal size, with eight Gauss integration points
each are used. Homogenization and veneer effect are included by modifying the element stiffness matrices,
KE, equivalent of scaling the corresponding element constitutive matrix CE (due to linear elasticity).

Veneers are modeled using a single element in the z-direction. The number of elements (NEL) in the
x-direction, NE,x, and y-direction, NE,y, are kept constant, thus the total number of elements, NE, is
proportional to the number of veneers. A sketch of the model with load case and boundary conditions
for the same example layup seen in Figure 3.1 is illustrated in Figure 4.1.

Lx

Ly

Lz

F1

F1

Figure 4.1: 3D model with boundary conditions for the example layup.

The load, F1, is distributed evenly on the surfaces in the yz-plane and the boundary conditions are
set according to the figure, preventing rigid body motion (RBM). Both the homogenization and veneer
effect are modeled using a load case with a constant applied force, corresponding to a force controlled
FE-problem. As a consequence the stresses at the boundaries where the force is applied are uniform,
which is not a physical behavior in a cross section of varying stiffness. In an event that there is a knot
at the boundary the variation will increase and this effect will be amplified even further. However, at a
distance from the boundary the loads will have redistributed such that a more realistic stress distribution
is reached in the cross section.

The assigned properties for the FE-model are presented in Table 4.2.

Table 4.2: Input for FE-model.

F1 [Pa] Lx [m] Ly [m] Lz [m] NE,x NE,y NE,z

100 · 106 1 0.5 t(i) 20 10 N (i)

Where Lx, Ly and Lz are the cuboid dimensions according to Figure 4.1 and NE,z is the NEL in the
z-direction, i.e. the number of veneers. The load F1 is scaled using the constant depth Ly and the height
Lz, depending on the size of the layup, resulting in the the same force relative to the cross section area
for each layup. In the z-direction the NEL is always set as the number of veneers and the NEL in x- and
y-direction were chosen corresponding to the model dimensions as

NE,x = 2 ·NE,y (4.2)

2Matlab, version R2019b, Numerical computing environment
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4.2 Convergence study

To verify that the mesh resolution is sufficiently refined and provides a converged solution, a convergence
study is performed for the ideal case with no homogenization or veneer effect for each separate layup.
The convergence was only evaluated for varying NEL in the xy-plane, consequently the influence of NE,z

is not studied. Convergence is evaluated through the energy norm, || • ||, for the solution on different
meshes and compare the result in terms of the relative error (RE), ϕ

ϕ =
||e||
||u||

(4.3)

where the exact solution, u, is approximated as the solution for an assumed overkill mesh of 968×NE,z

elements. The energy norm of the error, e, is evaluated from the exact and FE-solution as

||e|| =
√
||u||2 − ||uh||2 (4.4)

with the energy norm expressed in terms of the FE-solution or displacement vector, a, and global stiffness
matrix, K, as

||uh|| =
√
aTKa (4.5)

Figure 4.2 presents the result from the convergence study.

Figure 4.2: Convergence of the relative error versus number of elements for
each layup size.

It is observed that the chosen mesh corresponding to the values for NE/NE,z = 200 results in a maximum
relative error of approximately 3%.

4.3 Modeling veneer effect

The laminate consists of veneers, each having a stiffness CE,0 or CE,90 (Eq. (4.1)), which in reality
will have a variation from production as mentioned in Section 4.3. To model this variation a modified
constitutive element matrix CE,α where, α, is a factor modifying CE to be stiffer or less stiff
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CE,α = αCE (4.6)

It is thus assumed that all stiffness parameters in the constitutive matrix of the veneers varies linearly
by the same factor α. For each veneer, α is based on the coefficient of variation, cv, corresponding to a
Lognormal probabilistic model of the bending modulus for structural timber [7].

The expression for a Lognormal distribution is given in terms of the logarithmic parameters for the
standard deviation, δ, and the mean, µ, as

p(α) =
1

α

1

δ
√

2π
exp

(
− (lnα− µ)2

2δ2

)
(4.7)

The distribution is created using the following expressions for δ, µ and the variance, v

δ =

√√√√ln

(
v

1 +m2

)
, µ = ln

(
m2

√
m2 + v

)
, v = (cvm)2 (4.8)

with the values for the coefficient of variation and the mean

cv = 0.13, m = 1 (4.9)

The probability density function (PDF) and the cumulative distribution function (CDF) of α is presented
in Figure 4.3.

a Probability density function. b Cumulative distribution function.

Figure 4.3: Lognormal distribution of veneer variability factor α.

The Lognormal distribution of α is used to modify the stiffness matrix for each veneer in all four studied
layups.

4.4 Veneer effect simulation results

In order to avoid the non-physical material behaviour at the boundaries (Section 4.1), the results from the
veneer effect model is evaluated in the middle cross section of the laminate. The resulting distributions
for the veneer effect simulation can be seen in Figure 4.4, using a constant width of the data bins, λ.
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a Layup 1. b Layup 2.

c Layup 3. d Layup 4.

Figure 4.4: Maximum relative stress for the veneer effect simulation, λ = 0.01.

An empirical PDF for each of the four distributions above is presented in Figure 4.5.

Figure 4.5: Empirical probability density functions for the veneer effect sim-
ulations.

From Figures 4.4 and 4.5 it is observed that the maximum relative stress from each Monte Carlo
simulation increases with the layup thickness. In addition the variability of the distribution increase with
the thickness of the layups.
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4.5 Modeling homogenization

Wood is strongest in the direction of the fibers and if there is a knot in the material, the fibers deviate from
its main direction and thus the strength and stiffness in the main fiber direction is lowered [3]. Therefore
the influence of knots is important when modeling structural timber and EWP. Previous research have
modeled defects by changing the fiber direction around knots [15, 21], where [15] also considers the knot
itself to be a hole. An alternative approach models knots in Glulam beams by reducing the stiffness of
the elements where knots are present [22].

The model created to study the homogenization uses the same mesh as for the veneer effect. Monte
Carlo simulations are performed where a randomised knot distribution is determined for each run. The
knots are of equal size and are modeled as voids in the material similar to [15]. In addition the knots are
implemented in the model by reducing the stiffness of the elements containing knots as in [22].

Strips in the y-direction of each veneer, containing a statistically determined number of knots is used
to decide the location of defects. The knot distribution intends to resemble the patterns created from
production mentioned in Section 2.1. Outside the strips the material is considered knot free and the
distance between strips is determined using a distance, d. The strips are assigned by considering the
length of an element in the x-direction, meaning that the randomised strip location is related to the
FE mesh-discretization. A principal sketch of how knots are included in the model for a three veneer
laminate is illustrated in Figure 4.6.

 

 z 

 x 

k = 1 

k = 2 

k = 3 

d1 d3

d4
(2) d5 d6 d7

(1) 

d7
(2) d8 d9 d10 

 y 

d2 d4
(1) 

Figure 4.6: Principal sketch of a meshed, three veneer laminate. The gray
elements are the location of each knot, which are considered stiffness free.

At the edges the distance d4 and d7 are split and continues in the next veneer (k+1), where dj = d
(1)
j +d

(2)
j .

In each strip a random number of knots; one, two or three is assigned. Each knot is considered stiffness
free, modeled as an element that provides no stiffness in order to simulate a void. This also means that
all knots will have the shape of one element, which is a cuboid with volume 50 mm×50 mm×3 mm. As
mentioned in Section 2.5 the actual presence of defects will be cut sections of knots distributed as strips.

The knot free distance d varies according to the Gamma distribution defined in [22] as

20



p(d) =
ν
(
ν
(
d− LE,x

))w−1
Γ
(
w
) exp

(
− ν
(
d− LE,x

))
+ LE,x (4.10)

where w and ν are positive constants. LE,x is the element length with constant value of 50 mm, corre-
sponding to the minimum value of d. The Gamma function is defined as

Γ(w) =

∫ ∞
0

tw−1 exp(−t)dt (4.11)

with the values for the Gamma parameters w and ν

w = 2.37, ν = 0.0063 (4.12)

The values are taken from [22] and are a mean for boards of two strength grades of structural timber,
where w is a statistical parameter and ν is Poisson’s ratio. The PDF and CDF of d is presented in Figure
4.7.

a Probability density function. b Cumulative distribution function.

Figure 4.7: Gamma distribution of the knot free distance, d.

It is assumed that each knot is stiffness free, but in order to provide a stable FE-model, the element
stiffness of knots is not set to zero. Instead the stiffness is reduced to such an extent that further reduction
provides no significant change in the results. This is done by introducing a factor β, modifying all stiffness
parameters in the constitutive element matrix, CE according to

CE,β = βCE (4.13)

In order to find what factor β to be used such that the element stiffness does not further impact the
results, a convergence study where β tends to zero is performed. The maximum relative stress introduced
earlier is used as an indicator for when β does not further have to be reduced. Ten simulation runs of
different knot distributions are performed for five different values of β. Table 4.3 show the values used
for β and the convergence for all four layups is presented in Figure 4.8.

Table 4.3: Evaluated values of reduction factor β.

0.5 0.1 0.01 0.001 0.0001
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a Layup 1. b Layup 2.

c Layup 3. d Layup 4.

Figure 4.8: Lin-log plot of the maximum relative stress versus the reduction
factor β for ten cases of knot distribution.

The results from the study of β show that the value 0.01 corresponds to a converged solution. A further
decrease is considered negligible for all studied cases and consequently β = 0.01 is used in all further
calculations.

4.6 Homogenization simulation results

In the homogenization simulation both the maximum and the 95% fractile of the relative stress is studied.
In order to exclude results in the non-physical boundary where load is applied, the results from the
homogenization simulation is evaluated for all elements at a minimum distance of 100 mm from the
loaded boundaries. The simulation results for maximum relative stress in the homogenization model can
be seen in Figure 4.9 and 4.10.
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a Layup 1. b Layup 2.

c Layup 3. d Layup 4.

Figure 4.9: Maximum relative stress for the homogenization simulation, λ =
0.03.

Figure 4.10: Empirical probability density functions of the maximum relative
stress for the homogenization simulation.

Figure 4.9 show an instability in the maximum relative stress for Layup 1 and 2, where two separate
peaks are observed in each distribution. This is not the case for the thicker layups having a more uniform
distribution. Both the highest maximum relative stress and the mean are lower for the thicker layups. In
this regard there is no significant difference between Layup 3 and 4. Note also that the lowest maximum
relative stresses for all layups are more or less equal around a value of 1.3.

The results for the 95% fractile of the maximum relative stress is presented in 4.11 and 4.12.
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a Layup 1. b Layup 2.

c Layup 3. d Layup 4.

Figure 4.11: 95% fractile of the maximum relative stress for the homogeniza-
tion simulation, λ = 0.005.

Figure 4.12: Empirical probability density functions for the 95% fractile of
the maximum relative stress for the homogenization simulation.

For the 95% fractile Layup 1 show a high variability in results. As the thickness increases, the
variability decreases. Comparing Layup 1 and 4, there is a significant difference in variability. In addition
to a lower variability the thicker layups show lower relative stresses. Note that the lowest 95% fractile of
the maximum relative stress does not have a minimum value of 1.3 as for the maximum relative stress.
Here values are lower than one in some cases.
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5 Discussion

The project have evaluated different properties of LVL in two major aspects; the possibility of using
laminate theory to determine stiffness parameters and a 3D model investigating the elastic behaviour of
thick LVL layups, containing defects and varying veneer stiffness. In this chapter the outcome of these
studies are discussed.

5.1 Laminate modeling

The back calculation results in non-physical, negative values for some stiffness components, see Table 3.3
and 3.5. As mentioned in Section 3, the laminate theory used constitute simplifications such as; ideal
bonding between veneers, perfectly aligned fibers and defect free material. In addition laminate theory
neglects the σ3-component and all coupling terms but C12, relating the longitudinal to the transverse
in-plane deformations. In the physical tests performed to determine the values in the uncoupled relation
there is no quantification of the coupling between deformations. In reality each stress component has a
dependence on strains in other directions. As a consequence the coupling terms in the constitutive matrix
is neglected. Combining the different simplifications of laminate theory and the uncoupled relation can
explain the non-physical results from the back calculation.

Furthermore, the data from Metsä Wood uses the same stiffness parameters for Kerto-Q products with
thicknesses ranging from 27 mm to 75 mm, which indicates a rough estimation of the material parameters.
This data is studied since it is what Modvion is using at the current time. Using alternative, more exact
data may provide an improvement in the back calculation procedure.

The assembled values from the defect free raw material properties seen in Table 3.8 show higher
stiffness values than both sources of the tested properties seen in Table 3.2. This is expected considering
the effect of knots and lamination is not included.

5.2 3D modeling

In the FE-model one element per veneer is used in the z-direction and the mean stress of all Gauss points
in each element is studied. This approach has the benefit of avoiding stress singularities in highly con-
centrated stress regions, compared to using a finer mesh discretization or evaluating stresses in individual
Gauss points. In addition, a finer mesh discretization would increase the already long simulation time.

A force controlled FE-problem is chosen, which bring complications at the boundaries. An alternative
to avoid this problem is to model a displacement controlled FE-problem, which would give realistic results
in the entire domain, including the boundaries. The drawback of this method would be the loss of an
identical reference load for any size of layup, instead the reference load would need to be approximated
through iteration. Considering the additional effort of a displacement controlled model, a force controlled
method with some restriction on where stresses are evaluated was chosen. In order to avoid non-physical
results at the boundary, the stresses within a distance of 100 mm from the boundaries are not studied in
the knot model. In the veneer model only the middle cross section is evaluated. The results from the
veneer effect- and homogenization simulations are discussed in Section 5.2.1 and 5.2.2.

5.2.1 Veneer effect

Figure 4.4 show that the average magnitude of the maximum relative stress from each run of the Monte
Carlo simulation is increased with the number of veneers. By studying the assigned values of α it is
observed that the 0◦ veneers mainly governs the output, while the stiffness in the 90◦ veneers make small
impact on the results. A 0◦ veneer with a high value of α in the vicinity of 0◦ veneers with a low α-value
are the most critical, showing a high maximum relative stress, while more uniform distribution of α in
the veneers gives lower maximum relative stresses. For Layup 4 the probability of a more critical stiffness
distribution is higher, since the number of veneers, i.e. number of α-values is higher. This can explain
the higher maximum relative stresses.
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It is apparent that the variation in the maximum relative stress is lowest for Layup 1. Considering α
for each veneer in the layup is randomized from the same distribution, the mean stiffness of all veneers in
the Monte Carlo simulation will yield less variation for thicker laminates. From the simulation it is noted
that this does not have a dominant effect on the stresses, indicating that the local stiffness variations in
the laminate is governing for the maximum relative stress, i.e. a thicker laminate increases the probability
of more critical local effects. Note that the results obtained for the veneer effect essentially would have
been possible to obtain without the 3D model. Since each veneer is modified uniformly, a plate model
can capture the same response for a given cross section.

5.2.2 Homogenization

Studying Figures 4.9 and 4.10 the lowest maximum relative stresses for all layups are more or less equal
around a value of 1.3. This shows that any knot distribution will yield an increased maximum relative
stress of about 30%, which is an indication that a knot free laminate will have a substantially lower
highest stressed region, compared to a laminate containing knots. Note that the variation α is based on a
probabilistic model of bending modulus of structural timber, which may differ from the stiffness variation
of an LVL laminate.

Figure 4.10 and 4.12 show that the relative stresses in the thicker layups are lower compared to
the thinner layups, with the exception being the very lowest maximum relative stresses around the 0.1
percentile region. For Layup 1 in Figure 4.11, the stress values occur in a wider range compared to the
other layups.

Layup 1 and 2 in Figure 4.9 show an instability in the maximum relative stress distribution, where
two distinct peaks can be observed. This is not the case for the thicker layups. By studying the knot
distribution for a couple of samples, certain trends are observed. In general the highest relative stress
increases with the total number of knots, in addition the knots in the 90◦ veneers show no particular
trend. What happens in the 0◦ veneers seems to be governing for the highest stress and the highest stress
always occurs in one of the 0◦ veneers, similar to the veneer effect. Note that only the loading case of
pure tension is considered. For other load cases such as shear, the highest stress may occur in a 90◦

veneer.
The two different peaks for Layup 1 and 2 in Figure 4.9 can be explained through the knot distribution

in the strips, where different trends are observed in both peaks. As mentioned in Section 4.1 a random
number of knots (one, two or three) is included in each strip. Also the position of each knot within the
strip is random and different knot patterns in the strip are more or less critical. For both peaks there are
two to three knots in one of the two 0◦ veneers in proximity to the highest stress. What separates the
right peak from the left is that the highest stressed elements are jammed, meaning two knots are located
with a spacing of one element between them. Figure 5.1 show an example of the jammed case, which is
the case for a majority of simulations in the peak on the right.
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Figure 5.1: Example from the right peak of the distribution in Figure 4.9a.

Black elements are the locations of knots and the red element is the location of the highest stressed
element. Figure 5.2 show the left peak, where there are no cases of jammed elements with maximum
relative stress.

Figure 5.2: Example from the left peak of the distribution in Figure 4.9a.

For the thicker laminates in Layup 3 and 4, only one peak is present. Here the jammed elements
occur consistently, explaining the more uniform curves.

The homogenization is modeled using strips of knots throughout the laminate according to Figure
4.6. All strips stretches in the same in-plane direction perpendicular to the direction of the applied load.
This is a flaw in the model since in reality, as the transverse veneers are rotated the strips will rotate
as well. This flaw is evaluated to determine how much effect it has on the results. An additional study
is performed to investigate the influence knots in the 0◦ veneers compared to the 90◦ veneers. As noted
previously the 0◦ veneers mainly governs the output, therefore a similar Monte Carlo simulation to the
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previous study is performed with the only difference being that the 90◦ veneers are considered knot free.
The resulting mean and standard deviation of the maximum relative stress distributions for all four layups
are compared in Table 5.1 and 5.2.

Table 5.1: Mean for the maximum relative stress distributions.

Case for 90◦ veneers Layup 1 Layup 2 Layup 3 Layup 4

Strips 1.60 1.51 1.46 1.46
Knot free 1.60 1.50 1.45 1.45

Table 5.2: Standard deviation for the maximum relative stress distributions.

Case for 90◦ veneers Layup 1 Layup 2 Layup 3 Layup 4

Strips 0.170 0.118 0.082 0.073
Knot free 0.168 0.115 0.083 0.070

As seen in the tables above the influence of knots in the 90◦ veneers make no significant change to either
the mean or the standard deviation, for the distributions of the maximum relative stress for any of the
studied layups. Based on these results it is assumed that the flaw in the model has a negligible effect on
the results. Note that this assumption is restricted to the modeled unidirectional tensile load, meaning
it cannot be applied to other load cases such as shear or bending.
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6 Conclusions

It is concluded that using the method of back calculating the veneer properties from the data sources of
Metsä wood or Tlustochowicz is not an appropriate method. However, it is not ruled out that laminate
theory will be able to adequately capture the material behaviour based on other data sources or if
additional assumptions are made. For example include the influence of knots and lamination.

The Veneer effect simulations show that the highest relative stress and its variability is lower for
thinner layups. It is therefore concluded that for the studied geometry and load case, a thicker layup has
a lower yield load compared to a thinner layup.

From the homogenization simulation a wider range of values and higher relative stress are observed
in the thinner layups compared to the thicker ones. This is an indication that a homogenization effect
is present as the number of veneers increase. Thus it is concluded that the relative stress is less variable
and lower for the thicker layups, indicating that sufficiently large structural members can achieve an
increased strength due to size because of homogenization. Relating this to Modvion’s structure it cannot
be stated that the thick LVL will posses a beneficial behaviour with regard to what has been studied in
this work. This is due to the veneer effect showing unfavourable response and the homogenization shows
favourable effects. The impact of both effects combined will have to be studied in order to establish if a
thicker laminate provides a favourable effect or not.

From the distribution of individual knots in the strips, it is observed that the knot pattern highly
influences the maximum relative stress. It is concluded that jammed distributions, where two knots are
located at a small distance from each other is most critical. In addition one large knot consisting of two
or three knots adjacent to each other is not as critical as if they were separated the small distance of
50 mm.

6.1 Future work

In this work the elastic behaviour of the LVL material has been studied, which is a first step in reaching a
material model able to determine the strength of the wind turbine tower. The results provide knowledge
indicating which research direction to proceed with in order to reach a better understanding of the
material. Some of the demarcations made are required to be studied further. The following bullet points
propose topics for continued research.

• Timber has some ability to redistribute stresses when loaded above the yield limit. If the yield
stress is reached locally, this does not mean the laminate will fail as a component. The 3D material
model is linear elastic and therefore plastic redistribution cannot be captured. As a consequence,
an elasto-plastic model is desired.

• This work focused on laminates without curvature, loaded in tension with a layup pattern of al-
ternated 0◦ and 90◦ veneers. The sequence was chosen to compare the different layups such that
the only variable was the number of veneers. As a consequence there is a need to further study
alternative layup patterns, different load cases as well as the curvature of the laminates.

• Interfaces between veneers consists of a zone containing a mixture between wood fibers and glue.
This can effect the material behaviour between veneers and consequently the performance of the
whole laminate.

• The knots in each veneer are in reality shaped like sections of a cone. Also, the fibers are not
perfectly aligned, they are distributed organically and the angle from the coordinate axes can
differ. In addition there are local fiber deviations around each knot, meaning they also impact the
nearby material.

• If there would be no knots in the cross section the maximum relative stress would be significantly
lower compared to a case including knots of any distribution. Furthermore, some knot patterns
provide higher stress concentrations than others. This gives incentive to investigate further how
different production methods can intentionally remove or distribute knots. Potentially reducing or
eliminating the increased stress induced from defects.
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